US 20150205677A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0205677 A1l

MCHUGH et al.

43) Pub. Date: Jul. 23, 2015

(54)

(71)

(72)

(73)

@

(22)

(62)

SYSTEM AND METHOD FOR LOGICAL
DELETION OF STORED DATA OBJECTS

Applicant: Amazon Technologies, Inc., Seattle, WA
(US)

Inventors: Jason G. MCHUGH, Seattle, WA (US);

Praveen Kumar GATTU, Redmond,

WA (US); Michael A. TEN-POW,

Seattle, WA (US); Derek Ernest

DENNY-BROWN, II, Seattle, WA (US)

Assignee: Amazon Technologies, Inc., Seattle, WA
us)

Appl. No.: 14/673,808

Filed: Mar. 30,2015

Related U.S. Application Data

Division of application No. 13/953,447, filed on Jul.
29, 2013, now Pat. No. 8,996,831, which is a division
of'application No. 12/886,757, filed on Sep. 21, 2010,
now Pat. No. 8,504,758.

Publication Classification

(51) Int.CL
GOGF 11/14 (2006.01)
GOGF 3/06 (2006.01)
GOGF 1730 (2006.01)
(52) US.CL
CPC GOGF 11/1453 (2013.01); GOGF 11/1435
(2013.01); GOGF 17/30356 (2013.01); GO6F
3/0652 (2013.01); GOGF 3/067 (2013.01);
GOGF 3/0619 (2013.01); GOGF 2201/84
(2013.01); GO6F 2201/80 (2013.01)
(57) ABSTRACT

Systems and methods for providing object versioning in a
storage system may support the logical deletion of stored
objects. In response to a delete operation specifying both a
user key and a version identifier, the storage system may
permanently delete the specified version of an object having
the specified key. In response to a delete operation specifying
auser key, but not a version identifier, the storage system may
create a delete marker object that does not contain object data,
and may generate a new version identifier for the delete
marker. The delete marker may be stored as the latest object
version of the user key, and may be addressable in the storage
system using a composite key comprising the user key and the
new version identifier. Subsequent attempts to retrieve the
user key without specifying a version identifier may return an
error, although the object was not actually deleted.

requester initiates PUT type
opstation specifving a user key

¥

sforage system assigns

sentine! versior-id value
to chiect being FUT

14¢

¥
storage system storgs
new obfect. overwriting any
existing ofyject with same
key and sentine! version-id
745

e Versioning 8
. isturned on (enabled}? T

y

storage systarr generstes naw,
unigue version-id for object
feing PUT, assigns it fo obfsct
130

¥

storage system sfores
new object, afong with
assigned version-id
180

¥

F

storage system reftms
respoanse 10 requester; response
includes assigned version-id
170

Patent Application Publication

Jul. 23,2015 Sheet 1 of 16 US 2015/0205677 Al

requester inftigtes PUT type
operation specifving & user key

1ig

= is tumned

" versioning
on (enabled)?

staorage systent assigns
senfinel version-id value
to object being PUT
140

sforage systern generates new,
urique version-id for olyect
being PUT, assigns it fo object
7.3Q

k4

storage system storgs
new objoct, overwriting any
existing object with same
key and sentinel version-id
145

Storage system stores
snew object, afong with
assigned version-id
180¢

'L

response to requesior; response
includes assigned version-id

storage system returns

170

G 1

Patent Application Publication

Jul. 23,2015 Sheet 2 of 16

requester initiates GET type
operation specifving & user key
218

OBJ}- CcT zmirym‘;an .
. speczfies a Version- ;o’

US 2015/0205677 Al

starage sy \f{’fﬂ determinas the
{atest version of the object; assigns
its version-id as the specified
version-if for the instruction
£25

VoS . specifisd A

< version is defete marker?

e fet‘ummr
NG ~~has permission 1o access

¥
storage system
returns error indication
270

spemﬁed version?

sforage system retums the
data object having the
specified key and version-id
253

FiG. 2

Patent Application Publication Jul. 23,2015 Sheet 3 of 16 US 2015/0205677 A1

requaster initiates COPY type
operation specifying a ussr key
310

e OBJEC‘T;R:;;‘MP&OH ‘
— ‘%‘pecme@ & version-id?
320

storage system determines the
latast version of the data object;
assigns s version-id as the specified
varsion-id for the instruction storage system makes
325 copy of the specified version
of the datz object
230

0 e verw{mm TS ¥ES
AAAAAAAAAAAAAAAAAAAA < s turned on (eﬁabied}‘? Jpon

storage system

assigns sentins! version-id storage system generales riew,

value to data object copy _unique version-id ior
355 the copy of the data object
— 364

v I

storage system stores data

obiject copy in Jestination
bucket, overwriting any
aexisling data object
with same key and
sentine! version-id
285

storage system stores data object

copy in destination buckst,
along with assigned version-id
374

e

FIG. 3

A4

storage system rglums
response (o requestar; response
includes assigned version-id
278

Patent Application Publication

Jul. 23,2015 Sheet 4 of 16 US 2015/0205677 Al

retfurn error indication
425

firmit responses fo keys
beginning with specified prefix
438

requester initiates operation {o list all
data object versions in a bucket
£7¢

has permission {o .

e JCCESS bucket 0bfe

i3

[

e INSHUCHOIT ™
specilies prefix?
e 430

’t‘}“.

cause kevs with same
string between prefix and
delimiter to be rofled up info
g single resull elerment
445

TN Struction ™
specifies defimiter?

0

parametors further refing
whore {within the bucket}
to begin listing
455

e TN SHUCHON ™
specifies key-marker o,
oo ANUOF VEFSION-IT MATKGH 7, oo

4885

max-keys equals defauit value §

e TS CH O™
%, Specifies max-keys? e

yes

return max-kevs

e i, e

information
475

rasuits and YRS e

O™
results than e 1103 relum aff resulls
max-keys? PP B mooting criteria

FiG. 4

Patent Application Publication Jul. 23,2015 Sheet 5 of 16

requester initiates DELETE iype
operation specifying a user key,
bt not specifying & version-id

US 2015/0205677 Al

S5i¢

~reguester ™

~Vversioning

starage system dsistes
object with specified kay and
Sentinel version-id valusg, thus
delsfing actfual object data
550

~Fas permission to delets™
. obijecis in bucket?
e 520

. has sver been
vy, ENEBICT 011 DUCKEL? o

., CNE0I2A On bucket?

storage sysiem
retums error
indicalion
825

110

“versioning
i& currently

;

varsfoning is suspended;
storage system deletss contents of

storage sysfem genersies
new defete marker with new,
unigue version-id as fatest
version for specified key;
no actual object dats deleled
5443

a previously stored obiect having
spacified key and the seniine!
version-id value, if any
580

v

storage system marks previousty
stored object having specified
key and szniinst version-id
value ag defsie marker, or
generales new delele marker;
delefe marker Decomes lalest
version for specified key

574

FiG. §

Patent Application Publication

Jul. 23,2015 Sheet 6 of 16

requestor inftiates DELETE type
operation specifying both
a user key and a version-id
a1e

7 has pormission (0 T
delete spacific versions of

_ objecis siored in target
s bucket?

. 520

no .

refurns errar indication

yes]

sforage system

830

¥

storage system deleles object data
with specified user key and version-id

840

i

Storage system returmns
response indicating deletion

843

VEFSIon was a delels
marker? e
o, DEG e

US 2015/0205677 Al

no indication of a delete
marker mcluded in response
&80

FIG. 6

response includes an
indication that the deleied
version was a delete marker
885

Patent Application Publication Jul. 23,2015 Sheet 7 of 16 US 2015/0205677 A1

storage system creates new buckel;
inftial versioning state is “off”
710

!

GET VERSIONING operations on buckest
{made by reguesters with permission
to check versioning sfatus) return "off”
720

P

requesler {with permission o modify
varsioning slate) initiates change of
versioning state for bucket using a
PUT VERSIONING operation
730

T VERS!ONENG
nperaiwr toggles state fmm ™
“off " or :suapendncg o e
N 65‘*3235{3&”’

FPUT VERSIONING operalion VERE‘;%’;;;{}JEZE};}%%;‘;& OIS
toggles state from “enabled” {made by requesiers with
to "suspended” state permission) return buckst
ke, versioning siatus “enabled”
770

'

subseqguent GET
VERSIONING opsrations
{made by reguesiars with
permission) refum bucket
versioning status “suspended”
80

o More e
versioning siate .
R chamges ;aquesfed ?
e, L80 e

1o versioning state changs

FIG. 7

Patent Application Publication

Jul. 23,2015 Sheet 8 of 16

US 2015/0205677 Al

requesier infliates PUT ACL
operstion specifyving a user key

8310

~ operation specifies 8

storage syetem dofermines
the lafest vaersion of the dafa
object; assigns ifs version-id
as the specified version-id
for the instruction
222

UTA(‘:‘_ -

VErsion-id?

YOS _ e weuf‘ed T
L ve;sz@n is Q’ciez{; maﬁ@r?

mqimﬂ‘fe o
e has permission o™

¥

storage system refurns
ervor indication
860

" add or modify an ACL for
. ?@}Ei‘i?f&‘ﬁ V@féi()f? ? e

storage system sefs ACL for
specified version of the data object
850

FIG. 8

Patent Application Publication

Jul. 23,2015 Sheet 9 of 16

requester initiates GET ACL
operation speciying a user key
814a

nge:amrs eper*;fs&s a
version-id?
220

for the instruction

storags system defermines

the latesi version of the dala

object; assigns its varsion-id
as the specified version-id

yes .

no

g2
=
¥
storage system refurns
error indication
a6¢0

e spec:frsd T
o version is delete rrdri«er?

has p?n‘nme;ore o
- view or retrieve an ACL -
RN (¢4 specmed vers:on

US 2015/0205677 Al

storage svstem refums
ACL for specilied version
of the data object
864

FIG. 9

Patent Application Publication Jul. 23,2015 Sheet 10 of 16 US 2015/0205677 A1

e PUT OBIECT

Key=photo.gif]
b_éect """"""""""""""""""""""""""""
1010 e i

. N Key=photo.gif :
b ID=2121212 i

Koy=photo.git | . Key=pholo.gif |
D=4857693 .4 P JD=4857693

Keyephoto.gif

ID=8930287 10893028
bucket bucket
1029 1020
FIG. 10A G, 108
| Dolsic Marker
N N e Rey=photo.gif .
— o JOZTIATTT
SRR G DELETE KEY Key=photo. gif
L AD=R121292 Key=photo.gif iD=2121212
Key=photo.gif | Key=photo, gif
_ID=4857693 . [D=4857695
Key=phoio.gif ﬁ Key=photo. gif
_D=8030287 . 1D=6930257
: bucket
bucket
1028 1020
G, 10C FiG. 10D

Defete Marker

Key=photo.gif -
< _D=1i1111 Y GETOBJECT

W Key=photo. gif
fO=2121292
Key=photo.gif
1D=4857683
Kay=photo.gif

bucket
1020 FIG. 10E

B 404 No Cbiect Found

Patent Application Publication Jul. 23,2015 Sheet 11 0of 16 US 2015/0205677 A1

A :pf?ami -
JD=8830287 .-

M"M%M—\ ;i‘"mwmmmm\
w w
Diefete Marker e e Delete Marker
Key=phHoto.gif GET QBJECT Key=photo.gif
< ID=149147 T Key=photo.gif k7T ip=171771 T
Key=photo.qgif LAEEES3028T Key=photc.gif
o 52129292 0=2129212
Key=photo.gif Key=photo.gif
H=4857693 1D=4857683
Kev=photo.gif Key=photo.gif
e SEAFEATO28T 10=5930287
bucket bucket
1020 1820
FiG. 10F FiG. 106G
MWWMN
\W
Dalote Marker
Fey=photo.gif S —
T D=111111 2 DELETE VERSION levtes fAATLe
- . Dielete Marker
Key=pholo.gif Key=photo.gif Key=photo.gif
= D=2121212 !D==¢857593b e E R i
Key=photo.gif Key=phola.gif
{D=4857693 D=2121212
Key=photo.gif Key=photo.gif
e SO=EG30287 1D3=8930287
bucket bucket
1020 102¢

FIG. 10H FiG. 101

Patent Application Publication Jul. 23,2015 Sheet 12 0of 16 US 2015/0205677 A1

PUT OBJECT
=photo.gif |

obiect
1110

buckst
1128
G 11A
S N RPUT ORIECT
Key=pholo. gif
nbject
1111

Key=photo.gif

bucket
1120

FiG. 11C

" . DELETE KEY
Key=photo.gif Key=photo.gif

bucket
1140

G 11E

Key=photo.gif
d=sentingl .-

buckat
1120

FIG. 118

Key=photo.gif
D=genting!

bucket
1120

FiG. 11D

buckst
1120

FiG. 11F

Patent Application Publication Jul. 23,2015 Sheet 13 0of 16

e 3 PUT OBJECT
Key=photo.gif

objact
1112

Key=pholn.gif

Sl=sentingl
bucket
1125
G 116
— PUT OBJECT
ofo.gif
b}ect
1113

ey=phoic. gif A
ID=5539052 .4
Key=photo.gif
Key=photo.gif ;
iD=sentingl __.*

bucket
1427

FiG. 111

US 2015/0205677 Al

__iD=893028

Key=photo. ga’ T
{D=sentinel

bucket
1128

FIG. 11H

“Key=photo.gif |
D=5538052 .4
Key=photo.gif

_ID=8930287
Key=photo.gif
_iD=sentinel __

bucket
1127

FIG. 11J

Patent Application Publication

Key=photo. gif
__ID=5530052
Kay=phoio. gif
__D=8830287 .-
Key=phoio.gif
_il=seniine! .

buckat
1127

Jul. 23,2015 Sheet 14 of 16

DELETE KEY
Key=photo.gif

FiG. 11K

) Esy:phefo‘ gif -

Koy=pholo.gif

, Delete Marker
. Key=pholo.gi

buckst
1127

__{0=5b38052 .

_{D=8930287 A

_iD=sentinel .

GET QOBJECT
Hoy=photo.gif

FIG. 1T1M

A ey:phoa‘ﬂ.gi i
L JD=56539082 .

Key=photo.gif |
L JD=8930287 .4
» Delete Marker
} Key=phaoto.gif
e JD=sentingd .

bucket
1127

FIG. 170

e 404 No Object Found

US 2015/0205677 Al

Patent Application Publication Jul. 23,2015 Sheet 15 0f 16 US 2015/0205677 A1

CH4

C#4
CH3

CH4
CH3
C#2

C#H3
CH2
Bit4

C#e
B4
BH3

B4
B#3
B#2

B#3
B#2

FIG. 12B
Bit1

FIG. 12A
FiG. 12C

B#2
Bi#1
B
{sentinel)

A4
A4
AH4

A#3
A#3
A#3

AH#2

key map 1200
A

key map 1200
AHZ

key map 1200

Patent Application Publication Jul. 23,2015 Sheet 16 of 16 US 2015/0205677 A1
computer system 1300
DIOCEssor processor DIOCESS0r
1310a 1210h 1310n

Y0 interface 1330

:

system memory 1320

code 1325

data store
1322

!

network inferface
1340

|

G 13

\

to/from network

US 2015/0205677 Al

SYSTEM AND METHOD FOR LOGICAL
DELETION OF STORED DATA OBJECTS

[0001] This application is a divisional of U.S. patent appli-
cation Ser. No. 13/953,447, filed Jul. 29, 2013, now U.S. Pat.
No. 8,996,831, which is a divisional of U.S. application Ser.
No. 12/886,757, filed Sep. 21, 2010, now U.S. Pat. No. 8,504,
758, which is hereby incorporated by reference herein in its
entirety.

BACKGROUND

[0002] Although some storage systems support the storing
of multiple versions of a file, they typically do not provide
version-aware operations other than those used to support
fairly simple backup and recovery services. In general, cur-
rently available storage services, and their underlying storage
systems, do not support other use models that may require
more access to, and/or control over, multiple versions of a file
or other stored data.

[0003] Online and other remote data storage services have
become widely available in recent years. In a typical model, a
storage service may provide storage for backup data, which
may be retrieved in the event of a hardware failure, an acci-
dental deletion of data, or data loss as a result of a security
breach or other malicious act. Storage services may also
provide long-term remote storage for archival or historical
purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a flow diagram illustrating a method for
storing a data object in a storage system that supports ver-
sioning, according to one embodiment.

[0005] FIG. 2 is a flow diagram illustrating a method for
retrieving a data object from a storage system that supports
versioning, according to one embodiment.

[0006] FIG. 3 is a flow diagram illustrating a method for
copying a data object that is stored in a storage system that
supports versioning, according to one embodiment.

[0007] FIG. 4 is a flow diagram illustrating a method for
listing the versions of data objects stored in a storage system
that supports versioning, according to one embodiment.
[0008] FIG. 5 is a flow diagram illustrating a method for
deleting a user key in a storage system that supports version-
ing, according to one embodiment.

[0009] FIG. 6 is a flow diagram illustrating a method for
deleting a specific version of a data object that is stored in a
storage system that supports versioning, according to one
embodiment.

[0010] FIG. 7 is a flow diagram illustrating a method for
changing the versioning state of a bucket in a storage system
that supports versioning, according to one embodiment.
[0011] FIG. 8 is a flow diagram illustrating a method for
adding an access control list (ACL) to a data object in a
storage system that supports versioning, according to one
embodiment.

[0012] FIG. 9 is a flow diagram illustrating a method for
retrieving an access control list (ACL) of a data object from a
storage system that supports versioning, according to one
embodiment.

[0013] FIGS. 10A-101 illustrate the effects of various
operations on a versioning-enabled bucket in a storage system
that supports versioning, according to one embodiment.

Jul. 23,2015

[0014] FIGS. 11A-11M illustrate the effects of various
operations on a bucket when a versioning feature is off,
enabled, or suspended, according to one embodiment.
[0015] FIGS. 12A-12C illustrate the ordering of elements
in a key map, according to some embodiments.

[0016] FIG. 13 illustrates one embodiment of a computer
system that supports versioning of stored data objects, as
described herein.

[0017] While the technology described herein is suscep-
tible to various modifications and alternative forms, specific
embodiments thereof are shown by way of example in the
drawings and will herein be described in detail. It should be
understood, however, that the drawings and detailed descrip-
tion thereto are not intended to limit the disclosure to the
particular form disclosed, but on the contrary, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope of the present disclosure as defined
by the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Introduction

[0018] The systems and methods described herein may pro-
vide support for storing multiple versions of an object and a
variety of use cases that depend on such versioning support.
In some embodiments, object versioning may be selectively
enabled or suspended (e.g., by a data owner or privileged
user) by toggling the versioning state of a collection of stored
objects. The storage systems described herein may provide a
simple interface that can be used to store and retrieve object
data from a single stored version of an object or from any of
a series of versions of the object. The systems and methods
described herein for supporting storing multiple versions of a
data object may in some embodiments allow for more control
over the versions of objects than previous storage systems. In
some embodiments, a storage system may be instructed to
store multiple value versions of each object that is identified
by a unique key. The systems and methods described herein
may allow users (e.g., storage service subscribers) and/or
client applications (e.g., tools) to store, retrieve and/or delete
objects without knowing (or needing to know) the versioning
state of the targeted collection of stored objects. However, a
data owner (or privileged user) may (at various points) decide
to enable versioning on a given collection of stored objects,
e.g., in order to support the recovery of deleted data.

[0019] The methods described herein may protect users
from accidental overwrite, logical corruption, and unintended
deletion, and may allow users to access a sequence of changes
to the value (i.e. changes to the object data, or content) of an
object over time. In some embodiments, each stored object
may include two identifying components: a key and a version
identifier (or “version-id”). In such embodiments, the com-
bination of a key and a version-id may uniquely identify an
object in a bucket. Objects in the same bucket that have the
same key but different version-ids may be referred to as
versions of one another, object versions of the key, or simply
versions of the key. In some embodiments, the versioning
techniques described herein may enable multiple versions of
an object to be stored in the same bucket. In various embodi-
ments, the methods described herein may be employed in
local or remote storage systems, including systems that pro-
vide storage services to users (e.g., subscribers) over the
Internet.

US 2015/0205677 Al

[0020] The following concepts and terms may be used
herein to describe systems and methods that support data
object versioning, according to various embodiments:

[0021] Bucket—A bucket is a logical container in which
objects may be stored in a storage system on behalf of a
user. In some embodiments, every object may be con-
tained in a bucket, and every object may be addressable
using a combination of a bucket identifier and one or
more identifiers of the object itself

[0022] Object—Objects are the fundamental entities
stored in a storage system. In some embodiments, the
stored objects may include object data and/or metadata.
For example, each object may include a data object
portion, and a metadata portion (which may include
default metadata and/or versioning related metadata).
As noted above, in some embodiments, an object may be
uniquely identified within a bucket by the combination
of'a user key (e.g., an object name) and a version iden-
tifier (or version-id).

[0023] Key—A key is an identifier for an object within a
bucket. In some embodiments, every object in a bucket
may have exactly one key, and the combination of a
bucket, key, and version identifier may uniquely identity
each object stored in the storage system.

[0024] In some embodiments, the data object portion of an
object may be opaque to the storage system, i.e. it may be
treated as a “black box™ entry by the storage system. In
various embodiments, the default metadata of an object may
include, e.g., a name-value pair, the date the object was last
modified, and/or an indicator of the content type (i.e. the data
type of the contents of the data object portion of the object). In
some embodiments, the metadata associated with an object
may include system interjected key-value pairs (containing,
for example, a creation date and/or a last modified date),
along with user supplied key-value pairs. Examples of ver-
sioning related metadata are described in more detail below,
according to various embodiments. In some embodiments,
metadata associated with and/or stored in an object may
include an access control list (ACL). In some embodiments, a
developer may be able to specify custom metadata at the time
an object is stored. In various embodiments, the amount of
metadata that can be associated with a given object may be
restricted by the limits of the interface used, and/or the
amount of data allowed or supported by the system for a
request or response message.

[0025] In various embodiments, the storage systems
described herein may include support for the following stor-
age related tasks:

[0026] Create buckets—create and name a bucket that
stores data and/or metadata in objects.

[0027] Store data in buckets. In various embodiments,
each object may be stored and retrieved using a unique
key, which may be assigned by the developer of the data
or owner of the bucket. For example, when writing an
object to the storage system, a user may specity a unique
key in the namespace of a bucket owned by the user.

[0028] Retrieve data—1In various embodiments, a user
may retrieve his or her data (i.e. to read and/or download
the contents of the objects that he or she owns) and/or
may enable others to retrieve that data.

[0029] Permissions—In various embodiments, a bucket
owner (and/or another privileged user who has the

Jul. 23,2015

required permissions) may grant or deny access to others
who want to upload data into or download data from a
particular bucket.

[0030] Delete data—In some embodiments, a bucket
owner (and/or another privileged user who has the
required permissions) may delete some of the data
stored in the bucket.

[0031] List stored objects—In various embodiments, a
bucket owner (and/or another privileged user who has
the required permissions) may request a list of some or
all of the objects stored in the bucket.

[0032] As noted above and described in more detail herein,
in some embodiments, a user may need to have special per-
mission to be able to perform certain operations in the storage
system. For example, a user may need to be designated as a
privileged user in the system (and/or for a particular bucket in
the system) in order to check a versioning state, modify a
versioning state, delete objects and/or keys, retrieve logically
deleted data, set permissions on buckets or objects thereof,
etc. In some embodiments, such permissions may be auto-
matically granted to and/or controlled by the bucket owner. In
other embodiments, such privileges may be designated and/or
granted to users by other means and/or based on factors other
than bucket ownership. In various embodiments, some or all
of these permissions may be granted and/or controlled on a
bucket basis. In other embodiments, one or more of these
permissions may be granted and/or controlled on an indi-
vidual object basis, or on the basis of the object type or
content type.

[0033] As noted above, in some embodiments, all objects
may be uniquely identified by a key/version-id pair. In such
embodiments, operations that retrieve data from objects, such
as GET OBJECT, GET ACL, and COPY OBJECT operations
defined by an Application Programming Interface (API), may
accept an optional version-id input that identifies a particular
version of an object from which to retrieve data. For each of
these APIs, if akey is specified, but no version-id is specified,
the system may be configured to automatically determine the
version-id of the latest version of the object having the speci-
fied key, and to retrieve data from that version of the object
(i.e. to automatically fill in the latest version-id for a specified
key if no version-id is specified). In some embodiments,
operations that create new objects, such as PUT OBJECT,
PUT ACL, and COPY OBJECT operations defined by the
API, may automatically generate a unique version-id (which
may be a unique string) and assign it to the newly created
object. In some embodiments, a version-id may be bound to
an object for the lifetime of the object and can never be
changed. In some embodiments, subsequent to the execution
of'a DELETE OBJECT operation that specifies a key, but not
a version-id, attempts to retrieve an object having the speci-
fied key without specifying a version-id (e.g. using GET
OBIJECT, GET ACL, or COPY OBIJECT operations) may
return an error indication. Note, however, that in this case, the
storage system may not have actually deleted any data
objects, or the contents thereof. In some embodiments, in
order to permanently delete an object version, a DELETE
type request may need to specify both a key and a version-id.
[0034] Unlike in previous storage systems (e.g., systems in
which all objects are versioned or systems that do not support
any object versioning), in some embodiments of the storage
systems described herein, users may be able to turn object
versioning on and/or off for a given bucket over time. As
described in more detail below, various operations performed

US 2015/0205677 Al

on a bucket and/or on objects thereof may behave differently
depending on whether versioning has been toggled on (i.e. is
“enabled:) oris “off” (or “suspended”) for the bucket. In other
words, at least some of the actions taken to perform requested
accesses may be dependent on whether object versioning is,
or has ever been, enabled for the bucket. In such embodi-
ments, the versioning state is an attribute associated with a
bucket. In some embodiments, the versioning state may ini-
tially be “off”, but may be toggled on (e.g., changed to the
“enabled” state) by a privileged user or bucket owner, and
may be subsequently toggled off again (e.g., changed to the
“suspended” state) by a privileged user or bucket owner. As
described in more detail below, toggling the versioning state
of a bucket may change the default behavior of delete and
store type operations. For example, when versioning is
toggled on, store and delete type operations may not over-
write an object nor actually delete the object. However, tog-
gling versioning oftf may not imply that all versions of an
object are removed in response to a delete type operation or
overwritten in response to a store type operation. Instead, it
may mean that the storage system stops automatically creat-
ing new versions in response to mutating operations, such as
these.

[0035] Insomeembodiments, users may elect to turn object
versioning on after a bucket stores a given number of objects
(e.g., one million objects). At that point, the objects already
stored in the bucket may be accessible using standard APIs
that allow them to be deleted and/or overwritten. However, in
some embodiments, newly added objects within the bucket
(i.e. objects that are PUT into the bucket after versioning has
been enabled) cannot be overwritten and cannot overwrite the
existing objects. In effect, the existing objects (those stored
prior to versioning being enabled) may be thought of as
implicit object versions that have version-ids with a special
sentinel value (e.g., a null value, or some other pre-defined,
reserved value). Note that the special sentinel value may in
some embodiments have the useful property that its lexico-
graphical value is less than that of every other valid version-id
value. In some embodiments, after some use (e.g., after vari-
ous versions of different objects are created and/or removed),
the versioning feature may be turned off again, or suspended.
At that point, accesses may proceed as they would have
before versioning was enabled, and all of the versions of the
objects may be addressable (e.g., as implicit object versions,
or by specifying a version-id). The behavior of store type
operations is described in more detail below, according to
different embodiments.

[0036] Insome embodiments, a newly created bucket may
not have versioning enabled, but versioning may be enabled
for the bucket at later time. In other words, the default ver-
sioning state of a newly created bucket may be that versioning
is “off” In such embodiments, versioning may be enabled
(e.g., at some point in the future) in order to provide recovery
from unintended overwrites and deletions, or to archive
objects so that multiple versions of them can be retrieved
later. Before versioning is enabled for a bucket, the storage
system may behave as if versioning were not supported in the
system at all. For example, prior to enabling versioning for a
particular bucket, the bucket may exhibit the following char-
acteristics and behaviors: only one data object having a given
key may exist in the bucket, a GET OBJECT operation may
be used to retrieve an object that is stored in the bucket, a PUT
OBJECT operation may be used to store an object in the
bucket (and may overwrite an existing object with the same

Jul. 23,2015

key), and a DELETE OBJECT operation may be used to
remove the object. In some embodiments of a system that
supports versioning, if versioning is not enabled for a particu-
lar bucket (i.e. if the versioning state is “oft” or “suspended”),
objects stored in that bucket may be assigned a special senti-
nel version-id value. In some embodiments, if versioning is
later enabled for the bucket, the objects already stored in the
bucket (i.e. those stored in the bucket while versioning was off
or suspended) may be unchanged. For example, the version-
id value (i.e. the sentinel value), object data (i.e. contents),
and permissions associated with any previously stored
objects may remain the same as they were before versioning
was enabled.

[0037] The most common access pattern for a storage sys-
tem may be a request to access the latest version of an object
(i.e. the latest version of an object having a specific user key).
A naive implementation of such an access in a system that
supports the toggling of versioning state may require that a
symbolic link be generated linking an access request to a user
key that does not include a version-id (i.e. a non-versioned
access) to a specific version of the object having the specified
user key. Such a link may be thought of as a pointer that maps
a“key K with no version specified” to “key K with version V”’.
Creation and maintenance of such pointer/link entities may
have a negative impact on the performance and/or scalability
of the storage system. For example, in systems that rely on
pointer/link entities, in order to migrate stored objects from a
storage system (or bucket thereot) for which versioning is not
supported to a storage system (or bucket) for which version-
ing is supported, a unique version-id may need to be gener-
ated for and assigned to each and every pre-exiting object in
the storage system or bucket, and a pointer to the latest ver-
sion of each object may need to be created and maintained as
other versions are added to and/or deleted from the storage
system or bucket.

[0038] The systems and methods described herein may in
various embodiments provide “latest version” support with-
out the need to explicitly generate such symbolic links, and
without relying on locking data objects and/or versions
thereof. This may in some embodiments allow the system to
maintain simple access to objects, and to maintain backwards
compatibility in the semantics and implementation of the
system for customers who choose not to enable object ver-
sioning, or choose to delay its adoption for their buckets.
Because of these requirements, and because many object
versions may exist in the storage system or a bucket thereof
for a given key, the users may need to disambiguate which
version that they want to get, copy, or delete by providing a
specific version identifier for any accesses to that key. How-
ever, requiring this in all cases may complicate accesses to
stored objects (e.g., accesses made via a web browser in a
web-based storage service use-case). Instead, the systems
described herein may provide latest version support by an
extension of the underlying data structure in which data and
metadata of various objects are stored and through the use of
a FIND NEAREST operation defined by the API such that a
version-id may not need to be specified for all accesses to
objects stored in the system.

[0039] In some embodiments, the version-ids described
herein may include sequencers with the property that the most
significant bytes of the version-id (i.e. a sequencer portion)
encode the time at which the version-id was generated. In one
example, the sequencer may encode a value representing the
difference between a predetermined time in the distance

US 2015/0205677 Al

future and the time at which the sequencer (or version-id) was
created. In some embodiments, the system may store objects
that include a series of version-ids (or sequencers thereof) that
has a total ordering across all sequencers. In such embodi-
ments, the result of a comparison of the version-ids of the
stored objects may be the same as the result of a comparison
of the times at which the version-ids (or sequencers thereof)
were created. In some such embodiments, a FIND NEAREST
operation specifying a given user key, may return either the
first key-value pair in the total ordering ofkey-value pairs that
includes the given user key, or the next key-value pair in the
total ordering of key-value pairs.

[0040] In some embodiments, a single Unicode data point
(e.g., the null character or another pre-defined, reserved char-
acter) may be introduced into the version-id as a delimiter
character to connect a user key with the sequencer. In such
embodiments, sequences of <key, value> pairs (for which the
key may be a composite key consisting of a user key, followed
by a connector or delimiter character, followed by a version-
id) may be stored within a data structure, e.g., in a key map, to
reflect an overall ordering of objects in a particular bucket.
Note that in some embodiments, the chosen delimiter char-
acter may not be allowed in a user-specified key, or in any
user-specified portion of the composite key described above.
However, in some such embodiments, this character may be
used by the storage system for internal operations, as
described herein. In some embodiments, the version-id for
each explicit object version may include a sequencer portion
and an ID portion, while the version-id for an implicit object
version may be a special sentinel value. In some embodi-
ments, the ID portion of a version-id for an explicit object
version may be generated by the system (e.g., randomly, or
using another suitable approach), and may be unique to the
target bucket and/or the namespace for the specified user key.
In other embodiments, the ID portion may be assigned by a
data owner or privileged user, and may be required to be
unique to the target bucket and/or the namespace for the
specified user key. In some embodiments, the ID portion may
be a globally unique identifier (GUID). For example, in some
embodiments, the composite key for an explicit object ver-
sion may be of the form shown below, and the combination of
the sequencer and the ID portion may be referred to collec-
tively as the version-id for the explicit object version.

[0041] [bucket/user key]|[version delimiter|[sequencer]
[1D]
[0042] Inone example, the version delimiter for a compos-

ite key may be a null character (e.g., 0x00), and the version-id
may comprise 16 bits (e.g., 8 bits for the sequencer portion
and 8 bits for the ID portion). Other numbers and combina-
tions of delimiters (or delimiter bits), sequencers (or
sequencer bits), and identifiers (or identifier bits) may be
included in a composite key, in other embodiments. The use
of the composite key described above, along with a FIND
NEAREST operation, may in some embodiments provide a
way for a storage system to automatically ascertain the ver-
sion-id of (and access) the latest object version for a key in
constant time and without adding any additional indirection.
Thus, in some embodiments the number of input/output
operations required to put, get and/or delete keys in systems
that support the toggling of versioning state and APIs that
may or may not include a version-id may not be significantly
different than the number of input/output operations used in
standard accesses to keys in systems that do not support
versioning or the toggling of versioning state. In other words,

Jul. 23,2015

the systems described herein may efficiently determine the
latest version of an object, so that the performance of an
operation to identify and retrieve the latest version of an
object (i.e. when the version-id not specified) may be essen-
tially the same as the performance of an operation to retrieve
any arbitrary object version when the version-id is specified.
By contrast, naive link implementation approaches, such as
that described above, may double the cost of such accesses in
many, if not most, situations.
[0043] Asdescribed in more detail below, the efficient logi-
cal deletion of an object may be supported in the underlying
data structure of the storage systems described herein by the
inclusion of object versions called “delete marker objects”, or
simply “delete markers”. For example, in some situations, a
user may wish to block or limit access to some or all versions
of'a key without removing the key or its associated data from
the storage system and/or bucket in which it is stored. In some
embodiments, the system described herein may create delete
markers within the data structure to denote the logical dele-
tion of the key. In such embodiments, the objects having the
specified key may not actually be removed from the bucket in
which they are stored, and may still be addressable and/or
their contents may still be accessible (e.g., to the bucket
owner and/or another privileged user).
[0044] Asdescribed herein, a delete marker is a special type
of object version that may have no data associated with it. In
some embodiments, a delete marker may be used to indicate
that an object having the same user key as the delete marker
has been logically deleted. As described in more detail below,
a delete marker may be created by the storage system in
response to a DELETE OBJECT operation that specifies only
a user key and not a version-id. This newly created delete
marker may be the latest version of the key specified in the
DELETE OBIJECT operation. Note that in some embodi-
ments, multiple delete markers may be created for a given
key, as described in more detail below.
[0045] Delete markers are unique in some ways, but may be
treated the same as other entries in the underlying data struc-
ture by most components of the storage system. The use of
delete markers may provide the added benefit of supporting
simple object lineage, and may allow users to track object
creation, object overwrite, object delete, and object re-cre-
ation use cases. Being able to track object lineage, as in some
embodiments, may be especially useful in certain security
applications.
[0046] In wvarious embodiments, delete markers may
behave like other object versions in the following ways:
[0047] Delete markers entries within the data structure
may have the same size and impact on algorithmic run-
ning time as other object version entries.
[0048] They may appear in the results of LIST VER-
SIONS operations.

[0049] They may have an associated user key and ver-
sion-id.

[0050] They may be the “latest” version of a key.

[0051] They may be explicitly deleted using their ver-
sion-id.

[0052] Only a user who has the required permissions

(e.g., the bucket owner and/or another privileged user to
whom such permissions have been granted) may delete
a delete marker stored in a given bucket.

[0053] There may be a storage cost associated with them,
e.g., in terms of the number of bytes in the bucket and
key.

US 2015/0205677 Al

[0054] They may need to be explicitly deleted in order to
delete the bucket in which they are stored.

[0055] They may have an owner (e.g., the requester that
performed the DELETE OBJECT operation that created
them).

[0056] They may have a “last modified” date.

[0057] In various embodiments, delete markers may be
different from other object versions in the following ways:

[0058] They may not have data associated with them.

[0059] They may nothave an ACL (e.g., because an ACL
may have data associated with it).

[0060] Only requesters with permission to access delete
markers in the bucket in which they are stored may learn
of'their existence (e.g., using a LIST VERSIONS opera-
tion, as described in more detail below).

[0061] A usermay not be able to explicitly retrieve them,
because they have no value. The result of such an attempt
may be the return of an error indication.

[0062] A DELETE VERSION type operation (such as
one defined by an API) may be the only operation
described herein that can be applied to operate on (rather
than merely expose the existence of) a delete marker.

[0063] A delete marker may mark the logical deletion of an
object, and may be used to support end-user logical deletion
as well as undelete operations. In some embodiments, the use
of delete markers may protect users from various accidental
deletion scenarios.

[0064] As noted above, the systems described herein may
include operations (e.g., as defined by an API) that support
and understand object versioning, some of which may behave
differently depending on the current (and/or past) versioning
state of a targeted bucket. For example, in some embodi-
ments, an operation for storing a data object in the system
(e.g., a PUT OBIJECT operation) may guarantee that the
object will never be overwritten, and that only a privileged
user with permission to delete specific object versions in the
buckets in which it is stored (e.g., using a delete type opera-
tion that specifies its version-id) can delete it. This API may
further guarantee that a store type operation will never over-
write an existing object in a bucket. FIG. 1 is a flow diagram
illustrating a method for using such an API to store a new data
object in a data storage system that supports versioning,
according to one embodiment. As illustrated at 110, the
method may include initiating a PUT type operation that
specifies a user key. For example, a requester (e.g. a user, user
application, or process) may issue a PUT OBJECT instruc-
tion to a shared storage system or storage service, and that
PUT OBIJECT instruction may conform to an API similar to
those described herein. The PUT OBJECT instruction may be
issued to request that a particular data object be stored in a
bucket that is owned by the requester (e.g., a bucket owned by
a user who is a storage service subscriber), and/or that is
currently being accessed. In response to receiving the request
(i.e. via the PUT instruction), the storage system may assign
a version identifier (version-id) to the new data object and
may store the new data object in the bucket, as described in
more detail below. Note that in some embodiments, if the
requester does not have permission to modity the contents of
the bucket, the storage system may return an error indication
in response to an attempt to perform this operation (not
shown).

[0065] As illustrated in this example, if versioning is
enabled for the bucket into which the new data object is to be
stored (i.e. if the versioning state of the target bucket is

Jul. 23,2015

“enabled”), shown as the positive exit from 120, the method
may include the storage system generating a new, unique
version-id for the new data object, and assigning that version-
id to the new data object, as in 130. The storage system may
then store the new data object in the target bucket, along with
its assigned version-id, as in 160.

[0066] Ifversioning is not enabled for the bucket (i.e. if the
versioning state of the bucket is “off” or “suspended”), shown
as the negative exit from 120, the method may include the
storage system assigning a special sentinel version-id value to
the new data object, as in 140. The storage system may then
store the new data object in the target bucket, along with its
assigned version-id (the sentinel value), as in 145. As illus-
trated in this example, if the bucket already stores an existing
data object having the same key as the new data object and
that existing data object has the sentinel version-id value,
storing the new data object may include overwriting the exist-
ing data object that has the same key and the sentinel version-
id value.

[0067] As illustrated at 170 in FIG. 1, the storage system
may return a response to the requester indicating whether the
PUT operation was successtul (i.e. whether the data object
was successfully stored in the target bucket). As illustrated in
this example, the version-id assigned to the data object in
response to the PUT operation may be included in the
response returned to requester. For example, in some embodi-
ments, the assigned version-id may be included in a header
element in the response. Again note that if the versioning state
of'a bucket is “off” or “suspended” at the time that the PUT
operation is issued, the storage system may assign a sentinel
version-id value to the data object being PUT. Note that in
some embodiments, if a requester attempts to specify a ver-
sion-id for a PUT operation, the storage system may return an
error indication (e.g., 405 Method Not Allowed, or similar).
[0068] Insome embodiments, when an object is stored in a
bucket, metadata about the object may be stored in a data
structure (e.g., a key map) associated with the bucket. This
metadata may indicate the user key, version-id value, and a
creation/modification date. For example, in some such
embodiments, when a new object is created, a time stamp
corresponding to the date and time at which the new object is
created may be stored as a creation/modification date for that
object in a key map element associated with the object. If the
object is an implicit object version (e.g., one with the special
sentinel version-id value), the creation/modification date in
the key map element associated with the object may be
updated when (and if) the implicit object version is overwrit-
ten by a subsequent store operation (e.g., as shown at 145 in
FIG. 1).

[0069] In various embodiments, data objects stored in the
system may be retrieved using a GET OBJECT operation.
This API may behave the same irrespective of whether ver-
sioning is enabled, off, or suspended for the targeted bucket.
In some embodiments, the requester may need to have per-
mission to access the object version being retrieved in order to
perform this operation. This may be true even if a version-id
is not specified in the request. In this case the requester may
need to have permission to access the latest object version for
the key specified in the request (i.e. the object version corre-
sponding to the most recent key/version-id pair in lexico-
graphic order).

[0070] FIG. 2 is a flow diagram illustrating a method for
retrieving a stored data object from a data storage system that
supports versioning, according to one embodiment. As illus-

US 2015/0205677 Al

trated at 210, the method may include a requester (e.g. a user,
user application, or process) initiating a retrieve type opera-
tion that specifies a user key. For example, the requester may
issue a GET OBJECT instruction to a shared storage system
or storage service, and that GET OBJECT instruction may
conform to an API similar to those described herein. The GET
OBIJECT instruction may be issued to request that a particular
data object be retrieved from a bucket that is owned by the
requester (e.g., a bucket owned by a user who is a storage
service subscriber), and/or that is currently being accessed. In
response to receiving the request (i.e. via the GET OBJECT
instruction), the storage system may return the data object
specified in the request, as described in more detail below.

[0071] As illustrated in this example, if the GET OBJECT
instruction does not specify a version-id, shown as the nega-
tive exit from 220, the method may include the storage system
determining the latest version of the data object having the
specified user key (e.g., using a FIND NEAREST operation),
asin225, and assigning its version-id as the specified version-
id for the GET OBJECT instruction. Note that in some cases
the data object version that is determined to be the latest
version by the operation illustrated at 225 may not be latest
version of the object by the time one or more of the subse-
quent operations illustrated in FIG. 2 are performed. How-
ever, the data object version that was determined to be the
latest version at 225 may be the target of the GET OBJECT
operation for the remainder of the GET OBJECT process
illustrated in FIG. 2.

[0072] As illustrated in this example, the method may
include determining whether the specified version is a delete
marker, as in 230. If so, shown as the positive exit from 230,
the storage system may return an error indication to the
requester, as in 270. If the specified version is not a delete
marker, shown as the negative exit from 230, the method may
include the storage system determining whether the requester
has permission to access (i.e. to view and/or retrieve) the
specified version, as in 240. If not, shown as the negative exit
from 240, the storage system may return an error indication to
the requester, as in 270. If the requester has permission to
access the specified version, shown as the positive exit from
240, the method may include the storage system returning the
stored data object that has the specified user key and the
specified version-id, as in 250. Note that the error indication
returned if the requested version is a delete marker may be
different than the error indication returned if the requester
does not have permission to access the specified version, in
some embodiments. Note also that if the requested object
version does not exist (not shown), yet another error indica-
tion may be returned. For example, in some embodiments,
each error indication returned by the storage system may
include a text string describing the applicable error condition
(s). In some embodiments, the requester may only be able to
learn about the existence of delete markers if the requester has
permission to access delete markers the target bucket or to list
all object versions in the target bucket. In this case, the error
indication may include an indication (e.g., in the header) that
the specified version is a delete marker. Again note that the
GET OBJECT instruction may behave the same whether the
current versioning state of the targeted bucket is “enabled”,
“oft”, or “suspended” at the time that the GET OBJECT
instruction is issued, in some embodiments.

[0073] In some embodiments, a copy type operation may
behave like a retrieve type operation followed by a store type
operation, and may behave in the same way that the retrieve

Jul. 23,2015

and store type operations behave with respect to the current
(and/or past) versioning state of a targeted bucket. For
example, a request to perform a COPY OBIECT operation
may include a specific version-id along with the user key (i.e.,
the requester may specify a key/version-id pair) as the source
object (i.e. the object to be copied), or may specify only the
user key. If only the user key is specified for the source object,
the storage system may automatically determine the latest
version-id for that key, as described herein. In some embodi-
ments, a request to perform a COPY OBJECT operation may
include a destination user key to be associated with the copy
of the data object when it is stored in the destination bucket.
As with the PUT type operation described above, this API
may cause the storage system to automatically generate a
unique version-id for the destination object if versioning is
enabled for the destination bucket. If versioning is off or
suspended for the destination bucket, the API may cause the
storage system to use the sentinel version-id value for the
copied object. In some embodiments, if the requester
attempts to specify a version-id for the destination object, the
storage system may return an error indication (e.g., 405
Method Not Allowed, or similar).

[0074] FIG. 3 is a flow diagram illustrating a method for
copying a data object that is stored in a storage system that
supports versioning, according to one embodiment. As illus-
trated at 310, the method may include a requester (e.g. a user,
user application, or process) initiating a COPY operation that
specifies a user key. For example, the requester may issue a
COPY OBIECT instruction to a shared storage system or
storage service, and that COPY OBIJECT instruction may
conform to an API similar to those described herein. The
COPY OBIECT instruction may be issued to request that a
particular data object be retrieved from a bucket that is owned
by the requester (e.g., a bucket owned by a user who is a
storage service subscriber), and/or that is currently being
accessed, and that a copy of that data object be stored in the
bucket. In response to receiving the request (i.e. viathe COPY
OBIJECT instruction), the storage system may retrieve the
data object specified in the request from the bucket and store
a new copy of that data object in the same bucket or (if a
different destination bucket is specified) in a different bucket,
as described in more detail below. As noted above, in some
embodiments, a request to perform a COPY OBJECT opera-
tion may include a destination user key to be associated with
the new copy of the data object when it is stored in the
destination bucket. Note that in some embodiments, the
requester may need to have permission to view and/or retrieve
objects in the source object (i.e. the data object to be copied)
and permission to modify the contents of the destination
bucket in order to perform this operation. In such embodi-
ments, if the storage system determines that the requester
does not have permission to view or retrieve the specified
version or does not have permission to modify the contents of
the destination bucket, the storage system may return an error
indication (not shown). In addition, in some embodiments,
the storage system may determine whether the specified ver-
sion is a delete marker, and, if so, may return an error indica-
tion (not shown).

[0075] Asillustrated in this example, if the COPY OBJECT
instruction does not specify a version-id, shown as the nega-
tive exit from 320, the method may include the storage system
determining the latest version of the data object having the
specified user key (e.g., using a FIND NEAREST operation),
asin 325, and assigning its version-id as the specified version-

US 2015/0205677 Al

id for the COPY OBIECT instruction. Again note that in
some cases the data object version that is determined to be the
latest version by the operation illustrated at 325 may not be
latest version of the object by the time one or more of the
subsequent operations illustrated in FIG. 3 are performed.
However, the data object version that was determined to be
the latest version at 325 may be used as the source of the
COPY OBJECT operation for the remainder of the COPY
OBIJECT process illustrated in FIG. 3. In this example (as-
suming the requester has permission to view and/or retrieve
the specified version, and the specified version is not a delete
marker), the method may include the storage system making
a copy of the specified version of the data object, as in 330. If
the latest version of the data object is a delete marker, the
method may instead include the storage system returning an
error indication (not shown).

[0076] As illustrated at 350, if versioning is enabled for the
bucket into which the copy of the data object is to be stored
(i.e. if the versioning state of the destination bucket is
“enabled”), shown as the positive exit from 350, the method
may include the storage system generating a new, unique
version-id for the copy of the data object, and assigning that
version-id to the data object copy, as in 360. The storage
system may then store the data object copy in the destination
bucket, along with its assigned version-id, as in 370.

[0077] If versioning is not enabled for the destination
bucket (i.e. if the versioning state is “off” or “suspended”),
shown as the negative exit from 350, the method may include
the storage system assigning a sentinel version-id value to the
copy of the data object, as in 355. The storage system may
then store the data object copy in the destination bucket, along
with its assigned version-id (the sentinel value), as in 365. As
illustrated in this example, if the destination bucket already
stores an existing data object having the same key as the data
object copy and that existing data object has the sentinel
version-id value, storing the new data object in the destination
bucket may overwrite the existing data object that has the
same key and the sentinel version-id value.

[0078] As illustrated at 375 in FIG. 3, the storage system
may return a response to the requester indicating whether the
COPY operation was successful (i.e. whether the particular
data object was successfully copied and the data object copy
stored in the destination bucket). As illustrated in this
example, the version-id assigned to the data object copy in
response to the COPY OBJECT instruction may be included
in the response returned to the requester. For example, in
some embodiments, the assigned version-id may be included
in a header element in the response. As illustrated in FIG. 3,
the COPY OBIECT instruction may in some embodiments
behave differently when the current versioning state of the
destination bucket is “enabled” than when the current ver-
sioning state is “off”, or “suspended” at the time that the
COPY OBIECT instruction is issued, while the current ver-
sioning state of the source bucket may not affect the behavior
of the COPY OBIJECT instruction.

[0079] The systems described herein may in some embodi-
ments support multiple operations for listing the contents of a
bucket. For example, one operation defined by the API (e.g.,
a LIST BUCKET operation) may behave in a manner similar
to that of a corresponding operation in existing storage sys-
tems that do not support data object versioning. Such an API
may be used to list only the versions of stored data objects that
can be retrieved without specifying a version-id for the data
objects. For example, such an API may cause the storage

Jul. 23,2015

system to return a list of the latest version of each data object
stored in the bucket unless the latest version of a data object is
a delete marker. In this example, if the latest version of a data
object were a delete marker, no data objects listed in the
response would have the same user key as the delete marker.
In some embodiments, this operation may support prefix
and/or delimiter narrowed listing, or limiting the result set to
a maximum number of keys.

[0080] Another operation defined by the API (e.g., a LIST
VERSIONS operation) may be used to list all of the versions
of the data objects stored in a given bucket, rather than only
the versions of stored data objects that can be retrieved with-
out specifying a version-id for the data objects. For example,
such an API may cause the storage system to return a list of
every version of each data object stored in the bucket, includ-
ing any versions of stored data objects that are delete markers.
In this example, if one of the versions of a data object were a
delete marker, the delete marker would be included in the data
objects listed in the response. As with the GET BUCKET
operation described above, this operation may support prefix
and delimiter narrowed listing, limiting the result set to a
maximum number of keys, and a pagination/marker mecha-
nism.

[0081] As noted above, in some embodiments, a data struc-
ture (e.g., a key map) may store metadata about the objects
contained in a storage system or in a bucket thereof. For
example, in some embodiments, a key map for a particular
bucket may include a collection of inodes, each of which
represents an object stored in the bucket. Each inode may
include metadata associated with the object it represents, and
this metadata may indicate (e.g., directly or through any of
various encoding schemes) its user key, version-id, and cre-
ation/modification date. The order of the inodes in a key map
may reflect a total ordering for the objects in a bucket, e.g.,
based on the user keys and version-ids of the objects in the
bucket. For example, in some embodiments, the inodes may
be sorted first by user key (e.g., lexicographically), and then
by version-id. In some such embodiments, the object versions
returned by a LIST VERSIONS operation may be ordered
first in ascending lexicographic order of their keys (e.g., in
alphabetical order, A to Z), and then in descending order of
their creation dates (i.e. with the latest version listed first).
Several examples of key maps are illustrated in FIGS. 12A-
12C, and described in more detail below. The use of key maps
in determining the latest version of an object is also described
in more detail below.

[0082] As noted above, both object versions with data and
object versions that are delete markers may be included in the
list of objects returned to the requester. In some embodi-
ments, each entry in the returned list of objects may include an
indication of whether or not it is the latest version for its key.
Again note that the operations that retrieve object data may
automatically fill in the latest version-id for the specified key
if no version-id is specified. Various parameters that may be
supported by a LIST VERSIONS operation include:

[0083] Prefix—If specified, this parameter may limit the
responses to keys that begin with the indicated prefix.
Prefixes may be used to separate the contents of a bucket
into different sets of keys in a manner similar to the way
that a file system uses folders.

[0084] Delimiter—If specified, this parameter may
cause keys that contain the same string between the
prefix and the first occurrence of the delimiter to be
rolled up into a single result element in a “common

US 2015/0205677 Al

prefixes” collection, and these rolled-up keys may not be
returned elsewhere in the response.

[0085] Max keys—If specified, this parameter may indi-
cate the maximum number of keys to be included in the
result (e.g., in the body of the response). In some
embodiments, ifa value of this parameter is not specified
in the request, a default value may be applied by the
storage system.

[0086] Key marker—If specified, this parameter may
indicate a point in the bucket at which to begin listing. In
various embodiments, a key marker may be used with or
without a version-id marker.

[0087] Version-id marker—Ifthis parameter is specified,
it may, in combination with a key marker, indicate the
point in the bucket at which to begin listing.

[0088] Insomeembodiments, if the number of objects that
could be returned for a LIST VERSIONS request exceeds the
number specified by the max keys parameter (e.g., 1000), the
LIST VERSIONS response may indicate that the returned list
has been truncated. In some embodiments, the LIST VER-
SIONS response may include an indication of the next key
marker and next version-id marker, and these may be included
in a subsequent LIST VERSIONS request (e.g., the next
request) in order to continue listing the remaining object
versions in the target bucket.

[0089] FIG. 4 is a flow diagram illustrating a method for
listing all of the versions of the data objects stored in a given
bucket in a storage system that supports versioning, accord-
ing to one embodiment. As illustrated at 410, the method may
include a requester (e.g. a user, user application, or process)
initiating an operation to list all data object versions in a
bucket. For example, the requester may issue a LIST VER-
SIONS instruction to a shared storage system or storage ser-
vice, and that LIST VERSIONS instruction may conform to
an API similar to those described herein. The LIST VER-
SIONS instruction may be issued to request a list of all data
object versions stored in a bucket that is owned by the
requester (e.g., a bucket owned by a user who is a storage
service subscriber), and/or that is currently being accessed. In
response to receiving the request (i.e. via the LIST VER-
SIONS instruction), the storage system may return a list of all
data object versions stored in the bucket (including delete
markers), as described in more detail below.

[0090] As illustrated in this example, the method may
include the storage system determining whether the requester
has permission to access (i.e. view and/or retrieve) the objects
in the target bucket, as in 420. If not, shown as the negative
exit from 420, the method may include the storage system
returning an error indication, as in 425. If the requester has
permission to access the objects in the target bucket, shown as
the positive exit from 420, the storage system may respond to
the request by determining the list of data object versions to
be returned. For example, if the LIST VERSIONS instruction
specifies a prefix, shown as the positive exit from 430, the
storage system may limit the responses to data objects with
user keys beginning with the specified prefix, as in 435.
Similarly, if the LIST VERSIONS instruction specifies a
delimiter, shown as the positive exit from 440, the storage
system may cause data objects with keys having the same
string between any specified prefix and the delimiter to be
rolled up into a single result element, as in 445.

[0091] As illustrated in FIG. 4, if the LIST VERSIONS
instruction specifies a key marker and/or version-id marker,
shown as the positive exit from 450, these parameters may

Jul. 23,2015

specify at what point in the lexicographical ordering of the
stored objects the storage system is to begin listing the data
object versions in the target bucket, as in 455. In some
embodiments, if a key marker and a version-id marker are
specified, the list returned by the storage system may only
include objects that come after the specified (key marker,
version-id) pair in the defined ordering. For example, if the
request specifies a key marker value of “key2”, the response
may begin with an entry for which the key comes lexico-
graphically after the specified key marker (e.g., “key3”). In
another example, if the request specifies a values for a key
marker of “key2” and a version-id marker of “11223344”, the
response may begin with the first entry that comes after the
data object corresponding to the specified key/version-id pair
in lexicographic order. Note that the version-id marker may
be specified as the sentinel value. In this case, the response
may begin with the first entry that comes after an implicit
version of a data object having the specified key. In some
embodiments, if a key marker is specified, but a version-id
marker is not specified, the list returned by the storage system
may only include objects for which the corresponding key
comes at or after the specified key marker (according to the
defined ordering). As noted above, if the LIST VERSIONS
instruction does not specify a value for max-keys, shown as
the negative exit from 460, the storage system may use a
default value for max-keys when returning the list of data
object versions in the target bucket, as in 465. If the storage
system determines that there are no more data object versions
in the bucket meeting the criteria specified by the LIST VER-
SIONS instruction than the number specified by max-keys,
shown as the negative exit from 470, the method may include
the storage system returning all of the results meeting the
specified criteria, as in 480.

[0092] Ifthe storage system determines that there are more
data object versions in the bucket that meet the criteria speci-
fied by the LIST VERSIONS instruction than the number
specified by max-keys, shown as the positive exit from 470,
the method may include the storage system returning only the
number of results equal to the value of max-keys, as in 475.
Note that in some embodiments, if not all of the results can be
returned due to the max-keys limit, the storage system may
return continuation information (e.g., a key marker and/or
version-id marker) reflecting the point at which the results
were truncated. In some embodiments, a subsequent LIST
VERSIONS operation may be invoked to retrieve additional
results using that continuation information. For example, the
values of some of the parameters described above may be
specified in a subsequent LIST VERSIONS operation such
that the results of the subsequent LIST VERSIONS operation
include the next max-keys data object versions that would
have immediately followed the results returned for the first
LIST VERSIONS operation had no maximum number of
results been enforced. In various embodiments, any number
of'such LIST VERSIONS operations may be invoked in order
to list all of the data object versions in the target bucket.

[0093] In some embodiments, if the requester attempts to
specify a version-id or user key for a LIST VERSIONS opera-
tion, the storage system may return an error indication (e.g.,
405 Method Not Allowed, or similar). Note that the storage
systems described herein may not support a distinct listing
type operation that returns only the versions of a particular
data object (i.e. all of the data object versions having a speci-
fied user key). However, in some embodiments, the param-
eters described herein for narrowing the list of responses to a

US 2015/0205677 Al

LIST VERSIONS request may be used to limit responses in
different ways. For example, the prefix parameter may be
used to limit responses to data objects whose user keys begin
with the specified prefix. If the prefix value specified in a
LIST VERSIONS request corresponds to a user key value,
and if there are no other user key values that being with that
prefix value, the responses may be limited to the data object
versions for a specific object.

[0094] The systems and methods described herein for sup-
porting object versioning may allow efficient logical deletion
ofa stored object, using the delete marker described above. In
some embodiments, a DELETE KEY operation may behave
differently from the DELETE VERSION API described
herein, in that a version-id is not specified for a DELETE
KEY operation. For example, if the versioning state of the
targeted bucket is enabled when a DELETE KEY operation is
issued, this APl may cause the storage system to create a new
delete marker as the latest object version for the specified user
key, and may assign a unique version-id to the delete marker.
As noted above, the delete marker may not store any object
data (i.e. the contents of the delete marker object may be
empty), but the delete marker object may include metadata,
such as that described herein. In this example, subsequent
attempts to retrieve an object having the specified key without
specifying a version-id (e.g. using GET OBJECT, GET ACL,
or COPY) may return an error indication (e.g., 404 Object
Not Found, or similar). Note, however, that in this case, the
storage system may not have actually deleted any data
objects, or the contents thereof, and the data object versions
previously stored in the bucket may be addressable (and/or
their contents accessible) using retrieval operations that
specify their version-ids. Note that in some embodiments, the
requester may need to have permission to modify the contents
of the target bucket and/or permission to delete objects (or
objects with the specified user key) in the target bucket in
order to perform a DELETE KEY operation.

[0095] FIG. 5 is a flow diagram illustrating a method for
deleting a user key in a storage system that supports version-
ing, according to one embodiment. As illustrated at 510, the
method may include a requester (e.g. a user, user application,
or process) initiating a delete type operation that specifies a
user key, but that does not specify a version-id. For example,
the requester may issue a DELETE KEY instruction to a
shared storage system or storage service, and that DELETE
KEY instruction may conform to an API similar to those
described herein. The DELETE KEY instruction may be
issued to request that a user key be deleted from a bucket that
is owned by the requester (e.g., a bucket owned by a user who
is a storage service subscriber), and/or that is currently being
accessed. As described in more detail below, in response to
receiving the request (i.e. viathe DELETE KEY instruction),
the storage system may logically delete the specified key from
the bucket, and may or may not actually delete a data object or
its contents from the target bucket.

[0096] As illustrated at 520, the method may include the
storage system determining whether the requester has per-
mission to delete objects that are stored in the target bucket. If
not, shown as the negative exit from 520, the method may
include the storage system returning an indication of an error
to the requester, as in 525. If the requester has permission to
delete objects that are stored in the target bucket, shown as the
positive exit from 520, and if versioning has never been
enabled on the bucket (e.g., if the current versioning state is
“off” and is has never been “enabled”), shown as the negative

Jul. 23,2015

exit from 530, the method may include the storage system
deleting a version of a stored data object having the user key
specified in the request and the sentinel version-id value, if
such a version exists. In this case, actual object data (includ-
ing the content stored in the data object) may be deleted, as in
550. As illustrated in this example, if the bucket’s versioning
state is currently “enabled”, shown as the positive exit from
530 and the positive exit from 535, the method may include
the storage system generating a new delete marker (with a
new, unique version-id) as the latest version for the specified
key, as in 540. As illustrated in this example, in this case, no
actual object data is deleted. On the other hand, if the version-
ing state of the bucket is “suspended”, shown as the positive
exit from 530 and the negative exit from 535, the method may
include the storage system deleting the contents of a previ-
ously stored object having the specified key and the sentinel
version-id value (if any exists), as in 560. The method may
also include the storage system marking a previously stored
object having the specified key and the sentinel version-id
value (if any exists) as a delete marker, or (if none exists)
generating a new delete marker (with the sentinel version-id
value), as in 570. The delete marker may then become the
latest version for the specified key. In some embodiments,
marking a previously stored object as a delete marker may
involve modifying metadata associated with and/or stored in
the object to designate the object as a delete marker.

[0097] Note that in some embodiments, more than one
delete marker object may be stored in the bucket for a given
key. For example, if a delete operation is requested for a given
key after a delete marker has already been created for that key,
another delete marker (with another unique version-id) may
be created for that key. In such embodiments, two or more
delete markers may be created back-to-back (i.e. as adjacent
object versions in the sequential ordering of objects with the
given key), or delete markers may be stored in the bucket in
multiple arbitrary positions within the sequential ordering of
objects with the given key. For example, if two delete opera-
tions specitying the same key are performed (and versioning
is enabled) without performing any store operations specify-
ing that key between them, two back-to-back delete markers
may be created in the bucket. If one or more store operations
for a given key are performed between two delete operations
specifying that key (and versioning is enabled), the delete
markers and newly stored object versions may be interspersed
within the sequential ordering of objects with that key.

[0098] As previously noted, a different operation, e.g., a
DELETE VERSION operation defined by the APL, may in
some embodiments be used to permanently delete a version of
a stored data object. In such embodiments, this API may
provide the only way to permanently delete object versions
that are protected by versioning, while objects having a sen-
tinel version-id value may be overwritten and/or deleted in
other ways. Since this API facilitates the irreversible, perma-
nent deletion of data, it may be a privileged operation that can
only be performed by the owner of the bucket containing the
data object version targeted for deletion and/or by another
privileged user to whom permission to permanently delete a
version of a stored data object has been granted. In some
embodiments, as long as a user/subscriber is not acting as the
bucket owner or as a privileged user, the user/subscriber can-
not irreversibly delete the data stored in a bucket. Note that
this DELETE VERSION operation is different from the
DELETE KEY operation described above in that a version-id
must be specified for the DELETE VERSION operation. As

US 2015/0205677 Al

noted above, in some embodiments, the requester may need to
have permission to modify the contents of the target bucket, to
have permission to delete the specified object version, and/or
to be acting as the bucket owner or as a privileged user in order
to perform a DELETE VERSION operation.

[0099] FIG. 6 is a flow diagram illustrating a method for
deleting a specific version of a data object stored in a storage
system that supports versioning, according to one embodi-
ment. As illustrated at 610, the method may include a
requester (e.g. a user, user application, or process) initiating a
delete type operation that specifies a user key and a version-
id. For example, the requester may issue a DELETE VER-
SION instruction to a shared storage system or storage ser-
vice, and that DELETE VERSION instruction may conform
to an API similar to those described herein. The DELETE
VERSION instruction may be issued to request that a speci-
fied version of a data object be deleted from a bucket that is
owned by the requester (e.g., a bucket owned by a user who is
a storage service subscriber), and/or that is currently being
accessed. As described in more detail below, in response to
receiving the request (i.e. via the DELETE VERSION
instruction), the storage system may logically delete the
specified key from the bucket, but may or may not actually
delete any object data (e.g., the content of any stored data
objects) from the target bucket.

[0100] As illustrated at 620, the method may include the
storage system determining whether the requester has per-
mission to delete specific versions of objects stored in the
target bucket. If not, shown as the negative exit from 620, the
method may include the storage system returning an indica-
tion of an error to the requester, as in 630. If the requester has
permission to delete specific versions of objects stored in the
target bucket, shown as the positive exit from 620, the method
may include the storage system deleting the object data with
the specified key and version-id, as in 640. As illustrated in
this example, in this case, actual object data is deleted.
[0101] As illustrated in this example, the method may
include the storage system returning a response (e.g., to the
requester) indicating that the data object has been deleted, as
in 645. If the deleted version was a delete marker, shown as
the positive exit from 650, the response may include an indi-
cation that the deleted version was a delete marker, as in 655.
If the deleted version was not a delete maker, no such indica-
tion is included in the response, as shown in 660. Note that in
some embodiments, this API may behave the same regardless
of' whether the current versioning state of the targeted bucket
is “enabled”, “off” or “suspended”. Note also, that in some
embodiments, a bucket cannot be deleted unless all of the
object versions stored in the bucket have been permanently
deleted using the DELETE VERSION API.

[0102] As described herein, the versioning state of a bucket
may have different implications for each API performed on
that bucket and/or for objects stored within that bucket. In
some embodiments, the versioning state of a bucket can be in
one of three possible states: off, enabled, and suspended. As
previously noted, in some embodiments, the versioning state
of newly created buckets may be the off state, by default. In
some embodiments, once the bucket versioning state is either
enabled or suspended, the versioning state may never be
reverted to the off state. In some embodiments, the storage
systems described herein may provide APIs to set and/or
retrieve the value of a bucket’s versioning state. In such
embodiments, a requester may need have to have a special
type of permission to retrieve the versioning state of a bucket,

Jul. 23,2015

and may need to have the same or a different type of permis-
sion on the bucket (and/or be acting as the bucket owner) in
order to set or change its versioning state.

[0103] FIG. 7 is a flow diagram illustrating a method for
changing the versioning state of a bucket in a storage system
that supports versioning, and some of the effects of such a
change, according to one embodiment. As illustrated at 710 in
FIG. 7, the method may include the storage system creating a
new bucket, for which the initial versioning state may be
“off”. As noted above, in some embodiments, the default
versioning state for newly created buckets may be “off” while
in other embodiments, the default versioning state may be
“enabled”, or a user may be able to specify the versioning
state for newly created buckets. In this example, while ver-
sioning is turned off, a GET type operation on the versioning
status of the bucket (e.g., using a GET VERSIONING
instruction) may return a value indicating that the versioning
state is “off”, as in 720.

[0104] As illustrated at 730, a requester (e.g. a user, user
application, or process) may initiate a change of the version-
ing state using a PUT type operation. For example, the
requester may issue a PUT VERSIONING instruction to a
shared storage system or storage service, and that PUT VER-
SIONING instruction may conform to an API similar to those
described herein. In some embodiments, the PUT VERSION-
ING instruction, which may be used to specify a new version-
ing state for a bucket, may only be issued by a requester that
has permission to modify the versioning state of the bucket
(e.g., the bucket owner and/or another privileged user who has
permission to modify the versioning state of the bucket). Ifthe
PUT VERSIONING operation specifies that the versioning
state for the bucket should be toggled from “off” or “sus-
pended” to “enabled”, shown as the positive exit from 740,
the method may include the storage system changing the
versioning state of the bucket to “enabled”. For example, in
embodiments in which the default versioning state for a
newly created bucket is the “off” state, the PUT VERSION-
ING operation may be used to change the versioning state to
“enabled”. In other words, during a first invocation of the
method illustrated in FIG. 7, the positive exit may be taken
from element 740. On one or more subsequent invocations of
the method illustrated in FIG. 7, the versioning state may be
toggled from “enabled” to “suspended” or (subsequently)
from “suspended” to “enabled” by alternating between the
positive and negative exits from element 740 on alternate
invocations. Once the versioning state of the bucket has been
changed to “enabled”, any subsequent GET VERSIONING
operations on the bucket versioning status may return a value
indicating that the versioning state is “enabled”, as in 770,
until or unless another change in the versioning state is
requested. As illustrated in FIG. 7, in some embodiments a
requester may only be able to view the versioning state of a
bucket if the requester has permission to view the versioning
state of the bucket.

[0105] Asillustrated in FIG. 7, if any additional versioning
state changes are requested, shown as the positive exit from
780, the method may include repeating the operations illus-
trated in 730-780 for the requested changes. Otherwise,
shown as the negative exit from 780, the versioning state may
not change, as in 790. If the PUT VERSIONING operation
does not specify that the versioning state of the bucket should
be toggled from “off” to “enabled” shown as the negative exit
from 740, the PUT VERSIONING operation may specify that
the versioning state of the bucket should be toggled from

US 2015/0205677 Al

“enabled” to “suspended”, as in 750. In the example
described above, on the second invocation (and subsequent
alternating invocations) of the method illustrated in FIG. 7,
the negative exit from 740 may be taken. In other words, the
PUT VERSIONING operations of these invocations may be
used to toggle the versioning state of the bucket from
“enabled” to “suspended”. If the PUT VERSIONING opera-
tion specifies that the versioning state of the bucket should be
toggled from “enabled” to “suspended”, the method may
include the storage system changing the versioning state of
the bucket to “suspended”. Once the versioning state of the
bucket has been changed to “suspended”, any subsequent
GET VERSIONING operations on the bucket versioning sta-
tus may return a value indicating that the versioning state is
“suspended”, as in 760, until or unless another change in the
versioning state is requested. As illustrated in FIG. 7, in some
embodiments a requester may only be able to view the ver-
sioning state of a bucket if the requester has permission to
view the versioning state of the bucket.

[0106] Again,if any additional versioning state changes are
requested, shown as the positive exit from 780, the method
may include repeating the operations illustrated in 730-780
for the requested changes. Otherwise, shown as the negative
exit from 780, the versioning state may not change, as in 790.
As illustrated in this example, in some embodiments, the
versioning state of a bucket cannot be changed to the “off”
state from either the “enabled” or the “suspended” state.

[0107] As previously noted, in some embodiments
enabling and/or suspending versioning may be performed at
the bucket level. In other embodiments, the versioning feature
may be enabled and/or suspended for all of the buckets in a
storage system (e.g., by a privileged user), or on an owner,
content type, or other basis. Note again that enabling version-
ing on a bucket may not change anything about the objects
already stored in the bucket, including their version-ids
(whose values may all be the sentinel value), their contents,
and their permissions, but after versioning has been enabled
for the bucket, all objects added to it may be assigned a unique
version-id. In some embodiments, these unique version-ids
may be randomly generated. In some embodiments, they may
be Unicode, UTF-8 encoded, URL-ready, opaque strings of
no more than a pre-defined length. For example, in some
embodiments version-ids may be at most 1024 bytes long,
although much shorter version-ids are used in the examples
described herein. Note that in some embodiments, version-
ids may only be assigned by the storage system itself, and they
may not be editable. In some embodiments, the GET VER-
SIONING API may behave the same whether the current
versioning state of the targeted bucket is “enabled”, “oft”, or
“suspended”, i.e. it may always return the versioning state,
regardless of'its value. By contrast, in some embodiments, the
PUT VERSIONING API may behave differently depending
on whether the current versioning state of the targeted bucket
is “enabled”, “oft”, or “suspended”. For example, in some
embodiments the versioning state of a bucket may be changed
from “off” to “enabled”, from “enabled” to “suspended”, or
from “suspended” to “enabled”, but it may not be changed
from “enabled” or “suspended” to “off”. In such embodi-
ments, in response to an invalid change in the versioning state,
the system may return an error indication. In various embodi-
ments, the versioning state of a bucket may be changed in
constant time (i.e. independent of the number of objects
stored in the bucket or whether any or all of them include
unique version-ids).

Jul. 23,2015

[0108] In some embodiments, every stored object version
may have its own access control list (ACL). For example, in
some embodiments, a user may specify an ACL for an object
when writing the object to the storage system, and/or may
modify the ACL for the object at a later time. In such embodi-
ments, the system may provide APIs by which a usercan GET
and/or PUT an ACL for a specific object version by specifying
a key and a version-id in a request to do so. In some embodi-
ments, if a version-id is not specified in a GET ACL request,
the storage system may retrieve the ACL for the latest version
of the data object having the key specified in the request.
Similarly, if a version-id is not specified in a PUT ACL
request, the storage system may set the ACL for the latest
version of the data object having the key specified in the
request. In some embodiments, the GET ACL and PUT ACL
APIs may behave the same irrespective of the current version-
ing state of the targeted bucket. In some embodiments, a
requester may need to have permission to view or retrieve an
object (e.g., according to the applicable access control policy,
or ACP) to perform a GET ACL operation on the object, and
may need to have permission to modify an object (according
to the ACP) to perform a PUT ACL operation on the object, as
described below. Various authentication mechanisms may be
used to ensure that data is kept secure from unauthorized
access, according to some embodiments.

[0109] FIG. 8 is a flow diagram illustrating a method for
adding (or modifying) an access control list (ACL) to an
object in a storage system that supports versioning, according
to one embodiment. As illustrated at 810, the method may
include a requester (e.g. a user, user application, or process)
initiating a PUT ACL operation that specifies a user key. For
example, the requester may issue a PUT ACL instructionto a
shared storage system or storage service, and that PUT ACL.
instruction may conform to an API similar to those described
herein. The PUT ACL instruction may be issued to request
that an access control list be added to a stored object having
the specified user key.

[0110] As illustrated in this example, if the PUT ACL
instruction does not specify a version-id, shown as the nega-
tive exit from 820, the method may include the storage system
determining the latest version of the data object (e.g., using a
FIND NEAREST operation), as in 825, and assigning its
version-id as the specified version-id for the PUT ACL
instruction. Again note that in some cases the data object
version that is determined to be the latest version by the
operation illustrated at 825 may not be latest version of the
object by the time one or more of the subsequent operations
illustrated in FIG. 8 are performed. However, the data object
version that was determined to be the latest version at 825
may be the target of the PUT ACL operation for the remainder
of'the PUT ACL process illustrated in FI1G. 8. As illustrated in
FIG. 8, the method may include determining whether the
specified version is a delete marker, as in 830. If so, shown as
the positive exit from 830, the storage system may return an
error indication to the requester, as in 860. If the specified
version is not a delete marker, shown as the negative exit from
830, the method may include the storage system determining
whether the requester has permission to add or modify an
access control policy for the specified version of the object
(e.g., permission to add a new access control policy or over-
write an existing access control policy for the specified ver-
sion), as in 840. If the requester has permission to add or
modify an access control list for the specified version of the
object, shown as the positive exit from 840, the method may

US 2015/0205677 Al

include the storage system setting (or overwriting) the ACL
for the specified version of the data object, as in 850. If the
requester does not have permission to add or modify an access
control list for the specified version of the object, shown as the
negative exit from 840, the method may include the storage
system returning an error indication, as in 860. Note that in
some embodiments, the PUT ACL, API may behave the same
regardless of whether the current versioning state of the tar-
geted bucket is “enabled”, “off”, or “suspended”.

[0111] FIG. 9 is a flow diagram illustrating a method for
retrieving an access control list (ACL) of an object from a
storage system that supports versioning, according to one
embodiment. As illustrated at 910, the method may include a
requester (e.g. a user, user application, or process) initiating a
GET ACL operation that specifies a user key. For example, the
requester may issue a GET ACL instruction to a shared stor-
age system or storage service, and that GET ACL instruction
may conform to an API similar to those described herein. The
GET ACL instruction may be issued to request an access
control list for a stored object having the specified user key.

[0112] As illustrated in this example, if the GET ACL
operation does not specify a version-id, shown as the negative
exit from 920, the method may include the storage system
determining the latest version of the data object (e.g., using a
FIND NEAREST operation), as in 925, and assigning its
version-id as the specified version-id for the instruction.
Again note that in some cases the data object version that is
determined to be the latest version by the operation illustrated
at 925 may not be latest version of the object by the time one
or more of the subsequent operations illustrated in FIG. 9 are
performed. However, the data object version that was deter-
mined to be the latest version at 925 may be the target of the
GET ACL operation for the remainder of the GET ACL
process illustrated in FIG. 9. As illustrated in this example,
the method may include the storage system determining
whether the specified version of the object is a delete marker,
as in 930. If the specified version of the object is a delete
marker, shown as the positive exit from 930, the method may
include the storage system returning an error indication, as in
960. If the specified version of the object is not a delete
marker, shown as the negative exit from 930, the method may
include the storage system determining whether the requester
has permission to view and/or retrieve an access control list
for the specified version of the object, as in 940. If the
requester has permission to view and/or retrieve an access
control list for the specified version of the object, shown as the
positive exit from 940, the method may include the storage
system returning the ACL for the specified version of the data
object, as in 950. If the requester does not have permission to
view and/or retrieve an access control list for the specified
version of the object, shown as the negative exit from 940, the
method may include the storage system returning an error
indication, as in 960. In some embodiments, the GET ACL
operation may behave the same regardless of whether the
current versioning state of the targeted bucket is “enabled”,
“oft”, or “suspended”.

[0113] Note that in various embodiments, different ones of
the conditions that lead to the return of an error indication,
such as those illustrated in FIGS. 1-9 and described above,
may cause different error indications to be returned. In other
words, for each of the different conditions that may lead to the
return of an error condition, the response may include a
different error code and/or text string indicative of the par-
ticular condition that caused the error indication. In some

Jul. 23,2015

embodiments, such an indication may be included in the
header of a response returned by the storage system, i.e. in
response to an operation request issued by a user, user appli-
cation, or process.

[0114] FIGS. 10A-101 illustrate the effects of various
operations on a bucket in a storage system that supports
versioning, according to one embodiment. As previously
noted, in some embodiments, when an object is stored in a
versioning-enabled bucket, the old version may not be over-
written. This is illustrated in FIGS. 10A and 10B. For
example, FIG. 10A illustrates a PUT OBJECT operation in
which a new version of an object having the key “photo.gif”
is stored in a versioning-enabled bucket 1020 that already
contains two objects with the same name (i.e. with the same
user key). In this example, the original object (i.e. the object
having the version-id value shown as 1D=8930287) and
another version of the object (i.e. the object having the ver-
sion-id value shown as ID=4857693) remain in bucket 1020
following the PUT OBIJECT operation. In response to the
PUT OBJECT operation (which does not specify a version-
id), the system generates a new version identifier (shown as
1D=2121212), and adds the newer version of the object “pho-
to.gif” (illustrated in FIG. 10A as object 1010) to bucket
1020. The result of this PUT OBJECT operation is illustrated
in FIG. 10B, which depicts bucket 1020 storing all three of
these versions of the object “photo.gif”. Note that the func-
tionality described herein for generating new version identi-
fiers for objects when they are stored in the system may
prevent users from accidentally overwriting or deleting
objects, and may also provide users the opportunity to retrieve
a previous version of an object.

[0115] As previously noted, in some embodiments, when a
user key is deleted from a versioning-enabled bucket (i.e.
using a DELETE KEY operation), all versions of the object
may remain in the bucket, and a delete marker object may be
inserted in the bucket. This is illustrated in FIGS. 10C-10D.
For example, FIG. 10C illustrates a DELETE KEY operation
targeting an object stored in versioning-enabled bucket 1020
that has a user key “photo.gif”. In this example, since the
DELETE KEY operation does not specify a version-id for the
object to be deleted, no objects are actually deleted from
bucket 1020. Instead, in response to the DELETE KEY
operation, the system generates a new version-d value (shown
as ID=111111), and inserts a new delete marker object with
that version-id in bucket 1020. The result of this DELETE
KEY operation is illustrated in FIG. 10D, which depicts
bucket 1020 storing all three of the previous versions of the
object “photo.gif” and the newly added delete marker for the
“photo.gif” user key. As illustrated in this example, the delete
marker itself becomes the latest version of the data object.

[0116] As previously noted, in some embodiments, by
default, a GET OBJECT operation may retrieve and return the
latest version (i.e. the most recently stored version) of an
object having a specified user key. In such embodiments, in
response to a GET OBJECT operation specifying a user key
but not a version-id, the storage system may return an error
indication if the latest version of the object is a delete marker.
This is illustrated in FIG. 10E. In this example, a GET
OBIJECT operation targeting versioning-enabled bucket
1020 and specitying a user key “photo.gif” returns a “404 No
Object Found” error indication, since the latest version of an
object having the key “photo.gif” is a delete marker. In this
example, there is no change in the contents of bucket 1020 as
a result of this GET OBJECT operation.

US 2015/0205677 Al

[0117] In some embodiments, however, even if the latest
version of an object is a delete marker object, an older version
of that object may be retrieved using a GET OBJECT opera-
tion that specifies the version-id of the older version. This is
illustrated in FIGS. 10F and 10G. In this example, FIG. 10F
illustrates a GET OBJECT operation targeting versioning-
enabled bucket 1020 that specifies user key “photo.gif” and
version-id 8930287. In this example, even though there is a
delete marker associated with user key “photo.gif™ the speci-
fied version of the object may be retrieve and returned by the
storage system. The result of this GET OBJECT operation is
illustrated in FIG. 10G, which depicts that the data object
having key “photo.gif” and version-id 8930287 is returned to
the requester. This example illustrates that in response to a
GET OBJECT operation that specifies an object version, the
storage system may return that object version even if it is not
the latest version of that object, and even if the latest version
of that object (or any more recent version of that object) is a
delete marker object. Note that, as in the previous example,
there is no change in the contents of bucket 1020 as a result of
this GET OBJECT operation.

[0118] As previously noted, in some embodiments, a stored
data object may be permanently deleted using a delete type
operation that specifies the particular version to be deleted. In
some such embodiments, only a user with special privileges
(e.g., the owner of the bucket, or another user to whom per-
mission to permanently delete objects in the bucket has been
granted) may be able to permanently delete a version of an
object stored in the bucket. This is illustrated in FIGS. 10H-
101. In this example, FIG. 10H illustrates a DELETE VER-
SION operation targeting versioning-enabled bucket 1020
that specifies both the user key “photo.gif” and the version-id
4857693. As illustrated in this example, in response to this
DELETE VERSION operation, the storage system may per-
manently deletes the specified version of the object from
bucket 1020 without inserting a delete marker object. The
result of this DELETE VERSION operation is illustrated in
FIG. 101, which that the data object having key “photo.gif”
and version-id 4857693 has been removed from bucket 1020,
and that no additional delete marker object has been added.
Asillustrated in this example, any other versions of this object
may remain stored in bucket 1020 following this DELETE
VERSION operation.

[0119] As described herein, some of the operations target-
ing a bucket, or objects therein, may behave differently
depending on whether a versioning feature supported in the
system is off, enabled, or suspended. FIGS. 11A-11M illus-
trate the effects of various operations on a bucket when such
a versioning feature is off, enabled, or suspended, according
to one embodiment. For example, FIG. 11 A illustrates a PUT
OBIJECT operation in which an object 1110 having the user
key “photo.gif” is stored in a bucket 1120 that does not
contain any other objects with the same name (i.e. with the
same user key), and for which a versioning feature is off (and
has never been on). Note that in this example, bucket 1120
may contain objects having other user keys (not shown). In
this example, as a result of the PUT OBJECT operation, an
object having the specified user key (“photo.git”) and a ver-
sion-id with a special sentinel value is stored in bucket 1120,
as shown in FIG. 11B. FIG. 11C illustrates a second PUT
OBIJECT operation in which an object 1111, which specifies
the same user key as object 1110 (“photo.gif”), is stored in
bucket 1120. In this example, since the versioning feature is
off, this second PUT OBJECT operation causes the data of

Jul. 23,2015

object 1110 that was stored in bucket 1120 to be overwritten
by the data of object 1111. This is illustrated in FIG. 11D,
which illustrates a single object having the specified user key
(“photo.gif”) and a version-id with the special sentinel value.

[0120] As described above, when a versioning feature sup-
ported by a storage system is off, a delete type operation may
actually delete data from a bucket in the storage system. FIG.
11E illustrates a DELETE KEY operation on bucket 1120
while the versioning feature is still off. In this example, the
DELETE KEY operation specifies a user key (“photo.gif”)
but does not specify a version-id. In response to this DELETE
KEY operation, the object stored in bucket 1120 that has the
specified user key (“photo.gif”) and a version-id having the
special sentinel value is deleted. The result of this operation is
illustrated in FIG. 11F, which illustrates that bucket 1120 no
longer contains any objects having the user key “photo.gif”.

[0121] As described herein, if a versioning feature is ini-
tially off for a particular bucket, but is later enabled, various
operations targeting that bucket may behave differently than
they did before the versioning feature was enabled. In the
example illustrated in FIG. 11G, it is assumed that the ver-
sioning feature for bucket 1125 was off when one or more
PUT OBJECT operations for objects having a user key “pho-
to.gif” were performed. This resulted in a data object being
stored in bucket 1125 having the user key “photo.gif” and a
version-id with a special sentinel value, and this object may
have been overwritten by subsequent PUT OBJECT opera-
tions that also specified the user key “photo.gif” while the
versioning feature was off. FIG. 11G illustrates an operation
to store an object 1112 that has the user key “photo.gif”, and
that is performed on bucket 1125 after the versioning feature
has been enabled for bucket 1125. As a result of this PUT
OBIJECT operation, anew object version is created and stored
in bucket 1125, as illustrated in FIG. 11H. This new object
version has the user key “photo.gif”, and a new, unique ver-
sion-id value (8930287) that was created by the system in
response to the PUT OBJECT operation. Note that a subse-
quent GET OBJECT operation targeting bucket 1125 and
specifying user key “photo.gif” (but not specifying a version-
id) would return the data of object 1112, since this is the
object having the specified user key that was most recently
stored in bucket 1125.

[0122] Asdescribed herein, if a versioning feature has been
enabled for a particular bucket, but is later suspended, various
operations targeting that bucket may behave differently than
they did when the versioning feature was off or enabled. Inthe
example illustrated in FIG. 111, it is assumed that one or more
PUT OBJECT operations targeting bucket 1127 and specify-
ing the user key “photo.gif” were performed while the ver-
sioning feature was off (resulting in the storing and/or over-
writing of an object version with a version-id having a special
sentinel value), and two PUT OBJECT operations targeting
bucket 1127 and specifying the user key “photo.gif” were
performed after the versioning feature was subsequently
enabled (one of which created and stored a new object version
with version-id 8930287, and one of which created and stored
a new object version with version-id 5539052). FIG. 111
illustrates an operation to store an object 1113 that has the
user key “photo.gif”, and that is performed on bucket 1127
after the versioning feature has been suspended for bucket
1127. As a result of this PUT OBIJECT operation, no new
object versions are created or stored in bucket 1127, but the
object version previously stored in bucket 1127 and having
the user key “photo.gif” and a version-id with the special

US 2015/0205677 Al

sentinel value may be overwritten with the data of object
1113. Note that in this example, a subsequent GET OBJECT
operation targeting bucket 1127 and specifying user key
“photo.gif” (but not specifying a version-id) would return the
data of object 1113, since this is the object having the speci-
fied user key that was most recently stored in bucket 1127.
[0123] FIG. 11K illustrates a DELETE KEY operation tar-
geting bucket 1127 following the operations illustrated in
FIGS. 111 and 11J, and while the versioning feature is still
suspended for bucket 1127. In this example, the DELETE
KEY operation specifies the user key “photo.gif”, but does
not specify a version-id. In response to this DELETE KEY
operation, the system deletes the data of an object previously
stored in bucket 1127 that has the user key “photo.gif” and a
version-id with the special sentinel value. The system then
marks this object as a delete marker object in bucket 1127.
The result of this DELETE KEY operation is illustrated in
FIG. 11L, which depicts bucket 1127 storing two of the
previously stored versions of the object “photo.gif” (those
stored while versioning was enabled) and the newly marked
delete marker for the “photo.gif” user key. In this example,
the delete marker becomes the latest version of the data
object.

[0124] As previously noted, in some embodiments, by
default,a GET OBJECT operation may retrieve and return the
latest version of an object having a specified user key (i.e. the
version with the most recently stored data). In such embodi-
ments, in response to a GET OBJECT operation specifying a
user key but not a version-id, the storage system may return an
error indication if the latest version of the object is a delete
marker. In some embodiments, the behavior of the GET
OBJECT operation may be the same regardless of the ver-
sioning state of the bucket targeted by the GET OBJECT
operation. This is illustrated in FIG. 11M. In this example, a
GET OBJECT operation performed following the operations
illustrated in FIGS. 11K-11L, which targets bucket 1127 and
specifes a user key “photo.gif” but not a version-id returns a
“404 No Object Found” error indication, since the latest ver-
sion of an object having the key “photo.gif” is the recently
marked delete marker. In this example, there is no change in
the contents of bucket 1127 as a result of this GET OBJECT
operation.

[0125] FIGS. 12A-12C illustrate examples of the ordering
of the elements (e.g., inodes) in a key map, according to one
embodiment. In these examples, key map 1200 reflects the
contents of a bucket that includes objects having user keys of
A, B, and C. FIG. 12A illustrates the contents of key map
1200 after three explicit versions of each of these objects have
been stored in the bucket (while versioning was enabled for
the bucket). In this example, the version-id values for these
objects (each of which may comprise a sequencer value and a
unique identifier, in some embodiments) have been simplified
for illustration purposes, and are shown as version-id values
of 2,3, and 4.

[0126] As described herein, in some embodiments, the ele-
ments in a key map for a given bucket may be sorted first by
user key (lexicographically), and then by their version-id
values. In embodiments in which the version-id values for
each explicitly created object version includes a sequencer
portion based on the creation date of the object, sorting key
map elements for explicit object versions by their version-id
values effectively places them in order of the creation dates of
those objects (i.e. in reverse chronological order, such that the
elements associated with the most recently stored object ver-

Jul. 23,2015

sions appear first in the key map). This sorting scheme is
illustrated in FIG. 12A, in which the three versions of an
object having user key A are sorted in reverse order by ver-
sion-id, and are followed by the three versions of an object
having user key B (again sorted in reverse order by version-
id), and finally the three versions of an object having user key
C (sorted in reverse order by version-id).

[0127] As described herein, a FIND NEAREST operation
may in some embodiments be invoked by the storage system
to determine the latest version of an object with a given key,
when no version-id is specified for an operation specifying
the given key. In some embodiments, this FIND NEAREST
operation may search the key map for the target bucket to
locate the first key map element (e.g., inode) having the
specified user key. If all ofthe elements in the key map having
the specified key are associated with explicit object versions,
the first element in the key map having the specified key may
represent the latest object version with the specified key.
Thus, in the example illustrated in FIG. 12A, a GET OBJECT
operation on user key A would return the data of the object
represented by the first element of the key map (A#2), which
is an object having user key A and a version-id value of 2,
since this is the latest object version with user key A. Simi-
larly, a GET OBJECT operation on user key B would return
the data of the object represented by the fourth element of the
key map (B#2), since this is the latest object version with user
key B, and a GET OBJECT operation on user key C would
return the data of the object represented by the seventh ele-
ment of the key map (C#2), since this is the latest object
version with user key C.

[0128] FIG. 12B illustrates the contents of key map 1200
after an additional object version having user key B is stored
in the bucket associated with key map 1200. Again, it is
assumed, in this example, that versioning is enabled for this
bucket at the time the additional object version is stored.
Therefore, the newly stored object is an explicit object ver-
sion with user key B and a newly generated version-id value.
As illustrated in this example, a new element is added to the
key map between the last element representing objects having
the user key A (i.e. the element representing the oldest stored
object version with user key A) and the first element repre-
senting a previously stored version of the object having user
key B (i.e. the element representing the most recently stored
version of the object prior to storing this new object version).
In this example, the new element, shown in the fourth position
in key map 1200, reflects a user key of B, and a simplified
version-id value of 1, although the version-id value may in
some embodiments comprise a sequencer value and a unique
identifier. In the example illustrated in FIG. 12B, a GET
OBIJECT operation specifying user key B, but not specifying
aversion-id, may return the data of the explicit object version
associated with this new element in key map 1200 (labeled as
B#1), because a FIND NEAREST operation specifying user
key B may correctly identity this element of key map 1200 as
the one representing the latest object version with user key B.
Note that the results of a GET OBJECT operation that speci-
fies user key A or user key C would be no different than in the
example illustrated in FIG. 12A.

[0129] Inthe examples illustrated in FIGS. 12A and 12B, it
is assumed that versioning is enabled for the bucket associ-
ated with key map 1200, and that no objects having user keys
A, B, or C were stored in the bucket prior to versioning being
enabled or while versioning was suspended for the bucket.
Therefore, no object versions stored in the bucket having

US 2015/0205677 Al

these user keys have a version-id value that is a special sen-
tinel value (i.e. a value reflecting that the object was stored
while versioning was off or suspended for the bucket). In the
example illustrated in FIG. 12C, key map 1200 includes an
element representing one or more objects that were stored in
the bucket prior to versioning being enabled or while version-
ing was suspended. This element, shown as the fourth ele-
ment in key map 1200, represents an implicit object version
having a user key B and a sentinel version-id value. In this
example, the implicit object version represented by this ele-
ment in the key map may have been stored (and/or its data
overwritten, as described herein) at any arbitrary time during
which versioning was off or enabled. However, in various
embodiments, the key map element associated with this
implicit object version may appear first in the ordering of
elements associated with objects having user key B. For
example, in some embodiments, the special sentinel value
assigned as the version-id for implicit object versions in the
storage system may be a value that is always numerically
lower than any other valid version-id in the storage system. In
such embodiments, an element representing an implicit ver-
sion of an object with a given user key may always be the first
element in the key map for objects with the given user key. In
some embodiments, the version-id portion of key map ele-
ments representing implicit object versions may be empty
(i.e. it may not contain any value).

[0130] In the example illustrated in FIG. 12C, in response
to receiving a GET OBJECT operation specifying user key B,
but not specifying a version-id, the storage system may
invoke a FIND NEAREST operation to determine the latest
object version with user key B. However, because the key map
includes an element representing an implicit object version
with user key B, in this example, it may not be sufficient for
the FIND NEAREST operation to merely identify the first
element in the key map with user key B. For example, while
an element representing an implicit object version for a given
key may always appear first in the key map (because the
elements were sorted by their version-ids), this implicit object
version may not contain the most recently stored data for the
given key. Instead, the second element with the given key (i.e.
an element representing the most recently stored explicit
object version with the given key) may represent the object
version that contains the most recently stored data for the
given key. Therefore, in some embodiments, the FIND
NEAREST operation may need to examine the creation/
modification dates of the element associated with the implicit
object version and an adjacent element associated with an
explicit object version in order to determine which is the latest
object version for the given key. In the example illustrated in
FIG.12,a GET OBJECT specitying user key B may compare
the creation/modification dates of the implicit object repre-
sented by the fourth element of key map 1200, shown as
“B(sentinel)” in FIG. 12C, and the explicit object represented
by the fifth element of key map 1200 (labeled as B#1), and
may return the data of the object with the most recent cre-
ation/modification date, as follows:

[0131] GetNearest (B)=>Latest (B, B#1)

[0132] In some embodiments, security may be added to a
bucket by configuring a bucket to enable MFA (Multi-Factor
Authentication) Delete. In such embodiments, if MFA is
enabled, the bucket owner (or other privileged user) may need
to include two forms of authentication in any request to delete
an object version or to change the versioning state of the
bucket.

Jul. 23,2015

[0133] In some embodiments, the storage systems
described herein may provide the operations described above
using standards-based Representational State Transfer
(REST) and/or Simple Object Access Protocol (SOAP) inter-
faces designed to work with a variety of applications, devel-
opment tools, and/or Internet-development toolkits. These
interfaces are similar, but there are some differences. For
example, in the REST interface, metadata is returned in
HTTP headers. If the storage system only supports HTTP
requests of up to a given size (e.g., 4 KB, not including the
body), the amount of metadata that may be associated with a
stored object may be restricted. Using REST, standard HTTP
requests may be issued to create, fetch, and delete buckets
and/or objects thereof. In various embodiments, a user may
employ a toolkit that supports HI'TP in order to use the REST
API, or may use a browser to fetch objects, as long as they are
anonymously readable. AREST API may use standard HTTP
headers and status codes, so that standard browsers and tool-
kits work as expected. In some embodiments, functionality
may be added to HTTP (for example, headers may be added
to support access control). In such embodiments, the func-
tionality may be added such that it matches the style of stan-
dard HTTP usage. In some embodiments, a SOAP API may
provide a SOAP interface (e.g., a SOAP 1.1 interface) using
document literal encoding. As with the REST interface, users
may employ a SOAP toolkit to create bindings, and then may
write code that uses these bindings to communicate with the
storage system.

[0134] An example of an API that provides access opera-
tions in an online or remote storage system that supports
object versioning is described in detail below, according to
one embodiment. In this example, a PUT or PUT OBJECT
operation may specify any or all of the following information
for the request, some of which may be input by a user, and
some of which may be generated and/or attached to the
request by a client or host process: a user key, a bucket
identifier, a user/subscriber identifier, an authorization code, a
date and/or time stamp reflecting the date/time of the request,
the content type, and/or the content size of the data object
(e.g., the number of bytes of content stored in the data object).
In response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of'the operation, an identifier of the request, an internal iden-
tifier assigned to the newly stored data object, the version-id
assigned by the storage system to the data object, a date and/or
time stamp reflecting the date/time at which the data object
was stored (e.g., the date/time at which the operation was
completed), and/or an identifier of a server on which the data
object was stored. In other embodiments, information other
that than described above may be included in a PUT or PUT
OBJECT request or response.

[0135] In this example, a GET OBIJECT operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a user key, a version-id, a bucket identifier, a user/
subscriber identifier, an authorization code, and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following, in addition to the requested object data: a status
indicator reflecting the success or failure of the operation, an
internal identifier of the object, an identifier of the request, the
version-id of the data object returned in response to the
request, a date and/or time stamp reflecting the date/time at

US 2015/0205677 Al

which the data object was stored (e.g., the date/time at which
the operation was completed), a date and/or time stamp
reflecting the last time the returned data object was modified,
the content size of the returned data object (e.g., in bytes), the
content type of the returned data object, and/or an identifier of
a server from which the data object was retrieved. In other
embodiments, information other that than described above
may be included in a GET OBJECT request or response.

[0136] In this example, a COPY OBJECT operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a source user key, a version-id, a source bucket
identifier, a destination bucket identifier, a destination user
key, a user/subscriber identifier, an authorization code, and/or
a date or time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of the operation, an internal identifier of the source data
object, an internal identifier of the copy of the data object, an
identifier of the request, the version-id of the source data
object (i.e. the version-id of a specified source data object, or
of the latest version of a data object, if no version-id was
specified), the version-id assigned to the newly created copy
of the data object, a date and/or time stamp reflecting the
date/time at which the copy of the data object was stored (e.g.,
the date/time at which the operation was completed), a date
and/or time stamp reflecting the last time the data object was
modified (which may be the same as the date and/or time
stamp reflection the time at which the COPY OBJECT opera-
tion was completed), the content size ofthe copied data object
(e.g., in bytes), the content type of the copied data object, an
identifier of a server from which the data object was retrieved,
and/or an identifier of a server on which the copy of the data
object was stored. In other embodiments, information other
that than described above may be included in a COPY
OBJECT request or response.

[0137] In this example, a LIST BUCKET operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a bucket identifier, a user/subscriber identifier, an
authorization code, a maximum number of user keys for
which data should be included in the response, a prefix and/or
a delimiter that may be used to filter the results of the opera-
tion, and/or a date or time stamp reflecting the date/time of the
request. In various embodiments, this API may behave the
same irrespective of the current versioning state of the target
bucket. In some embodiments, the requester may need to have
permission to view and/or retrieve objects in the target bucket
in order to perform this operation.

[0138] Inresponse to a LIST BUCKET operation, the stor-
age system may return any or all of the following: a status
indicator reflecting the success or failure of the operation, an
identifier of the request, the bucket identifier, a date and/or
time stamp reflecting the date/time at which the list of data
object versions was retrieved (e.g., the date/time at which the
operation was completed), a maximum number of user keys
for which data should be included in the response, an indica-
tion of whether the returned list has been truncated (e.g.,
based on a specified maximum number of user keys), a prefix
and/or a delimiter that was used to filter the results of the
operation, and a list of the data object versions stored in the
bucket that are accessible without specifying a version-id. In

Jul. 23,2015

this example, each of the elements of the list of data object
versions may include any or all of the following: an internal
identifier of the object, the version-id of the listed version of
the data object, a date and/or time stamp reflecting the last
time the listed version of the data object was modified, the
content size of the listed version of the data object (e.g., in
bytes), the content type of the listed data object, an identifier
of the server on which the listed data object is stored, and/or
an identifier or display name of the owner of the listed data
object. In other embodiments, information other that than
described above may be included ina LIST BUCKET request
or response.

[0139] In this example, a LIST VERSIONS operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a bucket identifier, a user/subscriber identifier, an
authorization code, a maximum number of user keys for
which data should be included in the response, a prefix and/or
a delimiter that may be used to filter the results of the opera-
tion, a key marker and/or version-id marker (such as those
described above) specifying a point at which a search for
results should begin, and/or a date or time stamp reflecting the
date/time of the request. In other embodiments, this API may
behave the same irrespective of the current versioning state of
the target bucket. In some embodiments, the requester may
need to have permission to view and/or retrieve object ver-
sions in the target bucket in order to perform this operation.

[0140] In response to a LIST VERSIONS operation, the
storage system may return any or all of the following: a status
indicator reflecting the success or failure of the operation, an
identifier of the request, the bucket identifier, a date and/or
time stamp reflecting the date/time at which the list of data
object versions was retrieved (e.g., the date/time at which the
operation was completed), a maximum number of user keys
for which data should be included in the response, an indica-
tion of whether the returned list has been truncated (e.g.,
based on a specified maximum number of user keys), a prefix
and/or a delimiter that was used to filter the results of the
operation, and a list of the data object versions stored in the
bucket that are accessible without specifying a version-id. In
this example, each of the elements of the list of data object
versions may include any or all of the following: an internal
identifier of the object, the version-id of the listed version of
the data object, a date and/or time stamp reflecting the last
time the listed version of the data object was modified, the
content size of the listed version of the data object (e.g., in
bytes), the content type of the listed data object, an identifier
of the server on which the listed data object is stored, an
identifier and/or display name of the owner of the listed data
object, an indication of whether the data object version is the
latest version of the stored data objects having the same user
key, an indication of whether the data object version is a
delete marker, and/or an identifier of a storage class. In other
embodiments, information other that than described above
may be included in a LIST VERSIONS request or response.
[0141] In this example, a DELETE KEY operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a user key, a bucket identifier, a user/subscriber iden-
tifier, an authorization code, a content type, and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the

US 2015/0205677 Al

following: a status indicator reflecting the success or failure
of'the operation (e.g., a “204 No Content” indication may be
returned if the delete operation is successful), an identifier of
the request, the version-id assigned to the delete marker cre-
ated in response to the request, an internal identifier of the
delete marker, a date and/or time stamp reflecting the date/
time at which the delete marker was stored (e.g., the date/time
at which the operation was completed), the content size of the
delete marker (e.g., zero), and/or an identifier of a server on
which the delete marker was stored. In other embodiments,
information other that than described above may be included
in a DELETE KEY request or response.

[0142] In this example, a DELETE VERSION operation
may specify any or all of the following information for the
request, some of which may be input by a user, and some of
which may be generated and/or attached to the request by a
client or host process: a user key, a version-id, a bucket
identifier, a user/subscriber identifier, an authorization code, a
content type, and/or a date or time stamp reflecting the date/
time of the request. In response to a DELETE VERSION
request, the storage system may return any or all of the fol-
lowing: a status indicator reflecting the success or failure of
the operation (e.g., a “204 No Content” indication may be
returned if the delete operation is successful), an identifier of
the request, the version-id of the deleted object, a date and/or
time stamp reflecting the date/time at which the object was
deleted (e.g., the date/time at which the operation was com-
pleted), the content size of the object following deletion (e.g.,
zero), an indication of whether the deleted object was a delete
marker, and/or an identifier of a server from which the object
was deleted. In other embodiments, information other that
than described above may be included in a DELETE VER-
SION request or response.

[0143] In this example, a GET VERSIONING operation
may specify any or all of the following information for the
request, some of which may be input by a user, and some of
which may be generated and/or attached to the request by a
client or host process: a bucket identifier, a user/subscriber
identifier, an authorization code, a content type of the data
requested (e.g., the type of a state variable whose value indi-
cates the versioning state, such as “text”), and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: the bucket identifier, the value of the versioning
state of the bucket, a status indicator reflecting the success or
failure of the operation, an identifier of the request, a date
and/or time stamp reflecting the date/time at which the opera-
tion was completed, the content size of the returned data (e.g.,
the size of the state information returned, in bytes), the con-
tent type of the returned data (e.g., text), and/or an identifier of
a server from which the data was retrieved. In other embodi-
ments, information other that than described above may be
included in a GET VERSIONING request or response.

[0144] In this example, a PUT VERSIONING operation
may specify any or all of the following information for the
request, some of which may be input by a user, and some of
which may be generated and/or attached to the request by a
client or host process: a bucket identifier, a user/subscriber
identifier, an authorization code, the content size of'the datato
be stored in a state variable whose value reflects the version-
ing state (e.g., the size of the state information to be stored, in
bytes), the content type of the data to be stored (e.g., text), the
value to be stored (e.g., in a state variable) to indicate the new
versioning state, and/or a date or time stamp reflecting the

Jul. 23,2015

date/time of the request. In response, the storage system may
return any or all of the following: the bucket identifier, the
value of the new versioning state of the bucket, a status
indicator reflecting the success or failure of the operation, an
identifier of the request, a date and/or time stamp reflecting
the date/time at which the operation was completed, the con-
tent size of the returned stored (e.g., the size of the state
information stored, in bytes), the content type of the returned
data (e.g., text), and/or an identifier of a server one which the
data was stored. In other embodiments, information other that
than described above may be included in a PUT VERSION-
ING request or response.

[0145] In this example, a PUT ACL operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a bucket identifier, a user key, a version-id, a user/
subscriber identifier, an authorization code, the content size
of'the access control list to be PUT to the object specified by
the user key and/or version-id, the access control list to be
PUT to the object, an identifier or display name of the owner
of'the targeted bucket, object, or access control policy, and/or
a date or time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of the operation, an internal identifier of the object, an iden-
tifier of the request, the version-id of the object to which the
ACL was PUT, a date and/or time stamp reflecting the date/
time at which the ACL was stored (e.g., the date/time at which
the operation was completed), a date and/or time stamp
reflecting the last time the ACL for the object was modified,
and/or an identifier of a server from which the data object was
retrieved. In other embodiments, information other that than
described above may be included in a PUT ACL request or
response. In some embodiments, the APl may define an
operation to associate metadata with an object or store meta-
data in an object other than an ACL (e.g., the API may define
a store type operation for another type of metadata), and such
anoperation may behave in a manner similar to that described
above for a PUT ACL operation.

[0146] In this example, a GET ACL operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a user key, a version-id, a bucket identifier, a user/
subscriber identifier, an authorization code, and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of'the operation, an internal identifier of the object for which
the ACL was retrieved, an identifier of the request, the ver-
sion-id of the object for which the ACL was retrieved, a date
and/or time stamp reflecting the date/time at which the ACL.
was retrieved (e.g., the date/time at which the operation was
completed), a date and/or time stamp reflecting the last time
the returned ACL was modified, the content size of the
returned data (e.g., the size of the ACL, in bytes), the content
type of the returned data, the ACL data itself, an identifier or
display name of the owner of the targeted bucket, object, or
access control policy, and/or an identifier of a server from
which the data object was retrieved. In other embodiments,
information other that than described above may be included
ina GET ACL request or response. In some embodiments, the
API may define an operation to retrieve metadata associated

US 2015/0205677 Al

with an object or stored in an object other than an ACL (e.g.,
the API may define a retrieve type operation for another type
of metadata), and such an operation may behave in a manner
similar to that described above for a GET ACL operation.
[0147] Note that in some embodiments of the APIs
described herein, various pairs of operations may be initiated
by a user/requester using the same API, but the requester may
specify a different number of input parameter values for the
two operations (e.g., the requester may specify an additional
version-id value for one operation in the pair). In such
embodiments, PUT, GET, COPY, and DELETE type opera-
tions may be invoked by a requester without the requester
being aware of (or needing to know) the versioning state of
the target bucket in the storage system. In such embodiments,
aprivileged user may initiate version-specific operations (e.g.
for GET, COPY, and/or DELETE type operations) using
these same APIs by specifying an additional input (i.e. a
version-id value) in the operation call. In other embodiments,
different APIs may be defined for two similar operations, one
of'which expects a version-id value to be specified, and one of
which does not include (or expect) a version-id value to be
specified. For example, the GET OBJECT API described
herein may be invoked with or without specifying a version-
id. In other embodiments, two different APIs may be defined
for a GET OBJECT type operation (e.g., a GET KEY opera-
tion that does not take a version-id input, and a GET OBJECT
VERSION operation that takes an additional version-id
input). Similarly, the COPY OBJECT API described herein
may be invoked with or without specifying a version-id. How-
ever, in other embodiments, two COPY OBIJECT type APIs
may be defined (only one of which takes a version-id input).
Conversely, two different DELETE OBJECT type APIs (DE-
LETE KEY and DELETE VERSION) are defined herein. In
other embodiments, a single DELETE OBJECT API may be
defined that can be invoked with or without specifying a
version-id value.

[0148] In some embodiments, the system and methods
described herein for versioning of stored objects may be
employed by a storage service that provides storage for sub-
scribers as part of a virtualized computing service. In various
embodiments, virtualized computing may be offered as an
on-demand, paid service to clients, and may include a virtu-
alized storage service, which may in some embodiments sup-
port object versioning, as described herein. For example, an
enterprise may assemble and maintain the various hardware
and software components used to implement virtualized com-
puting, and may offer clients access to these resources
according to various pricing models (e.g., usage-based pric-
ing, subscription pricing, etc.). Thus, clients may have access
to a range of virtual computing resources without having to
incur the costs of provisioning and maintaining the infrastruc-
ture needed to implement those resources.

Example Computer System Embodiment

[0149] Itis contemplated that in some embodiments, any of
the methods, techniques or components described herein may
be implemented as instructions and data capable of being
stored or conveyed via a computer-accessible medium. Such
methods or techniques may include, for example and without
limitation, various methods of configuring and initializing a
storage system that supports versioning, and performing vari-
ous operations to store, retrieve, modify and otherwise access
data objects and/or access control lists thereof on that storage
system according to the APIs described herein. Such instruc-

Jul. 23,2015

tions may be executed to perform specific computational
functions tailored to specific purposes (e.g., processing web
services traffic; performing high-precision numerical arith-
metic; storing, retrieving, modifying and/or otherwise
accessing data objects and/or access control lists thereof;
maintaining multiple versions of stored data objects, etc.) as
well as higher-order functions such as operating system func-
tionality, virtualization functionality, network communica-
tions functionality, application functionality, storage system
functionality, and/or any other suitable functions.

[0150] One example embodiment of a computer system
that includes computer-accessible media and that supports
versioning of stored objects is illustrated in FIG. 13. In vari-
ous embodiments, the functionality of any of the various
modules or methods described herein may be implemented
by one or several instances of computer system 1300. In
particular, it is noted that different elements of the system
described herein may be implemented by different computer
systems 1300. For example, a storage system that supports the
versioning functionality described herein may be imple-
mented on the same computer system 1300 on which a client
(through which a user/requester accesses the storage system)
executes, or on another computer system 1300, in different
embodiments.

[0151] In the illustrated embodiment, computer system
1300 includes one or more processors 1310 coupled to a
system memory 1320 via an input/output (I/O) interface
1330. Computer system 1300 further includes a network
interface 1340 coupled to I/O interface 1330. In various
embodiments, computer system 1300 may be a uniprocessor
system including one processor 1310, or a multiprocessor
system including several processors 1310 (e.g., two, four,
eight, or another suitable number). Processors 1310 may be
any suitable processor capable of executing instructions. For
example, in various embodiments processors 1310 may be a
general-purpose or embedded processor implementing any of
a variety of instruction set architectures (ISAs), such as the
x86, PowerPC™, SPARC™, or MIPS™ [SAs, or any other
suitable ISA. In multiprocessor systems, each of processors
1310 may commonly, but not necessarily, implement the
same ISA.

[0152] System memory 1320 may be configured to store
instructions (e.g., code 1325) and data (e.g., in data store
1322) accessible by processor 1310. In various embodiments,
system memory 1320 may be implemented using any suitable
memory technology, such as static random access memory
(SRAM), synchronous dynamic RAM (SDRAM), nonvola-
tile/Flash-type memory, or any other type of memory. In the
illustrated embodiment, instructions and data implementing
desired functions, methods or techniques (such as function-
ality for supporting versioning of stored data objects, and for
performing various operations to store, retrieve, modify and
otherwise access data objects and/or access control lists
thereof on a storage system according to the APIs described
herein), are shown stored within system memory 1320 as
code 1325. It is noted that in some embodiments, code 1325
may include instructions and data implementing desired
functions that are not directly executable by processor 1310
but are represented or encoded in an abstract form that is
translatable to instructions that are directly executable by
processor 1310. For example, code 1325 may include instruc-
tions specified in an ISA that may be emulated by processor
1310, or by other code 1325 executable on processor 1310.
Alternatively, code 1325 may include instructions, proce-

US 2015/0205677 Al

dures or statements implemented in an abstract programming
language that may be compiled or interpreted in the course of
execution. As non-limiting examples, code 1325 may include
code specified in a procedural or object-oriented program-
ming language such as C or C++, a scripting language such as
perl, a markup language such as HTML or XML, or any other
suitable language. In some embodiments, objects (e.g., data
objects and/or delete marker objects in one or more buckets)
and/or access control lists thereof may be stored in a data store
1322 within system memory 1320.

[0153] Inone embodiment, /O interface 1330 may be con-
figured to coordinate 1/O traffic between processor 1310,
system memory 1320, and any peripheral devices in the
device, including network interface 1340 or other peripheral
interfaces. In some embodiments, I/O interface 1330 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component (e.g.,
system memory 1320) into a format suitable for use by
another component (e.g., processor 1310). In some embodi-
ments, [/O interface 1330 may include support for devices
attached through various types of peripheral buses, such as a
variant of the Peripheral Component Interconnect (PCI) bus
standard or the Universal Serial Bus (USB) standard, for
example. In some embodiments, the function of /O interface
1330 may be split into two or more separate components,
such as a north bridge and a south bridge, for example. Also,
in some embodiments some or all of the functionality of I/O
interface 1330, such as an interface to system memory 1320,
may be incorporated directly into processor 1310.

[0154] Network interface 1340 may be configured to allow
data to be exchanged between computer system 1300 and
other devices attached to network 130, such as other computer
systems, for example. In various embodiments, network
interface 1340 may support communication via wired or
wireless general data networks, such as any suitable type of
Ethernet network, for example; via telecommunications/tele-
phony networks such as analog voice networks or digital fiber
communications networks; via storage area networks such as
Fibre Channel SANs, or via any other suitable type of net-
work and/or protocol.

[0155] In some embodiments, system memory 1320 may
include a non-transitory, computer-accessible storage
medium configured to store instructions and data as described
above. However, in other embodiments, instructions and/or
data may be received, sent or stored upon different types of
computer-accessible storage media. Generally speaking, a
computer-accessible storage medium may include storage
media or memory media such as magnetic or optical media,
e.g., disk or CD/DVD-ROM coupled to computer system
1300 via [/O interface 1330. A computer-accessible storage
medium may also include any volatile or non-volatile storage
media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc, that may be included in
some embodiments of computer system 1300 as system
memory 1320 or another type of memory. A computer-acces-
sible storage medium may generally be accessible via trans-
mission media or signals such as electrical, electromagnetic,
or digital signals, conveyed via a communication medium
such as a network and/or a wireless link, such as may be
implemented via network interface 1340.

[0156] Although the embodiments above have been
described in considerable detail, numerous variations and
modifications will become apparent to those skilled in the art

Jul. 23,2015

once the above disclosure is fully appreciated. It is intended
that the following claims be interpreted to embrace all such
variations and modifications.

1-35. (canceled)

36. A system, comprising:

a data store that stores a plurality of objects, wherein each
of the plurality of objects is identified by a combination
of a corresponding key and a corresponding version
identifier;

a memory coupled to one or more processors and storing
program instructions that when executed by the one or
more processors cause the one or more processors to:
receive a request to perform a delete operation specify-

ing a key;
determine whether the request to perform the delete
operation specifies a version identifier corresponding
to the key specified in the request; and
in response to determining that the request does not
specify a version identifier corresponding to the
specified key:
generate a new, unique version identifier;
create a delete marker object identified by the speci-
fied key and the new, unique version identifier;
refrain from deleting, in response to receiving the
request to perform a delete operation, any of the
plurality of objects previously stored in the data
store; and
store the delete marker object in the data store,
wherein the presence of the delete marker object in
the data store indicates a logical deletion of the
specified key.
37. The system of claim 36, wherein the key and the version
identifier of each object form a composite key for the object.
38. The system of claim 37, wherein at least some of the
plurality of objects stored in the data store further comprise
object data, and wherein the composite key is stored with the
object.
39. The system of claim 36, wherein the delete marker
object becomes the latest object version that is stored in the
data store corresponding to the specified key.
40. The system of claim 36, wherein the data store is part of
anetwork-based data storage service, and wherein the request
to perform the delete operation is received from a particular
user of a plurality of users of the network-based data storage
service.
41. The system of claim 36, wherein the data store is part of
anetwork-based data storage service, and wherein the request
to perform the delete operation is received via an application
program interface (API) of the network-based data storage
service from a client application or process.
42. The system of claim 36, wherein the program instruc-
tions are further executable by the one or more processors to
cause the one or more processors to:
receive a second request to perform a delete operation,
wherein the second request specifies the same specified
key but does not specify a version identifier; and
in response to receiving the second request:
generate a second, unique version identifier;
create a second delete marker object identified by the
second, unique version identifier and the specified
key;

refrain from deleting any of the plurality of objects
stored in the data store; and

store the second delete marker object in the data store.

US 2015/0205677 Al

43. The system of claim 36, wherein the program instruc-
tions are further executable by the one or more processors to
cause the one or more processors to:
receive a second request to perform a delete operation,
wherein the second request specifies a particular key and
a version identifier; and

in response to receiving the second request, delete an
object from the data store identified by both the specified
particular key and the specified version identifier.

44. A non-transitory, computer-readable storage medium
storing program instructions that when executed on one or
more computers cause the one or more computers to:

determine, in response to receiving a request to perform a

delete operation that specifies a particular key, whether

the request to perform the delete operation specifies a

version identifier for the particular key; wherein the

particular key and a version identifier collectively iden-

tify a particular object of a plurality of objects stored in

a data store; and

in response to determining that the request does not specify

a version identifier for the particular key:

generate a new, unique version identifier;

create a delete marker object identified by the particular
key and the new, unique version identifier;

refrain from deleting, in response to receiving the
request to perform a delete operation, any of the plu-
rality of objects stored in the data store; and

store the delete marker object in the data store, wherein
the presence of the delete marker object in the data
store indicates a logical deletion of the particular key.

45. The non-transitory, computer readable storage medium
of claim 44, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to make the delete marker object become the latest
object version that is stored in the memory corresponding to
the particular key.

46. The non-transitory, computer readable storage medium
of'claim 44, wherein the delete marker object does not contain
object data.

47. The non-transitory, computer readable storage medium
of claim 44, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

receive, subsequent to storing the delete marker object, a

request to retrieve an object, wherein the request speci-
fies the particular key; and

in response to receiving the request to retrieve the object:

return an error indication; and
refrain from returning object data contained in any of the
plurality of objects stored in the data store.

48. The non-transitory, computer readable storage medium
of claim 44, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

generate, in response to receiving a second request to per-

form a delete operation, a second, unique version iden-
tifier, wherein the second request specifies the particular
key but does not specify a version identifier;

create a second delete marker object identified by the sec-

ond, unique version identifier and the particular key;
refrain from deleting any of the plurality of objects stored
in the data store; and

store the second delete marker object in the data store.

Jul. 23,2015

49. The non-transitory, computer readable storage medium
of claim 44, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

in response to receiving a second request to perform a

delete operation, wherein the second request specifies a
key and a version identifier, delete an object from the
data store identified by the specified key and the speci-
fied version identifier.

50. The non-transitory, computer readable storage medium
of claim 49, wherein the specified key is the particular key,
wherein the specified version identifier is the new, unique
version identifier, and wherein said delete an object com-
prises deleting the delete marker object.

51. The non-transitory, computer readable storage medium
of claim 44, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

store the new unique version identifier in a data store sepa-

rate from the data store storing the plurality of objects.

52. A method, performed by one or more computers, com-
prising:

receiving, by the one or more computers, a request to

perform a delete operation, wherein the request specifies
aparticular key; wherein the particular key and a version
identifier collectively identify a particular object of a
plurality of objects stored in a data store;

determining whether the request to perform the delete

operation specifies a version identifier for the particular
key; and

in response to determining that the request does not specify

a version identifier for the particular key:

generating a new, unique version identifier;

creating a delete marker object identified by the particu-
lar key and the new, unique version identifier;

refraining from deleting, in response to receiving the
request to perform a delete operation, any of the plu-
rality of objects previously stored in the data store;
and

storing the delete marker object in the data store,
wherein the presence of the delete marker object inthe
data store indicates a logical deletion of the particular
key.

53. The method of claim 52, further comprising, subse-
quent to said storing the delete marker object:

receiving a request to retrieve an object, wherein the

request specifies the particular key; and

in response to receiving the request to retrieve an object:

returning an error indication; and
refraining from returning object data contained in any of
the plurality of objects stored in the data store.

54. The method of claim 52, further comprising, subse-
quent to said storing the delete marker object:

receiving a second request to perform a delete operation,

wherein the second request specifies the particular key
but does not specify a version identifier; and

in response to receiving the second request:

generating a second, unique version identifier;

creating a second delete marker object identified by the
second, unique version identifier and the particular
key;

refraining from deleting any of the plurality of objects
stored in the data store; and

storing the second delete marker object in the data store.

US 2015/0205677 Al Jul. 23,2015
21

55. The method of claim 52, further comprising, subse-
quent to said storing the delete marker object:
receiving a second request to perform a delete operation,
wherein the second request specifies the particular key
and the new unique version identifier; and
in response to receiving the second request, deleting the
delete marker object from the memory.

#* #* #* #* #*

