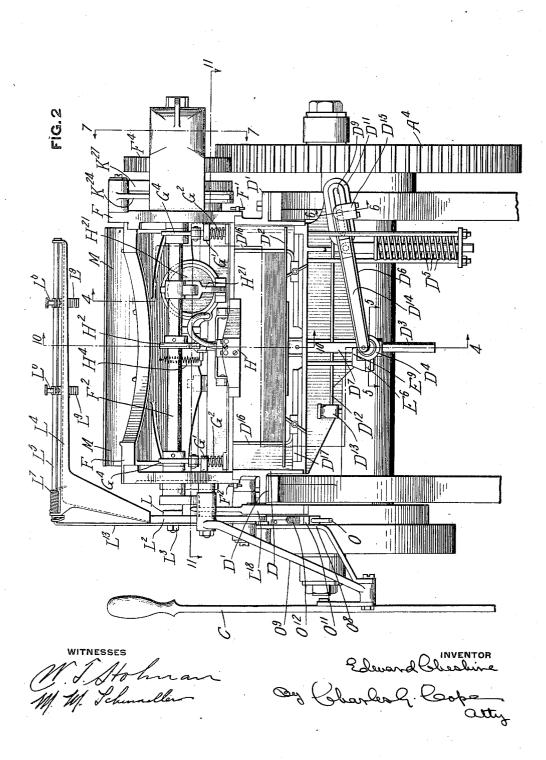

E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE.

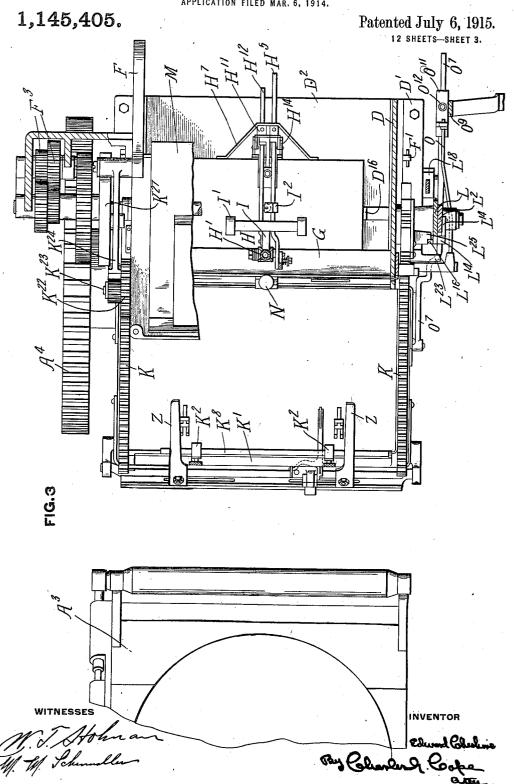
APPLICATION FILED MAR. 6, 1914.

1,145,405.

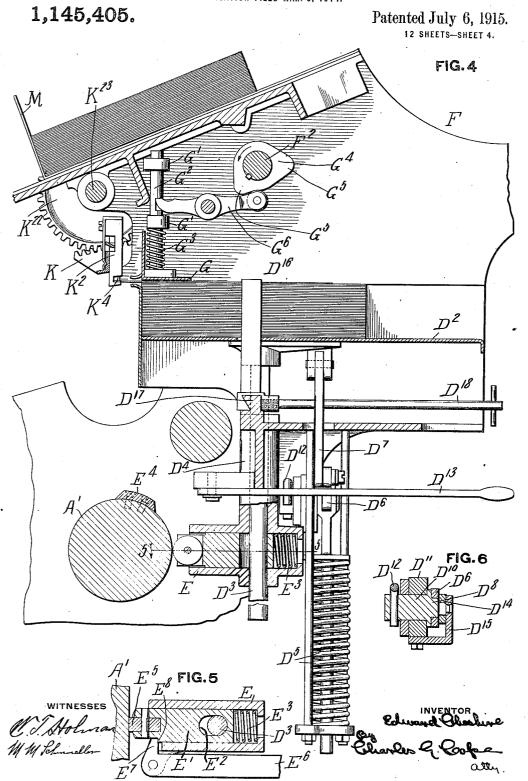
Patented July 6, 1915.



E. CHESHIRE.

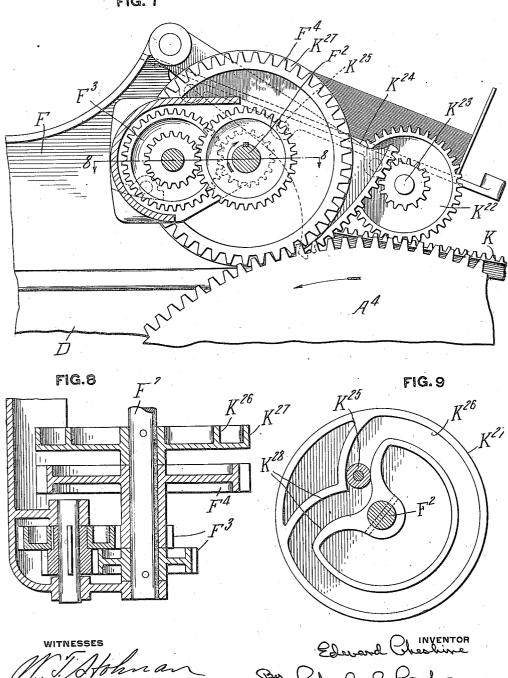

PAPER FEEDING AND HANDLING DEVICE. APPLICATION FILED MAR. 6, 1914.

1,145,405.


Patented July 6, 1915.
12 SHEETS—SHEET 2.

E. CHESHIRE.
PAPER FEEDING AND HANDLING DEVICE.
APPLICATION FILED MAR. 6, 1914.

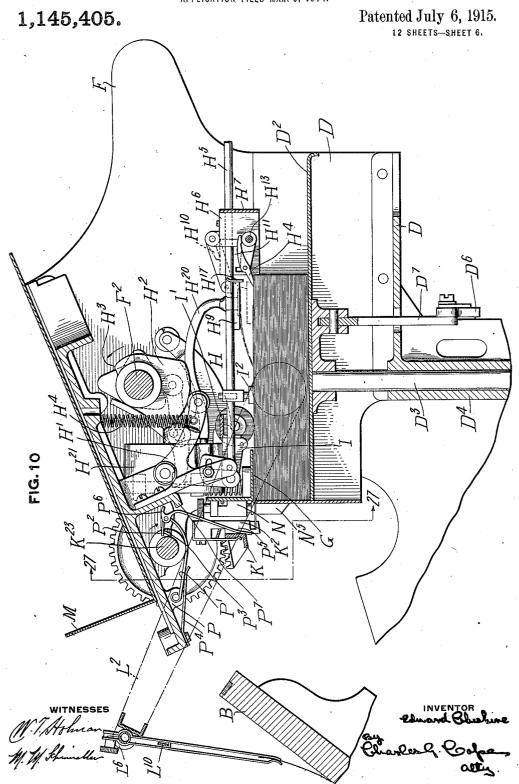
E. CHESHIRE.
PAPER FEEDING AND HANDLING DEVICE.
APPLICATION FILED MAR. 6, 1914.



E. CHESHIRE. PAPER FEEDING AND HANDLING DEVICE. APPLICATION FILED MAR. 6, 1914.

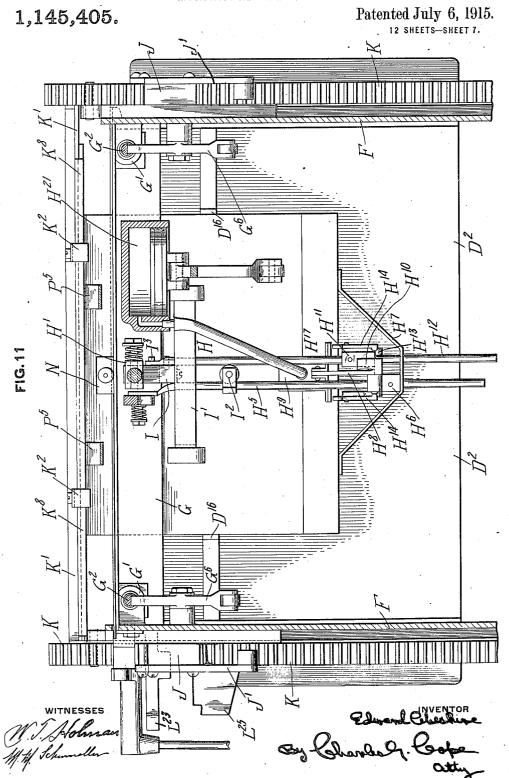
1,145,405.

Patented July 6, 1915.
12 SHEETS—SHEET 5.



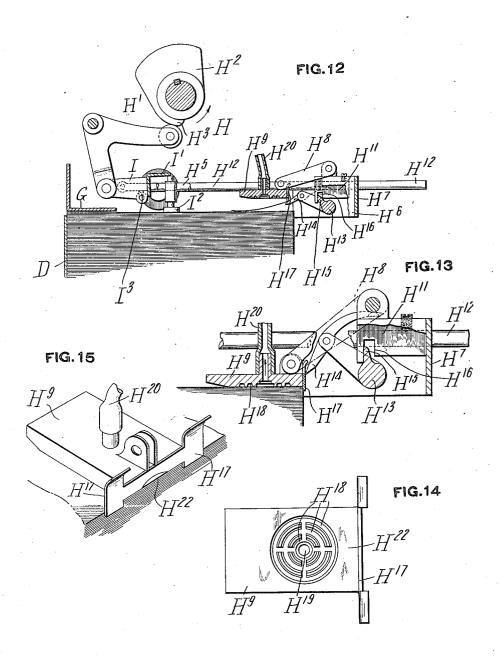
E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE.


APPLICATION FILED MAR. 6, 1914.

E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE.

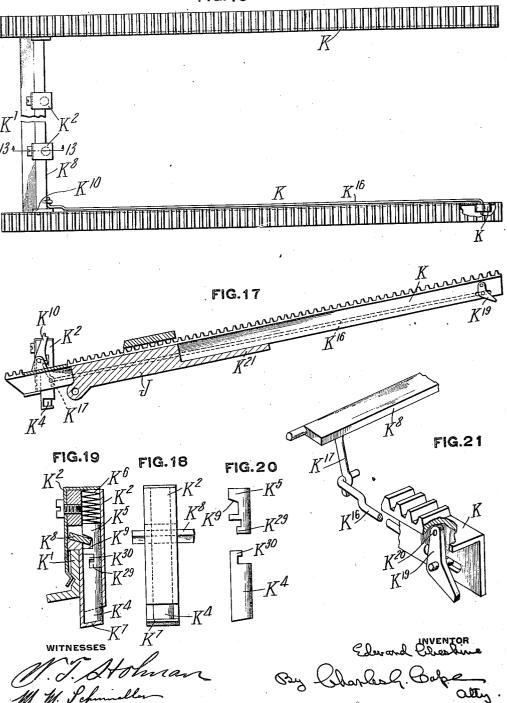

APPLICATION FILED MAR. 6, 1914.

E. CHESHIRE. PAPER FEEDING AND HANDLING DEVICE. APPLICATION FILED MAR. 6, 1914.

1,145,405.

Patented July 6, 1915.

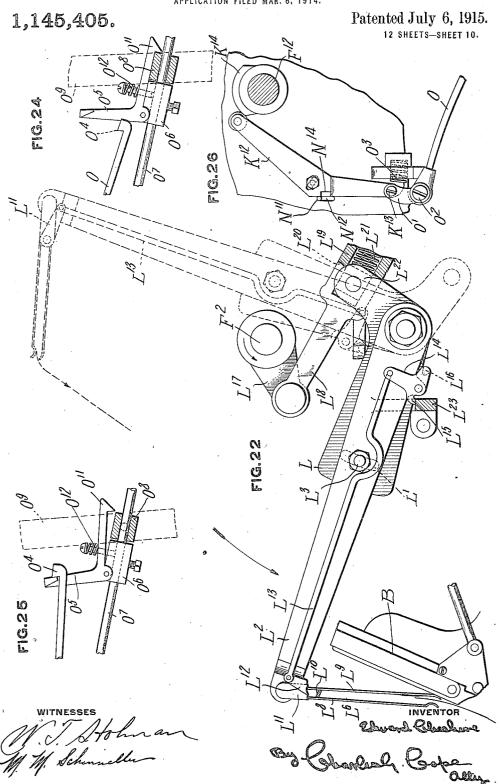
Witnesses W. J. Stohman M. M. Schumillan Edward Charles Cope atty


E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE. APPLICATION FILED MAR. 6, 1914.

1,145,405.

Patented July 6, 1915.


FIG. 16

E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE.

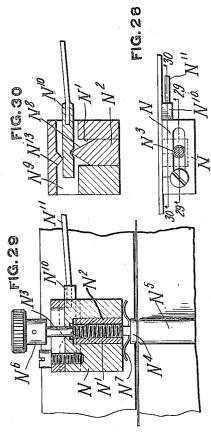
APPLICATION FILED MAR. 6, 1914.

E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE.

APPLICATION FILED MAR. 6, 1914.

1,145,405. Patented July 6, 1915. FIG. 23


E. CHESHIRE.

PAPER FEEDING AND HANDLING DEVICE.

APPLICATION FILED MAR. 6, 1914.

1,145,405.

Patented July 6, 1915.

Report Cooper any.

UNITED STATES PATENT OFFICE.

EDWARD CHESHIRE, OF PITTSBURGH, PENNSYLVANIA, ASSIGNOR TO MILLER SAWTRIMMER COMPANY OF MICHIGAN, OF ALMA, MICHIGAN, A CORPORATION OF MICHIGAN.

PAPER FEEDING AND HANDLING DEVICE.

1,145,405.

Specification of Letters Patent.

Patented July 6, 1915.

Continuation of application Serial No. 503,896, filed July 22, 1909. This application filed March 6, 1914. Serial No. 823,024.

To all whom it may concern:

Be it known that I, EDWARD CHESHIRE, a citizen of the United States, residing at Pittsburgh, in the county of Allegheny and State of Pennsylvania, have invented new and useful Improvements in Paper Feeding and Handling Devices, of which the following is a full, clear, concise, and exact description, reference being had to the accompanying drawing, forming a part of this specification.

My invention pertains to paper feeding and handling devices, and particularly relates to paper feeders for printing presses, more especially those of the Gordon and

similar types.

It is an object of my invention to provide an efficient device for automatically feeding sheets to a printing press of the Gordon 20 type, which will be simple of construction and not liable to get out of order during use, and which will require a minimum of mechanical skill to operate it.

It is another object of my invention to provide a feeding device which may readily be attached to a press without the necessity of radical changes being made in the latter.

It is a further object to produce a device which will be certain in its operation, and 30 which will position the sheets properly on the platen. And other and further objects of the invention will appear from the following description, taken in connection with

the appended claims.

By way of example, a press feeding device constructed in accordance with my invention is described in the following specification and shown in the accompanying drawings. It is to be understood, however, that the invention may be embodied in other forms, and that changes may be made in the form described and shown, without exceeding the scope thereof as defined in the appended claims.

In the drawings: Figure 1 is a side elevation of the feeder as applied to a press of the Gordon type, part of the press being illustrated; Fig. 2 is a rear elevation of the feeder; Fig. 3 is a horizontal section taken on the line 3—3 of Fig. 1; Fig. 4 is an enlarged vertical section taken on the line 4—4 of Fig. 2, showing the means for releasably locking the floating bottom of the feed box; Fig. 5 is a horizontal section taken

on the line 5-5 of Figs. 2 and 4; Fig. 6 is 55 an enlarged cross section on the line 6-6 of Fig. 2 and shows details of the actuating lever for the floating bottom of the feed box; Fig. 7 is an enlarged vertical section on the line 7—7 of Fig. 2, illustrating the 60 driving gears for the feeder operating cam shaft; Fig. 8 is a horizontal section taken on the line 8—8 of Fig. 7; Fig. 9 is a detail view of the cam disk for effecting the movement of the frame which supports the feed 65 grippers; Fig. 10 is a vertical section on the line 10—10 of Fig. 2 and shows the means for separating the sheets singly from the stock and pushing them forward to be taken by the feed grippers; Fig. 11 is an enlarged 70 partly sectional plan showing the same parts, the section being taken on the line 11—11 of Fig. 2; Fig. 12 is a detached view of the sheet-separating device showing the same in another position; Fig. 13 is a partly 75 sectional detached view drawn to an enlarged scale, illustrating the sheet lifting shoe and related parts in still another position; Figs. 14 and 15 are an inverted plan and a perspective view respectively, illus- 80 trating the form and operation of the sheetlifting shoe; Fig. 16 is a plan of gripper frame, the frame being shown as detached from the remainder of the device; Fig. 17 is a detail side elevation of the gripper 85 frame and the guide therefor, the guide being shown in section; Figs. 18 and 19 are a front view and a vertical section respectively of one of the feed grippers; Fig. 20 shows two of the gripper members de- 90 tached from the rest of the device; Fig. 21 is a fragmentary perspective view showing the gripper operating bar and the trip lever for actuating the same to remove the spring pressure from the gripper members; Fig. 22 95 is a fragmental view illustrating the operation of the delivery grippers; Fig. 23 is a side view of the feeder, certain portions being shown in dotted lines to reveal the gripper frame and the mechanism for causing 100 the press to be thrown out when more than one, or less than one, sheet is moved forward to the feed grippers; Figs. 24 and 25 are detached views illustrating the operating of the coupling lever of the throwing out 105 mechanism; Fig. 26 is a detached view showing the throwing out lever in a position different from that shown in Fig. 23; Fig.

27 is a sectional front elevation, the section being taken on the line 27-27 of Fig. 10; Fig. 28 is a plan of the testing gage; and Figs. 29 and 30 are vertical sections taken 5 on the line 29—29 and 30—30 respectively of Fig. 28.

Like characters of reference refer to like parts throughout the following specification and the several figures of the drawings.

As has been stated above, the feeder is illustrated as applied to a press of the Gordon type. Such a press consists of a main frame or body A provided with suitable bearings in which is supported a driving 15 shaft A carrying upon one end a crank disk, which actuates, by means of a connecting rod A², a form-receiving bed A³ which is pivoted to the frame A in such a manner that the reciprocating movements of the 20 connecting rod A2 will cause a forward and backward movement of the bed. Such a press also comprises a platen B pivotally supported upon trunnions B¹ carried in suitable bearings on the frame A. The platen 25 B is intermittently moved into and out of parallelism with the bed A3 by the agency of a cam groove B3 formed in a gear wheel A4 carried by the end of the driving shaft A¹ opposite to that which carries the crank 30 disk, the form of the cam groove B3 being such that the platen is allowed to remain stationary between each of its intermittent movements for a sufficient time to enable the paper printed to be removed and a fresh sheet 35 to be placed thereon. The ordinary Gordon press is also provided with a hand lever C by means of which the operator may alter the operative length of the connecting rod A² and thus prevent the bed A3 from moving 40 forward a sufficient distance to make a printing impression, the press, however, being allowed to continue running. The construction of feeder illustrated in

the drawings consists of a feed box of such form that it may be attached to the rear of the frame of an ordinary press near the po-sition usually occupied by the feed table, and a hood detachably connected to the feed box. This hood carries a device for separat-50 ing the sheets of paper one by one from the pile or stack carried by the feed box and pushing them forward to the feed grippers; which device will be termed the sheet separating mechanism throughout this specifica-55 tion. The hood also supports a frame which is adapted to be moved to and fro across the platen during the period in which the latter is stationary and carries grippers which re-ceive the sheets of paper from the sheet 60 separating device and deposit them upon the platen. This frame and the parts rethe platen. lated thereto will be hereinafter termed the feed mechanism. The hood also carries a device for grasping the paper after a print-05 ing impression has been made thereon and

conveying it to the delivery box, which device will be hereinafter termed the delivery mechanism. The hood also carries a device by means of which the bed and platen of the presses are thrown out of operative relation 70 when either more or less than one sheet is moved forward by the sheet separating mechanism, the device also operating to prevent the feed mechanism from seizing the sheets when more than one is moved for 75 ward by the sheet separating mechanism. This device will be hereinafter termed the throwing out mechanism. It may here be mentioned that the connection between the hood and the feed box is such that the for- 80 mer, together with the sheet separating mechanism, feed mechanism, delivery mechanism and throwing out mechanism carried thereby, may be readily removed in case of accident to any of these parts, the press be- 35 ing then in such condition that the paper may be fed thereto by hand from the feed box. Moreover, the method of attachment of the feed box to the frame of the press is such that the former may be readily re- 90 moved if desired, leaving the press in its original position for feeding by hand. These features render it possible to use the feeder in connection with an already existing press, which is a great advantage, com- 95 mercially.

The feed box.—The connection between the feed box D and the frame A is effected by means of side flanges D1 (Figs. 2 and 3) with which the box D is provided. flanges D1 are bolted to the frame A in a position near that usually occupied by the feed table, so that by removing the bolts the feed box and the parts carried thereby may be immediately taken off the press. The feed 105 box D (Figs. 1-6) is provided with a floating bottom D², upon which a pile of stock is adapted to be supported. The floating bottom D² is carried by a stem D³ slidably mounted in a guide D4 which extends down- 110 wardly from the base of the feed box. A spring D5 is provided for retaining the floating bottom D² in its uppermost position, this spring being connected with the floating bottom by means of a lever D6, to which 115 the upper end of the spring is attached and a link D7. The operative length of the lever D⁶ determines, of course, the upward pressure applied by the spring to the floating bottom, and, as it is desirable that this 120 upward pressure be regulated according to the weight of the particular size and kind of stock used, provision is made to vary the operative length of this lever in accordance with the particular variety of stock employed. To this end the pivot D⁸ (Figs. 2, 4 and 6) of the lever D⁶ is made movable in a clot D⁹ formed in the lever D⁶ is made movable. in a slot D9 formed in the end thereof. The pivot D⁸ is carried by a block D¹⁰ slidable in a guide D¹¹ which is secured to the feed 180

1,145,405

box, and this block is hitched, by means of a rod D¹² to a pivoted hand lever D¹³. In order that the relative positions of the lever D^6 and the link D^7 may be accurately defined a spacing link D^{14} is pivoted to the link D^7 coaxially with the lever D^6 and has its other end pivotally supported in a lug

 D^{15} secured to the guide $D^{1\bar{1}}$.

In order to adjust the floating bottom D² 10 for a particular variety of stock it is only necessary to release the stem D3, which, as will be described below, is normally locked against movement except at predetermined periods, when the hand lever D13 may be moved either to the left or to the right (Fig. 2) according as it is desired to shorten the operative length of the lever D⁶ for light stock or lengthen the operative length of the lever D⁶ for heavy stock. The nature of the 20 spring D⁵ is such that its pressure will be gradually reduced, as the floating bottom rises, approximately in proportion to the reduction of weight of the stock owing to the removal of the paper sheet by sheet.

As was stated in the preceding paragraph, the floating bottom D² is normally locked against upward movement by the action of the spring D5. This is effected by means of a clutch E (Figs. 4 and 5) which operates 30 upon the lower end of the stem D³. clutch E consists of a block E¹ slidably mounted in a hollow boss, situated at the lower end of the guide D4, and having a slot E2 therein through which the stem D3 passes. 35 A coiled spring E3 abuts against the end of the block E1 and normally forces the end surface of the slot E2 into engagement with the stem D3 whereby the stem is held against movement. The clutch is intermittently re-40 leased by means of a cam projection E4 which is secured to the driving shaft A1 of the press. The cam projection E⁴ at each revolution of the shaft A¹ engages a roller E⁵ carried by the block E¹ and thus forces 45 the block inward against the action of the spring E3, whereby the stem D3 is released and the floating bottom D² allowed to be moved upward by the action of the spring D5. The cam projection E4 is placed in such position upon the shaft A1 that the clutch will be released and the floating bottom allowed to move upward shortly after a sheet has been separated from the pile and removed to the platen by means of the sheet 55 separating mechanism and feed mechanism to be hereinafter described.

In order that the floating bottom D² may be moved downward to receive a new pile of stock and in order to enable the operator to adjust the height of the floating bottom manually when desired, a clutch actuating lever E⁶ (Figs. 2 and 5) is pivoted to the casing of the clutch E in such position as to engage, by means of its bent over end E7, a 65 shoulder E⁸ formed upon the clutch block

E¹. By moving the clutch operating lever E⁶ to the left, its end E⁷ is forced against the shoulder E⁸ and the clutch block E¹ is thereby forced inwardly against the action of the spring E³, the stem D³ being thus released. 70 When the stem D³ has been released the floating bottom may be manually pressed down against the action of the spring D⁵ to any extent desired.

In order that the floating bottom D² may 75 be locked in its lowermost position, if desired, during the operation of the press, the outer end of the hand lever E6 is provided with a hook E9 which may be made to engage over the end of the lever Do, whereby 80 the floating bottom is securely retained in the lowermost position. This is the condi-

tion of the parts shown in Fig. 2.

The floating bottom D2 is formed with transverse slots through which project side 85 stops D¹⁶ (Figs. 2, 3 and 4) between which the pile of stock is placed upon the floating These stops are laterally adjustbottom. able for different widths of paper and are similar to one another, so that a description 90 of one of them will suffice. Each of the stops D¹⁶ is slidably mounted upon a transverse guide bar D17 carried by the box D beneath the floating bottom, and is provided with a screw hole into which is threaded 95 the end of a rod D18 which extends to the rear of this feed box. The end of the rod D¹⁸ is arranged to bear against the guide bar D17 and thus lock the stop D16 against movement. However, when it is desired to 100 adjust the stop, this may be done by turning the rod D18 so as to release its end from engagement with the guide D17 when the stop may be manually moved to the right or left by means of the rod D^{18} .

The mechanism for raising the floating bottom D² does not, in itself, form part of the present invention, but is the subject-matter of my co-pending application Serial No.

790.524, filed September 18, 1913.

The hood.—The hood F (Figs. 1, 2, 3, 7) and 8) is mounted upon the upper edges of the sides of the feed box D and is secured thereupon by means of removable pins F^1 . When the pins F are removed, the hood, together with the devices which it carries (sheet separating mechanism, feed mechanism, delivering mechanism, and throwing out mechanism) can be bodily removed from the feed box, thus leaving the press in condition for feeding by hand.

Mounted in suitable bearings in the hood F is the counter shaft F2 which carries a number of cams and other devices for actuating the various parts of the feeder. The counter shaft F² is driven, by means of toothed gearing F³, from the gear wheel A⁴ of the press, the arrangement of the gearing F³ being such that the counter shaft F² rotates at the same speed as the driving shaft

A1 of the press. The upper side of the hood slopes forward downwardly and provides a table upon which the delivery box M may

be supported. The sheet separating mechanism.—The construction of the sheet separating mechanism is as follows: Slidably mounted in lugs G1 (Figs. 2, 3, 4 and 11) extending inwardly from the sides of the hood F are a pair of pins G² which are carried by a presser bar G, compression springs G³ (Fig. 4) being inserted between the presser bar and the lugs G1, which springs tend to hold the presser bar in its lowermost position against stops formed by the upper edges of the side walls of the box D. When the presser bar G is in its lowermost position and a pile of stock is in place upon the feed box the presser bar G firmly presses down upon its stops and compresses the paper along the front edge thereof, the pile of stock being intermittently moved upward against the presser bar G by the action of the spring D⁵. Cams G⁴, mounted on the counter 25 shaft F² (Figs. 2, 4 and 11) are provided for intermittently raising the presser bar and allowing one of the sheets of paper upon the pile to be moved forward. These upon the pile to be moved forward. cams each have two projections G⁵ thereon 30 which alternately engage the rollers of cam levers G6 which are pivoted to the hood, and the ends of which engage in notches in the pins G². As the cam G⁴ revolves, therefore, the lever G6 is operated to raise the 35 presser bar and allow the paper to be moved beneath it, this raising operation occurring twice during each revolution of the counter shaft F2, once in order to enable the testing gage to operate, and a second time to enable 40 the sheet to be withdrawn by the feed

grippers.

The sheet separating mechanism proper H (Figs. 10-15) is actuated by means of a bell crank H1 rockably supported in the hood F 45 adjacent the center of the front end thereof. Movement is imparted to the bell crank lever H^1 by means of a cam H^2 secured to the counter shaft F². The cam H² is formed with a small starting hump H³ and the 50 configuration of the remainder of the cam is such that a slight forward movement is imparted to the bell crank lever by the hump H³, and, after the bell crank lever has remained stationary for a short time, a considerable further forward movement is effected. The bell crank lever then remains stationary for a period and is afterward allowed by the cam to return to its original

position, such return being effected by a 60 spring H⁴. The slight preliminary movement caused by the hump H3 causes the sheet lifting shoe to operate.

Suitably secured to the hood is a horizontal rod H5 carrying on its outer end a

block H6 which carries the sheet lifting de- 65 The block H⁶ is adjustably mounted upon the rod H5 so as to provide for the use of various sizes of sheets of paper and carries an end stop H7, which is shown as being formed of bent sheet metal. The block He 70 is adjusted upon the rod H5 so that the end stop H7 presses lightly against the rear of the pile of paper. Pivoted to the upper part of the block H° is a link H° carrying at its outer end the pneumatic lifting shoe H°. 75 The link H⁸ is provided with a projection H10 arranged to be engaged and moved by a block Hi secured to a movable rod Hi which derives its movement from the bell crank lever H¹. Rockably supported in the ⁸⁰ block H⁶ is a spindle H¹³ carrying at each end a lever to which is secured a paper separating dog H¹⁴. The spindle H¹³ is formed with a projection H15 thereon which engages in a recess H16 formed in the lower side of 85 the block H11 so that the latter, in its forward and backward movements will intermittently rock the spindle H¹³ to raise and lower the dogs H¹⁴. The lifting shoe H⁹ is provided with a rear plate H17 the ends of 90 which extend slightly downward (Fig. 15) and behind which the dogs H¹⁴ engage when they are raised. As the block H¹¹ is moved forward by reason of the bell crank lever \mathbb{H}^1 being moved by the hump H3 of the cam H2 95 and the rod H12 being consequently pulled forward, it engages the projection H10 and thus raises the lifting shoe H9 to lift a sheet of paper. Practically at the same time the rear face of the recess H¹⁶ engages against 100 the projection H¹⁵ of the spindle H¹³ and effects a downward rocking movement thereof to lower the dogs H14, the result being that these dogs slip downwardly and forwardly from the rear plate H¹⁷ and enter 105 beneath the lifting shoe before the sheet of paper lifted thereby has had time to fall. Fig. 13 shows the position of these parts just before the lifting shoe H9 rises. Fig. 12 illustrates the position of the dogs as they 110 are being forced downward by the block H¹¹, the dogs being shown as just entering beneath the shoe H⁹ to catch a sheet of paper. In order that the shoe H⁹ may be enabled ¹¹⁵

to perform the above described lifting operation its lower face is formed with a plurality of concentric connected circular grooves $m H^{18}(Fig. 14)$ and with a central hole $m H^{19}$ communicating by means of a hose H20 with a 120 pump H21 actuated by a cam on the counter shaft F². Just as the shoe H⁹ is being lifted, the pump is actuated by its cam to create a suction in the hole His and concentric grooves H18, so that, as the shoe is raised, a 125 sheet of paper will be pneumatically gripped thereby and raised with it. Immediately after the sheet has been raised the move1,145,405

5

ment of the pump is reversed and consequently the sheet falls. Before, however, the sheet has had time to reach the pile again the dogs H¹⁴ have entered beneath the lifting shoe and the sheet of paper consequently falls with its rear edge resting upon the points of these dogs whereby it is separated from the remainder of the pile. The dogs H¹⁴ press upon the pile of stock sufficiently hard to prevent the removal of any other sheets of paper when the separated sheet is withdrawn.

In order to prevent the lifting foot H⁹ from raising two sheets at once owing to the 15 paper being drawn into the concentric grooves H¹⁸ and thereby creating a suction upon the second sheet of paper in the pile, I form a slight depression H²² (Figs. 14 and 15) between the rear edge of the lift-20 ing shoe and the circular grooves H¹⁸. The effect of this is clearly shown on Fig. 15. When the top sheet is sucked against the shoe it adapts itself to the configuration of the lower surface thereof and therefore 25 creates a small passage between itself and the next sheet, whereby air is admitted between the two sheets and the chance of more than one being raised by the lifting shoe is minimized.

All of the above described operations occur during the slight movement of the rod H¹² due to the hump H³ effecting the preliminary movement of the bell crank lever H¹

35 While the above operations have been going on the sheet pushing device has begun its movement. The sheet pushing device is constructed as follows: An arm I is attached to the free end of the bell crank le-40 ver H1 by means of a friction joint and carries at its end a cross bar I1 to which are attached friction disks arranged to engage the top sheet of paper and move it forward. When the bell crank lever is in its upper 45 and rearmost position the cross bar I¹ is situated somewhat above and slightly to the rear of a spacing pin I² mounted upon the rod H⁵, the lifting rod H⁹ being then in a position shown in full lines in Fig. 13 50 and in dotted lines in Fig. 10. The distance between the under face of the cross bar I¹ and the top of the spacing pin I2 will always be the same, regardless of any buckling of the paper, when the parts are in position, this being due to the provision of a pin I^s upon the lever I which slidably engages beneath the rod H¹² when the lever I has been moved through part of its rearward movement. As soon as the pin I^3 engages against the rod H^{12} the lever Iceases to move as a part of the bell crank lever $\mathbf{H^1}$ and begins to rock about its frictional pivot. When a hump H³ begins to press upon the roller of the bell crank lever 65 H1 the lever I is moved downward until its

end presses upon the top of the spacing pin I² and remains in that position until the cam H² begins to move the bell crank lever H¹ again, when the cross bar I¹ will slip off the spacing pin I² and move downward to engage, by means of the friction disks, the top sheet of paper and move it forward into the position shown in Fig. 10, it being remembered that before the cross bar I¹ moves from above the spacing pin, 75 the lifting shoe and dogs will have separated a sheet in the manner described above. The spacing pin I² exactly determines the time at which the friction disks will strike the paper and the distance forward through which it will be moved, regardless of any buckling of the paper which may occur.

Just before the above operations take place one of the pairs of cam projections G⁵ will have operated the cam lever G⁶ to raise the pin G² and therefore the pressure bar G to enable the sheet to be pushed out in front. As the cam projections G⁵ pass away from the rollers of the cam levers the presser bar is allowed to fall in order that the testing gage to be described below may perform its operation. The sheet is then ready to be seized by the grippers and transferred to the platen of the press as soon as the grippers are operated and the presser 95 bar G raised for the second time.

The above described sheet-separating mechanism does not, in itself, form part of the present invention but forms the subject-matter of my co-pending application Serial 100 No. 527,004, filed November 9, 1909.

The feed mechanism.—The feed mechanism is constituted as follows: Pivoted to the hood are a pair of guides J (Figs. 11 and 23) in which the gripper frame is mounted. 105 These guides are similar in form and a description of one of them, therefore, will be sufficient. Each guide is provided with an upwardly extending arm J¹ bearing a roller which runs upon the periphery of a cam J2 110 which is mounted on the counter shaft F² and has a cam projection J³ thereupon. The roller of the arm J¹ is held in engagement with the cam J² by means of a compression spring J4, the result being that, when the 115 projection J³ strikes the roller of the arm J¹, the latter will be rocked about its pivot. Slidably mounted in the guide J¹ is the longitudinal tooth racks K of the gripper frame (Figs. 3, 16–21 and 23). These racks 120 are connected at their front end by the gripper supporting cross bar K1. A pair of grippers K² are mounted upon the cross bar K¹ in such manner as to be capable of lateral adjustment thereupon. The grippers K² are 125 of similar construction, each being provided with a central bore in which the gripper members K⁴ and K⁵ and the spring K⁶ are contained. The gripper members K⁴ and K⁵ are formed with interengaging hooks K²⁹ 136

and \mathbb{K}^{30} (Figs. 18, 19 and 20) a slight clearance being left between the hooks in order that a lost motion effect may be obtained. The spring K⁶ normally presses the gripper 5 member K⁵, and therefore the member K⁴, downwardly against a jaw K7 with which the gripper is provided. The gripper member K5 may, however, be lifted a sufficient distance to raise the member K4 away from 10 the jaw K7 in order to permit the insertion of the sheet of paper, while it also may be partially lifted so as to remove the spring pressure from the member K⁴ and, due to the clearance between the hooks K29 and 15 K³⁰, enable the gripper member K⁴ to engage the jaw K⁷ by means of its weight alone. This entire and partial raising of the gripper member K⁵ is effected by means of a flat bar K3 which extends through both grippers and into a recess K9 of each of the gripper members K5. The bar has a seat in each of the grippers, and it will be readily understood that when it is rocked about its seat the gripper members K⁵ will be raised, 25 a slight rocking movement of the bar effecting a partial raising of the members K5, whereby the gripper members K4 engage the jaws K⁷ by gravity, and a greater rocking movement of the bar effecting the entire 30 lifting of the gripper members K⁵ whereby the members K⁴ are also raised and the grippers placed into condition for receiving a sheet of paper.

The bar K⁸ is pivoted at its ends in ears 35 which extend upwardly from the racks K of the gripper frame near the end of the cross bar K¹, and is provided with an upwardly extending ear K¹⁰ which effects the complete tilting movement of the bar K⁸. The upper end of the ear K10 engages, when the gripper frame approaches the position in which a sheet of paper is to be taken, a trip lever K¹¹, whereby it is moved backward and the bar Ks is tilted to completely open the grippers.

to receive the sheet of paper.

The closing of the grippers upon the sheet of paper is effected by means of a lever K12 (Fig. 23). This lever is pivoted at K13 and has at its ends a cam roller which engages a cam K14 whereby the shoulder K15 of the lever is moved forward to engage the end of the trip lever K11 and move it out of engagement with the ear K10. When the trip lever K11 has thus been moved away from the ear K¹⁰ the springs K⁶ of the grippers force the bar K⁸ downward and the gripper members K⁴ against the jaws K⁷, whereby a sheet of paper is seized. The platen B has now returned from the previous printing operation and has reached the position shown in Fig. 1 and the gripper frame is now moved forward to deposit the sheet of paper thereupon. This is effected by bringing the front edge of the paper into engagement with stops Z which are provided upon

the platen for that purpose. In order, therefore, that, when the edge of the paper engages the stops, the sheet may be withdrawn from the grippers without any injury being done to the paper, it is desirable to provide 70 means whereby the grasp of grippers is lightened before the sheet is removed.

The lightening of the grippers is effected by slightly tilting the bar Ks whereby the paper is left held in the grippers by reason 76 of the weight of the gripper members K⁴ alone. This slight tilting of the bar K⁸ is effected by means of a link K16 (Figs. 17, 21 and 23) attached at one end to a projection K17 which extends downwardly from the bar 80 K8, and at the other end to a trip lever K10 which is pivoted at K20 to one of the racks The trip lever K10 is normally held forward by the action of the springs K6 of the grippers, but is arranged to be moved rear- 65 wardly by engagement with a backwardly extending strip K^{21} which is formed upon one of the guides J. The length of this strip is such that the trip lever K19 is operated some time before the grippers have completed their travel over the surface of the platen. This provides for the proper operation of the grippers regardless of the size of the paper used.

An adjustable sheet register is provided upon the platen for automatically moving the sheet fed into the proper printing posi-tion if the sheet was not fed to the correct position in the first case. This automatic register forms the subject matter of my Letters Patent No. 964,756, issued July 19, 1910, and will not therefore be specifically de-

scribed here.

The forward and backward movement of the gripper frame is effected by means of toothed wheels K²² (Figs. 1, 2, 3, 7, 8 and 9) mounted upon a spindle K²³ extending transversely of the hood F. A to and fro rotating movement is imparted to the shaft K28 by means of a pivoted tooth segment K^{24} engaging a pinion upon the shaft K^{23} . The segment K^{24} is provided with a cam rôller K²⁵ which enters a cam groove K²⁶ in a disk K²⁷ carried by the counter shaft F². The cam groove K²⁶ has an inwardly and outwardly extending portion K28 which effects the required upward and downward movement of the segment K^{24} . The cam disk K27 is mounted upon the shaft K2 in such position that the portion \mathbb{K}^{28} will come into operation during the time that the platen is held in its stationary position in order that the operation of the grippers may be carried on during the time that the platen is in its stationary position, that is, in the position shown in Fig. 1.

Briefly stated, the operation of the feed mechanism is as follows: Starting from the actuation, by the lever K12, of the trip lever K11: The trip lever K11 having been moved 1,145,405

so as to release the ear K¹⁰, the grippers are shut, by the action of their springs K6, upon the sheet of paper which has been fed forward by the separating mechanism. Just 5 at that moment the portion K²⁸ of the cam groove K^{26} begins to operate upon the roller K^{25} of the segment K^{24} whereby the segment is moved downwardly and the gripper frame is consequently moved forward over the 10 platen, the presser bar G having been raised previously by the second pair of cam projections G^5 to enable the sheet of paper to be removed. Somewhat after the grippers have passed the center of the platen the trip 15 lever K^{19} strikes the end of the strip K^{21} and is thereby moved rearwardly thus pulling upon the link K16 and effecting a slight tilting movement of the bar Ks. The slight tilting movement of the bar Ks lifts the 20 gripper members K⁵ a little but not enough to cause them to raise the members K4, the results being that the paper is held by the grippers solely by reason of the weight of the members K4, so that when the paper strikes the stops on the platen it can easily slide out of the grippers without chance of injury. The paper having thus left the grippers, the gripper frame passes on to its outermost position. Just as it reaches this position the projection J³ of the cams J² strike the rollers on the arms J^1 of the guides J and slightly tilt these arms downward with the effect that the end of the gripper frame is moved upward so that during the return movement thereof the grippers will not strike and derange the paper. Just about this time the cam roller J25 has passed the center of the actuating portion K^{28} of the cam portion K^{26} , the parts then being in the position shown in Fig. 27. The segment K²⁴ then begins to move upward and the gripper frame therefore to be moved inward until the ear K10 strikes the trip lever K11 and effects the opening of the grippers. The grippers then remain open until the paper has been pushed out between them and they are again closed by the action of the lever K^{12} .

The delivery mechanism.—The delivery 50 mechanism effects the removal of the sheet of paper after printing and the placing of it into the delivery box; it is constituted as follows: Rockably mounted upon the hood F is segmental arm L (Figs. 1, 2 and 22) having an arc-shaped slot L¹ therein. Coaxially mounted with the segmental arm L is the delivery arm L2, the arm L2 being radially movable relative to the segmental arm L and being connected thereto by means of a bolt L³ passing through the slot L¹ so that the position of the delivery arm may be adjusted for various sizes of paper. The outer end of the arm L2 is bent over at right angles to form a horizontal support member L⁴ (Fig. 2) in which is rockably

supported a rod L⁵ upon which the delivery grippers L6 are mounted in such manner as to be capable of lateral adjustment for various widths of paper. A spring L⁷ is wound about the rod L⁵ and tends to hold the de-70 livery grippers L⁶ against the front edge

of the horizontal member L4.

The delivery grippers each consist of an upper spring finger L^s having a lip formed at its end and a lower spring finger L9 hav- 75 ing a knife edge at its end so that as the platen moves relatively to the grippers the finger L⁹ will slide over the surface of the platen and beneath the sheet of paper carried thereby. For opening the delivery grippers a flat bar L10 is provided, the tilting of which effects the opening of the grippers. The bar L¹⁰ is rockably mounted at its end in a crank ${f L}^{\scriptscriptstyle 11}$ extending forwardly from the end of the rod L5 and is provided 85 with a lever L12, to the end of which is connected a link L13, the opposite side of the link being pivoted to a trigger L14 having an actuating projection L15 and a second, rearwardly extending, actuating projection L¹⁶ 90 (Fig. 22). The delivery arm rocks from a position shown in full lines in Fig. 22, in which the delivery grippers are in contact with the platen, to the position shown in dotted line in the same figure, in which the 95 delivery grippers are above the delivery box and have dropped the printed sheet therein.

In order that the most efficient results may be obtained I have found it desirable to arrange the delivery arm and grippers so 100 that the grippers will be moved in contact with the tympan upon the platen just about the time when the printing operation is taking place, the points of the delivery gripper L⁶ striking the tympan first and forcing the 105 rod L⁵ to rotate against the action of the spring L⁷, while the delivery arm concludes its forward movement, the result being that the delivery grippers are held firmly against the sheet which has been fed to the platen 110 and forced to slide closely against the surface thereof. During the latter part of this movement the grippers are opened. arm is then allowed to remain stationary until the platen begins to move backward after 115 the printing operation, in doing which it brings the sheet just printed between the fingers L⁸ and L⁹ of the delivery grippers (Fig. 22). Just after this the delivery arm L^2 begins to move again, the grippers closing at the same time upon the sheet. The arm L2 then rocks back into the position shown in dotted lines in Fig. 22 when the fingers are opened again to allow the sheet carried thereby to fall into the delivery 125 box M.

In order that the above results may be obtained the counter shaft F2 is provided with a crank arm L¹⁷ to the end of which is pivoted a connecting rod L¹⁸ having a slide-

way L10 in its outer end. In the slideway L¹⁹ is mounted a slide block L²⁰ (Fig. 22) and a powerful spring L²¹ which tends to force the slide block L²⁰ against the upper 5 end of the slideway L¹⁹. A lug L²² which is formed upon the segmental arm L is connected to the slide block L20. The effect of this would ordinarily be, of course, that the rotation of the crank L¹⁷ would effect 10 a continuous reciprocating movement of the lug L22 and therefore of the delivery arm In order to effect the above described dwell of the delivery arm just before the paper is seized, however, a suitable stop L²³ is provided upon the hood F (Figs. 3 and 22). The segmental arm L strikes the stop L23 just as the delivery grippers reach the required position between the platen and the bed, (see full lines Fig. 22) and is thereby 20 prevented from further downward movement. As the crank L17 continues to rotate the slide block L20 is forcibly pushed downward against the action of the spring L21 until the crank passes its dead center, when 25 the block returns to its original position against the end of the slideway L¹⁹, where-upon the upward movement of the delivery arm starts.

Just before the delivery arm L2 strikes 30 the stop L23 the projection L15 of the trigger L14 strikes the same stop and causes the trigger L14 to rock about its pivot and effect a pull upon link L^{13} whereby the bar L^{10} is rocked and the delivery grippers opened. 35 As the arm L^2 leaves the stop \mathbb{L}^{23} at the beginning of its upward movement after the sheet has been pushed by the platen be-tween the fingers L^s and L^s, the projection L¹⁵ leaves the stop L²³, whereupon the re-40 siliency of the fingers L⁸ and L⁹ forces the bar L10 back into its flat position and the delivery grippers thus close upon the paper. Just as the delivery arm L2 reaches the position shown in dotted lines in Fig. 22, the 45 projection L¹⁶ strikes a second stop L²⁵ (Fig. 3) upon the hood F and the trigger L14 is again rocked to cause the opening of the delivery grippers whereby the sheet is allowed to fall into the delivery box M.

out mechanism.—The The throwingthrowing out mechanism is actuated by means of a testing gage N (Figs. 27, 28, 29 and 30) mounted upon the front of the presser bar G near the center thereof. The gage is 55 formed with a vertical slot N1 in which is slidably mounted a block N2 which has threaded therein a gage pin N³ having at its lower end a foot N⁴ arranged to engage an anvil No carried by the front of the feed box and having at its upper end a thumb nut No, a spring No being inserted between the body a spring N being mistal and the foot N⁴ tending to hold of the gage and the foot N⁴ tending to hold the gage and the foot N⁴ tending to hold of the gage and the foot N⁴ tending to hold of the gage and the foot N⁴ tending to hold of the gage and the gage a the foot in its downward position. The block N2 is extended rearwardly to form a 65 knife edge Ns which projects upward into a

horizontal chamber Nº with which the gage is provided. Fulcrumed on the knife edge Nº and extending into the chamber Nº is the end N^{10} of the stop lever N^{11} which extends along the front of the presser bar G through 70 an elongated slot N^{12} formed on the side of hood (Figs. 23 and 26). The gage is provided with a downwardly extending projection N13 situated above and slightly to the rear of the knife edge N⁸, against which 75 projection the rear part of the end N¹⁰ of the stop lever abuts. By this arrangement a very slight movement of the block N2 will, by the upward and downward shifting of the knife edge N⁸, create a considerable 80 movement of the outer end of the stop lever N11, this being due to the great difference in

length of the arms of the lever. The operation of the testing gage is as follows: By manually moving the thumb 85 nut No of the threaded gage pin No, the height of the block N2 in the slot N1 is adjusted so that, when, after the downward movement of the presser bar subsequent to the moving forward of the sheet of paper by 90 the sheet separating mechanism, the foot N^4 presses the sheet between itself and the anvil No, the knife edge No of the block No will be in such a position that the outer end of the stop lever N¹¹ will be located in the cen- 95 ter of the slot N¹² (Fig. 23). With such an adjustment it will be evident that, should, for any reason, two sheets of paper be pushed by the sheet separating mechanism forward over the anvil No, the block No will 100 be moved upward a greater distance than ordinarily owing to the extra thickness between the foot N⁴ and the anvil N⁵, the result being that the knife edge N^s of the block N^2 causes the stop lever N^{11} to be moved upward so that its outer end becomes located in the top part of the slot N12. The failure of the sheet separating mechanism to push a sheet forward has the effect that, owing to the absence of the paper between the foot N⁴ 110 and the anvil N⁵, the block N² will not be moved upward sufficiently for its knife edge No to cause the outer end of the stop lever N¹¹ to assume its normal position in the center of the slot N12, the result being that the 111 end of the stop lever N¹¹ remains in the lower end of the slot N¹². Briefly stated, then, when one sheet is fed forward by the sheet separating mechanism the end of the stop lever N¹¹ is located at the center of the ¹²⁰ slot N12, when two or more sheets are fed forward the end of the stop lever N¹¹ is located at the top of the slot N¹², and when no sheet is fed forward the end of the stop lever is located at the bottom of the slot N12. 125 The presence of the slot lever N¹¹ in the lower end of the slot N12 throws the bed and platen out of operative relation, the presence of the stop lever N11 in the upper end of the slot N12 has a similar effect and prevents the 180

feed grippers from seizing the two or more sheets of paper which will have been fed, while the stop lever N¹¹ is located at the center of the slot N¹² the press and the various mechanisms of the feeder are allowed to perform continuously their functions.

In order that the effects described at the close of the preceding paragraph may be obtained the lever K¹² (Figs. 23 and 26), which, it will be remembered, effects the operation of the trip lever K¹¹ to cause the closing of the feed grippers, is provided with a short recess N¹⁴ in its shoulder K¹⁵, this recess being disposed opposite to the slot N¹² at the center thereof when the lever K¹² has been moved forward by the cam projections K¹⁴. Therefore, when the end of the stop lever N¹¹ is located at the center of the slot N¹², it will enter the recess N¹⁴ of the lever K¹² and will consequently have no effect upon the operation of that lever.

The lever K12 is pivoted at K13 to the bent over end O1 of a lever O which is pivoted at-O² to the hood F, a spring O³ being inserted 25 between the lower end of the lever K¹² and a suitable boss upon the hood. The strength of the spring O3 is such as to insure the lever K¹² always rocking about a pivot K¹³ when there is no obstruction to its doing so. The 30 rear end of the lever O is formed with a stop O⁴ arranged to engage normally the upper end of a coupling lever O⁵ (Figs. 1, 23, 24, 25 and 26) which is pivoted to a block O⁶ mounted upon a reciprocation of O⁷. The red O⁷ is pivoted at the coupling of th 35 O^7 . The rod O^7 is pivoted at one end to the platen and is guided at its other end in a square block Os carried by a link Os pivoted at its upper end to the hood F and connected at its lower end, by means of a sec
ond link O¹⁰, to the throwing out lever of the press. The rod O' moves to and fro with the platen and the result of effecting a connection between this rod and the link O' will be that, as the rod moves forward 45 with the platen, the throwing out lever C will move forward also and move the bed out of operative relation with the platen at every circle of the press. Such a connection is effected by means of the coupling 50 lever O5 whenever either more or less than one sheet is pushed forward by the sheet separating mechanism

The coupling lever O⁵ has its horizontal arm formed with a hook O¹¹ arranged to en55 gage over the block O⁸ (Figs. 1 and 24) when the rod O⁷ is moved rearwardly, a spring O¹² being provided which enables the hook O¹¹ to ride over the block O⁸ during the rearward movement of the rod O⁷.

60 When such engagement between the hook O¹¹ and the block O⁸ has taken place the link O⁸ is coupled to the rod O⁷ and will participate in its movement, whereby the lever C is operated to throw the bed out of operative relation with the platen when the

latter together with the rod O^7 next moves forward.

The above described coupling of the rod O' with the link O' and the consequent throwing out of the press would occur at 70 each cycle were it not for the action of the lever O, the stop O⁴ of which normally is located in the path of the coupling lever O5 and strikes the latter at the end of its backward movement, thus tripping the cou- 75 pling lever and preventing it from hooking over the block O⁸ and effecting the coupling of the rod O⁷ with the link O⁹ (Fig. 25). The lever O is in the above position when the end of the stop lever N¹¹ is located in the center of the slot N¹² and the action of the coupling lever O5 is therefore prevented when the stop lever N¹¹ is in this position. When, however, the end of the stop lever N¹¹ is located either in the upper or lower 85 end of the slot N¹² the lever O is moved downward so as to be out of the path of the coupling lever O5, the coupling lever being thereby allowed to effect a coupling between the rod O^7 and the block O^8 of the link O^9 and thus cause the press to be thrown out. This movement of the lever O is due to the fact that the end of the stop lever N11 being away from the center of the slot N^{12} it cannot enter the recess N^{14} of the lever K^{12} when the latter is moved forward, the effect being that, as the lever K12 is moved forward by the cam projection K14 its shoulder K¹⁵ strikes the stop lever N¹¹ (either above or below the recess N¹⁴ according to the position of the stop lever N11 in the slot N12), and is therefore prevented from moving farther about its pivot K13. The lever K12 being thus prevented from rocking about its pivot K¹⁸, and being still forced forward 105 by the action of the cam projection K¹⁴, it is made to pivot about the end of the stop lever N11 as a fulcrum, its lower end being moved rearwardly against the action of the spring O³ (Fig. 26). This backward move- 110 ment of the lower end of the lever K12 causes a corresponding movement of the end O1 of the lever O, the stop O² of this lever thus being moved downwardly. The effect of the downward movement of the stop O² is, 115 which has been stated above, that the coupling lever O⁵ is allowed to effect a coupling between the rod O⁷ and the block O⁸ of the link O, whereby the lever C is operated and the press thrown out. 120

The coupling lever O⁵ will remain coupled with the block O⁸ so long as, either by reason of the non feeding of a sheet or the feeding of more than one sheet, the end of the stop lever N¹¹ remains away from the center of the slot N¹², so that the press will continue to run but the hand lever C will be moved forward at each cycle to prevent the printing operation. As soon, however, as the sheet separating mechanism again be- 130

gins to feed the sheets forward one at a time, the stop lever N11 will return to the center of the slot N12 and the stop O4 will be returned into the path of coupling lever 5 O5, preventing the operation of the latter and allowing the press to perform the print-

ing operations.

The presence of the stop lever N¹¹ in the upper or lower end of the slot N12 has the 10 further effect that the lever K12 being prevented thereby from moving forward about its pivot K¹³, the shoulder K¹⁵ of this lever is prevented from striking the trip lever K11 and thereby effecting the closing of the feed grippers. The feed grippers will therefore move forward over the platen without being closed in time to seize the two or more sheets of paper which may have been fed forward by the sheet separating mechanism. It will 20 thus be seen that when one sheet is fed forward by the sheet separating mechanism that sheet is grasped by the grippers and deposited under the platen, when two sheets are fed forward the press is thrown out and 25 the grippers are prevented from seizing the sheets, while when no sheet is fed forward the press is thrown out so that the printing of an impression upon the tympan is pre-

Since the press operates continuously it is 30 desirable that means to be provided for returning to the pile of stock any sheets which may have been fed forward by the sheet separating mechanism but not taken by the 35 grippers of the feed mechanism, and I provide a device which effects this result. A pair of lugs P (Fig. 10) are formed upon the underneath face of the front end of the hood. These lugs and the members carried 40 thereby are of similar nature, and construction and a description of one will suffice. each lug P is attached a spring strip P1 extending rearwardly beneath the shaft K23

from which the gripper frame derives its 45 movement, this spring strip being pushed normally upward by the action of the spring P⁴. The spring strip P¹ extends upwardly at the rear of the shaft K²³ and is bent over at its end to form a stop P2 ar-

ranged to be engaged from above by a set screw P³ carried by the shaft K²³. Pivoted to the strip P¹ is a tapper arm (Figs. 10 and 11) P⁵ extending downwardly to a slight distance above the level of the top of the pile of stock. The tapper arm P⁵ is formed with a hook P⁶ arranged when the tapper arm is moved downward to entertain

tapper arm is moved downward, to engage a corresponding projection P⁷ formed upon the hood F.

The position of the set screw P³ upon the shaft K²³ is such that it will engage upon the top of the stop P2 of the spring strip P1 just as the feeder frame arrives at its outermost position over the platen, the shaft K23 65 having then moved through nearly 360°

from the position shown in Fig. 10. When the set screw P3 engages the stop P2, the tapper arm P⁵ is moved first downwardly in front of any paper which may have been fed forward and not taken by the grippers. 70 The hook P⁶ then engages the corresponding projection P⁷ and, as the spring strip P¹ is moved farther downward the tapper arm P⁵ swings about its pivot, the lower end of the tapper arm moving inwardly and there- 75 by returning any sheets which may have been fed forward and not taken by the grippers to their original position upon the pile of stock. Just after this the presser bar G closes and, somewhat later, the cam so projection E⁴ releases the clutch E and allows D2 to rise a distance equal to the thickness of a sheet of paper.

It will be understood from the above that the press and the various mechanisms of the 85 feeder operate continuously, regardless of whether the feed grippers carry a sheet out over the platen or not. When the sheet separating mechanism pushes forward more than one sheet, the grippers are prevented 90 from operating and the frame therefore goes forward empty, the unfed sheet being returned to the pile ready for the next operation of the sheet separating mechanism when the latter will probably perform its opera- 95 tion properly. When more or less than one of the sheets is fed forward, the bed and platen are thrown out of operative relations, but the press continues to run. By reason of these provisions and the various other de- 100 vices, the feeder will carry on the above described operations continuously, observing its own mistakes and rectifying them. The feeder may be supplied with a pile of stock, started, and then left to itself, when it will 105 continue to insert the sheets into and remove them from the press until the pile is exhausted.

I have thus described a feeder embodying the features of my invention, but I do not 110 limit myself to the particular devices, arrangements and combinations of parts described, nor do I limit myself to the use of such devices, arrangements, and combinations of parts in the connection in which they are 115 described, since these may be varied without exceeding the scope of the appended claims. In these claims, where the lower edge of the platen is referred to, the edge which is at the bottom during the printing operation, is 120 intended. By the upper edge, is meant the edge opposite the lower.

What I claim is:-1. The combination with a press comprising a bed, a platen having a stop thereon, 125 and means for moving the platen into and out of printing position with respect to the bed, of a member adapted to be moved forward and back across the face of the said platen, when the latter is out of its printing 130

position, a paper gripper carried by said member and having cooperating jaws adapted to receive between them paper from a source of supply and retain said paper impositively during a portion of the movement of said member, and means for effecting the movement of said member forward across the face of said platen to bring the paper into engagement with said stop, and

10 leave it in engagement therewith.

2. The combination with a press comprising a bed, a platen having a stop thereon, and means for effecting a relative rocking movement between the platen and the 15 bed, of a member adapted to be moved forward and back across the face of said platen, a paper gripper carried by said member and having cooperating jaws adapted to receive between them paper from a 20 source of supply and retain the paper impositively during a portion of the movement of said member, means for effecting the movement of said member forward across the face of said platen, to bring the 25 paper into engagement with said stop, and leave it in engagement therewith, and for effecting the backward movement of said member, and means for effecting a movement of said gripper away from the platen 30 during the backward movement of said member, to enable said gripper to clear the paper which has been deposited upon the platen.

3. The combination with a press compris-35 ing a bed, a platen having a paper-positioning abutment, and means for moving the platen into and out of printing position with respect to the bed, of a stock table, a frame for receiving paper from said table, 40 and adapted to be moved from a position clear of the upper edge of the platen forwardly across the platen, and back to its original position during the time when the platen is out of printing position, a paper 45 gripper carried by said frame and having cooperating gripping members adapted to seize between them the front parts of sheets from said stock table, means, coöperating with said abutment, for enabling the paper 50 to be removed from said paper gripper when the same has moved out over the platen, and means for imparting said movement to said frame, whereby said frame deposits a sheet of paper upon the platen and 55 recedes from the platen leaving the paper

thereon.

4. The combination with a press, comprising a bed, a platen, and means for moving the platen into parallelism with the bed to 60 effect the printing operation, and thence into a position out of parallelism with the bed, for receiving paper, of means located above the platen for grasping a sheet of paper and moving it, by its front edge, 65 downward across the platen and depositing it thereon, when the platen is in receiving position, and means for grasping the opposite edge of the sheet to that grasped by said last named means and removing the sheet upward and away from the platen, 70 during the movement of the platen after the printing operation has been performed.

5. In a paper feeding device, a frame arranged to be moved forward and backward over, and in proximity to, the surface to 75 which the paper is to be fed, a paper gripper carried thereby and including cooperating gripping members for receiving the paper between them, means for effecting such movement of said frame, means for 80 removing the paper from said gripper when the frame has moved forward, whereby the paper is deposited upon the surface, and means for raising that portion of said frame which is adjacent said gripper during the 85 backward movement of said frame, so that the gripper may clear the paper during such backward movement.

6. In a paper feeding device, a guide, a gripper frame slidably supported in said 90 guide, a paper gripper carried by said gripper frame, means for moving said gripper frame longitudinally in said guide where by said gripper is moved over, and in proximity to, the surface to which the paper 95 is to be fed and then returned to its original position, means for removing the paper from said gripper when the frame has moved forward whereby the paper is deposited on the surface, and means for pe- 100 riodically tilting said guide whereby said gripper is raised to enable it to clear the

paper during such return movement. 7. In a paper feeding device, a stop arranged upon the surface to which the paper 105 is to be fed, a gripper-supporting member adapted to be moved across the surface toward and away from the stop, a gripper carried by said member and including co-operating jaws adapted to impositively 110 grasp between them a sheet of paper during a portion of the movement of said member, whereby the sheet of paper is brought against said stop and left in engagement therewith during the movement of said 115 member toward the stop, means for effecting the movements of said member, and means for raising said gripper during the movement of said member away from the stop, whereby said gripper is enabled to 120 clear the sheet of paper which has been deposited upon the surface.

8. The combination with a printing press comprising a bed, a platen, and means for moving said platen into and out of paral-lelism with said bed and retaining said platen stationary at intermittent periods when it is out of parallelism with the bed, of a feeder for said press comprising means, adapted to be moved forwardly 130

over said platen, and rearwardly away from said platen, when said platen is substantially in its stationary condition, for supporting a gripper, means for imparting said 5 movements to said gripper-supporting means, a gripper carried by said supporting means, means for opening and closing said gripper when the gripper-supporting means is in its rear position thereby to seize a 10 sheet, means for enabling the sheet to be withdrawn from said gripper when the latter is substantially in its extreme forward position above the platen, whereby said gripper carries a sheet onto the platen, and 15 recedes from the platen leaving the sheet thereon, and means, other than said gripper, for removing the sheet deposited on the platen by said gripper, after the printing

operation has been performed.

9. The combination with a printing press comprising a form-receiving bed, a platen, and means for moving the platen into and out of parallelism with said bed, of a paper feeding device for said press comprising a 25 guide, a gripper frame slidably supported in said guide, a paper gripper carried by said gripper frame, means for moving said gripper frame longitudinally in said guide whereby said gripper is moved over, and in 30 proximity to, the platen when the latter is out of parallelism with the bed, and then returned to its original position, means for removing the paper from said gripper when the frame has moved forward whereby the paper is deposited on the surface, and means for periodically tilting said guide whereby said gripper is raised to enable it to clear the paper during such return movement.

10. The combination with a printing press

do comprising a form-receiving bed, a platen, and means for effecting a relative movement between the platen and the bed, to effect the printing operation of a paper feeding device comprising a frame, a paper gripper 45 carried thereby and including coöperating paper receiving jaws, means for moving said gripper frame over, and in proximity to, the platen and then returning it to its original position, means for removing the paper 50 from said gripper when the frame has moved forward whereby the paper is de-posited on the surface and means for tilting said gripper frame during its return movement so that the gripper may clear the paper 55 which has been deposited upon the platen.

11. The combination with feeding grip-pers having engaging jaws, of means for causing said jaws to engage the paper during the first portion of the feeding moveco ment with a relatively heavy pressure, and means for causing the jaws to engage the paper during the latter portion of the move-ment with a relatively light pressure, so that the sheet may be withdrawn from be-

tween the jaws without the latter being 65

opened.

12. The combination with feeding grippers having engaging jaws and means for causing said jaws to engage the paper during the first portion of the feeding move- 70 ment with a spring pressure, and means for causing said jaws to engage the paper during the latter portion of their movements by gravity pressure.

13. The combination with feeding grip- 75 pers having relatively stationary under jaws and relatively movable upper jaws, means for holding the upper jaws in engagement with the paper, and means for releasing said holding means to permit said jaws to en- 80 gage the paper by gravity alone as the paper moves toward and engages the stop

pins of the press.

14. In a gripper, the combination with a relatively stationary jaw of an upper mov- 85 able member slidably connected to said jaw, a lower movable member slidably connected to said jaw, and arranged to engage therewith, said lower member having a lost mo-tion connection with said upper member, a 90 spring engaging said upper member to nor-mally hold said lower member in close engagement with the stationary jaw, means for raising said upper and lower members. to permit the gripper to grasp a sheet of 95 paper, and means for raising said upper member alone whereby said lower member engages said stationary jaw by gravity.

15. The combination with a printing press comprising a form-receiving bed, a 100 platen, and means for moving said platen into and out of parallelism with said bed, said platen having a stop thereon, of a paper feeding device for said press, comprising a paper gripper having interengag- 105 ing jaws, means for causing pressure be-tween said jaws, means for moving said gripper forwardly over said platen, when the latter is out of parallelism with the bed, and then returning it to its original posi- 110 tion, and means for diminishing the pressure between said jaws before the end of the forward movement, whereby the paper carried by said gripper may be removed therefrom by engagement with the stop on 115 said platen, without the jaws of the gripper being opened.

16. The combination with a printing press comprising a form-receiving bed, a platen, and means for moving said platen into and 120 out of parallelism with said bed, said platen having a stop thereon, of a paper feeding device for said press comprising a frame, a paper gripper carried thereby having interengaging jaws, means for creating pres-sure between said jaws, means for moving said frame forwardly over said platen when the latter is out of parallelism with said

bed, and then returning it to its original position, means for diminishing the pressure between said jaws before the end of the forward movement, whereby the paper carried by said gripper may be removed therefrom by engagement with the stop on the platen without said jaws being opened, and means for tilting said frame and returning it on a higher plane so that the 10 gripper may clear the paper during such /1eturn movement.

17. In a paper feeding device, a paper gripper including a stationary gripping member, a vertically movable gripping member, cooperating with said stationary gripping member, and means for normally holding said gripping member firmly in its closed position, means for moving said gripper over the surface to which the paper is 20 to be fed, and means for releasing said holding means before the end of said movement so that the paper thereafter may be held by the weight of the gripper member alone.

18. The combination with a printing press 25 comprising a form-receiving bed, a platen, and means for moving said platen into and out of parallelism with said bed, said platen having a stop thereon, of a paper feeding device for said press comprising a paper gripper 30 provided with a vertically movable gripping member and means for holding said gripping member firmly in its closed position, means for moving said gripper forwardly over said platen when the latter is out of paral-35 lelism with said bed and then returning it to its original position, and means for releasing said holding means before the end of said movement so that the paper thereafter may be held by the weight of the grip-40 ping member alone and may be removed from said gripper by engagement with the stop of said platen.

19. A paper gripper comprising a jaw, a gripping member, means for moving said gripping member away from, and toward said jaw to permit a sheet to be seized, means for holding said gripping member firmly against said jaw, whereby a sheet may be firmly retained in said gripper, and means for partly releasing said holding means, whereby said sheet is impositively retained in said gripper.

20. In a paper feeder, means for depositing paper in predetermined quantities upon 55 the surface to which the paper is to be fed, means for separating paper from a pile, a gripper carried by said depositing means and adapted to close upon the paper after it has been separated by said separating means, means for effecting the closing of said gripper and means, cooperating di-rectly with said gripper closing means for preventing said gripper-closing-means from operating when either more or less than the engaged by the gripper.

predetermined quantity of paper has been 65 separated by said separating means.

21. A paper gripper comprising a jaw, a gripping member, a spring for holding said gripping member firmly against said jaw, and means for preventing the effect of said 70 spring, whereby the gripping member is

left to engage said jaw by gravity.

22. A paper gripper comprising a jaw, a gripper member, a spring for holding said gripper member firmly against said jaw, 75 means for preventing the effect of said spring, whereby the gripping member is left to engage said jaw by gravity, and means for moving said gripping member away from said jaw.

23. The combination with a printing press comprising a bed, a platen having a paper positioning abutment, and means for imparting to the platen a cycle of movement auring the former part of which the platen 85 is in printing position and during the latter part of which the platen is in sheet-receiving position, of means for feeding paper against said abutment, said feeding means comprising a body, guiding means carried by said 90 body, a frame cooperatively associated with said guiding means, said guiding means and frame being so arranged that said frame is capable of movement in a line extending substantially lengthwise of the platen when 95 the latter is in sheet-receiving position, grippers carried by said frame, and means for imparting a reciprocating movement to said frame whereby the latter is moved to and fro across the platen during the latter part 100

of the platen cycle.
24. The combination with a printing press comprising a form receiving bed, a platen, a main shaft, and means operated by said main shaft for moving said platen into and 105 out of parallelism with said bed, of a paper feeding device comprising a rotatable member, a cam for imparting an intermittent to and fro rotating movement to said rotatable member, said cam being geared to said main 110 shaft so as to rotate at an equal speed therewith, a guide, a gripper frame, slidably mounted in said guide, operative connection between said gripper frame and said rotatable member whereby the gripper frame is 115 intermittently moved to and fro over said platen, and means for tilting said guide dur-

ing its return movement. 25. The combination with a press, of feeding grippers therefor, means for removing 120 the sheets one at a time into a position to be engaged by said gripper, automatic means for preventing the gripper from engaging the sheets in the event more than one sheet at a time is moved to the engaging position, 125 and means for automatically returning the sheets to the pile, in the event they are not

26. In a paper feeding device, means for separating predetermined quantities of paper from a pile, means for feeding said quantities of paper forward, a gripper for taking said quantities of paper from said feeding means and depositing them upon a paper receiving surface, means for preventing the operation, of said gripper when a larger quantity of paper is fed than that 10 determined, and means for returning to the pile paper not taken by the gripper.

27. The combination with a printing press comprising a form receiving bed and a platen cooperating with said bed to form 15 an impression upon the paper carried by said platen, of means for separating sheets of paper one by one from a pile, means for feeding sheets of paper forward one by one, a gripper for taking said sheets of paper 20 from said feeding means and depositing them upon the platen, means for automatically preventing the operation of said gripper when more than one sheet is fed, and means for returning to the pile paper not 25 taken by said gripper.

28. The combination with a printing press comprising a form-receiving bed, a platen cooperating with said bed to form an impression upon the paper carried by said 30 platen and means for throwing said bed and platen out of operative relation without stopping the press, of means for separating sheets of paper from a pile one by one, means for feeding said sheets of paper for-35 ward one by one, a gripper for taking said sheets of paper from said feeding means and depositing them upon the platen, means for automatically preventing the operation of said gripper when more than one sheet is 40 fed, means for returning to the pile paper not taken by the gripper, and means for automatically operating said throwing-out means when more than one sheet is fed.

29. In a paper feeding device means for 45 feeding sheets of paper forward one by one, a gripper for receiving sheets of paper from said feeding means and depositing them upon the paper receiving surface, means for opening said gripper as the latter moves to 50 take a sheet, means for effecting the closing of said gripper upon the sheet, and means for preventing the operation of said closure effecting means in the event that more than one sheet is fed forward.

30. In a paper feeding device, mechanism for removing sheets of paper forward one by one from a pile, a gripper for receiving the sheets of paper and removing them to the surface to which they are to be fed, a 60 testing gage comprising an anvil, a gage pin between which and said anvil the paper passes when moved forward, means for mov-

ing the gage pin toward the anvil, and means

operated by the gage pin for temporarily

preventing the closing of said gripper when 65 other than one sheet is moved forward.

31. In a paper feeding device, a testing gage comprising an anvil, a gage pin, means for moving sheets of paper forward one by one between said gage pin and said anvil, a 70 stop lever pivoted to said gage pin, means for moving the gage pin toward the anvil, whereby said lever is rocked more or less about the pivot according as a greater or less thickness of paper is present between the 75 gage pin and the anvil, and means for temporarily arresting the operation of the paper feeding device when other than one sheet is moved between said gage pin and said anvil.

32. In a paper feeding device, a testing gage comprising an anvil, a gage pin between which and said anvil the paper passes, a block adjustably mounted upon said gage pin, an indicating lever pivoted to said 85 block, and means for moving the gage pin toward the anvil, whereby said lever is rocked more or less about its pivot, according as a greater or less thickness of paper is present upon the anvil.

33. In a paper feeding device means for, feeding sheets of paper forward one by one, a gripper arranged to receive said sheet from said feeding means, means for effecting the closing of said gripper, a testing 95 gage, a stop arranged to be moved out of its normal position by said testing gage when more than one sheet is fed to the gripper, and a lever arranged to operate said closing means when said stop is in its nor- 100 mal position, but to engage said stop, and thereby be prevented from operating said closing means when the stop has been moved out of its normal position by the testing gage.

105

34. The combination with a printing press comprising a bed, a platen and means for moving said parts into and out of operative relation, of a feeder for said press comprising means for feeding sheets of paper for- 110 ward one by one, a gripper arranged to receive said sheets from said feeding means, a testing gage, a stop arranged to be moved out of its normal position by said testing gage when other than one sheet is fed to 115 the gripper, means for throwing the platen and bed out of operative position without stopping the press, a lever arranged to engage said stop when the latter has been moved out of its normal position by said 120 testing gage, a second lever pivoted to said lever, a coupling lever actuated by said second lever and a block to be engaged by said coupling lever to operate said throwing out means without stopping press or feeder. 125

35. The combination with a printing press comprising a bed, and platen, and means for moving the platen into and out of par-

allelism with the bed, of means for feeding the paper to the platen, delivering grippers for removing the paper from the platen, said delivering grippers being arranged to remain relatively stationary during a portion of the return movement of the platen to permit the platen to move the paper between the grippers, means for moving the grippers to a delivering position, and means 10 for closing the grippers before they move to

their delivering position.

36. The combination with a printing press comprising a bed, a platen, and means for moving the platen into and out of parallel-15 ism with the bed, of means for feeding the paper to the platen, delivery grippers for removing the paper from the platen, said delivery grippers being arranged to remain relatively stationary during a portion of the 20 return movement of the platen to permit the platen to move the paper between the grip-pers, and means operated by the movement of the grippers to their delivering position

for closing the grippers.

37. The combination with a printing press comprising a bed, a platen, and means for moving the platen into and out of parallelism with the bed, of means for feeding the paper to the platen, delivery grippers for removing the paper from the platen, said delivery grippers being provided with opposite jaws and being arranged to remain relatively stationary during a portion of the return movement of the platen to permit the 35 platen to move the paper between the jaws thereof, the bottom gripper jaw having a knife edge to permit the paper to readily slide thereon when moved between the jaws.

38. The combination with a printing press 40 comprising a bed, a platen having a stop thereon, and means for moving said platen into and out of parallelism with said bed and retaining the platen stationary when it is out of parallelism with the bed, of 45 means for depositing paper sheet by sheet upon said platen comprising a gripper including cooperating sheet receiving jaws and adapted to be moved over said platen toward and away from the stop, and means for effecting the said movement of said gripper during the time when said platen substantially is in its stationary condition, whereby, at each reciprocating movement of said gripper, a sheet is brought on to said 55 platen against the stop and left in engagement with the stop.

39. The combination with a printing press comprising a bed, a platen, and means for moving the platen into and out of parallel-60 ism with the bed, of means for feeding paper to the platen, delivering grippers for removing the paper from the platen, said delivering grippers being arranged to be brought into engagement with said platen

substantially when the latter is in printing 65 position and being arranged to remain stationary during a portion of the movement of said platen out of parallelism with said bed, whereby the platen is caused to move the paper between the grippers and means 70 for imparting the said movements to the

said grippers.

40. The combination with a printing press comprising a bed, a platen, means for moving the platen into and out of parallelism 75 with the bed, and a stop upon the platen, of means for feeding paper to the platen, delivering grippers for removing the paper from the platen, said delivering grippers being arranged to be brought into engage- 80 ment with said platen substantially when the latter is in printing position and being arranged to remain stationary during a portion of the movement of said platen out of parallelism with said bed, whereby the stop 85 upon the platen is caused to move the paper between the grippers, and means for imparting the said movements to said grippers.

41. In a paper feeder, a gripper adapted to close upon predetermined quantities of 90 paper and carry such paper to the surface to which the paper is to be fed, means for separating paper from a pile, and means, operable without stopping the feeder, for preventing said gripper from closing upon 95 the paper when more than the predeter-mined quantity is separated.

42. In a paper feeder, a gripper adapted to close upon predetermined quantity of paper and carry such paper to the surface 100 to which the paper is to be fed, means for separating paper from a pile, and means, operable without stopping the feeder, for preventing said gripper from closing upon the paper when less than the predetermined 105 quantity is separated.

43. In a paper feeding device the combination with means for feeding paper forward in predetermined quantities, of means for returning the paper to the pile, when a 110 quantity less than the predetermined quan-

tity is fed forward.

44. The combination with a printing press of means for feeding sheets of paper to the press in predetermined quantities, means for 115 separating paper from a pile, means for preventing the operation of the press when more than the predetermined quantity is separated, and means for returning the paper to the pile when more than the pre- 120 determined quantity is separated.

45. In a paper feeding device, in combination, means for depositing paper in predetermined quantities upon the surface to which the paper is to be fed, means for 125 separating paper from a pile, and means, operable without stopping the feeder for automatically preventing either more or less than the predetermined quantity of paper from being deposited upon the paper re-

ceiving surface.

46. In a paper feeding device, in combination, means for depositing paper in pre-determined quantities upon the surface to which the paper is to be fed, means for separating paper from a pile, and means, operable without stopping the feeder, for automatically preventing less than the predetermined quantity of paper from being deposited upon the paper receiving surface.

47. The combination with a press comprising a bed, a platen, and means for effecting 15 a relative movement between the bed and platen to effect the printing operation, of a gripper for receiving paper in predeter-mined quantities and depositing it on the platen, means for separating paper from a pile, a throw-out device for throwing the bed and platen out of operative relation with each other at each cycle of the press, means for closing said gripper upon the paper when the determined quantity is sepa-25 rated by said separating means, and mechanism, interlocking with said last named means, for rendering said throw-out device inoperative when said gripper is closed upon the determined quantity of paper.

48. The combination with a press, comprising a bed, a platen, and means for effecting a relative movement between the bed and platen to effect the printing operation, of a gripper for receiving paper in prede-35 termined quantities and depositing it on the platen, means for separating paper from a pile, means for causing said gripper to close upon the paper, means for preventing said gripper-closing-means from operating when 40 other than the determined quantity is separated by said separating means, and a device, interlocking with said last named means, for throwing the bed and platen out of operative relation when said gripper is

45 prevented from being closed.

49. The combination with a printing press including a bed, a platen having an abutment thereon, and means for imparting to said platen a cycle of movement during the 50 former part of which the platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of means, cooperating with said abutment for feeding sheets thereagainst, 55 said feeding means including a sheet gripper including cooperating sheet receiving jaws, said gripper being movable over the platen toward the lower edge thereof from a position clear of the upper edge thereof and 60 back again, and means for effecting such movement of said gripper during the latter

part of the platen cycle. 50. The combination with a printing press including a bed, a platen having an abut-65 ment thereon, and means for imparting to

said platen a cycle of movement during the former part of which the platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of means for feeding sheets against 70 said abutment, said feeding means including a sheet gripper including coöperating sheet receiving jaws, said gripper being movable over the platen toward the lower edge thereof from a position clear of the upper edge 75 thereof and back again, and means for operating said gripper, said operating means maintaining the gripper stationary during the former part of the platen cycle, and effecting the said movement of the gripper so during the latter part of the platen cycle.

51. The combination with a printing press including a bed, a platen having an abut-ment thereon, and means for imparting to said platen a cycle of movement during the 85 former part of which the platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of means for separating sheets, means for moving the separated sheets forward, and means for feeding the separated sheets against said abutment, said feeding means including a gripper for receiving the forwardly moved sheets, said gripper being movable from a position clear of the upper 95 edge of the platen over the platen toward the lower edge thereof, and back again, and means for effecting such movement of said gripper during the latter part of the cycle f the platen.

52. The combination with a printing press including a bed, a platen having an abutment thereon, and means for imparting to said platen a cycle of movement during the former part of which the platen is in a 105 printing position and during the latter part of which the platen is in a sheet-receiving position, of stock-supporting means mounted in proximity to the upper edge of the platen when the latter is in sheet-receiving 110 position, means, associated with said stocksupporting means, for separating sheets, means for moving the separated sheets forward, and means for feeding the separated sheets against said abutment, said feeding 115 means including a gripper having cooperating jaws for receiving between them the forwardly moved sheets, said gripper being movable from a position clear of the upper edge of the platen over the platen toward 120 the lower edge thereof and back again, and means for effecting such movement of said gripper during the latter part of the cycle of the platen.

53. The combination with a printing press 125 including a bed, a platen having an abutment thereon, and means for imparting to said platen a cycle of movement during the former part of which the platen is in a printing position and during the latter part 130

100

1,145,405

of which the platen is in a sheet-receiving position, means for feeding sheets against said abutment, said feeding means including a gripper having relatively movable jaws 5 and movable, from a position clear of the upper edge of the platen and in which said jaws receive the front edge of a sheet, over the platen toward the lower edge thereof and back again, and means for effecting such 10 movement during the latter part of the

cycle of the platen.
54. The combination with a printing press including a bed, a platen having an abutment thereon, and means for imparting to 15 said platen a cycle of movement during the former part of which the platen is in a printing position, and during the latter part of which the platen is in a sheet-receiving position, of means for separating sheets, 20 means for moving the separated sheets forward, and means for feeding the separated sheets against said abutment, said feeding means including a gripper having relatively movable jaws and movable from a po-25 sition clear of the upper edge of the platen and in which said jaws receive the front edge of the forwardly-moved sheets, over the platen toward the lower edge thereof and back again, and means for operating 30 said gripper, said operating means maintaining the gripper stationary during the former part of the cycle of the platen and effecting the said movement of the gripper

during the latter part of such cycle.
55. The combination with a printing press including a bed, a platen having an abutment thereon, and means for imparting to said platen a cycle of movement during the former part of which the platen is in a printing position, and during the latter part of which the platen is in a sheet-receiving position, of means for feeding sheets against said abutment, said feeding means including a gripper having relatively movable 45 jaws and movable from a position clear of the upper edge of the platen over the platen toward the lower edge thereof and back again, means for operating said gripper, said operating means maintaining the gripper stationary during the former part of the cycle of the platen and effecting the said movement of the gripper during the latter part of such cycle, and means for closing the gripper on the sheets and subsequently 55 releasing it to permit the sheets to be moved

out therefrom.

56. The combination with a printing press including a bed, a platen having an abut-ment thereon, and means for imparting to 60 said platen a cycle of movement during the former part of which the platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of stock-supporting means mount-65 ed in proximity to the upper edge of the

platen when the latter is in sheet-receiving position, means, associated with said stocksupporting means, for separating sheets, means for moving the separated sheets forward, and means for feeding the separated 70 sheets against said abutment, said feeding means including a gripper having relatively movable jaws for receiving the for wardly-moved sheets, said gripper being movable from a position clear of the upper 75 edge of the platen over the platen toward the lower edge thereof and back again, means for operating said gripper, said operating means maintaining the gripper stationary during the former part of the cycle 80 of the platen and effecting the said movement of the gripper during the latter part of such cycle, and means for closing the gripper on the sheets and subsequently releasing it to permit the sheets to be moved 85 out therefrom.

57. The combination with a printing press including a bed, a platen, and means for imparting to the platen a cycle of movement during the former part of which the platen 90 is in a printing position, and during the latter part of which the platen is in a sheet-receiving position, of means for feeding sheets to the platen including a grippersupporting frame a rack associated with 95 said member, a pinion meshing with said rack, a rockable segment for driving said pinion first in one direction and then in the other, whereby said frame is moved over the platen toward the lower edge thereof and 100 back again when the segment is rocked, and a cam for operating said segment, said cam being arranged to maintain the segment stationary during the former part of the platen cycle, and effect the rocking move- 105 ment of the segment during the latter part

of the platen cycle.

58. The combination with a printing press including a bed, a platen, and means for imparting to the platen a cycle of movement 110 during the former part of which the platen is in a printing position, and during the lat-ter part of which the platen is in a sheet-receiving position, of means for feeding sheets to the platen including a frame 115 mounted at the rear of the platen, a guide at each side of said frame, longitudinally movable racks associated with said guides, sheet-gripping means associated with said racks, connected pinions meshing with said 120 racks, a rockable segment associated with one of said pinions, for driving it first in one direction and then in the other, whereby said sheet-gripping means is moved over the platen toward the lower edge thereof and 125 back again when the segment is rocked, and a cam for operating said segment, said cam being arranged to maintain the segment stationary during the former part of the platen cycle, and effect the rocking movement of 130 the segment during the latter part of the

platen cycle.

59. The combination with a printing press including a bed, a platen, means for impart-5 ing to the platen a cycle of movement during the former part of which the platen is in a printing position, and during the latter part of which the platen is in a sheet-receiving position, and a drive shaft having a gear 10 wheel thereon, of a feeding device including a frame adapted for attachment to said press at the rear of the platen, a guide at each side of said frame, longitudinally movable racks associated with said guides, sheet-15 gripping means associated with said racks, connected pinions meshing with said racks, a rockable segment associated with one of said pinions for driving it first in one direction and then in the other, whereby said 20 sheet-gripping means is moved over the platen toward the lower edge thereof and back again when the segment is rocked, a cam for operating said segment, said cam being arranged to maintain the segment sta-25 tionary during the former part of the platen cycle, and effect the rocking movement of the segment during the latter part of the platen cycle, and gearing between said cam and the gear wheel on the drive shaft of the

60. The combination with a printing press comprising a bed, a platen, and means for imparting to said platen a cycle of movement during the former part of which the 35 platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of a sheet-feeding device including means for separating sheets, means for moving the separated 40 sheets forward, a gripper having relatively movable jaws for receiving the forwardlymoved sheets, a supporting device for said gripper movable, from a position clear of the upper edge of the platen over the platen 45 toward the lower edge thereof and back again, a rockably mounted segment for imparting the said movement to said supporting device, and a cam for operating said segment during the latter part of the platen

50 cycle.

61. The combination with a printing press comprising a bed, a platen, and means for imparting to said platen a cycle of movement during the former part of which the platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of a sheet-feeding device including a gripper having relatively movable jaws, a supporting device for said of gripper movable, from a position clear of the upper edge of the platen over the platen

toward the lower edge of the latter and back again, a rockably mounted segment for imparting the said movement to said supporting device, a cam for operating said segment during the latter part of the platen cycle, gripper-operating members carried by said supporting device and abutments for actuating said gripper-operating members and disposed to be engaged by the latter 70

during their movements.

62. The combination with a printing press comprising a bed, a platen having an abutment thereon, and means for imparting to said platen a cycle of movement during the 75 former part of which the platen is in a printing position and during the latter part of which the platen is in a sheet-receiving position, of means for separating sheets oneby-one from a plurality of sheets, and means 80 for feeding the separated sheets against said abutment, said feeding means comprising a pair of guides extending longitudinally of the press on each side thereof, grippers having relatively movable jaws, a pair of racks 85 for operating said grippers and associated with said guides, connected pinions for actuating said racks, a rockable segment for rotating said pinions first in one direction and then in the other, thereby to move said 90 grippers, from a position clear of the upper edge of the platen over the platen toward the lower edge thereof and back again, and a cam for operating said segment during the latter part of the platen cycle.

63. The combination with a press including a bed, a platen, and means for imparting to the platen a cycle of movement during the former part of which the platen is in printing position and during the latter 100 part of which the platen is in sheet receiving-position, of means for properly positioning sheets on the platen, and means, cooperating with said positioning means, for feeding sheets to the platen, said feeding 105 means including a gripper having cooperating sheet receiving jaws, said gripper being movable from a position clear of the upper edge of the platen over the platen toward the lower edge thereof and back again, means 110 for effecting such movement of said gripper during the latter part of the platen cycle and mechanism for separating sheets from a pile and pushing the separated sheets forward into said gripper.

In witness whereof, I have hereunto subscribed my name in the presence of two witnesses.

EDWARD CHESHIRE.

Witnesses:

W. T. HOLMAN, EMMA LEA MONTGOMERY.