
(19) United States
US 2006.0036636A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0036636A1
Small et al. (43) Pub. Date: Feb. 16, 2006

(54) DISTRIBUTED OBJECT-BASED STORAGE
SYSTEM THAT USES POINTERS STORED
AS OBJECT ATTRIBUTES FOR OBJECT
ANALYSIS AND MONITORING

(76) Inventors: Jason Kenneth Small, Pittsburgh, PA
(US); Ben Zion Halevy, Tel-Aviv (IL);
Daniel Belov, Pittsburgh, PA (US)

Correspondence Address:
Daniel H. Golub
1701 Market Street
Philadelphia, PA 19103 (US)

(21) Appl. No.: 10/918,202

(22) Filed: Aug. 13, 2004

3 O

Publication Classification

(51) Int. Cl.
G06F 1700 (2006.01)

(52) U.S. Cl. .. 707/102

(57) ABSTRACT

In a distributed object-based Storage System that includes a
plurality of object Storage devices and one or more clients
that access distributed, object-based files from the object
Storage devices, each of the files being comprised of a
plurality of object components residing on different object
Storage device, Systems and methods that use pointerS Stored
as object attributes for file analysis and monitoring.

IOO

Patent Application Publication Feb. 16, 2006 US 2006/0036636A1

O S. g S

l

US 2006/0036636A1

DISTRIBUTED OBJECT-BASED STORAGE
SYSTEM THAT USES POINTERS STORED AS
OBJECT ATTRIBUTES FOR OBJECT ANALYSIS

AND MONITORING

FIELD OF THE INVENTION

0001. The present invention generally relates to data
Storage methodologies, and, more particularly, to an object
based methodology that uses pointerS Stored as object
attributes to identify file objects that have missing compo
nents, and/or to identify file object components Stored on a
Specific object Storage device.

BACKGROUND OF THE INVENTION

0002 With increasing reliance on electronic means of
data communication, different models to efficiently and
economically Store a large amount of data have been pro
posed. A data Storage mechanism requires not only a Suffi
cient amount of physical disk space to Store data, but various
levels of fault tolerance or redundancy (depending on how
critical the data is) to preserve data integrity in the event of
one or more disk failures.

0003. In a traditional networked storage system, a data
Storage device, Such as a hard disk, is associated with a
particular Server or a particular Server having a particular
backup Server. Thus, access to the data Storage device is
available only through the Server associated with that data
Storage device. A client processor desiring access to the data
Storage device would, therefore, access the associated Server
through the network and the Server would access the data
Storage device as requested by the client. By contrast, in an
object-based data Storage System, each object-based Storage
device communicates directly with clients over a network.
An example of an object-based Storage System is shown in
co-pending, commonly-owned, U.S. patent application Ser.
No. 10/109,998, filed on Mar. 29, 2002, titled “Data File
Migration from a Mirrored RAID to a Non-Mirrored XOR
Based RAID Without Rewriting the Data, incorporated by
reference herein in its entirety.
0004 Existing object-based storage systems, such as the
one described in co-pending application Ser. No. 10/109,
998, typically include a plurality of object-based Storage
devices for Storing object components, a metadata Server,
and one or more clients that acceSS distributed, object-based
files on the object Storage devices. In Such Systems, it is
typically expensive to identify file objects that need to be
reconstructed. For example, a call must initially be made to
list (component) objects from each Object-Based Storage
Device (OBD). Each OBD in turn would return a list of, for
example 500 objects. These lists must then be merged
together to make a list of up to 500 (virtual) objects.
Reconstruction then requires retrieval of a map (i.e., layout
information showing the physical location on the OBDs
where each component of an object resides) from one
component of each object to determine if any component of
the object was on a non-working OBD. Only after these
Steps were done, could the object be reconstructed. Given an
average file size of two components (e.g., 64k per compo
nent) and a typical number of OBDs of 10, only about 11%
of the objects for which attributes are retrieved in the
reconstruction process need to be reconstructed.
0005 What is needed is an improvement over existing
Systems that provides a more efficient System and method for
identifying file objects that require reconstruction.

Feb. 16, 2006

SUMMARY OF THE INVENTION

0006 The present invention is directed to a distributed
object-based Storage System that includes a plurality of
object Storage devices and one or more clients that access
distributed, object-based files from the object Storage
devices, each of the files being comprised of a plurality of
object components residing on different object Storage
devices. AS explained below, the present invention provides
Several Systems and methods that use pointerS Stored as
object attributes for file analysis and monitoring in distrib
uted object-based Storage Systems.
0007. In accordance with a first aspect, the present inven
tion provides a System and method for detecting files with
one or more missing components. For each component of
each file, a pointer is Stored in an attribute field of the
component, wherein the pointer points to a further compo
nent of the file. Files with one or more missing components
are identified by attempting to traverse the components of
each file using the pointers. A file is determined to have one
or more missing components if all components associated
with the file cannot be traversed using the pointers.
0008. In accordance with a second aspect, the present
invention provides a System and method for identifying files
containing at least one component on a Specific object
Storage device. For each component of each file, a pointer is
stored in an attribute field of the component, wherein the
pointer points to a further component of the file. Files with
at least one component having, in its attribute field, a pointer
that points to a further component residing on the Specific
object Storage device are then identified.
0009. In accordance with a third aspect, the present
invention is directed to a System and method for identifying
files that are missing components. For at least one compo
nent of each file, a count value is Stored in an attribute field
of the component, wherein the count value corresponds to a
maximum number of components for the file. For each file,
a list of components in the file is retrieved and an attempt is
made to retrieve from an attribute field of at least one
component of the file, the count value corresponding to the
maximum number of components of the file. For each file,
if the count Value corresponding to the maximum number of
components of the file was Successfully retrieved from an
attribute field of at least one component of the file, a number
of components on the list is compared to the count value in
order to determine whether the file has fewer components
than the count value. If the number of components on the list
is less the count value, the file is flagged as missing at least
one component. In one embodiment, a file is also identified
as having at least one missing component if the attempt to
retrieve the count value from an attribute field of at least one
component of the file is unsuccessful.

BRIEF DESCRIPTION OF THE DRAWING

0010. The accompanying drawing, which is included to
provide a further understanding of the invention and is
incorporated in and constitutes a part of this specification,
illustrates embodiments of the invention that together with
the description Serve to explain the principles of the inven
tion:

0011 FIG. 1 illustrates an exemplary network-based file
Storage System designed around Object-Based Secure DiskS
(OBDs).

US 2006/0036636A1

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0012 Reference will now be made in detail to the pre
ferred embodiments of the present invention, examples of
which are illustrated in the accompanying drawing. It is to
be understood that the figures and descriptions of the present
invention included herein illustrate and describe elements
that are of particular relevance to the present invention,
while eliminating, for purposes of clarity, other elements
found in typical data Storage Systems or networks.
0013 FIG. 1 illustrates an exemplary network-based file
storage system 100 designed around Object Based Secure
Disks (OBDs) 20. File storage system 100 is implemented
via a combination of hardware and Software units and
generally consists of manager Software (simply, the “man
ager”) 10, OBDs 20, clients 30 and metadata server 40. It is
noted that each manager is an application program code or
Software running on a corresponding Server. Clients 30 may
run different operating Systems, and thus present an operat
ing System-integrated file System interface. Metadata Stored
on server 40 may include file and directory object attributes
as well as directory object contents. The term “metadata”
generally refers not to the underlying data itself, but to the
attributes or information that describe that data.

0014 FIG. 1 shows a number of OBDs 10 attached to the
network 50. An OBD 10 is a physical disk drive that stores
data files in the network-based system 100 and may have the
following properties: (1) it presents an object-oriented inter
face (rather than a sector-oriented interface); (2) it attaches
to a network (e.g., the network 50) rather than to a data bus
or a backplane (i.e., the OBDS 10 may be considered as
first-class network citizens); and (3) it enforces a Security
model to prevent unauthorized access to data Stored thereon.
0015 The fundamental abstraction exported by an OBD
10 is that of an “object,” which may be defined as a
variably-sized ordered collection of bits. Contrary to the
prior art block-based Storage disks, OBDS do not export a
Sector interface at all during normal operation. Objects on an
OBD can be created, removed, written, read, appended to,
etc. OBDs do not make any information about particular
disk geometry visible, and implement all layout optimiza
tions internally, utilizing higher-level information that can
be provided through an OBD's direct interface with the
network 50. In one embodiment, each data file and each file
directory in the file system 100 are stored using one or more
OBD objects. Because of object-based storage of data files,
each file object may generally be read, written, opened,
closed, expanded, created, deleted, moved, Sorted, merged,
concatenated, named, renamed, and include access limita
tions. Each OBD 10 communicates directly with clients 30
on the network 50, possibly through routers and/or bridges.
The OBDS, clients, managers, etc., may be considered as
“nodes' on the network 50. In system 100, no assumption
needs to be made about the network topology except that
each node should be able to contact every other node in the
system. Servers (e.g., metadata servers 40) in the network 50
merely enable and facilitate data transferS between clients
and OBDs, but the servers do not normally implement such
transferS.

0016 Logically speaking, various system "agents” (i.e.,
the managers 10, the OBDs 20 and the clients 30) are
independently-operating network entities. Manager 10 may

Feb. 16, 2006

provide day-to-day Services related to individual files and
directories, and manager 10 may be responsible for all file
and directory-specific States. Manager 10 creates, deletes
and sets attributes on entities (i.e., files or directories) on
clients’ behalf. (Clients may also set attributes themselves.)
Manager 10 also specifies the layout of the data on the OBDs
for performance and fault tolerance. "Aggregate' objects are
objects that use OBDs in parallel and/or in redundant
configurations, yielding higher availability of data and/or
higher I/O performance. Aggregation is the process of
distributing a single data file or file directory over multiple
OBD objects, for purposes of performance (parallel access)
and/or fault tolerance (storing redundant information). The
aggregation Scheme associated with a particular object is
stored as an attribute of that object on an OBD 20. A system
administrator (e.g., a human operator or Software) may
choose any aggregation Scheme for a particular object. Both
files and directories can be aggregated. In one embodiment,
a new file or directory inherits the aggregation Scheme of its
immediate parent directory, by default. A change in the
layout of an object may cause a change in the layout of its
parent directory. Manager 10 may be allowed to make layout
changes for purposes of load or capacity balancing.

0017. The manager 10 may also allow clients to perform
their own I/O to aggregate objects (which allows a direct
flow of data between an OBD and a client), as well as
providing proxy Service when needed. AS noted earlier,
individual files and directories in the file system 100 may be
represented by unique OBD objects. Manager 10 may also
determine exactly how each object will be laid out-i.e., on
which OBD or OBDs that object will be stored, whether the
object will be mirrored, Striped, parity-protected, etc. Man
ager 10 may also provide an interface by which users may
express minimum requirements for an objects storage (e.g.,
“the object must still be accessible after the failure of any
one OBD”).
0018. Each manager 10 may be a separable component in
the sense that the manager 10 may be used for other file
System configurations or data Storage System architectures.
In one embodiment, the topology for the system 100 may
include a “file System layer abstraction and a “Storage
system layer” abstraction. The files and directories in the
system 100 may be considered to be part of the file system
layer, whereas data Storage functionality (involving the
OBDS 20) may be considered to be part of the storage
System layer. In one topological model, the file System layer
may be on top of the Storage System layer.

0019. A storage access module (SAM) (not shown) is a
program code module that may be compiled into managers
and clients. The SAM includes an I/O execution engine that
implements simple I/O, mirroring, and map retrieval algo
rithms discussed below. The SAM generates and Sequences
the OBD-level operations necessary to implement System
level I/O operations, for both Simple and aggregate objects.

0020 Each manager 10 maintains global parameters,
notions of what other managers are operating or have failed,
and provides Support for up/down State transitions for other
managers. A benefit to the present System is that the location
information describing at what data storage device (i.e., an
OBD) or devices the desired data is stored may be located
at a plurality of OBDs in the network. Therefore, a client 30
need only identify one of a plurality of OBDs containing

US 2006/0036636A1

location information for the desired data to be able to acceSS
that data. The data is may be returned to the client directly
from the OBDS without passing through a manager.

0021. In one embodiment of the present invention, each
object (e.g., file or directory) Stored in distributed object
based storage system 100 is formed of a plurality of com
ponent objects that reside on different OBDs 20. Every
component object stored on a given OBD 20 has an asso
ciated pointer that is Stored as an attribute of the component
object on the given OBD 20. Each such pointer points to
the next component in the object, with the last component
pointing back to the first. In this way, the pointers form a
ring. As an example, if an object is composed of three
components, A, B, C that are stored respectively on OBD1,
OBD2, OBD3, the pointer stored as an object attribute of
component A on OBD1 would have the value OBD2, the
pointer Stored as an object attribute of component B on
OBD2 would have the value OBD3, and the pointer stored
as an object attribute of component C on OBD3 would have
the value OBD1. As explained more fully below, if one of
the OBDS fails, the pointers now provide an efficient way of
finding which objects were effected by the failure. For
example, if OBD1 fails, manager 10 can perform a list
attributes operation on each remaining OBD (i.e., OBD2 and
OBD3 in the example) and analyze the results in order to
quickly identify those objects that have pointers of value
OBD1. Use of the pointers streamlines the process of
identifying objects on OBD1 that require reconstruction, and
represents an improvement over prior Systems by eliminat
ing the need to retrieve attributes for all objects in the System
(e.g., maps for all objects in the System) in order to identify
objects on the failed device (e.g., OBD1.)
0022. The aforementioned pointers may be used for per
forming other object analysis and monitoring functions. For
example, the pointerS may be used by manager 10 to
perform detection of files with one or more missing com
ponents. In the embodiment, manager 10 attempts to
traverse the components of each file object using the point
ers. If manager 10 is unable to traverse the “ring” formed by
the pointers of a given file object, manager 10 determines
that the given object is missing one or more component
objects and optionally flags the file object for reconstruction.

0023 The pointers may be used in a further way to
identify file objects that are missing components. In this
embodiment, for at least one component (Stored on a given
OBD 20) of each file object, a count value is stored (on the
given OBD 20) in an attribute field of the component. The
count value corresponds to a maximum number of compo
nents for the file. In order to identify file objects that are
missing components, manager 10 retrieves a list of compo
nents in each file in the System. For each file in the System,
manager 10 also attempts to retrieve from an attribute field
asSociated with each component of the file, the count value
corresponding to the maximum number of components of
the file. If manager 10 successfully retrieves the count value
for a given file, the number of components on the list (i.e.,
the number of components of the file previously retrieved by
manager 10) is compared to the count value. If the number
of components on the list is less the count Value, manager 10
flags the file as having a metadata inconsistency. In a further
embodiment, manager 10 also identifies a file as having at

Feb. 16, 2006

least one missing component if the attempt to retrieve the
count value from an attribute field of a component of the file
was unsuccessful.

0024 Finally, it will be appreciated by those skilled in the
art that changes could be made to the embodiments
described above without departing from the broad inventive
concept thereof. It is understood, therefore, that this inven
tion is not limited to the particular embodiments disclosed,
but is intended to cover modifications within the spirit and
Scope of the present invention as defined in the appended
claims.

What is claimed is:
1. In a distributed object-based Storage System that

includes a plurality of object Storage devices and one or
more clients that acceSS distributed, object-based files from
the object Storage devices, each of Said files being comprised
of a plurality of object components residing on different
object Storage devices, a method for detecting files with one
or more missing components, comprising:

for each component of each file, Storing a pointer in an
attribute field of the component, wherein the pointer
points to a further component of the file; and

identifying files with one or more missing components by
attempting to traverse the components of each file using
the pointers, wherein a file is determined to have one or
more missing components if all components associated
with the file cannot be traversed using the pointers.

2. In a distributed object-based Storage System that
includes a plurality of object Storage devices and one or
more clients that acceSS distributed, object-based files from
the object Storage devices, each of Said files being comprised
of a plurality of object components residing on different
object Storage devices, a System for detecting files with one
or more missing components, comprising:

at least one Server that, for each component of each file,
Stores a pointer in an attribute field of the component,
wherein the pointer points to a further component of the
file; and

wherein the at least one server identifies files with one or
more missing components by attempting to traverse the
components of each file using the pointers, and

wherein the at least one Server determines that a file has
one or more missing components if all components
asSociated with the file cannot be traversed using the
pointers.

3. In a distributed object-based Storage System that
includes a plurality of object Storage devices, and one or
more clients that acceSS distributed, object-based files from
the object Storage devices, each of Said files being comprised
of a plurality of object components residing on different
Storage devices, a method for identifying files containing at
least one component on a Specific object Storage device,
comprising:

for each component of each file, Storing a pointer in an
attribute field of the component, wherein the pointer
points to a further component of the file; and

identifying files where at least one component has, in its
attribute field, a pointer that points to a further com
ponent residing on the Specific object Storage device.

US 2006/0036636A1

4. The method of claim 3, wherein the specific object
Storage device corresponds to a failed object Storage device,
and the identifying Step identifies files in need of recon
Struction.

5. In a distributed object-based storage system that
includes a plurality of object Storage devices, and one or
more clients that acceSS distributed, object-based files from
the object Storage devices, each of Said files being comprised
of a plurality of object components residing on different
Storage devices, a System for identifying files containing at
least one component on a Specific object Storage device,
comprising:

at least one Server that, for each component of each file,
Stores a pointer in an attribute field of the component,
wherein the pointer points to a further component of the
file; and

wherein the at least one server identifies files where at
least one component has, in its attribute field, a pointer
that points to a further component residing on the
Specific object Storage device.

6. The system of claim 5, wherein the specific object
Storage device corresponds to a failed object Storage device,
and the files identified by the at least one Sever correspond
to files in need of reconstruction.

7. In a distributed object-based storage system that
includes a plurality of object Storage devices, and one or
more clients that acceSS distributed, object-based files from
the object Storage devices, each of Said files being comprised
of a plurality of object components residing on different
object Storage devices, a method for identifying files that are
missing components, comprising:

for at least one component of each file, Storing a count
value in an attribute field of the component, wherein the
count value corresponds to a maximum number of
components for the file;

for each file, retrieving a list of components in the file and
attempting to retrieve from an attribute field of at least
one component of the file, the count value correspond
ing to the maximum number of components of the file;
and

Feb. 16, 2006

for each file, if the count value corresponding to the
maximum number of components of the file was Suc
cessfully retrieved from an attribute field of at least one
component of the file, comparing a number of compo
nents on the list to the count value and determining
whether the file has fewer components than the count
value.

8. The method of claim 7, wherein a file is identified as
having a metadata inconsistency if the attempt to retrieve the
count value from an attribute field of at least one component
of the file is unsuccessful.

9. In a distributed object-based storage system that
includes a plurality of object Storage devices, and one or
more clients that acceSS distributed, object-based files from
the object Storage devices, each of Said files being comprised
of a plurality of object components residing on different
object Storage devices, a System for identifying files that are
missing components, comprising:

at least one Server that, for at least one component of each
file, stores a count value in an attribute field of the
component, wherein the count Value corresponds to a
maximum number of components for the file;

wherein, for each file, the at least one Server retrieves a list
of components in the file and attempts to retrieve from
an attribute field of at least one component of the file
the count value corresponding to the maximum number
of components of the file, and

wherein, for each file, the at least one server compares a
number of components on the list to the count value and
determines whether the file has fewer components than
the count value if the count Value corresponding to the
maximum number of components of the file was Suc
cessfully retrieved from an attribute field of at least one
component of the file.

10. The system of claim 9, wherein the at least one server
identifies a file as having at least one missing component if
the attempt to retrieve the count value from an attribute field
of at least one component of the file is unsuccessful.

