a9 United States
a2 Patent Application Publication (o) Pub. No.: US 2001/0052109 A1

Nagashima et al.

S 20010052109A

43) Pub. Date: Dec. 13, 2001

(549) OBJECT-ORIENTED PROGRAMMING

(76)

@D
(22

APPARATUS, OBJECT-ORIENTED

PROGRAMMING SUPPORTING

APPARATUS, COMPONENT BUILDER

APPARATUS, OBJECT-ORIENTED

PROGRAM STORAGE MEDIUM, PROGRAM

STORAGE MEDIUM FOR USE IN

OBJECT-ORIENTED PROGRAMMING,
COMPONENT STORAGE MEDIUM, AND
OBJECT-BETWEEN-NETWORK DISPLAY

METHOD

Inventors: Fumio Nagashima, Kawasaki-shi (JP);
Kaori Suzuki, Kawasaki-shi (JP);
Asako Yumoto, Kawasaki-shi (JP);
Tsuguto Maruyama, Kawasaki-shi
(JP); Shigeru Sasaki, Kawasaki-shi
(JP); Ryousuke Suda, Kawasaki-shi
(JP); Miwa Ueki, Kawasaki-shi (JP)

Correspondence Address:

STAAS & HALSEY LLP

700 11TH STREET, NW
SUITE 500

WASHINGTON, DC 20001 (US)

Appl. No.: 09/765,380
Filed: Jan. 22, 2001
132

0BJECT
DATA FILE

RUNNING
OBJECT
FILE

Related U.S. Application Data

(60) Division of application No. 08/919,254, filed on Aug.
28, 1997, now Pat. No. 6,178,545, which is a con-
tinuation-in-part of application No. 08/855,986, filed
on May 14, 1997, now abandoned.

(30) Foreign Application Priority Data
Jun. 28, 1996 (IP) weevervvceccerecerecrernnee HEI, 8-170079
Nov. 5, 1996 (JP) covvvreverecrerrerrcreccrnne HEI, 8-292863
Jun. 27, 1997 (IP) wevervcecerecerecrerenee HEI, 9-171782

Publication Classification

(51) TNt CL7 oo GOGF 9/44
(52) US.Cl oo 717/1
(7) ABSTRACT

As to an object-oriented programming, reuse of softwares is
enhanced and running speed is improved. There are made up
a data element list in which pointers to data storage areas of
object A are arranged and a pointer element list in which
pointers to pointer storage areas of object B are arranged. A
combination of the data element list and the pointer element
list makes it possible to directly refer to data of the object A
from the object B.

120
121 131
{
OBJECT EXISTING
BUILDER UNIT SOFTWARE FILE
122 134
d
OBJECT
e hk
R UNIT
EDITO i
23
X
INTERPRETER
WIRING DATA
il FILE FOR
INTERPRETER
USE

(RUND

Patent Application Publication Dec. 13,2001 Sheet 1 of 84 US 2001/0052109 A1

Fig. |

N N
—
105 100
—1 - | |102a
=l Z \/ 02
=| T
=| ol
= Z
\J_\{ ; L
103 —<” %7
II’_I/

L

/ 104

HO

Patent Application Publication Dec. 13,2001 Sheet 2 of 84 US 2001/0052109 A1

Fig.?Z

120
132 121
2
OBJECT
OBJECT < EXISTING
DATA FILE BUILDER UNIT SOFTHWARE FILE

122ﬂ 134
{

INTER OBJECT
RUNNING WIRING INTER OBJECT
OBJECT EDITOR UNIT WIRING DATA
FILE FILE
2
[NTERPRETER
UNIT | WIRING DATA
FILE FOR
INTERPRETER

USE

(RUN)

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 3 of 84

Sisi
INFT3
Y3IN10d

snd
NO1LONYLSNI
1NdNI

9 10380

e mm 1 ;
NO I 1ONYISNI

—

LINN LIND LINA NI LVE3ND

ON| LVEINTD 1S11

INSWI T H3INIOd oNIdnoo viva | | 117 INZWATA viva
G172 917 v 17

LIND ONI V43N0 LINR LIND ONILVYND

NOI1H0d Sn8 ONI1dNGD NO | 140d S8
NOILOMRLSN LNdN| NOLLOMUISNT | | NOTLOMMISNI 1ndino
217 £17 ke
017

1ndino

eg|”?

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 4 of 84

\I\l\l

ﬂ oz_mmmsxi

(COHLZW)
. GOHIZW
ﬁ / mﬂ # f 01 ¥3INIOd
XYNBR - € 4 S |
(318V1 GOHLFW)
(8 103r80)

RLARE

,ﬁ

o

TN

43iNI0d

(INFW313 COHLIW)

E |

il

afs

H3IN10d

H3INIOd

(IN3W3N3 GOHLIW)

E |

T

INTT GOHLIN 1X3N OL ¥3INIod

g 13360 01 H3INIOd (IN3W313 GOHIIW)

83

(1S17 INFNTT3 QOHIINW)

0

N st v
GOHASW 01 H3INIOd

XYRBYW -~ - £

[4 l «— VYW
(318vL JOVSSIW) N

ON1SS3004d

A R

Patent Application Publication Dec. 13,2001 Sheet 5 of 84 US 2001/0052109 A1

Fig.b5

(A) (B) A
(START) (START)
(5-1) (5.5)
OBTAIN POINTER TO METHOD OBTAIN MEg AS ARGUMENT
ELEMENT LIST FROM MA,
(5.2) (5-5)
= EXECUTE PROCESSING OF
CALL OBJECT B WHERE FUNCTION ASSOCIATED
MEp |S ARGUMENT WITH ME g
(5.3)
POINTER=NULL ? END
N
END (5_4) W,
OBTAIN POINTER TO NEXT
METHOD ELEMENT

Fig ©

(START)
(6_1)

PRODUCE FRAME OF MESSAGE TABLE
HAVING WIDTH MAa wax

END

Patent Application Publication Dec. 13,2001 Sheet 6 of 84 US 2001/0052109 A1

Fig. 7
(START)
(7.1)

PRODUCE FRAME OF METHOD TABLE
HAVING MEguax

(7_2)

INTER TO ASSQC!ATED
N COLUMN OF MEg

STORE PO
METHOD |

END

Fig 8
(START)
(8_1)

PRODUCE FRAME OF METHOD
ELEMENT

(8-2)

STORE MEg AND POINTER TO
OBJECT B

(8_3)

ADD TO METHOD ELEMENT LIST
OF ASSOCIATED MA,

END

Patent Application Publication Dec. 13,2001 Sheet 7 of 84 US 2001/0052109 A1

Fig. 9
<
T (OBJECT A))

(DATA ELEMENT LIST) « QUT4
(DATA ELEMENT)

DATA STORAGE AREA 1

- a

DATA STORAGE AREA 2 ~

e | oo nTER 21 | (PATA ELEWEND)

o PO INTER 1-1

i n
| i

i i

i
DATA STORAGE AREA n Jl

<
%‘
oo INTER n.i | (OATA ELENENT)
N [
i

Fig 10

PRODUCE FRAME OF DATA ELEMENTS | (10_1)

SUBSTITUTE POINTER (10.2)

ADD TO DATA ELEMENT LIST (10.3)

END

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 8 of 84

eﬁk\\

U Y3y JOVH0LS YIINIOd

=)

o 37U H3LNIOd | g3 yaINiod)

2 amd > <=

2 277 Y3LNEO | (g y3INIOd)

2 Y3V 3OVH0LS H3INIOd

NI <=

afs

U

| V34V JOVH0LS HIINIOd

—————P 271 HANIOd | ()yy3 w3INIOL)

(8 103r40)

(1S17 ININI13 ¥3INIOd) < BN

/W
1L b1 4

Patent Application Publication Dec. 13,2001 Sheet 9 of 84 US 2001/0052109 A1
Fig 12
(STARTF)

PRODUCE FRAME OF POINTER ELEMENT | (12_1)

SUBSTITUTE POINTER (12.2)

ADD TO POINTER ELEMENT LIST | (12_3)
END

Fig 13

(OBJECT A) (OBJECT B)

Q1> & TR 1D

Patent Application Publication Dec. 13,2001 Sheet 10 of 84 US 2001/0052109 A1

Fig. 14

FIRST DATA ELEMENT OF DATA ELEMENT LIST — D (14_1)
[
FIRST POINTER ELEMENT OF POINTER ELEMENT LIST — P (14_2)

(14_3)

P : EMPTY ?

END
SUBSTITUTE POINTER OF D FOR POINTER @

INDICATED BY PQINTER OF P (14_5)

[

NEXT DATA ELEMENT — D
NEXT POINTER ELEMENT -» P (14_6)

J

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 11 of 84

LIND NI LVYINTD LINN LIND ONILYYINTO LIND ON|LVY3INTO
02 NO!140d Snd ON11dN0) NO|180d Snd J1vL 9Vl
NOILONYLSNT LNdN| NOTLONYISNI | | NOILONYISN! LNdINO | | NOILONMISNI LN
2e” €27 12% 727
Y ——
B¢ 2
snd 5 ;& V1
NO!LONY1SN| { NOILONHISN| 1ndN|
1NdN|
SNE NOTLONYLSN|
1nd1n0
8 193080 V 13060

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 12 of 84

0 € -

8 103740

LINN ONILV4INIO 11NN LIND ONILVYINTO LINA ONILVHINZO
NO!140d Snd ON11dN09 NOI140d SN TIavL oVl
NOILONEISNI LNdN| NOILORYISNI | | NOTIONYISNT Indino | | NOILONMISNI Lhdino
287 cg? | g? ygo

J
24 m m A
snd ¢ | T8V OV
NO 1 LONYLSN

INdNT

NOT11ONYLISNI 1nd1n0

SNE NOILOMYLSNI
1nd1n0

Y 103rd0

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 13 of 84

0¥

8 193780

LIND SNILVYIND LINN LINN ON1LVHINTO LINA ONIIVYIND
NOI140d Snd ON 1 1dN09 NOI140d Sng THvL vl
NOILOMULSNI 1NN NOILONMISNI | | NOILONYISN| LNd1no VIV 1NdN|
R £y | 2 y 4y
lﬂ\\tl‘lli
egy ,
sng | T8Y1 ovL

NO11ONYLSNI
1ndNI

ViVa 1NdN|

SN NOILONYLSNI

1AdLN0

v 133r40

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 14 of 84

LIND ONILVYINTO LINN LIND ONILVEINTD LINQ ONILVHINDO
0§ NOI 1804 Snd ON|11dN0D NOI140d Sng T8v1 oVl
NOTLONMLSNI ™ LNdN! NOILONHISNI | | NOTLOMMISN] 1ndino VIVQ LNd1N0
267 £g? ke y G2
Yy
egg
sng m TavL ovl
NO! LOMYLSN | { YIVQ 1Nd1n0
1NdN]
SNG NOI LONULSN |
L0410
g 193780 ¥ 193°80

Patent Application Publication Dec. 13,2001 Sheet 15 of 84 US 2001/0052109 A1

Fig.19

VAN

(METHOD ELEMENT)

MEg

POINTER TO INPUT
(P1) | INSTRUCTION TAG
TABLE
POINTER TO QUTPUT
(P2) | INSTRUCTION TAG
TABLE
POINTER TO INPUT (INPUT INSTRUCTION TAG TABLE)
DATA TAG TABLE 1 2 3 = MA KA X
POINTER TO OUTPUT
DATA TAG TABLE
POINTER TO
OBJECT A
POINTER TO
OBJECT B
POINTER TO NEXT

METHOD ELEMENT

(P3)

(P4)

(P5)

1 2 3 - OUTguax

iNg — 1 2 3 e INgNAX

3s

Patent Application Publication Dec. 13,2001 Sheet 16 of 84 US 2001/0052109 A1

Fig. 20

OBTAIN POINTER TO HETHOD | (o0 1)
ELEMENT LIST FROM A, -

>

CALL_OBJECT B WHERE NE; AND
Py.Py AND Pg ARE ARGUNENT | (20-2)

POI mzkw
N

(20.3) v

(20_4)

OBTAIN POINTER TO NEXT END
METHOD ELEMENT

Fig. 21

(START)

(2121)

REFER TO INPUT

TABLE, AND OBTAIN ME, FROM MAg

INSTRUCTION TAG

(21_.2)

EXECUTE PROCESS|
ASSOCIATED WITH

NG OF METHOD
THE OBTAINED ME,

END

Patent Application Publication Dec. 13,2001 Sheet 17 of 84

Fig22

Fig.23

(START)

US 2001/0052109 A1

REFER TO INPUT INSTRUCTION TAG | (22_1)
TABLE, AND OBTAIN ME , FROM MAg
ADD HETHOD ELEWENT OF HEp T0 HETHOD | (22.2)
ELEMENT LIST ASSOCIATED WITH MAg OF
ONE'S OWN MESSAGE TABLE
END
(START)
(23.1)
PRODUCE OBJECT C
END

Fig.24

(START)

REFER TO INPUT INSTRUCTION TAG TABLE,
AND OBTAIN ME, ASSOCIATED WITH MAg

(24_1)

ADD METHOD ELEMENT OF ME, TO METHOD
ELEMENT LIST ASSOCIATED WITH MAg OF
MESSAGE TABLE OF OBJECT C

(24_2)

END

Patent Application Publication Dec. 13,2001 Sheet 18 of 84 US 2001/0052109 A1

Fig. 25
(START)

REFER TO OUTPUT INSTRUCTION TAG TABLE,
AND OBTAIN MA 4 ASSOCIATED WITH MEg (25_1)

ADD METHOD ELEMENT OF MEg TO METHOD
ELEMENT LIST ASSOCIATED WITH MA, OF [(25_.2)

MESSAGE TABLE OF OBJECT A

END

Fig. 26

(START)

REFER TO OUTPUT INSTRUCTION TAG TABLE, (26_1)
AND OBTAIN MA, ASSOCIATED WITH ME g -

ADD METHOD ELEMENT OF MEg AND POINTER
70 OBJECT C TO METHOD ELEMENT LIST (26.2)
ASSOCIATED WITH MA, OF MESSAGE TABLE

OF OBJECT A

END

Patent Application Publication Dec. 13,2001 Sheet 19 of 84 US 2001/0052109 A1

Fig. 27
(START)

OBTAIN POINTER TO METHOD |(o7_1)
ELEMENT LIST FROM MA, -

>

CALL OBJECT B WHERE MEg AND
Py PsAND Ps ARE ARGUMENT | (27-2)

(27.3)
POINTER=NULL ?

(27-4)

OBTAIN POINTER TO NEXT END
METHOD ELEMENT

REFER TO INPUT DATA TAG (28_1)
TABLE, AND OBTAIN IN, FROM OUT g -

PRODUCE POINTER ELEMENT L

IST OF OBJECT | (28_2)
A ASSOCIATED WITH THE OBTAINED INj

PRODUCE ONE'S OWN DATA ELEMENT | (28.3)
LIST ASSOCIATED WITH OUTg

EXECUTE COUPLING PROCESSING (28_4)

END

Patent Application Publication Dec. 13,2001 Sheet 20 of 84 US 2001/0052109 A1

Fig.29

(START)

REFER TO INPUT

INSTRUCTION TAG

TABLE, AND OBTAIN [N, FROM OUTg

(29.1)

PRODUCE POINTER ELEMENT LIST OF OBJECT {(29.2)
A ASSOCIATED WITH THE OBTAINED IN,

PRODUCE DATA ELEMENT LIST OF (29_3)
OBJECT C ASSOCIATED WITH OUTg
EXECUTE COUPLING PROCESSING (29.4)
END
Fig. 30
(START)
REFER TO OUTPUT DATA TAG TABLE. |(30_1)
AND OBTAIN OUT 4 FROM INg -
PRODUCE DATA ELEHENT LIST OF OBJECT | (20 o
A ASSOCIATED WITH THE OBTAINED OUT 4 -
PRODUCE ONE'S OWN POINTER ELEMENT
LIST ASSOCIATED WITH INg (30.3)
EXECUTE COUPLING PROCESSING (30_4)

END

Patent Application Publication Dec. 13,2001 Sheet 21 of 84 US 2001/0052109 A1

Fig. 31
(START)

REFER TO QUTPUT DATA TAG TABLE,
AND OBTAIN OUT 4 FROM INg

(31-1)

A ASSOCIATED WITH

PRODUCE DATA ELEMENT LIST OF OBJECT

THE OBTAINED QUT,

(31_.2)

PRODUCE POINTER

ELEMENT LIST OF

OBJECT C ASSOCIATED WITH INg

EXECUTE COUPLI

NG PROCESSING

END

(31.3)

(31-4)

PRODUCE FRAME OF
TAG TABLE HAVING

INPUT INSTRUCTION
WIDTH MAgyax

(32_1)

STORE ME, IN COLUMN OF MAg

(32_2)

REGISTER POINTER TO
REGARDING OBJECT B,

INPUT INSTRUCTICON

TAG TABLE INTO ALL METHOD ELEMENTS

OF OBJECT A

(32_3)

END

Patent Application Publication Dec. 13,2001 Sheet 22 of 84 US 2001/0052109 A1

Fig. 33
(START)

PRODUCE FRAME OF QUTPUT INSTRUCTION | 5
TAG TABLE HAVING WIDTH MEgy ax -1

STORE MA, IN COLUMN OF MEg (33.2)

REGISTER POINTER TO QUTPUT INSTRUCTION
TAG TABLE INTO ALL METHOD ELEMENTS (33_3)
REGARDING OBJECT B, OF OBJECT A -

END

PRODUCE FRAME OF INPUT DATA TAG TABLE
HAVING WIDTH OUTgyax (34.1)

STORE IN4 IN COLUMN OF OUTg (34_2)

REGISTER POINTER TO INPUT DATA TAG
TABLE INTO ALL METHOD ELEMENTS (34.3)
REGARDING OBJECT B, OF OBJECT A

END

Patent Application Publication Dec. 13,2001 Sheet 23 of 84 US 2001/0052109 A1

Fig.35
(START)

PRODUCE FRAME OF OUTPUT DATA TAG | (35_1)
TABLE HAVING WIDTH INg Ax -

STORE OUT, IN COLUMN OF INg (35_2)

REGISTER POINTER TO QUTPUT DATA TAG | (35 3
TABLE INTO ALL METHOD ELEMENTS -3)
'REGARDING OBJECT B, OF OBJECT A

END

Patent Application Publication Dec. 13,2001 Sheet 24 of 84 US 2001/0052109 A1

Fig. 36

1020
201 204
(203 7
1)
L L

NETWORK

) // // l\ II . \\\\

4)

s /

// !
SUBNT WORK | SUBNETWORK 2

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 25 of 84

/
/
Vi

s/
Id
7

4
7

ps
7
7/
/

4
—
I'd
7

- ‘0|ojojo|a[o]o)o
< ‘0|o|ojo|o|ojo|o
Dt olajojojoja|o|o
Q0 lE R EEEEE
\p) ojojojoio|o|o|o
G.. %WDDDDDDDD
..... Qso|olojojo|o|ojo
oeg|o{ojo|olo
FW ‘0|0|o[o|o|ojalo
a~—o|o|joo|ojo|o|o
‘o|o|njo|o|o|olo
SEEEREIEE

Fig. 38(B)

205

| I I |

-

Patent Application Publication Dec. 13,2001 Sheet 26 of 84 US 2001/0052109 A1

Fig.39 (A)

@

20

g 2/06
olo[ojc——=|ojo|o|o|o|o
D|ojojlc—=o|ojo|o|o|0
glojolc—=olojojo|o|o|0

=l

O[O {B)
olo|o|c—=3|o|o|o|o|g|o
olojolc——(ojojo|o|o|0
oloojc——|o|o|ojo|o|o

Fig.39(B)

206

P

i

Pl
| I
r‘L\

Patent Application Publication Dec. 13,2001 Sheet 27 of 84 US 2001/0052109 A1

Fig.40 (A)

207
205 (

KD ,,,,,, 1
g =
; =
-0|o|o|bloi{p|ojo|ojo|0|0
. 0
y O

0

O

g

207
206
e
a0 B
:U Hmmgﬂﬂu [
d([msejiyiihne
/ — —
- =1l
s =7 7]/ []|
‘=7 .1.7.7..1..1.]

US 2001/0052109 A1

Dec. 13,2001 Sheet 28 of 84

Patent Application Publication

!
!

nnnn

HuUau

'
t
t
{

aoaooaQon

spigigip=pagsy
i
1

}

¢

1
<

1

t

I

v

0

|
=

—.m:-.-

/oW

b
2]
5]
=
B

i
1
.
!
1

1
1
1
|
|

gnooononon

!
!
[

-

a)iv

~—_1 “ “
| I
1 i

61 4

cle e

L {

Eiasfiaieat TR
[1 AV 1y v 2
i "I) st |"||1.l .ll..lJlluln"

W i H L) ¥ [CONLN LS
A-FE e |.-“. == ."...un_J. -~
Jlr‘.-..-nl_uw Ft11r .._...Tl_L-l'.TlnuL-

Ml LY I AN Ly 11,
Lim | "n_ o) 1 h
Al ._:d_--fq- 1] waes i B b mre sark
[1. 1 i LA (MDA TR B N O B [|]
"]l — :
M= o e e PENLE NN L N TR
N T 11 [L RS LR 8 = T
|TLh l..“.. T \.r.ln .__l_. frT l.l.ln_‘l_..i..—. nﬂ.p_n |". - 7
v e i el i 4J-1“a.._ -.o..‘_..“l_,-.:“-
" T Tt ¥ L B T

L 4 —1 B ' .._|4-|“|.| [.IA..
-4 -1 4 Y1 ket —-+~4- v—r1 -1 14
T 3] = T 44
1 r\ T ||".|.— 1 T =13 1
.,-U_—..L WA Al R 1 ““ .--...u,] _D “ 10
ol L L4 AR Ll O -0) [0 L
b e g sl hs
I i 3 b el e ' ol O
..vt_[l_l_.....”...i?.l. ll“ 4 SHEEYR Y AR J
L 1a N) LI 114 14 .
L1 h_T_- " I SNATE | PR TSR AP .\. T

)

Giz ric ¢z

(V)1 b1 4

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 29 of 84

Fig. 42

|02a

fmnNaannononooann
B/\1/
AN
E::Y-:CCCC_L::
[
N1
LAV
X
VI
QN b
N
N b
m PP Ip

444444

PN W PR W WY

aaaaaaaaaa

noannan

219
(

[~

PPStd

Ooou uguau

Ty

WMD::::D::::

>

NG s

goououoagouguuyyg

H—ﬂ—::::::

-

auaudaguugu

poad,

Patent Application Publication Dec. 13,2001 Sheet 30 of 84 US 2001/0052109 A1

Fig. 43(A)

223b

)

203 LS

223 //
(223b

AV AVers

)

2230

Fig.43(B)

—~ 223

Patent Application Publication Dec. 13,2001 Sheet 31 of 84 US 2001/0052109 A1

o~ Ny

/ \

Fig.44 (A)

Fig.44(B) |I=4=

Fig.44(C)

Patent Application Publication Dec. 13,2001 Sheet 32 of 84 US 2001/0052109 A1

Fig.45

-
-
[T

— e —

Patent Application Publication Dec. 13,2001 Sheet 33 of 84 US 2001/0052109 A1

226 228 227

Fig.46A)

Fig.46(8)g -

Patent Application Publication Dec. 13,2001 Sheet 34 of 84 US 2001/0052109 A1

Fig.47 (A

STARTING POINT OF ENLARGEMENT

(\ OBJECT HAVING SUBNETWORK
e G B S I EE
SEINE EEEEEEEEE
‘o0|oloyo)olalolo]o|o|o]|o;
gsl[=l[=1=1[=][=][=}{=]|=]]=][=}{=}
SlEIEIEIEIEEEEEIEEY
AlEIEIEIEEIEEEEEIEY
0lolojolojo|ojojoo|o|o;
ElEIEEIEEEEE
olojololoalalolajoiclo;
Fig.47 B)
WIDTH
INCREASING /SUBNETWORK
olojo|c——|gag|o|o|o|d
olololc——laiojolo|ojo
ololo/c—Z|olo|ojo|o|D
l=1[=)
Tf\'lzclgEZs;NG UUHDDDHUHHHH
EEE
ololo|c=5|o|oc|o|o|o|o
olo|o|/c——|o|o|o|o|o|o
o|o|o|—=|o|o|o|olo|o

Patent Application Publication Dec. 13,2001 Sheet 35 of 84 US 2001/0052109 A1

Fig. 48
(START)

(48_1)
SELECT OBJECT HAVING SUBNETWORK

(48_2)
DESIGNATE DISPLAY OF SUBNETWORK

(48.3)

ENLARGE MEASURE WHEREAT SELECTED OBJECT
IS LOCATED AND LATTICES ASSOCIATED WITH
THE MEASURE IN VERT{CAL AND HORIZONTAL

DIRECTIONS, VERTICALLY AND HCRIZONTALLY
BY THE CORRESPONDING AREA NECESSARY FOR
DISPLAY OF SUBNETWORK GIVING THE CORNER
OF UPPER LEFT OF THE MEASURE AS STARTING

POINT
(48_4)
PERFORM DEFORMATION OF OBJECT AND EXTEN-
SION OF WIRING CAUSED BY ENLARGEMENT
(48_5)
FORM NEW LATTICE WITHIN ENLARGED
MEASURE AND DISPLAY SUBNETWORK
(48_6)

CONNECT OBJECT OF SUBNETWORK WITH
OBJECT OF NE[GHBORING NETWORK

END

Patent Application Publication Dec. 13,2001 Sheet 36 of 84 US 2001/0052109 A1

STARTING POINT OF ENLARGEMENT

. 3 MEASURES, .8 MEASURES
F ' g.4 9 (N :rl r 7/ I/Ié VAW Y AV A4 e 7 :]’—F.
’ T !
; MEASURESI flsr -1 gasect Have
I EIEIEE IR E
= . |9 MEASURES
5 MEASURES g :
S PRI (= S S5 A O A I A SRS 2
L 2 MEASURES |
WIDTH !gNCREASING
_ 3 DIVISION 8 DIVISION
Fig.49(B) B N SPRRI TR -
3 DIMSION| = :
. a .
neigHT increasing! AILEIE]E M[HE]EIEI B
y . NNIO .
. — \ ’
5 DIVISION | —- SUBNETWORK
I = S :
. U T
Fig.49(C) = |
Al ” ojojo H UU [k
’ ” CIEE UDDD"/ 9 MEASURES
‘ [—] —
| mwm—— | "
\T:/ I I
V=TT o),

Patent Application Publication Dec. 13,2001 Sheet 37 of 84 US 2001/0052109 A1

Fig.50

SELECT OBJECT HAVING SUBNETWORK

IS SUBNETHORK
ACC(MKDATED;IITHIN SCREEN

yes (50_4)

ENLARGE MEASURE WHEREAT SELECTED OBJECT
IS LOCATED, VERTICALLY AND HORIZONTALLY
BY THE CORRESPONDING AREA NECESSARY FOR
DISPLAY OF SUBNETWORK GIVING THE CENTER
OF THE MEASURE AS STARTING POINT

~~

50_5)

DRA¥ STRAIGHT LINES FROM CORNERS OF THE
ENLARGED MEASURE TO CORNERS OF MEASURES
OF SCREEN EDGES IN VERTICAL AND

HOR!ZONTAL DIRECTIONS TO FORM TRAPEZOIDS

(50.6)

PARTITION TRAPEZOIDS AND PRODUCE MEASURES

(50_7)

DRAW STRAIGHT LINES FROM CORNERS OF
MEASURES OF TRAPEZOIDS TG CORNERS OF
MEASURES OF SCREEN EDGES TO PRODUCE
RESIDUAL MEASURES

(50.8)

PERFORM WIRING WITH DEFORMATION OF OBJECT
CAUSED BY DEFORMATION OF MEASURES

(50.9)

CONNECT OBJECT OF SUBNETWORK WITH OBJECT
OF PERIPHERAL NETWORK

END

Patent Application Publication Dec. 13,2001 Sheet 38 of 84 US 2001/0052109 A1

ETERMINALS 12 TERMINALS

Fig.51(AX [F| 15 ¢l

(. N
24 TERMINALS 30 TERMINALS

.
H

1
|
T
I

g--t---

nan

T
|
i
t
[}
]
|
|
|

)
)
1
?
—— t -
4 P g P
] = =] = =]
Fig.51(B)X-—4 &4 19 571
. [= P [= 3
:] B
4 B g F
--=-F--g = JERE P s el o = JE S
= o
= =
O] = -]
™ = = -
-—4--H I [---+--BEqg PR

48 TERMINALS

1

!

1

]

I 1

i
nonnonhnponn:

Fig.51(C) _ E

nUUU.UULUUUUUL
i | H

!]
i T
'

)
1

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 39 of 84

J

_ SCREEN 2

nnoannpnoononnn [N mWn
Qo <
v
—t
/ o o)
(o] ®)
NEIRARIRURUAREERIguURIY AR bogo
“ =z
wl
&
(4]
QO
n
I TIVTVIRTIITRS PETDEIP |
I N W W, W 2 5% %% N
4 > » I > Y g A A A A oy & oy o o
.
A A M
v
N
m__:ﬁjjn_._:::::: on
—_ M
o ey
o 3
oo ouougouagougn LT

3:3333—‘—_333:33

\kkjﬁ—::n:::ﬂ_:

—_
O
O
O

e
=]
LT

L“LE_L‘L—L_L_L—LALCE 1]

Fig.52(B)

Qobj 3

US 2001/0052109 A1

Dec. 13,2001 Sheet 40 of 84

Patent Application Publication

(0 INVT TV.LNOZIHOH)

i
i
—
-——

© o

-—»x—JECWOO)Q-

oo onoonnnn

-0

(T
I N |7 | i

AL X XL TPV IRITIT T TIP3 777 T ITZ T ZTT

[K
lll-l-b—. lllllllllllllllllllllllllllll
e P e e e

I
-
1
2227
T T
11
f

x\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\

S T ey K

ya
(8 3NV VIILY3A)

P I 1)

by
[
[

8 L

-

oA

(Y 3NYT IVIILY3IA)

¢G° b1

C N o M OYT T W O O v« N~

-—

J g gguutd

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 41 of 84

(97vS)

an3

-IVNIWY3L INdNI O dn "WNITRY3L
1NdNT 40 3NV TINOZ1HOH 3NIT HLIA 3LINMYINO

—!

‘GALNO3X3 S| SSI004d NOILIINNDD ‘INV
IVAINOZIHOH HLIA G3103NNOD NOILHOd ¥ AGYIHTY SI
3HL 41 _TIVNIWYEL 1NdNT 40 3NV TVINOZ | HOH
01 N 8 3NV TVOILH3A NI HLIM JLIYAY3AO

(1179 G)

~ 8 3NV V118N
01 di D 3NV IVINOZIHOH NI HLIM 31 IHMH3A0

(017%G)

‘31NJ3IX3 S1 SSI00Ud NO1.LIANNGD
NV VINOZIYHOH HLIN QILDINNOD NOYIHOd
Y AQYIHTY S1 RHL 41 D 3NV TVINOZ |HOH

OL dN V 3NVT WOHLY3A 3N1T HLIM JLIHMYIA0

(67 %G)

S103r80 NI G3HOIAONYS 10N D 3NV VINOZINOH J0NA0Hd
(87v¢G)

QN3 TYNIWSAL LNdNE 1V 8 3NVT WOIL43A 30naoKd
(L7vG)

ps b1 4

(§7vQ) S9A

“@31n3X3 S SSFI0Ud NOILOINNOD ‘v
IVINOZIHOH HLIM G3LI3NNOD NOILMOd V AQYIYTV SI
43HL J1 _WNITWY3AL INANE 40 3NV TVINOZ T HOH
0L dN V 3NVT TYOLLY3A INIT HLEK 3LIUMYIN0

L
TVNIWY3L Smw.‘—ﬂz*mz “<o< IVNIWY3L
- S
(b™bQ)

v

ANVT IVOLLH3A 01 TYNIWHAL ENd1NO WOHA TYNIWY3L
INd1N0 40 3NV TVANOZINOH 3N1TT HLIM 3114M43A0

~~

€79G)

ONI TVNIWYIL LNdLN0 1V V 3NV VD 1LY3A 30Na0Yd

(27v9)

H3H10 HOV3 HLIN Q31D3NNOD 39
OL “IYNIW43L LNdNI OGNV TVNIWY3L INd1n0 19313S

(17vG)

(LHVLS)

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 42 of 84

pus

(1 4INO_ONIYIM)

TYNIWH3L INdNT OL 9 3GON WoY¥d INIT Mvda
JVNIWYIL INNI ONIGNTONI 193r€0
(97¢6G) QYVNOL B 3GON WOH4 | 3NV NO 3NIT Mvia

TYNIWGAL INANE 40 € 3INVT OL © 300N WOHd INITT MYHQ (L76G) ou
(67G6G)

2

TYNTREIL LNGNE ISNIVOV TYNIWYIL
IndL0 S|

(¥769)

S9A

| 3NV 0L TWNIKY3L 1ndLno
WOH3 “TYNIWY3L INdINO 40 2 3NIT NG INIT MVHQ

(€764G)

IVNIWHZL INALN0 ONIGNTONT V3HY ONIYIA NI
#z_sxu.—hihachmj:o_ozun_xun__W.ﬁmo;ozm

(27G66G)

43HI0 HOVI HilM QILIINNOD 39
01 IVNIWHIL INdNT ONY IWNIRY3L 1ndiN0 103713

(176G)
GGgb14

Patent Application Publication Dec. 13,2001 Sheet 43 of 84 US 2001/0052109 A1

Fig.56

no

no

SES LIE (56.1)
COHE ACROSS EXISTING OBJECT

DOES LINE REACH
WIRING AREA OF OBJECT HAVING
INPUT TERMINAL ?

DOES LINE (56-3)
REACH WIRING AREA OF INPUT
TERMINAL 7

(66-4) no
IS LINE
PERPENDICULAR TO LANE 3 OF INPUT
INAL?

(56_7)

PROVIDE LANE 4 PERPENDICULAR
(56.5) TO LINE ON WIRING AREA OF

INPUT TERMINAL

EXTEND LINE TO LANE 3

(56.6) (56_8)

DRAW LINE FROM NODE d TO
DRAW LINE ON LANE 3 FROM NODE C TO LANE 3 -
INPUT TERMINAL (WIRING OVER 2)~ T

DRAW LINE FROM NODE e TO INPUT
TERMINAL (WIRING OVER 3)
> (56.9)
end
.] (56_12)
(56_10)| PROVIDE LANE PERPENDICULAR TO LINE PROVIDE LANE PERPENDICULAR
ON PRESENT WIRING AREA, AND CONNECT TO LINE ON PRESENT WIRING
IT WITH LINE AREA, AND CONNECT IT WITH
LINE
PROVIDE LANE ON WIRING AREA PARALLEL (56.13)
(56_11)| TO LINE AND NEAR INPUT TERMINAL, AND DRAN LINE FROM NODE TOWARD
CONNECT IT WITH INPUT TERMINAL OBJECT HAVING INPUT TERMINAL
L

]

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 44 of 84

TNIWY3L NdNT OL T 3GON WoYd NI AvHd

(1172G)

3NIT HLIA 11 LO3NNOD GNV V3UV ONIHIM
IN3S34d NO aNIT OL ¥VINOION3dY3d 3NV 301A0Yd

(017L9)

€ 3NV OL ! 3GON AoYd 31T Mvdd

(67LG)

L 3NVT OL 3NIT aN3IX3

(8729)

TYNIWHAL 1NdNT 0 V3V
ONIYIM NO 3NITT OL HVINOIANIdY3d L 3NV 3a1A0Hd

(L72S)

(7 YIAC_ONIHIN)
IVNIWH3L IndNT O1 Y 300N WOdd 3INIT Mvdad

(9729)

€ 3NV OL B 300N Wodd INIT Mvya
(G7LG)

9 3NV OL # 3AON WOYd 3NIT MVHa
(b™LSG)

TNIWYEL INANT JO YRV ONIYIM NO 9 3NV 301A04d

(€7L9)

VIV ONIHIA INISTHd NO G 3NV 3aiACHd

(27L9)

& TVNIRAL
ANdNIE 40 € 3NV 01 dvVIN01AN3dY3d

NI SI

(1729)

Patent Application Publication Dec. 13,2001 Sheet 45 of 84 US 2001/0052109 A1

Fig. 58

: i p i q! r

o -

; : LANE 2 f :

| Y I S A L

QUTPUT g 5 t U

INPUT

__________ b—T 7 HTERMNAY |

1 i g Vi w i X

} | LANE 3 !

: | | i

| |] {

[——

b o = i am - - e e rmar m e e e mom -

QUTPUT
TERMINAL

b — — — - _—_ .

b — — - -

Patent Application Publication Dec. 13,2001 Sheet 46 of 84 US 2001/0052109 A1
Fig.60
T T ! :
| : ; I
| ! LANE 3; :
t I (1 |
_______ | b N_Ld e
e | NPUT
TERMINAL
OUTPUT [LANE 41—
e :-_____.....-___.-: ;___.......-
!) i |
{ 'LANE | : !
Fig.ol
LANE §
B (A 3
| i 9r— |
1 1
| : |
i t } : o
T e INPUT
LANE 51~ |TERMINAL]
OUT PUT
| _JTERMINAY | ___ I R
LANE 2b——1 | .l §
! a ! S I '
| | I !
: : LANE ! :

Patent Application Publication Dec. 13,2001 Sheet 47 of 84 US 2001/0052109 A1

LLANE 3

INPUT i
TERMINAL

. - - - ——— -

OUTPUT
TERMINAL —<-LANE 4

- e fu — - — ——
b —

[»]
L~

LANE 2 LANE !

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 48 of 84

1Nd1no

.VTH

-t am -

-1

1.

~—11NdNI

J 3NV

1NN

(@)g9 big

- o - b

N

)

| 3NV

(0)¢9° D14

1Nd.ino

1Nnd1ino

Py

4

e~

- 1NN

g 3NV

\

(8)£9° 614

VvV 3INVT

LAGNITT r%

N 1

-

N~
\ - o

| ANV

HERY
/

1Nd1iNno

(V)e9bid

Patent Application Publication Dec. 13,2001 Sheet 49 of 84 US 2001/0052109 A1
Fig.64
300
DISPLAY MEANS p~—3 0 1
310 I
' e N
0BJECT HIERARCHICAL
30 2~ € > STRUCTURE 3 0 3
COUPL ING MEANS CONSTRUCTION MEANS

~

n

HANDLER ~~3 0 4

Patent Application Publication Dec. 13,2001 Sheet 50 of 84 US 2001/0052109 A1
Fig.65
OBJECT A
OBJECT C
OBJECT OBJECT
B E
0BJECT F
OBJECT OBJECT OBJECT G
D H
Fig.66
WIRING EDITOR
OBJECT A
OBJECT B » OBJECT € > O0BJECT D
OBJECT E » OBJECT F > OBJECT G

A 4

0BJECT H

Patent Application Publication Dec. 13,2001 Sheet 51 of 84 US 2001/0052109 A1

Fig.67

POINTER TO HIGHER- | POINTER TO LOWER- FROM | TO
ORDER HIERARCHY ORDER HIERARCHY

(PGINTERS TO HIGHER/LOWER-ORDER HIERARCHY) (POINTERS TO SAME-
ORDER HIERARCHY)

(0BJECT)
(POINTERS TO BUSES) (POINTERS TG CABLES)
IN QuT INSTRUCTION | DATA | TAG TAG DATA
INSTRUCT ION
! X Y . Y Y
BUS1 BUS3 § CABLE1 : :
T I g T
BUS2 BUS4 : CABLE2
ne L >
- - CABLE3
L

Fig.638

(BUS)
POINTER TO SUBSTANTIAL OBJECT
POINTER TO BUS OF SUBSTANTIAL OBJECT
POINTER TO NEXT BUS
OTHER DATA

Patent Application Publication Dec. 13,2001 Sheet 52 of 84

Fig.69

(TERMINAL)

(CABLE)

POINTER TO TERMINAL

US 2001/0052109 A1

Y

POINTER TO NEXT CABLE

POINTER TO OBJECT B

POINTER TO BUS 2

POINTER TO NEXT TERMINAL

(TERMINAL)

PGINTER TO OBJECT C

PGINTER TG BUS 1

BUS1 E:\\\\E:

BUS2 [

NULL
L
Fig. 70
OBJECT A
] BUS3
BUS2
T
BUS1 | OBJECT B BUS1 | OBJECT €
-
] BUS4

Patent Application Publication Dec. 13,2001 Sheet 53 of 84 US 2001/0052109 A1

Fig. 71

OBJECT A OBJECT E' (DUPLICATE)

OBJECT B

0BJECT C

/
_,

!
!
!
\
\

OBJECT C

OBJECT D

0BJECT E

Patent Application Publication Dec. 13,2001 Sheet 54 of 84 US 2001/0052109 A1

Fig. 72

WIRING EDITOR
OBJééT A
OBJECT B » OBJECT C m-"~*£:§§§§§f:§ij
OBJECT D » OBJECT E
Fig. 73
START
¥

PRODUCE DUPLICATE E' OR COPY | (73 _1)
OF OBJECT E (ORIGINAL)

¥

ON ALL BUSES OF OBJECT E :

1. CREATE COPY BUS FOR DUPLICATE E' ; AND

2. WRITE INTO THE COPY BUS (73_2)
« POINTER TO SUBSTANTIAL OBJECT E, AND
* POINTER TO THE ASSQOCIATED BUS

v
END

Patent Application Publication Dec. 13,2001 Sheet 55 of 84 US 2001/0052109 A1

Fig. 74

OBJECT £ 0BJECT E
IN ouT [N ouT

e By

BUST’ s > BUST

BUS2' F— 5 BUS?

4

Fig.T7h

OBJECT A
BUS4

OBJECT 8) | 0BJECT ¢ BUS1 | 0BJECT D [
S BUS3 -

- BUSS L—c BUSt -
= =

- — 1 a2 -
= R -

\ REPLACEMENT
L

OBJECT E

BUS3
] BUST]

BUS2

U

f
L

Patent Application Publication Dec. 13,2001 Sheet 56 of 84 US 2001/0052109 A1

Fig. /76
K__/’Ag

WIRING EDITOR
&
0BJECT A
0BJECT B » OBJECT C 0BJECT D
OBJECT E
Fig. 77
A
r"'
OBJECT A
RUS4
OBJECT B [— OBJECT E BUS1 | OBJECT D 3
[.| —{
= BUS3 —
- BUSS5 “——— BUS1) -
]
- L e -
- -]

0BJECT C

BUS3 [
3 BUS1

—| BUS?

U

Patent Application Publication Dec. 13,2001 Sheet 57 of 84 US 2001/0052109 A1
Fig. 78
BN g
—
OBJECT B OBJECT C » (0BJECT D
» O0BJECT E
~ p,
Fig. 79
START (79__1)
I DRAG OBJECT
RECOGNIZE DRAGGED OBJECT (79__2) (79_.3)
N DROP OBJECT
RECOGNIZE DROP-DESTINATION- (738__4)
. OBJECT
¥
ALTER OBJECT TREE (78_5)
¥
RETRIEVE WIRING OF DROP-
DESTINATION-OBJECT FROM CABLE (79__6)
ELEMENT LIST
v
CHANGE WIRING OF DROP-
DESTINATION-OBJECT INTO OBJECT| (7 9 __7)

AFTER REPLACEMENT
v
END

Patent Application Publication Dec. 13,2001 Sheet 58 of 84 US 2001/0052109 A1

Fig.80

0BJECT A
INSTRUCTION | DATA | TAG INSTRUCTION | TAG DATA

L ! ’ ’

CABLE > i emonemeaennes g :
Y
|

CABLEa > TERM I NAL > TERMINAL
4{ X // X
’ 0BJECT € BUS3 OBJECT D BUST

OBJECT E BUS3 OF
OBJECT E

Patent Application Publication Dec. 13,2001 Sheet 59 of 84 US 2001/0052109 A1

Fig.81

OBJECT A R R
: U4 5

| OBUECT B § | 0BJECT ¢ | BECTD| | ggélgsm E D
BUS3 §) BUS3 :——r—: -

— : BUS1 R
' sy —

- - BUST :_Lc -
- 5 w-

Patent Application Publication Dec. 13,2001 Sheet 60 of 84 US 2001/0052109 A1

Fig.82

WIRING EDITOR

OBJECT A

--

4

0BJECT B |—i-3 OBJECT C o| OBJECT D

h 4

OBJECT E

--

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 61 of 84

.0 .0 f

SNA
3 134rdo

— Zsng 1sng
- HU}gllmu 6Snd
= Zsnd 1sng)
nu\\\hur.mu £Sng 9 193r90
)
a 193rg0 ¥Sng
¥Sng
4 193r€0

U

L

esnd
g 194r8o

U

¥ 133rao

€8 b1

Patent Application Publication Dec. 13,2001 Sheet 62 of 84

|

OBJECT B

Fig.84

h 4

OBJECT F

US 2001/0052109 A1

b

OBJECT €

h

OBJECT E

OBJECT D

Patent Application Publication Dec. 13,2001 Sheet 63 of 84 US 2001/0052109 A1

Fig.8hb

START
¥
RECOGNIZE SELECTED OBJECTS (85_1)
¥

BUILD NEW OBJECT ON THE SAME (85__2)
H{ERARCHY AS THE SELECTED OBJECTS

¥

REPLACE THE SELECTED OBJECTS BY (85__3)
NEW OBJECT

¥

RETRIEVE WIRING OF THE SELECTED (85__4)
OBJECTS FROM CABLE ELEMENT LIST

IS IT WIRING YES

BETWEEN OBJECT-TO-OBJECT INSIDE
NEW OBJECT 7 (85_6)
SHIFT WIRING TO
NEW OBJECT
BUILD BUS FOR WIRING USE ON NEW | (8 5__7)
OBJECT
v

CHANGE WIRING OF OBJECTS INSIDE (85_8)
NEW OBJECT INTO NEW OBJECT

END

Patent Application Publication Dec. 13,2001 Sheet 64 of 84 US 2001/0052109 A1

Fig.86

| [B
OBJECT B ¢ OBJECT C > OBJECT D >§;OBJECT E/Jf_’ OBJECT F j>

N
h 4

Fig.87

OBJECT A

INSTRUCTION | DATA | TAG INSTRUCTION | TAG DATA

T) 7 7
CABLE
Y
i
CABLEa TERMINAL
T 7 7 T
: 0BJECT C BUS4 OBJECT D BUST

4

TERMINAL

b

i
CABLEb TERMINAL TERMINAL
¥ ¥ ! Y v
: OBJECT D BUS3 OBJECT E BUS1

A

h

Patent Application Publication Dec. 13,2001 Sheet 65 of 84 US 2001/0052109 A1
Fig.88

OBJECT A OBJECT F
) v v v v

CABLE
Y
{

CABLE Y,

Fig.89

0BJECT F
IN ouT
¥)
BUS2

—— 0BJECT D

— BUS3

Patent Application Publication Dec. 13,2001 Sheet 66 of 84 US 2001/0052109 A1

Fig.30
l

CABLEb > TERMINAL > TERMINAL
4{ X X
QBJECT D BUS3 0BJECT E BUS1
0BJECT F BUS2
Fig.91
0BJECT A
BUST E3— OBJECT €
— -
]]
1 OBJECT B | BUS?2
]]
- i
]
0BJECT D
[
] BUSZ
|
=
7 BUST
1 OBJECT E
]
(man

Patent Application Publication Dec. 13,2001 Sheet 67 of 84 US 2001/0052109 A1

Fig.92

OBJECT A

INSTRUCT ION DATA | TAG INSTRUCTION | TAG DATA

¥ v v v
CABLE

TERMINAL TERMINAL

v ¥ ¥ + ¥
OBJECT B BUS1 OBJECT C BUS2

h

(]
x>
(= 9)
=
m
[
\

CABLED TERMINAL TERMINAL
¥ v v ¥ !
' OBJECT B BUS1 0BJECT D BUS2

h

{
CABLEc TERMINAL TERMINAL

¥ ¥ v ¥ ¥
' OBJECT B BUS1 OBJECT E BUS1

A 4

W

Patent Application Publication Dec. 13,2001 Sheet 68 of 84 US 2001/0052109 A1

Fig.93

START

RECOGNIZE SELECTED WIRING

h

MAKE UP LIST OF WIRING, AND
DISPLAY THE SAME

RECOGN!{ZE DRAGGED WIRING

RECOGNIZE DROP-DEST INATION-
NIRING

ALTER SEQUENCE OF LIST OF
WIRING DATA

END

(83_1)
(93_2)
(93_3)
¢ DRAG LISTED [TEMS
(93__4) (93_5)
Iy DROP LISTED |ITEMS
(83__86)
(83_7)

Patent Application Publication Dec. 13,2001 Sheet 69 of 84 US 2001/0052109 A1

Fig.94

WIRING EDITOR
CABLE’LIST CABLEa
CABLé LIST p——> CABLEb
CABLE'LIST ——— CABLEc

L

Fig.9h

OBJECT B : BUST

OBJECT C : BUS2

0BJECT B : BUSt

OBJECT D : BUSZ

OBJECT B : BUSH

OBJECT E : BUST

Patent Application Publication Dec. 13,2001 Sheet 70 of 84 US 2001/0052109 A1

Fig.96

OBJECT A

CABLE
;

|
CABLEa
Y

CABLED
Y

_\l i

CABLEC
__Ji

Patent Application Publication Dec. 13,2001 Sheet 71 of 84 US 2001/0052109 A1

Fig.97

0BJECT A

CABLE
Y

i
CABLEa
¥

{
CABLEC
T
CABLEb

Y

Fig.98

WIRING EDITOR
CABLE LIST > CABLEa
1 ‘
—
CABLE LIST > CABLEb
I
=
CABLE LIST > CABLEc
L

Patent Application Publication Dec. 13,2001 Sheet 72 of 84 US 2001/0052109 A1

Fig.99

WIRING EDITOR

b 4

CABLE LIST > CABLEa

A 2

CABLE LIST |———— CABLEc

A 4

CABLE LIST }——> CABLEb
L

Fig.100

OBJECT B : BUS1 | OBJECT C : BUSZ
OBJECT B : BUS1 | OBJECT E : BUS1
OBJECT B : BUS1 | OBJECT D : BUS2

US 2001/0052109 A1

Patent Application Publication Dec. 13,2001 Sheet 73 of 84

£ NO1LNg

¢ NOLLNg

h

4)
| \¢ aNSSI INIAT

| NOLLNE

T

ININHOVNYN X113 ¢ NoLIng
MOONIM dnSSi INIAT

=

¥ NOILVO!I'lddV

_ < W13 1 NOLLNG

_ 1HVLS NOILYJIddv 9
QOHLN

NO1LYNJOIN] MOQNIM
(9X8°Y) NOILYJIddv

v1va
N Y ININOANO) ——

L0161

(

S193r80 Wodd
SAOVSSIM

)

US 2001/0052109 A1

Dec. 13,2001 Sheet 74 of 84

Patent Application Publication

‘ /
(1 (
<+0ONJ 2 QOHLIN 40 3O1LON feq— ¢ CGOHLIIN
“TT ON3 | QOHL3W 40 JOIION jef— | QOHLIN I
SFOVSSIN QOHLIN

v1va y.
3 IN3NOJKO)

A

A

A

A 4)
, N\ (: a ~ N (Y
VR NSS! INIA RN NSS! INIAT
2 NFW 40 3011ON © 01T 2 NN Z NOLLNG 0 301 10N Y179 2 NOLLAG
ERAIN D EL L ED NG I 3nsSI INIAT
L AN3H 40 301 10N W11 L NN L NOLLNG 40 301 LON Y170 | NOLLNG
LHYLS NOT L1 tddV 1HY1S NOTLYD1ddY
40 30110V <f—- L4V1S NOILYDI TddY < 40 011N <f—- 18VS NOILYOITddV <
SIOVSSTH (OHL3N SIOVSSTM QOHLIW
NOI LYNYOIN] MOONIH NOI LYWHOSN! MOGNIM
g NOILYD1ddY ¥ NOILYD ! TddV
wa) Vg

8 IN3INOJNOD

01 614

V ININOdW0D

Patent Application Publication Dec. 13,2001 Sheet 75 of 84

USE DEPRESSES BUTTON 1

APPLICATION A

BUTTON 1 % "4

 momm |

US 2001/0052109 A1

Fig.103

W INDOW
MANAGEMENT

COMPONENT A ——mmm—

'

b4

(Event NONITOR |

2

DATA
[APPLICATION (A. exe)

WINDGH |NFORMATION

J

BUTTON 2 METHOD
{
- APPLICATION START A J—t—
BUTTON 3 START \
APPLICATION MESSAGES
A

\ 2

NOTICE OF BUTTON 1 CLICK=)
NOTICE OF BUTTON 2 CLICK—>

_J

Patent Application Publication Dec. 13,2001 Sheet 76 of 84 US 2001/0052109 A1

Fig.104

————— WINDOW MANAGEMENT ——
EVENT PROCESSING PORTIGN
T - — POINTER TG EVENT PROCESS FUNCTIGON
EVENT PROCESSING > TQ EVENT MONITOR PORTION
T OF COMPONENT A
EVENT PROCESSING >
Y
4
EVENT PROCESSING > DEFAULT EVENT PROCESS FUNCTION
=
Fig.105
EVENT MONITOR PORTION
EVENT DATA EVENT TABLE
(COMPAR | SON)p
WINDOW 1D WINDOW | EVENT | OTHER | ISSUED
< ID D DATA | MESSAGES
EVENT (D
OTHER DATA
(MATCH)

v

MESSAGE [SSUE

Patent Application Publication Dec. 13,2001 Sheet 77 of 84 US 2001/0052109 A1

Fig.106

400
COMPONENT
403
BUILDER MEANS
4 0 1 <~ FIRST HANDLER SECOND HANDLER b~ 4 0 2
Fig.107
W INDOK
HANAGEWENT
USER DEPRESSES BUTTON 1
121
§
APPLICATION A (if — ;ONITOR] OBJECT BUILDER)
V X
i | "I 1216
,/. v 5
BUTTONJﬁV —
METHOD
BUTTON 2
BNICLICK
BUTTON 3| | | START MESSAGES
APPLICATION A

\— J

Patent Application Publication Dec. 13,2001 Sheet 78 of 84 US 2001/0052109 A1

Fig.108

START
¥
START APPLICATION A (108_1)

v
OBTAIN WINDOW [NFORMATION OF APPLICATION A| (108__2)
v
SELECT METHOD/MESSAGE, AND EVENT SORTS (108_3)

v
(108_4) MONITOR EVENTS

>3

A A

< EVENTS | (108_5)

Y

(108_6)
IS IT EVENT ASSOCIATED NO

WITH WINDOW Q?F APPLICATION
A

IS IT THE SAME SORT OF N QO
EVENT AS SELECTED EVENT ?
ADD METHOD (OR MESSAGE) (108__8)
N O
IS MONITORING OF EVENT OVER?
APPLICATION END (108_10)

¥

CREATE OBJECT DATA FILE AND (108_11)
RUNNING OBJECT FILE

v
END

US 2001/0052109 A1

Dec. 13,2001 Sheet 79 of 84

Patent Application Publication

3114 ININOdHWOJ

3114 907 INJAd

161

(NNY)
3sn
Y3134d43INI
404 3114
Yiva ONIYIN LINN
43134dY3IN|
(
€cl
1114
LINN YLYQ ONIYIN LINn 401103
9N1714N0J > 103r80 4AINI e ONIYI K
ININOJNOD 133rd0 Y3INI
{ {
¢l b el ¢d
1INA 3114 JHVRL40S ////// L1INQ H3ating
ONTLVYINTO e ONLLSIX3
9071 IN3Ad 103r90
((

A 1 el

00|

601 614

L2 1

h

ELE!
13340
ONINNNY

3714 vivd
133r€0

¢ ¢l

Patent Application Publication Dec. 13,2001 Sheet 80 of 84 US 2001/0052109 A1

Fig.110

START

' (110_1)
LOAD ONE EVENT FROM EVENT LOG FILE

. (110_2)
NO
DOES THE ASSOCI@PW

| YES

ADD WIRING BETWEEN LAST MESSAGE | (1 10__3)
AND THE METHOD

(110__4)
NEXT EVENT 7?7

/”P

YES

END

Patent Application Publication Dec. 13,2001 Sheet 81 of 84 US 2001/0052109 A1

Fig. 111

COMPONENT FILE

EVENT LOG FILE EVENT METHOD
(COMPARISON) (ASSOCIATION)

EVENT DATA KCe——=——ot=>{ BUTTON 1 CLICK [————=" BNICLICK

BUTTON 1 CLICK
DATA

LAST NESSAGE

LAST NESSAGE
I(WIRING)

BNICLICK

Patent Application Publication Dec. 13,2001 Sheet 82 of 84 US 2001/0052109 A1

Fig.112

(A) HEADER
(B) DEFINITION OF LIBRARY ——— LIBRARY TO BE BUILT
(©) DRITION OF EXISTING 0 EXISTING PR R
c | NG ——| XISTING PROGRAM
' PROGRAM Y)
(D) DEF INITION OF OBJECT —-|_ -~ —
> x1
DEFINITION OF DATA BUS (INPUT){ > 2
> X

v

function 1 {x1, x2}
DEFINITION OF METHOD{' :

L

fpnction 2 {x2, x3}

y1
v2

A

DEFINITION OF DATA BUS (QUTPUT) {

N

(D) DEFINITION OF OBJECT ——d-]
DEFINITION OF DATA BUS (INPUT)
DEFINITION OF METHOD

DEFINITION OF DATA BUS (OUTPUT) < yi

L

Xi

A 4

function j {xi}

Patent Application Publication Dec. 13,2001 Sheet 83 of 84 US 2001/0052109 A1

Fig.113

{TEMS KEYWORDS REMARKS
PROJECT LSIBuilderProject
PROJECT NAME LSIBui lderProjectName
N PATH OF COMPILER SYSTEM MSVCRoot
PATH OF FIRSTSIGHT SYSTEM CoreRoot
PATH OF USER AREA UserRoot
DEFINITION OF ARCHIVES Archives
(B) NAME OF ARCHIVES ArchivesName
PATH OF LIB LibPath
PATH OF DLL Dl IPath
[NAME OF LIBRARY TO BE BUILT LibName
) COMPILE MODE Debug
DEFINITION OF #define AND typedef Header
DEFINITION OF LSI LS!
NAME CF LSI LSIName
COLOR OF LSI Color TREE COLORS OF
RGB (0-255)
DATA BUS DataBus
NAME OF DATA CORRECTION PROCESS ProcessName
NAME OF DATA BUS Name
TYPE OF VARIABLES VariableType CODE OF FUNCTION
DATA CORRECTION PROCESS Process
DIRECT DEVELOPMENT INTO DefineConnector Inline
DISTINCTION BETWEEN INPUT AND OUTPUT i0 . input OR output
COLOR OF BUS Color
0) INSTRUCT I ON InstBus
NAME OF INSTRUCTION BUS Name
FUNCTION NAME OF ENTRY POINT ProcessName .
MEANING OF RETURN VALUE ReturnValue zero OR nonzero
OR NUMERAL
INSTRUCT|ON PROCESS Process CODE OF FUNCTION
Cmd ? Cmd yes/no
DIRECT DEVELOPMENT INTO Cmd OR Command Inline
COLOR OF BUS Colo
GLOBAL VARIABLES Variables
(GLOBAL VARIABLES INSIDE LSI)
DEFINITION #define AND typedef Header
INITIAL1ZATION PROCESS Initialize CODE OF FUNCTION
CONSTRUCTOR Constructor CODE OF FUNCTION
DESTRUCTOR Destructor CODE OF FUNCTION

US 2001/0052109 A1

Dec. 13,2001 Sheet 84 of 84

Patent Application Publication

---1Nd1N0 B8 LNdNI

J19YI14YA 40 3dAL | INYN SNd

:37av1 Sna viva

=-INTVA NUNL3Y

--- AHINT | JNYN SN

:378v1 Sng NOTLONYLSNI

e}epO
uo13onl1sul -
uoilewiojul
JNYN IS
e1ep0)
uoizoniisul
uoijeusopuld
YN IS

uojjeuioul O

JNYN seAlyolie

e1ep0
uo119n43su} O

uoijewsopui)
VN 1S

R1BPO)
uoj3oniisuld

uoijewsojui(d)

YN IS
uoijeuojul)

wo | --8ulgep | 4000 IST|IWWN 1ST| | JWWN Ssatuoile
uoi3elloful O
NOILYWHOIN| 1S7 JWYN 29310400
JTH DVR AYIdSIA ONILIGE F1I4
pll 614

US 2001/0052109 Al

OBJECT-ORIENTED PROGRAMMING
APPARATUS, OBJECT-ORIENTED
PROGRAMMING SUPPORTING APPARATUS,
COMPONENT BUILDER APPARATUS,
OBJECT-ORIENTED PROGRAM STORAGE
MEDIUM, PROGRAM STORAGE MEDIUM FOR
USE IN OBJECT-ORIENTED PROGRAMMING,
COMPONENT STORAGE MEDIUM, AND
OBJECT-BETWEEN-NETWORK DISPLAY
METHOD

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] The present invention relates to an object-oriented
programming apparatus for performing an object-oriented
programming, an object-oriented programming supporting
apparatus for supporting an object-oriented programming, a
component builder apparatus for building components form-
ing a part of an object, an object-oriented program storage
medium for storing therein object-oriented programs, a
program storage medium for use in an object-oriented
programming, the program storage medium being adapted
for storing therein a program to support an object-oriented
programming, a component storage medium for storing
therein components, and an object-between-network display
method of visually displaying in the form of a network of
objects a data integration due to a data sharing, an integra-
tion of control flows among objects and the like, on a
plurality of objects produced by the object-oriented pro-
gramming.

[0003] 2. Description of the Related Art

[0004] Hitherto, when a program, which is incorporated
into a computer so as to be operated, is described, a
programming is performed in such a manner that a function
name (command) and a variable are described in turn. In
case of such a programming scheme, since there is a need to
describe the programming with the commands in its entirety,
it is necessary for a programmer to investigate the com-
mands one by one through a manual, or to remember a lot
of commands. However, those commands are different for
each program language. Accordingly, even if a programmer
remembers a lot of commands of a certain program lan-
guage, when the programmer describes a program with
another program language, there occurs such an inconve-
nience that the programmer has to do over again learning the
commands of the program language. Further, formats of
programs are also different for each program language.
These matters make a description of the program difficult,
and give such an impression that a development of programs
is a special field which is deemed that it is difficult for a
nonprofessional to enter thereinto. Recently, programs are
increasingly large-scaled and complicated, and thus there is
emphasized more and more a necessity that a development
of programs is made easier, and also a necessity for con-
tributing to a reuse of the once developed programs.

[0005] Insuch a technical background, recently, an object-
oriented programming has been widely adopted. An object
is a named entity that combines a data structure with its
associated operations. That is, the object comprises “data”
and “its associated operations”. The term “object-oriented”
implies a concept that the “data” and the “its associated
operations”, that is, the object is treated in the form of units.

Dec. 13, 2001

Also in such an object-oriented programming, there is a need
to essentially build each individual software (object). After
the individual objects are once built, however, a program-
ming is completed in such a manner that a coupling relation
of object-to-object is described such that a certain object
calls another object. It is expected that the object-oriented
programming taking in such a concept serves to significantly
improve an operability of software large-scaled and com-
plicated, a method of making up such a software, and the
maintenance thereof.

[0006] In the object-oriented programming, an operation
in which a certain object calls another object uses concepts
of messages and methods such that the calling object issues
amessage to the called party of object, while the called party
of object receives the issued message and executes its
associated methods (operations). Hitherto, data necessary
for a process of the methods is provided in the form of
arguments of the messages.

[0007] One of the objects of the object-oriented program-
ming resides in the point that a software (object) once made
up can be reused even if the system is altered. In order to
implement this, there is a need to make up a relatively small
and simple object.

[0008] In general, however, it is said that the object-
oriented program is low in its execution rate because it takes
a lot of time to recognize a corresponding relation between
the received message and its associated method, and also it
takes a lot of time to transfer data from an object, which
issues the message, to an object which executes the method.

[0009] In order to improve the program execution rate,
hitherto, there is adopted a technique in which operations in
one object are increased to reduce opportunities of issuing
messages directed to another object. In this case, however,
the operations in one object is complicated, and the object is
scaled up. They are contrary to the above-mentioned reuse,
and thus it is one of the causes of prohibiting the possibility
of promoting reuse of the software in the object-oriented
programming.

[0010] When the object-oriented programs are promoted,
the serious problem is involved in handling of a large
number of softwares accumulated up to now, which are not
based on a concept referred to an object-oriented. The
object-oriented programming technology according to the
earlier development has been associated with such a prob-
lem that the possibility of promoting reuse of the existing
soft ware is extremely low.

SUMMARY OF THE INVENTION

[0011] In view of the above-mentioned problem, it is
therefore an object of the present invention to provide an
object-oriented programming apparatus having a function of
coupling a plurality of objects with one another so that
information efficiently flows among the plurality of objects,
an object-oriented program storage medium for storing
therein a plurality of objects and object-coupling programs
for coupling the plurality of objects with one another so that
information efficiently flows among the plurality of objects,
an object-oriented programming supporting apparatus which
contributes to facilitation of an object-oriented program-
ming for defining a coupling relation between objects, a
program storage medium for use in an object-oriented

US 2001/0052109 Al

programming, the program storage medium being adapted
for storing therein a program to support an object-oriented
programming, a component builder apparatus having a
function of building a component which serves as an object
in combination with an existing software so that the existing
software can be dealt with as the object, a component
storage medium for storing therein components as men-
tioned above, and an object-between-network display
method of visually displaying in the form of a network of
objects a data integration due to a data sharing, an integra-
tion of control flows among objects and the like, on a
plurality of objects produced by the object-oriented pro-
gramming, the object-between-network display method
being suitable for performing an object-oriented program-
ming for defining a coupling relation between objects.

[0012] To attain the above-mentioned object, according to
the present invention, there is provided a first object-ori-
ented programming apparatus for interconnecting a plurality
of objects each having data and operations, said object-
oriented programming apparatus comprising:

[0013] instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object;

[0014] data element list generating means for gener-
ating a data element list, in which pointers to data
storage areas for storing data are arranged, of an
object;

[0015] pointer element list generating means for gen-
erating a pointer element list, in which pointers to
pointer storage areas for storing pointers to data are
arranged, of an object; and

[0016] data coupling means for permitting a transfer
of data between a third object having the data
element list and a fourth object having the pointer
element list, by means of writing the pointers
arranged in the data element list of the third object
into the pointer storage areas indicated by the point-
ers arranged in the pointer element list of the fourth
object.

[0017] Inthe first object-oriented programming apparatus,
it is preferable that said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed.

[0018] To attain the above-mentioned object, according to
the present invention, there is provided a second object-
oriented programming apparatus for interconnecting a plu-
rality of objects each having data and operations, said
object-oriented programming apparatus comprising:

[0019] instruction coupling means for permitting a trans-
fer of messages between a first object having an output

Dec. 13, 2001

instruction bus portion for performing a processing for an
issue of messages directed to another object and a second
object having an input instruction bus portion responsive to
messages issued by another object and directed to self object
for activating a method of self object associated with the
received message, by means of providing such a correspon-
dence that the message of the first object is associated with
the method of the second object; and

[0020] an input instruction tag table generating
means for generating an input instruction tag table
indicating an association of messages of another
object with methods of self object, for each other
object, on the output instruction bus portion of self
object.

[0021] In the second object-oriented programming appa-
ratus, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0022] said input instruction tag table generating
means generates the input instruction tag table and
adds the input instruction tag table to the method
elements including the pointer to another object
associated with the input instruction tag table.

[0023] As one of ways that the input instruction tag table
is added to the method element, it is acceptable that a pointer
to the input instruction tag table is directly written to the
method element.

[0024] To attain the above-mentioned object, according to
the present invention, there is provided a third object-
oriented programming apparatus for interconnecting a plu-
rality of objects each having data and operations, said
object-oriented programming apparatus comprising:

[0025] instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0026] an output instruction tag table generating
means for generating an output instruction tag table
indicating an association of methods of another
object with messages of self object, for each other
object, on the output instruction bus portion of self
object.

[0027] In the third object-oriented programming appara-
tus, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

US 2001/0052109 Al

[0028] said output instruction tag table generating
means generates the output instruction tag table and
adds the output instruction tag table to the method
elements including the pointer to another object
associated with the output instruction tag table.

[0029] As one of ways that the output instruction tag table
is added to the method element, it is acceptable that a pointer
to the output instruction tag table is directly written to the
method element.

[0030] To attain the above-mentioned object, according to
the present invention, there is provided a fourth object-
oriented programming apparatus for interconnecting a plu-
rality of objects each having data and operations, said
object-oriented programming apparatus comprising:

[0031] instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0032] an input data tag table generating means for
generating an input data tag table indicating an
association of a data element list ID for identifying
a data element list in which pointers to data storage
areas for storing data are arranged with a pointer
element list ID for identifying a pointer element list
in which pointers to data storage areas for storing
pointer to data are arranged, for each other object, on
the output instruction bus portion of self object.

[0033] In the fourth object-oriented programming appara-
tus, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0034] said input data tag table generating means
generates the input data tag table and adds the input
data tag table to the method elements including the
pointer to another object associated with the input
data tag table.

[0035] Asone of ways that the input data tag table is added
to the method element, it is acceptable that a pointer to the
input data tag table is directly written to the method element.

[0036] To attain the above-mentioned object, according to
the present invention, there is provided a fifth object-
oriented programming apparatus for interconnecting a plu-
rality of objects each having data and operations, said
object-oriented programming apparatus comprising:

[0037] instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by

Dec. 13, 2001

another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0038] an output data tag table generating means for
generating an output data tag table indicating an
association of a pointer element list ID for identify-
ing a pointer element list in which pointers to pointer
storage areas for storing pointers to data are arranged
with a data element list ID for identifying a data
element list in which pointers to data storage areas
for storing data are arranged, for each other object,
on the output instruction bus portion of self object.

[0039] In the fifth object-oriented programming apparatus,
it is preferable that said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed, and

[0040] said output data tag table generating means
generates the output data tag table and adds the
output data tag table to the method elements includ-
ing the pointer to another object associated with the
output data tag table.

[0041] As one of ways that the output data tag table is
added to the method element, it is acceptable that a pointer
to the output data tag table is directly written to the method
element.

[0042] To attain the above-mentioned object, according to
the present invention, there is provided a first object-ori-
ented program storage medium for storing

[0043] a plurality of objects each having data and
operations, said object-oriented program storage
medium storing

[0044]

[0045] instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object;

an object coupling program comprising:

[0046] data element list generating means for gener-
ating a data element list, in which pointers to data
storage areas for storing data are arranged, of an
object;

[0047] pointer element list generating means for gen-
erating a pointer element list, in which pointers to
pointer storage areas for storing pointers to data are
arranged, of an object; and

[0048] data coupling means for permitting a transfer
of data between a third object having the data
element list and a fourth object having the pointer

US 2001/0052109 Al

element list, by means of writing the pointers
arranged in the data element list of the third object
into the pointer storage areas indicated by the point-
ers arranged in the pointer element list of the fourth
object.

[0049] In the first object-oriented program storage
medium, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0050] the first object having the output instruction
bus portion refers to, when issuing a message, a
method element arranged in the method element list
associated with the message, and calls the second
object in which a pointer is stored in the method
element, giving the method ID stored in the method
element as an argument.

[0051] In this case, the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

[0052] To attain the above-mentioned object, according to
the present invention, there is provided a second object-
oriented program storage medium for storing

[0053] a plurality of objects each having data and
operations, said object-oriented program storage
medium storing

[0054]

[0055] instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0056] an input instruction tag table generating
means for generating an input instruction tag table
indicating an association of messages of another
object with methods of self object, for each other
object, on the output instruction bus portion of self
object.

an object coupling program comprising:

[0057] In the second object-oriented program storage
medium, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0058] said input instruction tag table generating
means generates the input instruction tag table and
adds the input instruction tag table to the method
elements including the pointer to another object
associated with the input instruction tag table.

Dec. 13, 2001

[0059] As one of ways that the input instruction tag table
is added to the method element, it is acceptable that a pointer
to the input instruction tag table is directly written to the
method element.

[0060] Tt is acceptable that the first object having the
method element to which the input instruction tag table is
added calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the input instruction tag table which are
stored in the method element.

[0061] As one of ways that the second object is called
giving as arguments the input instruction tag table, it is
acceptable that the second object is directly called giving as
arguments a pointer to the input instruction tag table.

[0062] In this case, the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

[0063] 1t is acceptable that the second object receives
messages directed from the first object to the second object,
and refers to the input instruction tag table, which is an
argument of the received message, to execute the method of
the first object associated with the message of the second
object.

[0064] 1t is preferable that the second object receives
messages directed from the first object to the second object,
and refers to the input instruction tag table, which is an
argument of the received message, to add the method
element related to the method of the first object associated
with the message of the second object to the method element
list of the second object associated with the message of the
second object.

[0065] 1t is also preferable that the second object has
means for producing a third object, receives messages
directed from the first object to the second object, and refers
to the input instruction tag table, which is an argument of the
received message, to add the method element related to the
method of the first object associated with messages of the
third object to the method element list of the third object
associated with the message of the third object.

[0066] In this case, a timing of producing the third object
by the second object is not restricted in the present inven-
tion, and it is acceptable that the third object is produced
when the message is issued, alternatively, the third object is
produced beforehand.

[0067] To attain the above-mentioned object, according to
the present invention, there is provided a third object-
oriented program storage medium for storing

[0068] a plurality of objects each having data and
operations, said object-oriented program storage
medium storing

[0069]

[0070] aninstruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-

an object coupling program comprising:

US 2001/0052109 Al

ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0071] an output instruction tag table generating
means for generating an output instruction tag table
indicating an association of methods of another
object with messages of self object, for each other
object, on the output instruction bus portion of self
object.

[0072] In the third object-oriented program storage
medium, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0073] said output instruction tag table generating
means generates the output instruction tag table and
adds the output instruction tag table to the method
elements including the pointer to another object
associated with the output instruction tag table.

[0074] As one of ways that the output instruction tag table
is added to the method element, it is acceptable that a pointer
to the output instruction tag table is directly written to the
method element.

[0075] 1t is acceptable that the first object having the
method element to which the output instruction tag table is
added calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the output instruction tag table which are
stored in the method element.

[0076] As one of ways that the second object is called
giving as arguments the output instruction tag table, it is
acceptable that the second object is directly called giving as
arguments a pointer to the output instruction tag table.

[0077] In this case, the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

[0078] 1t is acceptable that the second object receives
messages directed from the first object to the second object,
and refers to the output instruction tag table, which is an
argument of the received message, to add the method
element related to the method of the second object associ-
ated with the message of the first object to the method
element list of the first object associated with the message of
the first object.

[0079] T1tis preferable that the second object has means for
producing a third object, receives messages directed from
the first object to the second object, and refers to the output
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the third object associated with messages of the first object
to the method element list of the first object associated with
the message of the first object.

[0080] In this case, similar to the second object-oriented
program storage medium, a timing of producing the third
object by the second object is not restricted in the present

Dec. 13, 2001

invention, and it is acceptable that the third object is
produced when the message is issued, alternatively, the third
object is produced beforehand.

[0081] To attain the above-mentioned object, according to
the present invention, there is provided a fourth object-
oriented program storage medium for storing

[0082] a plurality of objects each having data and
operations, said object-oriented program storage
medium storing

[0083]

[0084] aninstruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0085] an input data tag table generating means for
generating an input data tag table indicating an
association of a data element list ID for identifying
a data element list in which pointers to data storage
areas for storing data are arranged with a pointer
element list ID for identifying a pointer element list
in which pointers to data storage areas for storing
pointer to data are arranged, for each other object, on
the output instruction bus portion of self object.

an object coupling program comprising:

[0086] In the fourth object-oriented program storage
medium, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0087] said input data tag table generating means
generates the input data tag table and adds the input
data tag table to the method elements including the
pointer to another object associated with the input
data tag table.

[0088] As one of ways that the input data tag table is added
to the method element, it is acceptable that a pointer to the
input data tag table is directly written to the method element.

[0089] 1t is acceptable that the first object having the
method element to which the input data tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the input data tag table which are stored in
the method element.

[0090] As one of ways that the second object is called
giving as arguments the input data tag table, it is acceptable
that the second object is directly called giving as arguments
a pointer to the input data tag table.

[0091] In this case, the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

US 2001/0052109 Al

[0092] Tt is acceptable that the second object receives
messages directed from the first object to the second object,
refers to the input data tag table, which is an argument of the
received message, to obtain the pointer element list ID of the
first object, produces the pointer element list identified by
the pointer element list ID, of the first object and in addition
the data element list identified by the data element list ID
associated with the pointer element list ID, of the second,
and writes the pointers arranged in the data element list of
the second object into the pointer storage areas indicated by
the pointers arranged in the pointer element list of the first
object.

[0093] Tt is preferable that the second object has means for
producing a third object, receives messages directed from
the first object to the second object, refers to the input data
tag table, which is an argument of the received message, to
obtain the pointer element list ID of the first object, produces
the pointer element list identified by the pointer element list
ID, of the first object and in addition the data element list
identified by the data element list ID associated with the
pointer element list ID, of the third, and writes the pointers
arranged in the data element list of the third object into the
pointer storage areas indicated by the pointers arranged in
the pointer element list of the first object.

[0094] In this case, a timing of producing the third object
by the second object is not restricted in the present inven-
tion, and it is acceptable that the third object is produced
when the message is issued, alternatively, the third object is
produced beforehand.

[0095] To attain the above-mentioned object, according to
the present invention, there is provided a fifth object-
oriented program storage medium for storing

[0096] a plurality of objects each having data and
operations, said object-oriented program storage
medium storing

[0097]

[0098] an instruction coupling means for permitting a
transfer of messages between a first object having an
output instruction bus portion for performing a pro-
cessing for an issue of messages directed to another
object and a second object having an input instruc-
tion bus portion responsive to messages issued by
another object and directed to self object for activat-
ing a method of self object associated with the
received message, by means of providing such a
correspondence that the message of the first object is
associated with the method of the second object; and

[0099] an output data tag table generating means for
generating an output data tag table indicating an
association of a pointer element list ID for identify-
ing a pointer element list in which pointers to pointer
storage areas for storing pointers to data are arranged
with a data element list ID for identifying a data
element list in which pointers to data storage areas
for storing data are arranged, for each other object,
on the output instruction bus portion of self object.

an object coupling program comprising:

[0100] In the fifth object-oriented program storage
medium, it is preferable that said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a

Dec. 13, 2001

method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

[0101] said output data tag table generating means
generates the output data tag table and adds the
output data tag table to the method elements includ-
ing the pointer to another object associated with the
output data tag table.

[0102] As one of ways that the output data tag table is
added to the method element, it is acceptable that a pointer
to the output data tag table is directly written to the method
element.

[0103] Tt is acceptable that the first object having the
method element to which the output data tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the output data tag table which are stored in
the method element.

[0104] As one of ways that the second object is called
giving as arguments the output data tag table, it is acceptable
that the second object is directly called giving as arguments
a pointer to the output data tag table.

[0105] In this case, the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

[0106] Tt is acceptable that the the second object receives
messages directed from the first object to the second object,
refers to the output data tag table, which is an argument of
the received message, to obtain the data element list ID of
the first object, produces the data element list identified by
the data element list ID, of the first object and in addition the
pointer element list identified by the pointer element list ID
associated with the data element list ID, of the second, and
writes the pointers arranged in the data element list of the
first object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the second
object.

[0107] TItis preferable that the second object has means for
producing a third object, receives messages directed from
the first object to the second object, refers to the output data
tag table, which is an argument of the received message, to
obtain the data element list ID of the first object, produces
the data element list identified by the data element list ID, of
the first object and in addition the pointer element list
identified by the pointer element list ID associated with the
data element list ID, of the third, and writes the pointers
arranged in the data element list of the first object into the
pointer storage areas indicated by the pointers arranged in
the pointer element list of the third object.

[0108] In this case, a timing of producing the third object
by the second object is not restricted in the present inven-
tion, and it is acceptable that the third object is produced
when the message is issued, alternatively, the third object is
produced beforehand.

[0109] To attain the above-mentioned object, according to
the present invention, there is provided an object-between-
network display method in which a plurality of objects
produced by an object-oriented programming and wirings
representative of flow of data and control among the plu-

US 2001/0052109 Al

rality of objects are displayed on a display screen of an
image display apparatus for displaying images based on
electronic image information,

[0110] wherein displayed on the display screen is a
first image in which a display area consisting of one
measure obtained through partitioning the display
screen into a plurality of measures, or a display area
formed through coupling a plurality of adjacent
measures together, comprises an object display
domain for displaying a single object, and a wiring
display domain for displaying wires for coupling a
plurality of objects to one another, the object display
domain and the wiring display domain are deter-
mined in such a manner that the wiring display
domain is formed between the object display
domain-to-object display domain of the adjacent two
display areas, and

[0111] wherein on the display screen each of the
plurality of objects is arranged on an associated
object display domain of the display area, while the
wires for coupling the plurality of objects thus
arranged are displayed on the wiring display
domains ranged across a plurality of display areas.

[0112] According to the object-between-network display
method of the present invention, it is possible to obtain an
arrangement in which objects are arranged in good order,
and also to obtain a display easy for an observation avoiding
an overlap of objects with wirings, since an area for dis-
playing an object and an area for displaying a wiring are
distinguished from each other.

[0113] In the object-between-network display method as
mentioned above, it is preferable that a predetermined object
of a plurality of objects constituting the first image is
constituted of a subnetwork comprising a plurality of
objects, which are of lower class in a hierarchical structure
than the predetermined object, and wirings for connecting
the later plurality of objects together, and

[0114] that when a second image, in which a subnet-
work of said predetermined object is displayed
instead of a display of said predetermined object in
the first image, is displayed instead of the first image,
the subnetwork on the first image is displayed in a
more enlarged display area than that of said prede-
termined object, and display areas arranged upper
and lower sides and right and left sides of the display
area of the subnetwork are altered to display areas
enlarged vertically and horizontally, respectively,
and regarding display areas located at diagonal posi-
tions with respect to the display area of the subnet-
work, the display areas are displayed with a same
size as that of the first image.

[0115] An adoption of the above-mentioned display
method makes it possible to readily confirm a connecting
state of a subnetwork with the neighbor networks.

[0116] In the object-between-network display method as
mentioned above, it is acceptable that a predetermined
object of a plurality of objects constituting the first image is
constituted of a subnetwork comprising a plurality of
objects, which are of lower class in a hierarchical structure
than the predetermined object, and wirings for connecting
the later plurality of objects together, and

Dec. 13, 2001

[0117] wherein when a second image, in which a
subnetwork of said predetermined object is dis-
played instead of a display of said predetermined
object in the first image, is displayed instead of the
first image, the subnetwork on the first image is
displayed in a more enlarged display area than that of
said predetermined object, and display areas except
the display areas of the subnetwork are deformed as
compared with the associated display areas on the
first image in such a manner that display areas
located at a periphery of the second image, and
position and size of sides contacting with the second
image, are substantially the same ones as display
areas located at a periphery of the first image, and
position and size of sides contacting with the first
image, respectively.

[0118] An adoption of the above-mentioned display
method makes it possible to readily confirm a connecting
state of a subnetwork with the neighbor networks. In addi-
tion, according to the above-mentioned display method, it is
possible to confirm throughout a network displayed before a
display of the subnetwork (a first image) in the state that the
subnetwork is displayed.

[0119] In the object-between-network display method as
mentioned above, it is preferable that when the first image
is displayed, figures and sizes of the object display domains
in the display areas are standardized in accordance with
figures and sizes of the display areas.

[0120] This feature makes it possible to provide a display
screen easier to see.

[0121] In the object-between-network display method as
mentioned above, it is preferable that when the first image
is displayed, first, the plurality of objects are displayed, and
then it is displayed that the plurality of objects are intercon-
nected with wirings in which a direction of flow of data or
control is repeatedly displayed in units of predetermined
segments.

[0122] An adoption of such a wiring makes it possible,
even in the event that an object is out of a display screen, to
readily determine as to which side of the wiring input or
output exists at. It is acceptable that after the wiring, such a
wire is replaced by the usual wire, for example, a wire in
which arrows are given for only one edge or both edges of
the wire.

[0123] In the object-between-network display method as
mentioned above, it is preferable that when the first image
is displayed, in wirings consisting of a central wire and edge
wires extended along both sides of the central wire, each of
the edge wire having a display aspect different from the
central wire, there is provided such a display of wiring that
of the intersecting wirings, with respect to wirings each
representative of a same flow of data or control, the central
wire-to-central wire are continued, and with respect to
wirings each representative of a mutually different flow of
data or control, the central wire of one of the wirings is
divided into parts at a position contacting with or adjacent to
the edge wires of another wiring.

[0124] An adoption of such a wiring makes it possible to
readily determine as to whether the intersecting wires are
interconnected or simply cross each other.

US 2001/0052109 Al

[0125] To attain the above-mentioned object, according to
the present invention, there is provided a first object-ori-
ented programming supporting apparatus for coupling a
plurality of objects, each having data and operations, with
one another in accordance with an instruction, said object-
oriented programming supporting apparatus comprising:

[0126] display means for displaying objects each
represented by a block representative of a main
frame of an object, a data output terminal for trans-
ferring data of the object to another object, a data
input terminal for receiving data from another object,
a message terminal for issuing a message to make a
request for processing to another object, and a
method terminal for receiving a processing request
from another object to execute a method, the object
being represented by a hierarchical structure which
permits one or a plurality of objects to exist in a
single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

[0127] object coupling means for constructing a cou-
pling structure among a plurality of objects in accor-
dance with an instruction for coupling terminals of
the plurality of objects through a wiring;

[0128] hierarchical structure construction means for
constructing a hierarchical structure of objects; and

[0129] a handler for instructing a wiring for coupling
among objects to said object coupling means, and in
addition for instructing a position of an object on the
hierarchical structure to said hierarchical structure
construction means,

[0130] wherein said hierarchical structure construc-
tion means has means for producing a duplicate
object of a substantial object designated in accor-
dance with an instruction from said handler, and for
disposing the duplicate object at a hierarchy different
from a hierarchy at which the substantial object is
disposed, and

[0131] said object coupling means receives from said
handler an instruction as to a wiring between the
duplicate object and another object in the wiring of
the hierarchical structure in which the duplicate
object is disposed, and constructs a coupling struc-
ture in which the duplicate object and the associated
substantial object are provided in the form of a
united object.

[0132] The feature such that the duplicate object is built,
and a coupling structure, in which the duplicate object and
the associated substantial object are provided in the form of
a united object, is constructed, makes it possible to arbi-
trarily dispose one object at desired plural hierarchies to
conduct a wiring (an instruction of coupling), thereby mak-
ing it easy to conduct a wiring among objects located at
mutually different hierarchies and also making it possible to
provide a display easy to see visually.

[0133] To attain the above-mentioned object, according to
the present invention, there is provided a second object-
oriented programming supporting apparatus for coupling a
plurality of objects, each having data and operations, with
one another in accordance with an instruction, said object-
oriented programming supporting apparatus comprising:

Dec. 13, 2001

[0134] display means for displaying objects each
represented by a block representative of a main
frame of an object, a data output terminal for trans-
ferring data of the object to another object, a data
input terminal for receiving data from another object,
a message terminal for issuing a message to make a
request for processing to another object, and a
method terminal for receiving a processing request
from another object to execute a method, the object
being represented by a hierarchical structure which
permits one or a plurality of objects to exist in a
single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

[0135] object coupling means for constructing a cou-
pling structure among a plurality of objects in accor-
dance with an instruction for coupling terminals of
the plurality of objects through a wiring;

[0136] hierarchical structure construction means for
constructing a hierarchical structure of objects; and

[0137] a handler for instructing a wiring for coupling
among objects to said object coupling means, and in
addition for instructing a position of an object on the
hierarchical structure to said hierarchical structure
construction means,

[0138] wherein said object coupling means releases a
coupling structure of the object before a replacement
with another object in accordance with an instruction
from said handler, and causes the object after the
replacement to succeed to the coupling structure of
the object before the replacement with another
object, and

[0139] said hierarchical structure construction means
disposes the object after the replacement, instead of
the object before the replacement, at a hierarchy at
which the object before the replacement is disposed.

[0140] For a replacement of objects, usually, first, a wiring
of an object before a replacement will be removed, and then
a new wiring will be conducted for a new object by which
the object before a replacement is replaced. On the contrary,
according to the present invention, the wiring (a coupling
relation) of the object before a replacement is maintained for
the new object after a replacement. This feature makes it
possible to save trouble for a wiring between the new object
after a replacement and other object, thereby making it very
easy to conduct a replacement of objects and as a result
making the object-oriented programming easy.

[0141] To attain the above-mentioned object, according to
the present invention, there is provided a third object-
oriented programming supporting apparatus for coupling a
plurality of objects, each having data and operations, with
one another in accordance with an instruction, said object-
oriented programming supporting apparatus comprising:

[0142] display means for displaying objects each
represented by a block representative of a main
frame of an object, a data output terminal for trans-
ferring data of the object to another object, a data
input terminal for receiving data from another object,
a message terminal for issuing a message to make a
request for processing to another object, and a
method terminal for receiving a processing request

US 2001/0052109 Al

from another object to execute a method, the object
being represented by a hierarchical structure which
permits one or a plurality of objects to exist in a
single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

[0143] object coupling means for constructing a cou-
pling structure among a plurality of objects in accor-
dance with an instruction for coupling terminals of
the plurality of objects through a wiring;

[0144] hierarchical structure construction means for
constructing a hierarchical structure of objects; and

[0145] a handler for instructing a wiring for coupling
among objects to said object coupling means, and in
addition for instructing a position of an object on the
hierarchical structure to said hierarchical structure
construction means,

[0146] wherein said hierarchical structure construc-
tion means is in response to an instruction from said
handler such that a plurality of objects from among
the objects disposed at a predetermined hierarchy are
designated and the plurality of objects are rearranged
on the lower-order hierarchy by one stage, and
rearranges the plurality of objects on the lower-order
hierarchy by one stage, and produces and arranges an
object including the plurality of objects on the pre-
determined hierarchy in such a manner that a cou-
pling structure among the plurality of objects and a
coupling structure among the plurality of objects and
objects other than the plurality of objects are main-
tained.

[0147] If it is permitted, as in the present invention
described above, that a plurality of objects is rearranged in
a different hierarchy while the wiring (coupling relation) is
kept as it is, it is possible to rearrange a program while the
program is made up. Further, since the part replaced by a
hierarchy serves as one object, it is possible to reuse the
object of interest as a program part.

[0148] To attain the above-mentioned object, according to
the present invention, there is provided a fourth object-
oriented programming supporting apparatus for coupling a
plurality of objects, each having data and operations, with
one another in accordance with an instruction, said object-
oriented programming supporting apparatus comprising:

[0149] display means for displaying objects each
represented by a block representative of a main
frame of an object, a data output terminal for trans-
ferring data of the object to another object, a data
input terminal for receiving data from another object,
a message terminal for issuing a message to make a
request for processing to another object, and a
method terminal for receiving a processing request
from another object to execute a method, the object
being represented by a hierarchical structure which
permits one or a plurality of objects to exist in a
single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

[0150] object coupling means for constructing a cou-
pling structure among a plurality of objects in accor-
dance with an instruction for coupling terminals of
the plurality of objects through a wiring;

Dec. 13, 2001

[0151] hierarchical structure construction means for
constructing a hierarchical structure of objects; and

[0152] a handler for instructing a wiring for coupling
among objects to said object coupling means, and in
addition for instructing a position of an object on the
hierarchical structure to said hierarchical structure
construction means,

[0153] wherein said display means has, in case of
existence of a plurality of method terminals con-
nected to one message terminal designated in accor-
dance with an instruction through said handler,
means for displaying a list indicative of an execution
sequence of a plurality of methods associated with
the plurality of method terminals, and

[0154] said object coupling means has means for
reconstructing a coupling structure in which the
execution sequence of the plurality of methods
appearing at the list displayed on said display means
are altered in accordance with an instruction by said
handler.

[0155] According to the fourth object-oriented program-
ming supporting apparatus, it is possible to readily and
exactly know an execution sequence of a plurality of meth-
ods for one message, and also possible to readily alter the
execution sequence.

[0156] As to the object-oriented programming supporting
apparatuses, there exists a fifth object-oriented programming
supporting apparatus. The fifth object-oriented program-
ming supporting apparatus will be described later.

[0157] To attain the above-mentioned object, according to
the present invention, there is provided a first program
storage medium for use in an object-oriented programming,
the program storage medium being adapted for storing
therein a program to support an object-oriented program-
ming for coupling a plurality of objects, each having data
and operations, with one another,

[0158] wherein each of said objects is represented by
a block representative of a main frame of an object,
a data output terminal for transferring data of the
object to another object, a data input terminal for
receiving data from another object, a message ter-
minal for issuing a message to make a request for
processing to another object, and a method terminal
for receiving a processing request from another
object to execute a method, the object being repre-
sented by a hierarchical structure which permits one
or a plurality of objects to exist in a single object, and
an instruction for coupling terminals of the plurality
of objects through a wiring is given,

[0159] said program includes: object coupling means
for constructing a coupling structure among a plu-
rality of objects in accordance with the instruction
for coupling terminals of the plurality of objects
through a wiring; and hierarchical structure con-
struction means for constructing a hierarchical struc-
ture of objects, and

[0160] said program storage medium stores such a
program that said hierarchical structure construction
means has means for producing a duplicate object of
a substantial object designated in accordance with an

US 2001/0052109 Al

instruction from said handler, and for disposing the
duplicate object at a hierarchy different from a
hierarchy at which the substantial object is disposed,
and said object coupling means receives from said
handler an instruction as to a wiring between the
duplicate object and another object in the wiring of
the hierarchical structure in which the duplicate
object is disposed, and constructs a coupling struc-
ture in which the duplicate object and the associated
substantial object are provided in the form of a
united object.

[0161] To attain the above-mentioned object, according to
the present invention, there is provided a second program
storage medium for use in an object-oriented programming,
the program storage medium being adapted for storing
therein a program to support an object-oriented program-
ming for coupling a plurality of objects, each having data
and operations, with one another,

[0162] wherein each of said objects is represented by
a block representative of a main frame of an object,
a data output terminal for transferring data of the
object to another object, a data input terminal for
receiving data from another object, a message ter-
minal for issuing a message to make a request for
processing to another object, and a method terminal
for receiving a processing request from another
object to execute a method, the object being repre-
sented by a hierarchical structure which permits one
or a plurality of objects to exist in a single object, and
an instruction for coupling terminals of the plurality
of objects through a wiring is given,

[0163] said program includes: object coupling means
for constructing a coupling structure among a plu-
rality of objects in accordance with the instruction
for coupling terminals of the plurality of objects
through a wiring; and hierarchical structure con-
struction means for constructing a hierarchical struc-
ture of objects, and

[0164] said program storage medium stores such a
program that said object coupling means releases a
coupling structure of the object before a replacement
with another object in accordance with an instruction
for the replacement of objects, and causes the object
after the replacement to succeed to the coupling
structure of the object before the replacement with
another object, and said hierarchical structure con-
struction means disposes the object after the replace-
ment, instead of the object before the replacement, at
a hierarchy at which the object before the replace-
ment is disposed.

[0165] To attain the above-mentioned object, according to
the present invention, there is provided a third program
storage medium for use in an object-oriented programming,
the program storage medium being adapted for storing
therein a program to support an object-oriented program-
ming for coupling a plurality of objects, each having data
and operations, with one another,

[0166] wherein each of said objects is represented by
a block representative of a main frame of an object,
a data output terminal for transferring data of the
object to another object, a data input terminal for

10

Dec. 13, 2001

receiving data from another object, a message ter-
minal for issuing a message to make a request for
processing to another object, and a method terminal
for receiving a processing request from another
object to execute a method, the object being repre-
sented by a hierarchical structure which permits one
or a plurality of objects to exist in a single object, and
an instruction for coupling terminals of the plurality
of objects through a wiring is given,

[0167] said program includes: object coupling means
for constructing a coupling structure among a plu-
rality of objects in accordance with the instruction
for coupling terminals of the plurality of objects
through a wiring; and hierarchical structure con-
struction means for constructing a hierarchical struc-
ture of objects, and

[0168] said program storage medium stores such a
program that said hierarchical structure construction
means is in response to an instruction such that a
plurality of objects from among the objects disposed
at a predetermined hierarchy are designated and the
plurality of objects are rearranged on the lower-order
hierarchy by one stage, and rearranges the plurality
of objects on the lower-order hierarchy by one stage,
and produces and arranges an object including the
plurality of objects on the predetermined hierarchy in
such a manner that a coupling structure among the
plurality of objects and a coupling structure among
the plurality of objects and objects other than the
plurality of objects are maintained.

[0169] To attain the above-mentioned object, according to
the present invention, there is provided a fourth program
storage medium for use in an object-oriented programming,
the program storage medium being adapted for storing
therein a program to support an object-oriented program-
ming for coupling a plurality of objects, each having data
and operations, with one another,

[0170] wherein each of said objects is represented by
a block representative of a main frame of an object,
a data output terminal for transferring data of the
object to another object, a data input terminal for
receiving data from another object, a message ter-
minal for issuing a message to make a request for
processing to another object, and a method terminal
for receiving a processing request from another
object to execute a method, the object being repre-
sented by a hierarchical structure which permits one
or a plurality of objects to exist in a single object, and
an instruction for coupling terminals of the plurality
of objects through a wiring is given,

[0171] said program includes: object coupling means
for constructing a coupling structure among a plu-
rality of objects in accordance with the instruction
for coupling terminals of the plurality of objects
through a wiring; and hierarchical structure con-
struction means for constructing a hierarchical struc-
ture of objects, and

[0172] said program storage medium stores such a
program that said object coupling means has, in case
of existence of a plurality of method terminals con-
nected to one message terminal designated, means

US 2001/0052109 Al

for making up a list indicative of an execution
sequence of a plurality of methods associated with
the plurality of method terminals, and means for
reconstructing a coupling structure in which the
execution sequence of the plurality of methods is
altered in accordance with an alteration instruction of
the execution sequence of the plurality of methods
appearing at the list.

[0173] Of component storage mediums according to the
present invention, there is provided a first component stor-
age medium for storing a component which serves as one
object in combination with a predetermined existing soft-
ware, said component including a method of issuing an
event of the predetermined existing software through a firing
by a message issued in other object.

[0174] According to such a component, there is provided
such a form that an existing software is “included” or
“involved”, and thus it possible to take in an existing
software in the form of an object, regardless of a structure
of the existing software, or without a modification of the
existing software, thereby specially improving a reuse of the
existing software.

[0175] In this case, it is preferable that said component
further includes together with said method a message for
informing other object of that said event is issued through
executing said method.

[0176] This feature makes it possible to perform an opera-
tion on a linking basis by a coupling between the method and
the message.

[0177] Of component storage mediums according to the
present invention, there is provided a second component
storage medium for storing a component which serves as
one object in combination with a predetermined existing
software, said component including a message for informing
other object, upon receipt of occurrence of a predetermined
event of the predetermined existing software, of that the
predetermined event is generated.

[0178] According to such a component, there is provided
such a form that an existing software is “included” or
“involved”, and thus it possible to implement, independently
of an advancement of the existing software itself, such an
advanced function that when the event for the existing
software occurs, a method of other object is executed
through working together.

[0179] Further, according to the present invention, there is
provided a component builder apparatus comprising:

[0180] a first handler for selectively indicating mak-
ing of methods and messages;

[0181] a second handler for inputting an instruction
of an issue of a desired event of a predetermined
existing software; and

[0182] a component builder means for building a
component which serves as one object in combina-
tion with said existing software, said component
builder means serving, when making of a method is
instructed by an operation of said first handler and a
predetermined event of the existing software is
issued by an operation of said second handler, to
make on the component a method which fires with a

11

Dec. 13, 2001

message issued by another object and issues the
event, and serving, when making of a message is
instructed by an operation of said first handler and an
issue of a predetermined event of the existing soft-
ware is instructed by an operation of said second
handler, in response to an occurrence of the event, to
make on the component a message for informing
other objects of the fact that the event occurred.

[0183] The use of the component builder apparatus men-
tioned above makes it possible to easily build on an inter-
active basis the components to be stored in the above-
mentioned first and second component storage mediums,
without a requirement of a deep knowledge as to a program-
ming for operators or users.

[0184] To attain the above-mentioned object, according to
the present invention, of the object-oriented programming
supporting apparatuses, there is provided a fifth object-
oriented programming supporting apparatus comprising:

[0185] a component file for storing therein a compo-
nent which serves as one object in combination with
a predetermined existing software, said component
including a method of issuing an event of the pre-
determined existing software through a firing by a
message issued in other object, and a message for
informing other object of that the event is issued
through executing said method, and said component
being stored in said component file with respect to
one or more existing softwares;

[0186] a handler for inputting an instruction of an
issue of the event as to the existing software;

[0187] anevent log file for storing a list for the events
as to one or more existing softwares, which are
sequentially issued in accordance with an operation
of said handler; and

[0188] a component coupling means for taking out
sequentially the events from said event log file to
combine a message of a component including the
message for informing other object of that the same
event as that taken out before is issued and a method
of a component including the method of issuing the
same event as that taken out now.

[0189] According to the fifth object-oriented program-
ming supporting apparatus, a sequential indication of an
issue of a plurality of events of one or more existing
softwares in the sequence of an actual operation desired may
couple the message and the method between objects
“involving” the existing softwares in the components. Thus,
it is possible to implement an automatic operation of a
plurality of events of the existing software.

BRIEF DESCRIPTION OF THE DRAWINGS

[0190] FIG. 1 is a perspective illustration of a computer
system including an object-oriented programming apparatus
according to an embodiment of the present invention;

[0191] FIG. 2 is a block diagram of an object ware
programming system implemented in the computer system
shown in FIG. 1;

[0192] FIG. 3 is a typical illustration showing a first
example of a software system implemented within the
computer system shown in FIG. 1;

US 2001/0052109 Al

[0193] FIG. 4 is a typical illustration showing an example
of a data structure of an output instruction bus portion of an
object A and an input instruction bus portion of an object B
shown in FIG. 3;

[0194] FIGS. 5(A) and (B) are flowcharts useful for under-
standing processings for an issue of a message;

[0195] FIG. 6 is a flowchart useful for understanding
processings of an output instruction bus portion generating
unit of an object coupling unit shown in FIG. 3;

[0196] FIG. 7 is a flowchart useful for understanding
processings of an input instruction bus portion generating
unit of an object coupling unit shown in FIG. 3;

[0197] FIG. 8 is a flowchart useful for understanding
processings of an instruction coupling unit of an object
coupling unit shown in FIG. 3;

[0198] FIG. 9 is a typical illustration showing an example
of a data structure of a data element list of an object A shown
in FIG. 3;

[0199] FIG. 10 is a flowchart useful for understanding
processings of a data element list generating unit of an object
coupling unit shown in FIG. 3;

[0200] FIG. 11 is a typical illustration showing an
example of a data structure of a pointer element list of an
object B shown in FIG. 3;

[0201] FIG. 12 is a flowchart useful for understanding
processings of a pointer element list generating unit of an
object coupling unit shown in FIG. 3;

[0202] FIG. 13 is a typical illustration showing a structure
after an execution of processings of a data coupling unit of
an object coupling unit shown in FIG. 3;

[0203] FIG. 14 is a flowchart useful for understanding
processings of a data coupling unit of an object coupling unit
shown in FIG. 3;

[0204] FIG. 15 is a typical illustration showing a second
example of a software system implemented within the
computer system shown in FIG. 1;

[0205] FIG. 16 is a typical illustration showing a third
example of a software system implemented within the
computer system shown in FIG. 1;

[0206] FIG. 17 is a typical illustration showing a fourth
example of a software system implemented within the
computer system shown in FIG. 1;

[0207] FIG. 18 is a typical illustration showing a fifth
example of a software system implemented within the
computer system shown in FIG. 1;

[0208] FIG. 19 is a typical illustration showing a part of
the data structure of objects A shown in FIGS. 15 to 18;

[0209] FIG. 20 is a flowchart useful for understanding an
example of processings for an issue of a message of an
object A;

[0210] FIG. 21 is a flowchart useful for understanding a
first example of a partial processing of processings of an
object B;

Dec. 13, 2001

[0211] FIG. 22 is a flowchart useful for understanding a
second example of a partial processing of processings of an
object B;

[0212] FIG. 23 is a flowchart useful for understanding a
third example of a partial processing of processings of an
object B;

[0213] FIG. 24 is a flowchart useful for understanding a
fourth example of a partial processing of processings of an
object B;

[0214] FIG. 25 is a flowchart useful for understanding a
fifth example of a partial processing of processings of an
object B;

[0215] FIG. 26 is a flowchart useful for understanding a
sixth example of a partial processing of processings of an
object B;

[0216] FIG. 27 is a flowchart useful for understanding
another example of processings for an issue of a message of
an object A, which is different from the example of that
shown in FIG. 20;

[0217] FIG. 28 is a flowchart useful for understanding a
seventh example of a partial processing of processings of an
object B;

[0218] FIG. 29 is a flowchart useful for understanding a
eighth example of a partial processing of processings of an
object B;

[0219] FIG. 30 is a flowchart useful for understanding a
ninth example of a partial processing of processings of an
object B;

[0220] FIG. 31 is a flowchart useful for understanding a
tenth example of a partial processing of processings of an
object B:

[0221] FIG. 32 is a flowchart useful for understanding
processings of an input instruction tag table generating unit
of an object coupling unit shown in FIG. 15;

[0222] FIG. 33 is a flowchart useful for understanding
processings of an output instruction tag table generating unit
of an object coupling unit shown in FIG. 16;

[0223] FIG. 34 is a flowchart useful for understanding
processings of an input data tag table generating unit of an
object coupling unit shown in FIG. 17;

[0224] FIG. 35 is a flowchart useful for understanding
processings of an output data tag table generating unit of an
object coupling unit show in FIG. 18;

[0225] FIG. 36 is a typical illustration of a display screen
useful for understanding an object-between-network display
method according to an embodiment of the present inven-
tion;

[0226] FIG. 37 is an explanatory view useful for under-

standing hierarchical networks;

[0227] FIGS. 38(A) and (B) are illustrations each showing
by way of example a display image consisting of a lot of
objects and wirings;

[0228] FIGS. 39(A) and (B) are illustrations each showing
by way of example a display image of a subnetwork;

US 2001/0052109 Al

[0229] FIGS. 40(A) and (B) are illustrations each showing
an alternative embodiment of the display method of the
subnetwork;

[0230] FIGS. 41(A), (B) and (C) are illustrations each
showing by way of example a display image having a
display area in which a plurality of measures are coupled
with each other;

[0231] FIG. 42 is an illustration showing by way of
example a display image characterized by a display method
of wiring;

[0232] FIGS. 43(A) and (B) are illustrations each showing
an alternative embodiment of the display method of the
wiring;

[0233] FIGS. 44(A), (B) and (C) are illustrations useful for
understanding a procedure for producing a display area for
displaying a network of an object;

[0234] FIG. 45 is an illustration showing a state in which
an object is disposed on a display screen by users;

[0235] FIGS. 46(A) and (B) are illustrations each showing
a state in which a wiring among objects disposed on a
display screen is performed by users;

[0236] FIGS. 47(A) and (B) are illustrations showing by
way of example display screens of an object-between-
network before and after display of the subnetwork, respec-
tively;

[0237] FIG. 48 is a flowchart useful for understanding a
procedure for switching from the display of FIG. 47(A) to
the display of FIG. 47(B);

[0238] FIGS. 49(A), (B) and (C) are explanatory views
useful for understanding a procedure of a subnetwork dis-

play;

[0239] FIG. 50 is a flowchart useful for understanding a
procedure of the subnetwork display;

[0240] FIGS. 51(A), (B) and (C) are typical illustrations
each showing an embodiment in which a display area
representative of an object is formed with a single measure
or a plurality of measures coupled with one another;

[0241] FIGS. 52(A) and (B) are illustrations useful for
understanding by way of example a display method of
wiring:

[0242] FIG. 53 is a typical illustration showing by way of
example a display of wiring;

[0243] FIG. 54 is a flowchart useful for understanding a
procedure of executing the wiring shown in FIG. 53;

[0244] FIG. 55 is a flowchart useful for understanding an
alternative embodiment of a procedure of executing the
wiring;

[0245] FIG. 56 is a flowchart useful for understanding a

further alternative embodiment of a procedure of executing
the wiring;

[0246] FIG. 57 is a flowchart useful for understanding a
still further alternative embodiment of a procedure of
executing the wiring;

Dec. 13, 2001

[0247] FIGS. 58-62 are typical illustrations each showing
a result obtained from an execution of wiring according to
the wiring procedures shown in FIGS. 54-56; and

[0248] FIGS. 63(A), (B) and (C) are typical illustrations
each showing a result obtained from an execution of wiring
according to the wiring procedures shown in FIGS. 55-57.

[0249] FIG. 64 is a schematic diagram showing a basic
structure of an object-oriented programming supporting
apparatus and a program storage medium for use in an
object-oriented programming according to an embodiment
of the present invention;

[0250] FIG. 65 is a conceptual view showing exemplarily
an involving relation among objects;

[0251] FIG. 66 is a typical illustration showing a connect-
ing relation among objects for defining a hierarchical struc-
ture;

[0252] FIG. 67 is a typical illustration showing a pointer
for determining a connecting relation of a certain object to
another object;

[0253] FIG. 68 is a typical illustration showing one of the
bus elements constituting the bus element list to be con-
nected to the “pointers to buses” shown in FIG. 67;

[0254] FIG. 69 is a typical illustration showing one of the
cable elements constituting the cable element list to be
connected to the “pointers to cables” shown in FIG. 67;

[0255] FIG. 70 is a typical illustration showing exemplar-
ily a wiring among objects;

[0256]
[0257] FIG. 72 is a typical illustration showing a hierar-

chical structure (object tree) of the objects shown in FIG.
71;

[0258] FIG. 73 is a flowchart useful for understanding a
building process for the duplicate object;

[0259] FIG. 74 is a typical illustration showing a connect-
ing relation between the substantial object (original) and the
duplicate object (copy)

[0260] FIG. 75 is a conceptual view showing a coupling
relation of objects before a replacement of objects;

[0261] FIG. 76 is a typical illustration showing an object
tree concerning the objects shown in FIG. 785;

FIG. 71 is a conceptual view of a duplicate object;

[0262] FIG. 77 is a conceptual view showing a coupling
relation of objects after a replacement of objects;

[0263] FIG. 78 is a typical illustration showing a part of
the object tree after a replacement of objects;

[0264] FIG. 79 is a flowchart useful for understanding an
object replacing process;

[0265] FIG. 80 is a typical illustration showing a part of
the cable element list connected to an object A;

[0266] FIG. 81 is a conceptual view showing a coupling
relation among objects before a movement of objects;

[0267] FIG. 82 is a typical illustration showing an object
tree concerning the objects shown in FIG. 81;

[0268] FIG. 83 is a conceptual view showing a coupling
relation of objects after a movement of objects;

US 2001/0052109 Al

[0269] FIG. 84 is a typical illustration showing an object
tree concerning the objects shown in FIG. 83;

[0270] FIG. 85 is a flowchart useful for understanding a
processing for a movement of objects and a change of wiring
of objects;

[0271] FIG. 86 is a typical illustration showing a state of
an alteration of an object tree;

[0272] FIG. 87 is a typical illustration showing a part of
the cable element list connected to an object A;

[0273] FIG. 88 is an explanatory view useful for under-
standing a movement of wiring to a new object;

[0274] FIG. 89 is a typical illustration of a bus for use in
wiring, the bus being built on an object F;

[0275] FIG. 90 is a typical illustration showing a state of
a change of an object in wiring from an object (object D)
inside a new object (object F) to the object F;

[0276] FIG. 91 is a typical illustration showing exemplar-
ily a wiring among objects;

[0277] FIG. 92 is a typical illustration showing a cable
element list giving a definition of the wiring shown in FIG.
91;

[0278] FIG. 93 is a flowchart useful for understanding
processings for a display of an execution sequence for
methods and an alteration of the execution sequence for the
methods;

[0279] FIG. 94 is a typical illustration showing a cable list
element list;
[0280] FIG. 95 is a view exemplarily showing a cable list

displayed on a display screen 102a;

[0281] FIG. 96 is a typical illustration showing a state in
which an arrangement sequence of the cable elements
arranged on the cable element list is altered;

[0282] FIG. 97 is a typical illustration showing a cable
element list in which an arrangement sequence of the cable
elements has been altered;

[0283] FIG. 98 is a typical illustration showing a state in
which an arrangement sequence of the cable list elements
arranged on the cable list element list is altered;

[0284] FIG. 99 is a typical illustration showing a cable list
element list in which an arrangement sequence of the cable
list elements has been altered;

[0285] FIG. 100 is a view showing a cable list in which an
arrangement sequence has been altered;

[0286] FIG. 101 is a typical illustration showing an
embodiment of a component “including” an existing soft-
ware having a graphical user interface;

[0287] FIG. 102 is a typical illustration showing an alter-
native embodiment of a component “including” an existing
software having a graphical user interface;

[0288] FIG. 103 is a typical illustration showing a further
alternative embodiment of a component “including” an
existing software having a graphical user interface;

Dec. 13, 2001

[0289] FIG. 104 is a typical illustration showing a struc-
ture of an event processing portion of the window manage-
ment section shown in FIG. 103;

[0290] FIG. 105 is a typical illustration showing a struc-
ture of an event monitor portion of the component A shown
in FIG. 103,

[0291] FIG. 106 is a basic construction view of a com-
ponent builder apparatus according to the present invention;

[0292] FIG. 107 is a typical illustration of an embodiment
of a component builder apparatus according to the present
invention;

[0293] FIG. 108 is a flowchart useful for understanding
processings of building a component using a component
builder apparatus;

[0294] FIG. 109 is a construction view of an object ware
programming system in which structural elements corre-
sponding to the embodiment of the fifth object-oriented
programming supporting apparatus according to the present
invention are added to the object ware programming system
shown in FIG. 2;

[0295] FIG. 110 is a flowchart useful for understanding an
operation of a component coupling unit;

[0296] FIG. 111 is a flowchart useful for understanding an
operation of a component coupling unit;

[0297] FIG. 112 is a conceptual view showing a state in
which an existing soft ware is “included” in a component;

[0298] FIG. 113 is a view showing a table for definition
items to give various definitions shown in FIG. 112; and

[0299] FIG. 114 is a view exemplarily showing images
displayed on a display screen 102a when definitions are
given.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0300] Hereinafter, there will be described embodiments
of the present invention.

[0301] First, there will be explained an outline of an object
ware programming system in which embodiments according
to the present invention are put together, and then each
individual embodiment will be explained.

[0302] FIG. 1 is a perspective illustration of a computer
system including each individual embodiment of the present
invention of an object-oriented programming apparatus, an
object-oriented programming supporting apparatus, a com-
ponent builder apparatus, an object-oriented program stor-
age medium, a program storage medium for use in an
object-oriented programming, a component storage
medium, and an object-between-network display method. in
FIG. 1, a computer system 100 comprises: a main body unit
101 incorporating thereinto a CPU, an MO (magneto-optical
disc) drive and the like; an image display unit 102 for
displaying on its display screen 1024 images in accordance
with an instruction from the main body unit 101; a keyboard
103 for inputting various types of information to the com-
puter system 100; a mouse 104 for designating a desired
position on the display screen 102a of the display 102; and
a storage unit 105 for storing objects, object coupling
programs and the like which will be described hereinafter.

US 2001/0052109 Al

[0303] A development of programs can be implemented
by the computer system 100 shown in FIG. 1. It is accept-
able that programs, which are developed by another same
type of computer system, are stored in a portable type of
recording medium such as an MO (magneto-optical disc)
110, and the MO 110 is loaded into the computer system 100
shown in FIG. 1 so that the developed programs can be
inputted into the computer system 100. Likewise, it is
possible to transfer the programs developed with the use of
the computer system 100 shown in FIG. 1 through the MO
110 to another computer system.

[0304] FIG. 2 is a block diagram of an object ware
programming system implemented in the computer system
shown in FIG. 1.

[0305] An object ware programming system 120 com-
prises an object builder unit 121 for building objects and/or
a component which “includes™ existing softwares, an inter-
object wiring editor unit 122 for displaying a wiring among
objects (a coupling relation) to perform an editing, and an
interpreter unit 123 for connecting and running objects
(including an object consisting of a combination of the
existing software and the component), which are generated
in the object builder unit 121, in accordance with the wiring
among objects, or the coupling relation, which is defined by
the interobject wiring editor unit 122.

[0306] While the object builder unit 121 can build directly
an object through an operation of the keyboard 103 or the
mouse 104 in the computer system 100 shown in FIG. 1, the
object ware programming system 120 is provided with an
existing application file 131 for storing existing various
types of application programs (hereinafter, it may happen
that the application program is referred to simply as an
application), which have been developed with various types
of program languages. And thus the object builder unit 121
may also build a component which serves as one object,
“involving” the existing application stored in the existing
application file 131, together with the existing application. It
is to be noted that the object is expressed including an object
consisting of a combination of the above-mentioned com-
ponent and the existing application “involved” in the com-
ponent, unless we note the particular.

[0307] The object built in the object builder unit 121 is
stored in an object data file 132 and a running object file 133.
The object data file 132 stores therein, of data representative
of the object built in the object builder unit 121, data
necessary for a display of objects and a wiring (definition of
the coupling relation) among objects. On the other hand, the
running object file 133 stores therein running objects in
which the object built in the object builder unit 121 is
converted into a running format of one.

[0308] The interobject wiring editor unit 122 displays,
upon receipt of data as to an object stored in the object data
file 132, the object on the display screen 1024 of the image
display unit 102 shown in FIG. 1, and defines a coupling
state among objects in accordance with an operation of the
keyboard 103 or the mouse 104. As will be described, a
display on the display screen 1024 is given with a display
style close to that of an LSI (Large Scale Integrated Circuit)
as the hardware, and a definition of the coupling state among
objects is performed in such a sense that terminals of such
a plurality of LSI’s are wired by signal lines. Hence,

Dec. 13, 2001

hereinafter, it may happen that the object is referred to as
“LSI”, and a definition of the coupling state among objects
is referred to as “wiring”.

[0309] When a wiring among objects is performed by the
interobject wiring editor unit 122, an interobject wiring data
file 134 is used for the purpose of saving an intermediate
result of the wiring and displaying the intermediate result
through loading. The interobject wiring data file 134 stores
wiring information which is convenient as a man-machine
interface. For example, in the system according to present
embodiment, there is provided a hierarchical structure of
objects for the purpose of easy understanding of wiring for
users. The interobject wiring data file 134 stores also data as
to such a hierarchical structure.

[0310] In this manner, when the interobject wiring editor
unit 122 has completed the wiring, an interpreter use wiring
data file 135 stores information (hereinafter, it is referred to
as “wiring data”) representative of a coupling state among
objects. When the interpreter use wiring data file 135 stores
the wiring data, information simply available for user’s
understanding, for example, information of the hierarchical
structure of objects, is omitted, and only the wiring data,
which is necessary for actuation of the object (software), is
extracted and stored in the interpreter use wiring data file
135.

[0311] In the interpreter unit 123, the running objects
stored in the running object file 133 are coupled and
executed in accordance with the wiring data stored in the
interpreter use wiring data file 135.

[0312] Hereinafter, the respective embodiments will be
described. As a matter of convenience of explanation and for
better understanding of the invention, there will be
described, taking into account of the arrangement of the
object ware programming system 120 shown in FIG. 2, first,
the embodiment concerning the interpreter unit 123 and the
associated periphery, then the embodiment concerning the
interobject wiring editor unit 122 and the associated periph-
ery, and finally the embodiment concerning the object
builder unit 121 and the associated periphery.

[0313] First, there will be described the embodiment con-
cerning the interpreter unit 123 and the associated periphery.

[0314] FIG. 3 is a typical illustration showing a first
example of a software system implemented within the
computer system shown in FIG. 1. Now referring to FIG. 3,
there will be described a schematic construction of a first
object-oriented programming apparatus and a first object-
oriented program storage medium according to one embodi-
ment of the present invention, and then referring to FIG. 4
et seqq. there will be described details of those.

[0315] A corresponding relation between the software
system shown in FIG. 3 and the present invention is as
follows. That is, the storage unit 105 (cf. FIG. 1), in which
the software system shown in FIG. 3 is stored, corresponds
to the first object-oriented program storage medium accord-
ing to an embodiment of the present invention, and a
combination of the hardware of the computer system 100
shown in FIG. 1 and an object coupling unit 10 which is in
a state operable under the computer system 100 corresponds
to the first object-oriented programming apparatus. Inciden-
tally, when the software system shown in FIG. 3 is down-
loaded onto the MO 110, the MO 110 also corresponds to an

US 2001/0052109 Al

example of the first object-oriented program storage medium
according to an embodiment of the present invention.

[0316] Now, let us consider typically two objects A and B
each comprising data and processing (method).

[0317] An output instruction bus portion generating unit
11, which constitutes the object coupling unit 10, generates
a portion which forms a core of an output instruction bus
portion for performing an issue process of a message of an
object (here typically object A) to another object (here
typically object B).

[0318] An input instruction bus portion generating unit 12,
which constitutes the object coupling unit 10, generates an
input instruction bus portion of an object (here typically
object B). The input instruction bus portion receives a
message directed to the self object (here typically object B)
issued by another object (here typically object A), and
activates a method of the self object (here typically object
B), which method is associated with the received message.

[0319] Incidentally, according to the present embodiment,
the output instruction bus portion generating unit 11 and the
input instruction bus portion generating unit 12 are provided
in the object coupling unit 10. However, it is acceptable that
the objects A and B have originally structures corresponding
to the output instruction bus portion or the input instruction
bus portion. Alternatively, it is acceptable that the object
coupling unit 10 does not always comprise the output
instruction bus portion generating unit 11 and the input
instruction bus portion generating unit 12.

[0320] An instruction coupling unit 13, which constitutes
the object coupling unit 10, permits a message to be trans-
ferred between objects (typically objects A and B) by means
of giving an association of a message of the object A with a
method of object B.

[0321] A data element list generating unit 14, which
constitutes the object coupling unit 10, generates a data
element list of an object (typically object A) in which
pointers to data storage areas for storing therein data are
arranged.

[0322] Likewise, a pointer element list generating unit 15,
which constitutes the object coupling unit 10, generates a
pointer element list of an object (typically object B) in which
pointers to pointer storage areas for storing therein pointers
to data are arranged.

[0323] A data coupling unit 16, which constitutes the
object coupling unit 10, permits a message to be transferred
between objects A and B by means of writing pointers,
which are arranged in the data element list produced by the
data element list generating unit 14, into pointer storage
areas indicated by the pointers arranged in the pointer
element list of the object B produced by the pointer element
list generating unit 15.

[0324] FIG. 4 is a typical illustration showing an example
of a data structure of an output instruction bus portion of an
object A and an input instruction bus portion of an object B
shown in FIG. 3.

[0325] The object A has a message table consisting of an
arrangement of a maximum number MA , 3,5,x of messages
of the object A. The message table stores pointers to a
method element list, which will be described hereinafter,

Dec. 13, 2001

corresponding to a message number MA, of each message
(where a message number is expressed by MA and it is
expressed by a suffix A that the message number is of a
message of the object A).

[0326] The method element list consists of an arrangement
of a single or a plurality of method elements. Each of the
method elements comprises a method number ME for speci-
fying a method, a pointer to an object in which the method
specified by the method number ME is executed, and a
pointer to the subsequent method element. Here, the method
number is expressed by an ME, and the object in which the
method specified by the method number ME is executed is
expressed by a suffix. Specifically, the uppermost stage of
method element shown in FIG. 3 stores a method number
ME_ of a method of the object B, and a pointer to the object
B.

[0327] The last stage of method element stores in its
column of a pointer to the subsequent method element data
(referred to as “null”) indicative of that the method element
is of the final stage itself and there is no method element
after itself.

[0328] The method element lists are generated at the
maximum by a number corresponding to the number of
messages of the object A. Each of the method element lists
corresponds to the associated message of the object A. When
the message is issued, the associated method element list is
referred to.

[0329] While a one method element list corresponds to a
one message on a one-to-one basis, it is not always arranged
that method elements arranged on a one method element list
are only ones related to a certain one object (e.g. the object
B) and it is permitted that method elements related to a
plurality of methods of a plurality of objects are arranged on
a one method element list.

[0330] While the above-mentioned description explains a
construction of the output instruction bus unit of the object
A, the output instruction bus unit is provided for each of the
objects which issue messages to another object.

[0331] The object B has a method table consisting of an
arrangement of a maximum MEg 4, .x of a method number
ME} of the object B. The method table stores therein a
pointer to the method specified by the method number MEg,
corresponding to the method number MEy of each method.

[0332] While the above-mentioned description explains a
construction of the input instruction bus unit of the object B,
the input instruction bus unit receives a message issued by
another object, in a similar fashion to that of the output
instruction bus unit, and is provided for each of the objects,
which executes the method associated with the received
message. In some cases, it happens that a one object has both
the output instruction bus unit and the input instruction bus
unit.

[0333] FIG. 5 is a flowchart useful for understanding
processings for an issue of a message.

[0334] When it is intended to issue a message in a certain
processing in execution in the object A, a message table is
referred to so as to obtain, from a message number MA of
the message intended to be issued, a pointer to the method
element list associated with the message number MA, , ; ID
(step 5_1), so that the method elements arranged in the

US 2001/0052109 Al

method element list indicated by the pointer are referred to.
For example, when the uppermost of stage of method
element shown in FIG. 4 is referred to, the object B
indicated by a pointer stored in the method element referred
to is called wherein a method number MEg stored in the
method element serves as an argument (step 5_2). Such a
message issue processing is performed on each of the
method elements arranged in a one method element list for
each issue of a one message (steps 5_3, 5_4).

[0335] In the object B called wherein the method number
MEj serves as an argument, the method number MEj given
in the form of an argument is obtained (step 5_5). Instep 5_6
there is provided such a process that the method table is
referred to so as to obtain a pointer to a method specified by
the obtained method number MEg, and a processing of the
method indicated by the pointer is performed.

[0336] FIG. 6 is a flowchart useful for understanding
processings of an output instruction bus portion generating
unit 11 of an object coupling unit 10 shown in FIG. 3.

[0337] Instep 6_1, a frame of the message table having a
width MA, y;4x shown in FIG. 4 is produced.

[0338] Incidentally, according to the present embodiment,
it is so arranged that when the object A issues a message, a
pointer of the method element list is identified through a
message table. However, it is acceptable that the pointer to
the method element is written directly into a process
(method) of the object A, for example, and thus in this case,
there is no need to provide the message table. In other words,
the process shown in FIG. 6, or the output instruction bus
portion generating unit 11 shown in FIG. 3 is not always
needed.

[0339] FIG. 7 is a flowchart useful for understanding
processings of an input instruction bus portion generating
unit 12 of an object coupling unit 10 shown in FIG. 3.

[0340] Instep 7_1, a frame of the method table having a
width MEg y;.x shown in FIG. 4 is produced. And in step
7_2, a pointer to the method associated with the respective
method number MEj is stored in a column of the respective
method number MEg within the frame.

[0341] Incidentally, according to the present embodiment,
it is so arranged that a pointer of the method is recognized
through a method table. However, there is no need to
provide an association of the method number ME with the
pointer to the method in form of the message table. Accord-
ingly, the process shown in FIG. 7, or the input instruction
bus portion generating unit 12 shown in FIG. 3 is not always
needed.

[0342] FIG. 8 is a flowchart useful for understanding
processings of an instruction coupling unit 13 of an object
coupling unit 10 shown in FIG. 3. Here, also it is assumed
that the object B is typical of another object.

[0343] When the method elements are produced, an opera-
tor, who operates the computer system shown in FIG. 1,
designates a corresponding relation between a message and
a method. This corresponding relation is determined by the
following designations.

[0344] (a) A pointer of the object A
[0345] (b) A pointer of the object B

Dec. 13, 2001

[0346] (c) A message number MA, of the object A
[0347] (d) A method number MEj of the object B

[0348] It is noted that designations of the above-noted (a)
to (d) are performed, for example, in such a manner that
designations for a name of the object, a processing (e.g.
“display on a screen the spreadsheet program and the
spreadsheet result”) and the like are performed by clicking
through an operation of a mouse 104 (cf. FIG. 1), of an icon
displayed on a display screen 102a. More in detail, as will
be described later, objects are displayed in the form of an
LSI, and a designation is performed through an operation for
wiring among terminals of the LSI’s using the mouse 104.

[0349] In the processing shown in FIG. 8, first, a frame of
the method element is produced (step 8_1). In step 8_2, the
method number MEy and the pointer of the object B are
stored in the frame of the method element, so that they are
added to the method element list of the associated message
number MA ,(step 8_3). That is, the pointer to the method
element to be added is stored in the column of the pointer to
the next method element, of the last stage of method element
arranged in the method element list, and the “null” is stored
in the column of the pointer to the next method element, of
the method element to be added. The processing shown in
FIG. 8 is repeatedly performed, if necessary, to produce the
method element list.

[0350] Incidentally, when none of method element is
arranged in the method element list, according to the present
embodiment, a pointer to a method element intended to be
registered is stored in the column of the associated message
number MA,, of the message table.

[0351] According to the present embodiment, producing
the method element list in the manner as mentioned above
may provide an association of the message of the object A
with the method of the object B. This feature makes it
possible for an operator to easily grasp a corresponding
relation between the message and the method so as to readily
recognize the method associated with the message, thereby
implementing a high speed processing.

[0352] FIG. 9 is a typical illustration showing an example
of a data structure of a data element list of an object Ashown
in FIG. 3.

[0353] The object A includes a lot of data (e.g. n pieces of
data) to be transferred to the object B. The data element list
generating unit 14 of the object coupling unit 10 shown in
FIG. 3 produces the data element lists shown in FIG. 8.

[0354] Inthe data element list, there are arranged the data
elements the number of which corresponds to the number of
data (n pieces of data). Each of the data elements comprises
a pointer to a data storage area for storing therein data, and
a pointer to the subsequent data element. The “null” is
written into the column of the pointer to the subsequent data
element, of the last stage of data element. Incidentally, in
FIG. 9, for example, the pointer associated with the data
storage area 1 is denoted by a pointer 1_1 but not a pointer
1. The reason why it is to do so is that such a pointer is
distinguished from a pointer which will be described later.

[0355] An “OUT,” in FIG. 9 denotes a data element list
number. As to the data element lists, there is such a possi-
bility that a large number of data element lists are produced
in accordance with a number of destinations to which data

US 2001/0052109 Al

are transferred. Here, the data element lists are discriminated
from one another by the data element list number “OUT,”
(where the suffix A denotes the object A).

[0356] FIG. 10 is a flowchart useful for understanding
processings of a data element list generating unit 14 of an
object coupling unit 10 shown in FIG. 3.

[0357] Inorder to produce a data element list, first, a frame
of data elements is produced (step 10_1). A pointer to a data
storage area is substituted into the frame (step 10_2). In step
10_3, the pointer to the data storage area is added to the data
element list. When the pointer to the data storage area is
added to the data element list, the pointer to the data element
list to be added is stored in the column of the pointer to the
next data element, of the data element arranged in the last
stage of the data element list, and the “null” is stored in the
column of the pointer to the next data element, of the data
element list to be added.

[0358] The processing shown in FIG. 10 is repeatedly
performed, if necessary, to produce the data element list.

[0359] FIG. 11 is a typical illustration showing an
example of a data structure of a pointer element list of an
object B shown in FIG. 3.

[0360] The object B includes a lot of segments (e.g. n
pieces of segments) needed to receive data from the object
A. Each of the segments has the associated pointer storage
area. The pointer storage areas 1 to n store, at the stage
before data elements are coupled with pointer elements,
arbitrary pointers to data, 1_3,2 3, ..., n_3, respectively.
The pointer element list generating unit 15 of the object
coupling unit 10 shown in FIG. 3 produces the pointer
element list shown in FIG. 11.

[0361] In the pointer element list, there are arranged the
pointer elements the number of which corresponds to the
number of pointer storage areas (n pieces of area). Each of
the pointer elements comprises a pointer to the associated
pointer storage area, and a pointer to the subsequent pointer
element. Incidentally, in FIG. 11, for example, the pointer to
the pointer storage area 1 is denoted by a pointer 1_2 but not
a pointer 1, and an arbitrary pointer stored in the pointer
storage area 1 is denoted by a pointer 1_3. The reason why
it is to do so is that the pointers including the pointers stored
in the data elements shown in FIG. 9 are distinguished from
one another.

[0362] As to the pointer element lists also, in a similar
fashion to that of the data element lists, there is such a
possibility that a large number of pointer element lists are
produced in accordance with a number of sinks which
receive data. Here, the pointer element lists are discrimi-
nated from one another by a pointer element list number
“INy” (where the suffix B denotes the object B).

[0363] FIG. 12 is a flowchart useful for understanding
processings of a pointer element list generating unit 15 of an
object coupling unit 10 shown in FIG. 3. This processing is
similar to the processing of the data element list generating
unit 14, which processing is shown in FIG. 10. Thus, the
redundant description will be omitted.

[0364] First, a frame of pointer elements is produced (step
12_1). A pointer to the associated pointer storage area is
stored in the frame (step 12_2). In step 12_3, the pointer to
the associated pointer storage area is added to the pointer

Dec. 13, 2001

element list. The processing shown in FIG. 12 is repeatedly
performed, if necessary, to produce the pointer element list.

[0365] FIG. 13 is a typical illustration showing a structure
after an execution of processings of a data coupling unit 16
of an object coupling unit 10 shown in FIG. 3.

[0366] Pointer storage areas 1 to n of the object B store
therein pointers 1_1 to n_1 stored in the data elements
arranged in the data element lists shown in FIG. 9, respec-
tively. This structure permits the object B to directly refer to
data of the object A.

[0367] FIG. 14 is a flowchart useful for understanding
processings of a data coupling unit 16 of an object coupling
unit 10 shown in FIG. 3.

[0368] In step 14_1, the pointer 1_1 stored in the data
element arranged in the head of the data element list shown
in FIG. 9 is stored in a working area D. Likewise, in step
14_2, the pointer 1_2 stored in the pointer element arranged
in the head of the pointer element list shown in FIG. 11 is
stored in the working area D.

[0369] Next, in step 14_3, it is determined whether the
working area D is empty, in other words, it is determined
whether a mapping, which will be described on step 14_5,
is completed up to the last stage of data element arranged in
the data element list shown in FIG. 9. When the working
area D is empty, the processing shown in FIG. 14 is
terminated.

[0370] Likewise, in step 14_4, it is determined whether a
working area P is empty, in other words, it is determined
whether a mapping is completed up to the last stage of
pointer element arranged in the pointer element list shown in
FIG. 11. When the working area P is empty, the processing
shown in FIG. 14 is terminated.

[0371] In step 14_5, a pointer (e.g. pointer 1_1 shown in
FIG. 9) stored in the working area D is substituted for a
pointer (e.g. pointer 1_3) stored in the pointer storage area
(e.g. pointer storage area 15 indicated by a pointer (e.g.
pointer 1_2 shown in FIG. 11) stored in the working area P.
Thus, there is provided a mapping or a correspondence
between the data 1 of the object A and the pointer 1_1 of the
object B, which mapping is shown in FIG. 13.

[0372] In step 14_6, a pointer (e.g. pointer 2_1) stored in
the next data element arranged in the data element list shown
in FIG. 9 is stored in the working area D. Likewise, a pointer
(e.g. pointer 1_2) stored in the next pointer element arranged
in the pointer element list shown in FIG. 11 is stored in the
working area P. And the process returns to the step 14_3. In
this manner, this routine is repeated. Again in step 14_5,
when there is provided a mapping between the last stage of
data element of the data element list shown in FIG. 9 and the
last stage of pointer element of the pointer element list
shown in FIG. 11, the process goes to the step 14_6 in which
the working areas D and P are reset to be empty. And the
process returns to the step 14_3 and the processing shown in
FIG. 14 is terminated. While the above-explanation was
made assuming that the number of the data elements
arranged in the data element list is the same as the number
of pointer elements of the pointer element list, when they are
different from one another in the number, the working areas
D or P are reset to be empty at the time when a mapping for
one less in number is terminated, and then the processing of
FIG. 14 is terminated.

US 2001/0052109 Al

[0373] After the processing of FIG. 14 or the mapping
between the data element list and the pointer element list is
terminated, the data element list and the pointer element list
become useless and thus be erased.

[0374] In the data coupling processing explained in con-
junction with FIGS. 9 to 14, an operator, who operates the
computer system 100, inputs:

[0375] (a) A pointer of the object A;
[0376] (b) A pointer of the object B,

[0377] (c) A data element list number OUT, of the
object A;

[0378] (d) A pointer element list number IN, of the
object B.

[0379] 1t is noted that an input of data of the above-noted
items () to (d) are performed, in a similar fashion to that of
the input of the corresponding relation between the message
and the method explained referring to FIG. 8, by clicking of
an icon displayed on a display screen 102a (cf. FIG. 1).

[0380] In the processing shown in FIG. 14, while the
mapping between the data elements arranged in the data
element list and the pointer elements arranged in the pointer
element list is performed in accordance with the sequence of
their arrangements, for example, when the objects A and B
are made up, a provision of such a rule that the same name
or the associated name is given for the data storage area and
the pointer storage area which are associated with one
another, or such a rule that there is provided an arrangement
of the same or associated names in such a manner that the
associated one-to-one are arranged in the same sequence
makes it possible to generate, by referring to their names or
the sequences of the arrangements, the data element list and
the pointer element list in which the data elements and the
pointer elements, which are associated with one another,
respectively, are arranged in the same sequence in their lists,
respectively. Thus, it is possible to provide the mapping
associated with the arrangement sequence as shown in FIG.
14.

[0381] According to the present embodiment, as shown in
FIG. 3, it is possible to directly refer to data of the object A
from the object B, thereby efficiently transferring data
between the objects and substantially improving a process-
ing operational speed as being over a plurality of objects.
Thus, there is no need to make up large objects in view of
decreasing the processing speed, and it is permitted to make
up a lot of small unit of objects thereby essentially improv-
ing a reusability of the software.

[0382] According to the present embodiment mentioned
above, the object coupling unit 10 shown in FIG. 3 couples
a plurality of objects with each other at the stage of an
initialization, or at the stage in which a software system
comprising a plurality of objects is constructed, but there is
considered no re-coupling of the object-to-object after start-
ing of the operation of the software system thus constructed.

[0383] In view of the foregoing, next, there will be
described alternative embodiments in which after starting of
the operation of the software system constructed, a re-
coupling of the object-to-object is dynamically performed,
based on the above-mentioned embodiment.

Dec. 13, 2001

[0384] Hereinafter, first, referring to FIGS. 15 to 18, there
will be described the schematic construction of each of the
second to fifth object-oriented programming apparatuses
according to embodiments of the present invention and the
second to fifth object-oriented program storage medium
according to embodiments of the present invention, and
thereafter referring to FIGS. 19 to 35, there will be described
embodiments in which the second to fifth object-oriented
programming apparatuses according to embodiments of the
present invention and the second to fifth object-oriented
program storage medium according to embodiments of the
present invention are put together, respectively.

[0385] FIG. 15 is a typical illustration showing a second
example of a software system implemented within the
computer system shown in FIG. 1.

[0386] A corresponding relation between the software
system shown in FIG. 15 and the present invention is as
follows.

[0387] That is, the storage unit 105 (cf. FIG. 1), in which
the software system shown in FIG. 15 is stored, corresponds
to the second object-oriented program storage medium
according to an embodiment of the present invention, and a
combination of the hardware of the computer system 100
and an object coupling unit 20 which is in a state operable
under the computer system 100 corresponds to the second
object-oriented programming apparatus. Incidentally, when
the software system shown in FIG. 15 is downloaded onto
the MO 110 shown in FIG. 1, the MO 110 also corresponds
to an example of the second object-oriented program storage
medium according to an embodiment of the present inven-
tion.

[0388] Also in FIG. 15, let us consider typically two
objects A and B among a number of objects.

[0389] Inthe object coupling unit 20 shown in FIG. 15, an
output instruction bus portion generating unit 21, an input
instruction bus portion generating unit 22, and an instruction
coupling unit 23 are the same in their processing as the
output instruction bus portion generating unit 11, the input
instruction bus portion generating unit 12 and the instruction
coupling unit 13 of the object coupling unit 10 shown in
FIG. 3, respectively. Thus, in a similar fashion to that of
FIG. 3, the instruction coupling unit 23 produces a path 23a
to provide an association of messages of the object A with
messages of the object B. It is also similar to that of FIG. 3
that the output instruction bus portion generating unit 21 and
the input instruction bus portion generating unit 22 are not
always needed.

[0390] An input instruction tag table generating unit 24
produces, on the output instruction bus portion of the object
A, an input instruction tag table showing a correspondence
between a message of another object (here typically the
object B) and a method of the object A.

[0391] As will be described later, the input instruction tag
table is transferred to the object B in the form of an argument
of a message issued from the object A to the object B. In the
object B, during a processing of the object B there is
dynamically produced a passage for an issue of a message
directed from the object B to the object A, for example.

[0392] FIG. 16 is a typical illustration showing a third
example of a software system implemented within the
computer system shown in FIG. 1.

US 2001/0052109 Al

[0393] A corresponding relation between the software
system shown in FIG. 16 and the present invention is as
follows.

[0394] That is, the storage unit 105 (cf. FIG. 1), in which
the software system shown in FIG. 16 is stored, corresponds
to the third object-oriented program storage medium accord-
ing to an embodiment of the present invention, and a
combination of the hardware of the computer system 100
and an object coupling unit 30 which is in a state operable
under the computer system 100 corresponds to the third
object-oriented programming apparatus. Incidentally, when
the software system shown in FIG. 16 is downloaded onto
the MO 110 shown in FIG. 1, the MO 110 also corresponds
to an example of the third object-oriented program storage
medium according to an embodiment of the present inven-
tion.

[0395] Also in FIG. 16, let us consider typically two
objects A and B among a number of objects.

[0396] In the object coupling unit 30 shown in FIG. 16, an
output instruction bus portion generating unit 31, an input
instruction bus portion generating unit 32, and an instruction
coupling unit 33 are the same in their processing as the
output instruction bus portion generating unit 11, the input
instruction bus portion generating unit 12 and the instruction
coupling unit 13 of the object coupling unit 10 shown in
FIG. 3, respectively. Thus, in a similar fashion to that of
FIG. 3, the instruction coupling unit 33 produces a path 33a
to provide an association of messages of the object A with
messages of the object B. It is also similar to that of FIG. 3
that the output instruction bus portion generating unit 31 and
the input instruction bus portion generating unit 32 are not
always needed.

[0397] An output instruction tag table generating unit 34
produces, on the output instruction bus portion of the object
A, an output instruction tag table showing a correspondence
between a method of another object (here typically the
object B) and a message of the object A.

[0398] As will be described later, the output instruction tag
table is transferred to the object B in the form of an argument
of a message issued from the object A to the object B. In the
object B, during a processing of the object B there is
dynamically rearranged a passage for an issue of a message
directed from the object A to the object B, for example.

[0399] FIG. 17 is a typical illustration showing a fourth
example of a software system implemented within the
computer system shown in FIG. 1.

[0400] A corresponding relation between the software
system shown in FIG. 17 and the present invention is as
follows.

[0401] That is, the storage unit 105 (cf. FIG. 1), in which
the software system shown in FIG. 17 is stored, corresponds
to the fourth object-oriented program storage medium
according to an embodiment of the present invention, and a
combination of the hardware of the computer system 100
and an object coupling unit 40 which is in a state operable
under the computer system 100 corresponds to the fourth
object-oriented programming apparatus. Incidentally, when
the software system shown in FIG. 17 is downloaded onto
the MO 110 shown in FIG. 1, the MO 110 also corresponds

Dec. 13, 2001

to an example of the fourth object-oriented program storage
medium according to an embodiment of the present inven-
tion.

[0402] Also in FIG. 17, let us consider typically two
objects A and B among a number of objects.

[0403] Inthe object coupling unit 40 shown in FIG. 17, an
output instruction bus portion generating unit 41, an input
instruction bus portion generating unit 42, and an instruction
coupling unit 43 are the same in their processing as the
output instruction bus portion generating unit 11, the input
instruction bus portion generating unit 12 and the instruction
coupling unit 13 of the object coupling unit 10 shown in
FIG. 3, respectively. Thus, in a similar fashion to that of
FIG. 3, the instruction coupling unit 43 produces a path 43a
to provide an association of messages of the object A with
messages of the object B. It is also similar to that of FIG. 3
that the output instruction bus portion generating unit 41 and
the input instruction bus portion generating unit 42 are not
always needed.

[0404] An input data tag table generating unit 44 pro-
duces, on the output instruction bus portion of the object A,
an input data tag table showing a correspondence between a
data element list number OUTy for specifying a data ele-
ment list in which pointers to data storage areas of another
object (here typically the object B) are arranged and a
pointer element list number IN, for specifying a pointer
element list in which pointers to pointer storage areas of the
object A are arranged.

[0405] The data element list number OUTy and the pointer
element list number IN, are determined at the stages when
the objects B and A are made up, respectively. However, at
the stage in which the input data tag table is simply gener-
ated, the data element list itself and the pointer element list
itself are not yet produced. The input data tag table is
transferred to the object B in the form of argument of a
message issued from the object A to the object B. Upon
receipt of the input data tag table, the object B produces a
data element list of one’s own (the object B) dynamically
during a processing of the object B and a pointer element list
of the object A as well, so that the data element list and the
pointer element list are coupled together. Details thereof will
be described later.

[0406] FIG. 18 is a typical illustration showing a fifth
example of a software system implemented within the
computer system shown in FIG. 1.

[0407] A corresponding relation between the software
system shown in FIG. 18 and the present invention is as
follows.

[0408] That is, the storage unit 105 (cf. FIG. 1), in which
the software system shown in FIG. 18 is stored, corresponds
to the fifth object-oriented program storage medium accord-
ing to an embodiment of the present invention, and a
combination of the hardware of the computer system 100
and an object coupling unit 50 which is in a state operable
under the computer system 100 corresponds to the fifth
object-oriented programming apparatus. Incidentally, when
the software system shown in FIG. 18 is downloaded onto
the MO 110 shown in FIG. 1, the MO 110 also corresponds
to an example of the fifth object-oriented program storage
medium according to an embodiment of the present inven-
tion.

US 2001/0052109 Al

[0409] Also in FIG. 18, let us consider typically two
objects A and B among a number of objects.

[0410] In the object coupling unit 50 shown in FIG. 18, an
output instruction bus portion generating unit 51, an input
instruction bus portion generating unit 52, and a n instruc-
tion coupling unit 53 are the same in their processing as the
output instruction bus portion generating unit 11, the input
instruction bus portion generating unit 12 and the instruction
coupling unit 13 of the object coupling unit 10 shown in
FIG. 3, respectively. Thus, in a similar fashion to that of
FIG. 3, the instruction coupling unit 53 produces a path 53a
to provide an association of messages of the object A with
messages of the object B. It is also similar to that of FIG. 3
that the output instruction bus portion generating unit 51 and
the input instruction bus portion generating unit 52 are not
always needed.

[0411] An output data tag table generating unit 54 pro-
duces, on the output instruction bus portion of the object A,
an output data tag table showing a correspondence between
a pointer element list number INg for specifying a pointer
element list in which pointers to pointer storage areas of
another object (here typically the object B) are arranged and
a data element list number OUT, for specifying a data
element list in which pointers to data storage areas of the
object A are arranged.

[0412] The pointer element list number INy and the data
element list number OUT, are determined at the stages
when the objects B and A are made up, respectively. How-
ever, at the stage in which the output data tag table is simply
generated, the pointer element list itself and the data element
list itself are not yet produced. The output data tag table is
transferred to the object B in the form of argument of a
message issued from the object A to the object B. Upon
receipt of the output data tag table, the object B produces a
data element list of the object A dynamically during a
processing of the object B and a pointer element list of one’s
own (the object B) as well, so that the data element list and
the pointer element list are coupled together. Details thereof
will be described later.

[0413] FIG. 19 is a typical illustration showing a part of
the data structure of objects A shown in FIGS. 15 to 18. FIG.
19 shows, of the data structure shown in FIG. 4, one method
element, an input instruction tag table, an output instruction
tag table, an input data tag table, and output data tag table,
these four tag tables being coupled with the method element.
FIG. 19 shows overall data structure of the embodiments
having all aspects of the respective embodiments explained
referring to FIGS. 15 to 18.

[0414] Appended to the method element shown in FIG. 19
are the structure of the method element shown in FIG. 4,
that is, a method number MEg of another object (here
typically object B), a pointer to an object (here object B)
which executes a method specified by the method number
MEg, a pointer to the subsequent method element, a pointer
to an input instruction tag table (hereinafter, it happens that
this pointer is referred to as P1), a pointer to an output
instruction tag table (hereinafter, it happens that this pointer
is referred to as P2), a pointer to an input data tag table
(hereinafter, it happens that this pointer is referred to as P3),
a pointer to an output data tag table (hereinafter, it happens
that this pointer is referred to as P4), and a pointer to oneself
(object A) (hereinafter, it happens that this pointer is referred
to as P5).

Dec. 13, 2001

[0415] The input instruction tag table has the same width
in its arrangement as the maximum number MAg 3 4x Of
messages of another object (here object B), and stores
therein the method number ME , of the object A in associa-
tion with the message number MAg of the object B.

[0416] The output instruction tag table has the same width
in its arrangement as the maximum number MEg ;4 of
method of another object (here object B), and stores therein
the message number MA , of the object A in association with
the method number MEg of the object B.

[0417] The input data tag table has the same width in its
arrangement as the maximum number OUTy 4, of data
element lists of another object (here object B), and stores
therein the pointer element list number IN, of the object A
in association with the data element list number OUTj of the
object B.

[0418] The output data tag table has the same width in its
arrangement as the maximum number INg ,,x Of pointer
element lists of another object (here object B), and stores
therein the data element list number OUT, of the object A
in association with the pointer element list number INg of
the object B.

[0419] Incidentally, while FIG. 19 shows, with respect to
the output instruction bus portion of the object A, four tag
tables related to the object B, generally, these four tag tables
are provided in set by the number of party objects which
receive messages issued by the object A, when the output
instruction bus portion of the object A is viewed as a whole.
That is, these four tag tables are provided in association with
each of the respective objects concerned. This is the similar
as to the matter of the output instruction bus portion of
another object not limited to the object A.

[0420] Inthe event that the object A issues messages to the
object A referring to the method element shown in FIG. 19,
transferred from the object A are the method number ME,
of the object B and in addition, if necessary, part or all of the
pointers P1-P5 in the form of arguments. Alternatively, it is
acceptable that the method number MEy and all of the
pointers P1-P5 are always transferred in the form of argu-
ments.

[0421] Hereinafter, so far as it is not noted specifically, the
explanation will be made presupposing the data structure in
which the data structure shown in FIG. 4 has been altered
as shown in FIG. 19.

[0422] FIG. 20 is a flowchart useful for understanding an
example of processings for an issue of a message of an
object A.

[0423] In FIG. 20, the steps 20_1,20_3 and 20_4 are the
same as the steps 5_1, 5 3 and 5_4 of FIG. 5, respectively.
Thus, the redundant explanation will be omitted.

[0424] 1In step 20_2, the method number ME and in
addition the pointers P1, P2 and P5, according to the present
example, are transferred to the object B in the form of
arguments. Upon receipt of the message, the object B
executes a processing of a method specified by the method
number MEy in accordance with the flowchart shown in
FIG. 5(B).

[0425] FIG. 21 is a flowchart useful for understanding a
first example of a partial processing of processings of an

US 2001/0052109 Al

object B. The partial processing is executed during a pro-
cessing of a method specified by the method number ME,
transferred to the object B in the form of arguments.

[0426] In step 21_1, referring to the input instruction tag
table transferred to the object B in the form of arguments, the
method number ME, of the object A is obtained from the
message number MAy of the object B. In step 21_2, during
a processing of the object B, a processing of the method of
the obtained method number ME, of the object A is
executed.

[0427] FIG. 22 is a flowchart useful for understanding a
second example of a partial processing of processings of an
object B.

[0428] 1In step 22_1, referring to the input instruction tag
table transferred to the object B in the form of arguments, the
method number ME, of the object A is obtained from the
message number MAy of the object B. In step 22 2, a
method element related to the method number ME, of the
object A is added to a method element list associated with
the message number MAg of the message table of one’s own
(the object B). In this manner, thereafter, an issuance of the
message of the message number MAg; of the object B
permits an execution of the method of the method number
ME of the object A.

[0429] FIG. 23 is a flowchart useful for understanding a
third example of a partial processing of processings of an
object B. In this case, in the partial processing, the argument
of the message issued in the object A is not referred to
directly.

[0430] Instep23_1, aprocessing of the object B causes an
object C to be produced. A processing of producing another
object in one object is one of the usual processings in the
object-oriented programming. Thus, an explanation as to the
technique of producing the object C will be omitted.

[0431] FIG. 24 is a flowchart useful for understanding a
fourth example of a partial processing of processings of an
object B.

[0432] With respect to the partial processing shown in
FIG. 24, there is a need, prior to its execution, to perform the
partial processing shown in FIG. 23 so that the object C is
produced. However, with respect to timing of a producing of
the object C, it is not restricted specifically. It is acceptable
that the object C is produced during a series of processing at
the present time in the object B. Alternatively, it is accept-
able that the object C is produced in processing at the
previous or earlier time in the object B.

[0433] In the partial processing shown in FIG. 24, in step
24 1, referring to the input instruction tag table transferred
to the object B in the form of arguments, the method number
ME, of the object A, which is associated with the message
number MAy succeeded to the object G, originally the
message number of the object B, is obtained. In step 24 2,
a method element of the method number ME , of the object
A is added to the method element list of the object C
associated with the message number MAg of the message
table of the object C. Thus, a path of messages from the
object C to the object A is formed.

[0434] FIG. 25 is a flowchart useful for understanding a
fifth example of a partial processing of processings of an
object B.

Dec. 13, 2001

[0435] Instep25_1, referring to the output instruction tag
table, the message number MA , of the object A associated
with the method number ME , of the object A is obtained. In
step 25_2, a method element related to the method number
MEg of the object B is added to a method element list
associated with the message number MA, of the message
table of the object A. In this manner, thereafter, an issuance
of the message of the message number MA , of the object A
permits an execution of the method of the method number
ME, of the object B.

[0436] FIG. 26 is a flowchart useful for understanding a
sixth example of a partial processing of processings of an
object B.

[0437] With respect to the partial processing shown in
FIG. 26, there is a need, prior to its execution, to perform the
partial processing shown in FIG. 23 so that the object C is
produced. However, with respect to timing of a producing of
the object C, it is not restricted specifically. It is acceptable
that the object C is produced during a series of processing at
the present time in the object B. Alternatively, it is accept-
able that the object C is produced in processing at the
previous or earlier time in the object B.

[0438] In the partial processing shown in FIG. 26, in step
26_1, referring to the output instruction tag table transferred
to the object B in the form of arguments, the message
number MA , of the object A, which is associated with the
method number MEj succeeded to the object C, originally
the message number of the object B, is obtained. In step
26_2, a method element, in which the method number MEg
and the pointer to the object C are stored, is added to the
method element list associated with the message number
MA of the message table of the object A.

[0439] In this manner, thereafter, it is possible to issue
messages from the object A to the newly produced object C.

[0440] FIG. 27 is a flowchart useful for understanding
another example of processings for an issue of a message of
an object A, which is different from the example of that
shown in FIG. 20.

[0441] InFIG.27,steps27_1,27_3 and 27_4 are the same
as the steps 20_1, 20_3 and 20_4 of FIG. 20, and the steps
51,5 3 and 5_4 of FIG. 5, respectively. Thus, the redun-
dant explanation will be omitted.

[0442] In step 27_2, the object B is called, where the
method number MEy and in addition the pointers P3, P4 and
PS5 are argument.

[0443] Upon receipt of the message, the object B executes
a processing of a method specified by the method number
ME;.

[0444] FIG. 28 is a flowchart useful for understanding a
seventh example of a partial processing of processings of an
object B.

[0445] In step 28_1, referring to the input data tag table
transferred to the object B in the form of arguments, the
pointer element list number IN , of the object A is obtained
from the data element list number OUTy, of the object B. In
step 28_2, the pointer element list (cf. FIG. 11 wherein the
pointer element list of the object B is shown) of the object
A, which is associated with the obtained pointer element list
number INA, is produced. In step 28 3, the data element list

US 2001/0052109 Al

(cf. FIG. 9 wherein the data element list of the object A is
shown) of the object B, which is associated with the data
element list number OUTy, is produced. And in step 28_4,
a coupling processing of the data element list with the
pointer element list (cf. FIG. 13 wherein the pointer of the
object B indicates the data of the object A, and in this
respect, positions of the object A and the object B are
reversed, as compared with the present case) is executed.

[0446] In this manner, according to the present embodi-
ment, a path for transfer of data between objects is formed
during an execution of a processing, so called dynamically.

[0447] FIG. 29 is a flowchart useful for understanding a
eighth example of a partial processing of processings of an
object B.

[0448] With respect to the partial processing shown in
FIG. 29, there is a need, prior to its execution, to perform the
partial processing shown in FIG. 23 so that the object C is
produced. However, with respect to timing of a producing of
the object C, any times are acceptable if the object C is
produced before the partial processing shown in FIG. 29.

[0449] In the partial processing shown in FIG. 29, in step
29 1, referring to the input data tag table transferred to the
object B in the form of arguments, the pointer element list
number IN , of the object A is obtained from the data element
list number OUTg, which is succeeded to the object C,
originally the data element list number of the object B. In
step 29_2, the pointer element list of the object A, which is
associated with the obtained pointer element list number
INA, is produced. In step 29_3, the data element list of the
object C, which is associated with the data element list
number OUTy, is produced. And in step 29_4, a coupling
processing of the data element list of the object C with the
pointer element list of the object A is executed.

[0450] In this manner, according to the present embodi-
ment, a path for directly referring to data of the newly
produced object C from the object A is formed during an
execution of a processing, so called dynamically.

[0451] FIG. 30 is a flowchart useful for understanding a
ninth example of a partial processing of processings of an
object B.

[0452] In the partial processing shown in FIG. 30, in step
30_1, referring to the output data tag table transferred to the
object B in the form of arguments, the data element list
number OUT, of the object A is obtained from the pointer
element list number INg of the object B. In step 30_2, the
data element list of the object A, which is associated with the
obtained data element list number OUT , of the object A, is
produced. In step 30_3, the pointer element list of one’s own
(the object B), which is associated with the pointer element
list number INp, is produced. And in step 30_4, a coupling
processing of the data element list of the object A with the
pointer element list of the object B is executed.

[0453] In this manner, according to the present embodi-
ment, a path for directly referring to data of the object A
from the object B is formed during an execution of a
processing, so called dynamically.

[0454] FIG. 31 is a flowchart useful for understanding a
tenth example of a partial processing of processings of an
object B.

Dec. 13, 2001

[0455] With respect to the partial processing shown in
FIG. 31, there is a need, prior to its execution, to perform the
partial processing shown in FIG. 23 so that the object C is
produced. However, with respect to timing of a producing of
the object C, any times are acceptable if the object C is
produced before the partial processing shown in FIG. 31.

[0456] In the partial processing shown in FIG. 31, in step
31_1, referring to the output data tag table transferred to the
object B in the form of arguments, the data element list
number OUT, of the object A is obtained from the pointer
element list number INy, which is succeeded to the object C,
originally the pointer element list number of the object B. In
step 31_2, the data element list of the object A, which is
associated with the obtained data element list number OUT-
Als produced. In step 31_3, the pointer element list of the
object C, which is associated with the pointer element list
number INy, is produced. And in step 31_4, a coupling
processing of the data element list of the object A with the
pointer element list of the object C is executed.

[0457] In this manner, according to the present embodi-
ment, a path for directly referring to data of the object A
from the object C is formed during an execution of a
processing, so called dynamically.

[0458] While the above description concerns various types
of partial processings during a processing of the object B,
those various types of partial processings are not always
executed independently, and if necessary, a plurality of
partial processings are performed continuously or in their
combination.

[0459] FIG. 32 is a flowchart useful for understanding
processings of the input instruction tag table generating unit
24 of the object coupling unit 20 shown in FIG. 15.

[0460] An operator, who operates the computer system
100 (cf. FIG. 1) instructs the following items:

[0461] (a) A pointer of the object A

[0462] (b) A pointer of the object B

[0463] (c) A method number ME, of the object A
[0464] (d) A message number MAy of the object B

[0465] In the processing shown in FIG. 32, upon receipt
of the above-noted instructions, a frame of the input instruc-
tion tag table having the same width as the maximum
number MAg, ax Of messages of the object B is produced
(step 32_1). In step 32_2, the method number ME of the
object Ais stored in the column of the message number MAg
of the object B of the frame thus produced. In step 32_3, a
pointer to the input instruction tag table is registered into the
whole method elements (e.g. the method element shown in
FIG. 19) related to the object B, of the object A. It is noted
that FIG. 19 shows an illustration in which the pointer (P1)
to the input instruction tag table has been already registered.

[0466] While the object B is typically dealt with according
to the present embodiment, the output instruction bus por-
tion of the object A produces input instruction tag tables
related to all of the objects which have a possibility of
receiving messages issued from the object A, and pointers to
the input instruction tag tables are registered into method
elements related to the objects associated with the input
instruction tag tables thus produced, respectively. This is the

US 2001/0052109 Al

similar as to the matter of the output instruction tag tables,
the input data tag tables and the output data tag tables.

[0467] FIG. 33 is a flowchart useful for understanding
processings of the output instruction tag table generating
unit 34 of the object coupling unit 30 shown in FIG. 16.

[0468] An operator, who operates the computer system
100 (cf. FIG. 1), instructs the following items in a similar
fashion to that of wiring of LSI’s:

[0469] (a) A pointer of the object A

[0470] (b) A pointer of the object B

[0471] (c) A message number MA, of the object A
[0472] (d) A method number MEj of the object B

[0473] In the processing shown in FIG. 33, upon receipt
of the above-noted inputs, a frame of the output instruction
tag table having the same width as the maximum number
ME_, . of methods of the object B is produced (step 33_1).
In step 33_2, the message number MA, of the object A is
stored in the column of the method number MEy of the
object B of the frame thus produced. In step 33_3, a pointer
to the output instruction tag table is registered into the whole
method elements related to the object B, of the object A. It
is noted that FIG. 19 shows an illustration in which the
pointer (P2) to the output instruction tag table has been
already registered.

[0474] FIG. 34 is a flowchart useful for understanding
processings of the input data tag table generating unit 44 of
the object coupling unit 40 shown in FIG. 17.

[0475] An operator, who operates the computer system
100 (cf. FIG. 1), instructs the following items in a similar
fashion to that of wiring of LSI’s:

[0476] (a) A pointer of the object A
[0477] (b) A pointer of the object B

[0478] (c) A pointer element list number IN, of the
object A

[0479] (d) A data element list number OUTy of the
object B

[0480] In the processing shown in FIG. 34, upon receipt
of the above-noted instructions, a frame of the input data tag
table having the same width as the maximum number
OUT_ _ of data element lists of the object B is produced
(step 34_1). In step 34_2, the pointer element list number
IN of the object Ais stored in the column of the data element
list number OUTy of the object B of the frame thus pro-
duced. In step 34_3, a pointer to the input data tag table is
registered into the whole method elements related to the
object B, of the object A. It is noted that FIG. 19 shows an
illustration in which the pointer (P3) to the input data tag
table has been already registered.

[0481] FIG. 35 is a flowchart useful for understanding
processings of the output data tag table generating unit 54 of
the object coupling unit 50 shown in FIG. 18.

[0482] An operator, who operates the computer system
100 (cf. FIG. 1), instructs the following items in a similar
fashion to that of wiring of LSI’s:

Dec. 13, 2001

[0483] (a) A pointer of the object A

[0484] (b) A pointer of the object B

[0485] (c) A data element list number of the object A

[0486] (d) Apointer element list number of the object
B

[0487] In the processing shown in FIG. 35, upon receipt
of the above-noted inputs, a frame of the output data tag
table having the same width as the maximum number INg
max of pointer element lists of the object B is produced (step
35_1). In step 35_2, the data element list number OUTy, of
the object A is stored in the column of the pointer element
list number IN of the object B of the frame thus produced.
In step 35_3, a pointer to the output data tag table is
registered into the whole method elements related to the
object B, of the object A. It is noted that FIG. 19 shows an
illustration in which the pointer (P4) to the output data tag
table has been already registered.

[0488] While it is acceptable that the processings in FIGS.
32 to 35 are executed independently and only one of four tag
tables shown in FIG. 19 is registered into the method
element, it is also acceptable that two or more of these four
tag tables are registered into one method element, if neces-
sary or always. Further, although FIGS. 32 to 35 fail to
clearly state, in the event that anyone of the processings
shown in FIGS. 32 to 35 is executed, the pointer (P5) to the
object A itself is registered into the method.

[0489] According to the embodiments explained referring
to FIGS. 15 to 35, not only are object-to-object coupled with
one another in the initial state, but also a coupling of a
message with a method, and a coupling of data with a pointer
are performed during an execution of processings or
dynamically. When a new object is produced, in a similar
fashion as to the matter of the new object, the dynamic
coupling is performed. In this manner, the new coupling is
performed in accordance with conditions, and a very higher
speed of transfer of messages and data among a plurality of
objects is implemented.

[0490] Next, there will be described an embodiment con-
cerning the interobject wiring editor unit 122 and the asso-
ciated periphery. Here, of the embodiment concerning the
interobject wiring editor unit 122 and the associated periph-
ery, there will be described an embodiment of an object-
between-network display method on the display screen 1024
of the display unit 102 of the computer system 100.

[0491] As described above, while the object oriented pro-
gramming has various drawbacks such that reuse of software
is low and a running speed is slow, there exists an idea such
that objects are wired to describe a connecting relation
among the objects. However, according to the earlier tech-
nology, the connecting relation among the objects is very
simple, such that data is transferred to another object in the
form of an argument of the message. As described in the
embodiment related to the above-mentioned interpreter unit
123, however, in the event that there is a need to perform a
wiring among pointers of the objects, which is more com-
plicated than a wiring among the objects, according to the
conventional display scheme, it is difficult for users to
readily understand the connecting relation among the objects
and to efficiently perform a wiring.

[0492] For example, hitherto, when an object-between-
network is displayed, there is no distinction between a

US 2001/0052109 Al

position of display for objects and a position of display for
wirings among the objects, and arrangement and wiring of
the objects are performed freely. Thus, a certain display
device permits an object to overlap with a wiring. This raises
such a problem that users are obliged to perform a wiring so
as to avoid an overlapping. Also a certain another display
device does not display a resultant network even if a wiring
is implemented. This raises such a problem that users cannot
readily grasp a relation between objects.

[0493] Further, according to the prior art system, the
displayed object is of a hierarchical structure, and a device
for displaying subnetworks constituting a certain object
displays such subnetworks on a new screen or window. This
raises such a problem that it is difficult for users to identify
a connecting relation between a network of the parent object
and the subnetworks, and in addition such a problem that the
network of the parent object goes behind the new window.

[0494] Furthermore, according to the conventional object-
between-network display, an object is fixed or variable in
size. However, in the event that the object is fixed, in a case
where the number of input and output terminals of the object
is variable, there is a possibility that the selection of a large
number of input and output terminals bring about narrow
terminal intervals and thus it will be difficult to display
terminal names. Also in the event that the object is variable
in size, users have to control the size of the object. This
raises such a problem that a work amount is increased.

[0495] Still further, according to the conventional object-
between-network display, in the event that directions of the
flow of data and instructions in the network wiring are
indicated, arrows are appended to only one terminal end or
only both ends. Consequently, it is impossible to identify the
flow direction in the middle of a wiring. Thus, in a case
where the objects on both the ends of a wire are out of the
display screen, there is a problem that it is impossible to
identify whether the terminal of the object, which is a
starting end or a terminal end, is an input terminal or an
output terminal.

[0496] Still furthermore, according to the conventional
object-between-network display, in the event that wires
intersect, in order to identify whether two wires intersect or
separate from one another, a mark such as a black point or
the like is appended to a junction, alternatively a circular arc
mark or the like is utilized. However, in the event that the
mark such as a black point or the like is appended to a
junction, it is necessary for users to understand a rule of the
display. On the other hand, in the event that the circular arc
mark is utilized, there is a problem that a radius of width is
needed for a one wire.

[0497] In view of the foregoing problems involved in the
object-between-network display, an embodiment, which will
be described hereinafter, is to provide a display method easy
for users to be understood.

[0498] Hereinafter, there will be described embodiments
of an object-between-network display method according to
the present invention. First, fundamental embodiments of an
object-between-network display method according to the
present invention will be explained, and then the more
descriptive embodiments will be explained.

[0499] FIG. 36 is a typical illustration of a display screen
useful for understanding an object-between-network display

Dec. 13, 2001

method according to an embodiment of the present inven-
tion. While FIG. 35 shows a lattice 201 which appears on
the display screen 1024, it is noted that the lattice 201 is
shown for the purpose of a clarification that the display
screen 1024 is partitioned into a plurality of display areas,
and the lattice 201 is not displayed indeed on the display
screen 1024.

[0500] The display screen 1024 is partitioned by the lattice
201 into a plurality of display areas each consisting of one
measure. Each of the display areas comprises an object
display domain 203 for displaying one of a plurality of
objects produced by an object-oriented programming, and a
wiring display domain 204 for displaying a wiring to con-
nect a plurality of objects to one another. The term “wiring”
implies wires representative of the path 13a, 234, 334, 43a
and 53a for a transfer of messages shown in FIGS. 3 and 15
to 18, and the path 164 for a transfer of data shown in FIG.
2. The wiring display domain 204 is determined in its
location in such a manner that the wiring display domain 204
is formed between the object display domain-to-domain 203
of the adjacent two display areas.

[0501] There is displayed on the display screen 102a an
image such that each of a plurality of objects constituting a
network is disposed on the associated one of the object
display domains 203 of the respective display areas, and
wirings for coupling the plurality of objects with one another
are displayed on the wiring display domains 204.

[0502] According to the display method as mentioned
above, it is possible to obtain an arrangement in which
objects are arranged in good order, and in addition possible
to obtain a display easy to see involving no overlapping of
the objects with the wirings since the domains for displaying
the objects and the domains for displaying the wirings are
separately prepared.

[0503] Next, there will be explained a method of display
for a network wherein objects constituting the network are
given with a hierarchical structure.

[0504] FIG. 37 is an explanatory view useful for under-
standing hierarchical networks.

[0505] FIG. 37 shows an example in which objects 1 and
2 are constructed with subnetworks 1 and 2, respectively.
Each of the subnetworks 1 and 2 comprises a plurality of
objects and wirings for coupling the plurality of objects with
one another. While FIG. 37 shows two stages of hierarchical
structure, it is acceptable that three or more stages of
hierarchical structure is provided.

[0506] FIGS. 38(A) and (B) are illustrations each showing
by way of example a display image consisting of a lot of
objects and wirings. FIG. 38(A) shows a display image in its
entirety, and FIG. 38(B) shows a partial image, with the
object 205 as the central part.

[0507] FIGS. 39(A) and (B) are illustrations each showing
by way of example a display image of a subnetwork 206
constituting the object 205, instead of the object 205 shown
in FIGS. 38(A) and (B). FIG. 39(A) shows a display image
in its entirety, and FIG. 39(B) shows a partial image, with
the object 206 as the central part.

[0508] In the event that the subnetwork, which comprises
the above-mentioned lower class of plurality of objects in
hierarchical structure, instead of the object 205 included in

US 2001/0052109 Al

a display image 207 shown in FIGS. 38(A) and (B), and
wiring for coupling those objects with one another, is
displayed, a display area broader than a display area of the
object 205 is allocated to the subnetwork 206; display areas,
which are arranged at the upper and lower sides of the
display area of the subnetwork 206, are enlarged to right and
left; display areas, which are arranged at the right and left
sides of the display area of the subnetwork 206, are enlarged
up and down; and as to display areas located at diagonal
sides with respect to the display area of the subnetwork 206,
the same size as that of the display areas on the display
image shown in FIGS. 38(A) and (B) in which the object 205
equivalent to the subnetwork 206 is displayed is allocated.

[0509] As shown in FIG. 39(B), there are displayed wires
among a plurality of objects constituting the subnetwork
206, and in addition there are displayed wires among the
subnetwork 206 and the surrounding networks of the sub-
network 206.

[0510] An adoption of the above-mentioned display
method makes it possible to easily confirm the connecting
state of the subnetwork with the surrounding networks, as
compared with the conventional scheme in which the sub-
network 206 is displayed on an independent window.

[0511] FIGS. 40(A) and (B) are illustrations each showing
an alternative embodiment of the display method of the
subnetwork. FIG. 40(A) shows an example of a display
image before a subnetwork is displayed, the display image
including an object equivalent to the subnetwork. FIG.
40(B) shows an example of a display image in which the
object is replaced by the subnetwork.

[0512] Tt is assumed that the object 205 included in the
display image 207 shown in FIG. 40(A) is replaced by the
subnetwork 206 equivalent to the object 205, as shown in
FIG. 40(B).

[0513] The subnetwork 206 is allocated a display area
broader than that of the object 205. However, the display
areas located around the display image shown in FIG. 40(B)
is display areas in which the same object is displayed, as
compared with the display areas located around the display
image shown in FIG. 40(A). Further, with respect to the
position and the size of the sides adjacent to the periphery of
the display image 207, of the display areas located around
the display image, FIG. 40(A) and FIG. 40(B) are the same
as each other. That is, in FIG. 40(A) and FIG. 40(B), the
same information is displayed except for the point that the
object 205 is replaced by the subnetwork 206, while FIG.
40(B) shows that the display area except for the subnetwork
206 is distorted. Thus, it is possible to prevent display areas
located apart from the subnetwork 206 from disappearing
from the display screen owing to displaying the subnetwork
206 as a substitute for the object 205 as in FIG. 39(A)
compared with FIG. 37(A).

[0514] Accordingly, similar to the example of FIGS.
39(A) and 39(B), an adoption of the above-mentioned
display method makes it possible to easily confirm the
connecting state of the subnetwork with the surrounding
networks, and in addition makes it possible to confirm
throughout the network displayed before a display of the
subnetwork (the first image) in a state that the subnetwork is
displayed, while deformed.

[0515] FIGS. 41(A), (B) and (C) are illustrations each
showing by way of example a display image having a

Dec. 13, 2001

display area in which a plurality of measures are coupled
together. FIG. 41(A) shows the display image in its entirety,
and FIGS. 41(B) and (C) show partial images enlarged.

[0516] In the display image, there are shown various sizes
of objects 210-215. The object 210 of these objects 210-215
is disposed in an display area partitioned with a measure of
domain, and the remaining objects 211-215 each having
another size are disposed in enlarged display areas in which
a plurality of adjacent measures are coupled together to form
a single display area. As shown in FIGS. 41(B) and (C), the
objects are standardized in their figure and size in accor-
dance with the figure and size of the associated display
areas, respectively.

[0517] An adoption of the above-mentioned display
method makes it possible to display various sizes of objects
with sizes easy to see, and in addition possible to display a
display screen easier to see through a standardization.

[0518] Next, there will be described a display method of
wiring for connecting object-to-object with each other.

[0519] FIG. 42 is an illustration showing by way of
example a display image characterized by a display method
of wiring.

[0520] Displayed on a display screen 1024 are objects 216
to 219. An output terminal 220 is connected to an input
terminal 221 by a wire 222. An output terminal implies that
data or instructions (messages) of the associated object are
outputted to another object. An input terminal implies that
data or instructions (messages) of another object are
received thereat.

[0521] The wire 222 has information of a direction
directed from the output terminal 220 to the input terminal
221, in which directions of data or instruction flows are
repeatedly indicated for each short segment constituting the
wire.

[0522] An adoption of the above-mentioned display
method makes it possible to readily grasp directions of data
or instruction flows even in the event that one or both of the
objects to be connected together by the wire are located out
of the display screen 102a.

[0523] FIGS. 43(A) and (B) are illustrations each showing
an alternative embodiment of the display method of the
wiring.

[0524] A wire 223 comprises a central wire 223a and edge
wires 223b along both ends of the central wire 223a. The
central wire 2234 and edge wires 223b are representative of
mutually different display aspects, for example, hue, light-
ness and saturation.

[0525] In the event that the wire 223 comprising the
central wire 223a and the edge wires 223b is adopted and
such two wires 223 intersect, if those two wires are repre-
sentative of mutually different data or control flows, as
shown in FIG. 43(A), there is provided such a display that
one of the two wires is divided into parts at the position that
its central wire is in contact with the edge wires of the other
wire or at the position that its central wire comes close to the
edge wires of the other wire (according to the present
embodiment, the former) so as to form a crossing with an
overpass. On the other hand, if the two wires are represen-
tative of the same data or control flows, as shown in FIG.

US 2001/0052109 Al

43(B), there is provided such a display that the central wires
223a of both the wires are continued. An adoption of the
above-mentioned display method makes it possible to
readily determine as to whether the crossing wires are
interconnected or simply cross each other.

[0526] The above is an explanation of the fundamental
embodiment of the object-between-network display method
according to the present invention. Next, hereinafter, there
will be described more specific embodiments of the object-
between-network display method according to the present
invention.

[0527] FIGS. 44(A), (B) and (C) are illustrations useful for
understanding a procedure for producing a display area for
displaying a network of an object. In FIG. 44(A), the display
screen is divided vertically and horizontally into four parts
to form lattices. In FIG. 44(B), there is provided such an
arrangement that for each measure of the produced lattices,
a domain formed with length of 50% of the measure in
length and breadth is given for an area for disposing an
object, and the domain is located at the center of the
measure. In FIG. 44(B), the screen is divided on an equal
basis, and the area for the object is located at the center of
the measure. However, it is acceptable to designate a width
of the measure, and as shown in FIG. 44(B), it is acceptable
that the area for the object is located at the corner of the
measure.

[0528] FIG. 45 is an illustration showing a state in which
an object is disposed on a display screen by users. FIGS.
46(A) and (B) are illustrations each showing a state in which
a wiring among objects disposed on a display screen is
performed by users.

[0529] As shown in FIG. 45, according to the present
embodiment, when a user sets up an object 224, the object
224 set up by the user is automatically positioned at an area
225 specially designed for an object disposition, which is
located closest to the set up position. Accordingly, it is
possible to obtain an arrangement of objects in which
objects are arranged in good order simply through users
taking it easy to arrange objects. Further, according to the
present embodiment, it is possible to automatically display
wire 229 in an area 204 for displaying wirings of a network,
as shown in FIG. 46(B), simply through users performing an
operation of connecting terminals of object 226 and object
227 together with a straight line directly, as shown in FIG.
46(A). Consequently, it does not happen that the objects and
the wirings overlap with each other. Thus, it is possible to
display a network easy to see for users.

[0530] FIGS. 47(A) and (B) are illustrations showing by
way of example display screens of an object-between-
network before and after display of the subnetwork, respec-
tively. FIG. 48 is a flowchart useful for understanding a
procedure for switching from the display of FIG. 47(A) to
the display of FIG. 47(B).

[0531] At the stage that an image shown in FIG. 47(A) is
displayed on a display screen, an object having a subnetwork
is designated through an operation of, for example, a mouse
not illustrated or the like (step 48_1), and it is instructed that
the designated subnetwork is displayed (step 48_2). In an
image display apparatus, a measure whereat the selected
object is located and lattices associated with the measure in
vertical and horizontal directions are enlarged by the corre-

Dec. 13, 2001

sponding area necessary for a display of the subnetwork
giving the corner of upper left of the measure as a starting
point (step 48_3). In step 48_4, with the enlargement, a
deformation of the objects arranged in vertical and horizon-
tal directions and an extension of wirings are performed. In
step 48_5, a new lattice is formed within a measure enlarged
for a display of the subnetwork and display the subnetwork
on the lattice thus formed. In step 48_6, the object of the
subnetwork and the object of the neighboring network are
connected together.

[0532] In this manner, a transfer of images from that
shown in FIG. 47(A) to that shown in FIG. 47(B) is
performed. Incidentally, according to the present embodi-
ment, the starting point of the measure for an enlargement is
given with the corner of upper left of the measure. However,
it is acceptable that the enlargement starting point of the
measure is given with another corner, or the center of the
measure.

[0533] FIGS. 50(A), (B) and (C) are explanatory views
useful for understanding a procedure of a subnetwork dis-
play. FIG. 49(A) shows an object-between-network before
a display of a subnetwork, FIG. 49(B) shows a state in
which the subnetwork is displayed with an enlargement and
trapezoid of measures are formed on the upper and lower
sides and the left and right sides of the enlarged measure,
and FIG. 49(C) shows a state in which the subnetwork is
displayed with an enlargement, and measures of the neigh-
bor objects are deformed so that the whole network may be
displayed within the screen.

[0534] FIG. 50 is a flowchart useful for understanding a
procedure of the subnetwork display.

[0535] As shown in FIG. 50, an object having a subnet-
work is selected through an operation of, for example, a
mouse or the like (step 50_1), and it is instructed that the
selected subnetwork is displayed (step 50_2). In an image
display apparatus, a transfer of images from that shown in
FIG. 49(A) to that shown in FIG. 49(G) is performed in
accordance with the following procedure.

[0536] First, in step 50_3, it is determined as to whether
the subnetwork is accommodated within the display screen.
If it is decided that the subnetwork is not accommodated
within the display screen, a transfer of images from that
shown in FIG. 49(A) to that shown in FIG. 49(B) is not
performed. If it is decided that the subnetwork is accom-
modated within the display screen, the process goes to step
50 _4 in which a measure whereat the selected object is
located is enlarged by the corresponding area necessary for
a display of the subnetwork giving the center of the measure
as a starting point (cf. FIG. 49(A)).

[0537] Instep 50_5, as shown in FIG. 49(B), straight lines
are drawn from corners of the enlarged measure to corners
of the measures of the screen edges in vertical and horizontal
directions to form trapezoids. In step 50_6, each of the
trapezoids is partitioned into necessary parts to produce
trapezoid of measures. In step 50_7, straight lines are drawn
from corners of the measures of trapezoid to corners of the
measures of the screen edges to produce residual measures.
In step 50_8, with a deformation of the measures, a defor-
mation of the object and wirings are performed. Finally, in
step 50_9, the object of the subnetwork and the object of the
neighboring network are connected together.

US 2001/0052109 Al

[0538] In this manner, a transfer of images from that
shown in FIG. 49(A) to that shown in FIG. 49(C) is
performed.

[0539] Incidentally, according to the present embodiment,
the measures formed on the upper and lower sides and the
left and right sides of the subnetwork are given with a figure
of trapezoid. However, it is acceptable that such measures
are given with a figure of curve.

[0540] FIGS. 51(A), (B) and (C) are typical illustrations
each showing an embodiment in which a display area
representative of an object is formed with a single measure
or a plurality of measures coupled with one another. Accord-
ing to the present embodiments, a number of measures to be
used is altered in accordance with a number of terminals of
an object. FIG. 51(A) shows a case where one measure is
used by one and an object has the maximum 12 terminals.
FIG. 50(B) shows a case where two measures are used by
two and an object has the maximum 30 terminals. FIG.
51(C) shows a case where four measures are used by four
and an object has the maximum 48 terminals. As a number
of terminals of the object is increased, a number of measures
may be increased.

[0541] FIGS. 52(A) and (B) are illustrations useful for
understanding by way of example a display method of
wiring. In FIG. 52(A), a screen 1 shows a state of halfway
in which a wiring from an output terminal of an object 1 (obj
1) to an input terminal of an object 2 (obj 2) is conducted.
While the object 1 disappears from the screen 1, it will be
understood from a figure of the line drawn out that a terminal
to be connected is an input terminal. Likewise, with respect
to a screen 2, in the event that a wiring from an input
terminal of an object 4 (obj 4) to an output terminal of an
object 3 (obj 3) is conducted, even if the object 4 disappears
from the screen 2, it will be understood from a figure of the
line that a terminal to be connected is an output terminal.
FIG. 52(B) shows a network after a completion of wiring in
which wires have been changed to the usual solid lines.
According to the present embodiment, while the wires are
changed to the usual solid lines at the time when all of the
wirings have been completed, it is acceptable that a wire is
changed to the usual solid line whenever one wiring is
completed.

[0542] FIG. 53 is a typical illustration showing by way of
example a display of wiring. FIG. 54 is a flowchart useful
for understanding a procedure of executing the wiring
shown in FIG. 53.

[0543] According to the present embodiment, there is
adopted a wiring consisting of the central wires and the edge
wires, as described referring to FIGS. 43(A) and (B), and
when a user selects the output terminal and input terminal
which are connected together, an automatic wiring is con-
ducted in accordance with a procedure shown in FIG. 54.

[0544] Instep 54_1, a user selects the output terminal and
input terminal which are connected together. In step 54 2, a
vertical lane A is produced at the output terminal end. In step
54 3, overwritten with a line is a horizontal lane of the
output terminal from the output terminal to the vertical lane
A, so that a wiring on the overwritten portion is displayed on
the display screen. In step 54_4, it is determined whether the
input terminal is over against the output terminal. What is
meant by that the input terminal is over against the output

Dec. 13, 2001

terminal is that for example, as in the relation between an
output terminal 1 and an input terminal g, the output
terminal and the input terminal are located so as to be
opposite to each other. On the other hand, in case of the
relation between an output terminal 7 and an input terminal
1, it is determined that they are not over against each other.

[0545] In a case where it is determined that the input
terminal is over against the output terminal, the process goes
to step 54_5 in which the vertical lane A is overwritten with
a line up to the horizontal lane of the input terminal. If there
is already a portion connected with the horizontal lane, for
example, as in a case where a wiring between an output
terminal 8 and an input terminal ¢ is already conducted, and
in addition a wiring between the output terminal 8 and an
input terminal ¢ is newly conducted, a coupling process as
shown in FIG. 43(B) is performed. In step 54_6, the
horizontal lane of the input terminal is overwritten with a
line up to the input terminal.

[0546] In a case where in step 54_4, it is determined that
the input terminal is not over against the output terminal, the
process goes to step 54_7 in which the vertical lane is
produced at the input terminal end. In step 54_8, a horizontal
lane C not sandwiched in objects is produced. In step 54_9,
the vertical lane A is overwritten with a line up to the
horizontal lane C. If there is already a portion connected
with the horizontal lane, a coupling process is performed.

[0547] Instep 54_10, the horizontal lane C is overwritten
with a line up to the vertical lane B. In step 54 11, the
vertical lane B is overwritten with a line up to the horizontal
lane of the input terminal. If there is already a portion
connected with the horizontal lane, a coupling process is
performed.

[0548] Thereafter, the process goes to step 54_6 in which
the horizontal lane of the input terminal is overwritten with
a line up to the input terminal.

[0549] Each of FIGS. 55-57 are a flowchart useful for
understanding an alternative embodiment of a procedure of
executing the wiring. FIGS. 58-62 are typical illustrations
each showing a result obtained from an execution of wiring
according to the wiring procedures shown in FIGS. 55-57.
FIGS. 63(A), (B) and (C) are typical illustrations each
showing a result obtained from an execution of wiring
according to the wiring procedures shown in FIGS. 55-57.
An adoption of the wiring procedures according to the
present embodiment makes it possible to perform an auto-
matic wiring, even if there exist objects which are not
uniform in figure, different from the case in which the wiring
procedure shown in FIG. 54 is adopted.

[0550] As shown in FIG. 55, in step 55_1, a user selects
the output terminal and input terminal which are connected
together. In step 55_2, a lane 1 (cf. FIGS. 58-62) perpen-
dicular to the output terminal is provided in an wiring area
having the output terminal. In step 55_3, a line is drawn on
a lane 2 (cf. FIGS. 58-61) of the output terminal from the
output terminal to the lane 1. In step 55_4, it is determined
whether the input terminal is over against the output termi-
nal. In a case where the input terminal is over against the
output terminal, as shown in FIG. 58 of FIGS. 58-61, the
process goes to step 55_5 in which a line is drawn from a
node a of the lane 1 and lane 2 to a lane 3 of the input
terminal. In step 55_6, a line is drawn from a node b, which

US 2001/0052109 Al

is a cross point of the lane 1 and lane 3, to the input terminal.
Thus, the wiring is completed, in the event that the input
terminal is over against the output terminal, as shown in
FIG. 58.

[0551] In a case where in step 55_4, it is determined that
the input terminal is not over against the output terminal, the
process goes to step 55_7 in which a line is drawn from the
node a of the lane 1 and lane 2 toward an object having the
input terminal. While the line is drawn, it is determined as
to whether the line comes across an existing object (step
56_1 in FIG. 56), whether the line reaches an wiring area an
object having the input terminal (step 56_2), whether the
line reaches an wiring area of the input terminal (step 56_3),
and whether the line reaches a position perpendicular to the
lane 3 of the input terminal (step 56_4).

[0552] In step 56_1, when it is determined that the line
comes across the existing object, the process goes to step
56_10 in which, as shown in FIG. 63(A), a lane A perpen-
dicular to the line is provided on a wiring area of a position
whereat the tip of the line is located now, and the lane A thus
provided is connected to the line. In step 56_11, a lane B
parallel to the line is provided on a wiring area near the input
terminal, and the line is connected along the lane A from the
lane 1 to the lane B. In step 56_13, a line is drawn along the
lane B from a node k or cross point of lane A and lane B
toward the object having the input terminal.

[0553] Instep 56_2, the determination is made at the stage
that a line is drawn along the lane 1 up to a cross of area in
which the area of the object having the input terminal
(including not only the disposing area of the object itself, but
also the neighbor wiring areas, for example, in case of FIG.
58, the area of the object having the input terminal implies
all of the partial areas p, q, 1, 8, U, v, w and x) is extended
vertically and horizontally. In step 56_2, when it is deter-
mined that the line does not reach the area of the object
having the input terminal (for example, in case of FIG. 58,
all of the partial areas p, q, 1, s, U, v, w and X), the process
goes to step 56_12 in which as shown in FIG. 63(C), a lane
C perpendicular to the line is provided on a wiring area of
a position whereat the tip of the line is located now, and the
lane C thus provided is connected to the line. In step 56_13,
a line is drawn along the lane C from the node k toward the
object having the input terminal.

[0554] 1In a case where in step 56_3, when it is determined
that the line does not reach the wiring area of the input
terminal (for example, in case of FIG. 58, the partial areas
p, s and v), the process goes to step 57_1. This case will be
described latter.

[0555] Instep 56_4, it is determined as to whether the line
reaches a position perpendicular to the lane 3 of the input
terminal, and when it is decided that the line is perpendicular
to the lane 3, the process goes to step 56_5 in which as
shown in FIG. 59, the line is extended to the lane 3. In step
56_6, the line is drawn on the lane 3 from the node C
crossing to the lane 3 to the input terminal. Thus, the wiring
shown in FIG. 59, for example, is completed.

[0556] On the other hand, in step 56_4, when it is decided
that the line is not perpendicular to the lane 3 of the input
terminal, the process goes to step 56_7 in which as shown
in FIG. 60, a lane 4 perpendicular to the line is provided on
the wiring area of the input terminal. In step 56_8, the line

Dec. 13, 2001

is drawn from a node d to the lane 3. In step 56_9, the line
is drawn from a node e to the input terminal. Thus, the
wiring shown in FIG. 60, for example, is completed.

[0557] In step 56_3, when it is determined that the line
does not reach the wiring area of the input terminal, the
process goes to step 57_1 of FIG. 57 in which it is
determined as to whether the line reaches a position per-
pendicular to the lane 3 of the input terminal. When it is
decided that the line is perpendicular to the lane 3, the
process goes to step 57_2 in which as shown in FIG. 61, a
lane 5 is provided on the present wiring area. In step 57_3,
a lane 6 is provided on the wiring area of the input terminal.
In step 57_4, the line is drawn from a node f along the lane
5 to the lane 6. In step 57_5, the line is drawn from a node
g to the lane 3. In step 57_6, the line is drawn from a node
h to the input terminal. Thus, the wiring shown in FIG. 61,
for example, is completed.

[0558] Instep 57_1, when it is decided that the line is not
perpendicular to the lane 3 of the input terminal, the process
goes to step 57_7 in which as shown in FIG. 62, a lane 7
perpendicular to the line is provided on the wiring area of the
input terminal. In step 57_8, the line is extended from the
node a to a lane 7. In step 57_9, the line is drawn from a node
ito the lane 3. In step 57_10, a lane perpendicular to the line
is provided on the present wiring area, and the lane thus
provided is connected to the line. In step 57_11, the line is
drawn from a node j to the input terminal. Thus, the wiring
shown in FIG. 62, for example, is completed.

[0559] Practicing the wiring procedures shown in FIGS.
55-57 makes it possible to complete the wirings in case of
a disposing state of each of the objects of FIGS. 63(A) to (D)
as well.

[0560] As described above, according to the object-ori-
ented programming apparatus and an object-oriented pro-
gram storage medium of the present invention, there is
implemented a higher speed of transfer of information
among a plurality of objects in an object-oriented program-
ming. Thus, it is possible to realize a software system
wherein a lot of small objects are gathered, without decreas-
ing a processing speed, thereby dramatically improving
reuse of the objects.

[0561] Further, according to the case where the object-
oriented programming apparatus of the present invention is
provided with an object display unit, and the object-be-
tween-network display method according to the present
invention, it is possible to display an object-between-net-
work easy to be understood thereby contributing to an
improvement of a working efficiency for users.

[0562] While the present invention has been described
with reference to the particular illustrative embodiments, it
is not to be restricted by those embodiments but only by the
appended claims. It is to be appreciated that those skilled in
the art can change or modify the embodiments without
departing from the scope and spirit of the present invention.

[0563] As described above, according to the object-be-
tween-network display method according to the embodi-
ment of the present invention, it is possible to display an
object-between-network easy to be understood thereby con-
tributing to an improvement of a working efficiency for
users.

US 2001/0052109 Al

[0564] The above is an explanation concerning an embodi-
ment of an object-between-network display method on the
display screen 1024 of the display unit 102 of the computer
system 100 shown in FIG. 1, of embodiments concerning
the interobject wiring editor unit 122 and the associated
periphery of the object ware programming system 120.
Next, there will be described an embodiment concerning a
programming in the interobject wiring editor unit 122 and
the associated periphery. The programming in the interobject
wiring editor unit 122 is performed in such a manner that the
object-between-network as mentioned above is displayed on
the display screen, an operator “wires” among objects
through his observation of the display.

[0565] As mentioned above, hitherto, there exists a con-
cept of an object-oriented programming, remaining prob-
lems as to reuse of a software and a running speed, wherein
objects are typically displayed on a display screen and
“wired”, so that a connecting relation among the objects is
described. Such a “wiring” has been associated with the
following problems.

[0566] In the event that objects are of a hierarchical
structure, it is impossible to directly connect objects, which
belong mutually different hierarchies, with one another.
Thus, in case of a scheme wherein a wiring is permitted only
in the same hierarchy via a one stage higher-order hierarchy
of objects (this is referred to as “parent object”) including a
higher-order hierarchy of objects (this is referred to as “child
object”), there is a need to prepare a large number of
terminals for a relay use for the purpose of connection of
objects, when objects to be connected are mutually far
hierarchies. Thus, it takes a lot of procedure for a wiring, and
thus it is troublesome.

[0567] On the other hand, in the event that objects are of
a hierarchical structure, and in case of a scheme wherein it
is permitted to directly connect objects, which belong mutu-
ally different hierarchies, with one another, there will be
provided a wiring diagram which does not take into account
of a hierarchy. Thus, this raises such a problem that the
wiring diagram is not so easy to see and it is difficult to grasp
the wiring structure in its entirety.

[0568] Further, when there is a need to replace the object
once wired by another object, in order to implement the
replacement, there is a need to remove the wiring of the
previous object and do over again the wiring for the new
object. Thus, it takes a lot of procedure for the replacement.

[0569] This is a similar as to the matter of that the object
once wired on a certain hierarchy is shifted to another
hierarchy, for example, a one stage lower-order hierarchy.
Also 1in this case, it takes a lot of procedure such that the
wiring of the object before a shift is removed, a parent object
is placed wired thereat, the removed object is placed as a
child object of the parent object, and a wiring between the
parent object and the child object is conducted.

[0570] Further, according to the conventional scheme,
there has been associated with such a problem that as the
interobject wiring is complicated, a connecting relation
among objects is hardly to be understood from an indication
of the wiring diagram. Especially, in the event that a bus
representative of a flow of request for processing, which bus
referred to as a “instruction bus”, is connected to a plurality
of objects on a branching basis, it is difficult to grasp a

Dec. 13, 2001

running sequence of the processing among the plurality of
objects from the indication of the wiring diagram. Accord-
ingly, it is also difficult to alter the running sequence on the
wiring diagram.

[0571] In view of problems involved in the above-men-
tioned interobject wiring, the embodiment, which will be
described hereinafter, relates to a scheme of facilitating a
wiring work.

[0572] FIG. 64 is a schematic diagram showing a basic
structure of an object-oriented programming supporting
apparatus and a program storage medium for use in an
object-oriented programming according to an embodiment
of the present invention.

[0573] An object-oriented programming supporting appa-
ratus 300 supports an object-oriented programming for
coupling a plurality of objects each having data and opera-
tion with each other in accordance with an instruction. The
object-oriented programming supporting apparatus 300
comprises a display means 301, an object coupling means
302, a hierarchical structure construction means 303 and a
handler 304.

[0574] The display means 301 displays objects each rep-
resented by a block representative of a main frame of an
object, a data output terminal for transferring data of the
object to another object, a data input terminal for receiving
data from another object, a message terminal for issuing a
message to make a request for processing to another object,
and a method terminal for receiving a processing request
from another object to execute a method, the object being
represented by a hierarchical structure which permits one or
a plurality of objects to exist in a single object, and in
addition displays a wiring for coupling terminals of a
plurality of objects. On the computer system 100 shown in
FIG. 1, the display means 301 is constituted of the image
display unit 102, a software for displaying the above-
mentioned objects and wirings on the display screen 102a of
the image display unit 102, and a CPU for executing the
software.

[0575] The object coupling means 302 constructs a cou-
pling structure among a plurality of objects in accordance
with an instruction for coupling terminals of the plurality of
objects through a wiring. On the computer system 100
shown in FIG. 1, the object coupling means 302 is consti-
tuted of the software for constructing the coupling structure
and a CPU for executing the software.

[0576] The hierarchical structure construction means 303
constructs a hierarchical structure of objects. On the com-
puter system 100 shown in FIG. 1, the hierarchical structure
construction means 303 is constituted of the software for
constructing the hierarchical structure and a CPU for execut-
ing the software.

[0577] The handler 304 instructs a wiring for coupling
among objects to the object coupling means 302 in accor-
dance with an operation by an operator (or user), and in
addition instructs a position of an object on the hierarchical
structure to the hierarchical structure construction means
303. On the computer system 100 shown in FIG. 1, the
handler 304 is constituted of the keyboard 103, the mouse
104 and the software for taking in operations of the keyboard
103 and the mouse 104 inside the computer system.

US 2001/0052109 Al

[0578] It is noted that the software itself for implementing
the object coupling means 302 is also referred to as the
object coupling means, and likewise the software itself for
implementing the hierarchical structure construction means
303 is also referred to as the hierarchical structure construc-
tion means. A program, in which the object coupling means
302 and the hierarchical structure construction means 303
are combined in the form of software, corresponds to the
object-oriented programming program referred to in the
present invention. The recording medium 310, in which the
object-oriented programming program is stored, corre-
sponds to the program storage medium for use in an object-
oriented programming referred to in the present invention.
In the computer system 100 shown in FIG. 1, the storage
unit 105, in which the object-oriented programming pro-
gram has been stored, corresponds to the program storage
medium for use in an object-oriented programming referred
to in the present invention. When the object-oriented pro-
gramming program is stored in the MO 110, the MO 110 also
corresponds to the program storage medium for use in an
object-oriented programming referred to in the present
invention.

[0579] FIG. 65 is a conceptual view showing exemplarily
an involving relation among objects. FIG. 66 is a typical
illustration showing a connecting relation among objects for
defining a hierarchical structure.

[0580] As shown in FIG. 65, the whole is considered as
one object, and this is referred to as an object A. The object
Aincludes three objects, that is, an object B, an object C and
an object D. The object C includes an object E, an object F
and an object G. The object F includes an object H.

[0581] Ifthisis expressed with a hierarchical structure, the
expression is given as shown in FIG. 66. The hierarchical
structure of objects expressed in this manner is referred to as
an “object tree”.

[0582] In FIG. 66, the objects arranged in a horizontal
direction implies that they are disposed in the same-order
hierarchy. With respect to the objects connected with each
other in a vertical direction, the object disposed at higher-
order hierarchy implies a parent object, and the object
disposed at lower-order hierarchy implies a child object of
the parent object.

[0583] FIG. 67 is a typical illustration showing a pointer
for determining a connecting relation of a certain object to
another object.

[0584] Each of the objects has, as pointers for defining a
parent-child relationship, “pointers to higher/lower-order
hierarchy” comprising a “pointer to higher-order hierarchy”
and a “pointer to lower-order hierarchy”, and as pointers for
connecting objects arranged in the same-order hierarchy,
“pointers to same-order hierarchy” comprising two pointers
of a “FROM?” and a “TO”. Further, each of the objects has,
pointers for use in wiring representative of a flow of data and
instructions among objects, “pointers to buses” comprising
two pointers of an “IN” and an “OUT”, and “pointers to
cables comprising four pointers of an “instruction”, a “data”,
a “tag instruction” and a “tag data”.

0585] The “pointer to higher-order hierarchy” and the
p g y

“pointer to lower-order hierarchy”, which constitute the

“pointers to higher/lower-order hierarchy”, are, for example,

Dec. 13, 2001

in case of the object A shown in FIG. 66, the pointer to the
wiring editor and the pointer to the object B, respectively.

[0586] The two pointers of the “FROM” and the “TO”,
which constitute the “pointers to same-order hierarchy”, are,
for example, in case of the object C shown in FIG. 66, the
pointer to the object B and the pointer to the object D,
respectively.

[0587] In this manner, there is constructed a hierarchical
structure, for example, as shown in FIG. 66, comprising the
“pointer to lower-order hierarchy” and the “pointers to
same-order hierarchy”.

[0588] FIG. 68 is a typical illustration showing one of the
bus elements constituting the bus element list to be con-
nected to the “pointers to buses” shown in FIG. 67. FIG. 69
is a typical illustration showing one of the cable elements
constituting the cable element list to be connected to the
“pointers to cables” shown in FIG. 67. FIG. 70 is a typical
illustration showing exemplarily a wiring among objects.

[0589] Each of the bus elements arranged on the bus
element list defines a bus (terminal) to be connected to
another object. Each of the cable elements arranged on the
cable element list defines a coupling relation (wiring)
between terminals of child object-to-child object when the
associated object is given as a parent object.

[0590] FIG. 67 shows two pointers “IN” and “OUT” as
pointers constituting pointers to the bus. Connected to the
pointer “IN” is the bus element list defining a bus which
feeds data or messages to the object shown in FIG. 67.
Connected to the pointer “OUT” is the bus element list
defining a bus which outputs data or messages from the
object shown in FIG. 67 toward other object.

[0591] InFIG. 67, connected to the pointer “IN” is the bus
element list comprising two bus elements BUS 1 and BUS
2. Specifically, the bus element BUS 1 is connected to the
pointer “IN”, and the bus element BUS 2 is connected to the
bus element BUS 1. Connected to the pointer “OUT ” is the
bus element list comprising two bus elements BUS 3 and
BUS 4. Specifically, the bus element BUS 3 is connected to
the pointer “OUT”, and the bus element BUS 4 is connected
to the bus element BUS 3.

[0592] As shown in FIG. 68, each of the bus elements

2«

comprises a “pointer to substantial object”, “pointer to bus
of substantial object”, “pointer to next bus element (BUS)”
and “other data”. It is noted that a terminal of an object is

referred to as a “bus”.

[0593] In the arrangement shown in FIG. 70, in the event
that the object shown in FIG. 67 is object A shown in FIG.
70, the bus element BUS 1 corresponds to, for example,
“BUS 1” of the object A shown in FIG. 70, and the “pointer
to substantial object” corresponds to a pointer to an object
(here object B) connected to BUS 1 of object A, of object B
and object C included in object A shown in FIG. 70. The
“pointer to bus of substantial object” of the bus element BUS
1 corresponds to a pointer to a bus (in case of FIG. 70, BUS
1 of object B) of object B as the substantial object, which bus
is connected to “BUS 17 of the object A. The “pointer to next
bus element (BUS)” constituting the bus element BUS 1
corresponds, in case of the bus element BUS 1 in FIG. 67,
to a pointer to the bus element BUS 2. The “other data”
constituting the bus element BUS 1 includes a distinction as

US 2001/0052109 Al

to whether the bus (in this case, “BUS 1” of the object A
shown in FIG. 70) associated with the bus element is a bus
for transfer of data or a bus for transfer of a message (or
instruction). Incidentally, as to an identification between a
bus (IN) at the end of receiving data or instruction and a bus
(OUT) at the end of transmitting data or instruction, as
shown in FIG. 67, it is implemented by separating the
“pointers to buses” into “IN” and “OUT”.

[0594] In FIG. 67, “pointers to cables” comprises four
pointers, that is, “instruction”, “data”, “tag instruction”, and
“tag data”, to each of which a cable element list is con-
nected. FIG. 67 exemplarily shows only a cable element list
connected to the “data”. Connected to the “data” is directly
a cable element CABLE 1. Connected to the cable element
CABLE 1 is a cable element CABLE 2. And connected to
the cable element CABLE 2 is a cable element CABLE 3.

[0595] The “pointers to cables is used for management of
a connecting state (wiring) of buses of child object-to-child
object by a parent object. In the example shown in FIG. 70,
the wiring of buses between the object B and the object C is
managed. Incidentally, the wiring between the object A as a
parent object and the object B as a child object, or the wiring
between the parent object A and the object C as a child object
is managed, as mentioned above, by the bus element list
connected to the “pointers to buses”.

[0596] The four pointers, that is, instruction”, data”, “tag
instruction”, and “tag data”, which constitute the “pointers
to cables”, manage a wiring indicative of a flow of messages
(instruction), a wiring indicative of a flow of data, a wiring
indicative of a flow of an instruction, which is formed
dynamically during an execution, as mentioned above, and
a wiring indicative of a flow of data, which is formed
dynamically during an execution, respectively.

[0597] As shown in FIG. 69, a cable element “CABLE”
is associated with two terminal elements “TERMINAL”.
The cable element “CABLE” comprises a pointer to the first
terminal element of the two terminal elements “TERMI-
NAL”, and a pointer to the next cable element. The terminal
element “TERMINAL” comprises a “pointer to an object”,
a “pointer to a bus of the object”, and a “pointer to the next
terminal pointer”.

[0598] FIG. 69 shows exemplarily a cable element for
managing a wiring for connecting the bus 2 of the object B
with the bus 1 of the object C, shown in FIG. 70, in which
the first terminal element stores therein a pointer to an object
B and a pointer to a bus 2 of the object B, and the second
terminal element stores therein a pointer to an object C and
a pointer to a bus 1 of the object C. In this manner, the bus
2 of the object B and the bus 1 of the object C are coupled
with each other through the wiring. It is noted that the first
terminal element of the two terminal elements is associated
with the bus of the output end of data or instruction, and the
second terminal element is associated with the bus of the
input end of data or instruction.

[0599] The cable element shown in FIG. 69 is managed,
as mentioned above, by the object A which is a common
parent object for both the objects B and C.

[0600] The above are the general explanations of a man-
agement of pointers for determining a hierarchical structure
of objects, a management of pointers for determining buses
of objects, and a management of pointers for determining a

Dec. 13, 2001

wiring for connecting buses of objects. Next, there will be
explained more specific embodiments of the object-oriented
programming supporting apparatuses according to the
present invention, and programs for an object-oriented pro-
gramming, which are stored in a program storage mediums
for use in an object-oriented programming according to the
present invention.

[0601] According to the first object-oriented programming
supporting apparatus of the object-oriented programming
supporting apparatuses according to the present invention,
and programs for an object-oriented programming, which
are stored in the first program storage medium for use in an
object-oriented programming, of the program storage medi-
ums for use in an object-oriented programming according to
the present invention, the hierarchical structure construction
means 303 shown in FIG. 64 has means for producing a
duplicate object of a substantial object designated in accor-
dance with an instruction from the handler 304, and for
disposing the duplicate object at a hierarchy different from
a hierarchy at which the substantial object is disposed, and
the object coupling means 302 receives from the handler 304
an instruction as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure in
which the duplicate object is disposed, and constructs a
coupling structure in which the duplicate object and the
associated substantial object are provided in the form of a
united object.

[0602] FIG. 71 is a conceptual view of a duplicate object.
FIG. 72 is a typical illustration showing a hierarchical
structure (object tree) of the objects shown in FIG. 71.

[0603] An object A is connected to an wiring editor.
Connected to the object A is an object B in a lower-order
hierarchy. Connected to the object B is an object C in the
same-order hierarchy. Connected to the object C is an object
D in a lower-order hierarchy. Connected to the object D is
an object E in the same-order hierarchy.

[0604] In the event that the objects B and E, which are
disposed at mutually different hierarchy, are connected with
each other through a wiring, it is acceptable that a bus
(terminal) is formed on the object C which is a parent object
of the object E, and the terminal of the object C is connected
to the bus of the object E, and in addition the terminal of the
object C is connected to the terminal of the object B.
However, this work takes a trouble for wiring. In order to
avoid such a trouble, according to the present embodiment,
a duplicate object E' of which the substantial object is the
object E is disposed at the hierarchy at which the objects B
and D are disposed, and the bus of the duplicate object E' is
connected to the bus of the object B through a wiring on the
hierarchy at which the object B and the duplicate object E'
are disposed.

[0605] FIG. 73 is a flowchart useful for understanding a
building process for the duplicate object.

[0606] First, in step 73_1, with respect to the designated
object (e.g. object E), a duplicate object E' is built through
copying the object E. Here a wiring among objects is aimed.
Thus, there is no need to copy even the substance of the
program constituting the object E and only information
necessary for a display and a wiring of objects is copied. In
this meaning, the “copy” referred to as the present invention
means a copy of information necessary for a display and a
wiring of objects.

US 2001/0052109 Al

[0607] Next, in step 73_2, with respect to all buses of the
object E,

[0608] 1.a copy bus (copy bus element) is created on
the duplicate object E', and

[0609] 2. a pointer to the substantial object E and a
pointer to the bus associated with the substantial
object E, are written.

[0610] FIG. 74 is a typical illustration showing a connect-
ing relation between the substantial object (original) and the
duplicate object (copy).

[0611] Copied on the duplicate object E' are the bus
elements BUS 1, BUS 2, arranged in the “pointers to buses”
of the substantial object E in the form of an arrangement as
it is. Each of the bus elements BUS 1', BUS 2, . . . of the
duplicate object E' copied stores a pointer to the substantial
object E and a pointer to the associated bus, of the substan-
tial object E (cf. FIG. 68). After the duplicate object is built
in this manner, when a wiring between the object B and the
duplicate object E' is instructed, as shown in FIG. 71, the
associated cable element and two terminal elements are
arranged on the “pointers to cables” of the object A which is
a parent object of the object B and the duplicate object E' (cf.
FIG. 69).

[0612] After a wiring work, and when wiring data for
interpreter use, which is stored in the wiring data for
interpreter use shown in FIG. 2, is generated, the associated
bus element of the substantial object E is found from the bus
element list of the duplicate object E' to construct an
interobject coupling structure in which the duplicate object
E' and the substantial object E are formed in a united body
as one object.

[0613] Next, there will be explained embodiments of the
second object-oriented programming supporting apparatus
of the object-oriented programming supporting apparatuses
according to the present invention, and programs for an
object-oriented programming, which are stored in the sec-
ond program storage medium for use in an object-oriented
programming, of the program storage mediums for use in an
object-oriented programming according to the present
invention.

[0614] According to the second object-oriented program-
ming supporting apparatus of the object-oriented program-
ming supporting apparatuses according to the present inven-
tion, and programs for an object-oriented programming,
which are stored in the second program storage medium for
use in an object-oriented programming, of the program
storage mediums for use in an object-oriented programming
according to the present invention, the object coupling
means 302 shown in FIG. 64 releases a coupling structure
of the object before a replacement with another object in
accordance with an instruction from the handler 304, and
causes the object after the replacement to succeed to the
coupling structure of the object before the replacement with
another object, and the hierarchical structure construction
means 303 disposes the object after the replacement, instead
of the object before the replacement, at a hierarchy at which
the object before the replacement is disposed.

[0615] FIG. 75 is a conceptual view showing a coupling
relation of objects before a replacement of objects. FIG. 76
is a typical illustration showing an object tree concerning the
objects shown in FIG. 75.

Dec. 13, 2001

[0616] An object A is connected to an wiring editor.
Connected to the object A is an object B in a lower-order
hierarchy. Connected to the object B is an object C in the
same-order hierarchy. Connected to the object C is an object
D in the same-order hierarchy. There exists an object E
which is not incorporated into the hierarchical structure. The
object C is replaced by the object E.

[0617] FIG. 77 is a conceptual view showing a coupling
relation of objects after a replacement of objects. FIG. 78 is
a typical illustration showing a part of the object tree after
a replacement of objects.

[0618] When the object C is replaced by the object E, the
object E succeeds to the wiring of the object C as it is. Also
in the hierarchical structure, the object E is disposed at the
hierarchy at which the object C was disposed.

[0619] FIG. 79 is a flowchart useful for understanding an
object replacing process.

[0620] While an interobject network as shown in FIG. 75
is displayed on the display screen 102a (cf. FIG. 1), the
mouse 104 is operated to drag an object after replacement
(here, the object E) and superimpose the object E on the
object C. Where the term “drag” means such an operation
that a mouse cursor is placed on the object E displayed on
the display screen 1024 and a mouse button is depressed,
and then a mouse is moved keeping depression of the mouse
button. When the the object E is dragged, the object coupling
means 302 shown in FIG. 64 identifies that the dragged
object is the object E (step 79_2).

[0621] When the dragged object E is superimposed on the
object C and then dropped, that is, the mouse button is
released, in step 79_3, the object coupling means 302
identifies that the object concerned in drop is the object C
(step 79_4). In this manner, when it is identified that the
dragged object is the object E and the object concerned in
drop is the object C, the object tree is altered from the state
shown in FIG. 76 to the state shown in FIG. 78.

[0622] This change is implemented in which a manner
that, of the pointers of the objects shown in Fig, 76, the
pointer to the object E is written, instead of the pointer to the
object C, into “TO” of the object B; the pointer to the object
B and the object E are written into “FROM” and “TO” of the
object E, respectively; and the pointer to the object E is
written, instead of the pointer to the object C, into “FROM”
of the object D.

[0623] Next, the wiring of the object C concerned in drop
is retrieved from the cable element list of the object A which
is a parent of the object C concerned in drop (step 79_6).

[0624] FIG. 80 is a typical illustration showing a part of
the cable element list connected to an object A.

[0625] T1tis recorded in this part that the bus 3 of the object
C and the bus 4 of the object D are connected to the
terminals indicated by the cable element CABLE a. In this
manner, the cable elements are sequentially retrieved to
identify the wiring connected to the object concerned in
drop.

[0626] When the wiring connected to the object concerned
in drop is identified, as shown in FIG. 80, the wiring is
released and connected to the associated bus of the object E
after replacement (step 79_7). When the associated bus of

US 2001/0052109 Al

the object E after replacement does not exist and the wire
cannot be altered, it is displayed on the display screen 1024
and the wiring is cancelled.

[0627] Next, there will be explained embodiments of the
third object-oriented programming supporting apparatus of
the object-oriented programming supporting apparatuses
according to the present invention, and programs for an
object-oriented programming, which are stored in the third
program storage medium for use in an object-oriented
programming, of the program storage mediums for use in an
object-oriented programming according to the present
invention.

[0628] According to the third object-oriented program-
ming supporting apparatus of the object-oriented program-
ming supporting apparatuses according to the present inven-
tion, and programs for an object-oriented programming,
which are stored in the third program storage medium for
use in an object-oriented programming, of the program
storage mediums for use in an object-oriented programming
according to the present invention, the hierarchical structure
construction means 303 is in response to an instruction from
the handler 304 such that a plurality of objects from among
the objects disposed at a predetermined hierarchy are des-
ignated and the plurality of objects are rearranged on the
lower-order hierarchy by one stage, and rearranges the
plurality of objects on the lower-order hierarchy by one
stage, and produces and arranges an object including the
plurality of objects on the predetermined hierarchy in such
a manner that a coupling structure among the plurality of
objects and a coupling structure among the plurality of
objects and objects other than the plurality of objects are
maintained.

[0629] FIG. 81 is a conceptual view showing a coupling
relation among objects before a movement of objects. FIG.
82 is a typical illustration showing an object tree concerning
the objects shown in FIG. 81.

[0630] As shown in FIG. 82, an object A is connected to
an wiring editor. Connected to the object A is an object B in
a lower-order hierarchy. Connected to the object B is an
object C in the same-order hierarchy. Connected to the
object C is an object D in the same-order hierarchy. Con-
nected to the object D is an object E in the same-order
hierarchy.

[0631] It is assumed that the interobject network as shown
in FIG. 81 is displayed on the display screen 1024, and the
mouse 104 is operated to select the object C and the object
D as the objects to be moved to the lower-order hierarchy by
one stage.

[0632] FIG. 83 is a conceptual view showing a coupling
relation of objects after a movement of objects. FIG. 84 is
a typical illustration showing an object tree concerning the
objects shown in FIG. 83.

[0633] An object F is built on the same hierarchy as that
of an object B. An object C and an object E are arranged on
a lower-order hierarchy of the object F in the form of
children objects of which a parent is the object F.

[0634] Before a movement, as shown in FIG. 81, the bus
3 of the object B is directly connected to the bus 1 of the
object 0. After a movement, however, as shown in FIG. 83,
the bus 3 of the object B is connected to the bus 1 of the

Dec. 13, 2001

object F, and the bus 1 of the object F is connected to the bus
1 of the object C. And with respect to a connection of the
object D with the object E, the bus 3 of the object D is
connected to the bus 2 of the object F, and the bus 2 of the
object F is connected to the bus 1 of the object E.

[0635] FIG. 85 is a flowchart useful for understanding a
processing for a movement of objects and a change of wiring
of objects.

[0636] When the object, which is to be moved to a
lower-order hierarchy by one stage, is selected, it is identi-
fied as to what objects (here, objects C and D shown in FIG.
82) have been selected (step 85_1). And a new object (here,
object F) is built on the same hierarchy as the selected
objects (step 85_2). In step 85_3, the selected objects (here,
objects C and D) are replaced by the new object (object F).

[0637] FIG. 86 is a typical illustration showing a state of
an alteration of an object tree.

[0638] In step 85 2, when the object F is built, the
connection between the object B and the object C is can-
celled, and the object B is connected to the object F in the
same-order hierarchy. And the connection between the
object D and the object E is cancelled, and the object F is
connected to the object E in the same hierarchy. And the
object C is connected to the object F in the lower-order
hierarchy. In this manner, the object tree after an object
movement, as shown in FIG. 84, is completed.

[0639] Incidentally, it is noted that the alternation of the
pointer for the alternation of the object tree can be performed
in a similar fashion to that of the explanation made referring
to FIG. 78, and thus the redundant explanation will be
omitted.

[0640] Next, as shown in step 85_4 of FIG. 85, the wiring
connected to the selected objects (objects B and C) is
retrieved from the cable element list connected to the parent
object (object A) of the selected objects (objects B and C).

[0641] FIG. 87 is a typical illustration showing a part of
the cable element list connected to the object A.

[0642] 1In FIG. 87, there are shown that the wiring of the
bus 4 of the object C and the bus 1 of the object D are made
on the cable element CABLEa, and that the wiring of the bus
3 of the object D and the bus 1 of the object E are made on
the cable element CABLED. Here, it is noted that the wiring
of the bus 4 of the object C and the bus 1 of the object D
shown on the cable element CABLEa is typically represen-
tative of the wiring between the objects (objects B and C)
selected to be moved to the lower-order hierarchy by one
stage, as shown in FIG. 81, and the wiring of the bus 3 of
the object D and the bus 1 of the object E shown on the cable
element CABLED is typically representative of the wiring
between the object (object D) to be moved to the lower-order
hierarchy by one stage and the object (objects E) not to be
moved and to stay at the same-order hierarchy.

[0643] In the step 85_4 of FIG. 85, when the retrieval of
the cable element list is carried out as mentioned above, the
process goes to step 85_5 in which it is determined whether
the wiring connected to the selected objects (here objects B
and C) located through the retrieval is the wiring between
the objects (objects B and C) inside of the new object (object
F), or the wiring between the internal object and the external
object with respect to the the new object (object F). In this

US 2001/0052109 Al

determination, when it is determined that the wiring of
interest is the wiring (corresponding to the wiring of the
cable element CABLEa shown in FIG. 87) between the
objects inside of the new object (object F), the process goes
to step 85_6 in which the wiring is moved from the parent
object (object A) to the new object (object F).

[0644] FIG. 88 is an explanatory view useful for under-
standing a movement of wiring to a new object.

[0645] The cable element CABLEa is removed from
among the cable element list connected to the object A, and
is incorporated into the cable element list connected to the
object F.

[0646] In the step 85_5 of FIG. 85, when it is determined
that the wiring of interest is the wiring (corresponding to the
wiring of the cable element CABLEb shown in FIG. 87)
between the internal object and the external object with
respect to the the new object (object F), the process goes to
step 85_7 in which a wiring bus is produced on the new
object (object F).

[0647] FIG. 89 is a typical illustration of a bus for use in
wiring, the bus being built on an object F.

[0648] In FIG. 89, a bus element BUS 2 is connected to
“OUT” (cf. FIG. 67) of the object F. The bus element BUS
2 corresponds to the bus 2 of the object F shown in FIG. 83,
and has a pointer to the object D and a pointer to the bus 3
of the object D. That is, the bus element BUS 2 forms, as
shown in FIG. 83, a wiring between the bus 2 of the object
F and the bus 3 of the object D. It is to be noted that the bus
element BUS 2 shown in FIG. 89 is exemplarily shown, and
in case of the wiring shown in FIG. 83, a connecting bus
element is disposed also in “IN” of the object F so that a
wiring between the bus 1 of the object F and the bus 1 of the
object C is implemented.

[0649] Instep 85_8 of FIG. 85, a wiring connected to the
object inside a new object (object F) is changed in connec-
tion to the new object (object F).

[0650] FIG. 90 is a typical illustration showing a state of
a change of an object in wiring from an object (object D)
inside a new object (object F) to the object F.

[0651] The cable element CABLED of the object A shown
in FIG. 87 is indicative of a wiring between the bus 3 of the
object D inside the object F and a wiring between the bus 1
of the object E outside the object F. As shown in FIG. 90,
the bus 3 of the object D is changed to the bus 2 of the object
F thereby forming a wiring between the bus 2 of the object
F and the bus 1 of the object E.

[0652] Incidentally, the step 85_4 in FIG. 85 is repeatedly
performed by a necessary number of times.

[0653] Next, there will be explained embodiments of the
fourth object-oriented programming supporting apparatus of
the object-oriented programming supporting apparatuses
according to the present invention, and programs for an
object-oriented programming, which are stored in the fourth
program storage medium for use in an object-oriented
programming, of the program storage mediums for use in an
object-oriented programming according to the present
invention.

[0654] According to the fourth object-oriented program-
ming supporting apparatus of the object-oriented program-

Dec. 13, 2001

ming supporting apparatuses according to the present inven-
tion, the display means 301 shown in FIG. 64 has, in case
of existence of a plurality of method terminals (messages or
instructions) connected to one message terminal (a bus for
outputting a message or an instruction) designated in accor-
dance with an instruction through the handler 304, means for
displaying a list indicative of an execution sequence of a
plurality of methods associated with the plurality of method
terminals, and the object coupling means 302 has means for
reconstructing a coupling structure in which the execution
sequence of the plurality of methods appearing at the list
displayed on the display means 301 are altered.

[0655] Further, according to programs for an object-ori-
ented programming, which are stored in the fourth program
storage medium for use in an object-oriented programming,
of the program storage mediums for use in an object-
oriented programming according to the present invention,
the object coupling means 302 has, in case of existence of
a plurality of method terminals connected to a designated
one message terminal, means for making up a list indicative
of an execution sequence of a plurality of methods associ-
ated with the plurality of method terminals, and means for
reconstructing a coupling structure in which the execution
sequence of the plurality of methods are altered in accor-
dance with an alteration instruction of the execution
sequence of the plurality of methods appearing at the list.

[0656] FIG. 91 is a typical illustration showing exemplar-
ily a wiring among objects. FIG. 92 is a typical illustration
showing a cable element list giving a definition of the wiring
shown in FIG. 91.

[0657] According to the example shown in FIG. 91, an
object A includes an object B, an object C, an object D and
an object E. A bus 1 of the object B is connected to a bus 2
of the object C, a bus 2 of the object D and a bus 1 of the
object E. Where the bus 1 of the object B serves as a bus
(message terminal) for outputting an instruction, and each of
the bus 2 of the object C, the bus 2 of the object D and the
bus 1 of the object E serves as a bus (method terminal) for
receiving an instruction.

[0658] A wiring among these elements is defined, as
shown in FIG. 92, by a cable element list connected to the
object A (parent object). A number of cable elements are
listed on the cable element list shown in FIG. 92. Of those
cable elements, a cable element CABLEa defines a wiring
between the bus 1 of the object B and the bus 2 of the object
C, a cable element CABLED defines a wiring between the
bus 1 of the object B and the bus 2 of the object D, and a
cable element CABLEc defines a wiring between the bus 1
of the object B and the bus 1 of the object E.

[0659] An instruction (message) outputted from the object
B is transmitted to three objects C, D and E in each of which
the associated method is executed. In this case, however, it
happens that a problem as to an execution sequence among
those methods is raised. For example, assuming that the
object B serves as an object for inputting data from the
exterior, the object C serves as an object for performing an
arithmetic operation based on the data inputted, the object D
serves as an object for making a graph based on a result of
the operation, and the object E serves as an object for
displaying the graph, there is a need to execute the respec-
tive methods in the order named of the object C, the object

US 2001/0052109 Al

D and the object E in accordance with an instruction
indicative of that inputting of the data from the object B is
completed.

[0660] Here, the wiring shown in FIG. 91 is unclear as to
the execution sequence, and consequently, the execution
sequence is displayed in the following manner and if nec-
essary the execution sequence is altered.

[0661] FIG. 93 is a flowchart useful for understanding
processings for a display of an execution sequence for
methods and for an alteration of the execution sequence for
the methods.

[0662] First, for example, while an image as shown in
FIG. 91 is displayed, a desired wiring (here, the wiring
shown in FIG. 91) is clicked through the mouse 104 to select
the wiring of interest. In step 93_1, the object coupling
means 302 identifies the selected wiring. In step 93 2, a
cable list as to the selected wiring (cable) thus identified is
made up and displayed.

[0663] FIG. 94 is a typical illustration showing a cable list
element list.

[0664] When the cable list is made up, a cable element list
of the parent object (object A) shown in FIG. 92 is retrieved,
the cable elements CABLEa, CABLEb and CABLEc, which
constitute the selected wiring, are identified, and pointers to
cable elements are stored in cable list elements constituting
the cable list element list shown in FIG. 94 in the order
listed in the cable element list. That is, in case of the present
example, the pointers to three cable elements CABLEa,
CABLEDb and CABLEc, which constitute the selected wir-
ing, shown in FIG. 92, are stored in the order named in the
respective associated cable list elements arranged in the
cable list element list shown in FIG. 94.

[0665] FIG. 95 is a view exemplarily showing a cable list
displayed on a display screen 102a.

[0666] When the cable list element list as shown in FIG.
94 is made up, a state of the respective wiring for coupling
two objects with each other is displayed with an arrange-
ment according to the order listed in the cable list element
list. Specifically, according to the example shown in FIG.
95, it is displayed on the first line that the bus 1 of the object
B is connected to the bus 2 of the object C; it is displayed
on the second line that the bus 1 of the object B is connected
to the bus 2 of the object D; and it is displayed on the third
line that the bus 1 of the object B is connected to the bus 1
of the object E. Where the line is referred to as a “list item”.
The left side of the cable list denotes a bus of the end for
generating an message (instruction), and the right side of the
cable list denotes a bus of the end for receiving and
executing the message (instruction) generated. In the prac-
tical operation, when the bus 1 of the object B issues the
associated message (instruction), the respective methods are
executed in accordance with the sequence shown in the
cable list.

[0667] Instep 93_3 in FIG. 93, it is assumed that a line of
list item indicated in the display list is dragged. Here it is
assumed that the list item “object B: bus 1 object E bus 17
appearing on the third line of the cable list shown in FIG.
95. In step 93_4, the object coupling means 302 (cf. FIG.
64) identifies that a wiring for connecting the bus 1 of the
object B to the bus 1 of the object E, that is, the wiring

Dec. 13, 2001

defined by the cable element CABLEc shown in FIG. 92 is
dragged. In step 93_5, the dragged list item is dropped.
Where it is assumed that the dragged list item is dropped on
the second list item “object B: bus 1 object D: bus 2” of the
cable list shown in FIG. 95. In step 93 6, the object
coupling means 302 identifies that the wiring concerned in
drop is a wiring for connecting the bus 1 of the object B to
the bus 2 of the object D, that is, the wiring defined by the
cable element CABLEb shown in FIG. 92.

[0668] Thus, when the dragged wiring and the wiring
concerned in drop are identified, an arrangement sequence or
the execution sequence is altered in such a manner that the
dragged wiring is arranged before the wiring concerned in
drop on the cable list shown in FIG. 95 (step 93_7).

[0669] FIG. 96 is a typical illustration showing a state in
which an arrangement sequence of the cable elements
arranged on the cable element list is altered. FIG. 97 is a
typical illustration showing a cable element list in which an
arrangement sequence of the cable elements has been
altered.

[0670] As shown in FIG. 69, each of the cable elements
CABLE has a pointer to the next cable element. Thus, when
the drag and drop operations for the list item are performed
in the manner as mentioned above, the pointer is rewritten.
In this example, as shown in FIG. 96, an arrangement
sequence of the cable elements is altered in such a manner
that the cable element CABLEc is arranged before the cable
element CABLED, and thus the cable element list, in which
the cable elements are arranged as shown in FIG. 97, is
made up.

[0671] FIG. 98 is a typical illustration showing a state in
which an arrangement sequence of the cable list elements
arranged on the cable list element list is altered. FIG. 99 is
a typical illustration showing a cable list element list in
which an arrangement sequence of the cable list elements
has been altered.

[0672] When the drag and drop operations for the list item
are performed in the manner as mentioned above, an
arrangement sequence of the cable elements, in which the
cable elements are arranged in the cable element list as
shown in FIG. 96, is altered. Following this, an arrangement
sequence of the cable list elements, in which the cable list
elements are arranged in the cable list element list as shown
in FIG. 98, is altered. According to this example, an
arrangement sequence of the cable list elements is altered in
such a manner that the cable list element storing therein the
pointer to the cable element CABLECc is arranged before the
cable list element storing therein the pointer to the cable
element CABLED, so that the cable list element list shown
in FIG. 99 is made up.

[0673] FIG. 100 is a view showing a cable list in which an
arrangement sequence has been altered.

[0674] As a result of alterations of the arrangement
sequences of the cable elements and the cable list elements
as mentioned above, the cable list for a display is also altered
in a sequence of the list item, as shown in FIG. 100.

[0675] The above is an explanation of the embodiments of
the interobject wiring editor unit 122 and its periphery. Next,
there will be explained an explanation of the embodiments
of the object builder unit 121 and its periphery.

US 2001/0052109 Al

[0676] The object ware programming system aims to
perform an efficient programming through replacing pro-
grams by objects. For this reason, it is very important as to
whether the existing software can be readily replaced by an
object. Particularly, if it is possible to directly replace the
existing software by an object, the number of the available
objects is dramatically increased all at once, and as a result,
a program development efficiency is extremely improved.
Hitherto, there have been proposed several types of methods
in which the existing software is replaced by an object. An
OLE and a DDE in Windows are raised by way of example.
However, according to those methods, it is needed to esti-
mate beforehand at the existing software end that the exist-
ing software is replaced by an object. And thus, it is difficult
to replace all of the existing softwares by objects. Further,
even if the associated existing softwares are concerned,
many of those softwares are involved in one which is very
few in number of messages to be acceptable as compared
with, for example, that of the graphical user interface.
Accordingly, it is impossible to handle the existing softwares
in a similar fashion to that of the graphical user interface.

[0677] With respect to a continuous operation for the
existing softwares, hitherto, there is known a method in
which a description is performed by the shell script. How-
ever, according to the earlier technology, it is difficult to
perform an operation for the software after the actuation in
a similar fashion to that of the graphical user interface.
Further, with respect to the description of the shell script, it
must be performed by a user self and thus it will be difficult
for a beginner user poor in experience of a programming to
do so.

[0678] In view of the problems on building the objects as
mentioned above, the embodiments, which will be described
hereinafter, relate to a scheme of replacing the existing
software by an object independently of types of the existing
software, and a component which serves as an object in
combination with the existing software. Here, there will be
described, with the existing software having the graphical
user interface as a main software, a scheme of replacing the
existing software by an object, and a component which
serves as an object in combination with the existing soft-
ware.

[0679] A corresponding relation between the component
described hereinafter and the present invention is as follows.

[0680] When the component, which will be described
hereinafter, is stored in the storage unit 105 of the computer
system 100 shown in FIG. 1, the storage unit 105 storing the
component corresponds to one example of the component
storage medium referred to in the present invention. In a
case where the component is stored in the MO 110 shown in
FIG. 1, the MO 110 storing the component corresponds to
an alternative example of the component storage medium
referred to in the present invention.

[0681] FIG. 101 is a typical illustration showing an
embodiment of a component “including” an existing soft-
ware having a graphical user interface.

[0682] In FIG. 101, an application A is an existing soft-
ware in which while icons such as “button 17, “button 27,
and “button 3” are displayed on the display screen 102a (cf.
FIG. 1), anyone of those icons is clicked through an
operation of the mouse so that a processing associated with
the clicked icon is executed.

Dec. 13, 2001

[0683] A window management unit manages a graphical
user interface of all applications incorporated into the sys-
tem, including the application A. For instance, if it is a
Windows, the window management unit denotes a Windows
system itself. A component A “including” the application A
has a basic structure as an object, for connecting with other
objects, and in addition data related to the application A. The
component A has further as a method an application drive
program and a window event generation program (e.g. a
button 1 click event issue program for executing the equiva-
lence to such a matter that a user clicks the button 1 through
an operation of the mouse 104). When a message is trans-
mitted from another object to an application A drive method
of the component A, the method is executed to drive the
application A so that information (e.g. ID information and
the like) related to the window is read and the component A
maintains the window information.

[0684] Further, when a message is transmitted from
another object (or one’s own self) to a method which issues
an event such as a button click or the like, the associated
event is issued through the window management unit to the
window of the application A in accordance with the event
issue program described in the method which received the
massage.

[0685] In this case, it is possible to replace the existing
application by an object by means of simply adding the
component A, maintaining the existing application A as it is.

[0686] FIG. 102 is a typical illustration showing an alter-
native embodiment of a component “including” an existing
software having a graphical user interface.

[0687] In the embodiment explained referring to FIG.
101, added to the last of the event generation program for the
existing application A, the existing software and the like is
a program for issuing a message to inform other object of
that an execution of the method is finished. The message
thus issued is connected to a method of other component or
other object. Thus it is possible to execute a plurality of
methods on a chain basis. In FIG. 102, the existing software
is omitted, and there is shown the state that the messages of
the component A are connected to the methods of the
components B and C.

[0688] FIG. 103 is a typical illustration showing a further
alternative embodiment of a component “including” an
existing software having a graphical user interface.

[0689] The component shown in FIG. 103 is an example
of a component having such a function that events for the
existing software are monitored and when a predetermined
event is issued, the associated message is issued.

[0690] When a method for driving an application A of a
component Abeing an existing software receives a message,
the method is executed to drive the application A. The
component A has a function to monitor all window events
and investigates as to whether the issued event is involved
in the application A. When it is identified that the issued
event is involved in the application A, the component A
issues a message for informing another object (or one’s own
self) of the fact that the event was issued for the application
A. For example, when the icon “button 17 of three icons
“button 17, “button 2” and “button 3” related to the appli-
cation A, which are displayed on the display screen 1024, is
clicked through an operation of the mouse 104 by a user, the

US 2001/0052109 Al

component A identifies that the icon “button 1”7 of the
application A was clicked, and issues a message for inform-
ing that the button 1 was clicked.

[0691] In this manner, it is possible, upon receipt of an
issue of the event of an existing software, to execute on a
cooperative basis a method which does not appear on a
specification of the existing software, without adding
advanced functions to the existing software.

[0692] FIG. 104 is a typical illustration showing a struc-
ture of an event processing portion of the window manage-
ment section shown in FIG. 103. FIG. 105 is a typical
illustration showing a structure of an event monitor portion
of the component A shown in FIG. 103.

[0693] The event processing portion of the window man-
agement section is a part in which upon receipt of the issue
of an event, a processing associated with the event is carried
out. The event processing portion has an event processing
element list consisting of a plurality of event processing
elements each storing therein pointers to various types of
event processing functions. When a window event is gen-
erated, the event processing functions indicated by the
pointers stored in each of the event processing elements are
sequentially executed. The event processing element, which
is arranged at the last of the event processing element list,
indicates a default event process function. The default event
process function serves, for example, when a button is
clicked, to perform such a processing that a button on the
display screen is moved as if the button on the display screen
is depressed.

[0694] At the last of a drive method of the application A
of the component A show in FIG. 103, there is described a
program for requesting the window management unit to
transmit the window event to one’s own self (component A).
Specifically, the event processing element, which stores
therein a pointer to an event monitor portion of the compo-
nent A, is added to the event processing list possessed by the
event processing portion of the window management unit. In
this manner, it is possible thereafter to refer to the occurred
event at the event monitor portion of the component A,
whenever the window event occurs.

[0695] The event monitor portion of the component A
stores an event table shown in FIG. 105 in which described
are a window ID for defining events concerning the appli-
cation A, an event ID, other data, and a message issued when
the event issued, in their corresponding relation.

[0696] When any of the window events occurs and event
data related to the occurred window event is inputted
through the window management unit shown in FIG. 104 to
the event monitor portion of the component A, the event
table is referred to by the window ID and the event ID of the
event data to retrieve as to whether a window ID and an
event ID, which match the window ID and the event ID of
the event data, respectively, exist in the event table. When it
is determined that a window ID and an event ID, which
match the window ID and the event ID of the event data,
respectively, exist in the event table, the component A issues
a message associated with the matched window ID and
event ID.

[0697] FIG. 106 is a basic construction view of a com-
ponent builder apparatus according to the present invention.

Dec. 13, 2001

[0698] The component builder apparatus 400 comprises a
first handler 401, a second handler 401 and a component
builder means 403.

[0699] The first handler 401 serves to selectively indicate
making of methods and messages.

[0700] The second handler 402 serves to input an instruc-
tion of an issue of a desired event of a predetermined
existing software.

[0701] Tt is to be noted that while the first handler and the
second handler are functionally separately distinguished
from one another, it is acceptable that these handlers are
constructed in form of a united body on a hardware basis. In
the computer system shown in FIG. 1, the mouse 104
typically corresponds to both the first handler and the second
handler.

[0702] The component builder means 403 builds a com-
ponent which serves as one object in combination with an
existing software. Specifically, the component builder
means 403 serves, when making of a method is instructed by
an operation of the first handler 401 and a predetermined
event of the existing software is issued by an operation of the
second handler 402, to make on the component a method
which fires with a message issued by another object and
issues the event, and serves, when making of a message is
instructed by an operation of the first handler 401 and an
issue of a predetermined event of the existing software is
instructed by an operation of the second handler 402, in
response to an occurrence of the event, to make on the
component a message for informing other objects of the fact
that the event occurred.

[0703] The component builder means 403 corresponds to
the object builder unit 121 of the object ware programming
system 120 shown in FIG. 2.

[0704] FIG. 107 is a typical illustration useful for under-
standing an embodiment of a component builder apparatus
according to the present invention. FIG. 108 is a flowchart
useful for understanding processings of building a compo-
nent using a component builder apparatus.

[0705] An object builder portion 121 has a program 121a
for building a component “including” or “involving” an
existing software, which serves as one object together with
the existing software. In step 108_1, the existing software
(here application A) “included” from the program is driven
in accordance with an instruction from a user. In step 108_2,
window information of the application A is obtained and
maintained.

[0706] Next, in step 108_3, the user makes a selection as
to whether a method or a message is added to the component
“including” the driven application A, and further makes a
selection as to types of events (for example, a distinction
between the button click and the menu click). The selection
between the method and the message mentioned above is
carried out in accordance with such a way that either one of
the icons of a method and a message on the display screen
is clicked by the mouse. A name of the method or the
message to be added is registered into the selected column
through an operation of the keyboard.

[0707] In step 108_4, an occurrence of events is moni-
tored. When an event is generated by the button click or the
like using a mouse (step 108_5), it is determined as to

US 2001/0052109 Al

whether the generated event relates to a window of the
application A (step 108_6). Further, in step 108_7, it is
determined as to whether the generated event is the same
type of event as the type (e.g. a distinction between the
button click and the menu click) of the event selected in step
108_3.

[0708] With respect to the mechanism (functions of the
window management unit and the event monitor portion) for
determining as to whether the generated event is a desired
event, it is the same as that explained referring to FIGS. 103
to 105. Thus, the redundant explanation will be omitted.

[0709] When the generated event is concerned with the
window of the application A and in addition is of the same
type as the selected event, the event is added to the com-
ponent A in the form of the method or the message in
accordance with a distinction between the method and the
message selected in step 108_3 together with the type of
event. In other words, there is added a program such that
when a message is received from another object at the
component A “involving” the application A, a method of
causing the event to generate is created, or when the event
is generated, a message, which stands for that the event is
generated, is informed to another object.

[0710] The above-mentioned operation is continued until
a user gives an instruction for termination of monitoring an
event (step 108_9). Upon receipt of the event monitoring
termination instruction given by the user, the application
(application A) now on drive is terminated in drive. Further,
with respect to an object comprising the application A and
the component A “involving” the application A, object data
for display and wiring as to such an object is created and
stored in the object data file 132, and the object is compiled
to create running object data and the running object data is
stored in the running object file 133. In this manner, the
component “involving” a desired existing software is built
on an interactive basis.

[0711] Next, there will be explained embodiments of the
fifth object-oriented programming supporting apparatus of
the object-oriented programming supporting apparatuses
according to the present invention.

[0712] FIG. 109 is a construction view of an object ware
programming system in which structural elements corre-
sponding to the embodiment of the fifth object-oriented
programming supporting apparatus according to the present
invention are added to the object ware programming system
120 shown in FIG. 2. In FIG. 109, the same parts are
denoted by the same reference numbers as those of FIG. 2,
and the redundant description will be omitted.

[0713] An object ware programming system 120" shown in
FIG. 109 comprises, in addition to the structural elements of
the object ware programming system 120 shown in FIG. 2,
an event log generating unit 141, a component coupling unit
142, an event log file 151 and a component file 152.

[0714] According to the embodiments of the component
builder apparatus explained referring to FIGS. 107 and 108,
the built component is stored in the object data file 132 and
the running object file 133. On the contrary, according to the
present embodiment shown in FIG. 109, while it is the same
as the former embodiment with respect to the running object
file, data for display and wiring of the built component is
stored in the component file 152 instead of the object data

Dec. 13, 2001

file 132. It is to be noted that for the purpose of better
understanding, the component file 152 is formed indepen-
dently of the object data file 132, but it is acceptable that the
component file 152 and the object data file 132 are con-
structed in the form of united body.

[0715] First, in accordance with the scheme explained
referring to FIGS. 107 and 108, upon receipt of a message,
an event of an existing software is issued, and a component,
which outputs it in the form of a message that the event is
issued, is built on each of a plurality of existing softwares
and stored in the component file 152.

[0716] Next, a user drives simultancously or sequentially
those existing softwares in many number to generate a
various types of events. Then, the event log generating unit
141 generates an event log indicative of as to what event is
generated in what order. The event log thus generated is
stored in the event log file 151.

[0717] When a generation of the event log is terminated,
the component coupling unit 142 sequentially reads the
events stored in the event log file 151 and wires the
components stored in the component file 152 so that the
events read out are sequentially generated.

[0718] A wiring result is stored in the interobject wiring
data file 134. Further, if necessary, an additional wiring is
conducted by the interobject wiring editor unit 122, and then
the wiring is converted into wiring data for an interpreter use
and stored in the wiring data file 135 for an interpreter use.

[0719] FIG. 110 is a flowchart useful for under standing
an operation of a component coupling unit. FIG. 111 is a
flowchart useful for understanding an operation of a com-
ponent coupling unit.

[0720] As shown in FIG. 111, th event log file stores
therein an event log in which a number of event data are
arranged, which is generated in the event log generating unit
141 (cf. FIG. 109). The component file (cf. FIG. 109) stores
therein a number of components in which the event is
associated with the method in accordance with a manner
mentioned above.

[0721] In the component coupling unit, as show in FIG.
110, an event is loaded by one from the event log file (step
110_1). In step 110_2, the loaded event is compared with a
description of a corresponding relation between an event and
a method, the description being possessed by a component
stored in the component file, and the same event as the
loaded event is retrieved from the component file. When the
same event is identified, a wiring between a method asso-
ciated with the event thus identified and a previous message
(which will be described below) is conducted (step 110_3).
A message, which is issued when the method is executed, is
saved in the form of the “previous message”. Regarding the
“previous message”, it is noted that the component file stores
therein, as shown in FIG. 102, such a type of component that
when a method is executed, a message indicative of that an
event associated with the method is issued is issued. When
the succeeding event remains in the event log stored in the
event log file 141 (step 110_4), the process returns to step
110_1 in which the succeeding event is loaded, and a wiring
is conducted in a similar fashion to that of the above.

[0722] Incidentally, with respect to the event which is
arranged at the first of the event log, no “previous message”

US 2001/0052109 Al

exists. Thus the wiring between a method and the previous
message, as shown in FIG. 111, is not conducted, and a
message, which is issued when the method issuing the event
is executed, is saved in the form of the “previous message”.

[0723] In this manner, it is possible to implement an
automatic wiring among components. This wiring makes it
possible in execution by the interpreter unit 123 to auto-
matically sequentially issue events in accordance with the
sequence of generation of the event log by a user, and thus
an automatic operation for the existing software is possible.

[0724] When the event log is once produced, the auto-
matic wiring is conducted sequentially in accordance with
the sequence of the events arranged on the produced event
log. It is also acceptable, however, that the event log once
produced is displayed in the form of a table, and a user
selects a necessary event from the table displayed so that an
automatic wiring is conducted in accordance with a
sequence selected by the user. According to this way, it is
possible, when errors occur during a generation of an event
log, to correct the errors without doing over again in
generation of the event log.

[0725] In this manner, it is possible to implement, for
example, an autopilot function of the WWW browser, by
means of implementing an automatic operation of the appli-
cation.

[0726] Next, there will be explained an alternative
embodiment of a scheme in which an existing software is
“involved” and replaced by an object, and an alternative
embodiment of a component which serves as an object in
combination with an existing software.

[0727] FIG. 112 is a conceptual view showing a state in
which an existing software is “included” in a component.
FIG. 113 is a view showing a table for definition items to
give various definitions shown in FIG. 112. In FIG. 113, the
object is referred to as “LSI”.

[0728] Here, the existing software is an existing program
consisting of a function or a set of functions, not solely
executed but executed when called from other application
program or the like.

[0729] In the existing programming, there exist data x;,
X,, X3, - - - » X5 - - - 10 be received from other programming,
functions function 1, function 2 . . ., function j, . . . for
performing a processing based on the received data, and data
Y15 Yas -« + 5 ¥j - - - t0 e transmitted to other program, which
are representative of a result of processing.

[0730] When such a program is “involved”, as shown in
FIG. 112, it is assumed that an object is defined with a
separation into two parts. The separating way is given with
a certain degree of option, and may be determined by a user.

[0731] Here, various types of definitions are given as
shown in FIG. 112. First, as (A) a header, there are defined
a project name for specifying the whole of works or pro-
cessings and an environment for executing the processings.

[0732] (A) a header is followed by (B) a definition to be
made up, (C) a definition of an existing program (defining as
to which existing program is to be replaced by an object),
and (D) a definition of an object. It is noted that (D) a
definition of an object is given with a plurality of definitions
when the existing program is partitioned into a plurality of
objects.

Dec. 13, 2001

[0733] In (D) a definition of an object, there exist a
definition of a data bus (a data input terminal) for use in data
input for identifying a pointer which receives data from
other object, a definition of a method (a method terminal) for
identifying a pointer of an entrance of the processing to be
executed, and a definition of a data bus (a data output
terminal) for use in data output for identifying a pointer for
data to be transmitted to other object. It is to be noted that
according to the present embodiment, since the existing
program adapted for executing a processing when called
from other program is assumed, it is not considered that this
existing program requests (an issue of message) of another
object a processing.

[0734] FIG. 113 is a view showing a table for definition
items to give various definitions shown in FIG. 112.

[0735] The keyword groups appearing on the table are of
a kind of program language useful for giving the above-
mentioned various definitions. A detailed explanation of the
individual keywords will be omitted, since it is not essential
to the present invention.

[0736] FIG. 114 is a view exemplarily showing images
displayed on a display screen 102a when definitions are
given.

[0737] The left side of the screen shows structures of
definitions, each of which serves as an icon. When any of the
icons is clicked, there is displayed as shown at the right side
of the screen a frame of a table for giving a definition of the
item associated with the clicked icon. Filling the frames one
by one completes a definition table.

[0738] An adoption of such a type of scheme that the
frames of the table is filled makes it possible to readily give
a definition on an interactive basis.

[0739] When the definition table is completed, an existing
program and a component comprising the definition table
related to the existing program are stored in the object data
file 132 with an extraction of data for display and wiring by
the object builder unit 121 shown in FIG. 2, and also are
stored in the running object file 133 through a conversion
into a running format by a compiler.

[0740] In this manner, it is possible to take in an existing
software to the object ware programming system in the form
of the object, regardless of a format of the existing software,
maintaining the existing software as it is.

[0741] As described above, according to the present
invention, it is possible to specially enhance reuse of the
software, and also to implement the software higher in the
running speed.

[0742] While the present invention has been described
with reference to the particular illustrative embodiments, it
is not to be restricted by those embodiments but only by the
appended claims. It is to be appreciated that those skilled in
the art can change or modify the embodiments without
departing from the scope and spirit of the present invention.

1. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output

US 2001/0052109 Al

instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object;

data element list generating means for generating a data
element list, in which pointers to data storage areas for
storing data are arranged, of an object;

pointer element list generating means for generating a
pointer element list, in which pointers to pointer stor-
age areas for storing pointers to data are arranged, of an
object; and

data coupling means for permitting a transfer of data
between a third object having the data element list and
a fourth object having the pointer element list, by
means of writing the pointers arranged in the data
element list of the third object into the pointer storage
areas indicated by the pointers arranged in the pointer
element list of the fourth object.

2. An object-oriented programming apparatus according
to claim 1, wherein said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed.

3. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an input instruction tag table generating means for gen-
erating an input instruction tag table indicating an
association of messages of another object with methods
of self object, for each other object, on the output
instruction bus portion of self object.

4. An object-oriented programming apparatus according
to claim 3, wherein said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed, and

wherein said input instruction tag table generating means
generates the input instruction tag table and adds the
input instruction tag table to the method elements

Dec. 13, 2001

including the pointer to another object associated with
the input instruction tag table.

5. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an output instruction tag table generating means for
generating an output instruction tag table indicating an
association of methods of another object with messages
of self object, for each other object, on the output
instruction bus portion of self object.

6. An object-oriented programming apparatus according
to claim 5, wherein said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed, and

wherein said output instruction tag table generating means
generates the output instruction tag table and adds the
output instruction tag table to the method elements
including the pointer to another object associated with
the output instruction tag table.

7. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an input data tag table generating means for generating an
input data tag table indicating an association of a data
element list ID for identifying a data element list in
which pointers to data storage areas for storing data are
arranged with a pointer element list ID for identifying
a pointer element list in which pointers to data storage
areas for storing pointer to data are arranged, for each
other object, on the output instruction bus portion of
self object.

8. An object-oriented programming apparatus according
to claim 7, wherein said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of

US 2001/0052109 Al

another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed, and

wherein said input data tag table generating means gen-
erates the input data tag table and adds the input data
tag table to the method elements including the pointer
to another object associated with the input data tag
table.

9. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an output data tag table generating means for generating
an output data tag table indicating an association of a
pointer element list ID for identifying a pointer element
list in which pointers to pointer storage areas for storing
pointers to data are arranged with a data element list ID
for identifying a data element list in which pointers to
data storage areas for storing data are arranged, for each
other object, on the output instruction bus portion of
self object.

10. An object-oriented programming apparatus according
to claim 9, wherein said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
another object associated with a message of self object, and
a pointer to another object in which the method specified by
the method ID is executed, and

wherein said output data tag table generating means
generates the output data tag table and adds the output
data tag table to the method elements including the
pointer to another object associated with the output data
tag table.

11. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations,
said object-oriented program storage medium storing an
object coupling program comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object;

data element list generating means for generating a data
element list, in which pointers to data storage areas for
storing data are arranged, of an object;

Dec. 13, 2001

pointer element list generating means for generating a
pointer element list, in which pointers to pointer stor-
age areas for storing pointers to data are arranged, of an
object; and

data coupling means for permitting a transfer of data
between a third object having the data element list and
a fourth object having the pointer element list, by
means of writing the pointers arranged in the data
element list of the third object into the pointer storage
areas indicated by the pointers arranged in the pointer
element list of the fourth object.

12. An object-oriented program storage medium accord-
ing to claim 11, wherein said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

wherein the first object having the output instruction bus
portion refers to, when issuing a message, a method
element arranged in the method element list associated
with the message, and calls the second object in which
a pointer is stored in the method element, giving the
method ID stored in the method element as an argu-
ment.

13. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations,
said object-oriented program storage medium storing an
object coupling program comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an input instruction tag table generating means for gen-
erating an input instruction tag table indicating an
association of messages of another object with methods
of self object, for each other object, on the output
instruction bus portion of self object.

14. An object-oriented program storage medium accord-
ing to claim 13, wherein said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

wherein said input instruction tag table generating means
generates the input instruction tag table and adds the
input instruction tag table to the method elements
including the pointer to another object associated with
the input instruction tag table.

15. An object-oriented program storage medium accord-
ing to claim 14, wherein the first object having the method
element to which the input instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the

US 2001/0052109 Al

method ID and the input instruction tag table which are
stored in the method element.

16. An object-oriented program storage medium accord-
ing to claim 15, wherein the second object receives mes-
sages directed from the first object to the second object, and
refers to the input instruction tag table, which is an argument
of the received message, to execute the method of the first
object associated with the message of the second object.

17. An object-oriented program storage medium accord-
ing to claim 15, wherein the second object receives mes-
sages directed from the first object to the second object, and
refers to the input instruction tag table, which is an argument
of the received message, to add the method element related
to the method of the first object associated with the message
of the second object to the method element list of the second
object associated with the message of the second object.

18. An object-oriented program storage medium accord-
ing to claim 15, wherein the second object has means for
producing a third object, receives messages directed from
the first object to the second object, and refers to the input
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the first object associated with messages of the third object
to the method element list of the third object associated with
the message of the third object.

19. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations,
said object-oriented program storage medium storing an
object coupling program comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an output instruction tag table generating means for
generating an output instruction tag table indicating an
association of methods of another object with messages
of self object, for each other object, on the output
instruction bus portion of self object.

20. An object-oriented program storage medium accord-
ing to claim 19, wherein said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

wherein said output instruction tag table generating means
generates the output instruction tag table and adds the
output instruction tag table to the method elements
including the pointer to another object associated with
the output instruction tag table.

21. An object-oriented program storage medium accord-
ing to claim 20, wherein the first object having the method
element to which the output instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the

Dec. 13, 2001

method ID and the output instruction tag table which are
stored in the method element.

22. An object-oriented program storage medium accord-
ing to claim 21, wherein the second object receives mes-
sages directed from the first object to the second object, and
refers to the output instruction tag table, which is an argu-
ment of the received message, to add the method element
related to the method of the second object associated with
the message of the first object to the method element list of
the first object associated with the message of the first
object.

23. An object-oriented program storage medium accord-
ing to claim 21, wherein the second object has means for
producing a third object, receives messages directed from
the first object to the second object, and refers to the output
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the third object associated with messages of the first object
to the method element list of the first object associated with
the message of the first object.

24. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations,
said object-oriented program storage medium storing an
object coupling program comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an input data tag table generating means for generating an
input data tag table indicating an association of a data
element list ID for identifying a data element list in
which pointers to data storage areas for storing data are
arranged with a pointer element list ID for identifying
a pointer element list in which pointers to data storage
areas for storing pointer to data are arranged, for each
other object, on the output instruction bus portion of
self object.

25. An object-oriented program storage medium accord-
ing to claim 24, wherein said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

wherein said input data tag table generating means gen-
erates the input data tag table and adds the input data
tag table to the method elements including the pointer
to another object associated with the input data tag
table.

26. An object-oriented program storage medium accord-
ing to claim 25, wherein the first object having the method
element to which the input data tag table is added calls, when
calling the second object identified by the method element,
the second object giving as arguments the method ID and the
input data tag table which are stored in the method element.

US 2001/0052109 Al

27. An object-oriented program storage medium accord-
ing to claim 26, wherein the second object receives mes-
sages directed from the first object to the second object,
refers to the input data tag table, which is an argument of the
received message, to obtain the pointer element list ID of the
first object, produces the pointer element list identified by
the pointer element list ID, of the first object and in addition
the data element list identified by the data element list ID
associated with the pointer element list ID, of the second,
and writes the pointers arranged in the data element list of
the second object into the pointer storage areas indicated by
the pointers arranged in the pointer element list of the first
object.

28. An object-oriented program storage medium accord-
ing to claim 26, wherein the second object has means for
producing a third object, receives messages directed from
the first object to the second object, refers to the input data
tag table, which is an argument of the received message, to
obtain the pointer element list ID of the first object, produces
the pointer element list identified by the pointer element list
ID, of the first object and in addition the data element list
identified by the data element list ID associated with the
pointer element list ID, of the third, and writes the pointers
arranged in the data element list of the third object into the
pointer storage areas indicated by the pointers arranged in
the pointer element list of the first object.

29. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations,
said object-oriented program storage medium storing an
object coupling program comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output
instruction bus portion for performing a processing for
an issue of messages directed to another object and a
second object having an input instruction bus portion
responsive to messages issued by another object and
directed to self object for activating a method of self
object associated with the received message, by means
of providing such a correspondence that the message of
the first object is associated with the method of the
second object; and

an output data tag table generating means for generating
an output data tag table indicating an association of a
pointer element list ID for identifying a pointer element
list in which pointers to pointer storage areas for storing
pointers to data are arranged with a data element list ID
for identifying a data element list in which pointers to
data storage areas for storing data are arranged, for each
other object, on the output instruction bus portion of
self object.

30. An object-oriented program storage medium accord-
ing to claim 29, wherein said instruction coupling means
generates a method element list in which arranged are
method elements including a method ID for specifying a
method of another object associated with a message of self
object, and a pointer to another object in which the method
specified by the method ID is executed, and

wherein said output data tag table generating means
generates the output data tag table and adds the output
data tag table to the method elements including the
pointer to another object associated with the output data
tag table.

Dec. 13, 2001

31. An object-oriented program storage medium accord-
ing to claim 30, wherein the first object having the method
element to which the output data tag table is added calls,
when calling the second object identified by the method
element, the second object giving as arguments the method
ID and the output data tag table which are stored in the
method element.

32. An object-oriented program storage medium accord-
ing to claim 31, wherein the second object receives mes-
sages directed from the first object to the second object,
refers to the output data tag table, which is an argument of
the received message, to obtain the data element list ID of
the first object, produces the data element list identified by
the data element list ID, of the first object and in addition the
pointer element list identified by the pointer element list ID
associated with the data element list ID, of the second, and
writes the pointers arranged in the data element list of the
first object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the second
object.

33. An object-oriented program storage medium accord-
ing to claim 31, wherein the second object has means for
producing a third object, receives messages directed from
the first object to the second object, refers to the output data
tag table, which is an argument of the received message, to
obtain the data element list ID of the first object, produces
the data element list identified by the data element list ID, of
the first object and in addition the pointer element list
identified by the pointer element list ID associated with the
data element list ID, of the third, and writes the pointers
arranged in the data element list of the first object into the
pointer storage areas indicated by the pointers arranged in
the pointer element list of the third object.

34. An object-oriented program storage medium accord-
ing to claim 12, wherein the second object receives mes-
sages directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

35. An object-oriented program storage medium accord-
ing to claim 15, wherein the second object receives mes-
sages directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

36. An object-oriented program storage medium accord-
ing to claim 21, wherein the second object receives mes-
sages directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

37. An object-oriented program storage medium accord-
ing to claim 26, wherein the second object receives mes-
sages directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

38. An object-oriented program storage medium. accord-
ing to claim 31, wherein the second object receives mes-
sages directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

39. An object-between-network display method in which
a plurality of objects produced by an object-oriented pro-
gramming and wirings representative of flow of data and
control among the plurality of objects are displayed on a
display screen of an image display apparatus for displaying
images based on electronic image information,

US 2001/0052109 Al

wherein displayed on the display screen is a first image in
which a display area consisting of one measure
obtained through partitioning the display screen into a
plurality of measures, or a display area formed through
coupling a plurality of adjacent measures together,
comprises an object display domain for displaying a
single object, and a wiring display domain for display-
ing wires for coupling a plurality of objects to one
another, the object display domain and the wiring
display domain are determined in such a manner that
the wiring display domain is formed between the object
display domain-to-object display domain of the adja-
cent two display areas, and

wherein on the display screen each of the plurality of
objects is arranged on an associated object display
domain of the display area, while the wires for coupling
the plurality of objects thus arranged are displayed on
the wiring display domains ranged across a plurality of
display areas.

40. An object-between-network display method according
to claim 39, wherein a predetermined object of a plurality of
objects constituting the first image is constituted of a sub-
network comprising a plurality of objects, which are of
lower class in a hierarchical structure than the predetermined
object, and wirings for connecting the later plurality of
objects together, and

wherein when a second image, in which a subnetwork of
said predetermined object is displayed instead of a
display of said predetermined object in the first image,
is displayed instead of the first image, the subnetwork
on the first image is displayed in a more enlarged
display area than that of said predetermined object, and
display areas arranged upper and lower sides and right
and left sides of the display area of the subnetwork are
altered to display areas enlarged vertically and hori-
zontally, respectively, and regarding display areas
located at diagonal positions with respect to the display
area of the subnetwork, the display areas are displayed
with a same size as that of the first image.

41. An object-between-network display method according
to claim 39, wherein a predetermined object of a plurality of
objects constituting the first image is constituted of a sub-
network comprising a plurality of objects, which are of
lower class in a hierarchical structure than the predetermined
object, and wirings for connecting the later plurality of
objects together, and

wherein when a second image, in which a subnetwork of
said predetermined object is displayed instead of a
display of said predetermined object in the first image,
is displayed instead of the first image, the subnetwork
on the first image is displayed in a more enlarged
display area than that of said predetermined object, and
display areas except the display areas of the subnet-
work are deformed as compared with the associated
display areas on the first image in such a manner that
display areas located at a periphery of the second
image, and position and size of sides contacting with
the second image, are substantially the same ones as
display areas located at a periphery of the first image,
and position and size of sides contacting with the first
image, respectively.
42. An object-between-network display method according
to claim 39, wherein when the first image is displayed,

45

Dec. 13, 2001

figures and sizes of the object display domains in the display
areas are standardized in accordance with figures and sizes
of the display areas.

43. An object-between-network display method according
to claim 39, wherein when the first image is displayed, first,
the plurality of objects are displayed, and then it is displayed
that the plurality of objects are interconnected with wirings
in which a direction of flow of data or control is repeatedly
displayed in units of predetermined segments.

44. An object-between-network display method according
to claim 39, wherein when the first image is displayed, in
wirings consisting of a central wire and edge wires extended
along both sides of the central wire, each of the edge wire
having a display aspect different from the central wire, there
is provided such a display of wiring that of the intersecting
wirings, with respect to wirings each representative of a
same flow of data or control, the central wire-to-central wire
are continued, and with respect to wirings each representa-
tive of a mutually different flow of data or control, the
central wire of one of the wirings is divided into parts at a
position contacting with or adjacent to the edge wires of
another wiring.

45. An object-oriented programming supporting appara-
tus for coupling a plurality of objects, each having data and
operations, with one another in accordance with an instruc-
tion, said object-oriented programming supporting appara-
tus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a
data output terminal for transferring data of the object
to another object, a data input terminal for receiving
data from another object, a message terminal for issu-
ing a message to make a request for processing to
another object, and a method terminal for receiving a
processing request from another object to execute a
method, the object being represented by a hierarchical
structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a
wiring for coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of
objects through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition
for instructing a position of an object on the hierarchi-
cal structure to said hierarchical structure construction
means,

wherein said hierarchical structure construction means
has means for producing a duplicate object of a sub-
stantial object designated in accordance with an
instruction from said handler, and for disposing the
duplicate object at a hierarchy different from a hierar-
chy at which the substantial object is disposed, and

said object coupling means receives from said handler an
instruction as to a wiring between the duplicate object
and another object in the wiring of the hierarchical
structure in which the duplicate object is disposed, and
constructs a coupling structure in which the duplicate

US 2001/0052109 Al

object and the associated substantial object are pro-
vided in the form of a united object.

46. An object-oriented programming supporting appara-
tus for coupling a plurality of objects, each having data and
operations, with one another in accordance with an instruc-
tion, said object-oriented programming supporting appara-
tus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a
data output terminal for transferring data of the object
to another object, a data input terminal for receiving
data from another object, a message terminal for issu-
ing a message to make a request for processing to
another object, and a method terminal for receiving a
processing request from another object to execute a
method, the object being represented by a hierarchical
structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a
wiring for coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of
objects through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition
for instructing a position of an object on the hierarchi-
cal structure to said hierarchical structure construction
means,

wherein said object coupling means releases a coupling
structure of the object before a replacement with
another object in accordance with an instruction from
said handler, and causes the object after the replace-
ment to succeed to the coupling structure of the object
before the replacement with another object, and

said hierarchical structure construction means disposes
the object after the replacement, instead of the object
before the replacement, at a hierarchy at which the
object before the replacement is disposed.

47. An object-oriented programming supporting appara-
tus for coupling a plurality of objects, each having data and
operations, with one another in accordance with an instruc-
tion, said object-oriented programming supporting appara-
tus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a
data output terminal for transferring data of the object
to another object, a data input terminal for receiving
data from another object, a message terminal for issu-
ing a message to make a request for processing to
another object, and a method terminal for receiving a
processing request from another object to execute a
method, the object being represented by a hierarchical
structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a
wiring for coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of
objects through a wiring;

Dec. 13, 2001

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition
for instructing a position of an object on the hierarchi-
cal structure to said hierarchical structure construction
means,

wherein said hierarchical structure construction means is
in response to an instruction from said handler such that
a plurality of objects from among the objects disposed
at a predetermined hierarchy are designated and the
plurality of objects are rearranged on the lower-order
hierarchy by one stage, and rearranges the plurality of
objects on the lower-order hierarchy by one stage, and
produces and arranges an object including the plurality
of objects on the predetermined hierarchy in such a
manner that a coupling structure among the plurality of
objects and a coupling structure among the plurality of
objects and objects other than the plurality of objects
are maintained.

48. An object-oriented programming supporting appara-
tus for coupling a plurality of objects, each having data and
operations, with one another in accordance with an instruc-
tion, said object-oriented programming supporting appara-
tus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a
data output terminal for transferring data of the object
to another object, a data input terminal for receiving
data from another object, a message terminal for issu-
ing a message to make a request for processing to
another object, and a method terminal for receiving a
processing request from another object to execute a
method, the object being represented by a hierarchical
structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a
wiring for coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of
objects through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition
for instructing a position of an object on the hierarchi-
cal structure to said hierarchical structure construction
means,

wherein said display means has, in case of existence of a
plurality of method terminals connected to one message
terminal designated in accordance with an instruction
through said handler, means for displaying a list indica-
tive of an execution sequence of a plurality of methods
associated with the plurality of method terminals, and

said object coupling means has means for reconstructing
a coupling structure in which the execution sequence of
the plurality of methods appearing at the list displayed
on said display means are altered in accordance with an
instruction by said handler.

US 2001/0052109 Al

49. A program storage medium for use in an object-
oriented programming, the program storage medium being
adapted for storing therein a program to support an object-
oriented programming for coupling a plurality of objects,
each having data and operations, with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data
output terminal for transferring data of the object to
another object, a data input terminal for receiving data
from another object, a message terminal for issuing a
message to make a request for processing to another
object, and a method terminal for receiving a process-
ing request from another object to execute a method,
the object being represented by a hierarchical structure
which permits one or a plurality of objects to exist in a
single object, and an instruction for coupling terminals
of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of
objects in accordance with the instruction for coupling
terminals of the plurality of objects through a wiring;
and hierarchical structure construction means for con-
structing a hierarchical structure of objects, and

said program storage medium stores such a program that
said hierarchical structure construction means has
means for producing a duplicate object of a substantial
object designated in accordance with an instruction
from said handler, and for disposing the duplicate
object at a hierarchy different from a hierarchy at which
the substantial object is disposed, and said object
coupling means receives from said handler an instruc-
tion as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure
in which the duplicate object is disposed, and con-
structs a coupling structure in which the duplicate
object and the associated substantial object are pro-
vided in the form of a united object.

50. A program storage medium for use in an object-
oriented programming, the program storage medium being
adapted for storing therein a program to support an object-
oriented programming for coupling a plurality of objects,
each having data and operations, with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data
output terminal for transferring data of the object to
another object, a data input terminal for receiving data
from another object, a message terminal for issuing a
message to make a request for processing to another
object, and a method terminal for receiving a process-
ing request from another object to execute a method,
the object being represented by a hierarchical structure
which permits one or a plurality of objects to exist in a
single object, and an instruction for coupling terminals
of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of
objects in accordance with the instruction for coupling
terminals of the plurality of objects through a wiring;
and hierarchical structure construction means for con-
structing a hierarchical structure of objects, and

said program storage medium stores such a program that
said object coupling means releases a coupling struc-

Dec. 13, 2001

ture of the object before a replacement with another
object in accordance with an instruction for the replace-
ment of objects, and causes the object after the replace-
ment to succeed to the coupling structure of the object
before the replacement with another object, and said
hierarchical structure construction means disposes the
object after the replacement, instead of the object
before the replacement, at a hierarchy at which the
object before the replacement is disposed.

51. A program storage medium for use in an object-
oriented programming, the program storage medium being
adapted for storing therein a program to support an object-
oriented programming for coupling a plurality of objects,
each having data and operations, with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data
output terminal for transferring data of the object to
another object, a data input terminal for receiving data
from another object, a message terminal for issuing a
message to make a request for processing to another
object, and a method terminal for receiving a process-
ing request from another object to execute a method,
the object being represented by a hierarchical structure
which permits one or a plurality of objects to exist in a
single object, and an instruction for coupling terminals
of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of
objects in accordance with the instruction for coupling
terminals of the plurality of objects through a wiring;
and hierarchical structure construction means for con-
structing a hierarchical structure of objects, and

said program storage medium stores such a program that
said hierarchical structure construction means is in
response to an instruction such that a plurality of
objects from among the objects disposed at a predeter-
mined hierarchy are designated and the plurality of
objects are rearranged on the lower-order hierarchy by
one stage, and rearranges the plurality of objects on the
lower-order hierarchy by one stage, and produces and
arranges an object including the plurality of objects on
the predetermined hierarchy in such a manner that a
coupling structure among the plurality of objects and a
coupling structure among the plurality of objects and
objects other than the plurality of objects are main-
tained.

52. A program storage medium for use in an object-
oriented programming, the program storage medium being
adapted for storing therein a program to support an object-
oriented programming for coupling a plurality of objects,
each having data and operations, with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data
output terminal for transferring data of the object to
another object, a data input terminal for receiving data
from another object, a message terminal for issuing a
message to make a request for processing to another
object, and a method terminal for receiving a process-
ing request from another object to execute a method,
the object being represented by a hierarchical structure
which permits one or a plurality of objects to exist in a
single object, and an instruction for coupling terminals
of the plurality of objects through a wiring is given,

US 2001/0052109 Al

said program includes: object coupling means for con-
structing a coupling structure among a plurality of
objects in accordance with the instruction for coupling
terminals of the plurality of objects through a wiring;
and hierarchical structure construction means for con-
structing a hierarchical structure of objects, and

said program storage medium stores such a program that
said object coupling means has, in case of existence of
a plurality of method terminals connected to one mes-
sage terminal designated, means for making up a list
indicative of an execution sequence of a plurality of
methods associated with the plurality of method termi-
nals, and means for reconstructing a coupling structure
in which the execution sequence of the plurality of
methods is altered in accordance with an alteration
instruction of the execution sequence of the plurality of
methods appearing at the list.

53. A component storage medium for storing a component
which serves as one object in combination with a predeter-
mined existing software, said component including a
method of issuing an event of the predetermined existing
software through a firing by a message issued in other
object.

54. A component storage medium according to claim 53,
wherein said component further includes a message for
informing other object of that the event is issued through
executing said method.

55. A component storage medium for storing a component
which serves as one object in combination with a predeter-
mined existing software, said component including a mes-
sage for informing other object, upon receipt of occurrence
of a predetermined event of the predetermined existing
software, of that the predetermined event is generated.

56. A component builder apparatus comprising:

a first handler for selectively indicating making of meth-
ods and messages;

asecond handler for inputting an instruction of an issue of
a desired event of a predetermined existing software;
and

a component builder means for building a component
which serves as one object in combination with said

48

Dec. 13, 2001

existing software, said component builder means serv-
ing, when making of a method is instructed by an
operation of said first handler and a predetermined
event of the existing software is issued by an operation
of said second handler, to make on the component a
method which fires with a message issued by another
object and issues the event, and serving, when making
of a message is instructed by an operation of said first
handler and an issue of a predetermined event of the
existing software is instructed by an operation of said
second handler, in response to an occurrence of the
event, to make on the component a message for inform-
ing other objects of the fact that the event occurred.
57. An object-oriented programming supporting appara-
tus comprising:

a component file for storing therein a component which
serves as one object in combination with a predeter-
mined existing software, said component including a
method of issuing an event of the predetermined exist-
ing software through a firing by a message issued in
other object, and a message for informing other object
of that the event is issued through executing said
method, and said component being stored in said com-
ponent file with respect to one or more existing soft-
wares;

a handler for inputting an instruction of an issue of the
event as to the existing software;

an event log file for storing a list for the events as to one
or more existing softwares, which are sequentially
issued in accordance with an operation of said handler;
and

a component coupling means for taking out sequentially
the events from said event log file to combine a
message of a component including the message for
informing other object of that the same event as that
taken out before is issued and a method of a component
including the method of issuing the same event as that
taken out now.

