The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Protein Of Interest (POI) polypeptide. The present invention also concerns plants having modulated expression of nucleic acid encoding a POI polypeptide, which plants have enhanced yield-related traits compared with control plants. The invention also provides novel POI-encoding nucleic acids and constructs comprising the same, useful in performing the method of the invention.
Plants having enhanced yield-related traits and method for making the same

Incorporated by reference are the following priority applications: US 61/316012 and EP 10157199.0.

The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase). The present invention also concerns plants having modulated expression of a nucleic acid encoding a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase), which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.

A trait of particular economic interest relates to an increased yield. Yield is normally defined as the measurable produce of economic value from a crop. This may be defined in terms of quantity and/or quality. Yield is directly dependent on several factors, for example, the number and size of the organs, plant architecture (for example, the number of branches), seed production, and leaf senescence. Root development, nutrient uptake, stress tolerance and early vigour may also be important factors in determining yield. Optimizing the abovementioned factors may therefore contribute to increasing crop yield. Under field conditions, plant performance, for example in terms of growth, development, biomass accumulation and seed generation, depends on a plant's tolerance and acclimation ability to numerous environmental conditions, changes and stresses.

Agricultural biotechnologists use measurements of several parameters that indicate the potential impact of a transgene on crop yield. For forage crops like alfalfa, silage corn, and hay, the plant biomass correlates with the total yield. For grain crops, however, other parameters have been used to estimate yield, such as plant size, as measured by total plant dry and fresh weight, above ground and below ground dry and fresh weight, leaf area, stem volume, plant height, leaf length, root length, tiller number, and leaf number. Plant size at an early developmental stage will typically correlate with plant size later in development. A larger plant with a greater leaf area can typically absorb more light and carbon dioxide than a smaller plant and therefore will likely gain a greater weight during the same period. There is a strong genetic component to plant size and growth rate, and so for a range of diverse genotypes plant size under one environmental condition is likely to correlate with size under another. In this way a standard environment can be used to approximate the diverse and dynamic environments encountered by crops in the field. Plants that exhibit tolerance of one abiotic stress often exhibit tolerance of another environmental stress. This phenomenon of cross-tolerance is not understood at a mechanistic level. Nonetheless, it is reasonable to expect that plants exhibiting enhanced tolerance to low temperature, e.g. chilling temperatures and/or freezing temperatures, due
to the expression of a transgene may also exhibit tolerance to drought and/or salt and/or other abiotic stresses. Some genes that are involved in stress responses, water use, and/or biomass in plants have been characterized, but to date, success at developing transgenic crop plants with improved yield has been limited.

Consequently, there is a need to identify genes which confer, when over-expressed or down-regulated, increased tolerance to various stresses and/or improved yield under optimal and/or suboptimal growth conditions.

It has now been found that the yield can be increased and various yield-related traits may be improved in plants by modulating the expression in the plant of a nucleic acid encoding a POI (Protein Of Interest) polypeptide.

Summary

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding the Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) gives plants having enhanced yield and improved yield-related traits, in particular, increased shoot biomass and/or increased root biomass, relative to control plants.

According to one embodiment, there is provided a method for improving yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding the Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase).

In accordance with the invention, therefore, the genes identified here may be employed to enhance yield-related traits, in particular, increased shoot biomass and/or increased root biomass, relative to control plants. Increased yield may be determined in field trials of transgenic plants and their suitable control plants. Alternatively, a transgene's ability to increase yield may be determined in a model plant under optimal, controlled, growth conditions. An increased yield trait may be determined by measuring any one or any combination of the following phenotypes, in comparison to control plants: yield of dry harvestable parts of the plant, yield of dry above ground harvestable parts of the plant, yield of below ground dry harvestable parts of the plant, yield of fresh weight harvestable parts of the plant, yield of above ground fresh weight harvestable parts of the plant yield of below ground fresh weight harvestable parts of the plant, yield of the plant's fruit (both fresh and dried), yield of seeds (both fresh and dry), grain dry weight, and the like. Increased intrinsic yield capacity of a plant can be demonstrated by an improvement of its seed yield (e.g. increased seed/ grain size, increased ear number, increased seed number per ear, improvement of seed filling, improvement of seed composition, and the like); a modification of its inherent growth and development (e.g. plant height, plant growth rate, pod number, number of internodes, flowering time, pod shattering, efficiency of nodulation and nitrogen fixation, efficiency of carbon assimilation, improvement of seedling vigour/early vigour, enhanced efficiency of germination, improvement in plant architecture, cell cycle
Yield-related traits may also be improved to increase tolerance of the plants to abiotic environmental stress. Abiotic stresses include drought, low temperature, salinity, osmotic stress, shade, high plant density, mechanical stresses, and oxidative stress. Additional phenotypes that can be monitored to determine enhanced tolerance to abiotic environmental stress include, but is not limited to, wilting; leaf browning; turgor pressure;, drooping and/or shedding of leaves or needles; premature senescence of leaves or needles; loss of chlorophyll in leaves or needles and/or yellowing of the leaves. Any of the yield-related phenotypes described above may be monitored in crop plants in field trials or in model plants under controlled growth conditions to demonstrate that a transgenic plant has increased tolerance to abiotic environmental stress(es).

Definitions

Polypeptide(s)/Protein(s)

The terms "polypeptide" and "protein" are used interchangeably herein and refer to amino acids in a polymeric form of any length, linked together by peptide bonds.

Polymer(s)/Nucleic acid(s)/Nucleic acid sequence(s)/nucleotide sequence(s)

The terms "polynucleotide(s)"; "nucleic acid sequence(s)"; "nucleotide sequence(s)"; "nucleic acid(s)"; "nucleic acid molecule" are used interchangeably herein and refer to nucleotides, either ribonucleotides or deoxyribonucleotides or a combination of both, in a polymeric unbranched form of any length.

Homologue(s)

"Homologues" of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.

A deletion refers to removal of one or more amino acids from a protein.

An insertion refers to one or more amino acid residues being introduced into a predetermined site in a protein. Insertions may comprise N-terminal and/or C-terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Generally, insertions within the amino acid sequence will be smaller than N- or C-terminal fusions, of the order of about 1 to 10 residues. Examples of N- or C-terminal fusion proteins or peptides include the binding domain or activation domain of a transcriptional activator as used in the yeast two-hybrid system, phage coat proteins, (histidine)-6-tag, glutathione S-transferase-tag, protein A, maltose-binding protein, dihydrofolate reductase, Tag+100 epitope, c-myc epitope, FLAG®-epitope, lacZ, CMP (calmodulin-binding peptide), HA epitope, protein C epitope and VSV epitope.
A substitution refers to replacement of amino acids of the protein with other amino acids having similar properties (such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break a-helical structures or β-sheet structures). Amino acid substitutions are typically of single residues, but may be clustered depending upon functional constraints placed upon the polypeptide and may range from 1 to 10 amino acids; insertions will usually be of the order of about 1 to 10 amino acid residues. The amino acid substitutions are preferably conservative amino acid substitutions. Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company (Eds) and Table 1 below).

Table 1: Examples of conserved amino acid substitutions

<table>
<thead>
<tr>
<th>Residue</th>
<th>Conservative Substitutions</th>
<th>Residue</th>
<th>Conservative Substitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
<td>Ile; Val</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Lys</td>
<td>Arg; Gln</td>
</tr>
<tr>
<td>Asn</td>
<td>Gln; His</td>
<td>Met</td>
<td>Leu; Ile</td>
</tr>
<tr>
<td>Asp</td>
<td>Glu</td>
<td>Phe</td>
<td>Met; Leu; Tyr</td>
</tr>
<tr>
<td>Gln</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr; Gly</td>
</tr>
<tr>
<td>Cys</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser; Val</td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Trp</td>
<td>Tyr</td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
<td>Tyr</td>
<td>Trp; Phe</td>
</tr>
<tr>
<td>His</td>
<td>Asn; Gln</td>
<td>Val</td>
<td>Ile; Leu</td>
</tr>
<tr>
<td>Ile</td>
<td>Leu, Val</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amino acid substitutions, deletions and/or insertions may readily be made using peptide synthetic techniques well known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulation. Methods for the manipulation of DNA sequences to produce substitution, insertion or deletion variants of a protein are well known in the art. For example, techniques for making substitution mutations at predetermined sites in DNA are well known to those skilled in the art and include M13 mutagenesis, T7-Gen in vitro mutagenesis (USB, Cleveland, OH), QuickChange Site Directed mutagenesis (Stratagene, San Diego, CA), PCR-mediated site-directed mutagenesis or other site-directed mutagenesis protocols.

Derivatives

"Derivatives" include peptides, oligopeptides, polypeptides which may, compared to the amino acid sequence of the naturally-occurring form of the protein, such as the protein of interest, comprise substitutions of amino acids with non-naturally occurring amino acid residues, or additions of non-naturally occurring amino acid residues. "Derivatives" of a protein also encompass peptides, oligopeptides, polypeptides which comprise naturally occurring altered (glycosylated, acylated, prenylated, phosphorylated, myristoylated,
sulphated etc.) or non-naturally altered amino acid residues compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may also comprise one or more non-amino acid substituents or additions compared to the amino acid sequence from which it is derived, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence, such as a reporter molecule which is bound to facilitate its detection, and non-naturally occurring amino acid residues relative to the amino acid sequence of a naturally-occurring protein. Furthermore, "derivatives" also include fusions of the naturally-occurring form of the protein with tagging peptides such as FLAG, HIS6 or thioredoxin (for a review of tagging peptides, see Terpe, Appl. Microbiol. Biotechnol. 60, 523-533, 2003).

Orthologue(s)/Paralogue(s)
Orthologues and paralogues encompass evolutionary concepts used to describe the ancestral relationships of genes. Paralogues are genes within the same species that have originated through duplication of an ancestral gene; orthologues are genes from different organisms that have originated through speciation, and are also derived from a common ancestral gene.

Domain, Motif/Consensus sequence/Signature
The term "domain" refers to a set of amino acids conserved at specific positions along an alignment of sequences of evolutionarily related proteins. While amino acids at other positions may vary between homologues, amino acids that are highly conserved at specific positions indicate amino acids that are likely essential in the structure, stability or function of a protein. Identified by their high degree of conservation in aligned sequences of a family of protein homologues, they can be used as identifiers to determine if any polypeptide in question belongs to a previously identified polypeptide family.

The term "motif" or "consensus sequence" or "signature" refers to a short conserved region in the sequence of evolutionarily related proteins. Motifs are frequently highly conserved parts of domains, but may also include only part of the domain, or be located outside of conserved domain (if all of the amino acids of the motif fall outside of a defined domain).

ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31:3784-3788(2003)). Domains or motifs may also be identified using routine techniques, such as by sequence alignment.

Methods for the alignment of sequences for comparison are well known in the art, such methods include GAP, BESTFIT, BLAST, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch ((1970) J Mol Biol 48: 443-453) to find the global (i.e. spanning the complete sequences) alignment of two sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm (Altschul et al. (1990) J Mol Biol 215: 403-10) calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information (NCBI). Homologues may readily be identified using, for example, the ClustalW multiple sequence alignment algorithm (version 1.83), with the default pairwise alignment parameters, and a scoring method in percentage. Global percentages of similarity and identity may also be determined using one of the methods available in the MatGAT software package (Campanella et al., BMC Bioinformatics. 2003 Jul 10;4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences.). Minor manual editing may be performed to optimise alignment between conserved motifs, as would be apparent to a person skilled in the art. Furthermore, instead of using full-length sequences for the identification of homologues, specific domains may also be used. The sequence identity values may be determined over the entire nucleic acid or amino acid sequence or over selected domains or conserved motif(s), using the programs mentioned above using the default parameters. For local alignments, the Smith-Waterman algorithm is particularly useful (Smith TF, Waterman MS (1981) J. Mol. Biol 147(1):195-7).

Reciprocal BLAST
Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived. The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.
High-ranking hits are those having a low E-value. The lower the E-value, the more significant the score (or in other words the lower the chance that the hit was found by chance). Computation of the E-value is well known in the art. In addition to E-values, comparisons are also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In the case of large families, ClustalW may be used, followed by a neighbour joining tree, to help visualize clustering of related genes and to identify orthologues and paralogues.

Hybridisation

The term "hybridisation" as defined herein is a process wherein substantially homologous complementary nucleotide sequences anneal to each other. The hybridisation process can occur entirely in solution, i.e. both complementary nucleic acids are in solution. The hybridisation process can also occur with one of the complementary nucleic acids immobilised to a matrix such as magnetic beads, Sepharose beads or any other resin. The hybridisation process can furthermore occur with one of the complementary nucleic acids immobilised to a solid support such as a nitro-cellulose or nylon membrane or immobilised by e.g. photolithography to, for example, a siliceous glass support (the latter known as nucleic acid arrays or microarrays or as nucleic acid chips). In order to allow hybridisation to occur, the nucleic acid molecules are generally thermally or chemically denatured to melt a double strand into two single strands and/or to remove hairpins or other secondary structures from single stranded nucleic acids.

The term "stringency" refers to the conditions under which a hybridisation takes place. The stringency of hybridisation is influenced by conditions such as temperature, salt concentration, ionic strength and hybridisation buffer composition. Generally, low stringency conditions are selected to be about 30°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. Medium stringency conditions are when the temperature is 20°C below Tm, and high stringency conditions are when the temperature is 10°C below Tm. High stringency hybridisation conditions are typically used for isolating hybridising sequences that have high sequence similarity to the target nucleic acid sequence. However, nucleic acids may deviate in sequence and still encode a substantially identical polypeptide, due to the degeneracy of the genetic code. Therefore medium stringency hybridisation conditions may sometimes be needed to identify such nucleic acid molecules.

The Tm is the temperature under defined ionic strength and pH, at which 50% of the target sequence hybridises to a perfectly matched probe. The Tm is dependent upon the solution conditions and the base composition and length of the probe. For example, longer sequences hybridise specifically at higher temperatures. The maximum rate of hybridisation is obtained from about 16°C up to 32°C below Tm. The presence of monovalent cations in the hybridisation solution reduce the electrostatic repulsion between the two nucleic acid
strands thereby promoting hybrid formation; this effect is visible for sodium concentrations of up to 0.4M (for higher concentrations, this effect may be ignored). Formamide reduces the melting temperature of DNA-DNA and DNA-RNA duplexes with 0.6 to 0.7°C for each percent formamide, and addition of 50% formamide allows hybridisation to be performed at 30 to 45°C, though the rate of hybridisation will be lowered. Base pair mismatches reduce the hybridisation rate and the thermal stability of the duplexes. On average and for large probes, the \(T_m\) decreases about 1°C per % base mismatch. The \(T_m\) may be calculated using the following equations, depending on the types of hybrids:

\[T_m = 81.5^\circ C + 16.6\log_{10}[\text{Na}^+] + 0.41\%[G/C] - 500x[L^{-1}]^{-1} - 0.61 \times \% \text{ formamide} \]

2) DNA-RNA or RNA-RNA hybrids:

\[T_m = 79.8 + 18.5 (\log_{10}[\text{Na}^+] + 0.58 (\%G/C)^{1.5} + 11.8 (\%G/C) + 820/L \]

3) oligo-DNA or oligo-RNA \(\dagger\) hybrids:

For \(<20 \text{nucleotides}: T_m = 2 (l_n) \]

For \(20-35 \text{nucleotides}: T_m = 22 + 1.46 (l_n)\)

\(a \) or for other monovalent cation, but only accurate in the 0.01-0.4 M range.

\(b \) only accurate for %GC in the 30% to 75% range.

\(c \) \(L\) = length of duplex in base pairs.

\(d \) oligo, oligonucleotide; \(l_n\) = effective length of primer = \(2x(\text{no. of G/C} + \text{no. of A/T})\).

Non-specific binding may be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein containing solutions, additions of heterologous RNA, DNA, and SDS to the hybridisation buffer, and treatment with RNase.

For non-homologous probes, a series of hybridizations may be performed by varying one of

(i) progressively lowering the annealing temperature (for example from 68°C to 42°C) or

(ii) progressively lowering the formamide concentration (for example from 50% to 0%).

The skilled artisan is aware of various parameters which may be altered during hybridisation and which will either maintain or change the stringency conditions.

Besides the hybridisation conditions, specificity of hybridisation typically also depends on the function of post-hybridisation washes. To remove background resulting from non-specific hybridisation, samples are washed with dilute salt solutions. Critical factors of such washes include the ionic strength and temperature of the final wash solution; the lower the salt concentration and the higher the wash temperature, the higher the stringency of the wash. Wash conditions are typically performed at or below hybridisation stringency. A positive hybridisation gives a signal that is at least twice of that of the background.

Generally, suitable stringent conditions for nucleic acid hybridisation assays or gene amplification detection procedures are as set forth above. More or less stringent conditions may also be selected. The skilled artisan is aware of various parameters which may be altered during washing and which will either maintain or change the stringency conditions.
For example, typical high stringency hybridisation conditions for DNA hybrids longer than 50 nucleotides encompass hybridisation at 65°C in 1x SSC or at 42°C in 1x SSC and 50% formamide, followed by washing at 65°C in 0.3x SSC. Examples of medium stringency hybridisation conditions for DNA hybrids longer than 50 nucleotides encompass hybridisation at 50°C in 4x SSC or at 40°C in 6x SSC and 50% formamide, followed by washing at 50°C in 2x SSC. The length of the hybrid is the anticipated length for the hybridising nucleic acid. When nucleic acids of known sequence are hybridised, the hybrid length may be determined by aligning the sequences and identifying the conserved regions described herein. 1xSSC is 0.15M NaCl and 15mM sodium citrate; the hybridisation solution and wash solutions may additionally include 5x Denhardt's reagent, 0.5-1.0% SDS, 100 µg/ml denatured, fragmented salmon sperm DNA, 0.5% sodium pyrophosphate.

Splice variant

The term "splice variant" as used herein encompasses variants of a nucleic acid sequence in which selected introns and/or exons have been excised, replaced, displaced or added, or in which introns have been shortened or lengthened. Such variants will be ones in which the biological activity of the protein is substantially retained; this may be achieved by selectively retaining functional segments of the protein. Such splice variants may be found in nature or may be manmade. Methods for predicting and isolating such splice variants are well known in the art (see for example Foissac and Schiex (2005) BMC Bioinformatics 6: 25).

Allelic variant

Alleles or allelic variants are alternative forms of a given gene, located at the same chromosomal position. Allelic variants encompass Single Nucleotide Polymorphisms (SNPs), as well as Small Insertion/Deletion Polymorphisms (INDELs). The size of INDELs is usually less than 100 bp. SNPs and INDELs form the largest set of sequence variants in naturally occurring polymorphic strains of most organisms.

Endogenous gene

Reference herein to an "endogenous" gene not only refers to the gene in question as found in a plant in its natural form (i.e., without there being any human intervention), but also refers to that same gene (or a substantially homologous nucleic acid/gene) in an isolated form subsequently (re)introduced into a plant (a transgene). For example, a transgenic plant containing such a transgene may encounter a substantial reduction of the transgene expression and/or substantial reduction of expression of the endogenous gene. The
isolated gene may be isolated from an organism or may be manmade, for example by chemical synthesis.

Gene shuffling/Directed evolution

Gene shuffling or directed evolution consists of iterations of DNA shuffling followed by appropriate screening and/or selection to generate variants of nucleic acids or portions thereof encoding proteins having a modified biological activity (Castle et al., (2004) Science 304(5674): 1151-4; US patents 5,811,238 and 6,395,547).

Construct

Additional regulatory elements may include transcriptional as well as translational enhancers. Those skilled in the art will be aware of terminator and enhancer sequences that may be suitable for use in performing the invention. An intron sequence may also be added to the 5' untranslated region (UTR) or in the coding sequence to increase the amount of the mature message that accumulates in the cytosol, as described in the definitions section. Other control sequences (besides promoter, enhancer, silencer, intron sequences, 3'UTR and/or 5'UTR regions) may be protein and/or RNA stabilizing elements. Such sequences would be known or may readily be obtained by a person skilled in the art. The genetic constructs of the invention may further include an origin of replication sequence that is required for maintenance and/or replication in a specific cell type. One example is when a genetic construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosm id molecule). Preferred origins of replication include, but are not limited to, the f 1 -ori and colE1.

For the detection of the successful transfer of the nucleic acid sequences as used in the methods of the invention and/or selection of transgenic plants comprising these nucleic acids, it is advantageous to use marker genes (or reporter genes). Therefore, the genetic construct may optionally comprise a selectable marker gene. Selectable markers are described in more detail in the "definitions" section herein. The marker genes may be removed or excised from the transgenic cell once they are no longer needed. Techniques for marker removal are known in the art, useful techniques are described above in the definitions section.

Regulatory element/Control sequence/Promoter

The terms "regulatory element", "control sequence" and "promoter" are all used interchangeably herein and are to be taken in a broad context to refer to regulatory nucleic acid sequences capable of effecting expression of the sequences to which they are ligated. The term "promoter" typically refers to a nucleic acid control sequence located upstream from the transcriptional start of a gene and which is involved in recognising and binding of RNA polymerase and other proteins, thereby directing transcription of an operably linked nucleic acid. Encompassed by the aforementioned terms are transcriptional regulatory sequences derived from a classical eukaryotic genomic gene (including the TATA box
which is required for accurate transcription initiation, with or without a CCAAT box sequence) and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. Also included within the term is a transcriptional regulatory sequence of a classical prokaryotic gene, in which case it may include a -35 box sequence and/or -10 box transcriptional regulatory sequences. The term "regulatory element" also encompasses a synthetic fusion molecule or derivative that confers, activates or enhances expression of a nucleic acid molecule in a cell, tissue or organ.

A "plant promoter" comprises regulatory elements, which mediate the expression of a coding sequence segment in plant cells. Accordingly, a plant promoter need not be of plant origin, but may originate from viruses or micro-organisms, for example from viruses which attack plant cells. The "plant promoter" can also originate from a plant cell, e.g. from the plant which is transformed with the nucleic acid sequence to be expressed in the inventive process and described herein. This also applies to other "plant" regulatory signals, such as "plant" terminators. The promoters upstream of the nucleotide sequences useful in the methods of the present invention can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without interfering with the functionality or activity of either the promoters, the open reading frame (ORF) or the 3’-regulatory region such as terminators or other 3’ regulatory regions which are located away from the ORF. It is furthermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even promoters from heterologous organisms. For expression in plants, the nucleic acid molecule must, as described above, be linked operably to or comprise a suitable promoter which expresses the gene at the right point in time and with the required spatial expression pattern.

For the identification of functionally equivalent promoters, the promoter strength and/or expression pattern of a candidate promoter may be analysed for example by operably linking the promoter to a reporter gene and assaying the expression level and pattern of the reporter gene in various tissues of the plant. Suitable well-known reporter genes include for example beta-glucuronidase or beta-galactosidase. The promoter activity is assayed by measuring the enzymatic activity of the beta-glucuronidase or beta-galactosidase. The promoter strength and/or expression pattern may then be compared to that of a reference promoter (such as the one used in the methods of the present invention). Alternatively, promoter strength may be assayed by quantifying mRNA levels or by comparing mRNA levels of the nucleic acid used in the methods of the present invention, with mRNA levels of housekeeping genes such as 18S rRNA, using methods known in the art, such as Northern blotting with densitometric analysis of autoradiograms, quantitative real-time PCR or RT-PCR (Heid et al., 1996 Genome Methods 6: 986-994). Generally by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By "low level" is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts, to
about 1/500,0000 transcripts per cell. Conversely, a "strong promoter" drives expression of a coding sequence at high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1000 transcripts per cell. Generally, by "medium strength promoter" is intended a promoter that drives expression of a coding sequence at a lower level than a strong promoter, in particular at a level that is in all instances below that obtained when under the control of a 35S CaMV promoter.

Operably linked
The term "operably linked" as used herein refers to a functional linkage between the promoter sequence and the gene of interest, such that the promoter sequence is able to initiate transcription of the gene of interest.

Constitutive promoter
A "constitutive promoter" refers to a promoter that is transcriptionally active during most, but not necessarily all, phases of growth and development and under most environmental conditions, in at least one cell, tissue or organ. Table 2a below gives examples of constitutive promoters.

Table 2a: Examples of constitutive promoters

<table>
<thead>
<tr>
<th>Gene Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMGP</td>
<td>WO 2004/070039</td>
</tr>
<tr>
<td>Ubiquitin</td>
<td>Christensen et al., Plant Mol. Biol. 18: 675-689, 1992</td>
</tr>
<tr>
<td>Alfalfa H3 histone</td>
<td>Wu et al. Plant Mol. Biol. 11:641-649, 1988</td>
</tr>
<tr>
<td>Rubisco small subunit</td>
<td>US 4,962,028</td>
</tr>
<tr>
<td>SAD1</td>
<td>Jain et al., Crop Science, 39 (6), 1999: 1696</td>
</tr>
<tr>
<td>SAD2</td>
<td>Jain et al., Crop Science, 39 (6), 1999: 1696</td>
</tr>
<tr>
<td>V-ATPase</td>
<td>WO 01/14572</td>
</tr>
<tr>
<td>Super promoter</td>
<td>WO 95/14098</td>
</tr>
<tr>
<td>G-box proteins</td>
<td>WO 94/12015</td>
</tr>
</tbody>
</table>

Ubiquitous promoter
A ubiquitous promoter is active in substantially all tissues or cells of an organism.

Developmentally-regulated promoter
A developmentally-regulated promoter is active during certain developmental stages or in parts of the plant that undergo developmental changes.

Inducible promoter
An inducible promoter has induced or increased transcription initiation in response to a chemical (for a review see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108), environmental or physical stimulus, or may be "stress-inducible", i.e. activated when a plant is exposed to various stress conditions, or a "pathogen-inducible" i.e. activated when a plant is exposed to exposure to various pathogens.

Organ-specific/Tissue-specific promoter
An organ-specific or tissue-specific promoter is one that is capable of preferentially initiating transcription in certain organs or tissues, such as the leaves, roots, seed tissue etc. For example, a "root-specific promoter" is a promoter that is transcriptionally active predominantly in plant roots, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts. Promoters able to initiate transcription in certain cells only are referred to herein as "cell-specific".

Examples of root-specific promoters are listed in Table 2b below:

Table 2b: Examples of root-specific promoters

<table>
<thead>
<tr>
<th>Gene Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCc3</td>
<td>Plant Mol Biol. 1995 Jan;27(2):237-48</td>
</tr>
<tr>
<td>Arabidopsis PHT1</td>
<td>Kovama et al., 2005; Mudge et al. (2002, Plant J. 31:341)</td>
</tr>
<tr>
<td>Medicago phosphate transporter</td>
<td>Xiao et al., 2006</td>
</tr>
<tr>
<td>B. napus G1-3b gene</td>
<td>United States Patent No. 5, 401, 836</td>
</tr>
<tr>
<td>LRX1</td>
<td>Baumberger et al. 2001 , Genes & Dev. 15:1 128</td>
</tr>
<tr>
<td>BTG-26 Brassica napus</td>
<td>US 20050044585</td>
</tr>
<tr>
<td>LeAMTI (tomato)</td>
<td>Lauter et al. (1996, PNAS 3:8139)</td>
</tr>
<tr>
<td>The LeNRTM (tomato)</td>
<td>Lauter et al. (1996, PNAS 3:8139)</td>
</tr>
</tbody>
</table>
A seed-specific promoter is transcriptionally active predominantly in seed tissue, but not necessarily exclusively in seed tissue (in cases of leaky expression). The seed-specific promoter may be active during seed development and/or during germination. The seed specific promoter may be endosperm/aleurone/embryo specific. Examples of seed-specific promoters (endosperm/aleurone/embryo specific) are shown in Table 2c to Table 2f below. Further examples of seed-specific promoters are given in Qing Qu and Takaiwa (Plant Biotechnol. J. 2, 113-125, 2004), which disclosure is incorporated by reference herein as if fully set forth.

Table 2c: Examples of seed-specific promoters

<table>
<thead>
<tr>
<th>Gene source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>wheat α, β, γ-gliadins</td>
<td>EMBO J. 3:1409-15, 1984</td>
</tr>
<tr>
<td>blz2</td>
<td>EP991 06056.7</td>
</tr>
<tr>
<td>rice prolamin NRP33</td>
<td>Wu et al, Plant Cell Physiology 39(8) 885-889, 1998</td>
</tr>
<tr>
<td>rice a-globulin Glb-1</td>
<td>Wu et al, Plant Cell Physiology 39(8) 885-889, 1998</td>
</tr>
<tr>
<td>rice OSH1</td>
<td>Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122,</td>
</tr>
</tbody>
</table>
Table 2d: examples of endosperm-specific promoters

<table>
<thead>
<tr>
<th>Gene source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>wheat gliadins</td>
<td>Rafalski et al. (1984) EMBO 3:1409-15</td>
</tr>
</tbody>
</table>
A green tissue-specific promoter as defined herein is a promoter that is transcriptionally active predominantly in green tissue, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts.

Examples of green tissue-specific promoters which may be used to perform the methods of the invention are shown in Table 2g below.

Table 2g: Examples of green tissue-specific promoters

<table>
<thead>
<tr>
<th>Gene</th>
<th>Expression</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize Orthophosphate dikinase</td>
<td>Leaf specific</td>
<td>Fukavama et al., 2001</td>
</tr>
<tr>
<td>Maize Phosphoenolpyruvate carboxylase</td>
<td>Leaf specific</td>
<td>Kausch et al., 2001</td>
</tr>
<tr>
<td>Rice Phosphoenolpyruvate carboxylase</td>
<td>Leaf specific</td>
<td>Liu et al., 2003</td>
</tr>
<tr>
<td>Rice small subunit Rubisco</td>
<td>Leaf specific</td>
<td>Nomura et al., 2000</td>
</tr>
</tbody>
</table>
Another example of a tissue-specific promoter is a meristem-specific promoter, which is transcriptionally active predominantly in meristematic tissue, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts. Examples of green meristem-specific promoters which may be used to perform the methods of the invention are shown in Table 2h below.

Table 2h: Examples of meristem-specific promoters

<table>
<thead>
<tr>
<th>Gene source</th>
<th>Expression pattern</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rice OSH1</td>
<td>Shoot apical meristem, from embryo globular stage to seedling stage</td>
<td>Sato et al. (1996) Proc. Natl. Acad. Sci. USA, 93: 8117-8122</td>
</tr>
<tr>
<td>Rice metallothionein</td>
<td>Meristem specific</td>
<td>BAD87835.1</td>
</tr>
</tbody>
</table>

Terminator

The term "terminator" encompasses a control sequence which is a DNA sequence at the end of a transcriptional unit which signals 3' processing and polyadenylation of a primary transcript and termination of transcription. The terminator can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The terminator to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.

Selectable marker (gene)/Reporter gene

"Selectable marker", "selectable marker gene" or "reporter gene" includes any gene that confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells that are transfected or transformed with a nucleic acid construct of the invention. These marker genes enable the identification of a successful transfer of the nucleic acid molecules via a series of different principles. Suitable markers may be selected from markers that confer antibiotic or herbicide resistance, that introduce a new metabolic trait or that allow visual selection. Examples of selectable marker genes include genes conferring resistance to antibiotics (such as nptII that phosphorylates neomycin and kanamycin, or hpt, phosphorylating hygromycin, or genes conferring resistance to, for example, bleomycin, streptomycin, tetracyclin, chloramphenicol, ampicillin, gentamycin, geneticin (G418), spectinomycin or blasticidin), to herbicides (for example bar which
provides resistance to Basta®; aroA or gox providing resistance against glyphosate, or the
genes conferring resistance to, for example, imidazolinone, phosphinothricin or
sulfonylurea), or genes that provide a metabolic trait (such as manA that allows plants to
use mannose as sole carbon source or xylose isomerase for the utilisation of xylose, or
antinutritive markers such as the resistance to 2-deoxyglucose). Expression of visual
marker genes results in the formation of colour (for example β-glucuronidase, GUS or β-
galactosidase with its coloured substrates, for example X-Gal), luminescence (such as the
luciferin/luciferase system) or fluorescence (Green Fluorescent Protein, GFP, and
derivatives thereof). This list represents only a small number of possible markers. The
skilled worker is familiar with such markers. Different markers are preferred, depending on
the organism and the selection method.

It is known that upon stable or transient integration of nucleic acids into plant cells, only a
minority of the cells takes up the foreign DNA and, if desired, integrates it into its genome,
depending on the expression vector used and the transfection technique used. To identify
and select these integrants, a gene coding for a selectable marker (such as the ones
described above) is usually introduced into the host cells together with the gene of interest.
These markers can for example be used in mutants in which these genes are not functional
by, for example, deletion by conventional methods. Furthermore, nucleic acid molecules
encoding a selectable marker can be introduced into a host cell on the same vector that
comprises the sequence encoding the polypeptides of the invention or used in the methods
of the invention, or else in a separate vector. Cells which have been stably transfected with
the introduced nucleic acid can be identified for example by selection (for example, cells
which have integrated the selectable marker survive whereas the other cells die).

Since the marker genes, particularly genes for resistance to antibiotics and herbicides, are
no longer required or are undesired in the transgenic host cell once the nucleic acids have
been introduced successfully, the process according to the invention for introducing the
nucleic acids advantageously employs techniques which enable the removal or excision of
these marker genes. One such a method is what is known as co-transformation. The co-
transformation method employs two vectors simultaneously for the transformation, one
vector bearing the nucleic acid according to the invention and a second bearing the marker
gene(s). A large proportion of transformants receives or, in the case of plants, comprises
(up to 40% or more of the transformants), both vectors. In case of transformation with
Agrobacteria, the transformants usually receive only a part of the vector, i.e. the sequence
flanked by the T-DNA, which usually represents the expression cassette. The marker genes
can subsequently be removed from the transformed plant by performing crosses. In
another method, marker genes integrated into a transposon are used for the transformation
together with desired nucleic acid (known as the Ac/Ds technology). The transformants can
be crossed with a transposase source or the transformants are transformed with a nucleic
acid construct conferring expression of a transposase, transiently or stable. In some cases
(approx. 10%), the transposon jumps out of the genome of the host cell once transformation
has taken place successfully and is lost. In a further number of cases, the transposon jumps
to a different location. In these cases the marker gene must be eliminated by performing
crosses. In microbiology, techniques were developed which make possible, or facilitate, the
detection of such events. A further advantageous method relies on what is known as
recombination systems; whose advantage is that elimination by crossing can be dispensed
with. The best-known system of this type is what is known as the Cre/lox system. Cre1 is a
recombinase that removes the sequences located between the loxP sequences. If the
marker gene is integrated between the loxP sequences, it is removed once transformation
has taken place successfully, by expression of the recombinase. Further recombination
systems are the HIN/HIX, FLP/FRT and REP/STB system (Tribble et al., J. Biol. Chem.,
specific integration into the plant genome of the nucleic acid sequences according to the
invention is possible. Naturally, these methods can also be applied to microorganisms such as
yeast, fungi or bacteria.

Transgenic/Transgene/Recombinant

For the purposes of the invention, "transgenic", "transgene" or "recombinant" means with
regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or
a vector comprising the nucleic acid sequence or an organism transformed with the nucleic
acid sequences, expression cassettes or vectors according to the invention, all those
constructions brought about by recombinant methods in which either
(a) the nucleic acid sequences encoding proteins useful in the methods of the invention,
or
(b) genetic control sequence(s) which is operably linked with the nucleic acid sequence
according to the invention, for example a promoter, or
(c) a) and b)
are not located in their natural genetic environment or have been modified by recombinant
methods, it being possible for the modification to take the form of, for example, a
substitution, addition, deletion, inversion or insertion of one or more nucleotide residues.

The natural genetic environment is understood as meaning the natural genomic or
chromosomal locus in the original plant or the presence in a genomic library. In the case of
a genomic library, the natural genetic environment of the nucleic acid sequence is
preferably retained, at least in part. The environment flanks the nucleic acid sequence at
least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp,
especially preferably at least 1000 bp, most preferably at least 5000 bp. A naturally
occurring expression cassette - for example the naturally occurring combination of the
natural promoter of the nucleic acid sequences with the corresponding nucleic acid
sequence encoding a polypeptide useful in the methods of the present invention, as defined
above - becomes a transgenic expression cassette when this expression cassette is
modified by non-natural, synthetic ("artificial") methods such as, for example, mutagenic
treatment. Suitable methods are described, for example, in US 5,565,350 or WO 00/15815.
A transgenic plant for the purposes of the invention is thus understood as meaning, as above, that the nucleic acids used in the method of the invention are not at their natural locus in the genome of said plant, it being possible for the nucleic acids to be expressed homologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the invention or used in the inventive method are at their natural position in the genome of a plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. homologous or, preferably, heterologous expression of the nucleic acids takes place. Preferred transgenic plants are mentioned herein.

In one embodiment of the invention an "isolated" nucleic acid sequence is located in a non-native chromosomal surrounding.

Modulation
The term "modulation" means in relation to expression or gene expression, a process in which the expression level is changed by said gene expression in comparison to the control plant, the expression level may be increased or decreased. The original, unmodulated expression may be of any kind of expression of a structural RNA (rRNA, tRNA) or mRNA with subsequent translation. The term "modulating the activity" or the term "modulating expression" shall mean any change of the expression of the inventive nucleic acid sequences or encoded proteins, which leads to increased yield and/or increased growth of the plants.

Expression
The term "expression" or "gene expression" means the transcription of a specific gene or specific genes or specific genetic construct. The term "expression" or "gene expression" in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. The process includes transcription of DNA and processing of the resulting mRNA product.

Increased expression/overexpression
The term "increased expression" or "overexpression" as used herein means any form of expression that is additional to the original wild-type expression level.

Methods for increasing expression of genes or gene products are well documented in the art and include, for example, overexpression driven by appropriate promoters, the use of transcription enhancers or translation enhancers. Isolated nucleic acids which serve as promoter or enhancer elements may be introduced in an appropriate position (typically upstream) of a non-heterologous form of a polynucleotide so as to upregulate expression of
a nucleic acid encoding the polypeptide of interest. For example, endogenous promoters may be altered in vivo by mutation, deletion, and/or substitution (see, Kmiec, US 5,565,350; Zarling et al., WO9322443), or isolated promoters may be introduced into a plant cell in the proper orientation and distance from a gene of the present invention so as to control the expression of the gene.

If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3' end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.

An intron sequence may also be added to the 5' untranslated region (UTR) or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg (1988) Mol. Cell Biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1 183-1200). Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit. Use of the maize introns Adh1-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. For general information see: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).

Decreased expression

Reference herein to "decreased expression" or "reduction or substantial elimination" of expression is taken to mean a decrease in endogenous gene expression and/or polypeptide levels and/or polypeptide activity relative to control plants. The reduction or substantial elimination is in increasing order of preference at least 10%, 20%, 30%, 40% or 50%, 60%, 70%, 80%, 85%, 90%, or 95%, 96%, 97%, 98%, 99% or more reduced compared to that of control plants.

For the reduction or substantial elimination of expression an endogenous gene in a plant, a sufficient length of substantially contiguous nucleotides of a nucleic acid sequence is required. In order to perform gene silencing, this may be as little as 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or fewer nucleotides, alternatively this may be as much as the entire gene (including the 5' and/or 3' UTR, either in part or in whole). The stretch of substantially contiguous nucleotides may be derived from the nucleic acid encoding the protein of interest (target gene), or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest. Preferably, the stretch of substantially contiguous nucleotides is capable of forming hydrogen bonds with the target gene (either sense or antisense strand), more preferably, the stretch of substantially contiguous
nucleotides has, in increasing order of preference, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 100% ... the mRNA transcript of the endogenous target gene, thereby substantially reducing the number of mRNA transcripts to

This reduction or substantial elimination of expression may be achieved using routine tools and techniques. A preferred method for the reduction or substantial elimination of endogenous gene expression is by introducing and expressing in a plant a genetic construct into which the nucleic acid (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of any one of the protein of interest) is cloned as an inverted repeat (in part or completely), separated by a spacer (non-coding DNA).

In such a preferred method, expression of the endogenous gene is reduced or substantially eliminated through RNA-mediated silencing using an inverted repeat of a nucleic acid or a part thereof (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest), preferably capable of forming a hairpin structure. The inverted repeat is cloned in an expression vector comprising control sequences. A non-coding DNA nucleic acid sequence (a spacer, for example a matrix attachment region fragment (MAR), an intron, a polylinker, etc.) is located between the two inverted nucleic acids forming the inverted repeat. After transcription of the inverted repeat, a chimeric RNA with a self-complementary structure is formed (partial or complete). This double-stranded RNA structure is referred to as the hairpin RNA (hpRNA). The hpRNA is processed by the plant into siRNAs that are incorporated into an RNA-induced silencing complex (RISC). The RISC further cleaves the mRNA transcripts, thereby substantially reducing the number of mRNA transcripts to be translated into polypeptides. For further general details see for example, Grierson et al. (1998) WO 98/53083; Waterhouse et al. (1999) WO 99/53050).

Performance of the methods of the invention does not rely on introducing and expressing in a plant a genetic construct into which the nucleic acid is cloned as an inverted repeat, but any one or more of several well-known "gene silencing" methods may be used to achieve the same effects.

One such method for the reduction of endogenous gene expression is RNA-mediated silencing of gene expression (downregulation). Silencing in this case is triggered in a plant by a double stranded RNA sequence (dsRNA) that is substantially similar to the target endogenous gene. This dsRNA is further processed by the plant into about 20 to about 26 nucleotides called short interfering RNAs (siRNAs). The siRNAs are incorporated into an RNA-induced silencing complex (RISC) that cleaves the mRNA transcript of the endogenous target gene, thereby substantially reducing the number of mRNA transcripts to
be translated into a polypeptide. Preferably, the double stranded RNA sequence corresponds to a target gene.

Another example of an RNA silencing method involves the introduction of nucleic acid sequences or parts thereof (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest) in a sense orientation into a plant. "Sense orientation" refers to a DNA sequence that is homologous to an mRNA transcript thereof. Introduced into a plant would therefore be at least one copy of the nucleic acid sequence. The additional nucleic acid sequence will reduce expression of the endogenous gene, giving rise to a phenomenon known as co-suppression. The reduction of gene expression will be more pronounced if several additional copies of a nucleic acid sequence are introduced into the plant, as there is a positive correlation between high transcript levels and the triggering of co-suppression.

Another example of an RNA silencing method involves the use of antisense nucleic acid sequences. An "antisense" nucleic acid sequence comprises a nucleotide sequence that is complementary to a "sense" nucleic acid sequence encoding a protein, i.e. complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA transcript sequence. The antisense nucleic acid sequence is preferably complementary to the endogenous gene to be silenced. The complementarity may be located in the "coding region" and/or in the "non-coding region" of a gene. The term "coding region" refers to a region of the nucleotide sequence comprising codons that are translated into amino acid residues. The term "non-coding region" refers to 5' and 3' sequences that flank the coding region that are transcribed but not translated into amino acids (also referred to as 5' and 3' untranslated regions).

Antisense nucleic acid sequences can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid sequence may be complementary to the entire nucleic acid sequence (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest), but may also be an oligonucleotide that is antisense to only a part of the nucleic acid sequence (including the mRNA 5' and 3' UTR). For example, the antisense oligonucleotide sequence may be complementary to the region surrounding the translation start site of an mRNA transcript encoding a polypeptide. The length of a suitable antisense oligonucleotide sequence is known in the art and may start from about 50, 45, 40, 35, 30, 25, 20, 15 or 10 nucleotides in length or less. An antisense nucleic acid sequence according to the invention may be constructed using chemical synthesis and enzymatic ligation reactions using methods known in the art. For example, an antisense nucleic acid sequence (e.g., an antisense oligonucleotide sequence) may be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of
the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acid sequences, e.g., phosphorothioate derivatives and acridine substituted nucleotides may be used. Examples of modified nucleotides that may be used to generate the antisense nucleic acid sequences are well known in the art. Known nucleotide modifications include methylation, cyclization and ‘caps’ and substitution of one or more of the naturally occurring nucleotides with an analogue such as inosine. Other modifications of nucleotides are well known in the art.

The antisense nucleic acid sequence can be produced biologically using an expression vector into which a nucleic acid sequence has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest). Preferably, production of antisense nucleic acid sequences in plants occurs by means of a stably integrated nucleic acid construct comprising a promoter, an operably linked antisense oligonucleotide, and a terminator.

The nucleic acid molecules used for silencing in the methods of the invention (whether introduced into a plant or generated in situ) hybridize with or bind to mRNA transcripts and/or genomic DNA encoding a polypeptide to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid sequence which binds to DNA duplexes, through specific interactions in the major groove of the double helix. Antisense nucleic acid sequences may be introduced into a plant by transformation or direct injection at a specific tissue site. Alternatively, antisense nucleic acid sequences can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense nucleic acid sequences can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid sequence to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid sequences can also be delivered to cells using the vectors described herein.

According to a further aspect, the antisense nucleic acid sequence is an a-anomeric nucleic acid sequence. An a-anomeric nucleic acid sequence forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gaultier et al. (1987) Nucl Ac Res 15: 6625-6641). The antisense nucleic acid sequence may also comprise a 2’-o-methylribonucleotide (Inoue et al. (1987) Nucl Ac Res 15, 6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215, 327-330).

The reduction or substantial elimination of endogenous gene expression may also be performed using ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid sequence, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead
ribozymes (described in Haselhoff and Gerlach (1988) Nature 334, 585-591) can be used to catalytically cleave mRNA transcripts encoding a polypeptide, thereby substantially reducing the number of mRNA transcripts to be translated into a polypeptide. A ribozyme having specificity for a nucleic acid sequence can be designed (see for example: Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742). Alternatively, mRNA transcripts corresponding to a nucleic acid sequence can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (Bartel and Szostak (1993) Science 261, 1411-1418). The use of ribozymes for gene silencing in plants is known in the art (e.g., Atkins et al. (1994) WO 94/00012; Lenne et al. (1995) WO 95/03404; Lutziger et al. (2000) WO 00/00619; Prinsen et al. (1997) WO 97/13865 and Scott et al. (1997) WO 97/38116).

Gene silencing may also be achieved by insertion mutagenesis (for example, T-DNA insertion or transposon insertion) or by strategies as described by, among others, Angell and Baulcombe ((1999) Plant J 20(3): 357-62), (Amplicon VIGS WO 98/36083), or Baulcombe (WO 99/15682).

Gene silencing may also occur if there is a mutation on an endogenous gene and/or a mutation on an isolated gene/nucleic acid subsequently introduced into a plant. The reduction or substantial elimination may be caused by a non-functional polypeptide. For example, the polypeptide may bind to various interacting proteins; one or more mutation(s) and/or truncation(s) may therefore provide for a polypeptide that is still able to bind interacting proteins (such as receptor proteins) but that cannot exhibit its normal function (such as signalling ligand).

A further approach to gene silencing is by targeting nucleic acid sequences complementary to the regulatory region of the gene (e.g., the promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See Helene, C., Anticancer Drug Res. 6, 569-84, 1991; Helene et al., Ann. N.Y. Acad. Sci. 660, 27-36 1992; and Maher, L.J., Bioassays 14, 807-15, 1992.

Other methods, such as the use of antibodies directed to an endogenous polypeptide for inhibiting its function in planta, or interference in the signalling pathway in which a polypeptide is involved, will be well known to the skilled man. In particular, it can be envisaged that manmade molecules may be useful for inhibiting the biological function of a target polypeptide, or for interfering with the signalling pathway in which the target polypeptide is involved.

Alternatively, a screening program may be set up to identify in a plant population natural variants of a gene, which variants encode polypeptides with reduced activity. Such natural variants may also be used for example, to perform homologous recombination.
Artificial and/or natural microRNAs (miRNAs) may be used to knock out gene expression and/or mRNA translation. Endogenous miRNAs are single stranded small RNAs of typically 19-24 nucleotides long. They function primarily to regulate gene expression and/or mRNA translation. Most plant microRNAs (miRNAs) have perfect or near-perfect complementarity with their target sequences. However, there are natural targets with up to five mismatches. They are processed from longer non-coding RNAs with characteristic fold-back structures by double-strand specific RNases of the Dicer family. Upon processing, they are incorporated in the RNA-induced silencing complex (RISC) by binding to its main component, an Argonaute protein. MiRNAs serve as the specificity components of RISC, since they base-pair to target nucleic acids, mostly mRNAs, in the cytoplasm. Subsequent regulatory events include target mRNA cleavage and destruction and/or translational inhibition. Effects of miRNA overexpression are thus often reflected in decreased mRNA levels of target genes.

Artificial microRNAs (amiRNAs), which are typically 21 nucleotides in length, can be genetically engineered specifically to negatively regulate gene expression of single or multiple genes of interest. Determinants of plant microRNA target selection are well known in the art. Empirical parameters for target recognition have been defined and can be used to aid in the design of specific amiRNAs, (Schwab et al., Dev. Cell 8, 517-527, 2005).

Convenient tools for design and generation of amiRNAs and their precursors are also available to the public (Schwab et al., Plant Cell 18, 1121-1133, 2006).

For optimal performance, the gene silencing techniques used for reducing expression in a plant of an endogenous gene requires the use of nucleic acid sequences from monocotyledonous plants for transformation of monocotyledonous plants, and from dicotyledonous plants for transformation of dicotyledonous plants. Preferably, a nucleic acid sequence from any given plant species is introduced into that same species. For example, a nucleic acid sequence from rice is transformed into a rice plant. However, it is not an absolute requirement that the nucleic acid sequence to be introduced originates from the same plant species as the plant in which it will be introduced. It is sufficient that there is substantial homology between the endogenous target gene and the nucleic acid to be introduced.

Described above are examples of various methods for the reduction or substantial elimination of expression in a plant of an endogenous gene. A person skilled in the art would readily be able to adapt the aforementioned methods for silencing so as to achieve reduction of expression of an endogenous gene in a whole plant or in parts thereof through the use of an appropriate promoter, for example.

Transformation
The term "introduction" or "transformation" as referred to herein encompasses the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer.
Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated therefrom. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The polynucleotide may be transiently or stably introduced into a host cell and may be maintained non-integrated, for example, as a plasmid. Alternatively, it may be integrated into the host genome. The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.

The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plant species is now a fairly routine technique. Advantageously, any of several transformation methods may be used to introduce the gene of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant, particle gun bombardment, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts (Krens, F.A. et al., (1982) Nature 296, 72-74; Negrutiu I et al. (1987) Plant Mol Biol 8: 363-373); electroporation of protoplasts (Shillito R.D. et al. (1985) Bio/Technol 3, 1099-1102); microinjection into plant material (Crossway A et al., (1986) Mol. Gen Genet 202: 179-185); DNA or RNA-coated particle bombardment (Klein TM et al., (1987) Nature 327: 70) infection with (non-integrative) viruses and the like. Transgenic plants, including transgenic crop plants, are preferably produced via Agrobacterium-mediated transformation. An advantageous transformation method is the transformation in planta. To this end, it is possible, for example, to allow the agrobacteria to act on plant seeds or to inoculate the plant meristem with agrobacteria. It has proved particularly expedient in accordance with the invention to allow a suspension of transformed agrobacteria to act on the intact plant or at least on the flower primordia. The plant is subsequently grown on until the seeds of the treated plant are obtained (Clough and Bent, Plant J. (1998) 16, 735-743). Methods for Agrobacterium-mediated transformation of rice include well known methods for rice transformation, such as those described in any of the following: European patent application EP 1198985 A1, Aldemita and Hodges (Planta 199: 612-617, 1996); Chan et al. (Plant Mol Biol 22 (3): 491-506, 1993), Hiei et al. (Plant J 6 (2): 271-282, 1994), which disclosures are incorporated by reference herein as if fully set forth. In the case of corn transformation, the preferred method is as described in either Ishida et al. (Nat. Biotechnol 14(6): 745-50, 1996) or Frame et al. (Plant Physiol 129(1): 13-22, 2002), which disclosures are incorporated by reference herein as if fully set forth. Said methods are further described by way of example
in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225. The nucleic acids or the construct to be expressed is preferably cloned into a vector, which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed by such a vector can then be used in known manner for the transformation of plants, such as plants used as a model, like Arabidopsis (Arabidopsis thaliana is within the scope of the present invention not considered as a crop plant), or crop plants such as, by way of example, tobacco plants, for example by immersing bruised leaves or chopped leaves in an agrobacterial solution and then culturing them in suitable media. The transformation of plants by means of Agrobacterium tumefaciens is described, for example, by Hofgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or is known inter alia from F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38.

In addition to the transformation of somatic cells, which then have to be regenerated into intact plants, it is also possible to transform the cells of plant meristems and in particular those cells which develop into gametes. In this case, the transformed gametes follow the natural plant development, giving rise to transgenic plants. Thus, for example, seeds of Arabidopsis are treated with agrobacteria and seeds are obtained from the developing plants of which a certain proportion is transformed and thus transgenic [Feldman, KA and Marks MD (1987). Mol Gen Genet 208:274-289; Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-289]. Alternative methods are based on the repeated removal of the inflorescences and incubation of the excision site in the center of the rosette with transformed agrobacteria, whereby transformed seeds can likewise be obtained at a later point in time (Chang (1994). Plant J. 5: 551-558; Katavic (1994). Mol Gen Genet, 245: 363-370). However, an especially effective method is the vacuum infiltration method with its modifications such as the "floral dip" method. In the case of vacuum infiltration of Arabidopsis, intact plants under reduced pressure are treated with an agrobacterial suspension [Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-1199], while in the case of the "floral dip" method the developing floral tissue is incubated briefly with a surfactant-treated agrobacterial suspension [Clough, SJ and Bent AF (1998) The Plant J. 16, 735-743]. A certain proportion of transgenic seeds are harvested in both cases, and these seeds can be distinguished from non-transgenic seeds by growing under the above-described selective conditions. In addition the stable transformation of plastids is of advantages because plastids are inherited maternally in most crops reducing or eliminating the risk of transgene flow through pollen. The transformation of the chloroplast genome is generally achieved by a process which has been schematically displayed in Klaus et al., 2004 [Nature Biotechnology 22 (2), 225-229]. Briefly the sequences to be transformed are cloned together with a selectable marker gene between flanking sequences homologous to the chloroplast genome. These homologous flanking
sequences direct site specific integration into the plastome. Plastidal transformation has been described for many different plant species and an overview is given in Bock (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001 Sep 21;312 (3):425-38 or Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21, 20-28. Further biotechnological progress has recently been reported in form of marker free plastid transformants, which can be produced by a transient co-integrated maker gene (Klaus et al., 2004, Nature Biotechnology 22(2), 225-229).

The genetically modified plant cells can be regenerated via all methods with which the skilled worker is familiar. Suitable methods can be found in the abovementioned publications by S.D. Kung and R. Wu, Potrykus or Hofgen and Willmitzer.

Generally after transformation, plant cells or cell groupings are selected for the presence of one or more markers which are encoded by plant-expressible genes co-transferred with the gene of interest, following which the transformed material is regenerated into a whole plant. To select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility consists in growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Alternatively, the transformed plants are screened for the presence of a selectable marker such as the ones described above.

Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using Southern analysis, for the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, expression levels of the newly introduced DNA may be monitored using Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art.

The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion).

Throughout this application a plant, plant part, seed or plant cell transformed with - or interchangeably transformed by - a construct or transformed with a nucleic acid is to be
understood as meaning a plant, plant part, seed or plant cell that carries said construct or said nucleic acid as a transgene due the result of an introduction of said construct or said nucleic acid by biotechnological means. The plant, plant part, seed or plant cell therefore comprises said recombinant construct or said recombinant nucleic acid. Any plant, plant part, seed or plant cell that no longer contains said recombinant construct or said recombinant nucleic acid after introduction in the past, is termed null-segregant, nullizygote or null control, but is not considered a plant, plant part, seed or plant cell transformed with said construct or with said nucleic acid within the meaning of this application.

T-DNA activation tagging

T-DNA activation tagging (Hayashi et al. Science (1992) 1350-1353), involves insertion of T-DNA, usually containing a promoter (may also be a translation enhancer or an intron), in the genomic region of the gene of interest or 10 kb up- or downstream of the coding region of a gene in a configuration such that the promoter directs expression of the targeted gene. Typically, regulation of expression of the targeted gene by its natural promoter is disrupted and the gene falls under the control of the newly introduced promoter. The promoter is typically embedded in a T-DNA. This T-DNA is randomly inserted into the plant genome, for example, through *Agrobacterium* infection and leads to modified expression of genes near the inserted T-DNA. The resulting transgenic plants show dominant phenotypes due to modified expression of genes close to the introduced promoter.

TILLING

The term "TILLING" is an abbreviation of "Targeted Induced Local Lesions in Genomes" and refers to a mutagenesis technology useful to generate and/or identify nucleic acids encoding proteins with modified expression and/or activity. TILLING also allows selection of plants carrying such mutant variants. These mutant variants may exhibit modified expression, either in strength or in location or in timing (if the mutations affect the promoter for example). These mutant variants may exhibit higher activity than that exhibited by the gene in its natural form. TILLING combines high-density mutagenesis with high-throughput screening methods. The steps typically followed in TILLING are: (a) EMS mutagenesis (Redel GP and Koncz C (1992) in Methods in Arabidopsis Research, Koncz C, Chua NH, Schell J, eds. Singapore, World Scientific Publishing Co, pp. 16-82; Feldmann et al., (1994) In Meyerowitz EM, Somerville CR, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 137-172; Lightner J and Caspar T (1998) In J Martinez-Zapater, J Salinas, eds, Methods on Molecular Biology, Vol. 82. Humana Press, Totowa, NJ, pp 91-104); (b) DNA preparation and pooling of individuals; (c) PCR amplification of a region of interest; (d) denaturation and annealing to allow formation of heteroduplexes; (e) DHPLC, where the presence of a heteroduplex in a pool is detected as an extra peak in the chromatogram; (f) identification of the mutant individual; and (g) sequencing of the mutant PCR product. Methods for TILLING are well known in the art (McCallum et al., (2000) Nat Biotechnol 18: 455-457; reviewed by Stemple (2004) Nat Rev Genet 5(2): 145-50).
Homologous recombination

Homologous recombination allows introduction in a genome of a selected nucleic acid at a defined selected position. Homologous recombination is a standard technology used routinely in biological sciences for lower organisms such as yeast or the moss Physcomitrella. Methods for performing homologous recombination in plants have been described not only for model plants (Offringa et al. (1990) EMBO J 9(10): 3077-84) but also for crop plants, for example rice (Terada et al. (2002) Nat Biotech 20(10): 1030-4; lida and Terada (2004) Curr Opin Biotech 15(2): 132-8), and approaches exist that are generally applicable regardless of the target organism (Miller et al, Nature Biotechnol. 25, 778-785, 2007).

Yield related Traits

Yield related traits comprise one or more of yield, biomass, seed yield, early vigour, greenness index, increased growth rate, improved agronomic traits (such as improved Water Use Efficiency (WUE), Nitrogen Use Efficiency (NUE), etc.).

Yield

The term "yield" in general means a measurable produce of economic value, typically related to a specified crop, to an area, and to a period of time. Individual plant parts directly contribute to yield based on their number, size and/or weight, or the actual yield is the yield per square meter for a crop and year, which is determined by dividing total production (includes both harvested and appraised production) by planted square meters. The term "yield" of a plant may relate to vegetative biomass (root and/or shoot biomass), to reproductive organs, and/or to propagules (such as seeds) of that plant.

Taking corn as an example, a yield increase may be manifested as one or more of the following: increase in the number of plants established per square meter, an increase in the number of ears per plant, an increase in the number of rows, number of kernels per row, kernel weight, thousand kernel weight, ear length/diameter, increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), among others. Taking rice as an example, a yield increase may manifest itself as an increase in one or more of the following: number of plants per square meter, number of panicles per plant, panicle length, number of spikelets per panicle, number of flowers (florets) per panicle, increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), increase in thousand kernel weight, among others. In rice, submergence tolerance may also result in increased yield.

Early vigour

"Early vigour" or 'early growth vigour', or 'emergence vigour', or 'seedling vigour' refers to active healthy well-balanced growth during early stages of plant growth, and may result from increased plant fitness due to, for example, the plants being better adapted to their environment (i.e. optimizing the use of energy resources and partitioning between shoot
and root). Plants having early vigour also show increased seedling survival and a better establishment of the crop, which often results in highly uniform fields (with the crop growing in uniform manner, i.e. with the majority of plants reaching the various stages of development at substantially the same time), and often better and higher yield.

Increased growth rate
The increased growth rate may be specific to one or more parts of a plant (including seeds), or may be throughout substantially the whole plant. Plants having an increased growth rate may have a shorter life cycle. The life cycle of a plant may be taken to mean the time needed to grow from a dry mature seed up to the stage where the plant has produced dry mature seeds, similar to the starting material. This life cycle may be influenced by factors such as speed of germination, early vigour, growth rate, greenness index, flowering time and speed of seed maturation. The increase in growth rate may take place at one or more stages in the life cycle of a plant or during substantially the whole plant life cycle. Increased growth rate during the early stages in the life cycle of a plant may reflect enhanced vigour. The increase in growth rate may alter the harvest cycle of a plant allowing plants to be sown later and/or harvested sooner than would otherwise be possible (a similar effect may be obtained with earlier flowering time). If the growth rate is sufficiently increased, it may allow for the further sowing of seeds of the same plant species (for example sowing and harvesting of rice plants followed by sowing and harvesting of further rice plants all within one conventional growing period). Similarly, if the growth rate is sufficiently increased, it may allow for the further sowing of seeds of different plants species (for example the sowing and harvesting of corn plants followed by, for example, the sowing and optional harvesting of soybean, potato or any other suitable plant). Harvesting additional times from the same rootstock in the case of some crop plants may also be possible. Altering the harvest cycle of a plant may lead to an increase in annual biomass production per square meter (due to an increase in the number of times (say in a year) that any particular plant may be grown and harvested). An increase in growth rate may also allow for the cultivation of transgenic plants in a wider geographical area than their wild-type counterparts, since the territorial limitations for growing a crop are often determined by adverse environmental conditions either at the time of planting (early season) or at the time of harvesting (late season). Such adverse conditions may be avoided if the harvest cycle is shortened. The growth rate may be determined by deriving various parameters from growth curves, such parameters may be: T-Mid (the time taken for plants to reach 50% of their maximal size) and T-90 (time taken for plants to reach 90% of their maximal size), amongst others.

Stress resistance
An increase in yield and/or growth rate occurs whether the plant is under non-stress conditions or whether the plant is exposed to various stresses compared to control plants. Plants typically respond to exposure to stress by growing more slowly. In conditions of severe stress, the plant may even stop growing altogether. Mild stress on the other hand is defined herein as being any stress to which a plant is exposed which does not result in the
plant ceasing to grow altogether without the capacity to resume growth. Mild stress in the sense of the invention leads to a reduction in the growth of the stressed plants of less than 40%, 35%, 30% or 25%, more preferably less than 20% or 15% in comparison to the control plant under non-stress conditions. Due to advances in agricultural practices (irrigation, fertilization, pesticide treatments) severe stresses are not often encountered in cultivated crop plants. As a consequence, the compromised growth induced by mild stress is often an undesirable feature for agriculture. Mild stresses are the everyday biotic and/or abiotic (environmental) stresses to which a plant is exposed. Abiotic stresses may be due to drought or excess water, anaerobic stress, salt stress, chemical toxicity, oxidative stress and hot, cold or freezing temperatures. The abiotic stress may be an osmotic stress caused by a water stress (particularly due to drought), salt stress, oxidative stress or an ionic stress. Biotic stresses are typically those stresses caused by pathogens, such as bacteria, viruses, fungi, nematodes and insects.

In particular, the methods of the present invention may be performed under non-stress conditions or under conditions of mild drought to give plants having increased yield relative to control plants. As reported in Wang et al. (Planta (2003) 218: 1-14), abiotic stress leads to a series of morphological, physiological, biochemical and molecular changes that adversely affect plant growth and productivity. Drought, salinity, extreme temperatures and oxidative stress are known to be interconnected and may induce growth and cellular damage through similar mechanisms. Rabbani et al. (Plant Physiol (2003) 133: 1755-1767) describes a particularly high degree of "cross talk" between drought stress and high-salinity stress. For example, drought and/or salinisation are manifested primarily as osmotic stress, resulting in the disruption of homeostasis and ion distribution in the cell. Oxidative stress, which frequently accompanies high or low temperature, salinity or drought stress, may cause denaturing of functional and structural proteins. As a consequence, these diverse environmental stresses often activate similar cell signalling pathways and cellular responses, such as the production of stress proteins, up-regulation of anti-oxidants, accumulation of compatible solutes and growth arrest. The term "non-stress" conditions as used herein are those environmental conditions that allow optimal growth of plants. Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given location. Plants with optimal growth conditions, (grown under non-stress conditions) typically yield in increasing order of preference at least 97%, 95%, 92%, 90%, 87%, 85%, 83%, 80%, 77% or 75% of the average production of such plant in a given environment.

Average production may be calculated on harvest and/or season basis. Persons skilled in the art are aware of average yield productions of a crop.

Nutrient deficiency may result from a lack of nutrients such as nitrogen, phosphates and other phosphorous-containing compounds, potassium, calcium, magnesium, manganese, iron and boron, amongst others.

The term salt stress is not restricted to common salt (NaCl), but may be any one or more of: NaCl, KCl, LiCl, MgCl₂, CaCl₂, amongst others.
Increase/Improve/Enhance

The terms "increase", "improve" or "enhance" are interchangeable and shall mean in the sense of the application at least a 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 35% or 40% more yield and/or growth in comparison to control plants as defined herein.

Roots

The term root as used herein encompasses all 'below ground' or 'under ground' parts of the plant that and serves as support, draws minerals and water from the surrounding soil, and/or store nutrient reserves. These include bulbs, corms, tubers, tuberous roots, rhizomes and fleshy roots. Increased roots yield may manifest itself as one or more of the following: an increase in root biomass (total weight) which may be on an individual basis and/or per plant and/or per square meter; increased harvest index, which is expressed as a ratio of the yield of harvestable parts, such as roots, divided by the total biomass.

An increase in root yield may also be manifested as an increase in root size and/or root volume. Furthermore, an increase in root yield may also manifest itself as an increase in root area and/or root length and/or root width and/or root perimeter. Increased yield may also result in modified architecture, or may occur because of modified architecture.

Seed yield

Increased seed yield may manifest itself as one or more of the following: a) an increase in seed biomass (total seed weight) which may be on an individual seed basis and/or per plant and/or per square meter; b) increased number of flowers per plant; c) increased number of (filled) seeds; d) increased seed filling rate (which is expressed as the ratio between the number of filled seeds divided by the total number of seeds); e) increased harvest index, which is expressed as a ratio of the yield of harvestable parts, such as seeds, divided by the total biomass; and f) increased thousand kernel weight (TKW), which is extrapolated from the number of filled seeds counted and their total weight. An increased TKW may result from an increased seed size and/or seed weight, and may also result from an increase in embryo and/or endosperm size.

An increase in seed yield may also be manifested as an increase in seed size and/or seed volume. Furthermore, an increase in seed yield may also manifest itself as an increase in seed area and/or seed length and/or seed width and/or seed perimeter. Increased yield may also result in modified architecture, or may occur because of modified architecture.

Greenness Index

The "greenness index" as used herein is calculated from digital images of plants. For each pixel belonging to the plant object on the image, the ratio of the green value versus the red value (in the RGB model for encoding color) is calculated. The greenness index is
expressed as the percentage of pixels for which the green-to-red ratio exceeds a given threshold. Under normal growth conditions, under salt stress growth conditions, and under reduced nutrient availability growth conditions, the greenness index of plants is measured in the last imaging before flowering. In contrast, under drought stress growth conditions, the greenness index of plants is measured in the first imaging after drought.

Biomass
The term "biomass" as used herein is intended to refer to the total weight of a plant. Within the definition of biomass, a distinction may be made between the biomass of one or more parts of a plant, which may include any one or more of the following:

- aboveground parts such as but not limited to shoot biomass, seed biomass, leaf biomass, etc.;
- aboveground harvestable parts such as but not limited to shoot biomass, seed biomass, leaf biomass, etc.;
- parts below ground, such as but not limited to root biomass, tubers, bulbs, etc.;
- harvestable parts below ground, such as but not limited to root biomass, tubers, bulbs, etc.;
- harvestable parts partly inserted in or in contact with the ground such as but not limited to beets and other hypocotyl areas of a plant, rhizomes, stolons or creeping rootstalks.
- vegetative biomass such as root biomass, shoot biomass, etc.;
- reproductive organs; and
- propagules such as seed.

Marker assisted breeding
Such breeding programmes sometimes require introduction of allelic variation by mutagenic treatment of the plants, using for example EMS mutagenesis; alternatively, the programme may start with a collection of allelic variants of so called "natural" origin caused unintentionally. Identification of allelic variants then takes place, for example, by PCR. This is followed by a step for selection of superior allelic variants of the sequence in question and which give increased yield. Selection is typically carried out by monitoring growth performance of plants containing different allelic variants of the sequence in question. Growth performance may be monitored in a greenhouse or in the field. Further optional steps include crossing plants in which the superior allelic variant was identified with another plant. This could be used, for example, to make a combination of interesting phenotypic features.

Use as probes in (gene mapping)
Use of nucleic acids encoding the protein of interest for genetically and physically mapping the genes requires only a nucleic acid sequence of at least 15 nucleotides in length. These nucleic acids may be used as restriction fragment length polymorphism (RFLP) markers. Southern blots (Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning, A
Laboratory Manual) of restriction-digested plant genomic DNA may be probed with the nucleic acids encoding the protein of interest. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et al. 1987 Genomics 1: 174-181) in order to construct a genetic map. In addition, the nucleic acids may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the nucleic acid encoding the protein of interest in the genetic map previously obtained using this population (Botstein et al. 1980 Am. J. Hum. Genet. 32:314-331).

The production and use of plant gene-derived probes for use in genetic mapping is described in Bernatzky and Tanksley (1986) Plant Mol. Biol. Reporter 4: 37-41. Numerous publications describe genetic mapping of specific cDNA clones using the methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.

The nucleic acid probes may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: Non-mammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, and references cited therein).

In another embodiment, the nucleic acid probes may be used in direct fluorescence in situ hybridisation (FISH) mapping (Trask (1991) Trends Genet. 7:149-1 54). Although current methods of FISH mapping favour use of large clones (several kb to several hundred kb; see Laan et al. (1995) Genome Res. 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.

A variety of nucleic acid amplification-based methods for genetic and physical mapping may be carried out using the nucleic acids. Examples include allele-specific amplification (Kazazian 1989 J. Lab. Clin. Med 11:95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) Genomics 16:325-332), allele-specific ligation (Landegren et al. (1988) Science 241 :1077-1080), nucleotide extension reactions (Sokolov (1990) Nucleic Acid Res. 18:3671), Radiation Hybrid Mapping (Walter et al. (1997) Nat. Genet. 7:22-28) and Happy Mapping (Dear and Cook (1989) Nucleic Acid Res. 17:6795-6807). For these methods, the sequence of a nucleic acid is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.
The term "plant" as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, leaves, roots (including tubers), flowers, and tissues and organs, wherein each of the aforementioned comprise the gene/nucleic acid of interest. The term "plant" also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the gene/nucleic acid of interest.

Secale cereale, Sesamum spp., Sinapis sp., Solanum spp. (e.g. Solanum tuberosum, Solanum integrifolium or Solanum lycopersicum), Sorghum bicolor, Spinacia spp., Syzygium spp., Tagetes spp., Tamarindus indica, Theobroma cacao, Trifolium spp., Tripsacum dactyloides, Triticosecale rimpai, Triticum spp. (e.g. Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybnum, Triticum macha, Triticum sativum, Triticum monococcum or Triticum vulgare), Tropaeolum minus, Tropaeolum majus, Vaccinium spp., Vicia spp., Vigna spp., Viola odorata, Vitis spp., Zea mays, Zizania palustris, Ziziphus spp., amongst others.

With respect to the sequences of the invention, a nucleic acid or a polypeptide sequence of plant origin has the characteristic of a codon usage optimised for expression in plants, and of the use of amino acids and regulatory sites common in plants, respectively. The plant of origin may be any plant, but preferably those plants as described in the previous paragraph.

Control plant(s)

The choice of suitable control plants is a routine part of an experimental setup and may include corresponding wild type plants or corresponding plants without the gene of interest. The control plant is typically of the same plant species or even of the same variety as the plant to be assessed. The control plant may also be a nullizygote of the plant to be assessed. Nullizygotes (also called null control plants) are individuals missing the transgene by segregation. Further, a control plant has been grown under equal growing conditions to the growing conditions of the plants of the invention. Typically the control plant is grown under equal growing conditions and hence in the vicinity of the plants of the invention and at the same time. A "control plant" as used herein refers not only to whole plants, but also to plant parts, including seeds and seed parts. The phenotype or traits of the control plants are assessed under conditions which allow a comparison with the plant produced according to the invention, e.g. the control plants and the plants produced according to the method of the present invention are grown under similar, preferably identical conditions.

Detailed description of the invention

It has now been found that modulating expression in a plant of a nucleic acid encoding a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) gives plants having increased yield and/or enhanced yield-related traits relative to control plants. According to a first embodiment, the present invention provides a method for enhancing yield and/or yield-related traits in plants relative to control plants, wherein said method comprises transforming a plant with a recombinant construct to increase the activity or expression in a plant of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and optionally selecting for plants having increased yield and/or enhanced yield-related traits.

A preferred method for modulating the expression and activity of a Phosphoribosyl
pyrophosphate synthetase (PRS1 like, PRPP synthetase) in a plant is by introducing and expressing nucleic acid molecule encoding this Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase).

Any reference hereinafter to a "protein useful in the methods of the invention" is taken to mean a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) as defined herein. Any reference hereinafter to a "nucleic acid useful in the methods of the invention" is taken to mean a nucleic acid capable of encoding such a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase). The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named "POI nucleic acid" or "POI gene".

The enzyme Phosphoribosyl pyrophosphate synthetase (EC 2.7.6.1) is also called ribose-phosphate diphosphokinase.

Preferably, a "Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase)" of the invention (i.e. the POI polypeptide) as defined herein refers to any polypeptide comprising an amino acid sequence containing at least one of the short domains such as Interpro domain IPR000842, Interpro domain IPR000836 or Interpro domain IPR005946.

In a preferred embodiment, the amino acid sequence contains at least two, more preferred at least all three of the domains Interpro domain IPR000842, Interpro domain IPR000836 and Interpro domain IPR005946.

Further, a "Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase)" of the invention (i.e. the POI polypeptide) as defined herein refers to any polypeptide comprising an amino acid sequence containing at least one domain such as Interpro domain IPR000842 and/or Interpro domain IPR000836 and/or Interpro domain IPR005946 and/or an amino acid sequence comprising any one of the polypeptide sequences shown in SEQ ID NO.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, and a homolog thereof (as described herein) or to a polypeptide encoded by a polynucleotide comprising the nucleic acid molecule as shown in SEQ ID NO.: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27, and a homolog thereof (as described herein) and/or comprises at least one of any one of motifs 1, 2, 3, 3a, preferably 1, 2 or 3a.

Preferably, the Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) comprises an amino acid sequence containing at least one domain such as Interpro domain IPR000842 and/or Interpro domain IPR000836 and/or Interpro domain IPR005946 and an amino acid sequence having 35% or more identity to any one of the polypeptide sequences shown in SEQ ID NO.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or to a polypeptide encode by a polynucleotide comprising the nucleic acid molecule as shown in SEQ ID NO.: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27, and, even more preferred, also comprises at least one of any one of motifs 1, 2, 3, 3a, preferably 1, 2 or 3a.
In one embodiment, the Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) is characterized as comprising one or more of the following MEME motifs:

5 Motif 1 (SEQ ID NO:32): IKRFADGEIYVQLQESVRGCDV[FY][L][QPTC][PT][P][AT]NENLMELLIM[IV]DACRRAS

Motifs 1 to 3 were derived using the MEME algorithm (Bailey and Elkan, Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994). At each position within a MEME motif, the residues are shown that are present in the query set of sequences with a frequency higher than 0.2. Motif 3a was derived manually. Residues within square brackets represent alternatives.

20 In a preferred embodiment the amino acid at position 46 of motif 3a is Histidine.

Additionally, the present invention relates to a homologue of the POI polypeptide and its use in the method of the present invention. The homologue of a POI polypeptide has, in increasing order of preference, at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 2, and/or represented by its orthologues and paralogues shown in SEQ ID NO.: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, preferably provided that the homologous protein comprises any one or more of the motifs or domains as outlined above. The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides).

In one embodiment the sequence identity level is determined by comparison of the polypeptide sequences over the entire length of the sequence of SEQ ID NO: 2....
Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered. Preferably the motifs in a POI polypeptide have, in increasing order of preference, at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to any one or more of the Motifs 1, 2, 3, 3a, preferably 1, 2 or 3a.

In one embodiment, the nucleic acid molecule of the present invention does not consist of SEQ ID NO.: 3 and the polypeptide of the present invention does not consist of SEQ ID No.:4.

The terms "domain", "signature" and "motif" are defined in the "definitions" section herein.

In one embodiment the PRS1 like polypeptides employed in the methods, constructs, plants, harvestable parts and products of the invention are PRS1 like polypeptides but excluding the polypeptides of the sequences disclosed in:

a. SEQ ID NO: 4016 or the one encoded by the sequence of SEQ ID NO:292, both of the international patent application WO2009/134339; or
b. SEQ ID NO:9451 or the one encoded by the sequence of SEQ ID NO:3871, both of the US patent application US2009/019601; or
c. SEQ ID NO:497 or 13893 or the one encoded by the sequence of SEQ ID NO: 497 or 13893, both of the US patent application US2009/094717;

Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group. In another embodiment the polypeptides of the invention when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1 cluster not more than 4, 3, or 2 hierarchical branch points away from the amino acid sequence of SEQ ID NO:2

Furthermore, POI polypeptides (at least in their native form) typically are described as Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase). SEQ ID NO.: 1 encodes for a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) of Populus trichocarpa. Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) catalyses the production of phosphoribosyl pyrophosphate by the transfer of beta, gamma diphosphoryl moiety of ATP to the C-1 hydroxyl of Ribose-5 phosphate (Khorana et al., 1958). PRS is required for the de novo biosynthesis of purine and pyrimidine nucleotide coenzyme NAD, and the salvage of preformed purine, pyrimidine, and pyridine bases (Krath et Hove-
Jensen, 1999). The PRS proteins are divided into 2 classes, classic ORS in class I regrouping enzymes from bacteria, mammals, and plants, and plant specific PRS proteins. Class I, but not class II, enzyme stability and activity depends on \(\text{Pi} \) (inorganic phosphate).

The increase in expression or in the activity of POI polypeptides, when expressed in a plant, e.g. according to the methods of the present invention as outlined in Examples 6 and 7, give plants having increased yield, in particular increased shoot biomass and/or increased root biomass, relative to control plants. Furthermore, the positive effect of increase of activity or amount of the POI polypeptide in a plant or plant cell on root biomass suggests that this increase of activity or amount may also confer positive effect on yield under abiotic stresses, and in particular under drought stresses.

The present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 1, encoding the polypeptide sequence of SEQ ID NO: 2, respectively. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any POI-encoding nucleic acid or POI polypeptide as defined herein, e.g. as listed in Table A and the sequence listing as the polypeptides shown in SEQ ID No.: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, and homologues, orthologues or paralogues thereof.

Examples of nucleic acids encoding Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) are given in Table A of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. The amino acid sequences given in Table A of the Examples section are example sequences of orthologues and paralogues of the POI polypeptide represented by SEQ ID NO: 2, the terms "orthologues" and "paralogues" being as defined herein. Further orthologues and paralogues may readily be identified by performing a so-called reciprocal blast search as described in the definitions section; where the query sequence is e.g. SEQ ID NO: 1 or SEQ ID NO: 2, the second BLAST (back-BLAST) would be against the original sequence databases, e.g.. a poplar database.

The invention also provides hitherto unknown POI-encoding nucleic acid molecules and POI polypeptides useful for conferring enhanced yield-related traits in plants relative to control plants.

According to a further embodiment of the present invention, there is therefore provided an isolated nucleic acid molecule selected from:

(i) a nucleic acid represented by (any one of) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27;

(ii) the complement of a nucleic acid represented by (any one of) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27;

(iii) a nucleic acid encoding the polypeptide as represented by (any one of) SEQ ID NO:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, preferably as a result of the degeneracy of the genetic code, said isolated nucleic acid can be derived from a polypeptide sequence as represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, and further preferably confers enhanced yield-related traits relative to control plants;

(iv) a nucleic acid having, in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with any of the nucleic acid sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27, and further preferably conferring enhanced yield-related traits relative to control plants;

(v) a nucleic acid molecule which hybridizes with a nucleic acid molecule of (i) to (iv) under stringent hybridization conditions and preferably confers enhanced yield-related traits relative to control plants;

(vi) a nucleic acid encoding a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26 and any of the other amino acid sequences in Table A and preferably conferring in particular, increased shoot biomass and/or increased root biomass, relative to control plants.

According to a further embodiment of the present invention, there is also provided an isolated polypeptide selected from:

(i) an amino acid sequence represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26;

(ii) an amino acid sequence having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, and any of the other amino acid sequences in Table A and preferably conferring enhanced yield-related traits relative to control plants;

(iii) derivatives of any of the amino acid sequences given in (i) or (ii) above; or

(iv) an amino acid sequence encoded by the nucleic acid of the invention.
Accordingly, in one embodiment, the present invention relates to an expression construct comprising the nucleic acid molecule of the invention or conferring the expression of a POI polypeptide of the invention.

Nucleic acid variants may also be useful in practising the methods of the invention. Examples of such variants include nucleic acids encoding homologues and derivatives of any one of the amino acid sequences given in Table A of the Examples section, the terms "homologue" and "derivative" being as defined herein. Also useful in the methods of the invention are nucleic acids encoding homologues and derivatives of orthologues or paralogues of any one of the amino acid sequences given in Table A of the Examples section. Homologues and derivatives useful in the methods of the present invention have substantially the same biological and functional activity as the unmodified protein from which they are derived. Further variants useful in practising the methods of the invention are variants in which codon usage is optimised or in which miRNA target sites are removed.

Further nucleic acid variants useful in practising the methods of the invention include portions of nucleic acids encoding Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase), nucleic acids hybridising to nucleic acids encoding Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase), splice variants of nucleic acids encoding POI, allelic variants of nucleic acids encoding POI polypeptides and variants of nucleic acids encoding POI polypeptides obtained by gene shuffling. The terms hybridising sequence, splice variant, allelic variant and gene shuffling are as described herein.

In one embodiment of the present invention the function of the nucleic acid sequences of the invention is to confer information for a protein that increases yield or yield related traits, when a nucleic acid sequence of the invention is transcribed and translated in a living plant cell.

Nucleic acids encoding POI polypeptides need not be full-length nucleic acids, since performance of the methods of the invention does not rely on the use of full-length nucleic acid sequences. According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant a portion of any one of the nucleic acid sequences given in Table A of the Examples section, or a portion of a nucleic acid encoding an orthologue, parologue or homologue of any of the amino acid sequences given in Table A of the Examples section, and having substantially the same biological activity as the amino acid sequences given in Table A of the Examples section, in particular of a polypeptide comprising SEQ ID No.: 2.

A portion of a nucleic acid may be prepared, for example, by making one or more deletions to the nucleic acid. The portions may be used in isolated form or they may be fused to other coding (or non-coding) sequences in order to, for example, produce a protein that combines
several activities. When fused to other coding sequences, the resultant polypeptide produced upon translation may be bigger than that predicted for the protein portion.

Portions useful in the methods of the invention, encode a POI polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A of the Examples section. Preferably the portion is at least, 100, 200, 300, 400, 500, 550, 600, 700, 800 or 900 consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A of the Examples section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A of the Examples section. Preferably the portion is a portion of the nucleic acid of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 1. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and/or comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and/or has biological activity of a HRGP and/or comprises the nucleic acid molecule of the invention, e.g. has at least 50% sequence identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or is an orthologue or paralogue thereof. For example, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and comprises any one or more of the motifs 1 or 2 and has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and has at least 50% sequence identity to SEQ ID NO: 2.

Another nucleic acid variant useful in the methods of the invention is a nucleic acid capable of hybridising, under reduced stringency conditions, preferably under stringent conditions, with a nucleic acid encoding a POI polypeptide as defined herein, or with a portion as defined herein.

In one embodiment the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 1 or to a portion thereof under conditions of medium or high stringency, preferably high stringency as defined above. In another embodiment the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 1 under stringent conditions.

According to the present invention, there is provided a method for increasing yield and enhancing yield-related traits in plants, comprising introducing and expressing in a plant a nucleic acid capable of hybridizing to any one of the nucleic acids given in Table A of the
Examples section, or comprising introducing and expressing in a plant a nucleic acid capable of hybridising to a nucleic acid encoding an orthologue, paralogue or homologue of any of the nucleic acid sequences given in Table A of the Examples section.

Hybridising sequences useful in the methods of the invention encode a POI polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A of the Examples section, in particular of a polypeptide comprising SEQ ID No.: 2. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A of the Examples section, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A of the Examples section. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 1 or to a portion thereof.

Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and/or comprises any one of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and/or has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and/or has at least 50% sequence identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or is a orthologue or paralogue thereof. For example, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and has at least 50% sequence identity to SEQ ID NO: 2.

Another nucleic acid variant useful in the methods of the invention is a splice variant encoding a POI polypeptide as defined hereinabove, a splice variant being as defined herein.

According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant a splice variant of any one of the nucleic acid sequences given in Table A of the Examples section, or a splice variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A of the Examples section.

Preferred splice variants are splice variants of a nucleic acid represented by SEQ ID NO: 1, or a splice variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 2.
Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and/or comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and/or has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and/or has at least 50% sequence identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or an orthologue or paralogue thereof. For example, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and has at least 50% sequence identity to SEQ ID NO: 2.

Another nucleic acid variant useful in performing the methods of the invention is an allelic variant of a nucleic acid encoding a POI polypeptide as defined hereinabove, an allelic variant being as defined herein.

According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant an allelic variant of any one of the nucleic acids given in Table A of the Examples section, or comprising introducing and expressing in a plant an allelic variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A of the Examples section.

The polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the POI polypeptide of SEQ ID NO: 2 and any of the amino acids depicted in Table A of the Examples section, preferably as the POI polypeptide of SEQ ID NO: 2. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of SEQ ID NO: 1 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 2. Preferably, the amino acid sequence encoded by the allelic variant, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and/or comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and/or has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and/or has at least 50% sequence identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or an orthologue or paralogue thereof. For example, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI
polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and has at least 50% sequence identity to SEQ ID NO: 2.

Gene shuffling or directed evolution may also be used to generate variants of nucleic acids encoding POI polypeptides as defined above; the term "gene shuffling" being as defined herein.

According to the present invention, there is provided a method for improving yield and enhancing yield-related traits in plants, comprising introducing and expressing in a plant a variant of any one of the nucleic acid sequences given in Table A of the Examples section, or comprising introducing and expressing in a plant a variant of a nucleic acid encoding an orthologue, parologue or homologue of any of the amino acid sequences given in Table A of the Examples section, which variant nucleic acid is obtained by gene shuffling.

Preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and/or comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and/or has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and/or has at least 50% sequence identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, or a orthologue or a parologue thereof. For example, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in Figure 1, clusters with the group of POI polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group and comprises any one or more of the motifs 1, 2, 3, 3a, preferably 1, 2 or 3a and has biological activity of a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase) and has at least 50% sequence identity to SEQ ID NO: 2.

Furthermore, nucleic acid variants may also be obtained by site-directed mutagenesis. Several methods are available to achieve site-directed mutagenesis, the most common being PCR based methods (Current Protocols in Molecular Biology, Wiley Eds.).

Nucleic acids encoding POI polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the POI polypeptide-encoding nucleic acid is selected from a organism indicated in Table A, e.g. from a plant.
For example, the nucleic acid encoding the POI polypeptide of SEQ ID NO:4 can be generated from the nucleic acid encoding the POI polypeptide of SEQ ID NO:2 by alteration of several nucleotides. POI polypeptides differing from the sequence of SEQ ID NO: 2 by one or several amino acids may be used to increase the yield of plants in the methods and constructs and plants of the invention. As an example the polypeptide sequence of SEQ ID NO: 4 can be generated from the sequence of SEQ ID NO: 2 by inserting additional nucleic acids in the corresponding nucleic acid sequence of SEQ ID NO:1, so that in front of the codon 158 of SEQ ID NO:1, coding for Threonine at position 158 of SEQ ID NO:2, codons are inserted such that the following amino acids are inserted before said Threonine in the resulting polypeptide: Alanine- Serine- Phenylalanine- Methionine.

This can be achieved for example by inserting the nucleic acid sequence of GCAAGTTTTATG at position 472 of SEQ ID NO:1.

In another embodiment the present invention extends to recombinant chromosomal DNA comprising a nucleic acid sequence useful in the methods of the invention, wherein said nucleic acid is present in the chromosomal DNA as a result of recombinant methods, i.e. said nucleic acid is not in the chromosomal DNA in its native surrounding. Said recombinant chromosomal DNA may be a chromosome of native origin, with said nucleic acid inserted by recombinant means, or it may be a mini-chromosome or a non-native chromosomal structure, e.g. or an artificial chromosome. The nature of the chromosomal DNA may vary, as long it allows for stable passing on to successive generations of the recombinant nucleic acid useful in the methods of the invention, and allows for expression of said nucleic acid in a living plant cell resulting in increased yield or increased yield related traits of the plant cell or a plant comprising the plant cell.

In a further embodiment the recombinant chromosomal DNA of the invention is comprised in a plant cell.

Performance of the methods of the invention gives plants having improved yield and enhanced yield-related traits. In particular performance of the methods of the invention gives plants having increased yield, in particular, increased shoot biomass and/or increased root biomass, relative to control plants. The terms "yield" and "seed yield" are described in more detail in the "definitions" section herein.

Reference herein to enhanced yield-related traits is taken to mean an increase early vigour and/or in biomass (weight) of one or more parts of a plant, which may include above ground (harvestable) parts and/or (harvestable) parts below ground. In particular, such harvestable parts are seeds and/or roots, and performance of the methods of the invention results in plants having increased seed filling rate, root and shoot biomass relative to control plants.

In one embodiment the harvestable parts are beets.

The present invention provides a method for increasing yield in comparison to the null
control plants, in particular seed yield as measured by the seed number and number of filled seeds, and improved yield-related traits, in particular increased shoot biomass and/or increased root biomass, relative to control plants. This method comprises modulating, preferably increasing expression or activity of a POI polypeptide in a plant, e.g. modulating or increasing expression in a plant of a nucleic acid encoding a POI polypeptide as defined herein. Furthermore, the positive effect of increase of activity or expression of the POI polypeptide in a plant or plant cell on root biomass and seed filling rate suggest that this may also confer positive effect on yield under abiotic stresses, and in particular under drought stresses.

Since the transgenic plants according to the present invention have increased yield, e.g. yield related-trait such as increased shoot biomass and/or increased root biomass, it is likely that these plants exhibit an increased growth rate (during at least part of their life cycle), relative to the growth rate of control plants at a corresponding stage in their life cycle.

According to a preferred feature of the present invention, performance of the methods of the invention gives plants having an increased growth rate relative to control plants. Therefore, according to the present invention, there is provided a method for increasing the growth rate of plants, which method comprises modulating expression in a plant of a nucleic acid encoding a POI polypeptide as defined herein.

Performance of the methods of the invention gives plants grown under non-stress conditions increased yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield in plants grown under non-stress conditions, which method comprises modulating expression in a plant of a nucleic acid encoding a POI polypeptide.

Performance of the methods of the invention may give plants grown under conditions of nutrient deficiency, particularly under conditions of nitrogen deficiency, increased yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield in plants grown under conditions of nutrient deficiency, which method comprises modulating expression in a plant of a nucleic acid encoding a POI polypeptide.

Performance of the methods of the invention may also give plants growing under conditions of salt stress, increased yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield in plants grown under conditions of salt stress, which method comprises modulating expression in a plant of a nucleic acid encoding a POI polypeptide.

Performance of the methods of the invention may also give plants grown under mild drought
conditions increased yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield in plants grown under mild drought conditions, which method comprises modulating expression in a plant of a nucleic acid encoding a POI polypeptide.

The invention also provides genetic constructs and vectors to facilitate introduction and/or expression in plants of nucleic acids encoding POI polypeptides. The gene constructs may be inserted into vectors, which may be commercially available, suitable for transforming into plants and suitable for expression of the gene of interest in the transformed cells. The invention also provides use of a gene construct as defined herein in the methods of the invention.

More specifically, the present invention provides a construct comprising:
(a) a nucleic acid encoding a POI polypeptide as defined above;
(b) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
(c) a transcription termination sequence.

Preferably, the nucleic acid encoding a POI polypeptide is as defined above. The term "control sequence" and "termination sequence" are as defined herein.

The invention furthermore provides plants transformed with a construct as described above. In particular, the invention provides plants transformed with a construct as described above, which plants have enhanced yield and/or increased yield-related traits as described herein.

Plants are transformed with a vector comprising any of the nucleic acids described above. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells containing the sequence of interest. The sequence of interest is operably linked to one or more control sequences (at least to a promoter) in the vectors and constructs of the invention.

In one embodiment the plants of the invention are transformed with an expression cassette comprising any of the nucleic acids described above. The skilled artisan is well aware of the genetic elements that must be present on the expression cassette in order to successfully transform, select and propagate host cells containing the sequence of interest. In the expression cassettes of the invention the sequence of interest is operably linked to one or more control sequences (at least to a promoter). The promoter in such an expression cassette may be a non-native promoter to the nucleic acid described above, i.e. a promoter not regulating the expression of said nucleic acid in its native surrounding.

In a further embodiment the expression cassettes of the invention confer increased yield or yield related traits(s) to a living plant cell when they have been introduced into said plant cell and result in expression of the nucleic acid as defined above, comprised in the
expression cassette(s).
The expression cassettes of the invention may be comprised in a host cell, plant cell, seed, agricultural product or plant.

5 Advantageously, any type of promoter, whether natural or synthetic, may be used to drive expression of the nucleic acid sequence, but preferably the promoter is of plant origin. A constitutive promoter is particularly useful in the methods. Preferably the constitutive promoter is a ubiquitous constitutive promoter of medium strength. See the "Definitions" section herein for definitions of the various promoter types. Also useful in the methods of the invention is a root-specific promoter. Generally, by "medium strength promoter" is intended a promoter that drives expression of a coding sequence at a lower level than a strong promoter, in particular at a level that is in all instances below that obtained when under the control of a 35S CaMV promoter.

10 It should be clear that the applicability of the present invention is not restricted to the POI polypeptide-encoding nucleic acid represented by SEQ ID NO: 1, nor is the applicability of the invention restricted to expression of a POI polypeptide-encoding nucleic acid when driven by a constitutive promoter, or when driven by a root-specific promoter.

20 The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter e.g. a promoter of plant chromosomal origin, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice (SEQ ID NO: 29). The GOS2 promoter is sometimes called the PR0129 or PRO0129 promoter. ‘Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 29, most preferably the constitutive promoter is as represented by SEQ ID NO: 29. See the "Definitions" section herein for further examples of constitutive promoters.

30 Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a GOS2 promoter and the nucleic acid encoding the POI polypeptide. Furthermore, one or more sequences encoding selectable markers may be present on the construct introduced into a plant.

35 According to a preferred feature of the invention, the modulated expression is increased expression or activity, e.g. over-expression of a POI polypeptide encoding nucleic acid molecule, e.g. of a nucleic acid molecule encoding SEQ ID NO.: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27, or a paralogue or orthologue thereof, e.g. as shown in Table A. Methods for increasing expression of nucleic acids or genes, or gene products, are well documented in the art and examples are provided in the definitions section.

40 As mentioned above, a preferred method for modulating expression of a nucleic acid
encoding a POI polypeptide is by introducing and expressing in a plant a nucleic acid encoding a POI polypeptide; however the effects of performing the method, i.e. enhancing yield and improved yield-related traits may also be achieved using other well known techniques, including but not limited to T-DNA activation tagging, TILLING, homologous recombination. A description of these techniques is provided in the definitions section.

The invention also provides a method for the production of transgenic plants having enhanced yield-related traits relative to control plants, comprising introduction and expression in a plant of any nucleic acid encoding a POI polypeptide as defined hereinabove.

More specifically, the present invention provides a method for the production of transgenic plants having enhanced yield-related traits, particularly increased seed yield, seed filling rate, root and shoot biomass in comparison to the null control plants, which method comprises:

(i) introducing and expressing in a plant or plant cell a POI polypeptide-encoding nucleic acid or a genetic construct comprising a POI polypeptide-encoding nucleic acid; and
(ii) cultivating the plant cell under conditions promoting plant growth and development.

Furthermore, the positive effect of this construct on root biomass suggests that this construct may also confer positive effect on yield under abiotic stresses, and in particular under drought stresses. The nucleic acid of (i) may be any of the nucleic acids capable of encoding a POI polypeptide as defined herein.

The nucleic acid may be introduced directly into a plant cell or into the plant itself (including introduction into a tissue, organ or any other part of a plant). According to a preferred feature of the present invention, the nucleic acid is preferably introduced into a plant by transformation. The term "transformation" is described in more detail in the "definitions" section herein.

In one embodiment the present invention clearly extends to any plant cell or plant produced by any of the methods described herein, and to all plant parts and propagules thereof. The present invention encompasses plants or parts thereof (including seeds) obtainable by the methods according to the present invention. The plants or parts thereof comprise a nucleic acid transgene encoding a POI polypeptide as defined above. The present invention extends further to encompass the progeny of a primary transformed or transfected cell, tissue, organ or whole plant that has been produced by any of the aforementioned methods, the only requirement being that progeny exhibit the same genotypic and/or phenotypic characteristic(s) as those produced by the parent in the methods according to the invention.

The present invention also extends in another embodiment to transgenic plant cells and
seed comprising the nucleic acid molecule of the invention in a plant expression cassette or a plant expression construct.

In a further embodiment the seed of the invention recombinantly comprise the expression cassettes of the invention, the (expression) constructs of the invention, the nucleic acids described above and/or the proteins encoded by the nucleic acids as described above.

A further embodiment of the present invention extends to plant cells comprising the nucleic acid as described above in a recombinant plant expression cassette.

In yet another embodiment the plant cells of the invention are non-propagative cells, e.g. the cells can not be used to regenerate a whole plant from this cell as a whole using standard cell culture techniques, this meaning cell culture methods but excluding in-vitro nuclear, organelle or chromosome transfer methods. While plants cells generally have the characteristic of totipotency, some plant cells can not be used to regenerate or propagate intact plants from said cells. In one embodiment of the invention the plant cells of the invention are such cells.

In another embodiment the plant cells of the invention are plant cells that do not sustain themselves through photosynthesis by synthesizing carbohydrate and protein from such inorganic substances as water, carbon dioxide and mineral salt, i.e. they may be deemed non-plant variety. In a further embodiment the plant cells of the invention are non-plant variety and non-propagative.

The invention also includes host cells containing an isolated nucleic acid encoding a POI polypeptide as defined hereinabove. Host cells of the invention may be any cell selected from the group consisting of bacterial cells, such as E.coli or Agrobacterium species cells, yeast cells, fungal, algal or cyanobacterial cells or plant cells. In one embodiment host cells according to the invention are plant cells. Host plants for the nucleic acids or the vector used in the method according to the invention, the expression cassette or construct or vector are, in principle, advantageously all plants, which are capable of synthesizing the polypeptides used in the inventive method.

In one embodiment the plant cells of the invention overexpress the nucleic acid molecule of the invention.

The invention also includes methods for the production of a product comprising a) growing the plants of the invention and b) producing said product from or by the plants of the invention or parts, including seeds, of these plants. In a further embodiment the methods comprises steps a) growing the plants of the invention, b) removing the harvestable parts as defined above from the plants and c) producing said product from or by the harvestable parts of the invention.

Examples of such methods would be growing corn plants of the invention, harvesting the
corn cobs and remove the kernels. These may be used as feedstuff or processed to starch and oil as agricultural products.

The product may be produced at the site where the plant has been grown, or the plants or parts thereof may be removed from the site where the plants have been grown to produce the product. Typically, the plant is grown, the desired harvestable parts are removed from the plant, if feasible in repeated cycles, and the product made from the harvestable parts of the plant. The step of growing the plant may be performed only once each time the methods of the invention is performed, while allowing repeated times the steps of product production e.g. by repeated removal of harvestable parts of the plants of the invention and if necessary further processing of these parts to arrive at the product. It is also possible that the step of growing the plants of the invention is repeated and plants or harvestable parts are stored until the production of the product is then performed once for the accumulated plants or plant parts. Also, the steps of growing the plants and producing the product may be performed with an overlap in time, even simultaneously to a large extend, or sequentially.

Generally the plants are grown for some time before the product is produced. Advantageously the methods of the invention are more efficient than the known methods, because the plants of the invention have increased yield and/or stress tolerance to an environmental stress compared to a control plant used in comparable methods.

In one embodiment the products produced by said methods of the invention are plant products such as, but not limited to, a foodstuff, feedstuff, a food supplement, feed supplement, fiber, cosmetic or pharmaceutical. Foodstuffs are regarded as compositions used for nutrition or for supplementing nutrition. Animal feedstuffs and animal feed supplements, in particular, are regarded as foodstuffs.

In another embodiment the inventive methods for the production are used to make agricultural products such as, but not limited to, plant extracts, proteins, amino acids, carbohydrates, fats, oils, polymers, vitamins, and the like.

It is possible that a plant product consists of one or more agricultural products to a large extent.

In yet another embodiment the polynucleotide sequences or the polypeptide sequences of the invention are comprised in an agricultural product.

In a further embodiment the nucleic acid sequences and protein sequences of the invention may be used as product markers, for example for an agricultural product produced by the methods of the invention. Such a marker can be used to identify a product to have been produced by an advantageous process resulting not only in a greater efficiency of the process but also improved quality of the product due to increased quality of the plant material and harvestable parts used in the process. Such markers can be detected by a variety of methods known in the art, for example but not limited to PCR based methods for nucleic acid detection or antibody based methods for protein detection.

The methods of the invention are advantageously applicable to any plant. Plants that are particularly useful in the methods of the invention include all plants which belong to the
superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs. According to a preferred embodiment of the present invention, the plant is a crop plant. Examples of crop plants include soybean, beet, sugar beet, sunflower, canola, chicory, carrot, cassava, alfalfa, trefoil, rapeseed, linseed, cotton, tomato, potato and tobacco. Further preferably, the plant is a monocotyledonous plant. Examples of monocotyledonous plants include sugarcane. More preferably the plant is a cereal. Examples of cereals include rice, maize, wheat, barley, millet, rye, triticale, sorghum, emmer, spelt, secale, einkorn, teff, milo and oats.

In one embodiment the plants used in the methods of the invention are selected from the group consisting of maize, wheat, rice, soybean, cotton, oilseed rape including canola, sugarcane, sugar beet and alfalfa.

In another embodiment of the present invention the plants of the invention and the plants used in the methods of the invention are sugarbeet plants with increased biomass and/or increased sugar content of the beets.

The invention also extends to harvestable parts of a plant such as, but not limited to seeds, leaves, fruits, flowers, stems, roots, rhizomes, tubers, and bulbs, which harvestable parts comprise a recombinant nucleic acid encoding a POI polypeptide. The invention furthermore relates to products derived, or produced, preferably directly derived or directly produced, from a harvestable part of such a plant, such as dry pellets or powders, oil, fat and fatty acids, starch or proteins.

The present invention also encompasses use of nucleic acids encoding POI polypeptides as described herein and use of these POI polypeptides in enhancing any of the aforementioned yield-related traits in plants. For example, nucleic acids encoding POI polypeptide described herein, or the POI polypeptides themselves, may find use in breeding programmes in which a DNA marker is identified which may be genetically linked to a POI polypeptide-encoding gene. The nucleic acids/genes, or the POI polypeptides themselves may be used to define a molecular marker. This DNA or protein marker may then be used in breeding programmes to select plants having enhanced yield-related traits as defined hereinabove in the methods of the invention. Furthermore, allelic variants of a POI polypeptide-encoding nucleic acid/gene may find use in marker-assisted breeding programmes. Nucleic acids encoding POI polypeptides may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes.

In one embodiment any comparison to determine sequence identity percentages is performed

- in the case of a comparison of nucleic acids over the entire coding region of SEQ ID NO: 1, or
- in the case of a comparison of polypeptide sequences over the entire length of SEQ ID NO: 2.

For example, a sequence identity of 50% sequence identity in this embodiment means that over the entire coding region of SEQ ID NO: 1, 50 percent of all bases are identical between the sequence of SEQ ID NO: 1 and the related sequence. Similarly, in this embodiment a polypeptide sequence is 50% identical to the polypeptide sequence of SEQ ID NO: 2, when 50 percent of the amino acids residues of the sequence as represented in SEQ ID NO: 2, are found in the polypeptide tested when comparing from the starting methionine to the end of the sequence of SEQ ID NO: 2.

In one embodiment the nucleic acid sequences employed in the methods, constructs, plants, harvestable parts and products of the invention are sequences encoding POI but excluding those nucleic acids encoding the polypeptide sequences disclosed in any of:

a) SEQ ID NO: 4016 or the one encoded by the sequence of SEQ ID NO: 292, both of the international patent application WO2009/13433; or

b) SEQ ID NO: 9451 or the one encoded by the sequence of SEQ ID NO: 3871, both of the US patent application US2009/019601; or

c) SEQ ID NO: 497 or 13893 or the one encoded by the sequence of SEQ ID NO: 497 or 13893, both of the US patent application US2009/094717;

In a further embodiment the nucleic acid sequence employed in the invention are those sequences that are not the polynucleotides encoding the proteins selected from the group consisting of the proteins listed in table A, and those of at least 60, 70, 75, 80, 85, 90, 93, 95, 98 or 99% nucleotide identity when optimally aligned to the sequences encoding the proteins listed in table A.

Items:

1. A method for enhancing yield in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid molecule encoding a polypeptide, wherein said polypeptide comprises at least one of the following domains: Interpro domain IPR000842, Interpro domain IPR000836 and Interpro domain IPR005946..

2. Method according to item 1, wherein said polypeptide comprises one or more of the following motifs:
 Motif 1 (SEQ ID NO: 32):
 Motif 2 (SEQ ID NO: 33):
 FAKKLSDALAIVDKRRHGHNVAGMNMLIGDVI[KR]GKV[VI]MVDDMIDTAGT; or
Motif 3 (SEQ ID NO:34):

Motif 3a (SEQ ID NO:35)

3. Method according to item 1 or 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid molecule encoding a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase).

4. Method according to any one of items 1 to 3, wherein said polypeptide is encoded by a nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of:

 (i) a nucleic acid represented by (any one of) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27;

 (ii) the complement of a nucleic acid represented by (any one of) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27;

 (iii) a nucleic acid encoding the polypeptide as represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, preferably as a result of the degeneracy of the genetic code, said isolated nucleic acid can be derived from a polypeptide sequence as represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26 and further preferably confers enhanced yield-related traits relative to control plants;

 (iv) a nucleic acid having, in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with any of the nucleic acid sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27, and further preferably conferring enhanced yield-related traits relative to control plants;

 (v) a nucleic acid molecule which hybridizes with a nucleic acid molecule of (i) to (iv) under stringent hybridization conditions and preferably confers enhanced yield-related traits relative to control plants; or

 (vi) a nucleic acid encoding said polypeptide having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 22, 24, or 26 and preferably conferring enhanced yield-related traits relative to control plants.

5. Method according to any preceding item, wherein said enhanced yield-related traits comprise increased yield, preferably increased shoot biomass and/or increased root biomass to control plants.

6. Method according to any one of items 1 to 5, wherein said enhanced yield-related traits are obtained under non-stress conditions.

7. Method according to any one of items 1 to 5, wherein said enhanced yield-related traits are obtained under conditions of drought stress, salt stress or nitrogen deficiency.

8. Construct comprising:
 (i) nucleic acid encoding said polypeptide as defined in any one of items 1 to 7;
 (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
 (iii) a transcription termination sequence.

9. Use of a construct according to item 8 in a method for making plants having increased yield, particularly increased shoot biomass and/or increased root biomass relative to control plants relative to control plants.

10. Plant, plant part or plant cell transformed with a construct according to item 9 or obtainable by a method according to any one of items 1 to 7, wherein said plant or part thereof comprises a recombinant nucleic acid encoding said polypeptide as defined in any one of items 1 to 10.

11. Method for the production of a transgenic plant having increased yield, particularly increased biomass and/or increased seed yield relative to control plants, comprising:
 (i) introducing and expressing in a plant a nucleic acid encoding said polypeptide as defined in any one of items 1 to 7; and
 (ii) cultivating the plant cell under conditions promoting plant growth and development.

12. Harvestable parts of a plant according to item 10, wherein said harvestable parts are preferably shoot and/or root biomass and/or seeds.

13. Products derived from a plant according to item 10 and/or from harvestable parts of a plant according to item 12.

14. Use of a nucleic acid encoding a polypeptide as defined in any one of items 1 to 7 in
increasing yield, particularly increased shoot biomass and/or increased root biomass relative to control plants.

15. Harvestable parts of a plant of the invention, wherein said harvestable parts are preferably shoot and/or root biomass and/or seeds, wherein the harvestable part comprises the nucleic acid of the invention.

16. Products derived from a plant of the invention and/or from harvestable parts of the invention, wherein the products comprises the nucleic acid of the invention.

17. Nucleic acid molecule of the invention wherein the molecule is not any molecule of the sequence of any SEQ ID NO: listed in column 2 of Table A except SEQ ID NO:1.

18. Polypeptide of the invention wherein the polypeptide is not any polypeptide of the sequence of the SEQ ID NO: listed in column 3 of Table A except SEQ ID NO:2.

19. Use of a nucleic acid encoding a polypeptide as defined in any one of the items above in increasing yield, particularly increased shoot biomass and/or increased root biomass relative to control plants.

Throughout the application the terms "having the sequence of SEQ ID NO:" and "as represented by SEQ ID NO: " may be used interchangeably.

Description of figures

The present invention will now be described with reference to the following figures in which:

Fig. 1 shows a phylogenetic tree of POI polypeptides.

Fig. 2 represents the binary vector used for increased expression in Oryza sativa of a POI-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).

Fig. 3 shows an alignment of the amino acid sequences of SEQ ID NO:2 and related sequences (SEQ ID NO: odd numbers of 4 to 28). Light grey background marks that are conserved in the majority of sequences, dark background marks amino acids strongly conserved amino acids. The amino acids with light grey background and those with white background allow for distinction between the sequence of SEQ ID NO:2 and the other sequences. A consensus sequence is shown at the bottom of the alignment.

Fig. 4 shows an alignment of the amino acid sequences of SEQ ID NO:2 and 4 of the present application Dark grey background marks identical amino acids. As can be seen it is possible to transfer the polypeptide of SEQ ID NO:2 to the one of SEQ ID NO:4 with the addition of a few amino acids.

Examples

The present invention will now be described with reference to the following examples, which are by way of illustration alone. The following examples are not intended to completely
define or otherwise limit the scope of the invention.
DNA manipulation: unless otherwise stated, recombinant DNA techniques are performed
according to standard protocols described in (Sambrook (2001) Molecular Cloning: a
laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York) or in
Volumes 1 and 2 of Ausubel et al. (1994), Current Protocols in Molecular Biology, Current
Protocols. Standard materials and methods for plant molecular work are described in Plant
Ltd (UK) and Blackwell Scientific Publications (UK).

Example 1: Identification of sequences related to SEQ ID NO: 1 and SEQ ID NO: 2
Sequences (full length cDNA, ESTs or genomic) related to SEQ ID NO: 1 and SEQ ID NO: 2
were identified amongst those maintained in the Entrez Nucleotides database at the
National Center for Biotechnology Information (NCBI) using database sequence search
tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol.
215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is
used to find regions of local similarity between sequences by comparing nucleic acid or
polypeptide sequences to sequence databases and by calculating the statistical
significance of matches. For example, the polypeptide encoded by the nucleic acid of SEQ
ID NO: 1 was used for the TBLASTN algorithm, with default settings and the filter to ignore
low complexity sequences set off. The output of the analysis was viewed by pairwise
comparison, and ranked according to the probability score (E-value), where the score
reflect the probability that a particular alignment occurs by chance (the lower the E-value,
the more significant the hit). In addition to E-values, comparisons were also scored by
percentage identity. Percentage identity refers to the number of identical nucleotides (or
amino acids) between the two compared nucleic acid (or polypeptide) sequences over a
particular length. In some instances, the default parameters may be adjusted to modify the
stringency of the search. For example the E-value may be increased to show less stringent
matches. This way, short nearly exact matches may be identified.

Similarly, the related sequences to SEQ ID NO: 1 and 2 may be identified.

The sequence listing provides a list of nucleic acid sequences related to SEQ ID NO: 1 and
SEQ ID NO: 2; e.g. selected from Table A

Table A: Examples of POI nucleic acids and polypeptides are shown in Table A

<table>
<thead>
<tr>
<th>Plant Source/Name</th>
<th>Nucleic acid SEQ ID NO:</th>
<th>Protein SEQ ID NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.trichocarpa_PRS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_29.158</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A.thaliana_AT1G32380.1</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Sequences have been tentatively assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs (EGO) database may be used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. Special nucleic acid sequence databases have been created for particular organisms, such as by the Joint Genome Institute. Furthermore, access to proprietary databases, has allowed the identification of novel nucleic acid and polypeptide sequences.

Preferably, the POI is a phosphoribosyl pyrophosphate synthetase and has an activity described as follows: Rib-5-P + ATP -> PRPP + AMP. The PRS enzyme is classified as EC 2.7.6.1.

An assay is published for example in Krath and Hove-Jensen, 1999: PRPP synthase activity was assayed at 30°C by a modification of a procedure described previously (Arnvig et al., 1990). Bacterial (or plant) cell extract (10 mL) was mixed with 40 mL of a reaction mixture (both prewarmed at 30°C) to yield the following final concentrations: 5 mm Rib-5-P, 3 mm [g-32P]ATP (10 GBq/mol) prepared as described by Jensen et al. (1979), 5 mm MgCl2, 20 mm NaF, and either 50 mm Tris-HCl (pH 7.6) or 50 mm potassium phosphate buffer, and 50 mm Tris-HCl (pH 7.6). Samples (10 mL) were removed at intervals and mixed with 5 mL of 0.33 m HCOOH. This was applied to a polyethyleneimine-cellulose TLC sheet (Baker-flex, J.T. Baker). After drying, the chromatogram was developed in 0.85 m KH2P04, which had been previously adjusted to pH 3.4 with 0.85 m H3P04. PRPP synthase activity of chloroplasts and mitochondria was assayed by the same procedure, except that PEP (12.5 mm) and pyruvate kinase (2.5 mg L21 of reaction mixture; Boehringer Mannheim) were included in the assay. Radioactivity was quantitated in an Instant Imager (model 2024, Packard, Meriden, CT). Protein concentration was determined by the bicinchoninic acid procedure (Smith et al., 1985) with chemicals provided by Pierce and with BSA as the standard.

SEQ ID NO:: 2 shows a phosphoribosyl pyrophosphate synthetase from poplar. It belongs
to a small family of at least 4 genes in spinach and arabidopsis (Krath et al., 1999; Krath and Owe-Jensen, 1999). Some enzymes might be located in different cell compartments, mitochondrion, chloroplast or cytosol.

Example 2: Alignment of POI polypeptide sequences

Alignment of polypeptide sequences can be performed using the ClustalW (2.0) algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chenna et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet (or Blosum 62 (if polypeptides are aligned), gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing can be done to further optimise the alignment. A phylogenetic tree of POI polypeptides can also be constructed using a neighbour-joining clustering algorithm as provided in the AlignX programme from the Vector NTI (Invitrogen).

Example 3: Calculation of global percentage identity between polypeptide sequences

Global percentages of similarity and identity between full length polypeptide sequences can be determined using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chenna et al. (2003). Nucleic Acids Res 31:3497-3500) with default setting. Global percentages of similarity and identity between full length polypeptide sequences useful in performing the methods of the invention can be also determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella JJ, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix.

Example 4: Identification of domains comprised in polypeptide sequences useful in performing the methods of the invention

Motifs were identified by using the MEME algorithm (Bailey and Elkan, Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994). At each position within a MEME motif, the residues are shown that are present in the query set of sequences with a frequency higher than 0.2. Residues within square brackets represent alternatives.

Domains were identified by using the Interpro database. The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-
based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, ProDom and Pfam, Smart and TIGRfAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.

Accordingly, the following domains were identified as being comprised in the polypeptide sequences useful in the performing the methods of the invention: Interpro domain IPR000842 (position 189 to 204 of SEQ ID NO: 2); Interpro domain IPR000836 (amino acids 223 to 311 of SEQ ID NO: 2) and Interpro domain IPR005946 (positions 61 to 375 of SEQ ID NO: 2). For details of these domains see Interpro Database release 31.0 9th February 2011, at http://www.ebi.ac.uk/interpro/.

Analysis with the conserved domain software at the NCBI United States National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi) showed that the sequences contains a domain called PLN02369 ribose-phosphate pyrophosphokinase starting at amino acid position 70 and ending at position 374 of SEQ ID NO:2.

Example 5: Topology prediction of the POI polypeptide sequences

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark.

For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.

A number of parameters were selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of
prediction of cleavage sites (yes or no).

Many other algorithms can be used to perform such analyses, including:

- Chlorop 1.1 hosted on the server of the Technical University of Denmark;
- Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
- PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
- TMHMM, hosted on the server of the Technical University of Denmark

Example 6: Cloning of the POI encoding nucleic acid sequence

The nucleic acid sequence was amplified by PCR using as template a custom-made Populus trichocarpa seedlings cDNA library (in pDONR221; Invitrogen, Paisley, UK). The cDNA library used for cloning was custom made from different tissues (eg leaves, roots) of Populus trichocarpa. A young plant of P.trichocarpa used was collected in Belgium. PCR was performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 µl PCR mix. The primers used were prm15363 (SEQ ID NO: 30; sense):

```
gggcaacaagtgtgacaaaaaagcaggcaaaacgattgacagttgtaatgc
```

and prm15364 (SEQ ID NO: 31; reverse, complementary):

```
ggggacctttgctacaaacagtcgaatggtaaatggctacacacagt
```

which include the AttB sites for Gateway recombination. The in silico sequence of the ORF of SEQ ID NO:1 and its 3’ UTR is shown in SEQ ID NO:36. Primer prm15364 is reverse complementary to basepairs 1129 and following.

The amplified PCR fragment was purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombined in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an "entry clone", pPOI. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.

The entry clone comprising SEQ ID NO: 1 was then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter for constitutive expression was located upstream of this Gateway cassette.

After the LR recombination step, the resulting expression vector GOS2::POI was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.

Example 7: Plant transformation

Rice transformation

The Agrobacterium containing the expression vector was used to transform Oryza sativa
plants. Mature dry seeds of the rice japonica cultivar Nipponbare were dehusked. Sterilization was carried out by incubating for one minute in 70% ethanol, followed by 30 minutes in 0.2% HgCl₂, followed by a 6 times 15 minutes wash with sterile distilled water. The sterile seeds were then germinated on a medium containing 2,4-D (callus induction medium). After incubation in the dark for four weeks, embryogenic, scutellum-derived calli were excised and propagated on the same medium. After two weeks, the calli were multiplied or propagated by subculture on the same medium for another 2 weeks. Embryogenic callus pieces were sub-cultured on fresh medium 3 days before co-cultivation (to boost cell division activity).

Agrobacterium strain LBA4404 containing the expression vector was used for co-cultivation. Agrobacterium was inoculated on AB medium with the appropriate antibiotics and cultured for 3 days at 28°C. The bacteria were then collected and suspended in liquid co-cultivation medium to a density (OD600) of about 1. The suspension was then transferred to a Petri dish and the calli immersed in the suspension for 15 minutes. The callus tissues were then blotted dry on a filter paper and transferred to solidified, co-cultivation medium and incubated for 3 days in the dark at 25°C. Co-cultivated calli were grown on 2,4-D-containing medium for 4 weeks in the dark at 28°C in the presence of a selection agent. During this period, rapidly growing resistant callus islands developed. After transfer of this material to a regeneration medium and incubation in the light, the embryogenic potential was released and shoots developed in the next four to five weeks. Shoots were excised from the calli and incubated for 2 to 3 weeks on an auxin-containing medium from which they were transferred to soil. Hardened shoots were grown under high humidity and short days in a greenhouse. Approximately 35 independent TO rice transformants were generated for one construct. The primary transformants were transferred from a tissue culture chamber to a greenhouse. After a quantitative PCR analysis to verify copy number of the T-DNA insert, only single copy transgenic plants that exhibit tolerance to the selection agent were kept for harvest of T1 seed. Seeds were then harvested three to five months after transplanting. The method yielded single locus transformants at a rate of over 50% (Aldemita and Hodges1996, Chan et al. 1993, Hiei et al. 1994).

Example 8: Transformation of other crops

Corn transformation

Transformation of maize (Zea mays) can be performed with a modification of the method described by Ishida et al. (1996) Nature Biotech 14(6): 745-50. Transformation is genotype-dependent in corn and only specific genotypes are amenable to transformation and regeneration. The inbred line A188 (University of Minnesota) or hybrids with A188 as a parent are good sources of donor material for transformation, but other genotypes can be used successfully as well. Ears are harvested from corn plant approximately 11 days after pollination (DAP) when the length of the immature embryo is about 1 to 1.2 mm. Immature embryos are cocultivated with Agrobacterium tumefaciens containing the expression vector, and transgenic plants are recovered through organogenesis. Excised embryos are grown
on callus induction medium, then maize regeneration medium, containing the selection agent (for example imidazolinone but various selection markers can be used). The Petri plates are incubated in the light at 25 °C for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to maize rooting medium and incubated at 25 °C for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.

Wheat transformation

Transformation of wheat can be performed with the method described by Ishida et al. (1996) Nature Biotech 14(6): 745-50. The cultivar Bobwhite (available from CIMMYT, Mexico) is commonly used in transformation. Immature embryos can be co-cultivated with *Agrobacterium tumefaciens* containing the expression vector, and transgenic plants are recovered through organogenesis. After incubation with *Agrobacterium*, the embryos are grown in vitro on callus induction medium, then regeneration medium, containing the selection agent (for example imidazolinone but various selection markers can be used). The Petri plates are incubated in the light at 25 °C for 2-3 weeks, or until shoots develop. The green shoots can be transferred from each embryo to rooting medium and incubated at 25 °C for 2-3 weeks, until roots develop. The rooted shoots can be transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.

Soybean transformation

Soybean can be transformed according to a modification of the method described in the Texas A&M patent US 5,164,310. Several commercial soybean varieties are amenable to transformation by this method. The cultivar Jack (available from the Illinois Seed foundation) is commonly used for transformation. Soybean seeds are sterilised for *in vitro* sowing. The hypocotyl, the radicle and one cotyledon can be excised from seven-day old young seedlings. The epicotyl and the remaining cotyledon are further grown to develop axillary nodes. These axillary nodes can be excised and incubated with *Agrobacterium tumefaciens* containing the expression vector. After the cocultivation treatment, the explants are washed and transferred to selection media. Regenerated shoots can be excised and placed on a shoot elongation medium. Shoots no longer than 1 cm are placed on rooting medium until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.

Rapeseed/canola transformation

Cotyledonary petioles and hypocotyls of 5-6 day old young seedling can be used as explants for tissue culture and transformed according to Babic et al. (1998, Plant Cell Rep 17: 183-188). The commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can also be used. Canola seeds can be surface-
sterilized for in vitro sowing. The cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacterium (containing the expression vector) by dipping the cut end of the petiole explant into the bacterial suspension. The explants are then cultured for 2 days on MSBAP-3 medium containing 3 mg/l BAP, 3 % sucrose, 0.7 % Phytagar at 23 °C, 16 hr light. After two days of co-cultivation with Agrobacterium, the petiole explants are transferred to MSBAP-3 medium containing 3 mg/l BAP, cefotaxime, carbenicillin, or timentin (300 mg/l) for 7 days, and then cultured on MSBAP-3 medium with cefotaxime, carbenicillin, or timentin and selection agent until shoot regeneration. When the shoots are 5 - 10 mm in length, they can be cut and transferred to shoot elongation medium (MSBAP-0.5, containing 0.5 mg/l BAP). Shoots of about 2 cm in length are transferred to the rooting medium (MS0) for root induction. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds can be produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.

Alfalfa transformation

A regenerating clone of alfalfa (Medicago sativa) can be transformed using the method of (McKersie et al., 1999 Plant Physiol 119: 839-847). Regeneration and transformation of alfalfa is genotype dependent and therefore a regenerating plant is required. Methods to obtain regenerating plants have been described. For example, these can be selected from the cultivar Rangelander (Agriculture Canada) or any other commercial alfalfa variety as described by Brown DCW and A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112). Alternatively, the RA3 variety (University of Wisconsin) can be selected for use in tissue culture (Walker et al., 1978 Am J Bot 65:654-659). Petiole explants are cocultivated with an overnight culture of Agrobacterium tumefaciens C58C1 pMP90 (McKersie et al., 1999 Plant Physiol 119: 839-847) or LBA4404 containing the expression vector. The explants are cocultivated for 3 d in the dark on SH induction medium containing 288 mg/ L Pro, 53 mg/ L thripoline, 4.35 g/ L K2S04, and 100 µg acetosyringinone. The explants can be washed in half-strength Murashige-Skoog medium (Murashige and Skoog, 1962) and plated on the same SH induction medium without acetosyringinone but with a suitable selection agent and suitable antibiotic to inhibit Agrobacterium growth. After several weeks, somatic embryos are transferred to BO12Y development medium containing no growth regulators, no antibiotics, and 50 g/ L sucrose. Somatic embryos are subsequently germinated on half-strength Murashige-Skoog medium. Rooted seedlings can be transplanted into pots and grown in a greenhouse. T1 seeds can be produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.

Cotton transformation

Cotton can be transformed using Agrobacterium tumefaciens according to the method described in US 5,159,135. Cotton seeds can be surface sterilised in 3% sodium hypochlorite solution during 20 minutes and washed in distilled water with 500 µg/ml cefotaxime. The seeds are then transferred to SH-medium with 50pg/ml benomyl for
germination. Hypocotyls of 4 to 6 days old seedlings can be removed, cut into 0.5 cm pieces and are placed on 0.8% agar. An Agrobacterium suspension (approx. 10^8 cells per ml, diluted from an overnight culture transformed with the gene of interest and suitable selection markers) is used for inoculation of the hypocotyl explants. After 3 days at room temperature and lighting, the tissues can be transferred to a solid medium (1.6 g/l Gelrite) with Murashige and Skoog salts with B5 vitamins (Gamborg et al., Exp. Cell Res. 50:151-158 (1968)), 0.1 mg/l 2,4-D, 0.1 mg/l 6-furfurylaminopurine and 750 µg/ml MgCl2, and with 50 to 100 µg/ml cefotaxime and 400-500 µg/ml carbenicillin to kill residual bacteria. Individual cell lines are isolated after two to three months (with subcultures every four to six weeks) and are further cultivated on selective medium for tissue amplification (30°C, 16 hr photoperiod). Transformed tissues can be subsequently further cultivated on non-selective medium during 2 to 3 months to give rise to somatic embryos. Healthy looking embryos of at least 4 mm length are transferred to tubes with SH medium in fine vermiculite, supplemented with 0.1 mg/l indole acetic acid, 6 furfurylaminopurine and gibberellic acid. The embryos are cultivated at 30°C with a photoperiod of 16 hrs, and plantlets at the 2 to 3 leaf stage are transferred to pots with vermiculite and nutrients. The plants can be hardened and subsequently moved to the greenhouse for further cultivation.

Sugarbeet transformation

Seeds of sugarbeet (Beta vulgaris L.) are sterilized in 70% ethanol for one minute followed by 20 min. shaking in 20% Hypochlorite bleach e.g. Clorox® regular bleach (commercially available from Clorox, 1221 Broadway, Oakland, CA 94612, USA). Seeds are rinsed with sterile water and air dried following by plating onto germinating medium (Murashige and Skoog (MS) based medium (see Murashige, T., and Skoog, ., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, vol. 15, 473-497) including B5 vitamins (Gamborg et al.; Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res., vol. 50, 151-8.) supplemented with 10 g/l sucrose and 0.8% agar). Hypocotyl tissue is used essentially for the initiation of shoot cultures according to Hussey and Hepher (Hussey, G., and Hepher, A., 1978. Clonal propagation of sugarbeet plants and the formation of polyploids by tissue culture. Annals of Botany, 42, 477-9) and are maintained on MS based medium supplemented with 30g/l sucrose plus 0.25mg/l benzylamino purine and 0.75% agar, pH 5.8 at 23-25°C with a 16-hour photoperiod.

Agrobacterium tumefaciens strain carrying a binary plasmid harbouring a selectable marker gene e.g. nptII is used in transformation experiments. One day before transformation, a liquid LB culture including antibiotics is grown on a shaker (28°C, 150rpm) until an optical density (O.D.) at 600 nm of ~1 is reached. Overnight-grown bacterial cultures are centrifuged and resuspended in inoculation medium (O.D. ~1) including Acetosyringone, pH 5.5.

Shoot base tissue is cut into slices (1.0 cm x 1.0 cm x 2.0 mm approximately). Tissue is immersed for 30s in liquid bacterial inoculation medium. Excess liquid is removed by filter paper blotting. Co-cultivation occurred for 24-72 hours on MS based medium incl. 30g/l su-
crose followed by a non-selective period including MS based medium, 30g/l sucrose with 1 mg/l BAP to induce shoot development and cefotaxim for eliminating the Agrobacterium. After 3-10 days explants are transferred to similar selective medium harbouring for example kanamycin or G418 (50-100 mg/l genotype dependent).

Tissues are transferred to fresh medium every 2-3 weeks to maintain selection pressure. The very rapid initiation of shoots (after 3-4 days) indicates regeneration of existing meristems rather than organogenesis of newly developed transgenic meristems. Small shoots are transferred after several rounds of subculture to root induction medium containing 5 mg/l NAA and kanamycin or G418. Additional steps are taken to reduce the potential of generating transformed plants that are chimeric (partially transgenic). Tissue samples from regenerated shoots are used for DNA analysis.

Other transformation methods for sugar beet are known in the art, for example those by Linsey & Gallois (Linsey, K., and Gallois, P., 1990. Transformation of sugar beet (Beta vulgaris) by Agrobacterium tumefaciens. Journal of Experimental Botany; vol. 41, No. 226; 529-36) or the methods published in the international application published as WO9623891A.

Sugarcane transformation

Spindles are isolated from 6-month-old field grown sugarcane plants (see Arencibia A., at al., 1998. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Research, vol. 7, 213-22; Enriquez-Obregon G., et al., 1998. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta, vol. 206, 20-27). Material is sterilized by immersion in a 20% Hypochlorite bleach e.g. Clorox® regular bleach (commercially available from Clorox, 1221 Broadway, Oakland, CA 94612, USA) for 20 minutes. Transverse sections around 0.5cm are placed on the medium in the top-up direction. Plant material is cultivated for 4 weeks on MS (Murashige, T., and Skoog, .. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, vol. 15, 473-497) based medium incl. B5 vitamins (Gamborg, O., et al., 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res., vol. 50, 151-8) supplemented with 20g/l sucrose, 500 mg/l casein hydrolysate, 0.8% agar and 5mg/l 2,4-D at 23°C in the dark. Cultures are transferred after 4 weeks onto identical fresh medium.

Agrobacterium tumefaciens strain carrying a binary plasmid harbouring a selectable marker gene for example hpt is used in transformation experiments. One day before transformation, a liquid LB culture including antibiotics is grown on a shaker (28°C, 150rpm) until an optical density (O.D.) at 600 nm of -0.6 is reached. Overnight-grown bacterial cultures are centrifuged and resuspended in MS based inoculation medium (O.D. -0.4) including acetosyringone, pH 5.5.
Sugarcane embryogenic calli pieces (2-4 mm) are isolated based on morphological characteristics as compact structure and yellow colour and dried for 20 min. in the flow hood followed by immersion in a liquid bacterial inoculation medium for 10-20 minutes. Excess liquid is removed by filter paper blotting. Co-cultivation occurred for 3-5 days in the dark on filter paper which is placed on top of MS based medium incl. B5 vitamins containing 1 mg/l 2,4-D. After co-cultivation calli are ished with sterile water followed by a non-selective period on similar medium containing 500 mg/l cefotaxime for eliminating the Agrobacterium. After 3-10 days explants are transferred to MS based selective medium incl. B5 vitamins containing 1 mg/l 2,4-D for another 3 weeks harbouring 25 mg/l of hygromycin (genotype dependent). All treatments are made at 23°C under dark conditions.

Resistant calli are further cultivated on medium lacking 2,4-D including 1 mg/l BA and 25 mg/l hygromycin under 16 h light photoperiod resulting in the development of shoot structures. Shoots are isolated and cultivated on selective rooting medium (MS based including, 20g/l sucrose, 20 mg/l hygromycin and 500 mg/l cefotaxime).

Tissue samples from regenerated shoots are used for DNA analysis.

Other transformation methods for sugarcane are known in the art, for example from the international application published as WO2010/151634A and the granted European patent EP1831378.

Example 9: Phenotypic evaluation procedure

9.1 Evaluation setup

Approximately 35 independent T0 rice transformants were generated. The primary transformants were transferred from a tissue culture chamber to a greenhouse for growing and harvest of T1 seed. Six events, of which the T1 progeny segregated 3:1 for presence/absence of the transgene, were retained. For each of these events, approximately 10 T1 seedlings containing the transgene (hetero- and homo-zygotes) and approximately 10 T1 seedlings lacking the transgene (nullizygotes) were selected by monitoring visual marker expression. The transgenic plants and the corresponding nullizygotes were grown side-by-side at random positions. Greenhouse conditions were of short days (12 hours light), 28°C in the light and 22°C in the dark, and a relative humidity of 70%. Plants grown under non-stress conditions were watered at regular intervals to ensure that water and nutrients were not limiting and to satisfy plant needs to complete growth and development.

From the stage of sowing until the stage of maturity the plants were passed several times through a digital imaging cabinet. At each time point digital images (2048x1536 pixels, 16 million colours) were taken of each plant from at least 6 different angles.

Drought screen

Plants from T2 seeds can be grown in potting soil under normal conditions until they approached the heading stage. They can be then transferred to a "dry" section where irrigation is withheld. Humidity probes are inserted in randomly chosen pots to monitor the
soil water content (SWC). When SWC goes below certain thresholds, the plants are automatically re-watered continuously until a normal level is reached again. The plants are then re-transferred again to normal conditions. The rest of the cultivation (plant maturation, seed harvest) is the same as for plants not grown under abiotic stress conditions. Growth and yield parameters can be recorded as detailed for growth under normal conditions.

Nitrogen use efficiency screen

Rice plants from T2 seeds can be grown in potting soil under normal conditions except for the nutrient solution. The pots can be watered from transplantation to maturation with a specific nutrient solution containing reduced N nitrogen (N) content, usually between 7 to 8 times less. The rest of the cultivation (plant maturation, seed harvest) is the same as for plants not grown under abiotic stress. Growth and yield parameters can be recorded as detailed for growth under normal conditions.

Salt stress screen

Plants can be grown on a substrate made of coco fibers and argex (3 to 1 ratio). A normal nutrient solution can be used during the first two weeks after transplanting the plantlets in the greenhouse. After the first two weeks, 25 mM of salt (NaCl) is added to the nutrient solution, until the plants are harvested. Seed-related parameters can be then measured.

9.2 Statistical analysis: F test

A two factor ANOVA (analysis of variants) was used as a statistical model for the overall evaluation of plant phenotypic characteristics. An F test was carried out on all the parameters measured of all the plants of all the events transformed with the gene of the present invention. The F test was carried out to check for an effect of the gene over all the transformation events and to verify for an overall effect of the gene, also known as a global gene effect. The threshold for significance for a true global gene effect was set at a 5% probability level for the F test. A significant F test value points to a gene effect, meaning that it is not only the mere presence or position of the gene that is causing the differences in phenotype.

9.3 Parameters measured

Biomass-related parameter measurement

From the stage of sowing until the stage of maturity the plants were passed several times through a digital imaging cabinet. At each time point digital images (2048x1536 pixels, 16 million colours) were taken of each plant from at least 6 different angles. The plant above ground area (or leafy biomass) was determined by counting the total number of pixels on the digital images from above ground plant parts discriminated from the background. This value was averaged for the pictures taken on the same time point from the different angles and was converted to a physical surface value expressed in square mm by calibration. Experiments show that the above ground plant area measured this way correlates with the biomass of plant parts above ground. The above ground area is the
area measured at the time point at which the plant had reached its maximal leafy biomass. The early vigour is the plant (seedling) above ground area three weeks post-germination. Increase in root biomass is expressed as an increase in total root biomass (measured as maximum biomass of roots observed during the lifespan of a plant); or as an increase in the root/shoot index (measured as the ratio between root mass and shoot mass in the period of active growth of root and shoot).

A robust indication of the height of the plant is the measurement of the gravity, i.e. determining the height (in mm) of the gravity centre of the leafy biomass. This avoids influence by a single erect leaf, based on the asymptote of curve fitting or, if the fit is not satisfactory, based on the absolute maximum.

Early vigour can be determined by counting the total number of pixels from above ground plant parts discriminated from the background. This value was averaged for the pictures taken on the same time point from different angles and was converted to a physical surface value expressed in square mm by calibration. The results described below are for plants three weeks post-germination.

Seed-related parameter measurements
The mature primary panicles were harvested, counted, bagged, barcode-labelled and then dried for three days in an oven at 37°C. The panicles were then threshed and all the seeds were collected and counted. The filled husks were separated from the empty ones using an air-blowing device. The empty husks were discarded and the remaining fraction was counted again. The filled husks were weighed on an analytical balance. The number of filled seeds was determined by counting the number of filled husks that remained after the separation step. The total seed yield was measured by weighing all filled husks harvested from a plant. Total seed number per plant was measured by counting the number of husks harvested from a plant. Thousand Kernel Weight (TKW) is extrapolated from the number of filled seeds counted and their total weight. The Harvest Index (HI) in the present invention is defined as the ratio between the total seed yield and the above ground area (mm²), multiplied by a factor 10⁶. The total number of flowers per panicle as defined in the present invention is the ratio between the total number of seeds and the number of mature primary panicles. The seed fill rate as defined in the present invention is the proportion (expressed as a %) of the number of filled seeds over the total number of seeds (or florets).

Examples 10: Results of the phenotypic evaluation of the transgenic plants
The results of the evaluation of transgenic rice plants in the T₁ generation and expressing a nucleic acid comprising the longest Open Reading Frame in SEQ ID NO: 1 under non-stress conditions are presented below. See previous Examples for details on the generations of the transgenic plants.

The results of the evaluation of transgenic rice plants under non-stress conditions are presented below. Transgenic plants over-expressing the POI under the constitutive promoter GOS2 displayed increased yield in comparison to the null control plants. More particularly, the transgenic
plants exhibited increased shoot biomass (13.5%), root biomass (11.3%), plant height (8.6%), plant gravity (8.3%), number of florets per panicles (11.0%), filling rate (6.1%).
Claims:

1. A method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid molecule encoding a polypeptide, wherein said polypeptide comprises at least one of the following domains: Interpro domain IPR000842, Interpro domain IPR000836 and Interpro domain IPR005946.

2. Method according to claim 1, wherein said polypeptide comprises one or more of the following motifs:
 Motif 1 (SEQ ID NO: 32):
 IKRFADGEIYQLQESVRGCDV[FY][V]O[PTC][PT][AT][NENL][MEL][M][IV]D[ACRR][A]
 Motif 2 (SEQ ID NO: 33):
 FAKKLSDDAPAIVDKRRHGHNVAEVMNALIDV[GR][GKVA][VI][MVDDMIDTAGT][I]
 Motif 3a (SEQ ID NO: 35):
 H[QE][GAREVYAC][CT][THA][FSPPAI[ER][L][SSGL][FL][QE][VI][TNT][IL][P][VL][AS][EK][NH][Y]
 FPQL

3. Method according to claim 1 or 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid molecule encoding a Phosphoribosyl pyrophosphate synthetase (PRS1 like, PRPP synthetase).

4. Method according to any one of claims 1 to 3, wherein said polypeptide is encoded by a nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of:
 (i) a nucleic acid represented by (any one of) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27;
 (ii) the complement of a nucleic acid represented by (any one of) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27;
 (iii) a nucleic acid encoding the polypeptide as represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, preferably as a result of the degeneracy of the genetic code, said isolated nucleic acid can be derived from a polypeptide sequence as represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26 and further preferably confers enhanced yield-related traits relative to control plants;
 (iv) a nucleic acid having, in increasing order of preference at least 30 %, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with any of the nucleic acid sequences
of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or 27, and further preferably conferring enhanced yield-related traits relative to control plants;

(v) a nucleic acid molecule which hybridizes with a nucleic acid molecule of (i) to (iv) under stringent hybridization conditions and preferably confers enhanced yield-related traits relative to control plants; or

(vi) a nucleic acid encoding said polypeptide having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by (any one of) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26 and preferably conferring enhanced yield-related traits relative to control plants.

5. Method according to any preceding claim, wherein said enhanced yield-related traits comprise increased yield, preferably increased biomass, more preferably increased shoot biomass and/or increased root biomass to control plants.

6. Method according to any one of claims 1 to 5, wherein said enhanced yield-related traits are obtained under non-stress conditions.

7. Method according to any one of claims 1 to 5, wherein said enhanced yield-related traits are obtained under conditions of drought stress, salt stress or nitrogen deficiency.

8. Method according to any one of claims 1 to 7, wherein said nucleic acid encoding a POI is of plant origin, preferably from a dicotyledonous plant, further preferably from a dicotyledonous tree, more preferably from the genus Populus, most preferably from Populus trichocarpa.

9. Method according to any one of claims 1 to 8, wherein said nucleic acid encoding a POI encodes any one of the polypeptides listed in Table A or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with a complementary sequence of such a nucleic acid.

10. Method according to any one of claims 1 to 9, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the polypeptides given in Table A.

11. Method according to any one of claims 1 to 10, wherein said nucleic acid encodes the polypeptide represented by SEQ ID NO: 2.

12. Method according to any one of claims 1 to 11, wherein said nucleic acid is operably
linked to a constitutive promoter, preferably to a medium strength constitutive promoter, preferably to a plant promoter, more preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

5 13. Plant, plant part thereof, including seeds, or plant cell, obtainable by a method according to any one of claims 1 to 12, wherein said plant, plant part or plant cell comprises a recombinant nucleic acid encoding a POI polypeptide as defined in any of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12.

10 14. An isolated nucleic acid molecule selected from the group consisting of:
(i) a nucleic acid molecule having the sequence of SEQ ID NO: 1;
(ii) the complement of a nucleic acid molecule represented by SEQ ID NO: 1;
(iii) a nucleic acid molecule encoding the polypeptide having the sequence of SEQ ID NO: 2, preferably as a result of the degeneracy of the genetic code, said isolated nucleic acid molecule can be derived from a polypeptide sequence as represented by SEQ ID NO: 2, and further preferably confers enhanced yield-related traits relative to control plants;
(iv) a nucleic acid molecule having, in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with the nucleic acid molecule sequences of SEQ ID NO: 1, and further preferably conferring enhanced yield-related traits relative to control plants;
(v) a nucleic acid molecule which hybridizes with a nucleic acid molecule of (i) to (iv) under stringent hybridization conditions and preferably confers enhanced yield-related traits relative to control plants;
(vi) a nucleic acid molecule encoding said polypeptide having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by SEQ ID NO: 2, and preferably conferring enhanced yield-related traits relative to control plants;
(vii) a nucleic acid molecule according to any of (i) to (vi) encoding a polypeptide wherein the polypeptide has Phosphoribosyl pyrophosphate synthetase activity;
(viii) a nucleic acid molecule according to any of (i) to (viii) above, wherein the nucleic acid molecule is not any of the nucleic acid molecules disclosed as
SEQ ID NO: x of the sequence listing, wherein x is an odd number from and including 3 to and including 27.

15. An isolated polypeptide selected from the group consisting of:
 (i) a polypeptide encoded by the nucleic acid molecule represented by SEQ ID NO: 1;
 (ii) a polypeptide having the sequence of SEQ ID NO: 2,
 (iii) a polypeptide encoded by a nucleic acid having, in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the nucleic acid sequences of SEQ ID NO: 1, and further preferably conferring enhanced yield-related traits relative to control plants;
 (iv) a polypeptide encoded by a nucleic acid molecule which hybridizes with the complement of a nucleic acid represented by SEQ ID NO: 1 under stringent hybridization conditions, and preferably confers enhanced yield-related traits relative to control plants;
 (v) a polypeptide having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by SEQ ID NO: 2, and preferably conferring enhanced yield-related traits relative to control plants;
 (vi) a polypeptide according to any of (i) to (v) wherein the polypeptide has Phosphoribosyl pyrophosphate synthetase activity;
 (vii) a polypeptide according to any of (i) to (vii) above, wherein the polypeptide is not any of the polypeptides disclosed as SEQ ID NO: x of the sequence listing, wherein x is an even number from and including 4 to and including 28.

16. Construct comprising:
 (i) a nucleic acid encoding said polypeptide as defined in any one of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12, or the nucleic acid molecule of claim 14 or a nucleic acid molecule encoding the polypeptide of claim 15;
 (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
 (iii) a transcription termination sequence.

17. Construct according to claim 16, wherein one of said control sequences is a
constitutive promoter, preferably a medium strength constitutive promoter, preferably to a plant promoter, more preferably a GOS2 promoter, most preferably a GOS2 promoter from rice (SEQ ID NO:28).

18. Use of a construct according to claim 16 or 17 in a method for making plants having increased yield, particularly increased shoot biomass and/or increased root biomass relative to control plants.

19. Plant, plant part or plant cell transformed with a construct according to claim 16 or 17 or obtainable by a method according to any one of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12, wherein said plant or part thereof comprises a recombinant nucleic acid encoding said polypeptide as defined in any one of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12.

20. Method for the production of a transgenic plant having increased yield, particularly increased biomass and/or increased seed yield relative to control plants, comprising: (i) introducing and expressing in a plant a nucleic acid encoding said polypeptide as defined in any one of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12, the nucleic acid molecule of claim 14 or the polypeptide of claim 15; and (ii) cultivating the plant cell under conditions promoting plant growth and development.

21. Transgenic plant having enhanced yield-related traits relative to control plants, preferably increased yield relative to control plants, and more preferably increased seed yield and/or increased biomass, resulting from modulated expression of a nucleic acid encoding a POI polypeptide as defined in any of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12 or a transgenic plant cell derived from said transgenic plant.

22. Harvestable parts of a plant according to claim 13, 18, 19 or 21, wherein said harvestable parts are preferably shoot and/or root biomass and/or seeds.

23. Products derived from a plant according to claim 13, 18, 19 or 21 and/or from harvestable parts of a plant according to claim 20.

24. Use of a nucleic acid encoding a polypeptide as defined in any one of claims 1, 2, 3, 4, 8, 9, 10, 11 or 12, the nucleic acid molecule of claim 14 or the polypeptide of claim 15 in increasing yield, particularly increased biomass relative to control plants.

25. A method for the production of a product comprising the steps of growing the plants according to claim 13, 18, 19 or 21 and producing said product from or by (i) said plants; or (ii) parts, including seeds, of said plants.
26. Construct according to claim 16 or 17 comprised in a plant cell.

27. Any of the preceding claims, wherein the nucleic acid encodes a polypeptide that is not the polypeptide selected from the group of sequence as represented by
a. SEQ ID NO:4016 or the one encoded by the sequence of SEQ ID NO:292, both of the international patent application WO2009/134339; or
b. SEQ ID NO:9451 or the one encoded by the sequence of SEQ ID NO:3871, both of the US patent application US2009/019601; or

10 c. SEQ ID NO:497 or 13893 or the one encoded by the sequence of SEQ ID NO: 497 or 13893, both of the US patent application US2009/094717.
Figure 1:

```
P. trichocarpa PRS
P. trichocarpa scaff 29.158
P. trichocarpa scaff 118.44
A. thaliana AT2G35390.2
A. thaliana AT2G35390.3
A. thaliana AT1G2380.1
vitis XP 002282232.1
P. trichocarpa scaff XIV.1274
vitis XP 002265309.1
0. sativa TC291174
0. sativa TC294760
A. thaliana AT2G44530.1
A. thaliana AT2G44530.2
0. sativa TC308664
```
<table>
<thead>
<tr>
<th>Consensus</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Section 1

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P.trichocarpa_PRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.trichocarpa_scaffold_29.158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.thaliana_AT1G32380.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.thaliana_AT2G35390.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.thaliana_AT2G35390.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.thaliana_AT2G44530.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.thaliana_AT2G44530.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.sativa_TC291174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.sativa_TC294760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.sativa_TC308664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.trichocarpa_scaffold_118.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.trichocarpa_scaffold_XIV.1274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vitis_XP_002265309.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vitis_XP_002282232.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 1 10 20 30 44
<table>
<thead>
<tr>
<th></th>
<th>(45)</th>
<th>45</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. trichocarpa_PRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>MNTIKCDISEPLNFGNG-KPTTEVLNDRTLKEFLESDEVEKTVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaff_29.158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>MNTIKCDISEPLNFGNG-KPTTEVLNDRTLKEFLESDEVEKTVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT1G32380.1</td>
<td>(45)</td>
<td>SGYAKCNLPKALNG-----NARVPIINETTIKFFDSSRLEKSVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G35390.2</td>
<td>(45)</td>
<td>FACVKCDPMESLNVGNG-NPSIPIINERTLKEFLESARMEKSVN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G35390.3</td>
<td>(45)</td>
<td>FACVKCDPMESLNVGNG-NPSIPIINERTLKEFLESARMEKSVN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G44530.1</td>
<td>(29)</td>
<td>RFPLEKCNADRYKFEDGGSAGFHLLOQGTVFASFSRTRLGDSIY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G44530.2</td>
<td>(28)</td>
<td>VRPFLECNAADRYKFEDGGSAGFHLLOQGTVFASFSRTRLGDSIY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa_TC291174</td>
<td>(32)</td>
<td>FVVRQRKQKDQLRAVNG-IPPYAPVSNRSILLSPISPLTIIRDANI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa_TC294760</td>
<td>(32)</td>
<td>FVVRQRKQKDQLRAVNG-IPPYAPVSNRSILLSPISPLTIIRDANI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa_TC308664</td>
<td>(29)</td>
<td>---K-RGLLLLBYGAGAGACAYGRQYSDYYDYPALSQACAS2SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaff_118.44</td>
<td>(10)</td>
<td>VAVHKCDISEPLNFGNG-KPTTEVLNDRTLKEFLESARVDKTVN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaff_XIV.1274</td>
<td>(33)</td>
<td>RHAVRGNLVERIKFANG-KPYILLLNTSAHHSATSHLNTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002265300.1</td>
<td>(39)</td>
<td>RNTVRCNLEVRKENNNG-KPTTEVLNDRTLKEFLESARMEKSVN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002282232.1</td>
<td>(39)</td>
<td>ASVIKDHNESLEKSNNG-KPCVEVLNDRTLKEFLESARMEKSVN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>(45)</td>
<td>VKCIEEKLKFGNG-FIPVNLERTLPEFLESRMEKSVN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>132</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>P. trichocarpa_PRS</td>
<td>56</td>
<td>----</td>
<td>RNIIRLKFLSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaff_29.158</td>
<td>56</td>
<td>----</td>
<td>RNIIRLKFLSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT1G32380.1</td>
<td>85</td>
<td>----</td>
<td>RTNTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G25390.2</td>
<td>88</td>
<td>----</td>
<td>RTNTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G35390.3</td>
<td>88</td>
<td>----</td>
<td>RTNTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G44530.1</td>
<td>73</td>
<td>----</td>
<td>QNTEPLRFLSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana_AT2G44530.2</td>
<td>72</td>
<td>----</td>
<td>QNTEPLRFLSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa_TC291174</td>
<td>75</td>
<td>----</td>
<td>KNDTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa_TC294760</td>
<td>75</td>
<td>----</td>
<td>KNDTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa_TC308664</td>
<td>69</td>
<td>----</td>
<td>GRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaff_118.44</td>
<td>53</td>
<td>----</td>
<td>KNDTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaff_X1V.1274</td>
<td>76</td>
<td>----</td>
<td>PEEKHDRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002265309.1</td>
<td>82</td>
<td>----</td>
<td>KNDTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002282232.1</td>
<td>82</td>
<td>----</td>
<td>KNSTRLKLFSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>89</td>
<td>----</td>
<td>RNLTRIKFLSGTANPSLSQGTARPYESLELCKIKIKRFADG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 (continued):

<table>
<thead>
<tr>
<th></th>
<th>133</th>
<th>133</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>176</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.trichocarpa_PRS (96)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LLOPTCP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>DACC</td>
<td>RASA</td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_29.158 (96)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LLOPTCP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>DACC</td>
<td>RASA</td>
</tr>
<tr>
<td>A.thaliana_AT1G32380.1 (125)</td>
<td>ILYQLQKESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.2 (128)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.3 (128)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.1 (113)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.2 (112)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>O.sativa_TC291174 (115)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>O.sativa_TC294760 (115)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>O.sativa_TC308664 (106)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_118.44 (93)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_XIV.1274 (120)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>vitis_XP_002265309.1 (122)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>vitis_XP_002282232.1 (122)</td>
<td>ILYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td>Consensus (133)</td>
<td>ELYQLQESVRGCDVF</td>
<td>LVQPTC</td>
<td>TP</td>
<td>PANE</td>
<td>NLMELLI</td>
<td>YM</td>
</tr>
<tr>
<td></td>
<td>(177)</td>
<td>177</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>P.trichocarpa_PRS (140)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_29.158 (140)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT1G32380.1 (169)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G25390.2 (172)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.3 (172)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.1 (157)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.2 (156)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>O.sativa_TC291174 (159)</td>
<td>KNTAVFPYFGYARADRTSQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>O.sativa_TC294760 (159)</td>
<td>KNTAVFPYFGYARADRTSQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>O.sativa_TC308664 (150)</td>
<td>KNTAVFPYFGYARADRTMR</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_118.44 (137)</td>
<td>KNTAVFPYFGYARADRTSQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_scaffold_XIV.1274 (164)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002265309.1 (166)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002282232.1 (166)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>Consensus (177)</td>
<td>KNTAVFPYFGYARADRTQ</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>QGRESIAAKLVANLIT</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Start</td>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_PRS (219)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_scaff_29.158 (223)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT1G32380.1 (248)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.2 (251)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.3 (251)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.1 (236)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.2 (235)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.sativa_TC291174 (238)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.sativa_TC294760 (207)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.sativa_TC308664 (230)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_scaff_118.44 (225)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.trichocarpa_scaff_XIV.1274 (243)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002265309.1 (245)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis_XP_002282232.1 (245)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus (265)</td>
<td>265</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consensus Sequence: SDDLVVSPDVGGVARARAFAKLSDAPLAIVDKRRGHVNAEV
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Description</th>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.trichocarpa_PRS</td>
<td>(263)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>P.trichocarpa_scaff_29.158</td>
<td>(267)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>A.thaliana_AT1G32380.1</td>
<td>(292)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.2</td>
<td>(295)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>A.thaliana_AT2G35390.3</td>
<td>(295)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.1</td>
<td>(280)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>A.thaliana_AT2G44530.2</td>
<td>(279)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>O.sativa_TC291174</td>
<td>(282)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>O.sativa_TC294760</td>
<td>(251)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>O.sativa_TC308664</td>
<td>(274)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>P.trichocarpa_scaff_118.44</td>
<td>(269)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>P.trichocarpa_scaff_XIV.1274</td>
<td>(287)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>vitis_XP_002265309.1</td>
<td>(289)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>vitis_XP_002282232.1</td>
<td>(289)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td>Consensus</td>
<td>(309)</td>
<td></td>
<td>309</td>
<td>MNLIGDVKGKVAVMDDMDTAVGIKGAALLHEQEGAREVYACCC</td>
</tr>
<tr>
<td></td>
<td>397</td>
<td>410</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>P. trichocarpaPRS (351)</td>
<td>SLLGETIWRVHDDCSVSSIFQ-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaffold_29.158 (355)</td>
<td>SLLGETIWRVHDDCSVSSIFQ-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana AT1G32380.1 (380)</td>
<td>NLLGETIWRVHDDSSVSSIFL-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana AT2G35390.2 (383)</td>
<td>NLLGETIWRVHDDSSVSSIFL-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana AT2G35390.3 (345)</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana AT2G44530.1 (368)</td>
<td>WLLGETIWRVHDDCSGAEIPFSLGID-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana AT2G44530.2 (367)</td>
<td>WLLGETIWRVHDDCSGAEIPFSLGID-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa TC291174 (370)</td>
<td>NLLGETIWRVHDDCSVGEPYSSLID-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa TC294760 (339)</td>
<td>NLLGETIWRVHDDCSVGEPYSSLID-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. sativa TC308664 (362)</td>
<td>NLLGETIWRVHDDCSVSSIFQ-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaffold 118.44 (357)</td>
<td>NLLGETIWRVHDDCSVSSIFQ-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. trichocarpa_scaffold XIV.1274 (375)</td>
<td>NLLGETIWRVHDDCSGGEPYSSLGID-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis XP 002265309.1 (377)</td>
<td>NLLGETIWRVHDDCSSGEFYSSLGID-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitis XP 002282232.1 (377)</td>
<td>NLLGETIWRVHDDCSVSSIFL-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus (397)</td>
<td>NLLGETIWRVHDDCSVSSIF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C12N15/-;

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO2008/043849 A2 (BASF PLANT SCIENCE GMBH) 17 Apr. 2008 (17.04.2008), see claims 1,4,9,12,15-17, page 69 line 19 to page 70 line 22, page 71 lines 2-24, page 73 lines 12-18, table IV.</td>
<td>1-13, 16-27</td>
</tr>
<tr>
<td>X</td>
<td>EMBL ID: B9N2RO_POPTR, entry version10, 02 Mar. 2010(02.03.2010), see whole document.</td>
<td>14,15</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 22 Jun. 2011 (22.06.2011)

Date of mailing of the international search report 11 Aug. 2011 (11.08.2011)

Name and mailing address of the ISA/CN The State Intellectual Property Office, the P.R.China 6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088 Facsimile No. 86-10-62019451

Form PCT/ISA/210 (second sheet) (July 2009)

Authorized officer CAO, Kou

Telephone No. (86-10)82245269
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent Documents referred in the Report</td>
<td>Publication Date</td>
<td>Patent Family</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101589148 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2010037350 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX2009003824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INCHENP200901978 E</td>
</tr>
<tr>
<td>WO2004/035798 A2</td>
<td>29.04.2004</td>
<td>AU2003298095 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1551983 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006021088 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2003298095 A8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP2302062 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP2316953 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7847156 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1381268 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6717034 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2002309510 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR0208573 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MXPA03008922 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2002309510 A8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX274572 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2442496 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004128712 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2005097638 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006015972 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006272060 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7663025 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2007240243 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2008301841 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2009138981 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2010175145 A</td>
</tr>
</tbody>
</table>

Form PCT/ISA /210 (patent family annex) (July 2009)
INTERNATIONAL SEARCH REPORT

Continuation of: A. CLASSIFICATION OF SUBJECT MATTER:
C12N15/82(2006.01) i
C12N15/63(2006.01) i