wo 2015/085103 A1 [N 00000 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/085103 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

11 June 2015 (11.06.2015) WIPOIPCT
International Patent Classification: (81)
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2014/068641

International Filing Date:
4 December 2014 (04.12.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/912,344 5 December 2013 (05.12.2013) US
14/559,550 3 December 2014 (03.12.2014) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S 50P7, Red-
wood Shores, California 94065-1677 (US).

Inventors: KALI, Prathab; 899, First Floor, 10th cross,
22nd Main, JP Nagar 2nd Phase, Bangalore, Karnataka
560078 (IN). SRINIVASAN, Anand; E 303 Mantri Eleg-
ance, N.S. Palya, Bannerghatta Road, Bangalore,
Karnataka 560076 (IN). BISHNOIL, Sandeep; 29-MITC
Colony, Barnala Road, Sirsa, Haryana 125055 (IN).

Agents: SRIPATHY, Kanchan et al.; Kilpatrick Town-
send & Stockton LLP, Two Embarcadero Center, 8th
Floor, San Francisco, California 94111 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: PATTERN MATCHING ACROSS MULTIPLE INPUT DATA STREAMS

MewORY §14

INPUT DATA STREAM
MopuLe 118

INPUT DATA STREAN{S) 128

HCHOGENECUS SOHEMA 128

COMBINED DATA STREAM 130

NeTWORA(S) 108

DATABASE 112

(57) Abstract: A method for detecting patterns across multiple input data streams related to one or more applications is disclosed.
The method includes receiving multiple input data streams and generating one or more dynamic data types for one or more attributes
of the input data streams. In some embodiments, the method may include combining the input data streams to generate a combined
input data stream based on the dynamic data types and processing a continuous query over the combined data stream to detect a pat -

tern.

10

5

20

WO 2015/085103 PCT/US2014/068641

PATTERN MATCHING ACROSS MULTIPLE INPUT DATA STREAMS

CROSS-REFERENCES TO RELATED APPLICATIONS

{00011 This application claims priority to 1.8, Patent Application 14/559,550, filed
December 3, 2014, entitied “PATTERN MATCHING ACROSS MULTIPLE INPUT DATA
STREAMS,” and to U.S. Provisional Patent Application No. 61/912,344, filed on December 3,
2013, entitled "PATTERN MATCHING ACROSS MULTIPLE INPUT DATA STREAMS,” the

entire contents of each are incorporated by reference in their entirety for all purposes.

BACKGROUND

16002] In traditional database systems, data is stored in onc or more databases usually in the
form of tables. The stored data is then queried and manipulated using a data management

ianguage such as a structured query language (SQL). For example, a SQL query may be defined
and executed to identify relevant data from the data stored in the database. A SQL query is thus
cxecuted on a finite set of data stored in the database. Further, when a SQL query s cxecuted, it
is cxecuted once on the finite data set and produces a finite static result. Databases arc thus best

equipped to run queries over finiie stored data sets.

{80831 A number of modern applications and systems however gencrate data in the form of
confinuous data or event strearns instead of a finite data set. Examples of such applications
include but are not imited to sensor data applications, financial tickers, network performance
measuring fools {¢.g. network monitoring and traffic management applications), clickstream
analysis tools, automobile traffic oonttoring, and the hike. Such applications have given rise to a
need for a new breed of applications that can process the data streams. For example, a

temperature sensor may be configured to send out teroperature readings continnously.

{3004] Managing and processing data for these types of event streanm-based applications
involves building data management and querying capabilitics with a strong temporal focus. A
different kind of gquerying mechanism s needed that comprises long-running queries over
continuous unbounded sets of data. While some vendors now offer product suites geared towards
gvent streams processing, these product offerings still lack the processing flexibility required for

handling today's events processing needs.

10

5

WO 2015/085103 PCT/US2014/068641

{6005] In certain embodiments, techniques are provided (e.g., 8 method, a system, a non-
transitory computer-readable mednmm storing code or instructions execntable by one or more
processors} for detecting patterns across multiple input data streams related to one or more

applications.

{B006] In accordance with one embodiment, a method for detecting patterns across multiple
input data streams related to one or more applications is disclosed. The method inclades
reeciving a phurality of input data streams comprising a first input data stream and a second input
data strcam. The method further includes generating a first dynamic data type for the first input
data stream and generating a sccond dynamic data type for the second input data stream. In some
embodiments, the first dynamic data type may be generated by identifying a first attribute of the
first input data stream as not being present in the second data stream. The first dynamic data type
is then generated for the first attribute. The second dynamic data type may be generated by
identifving a second attribute of the second input data stream as not being present in the first data
strcam. The sccond dynamic data type is then generated for the second attribute. In an
embodiment, the first dynamic data type may be configured to store a first data valae
corresponding to the first attribute of the first input data stream and the second dynamic data type
may be configured to storc a second data value corresponding to the sccond attribute of the

second input data stream.

{B007] In somec embodiments, the method may include combining the first input data stream
and the sccond input data stream to generate a combined data stream based on the first dynamic
data type and the second dynarmic data type. In an embodiment, the roethod may then include
processing a contingous guery over the combined data sircam to detect a pattern. In some
embodiments, a ‘patiern’ may constitute an occurrence of a first event in a first data strecam

followed by the occurrence of another event in a second data stream.

{6808] In accordance with another embodiment, a system for detecting patterns across
multiple input data streams related to one or more applications is disclosed. The system includes
a meroory for storing a plarality of instructions and a processor configured to access the memory.

Inan embodiment, the processor 1s configured to execute instroctions to receive a continuous

10

[

(v

e

WO 2015/085103 PCT/US2014/068641

query wdentifving a first input data stream and a second input data stream. The processor is
further configured to execnte instructions to identify a first dynamic data type for a first attribute
of the first input data stream and a second dynamic data type for a second atiribute of the second
input data stream. In some embodiments, the processor is configured to generate a combined
data stream based on the first dynamic data type and the second dynamic data type and execute

the continnous query over the combined data stream to detect a pattern.

{8009 In accordance with some embodiments, a non-transitory computer-readable media
storing computer executable instructions executable by one or more processors is disclosed. The
computer-cxecutable instructions comprise instructions that causc the one or more processors to
receive a plurality of input data streams comprising at feast a first input data stream and a second
input data stream. The computer-executable instructions further comprise instructions that cause
the one or more processors to gencrate a first dynamic data type for the first input data stream
and a second dynamic data type for the second input data stream. In some embodiments, the
computer-cxecutable instructions comprise instructions to combine the first input data stream
and the second input data stream to generate a combined data stream based on the first dynamic
data type and the second dynamic data type and process a continuous query over the combined

data stream to detect a pattern.

{0818] In accordance with some embodiments, a method is disclosed that comprises
recciving a phurality of input data streams comprising at least a first input data stream and a
second input data stream; generating a first dynamic data type for the first input data stream;
generating a second dynamic data type for the second input data stream; combining the first
input data sircam and the second input data stream to generate a combined data stream based at
icast in part on the first dynamic data type and the second dynamic data type; and processing a

continuous query over the combined data stream to detect a pattern.

{8011] In some cmbodiments, the step of gencrating the first dynamic data type further
comprises identifying a first attribute of the first input data stream as not being present in the
seeond data stream; and generating the {irst dynamic data type for the first attribute, the first
dynamic data type configured to store a first data value corresponding to the first atinibute of the

first input data stream.,

33

10

J—
(¥

[\
LA

WO 2015/085103 PCT/US2014/068641

88121 In some embodiments, the step of generating the second dynamic data type further
comprises identifving a second attribute of the second input data stream as not being present in
first data stream; and generating the second dynamic data type for the second attribute, the
second dynamic data type configured to store a second data vahie corresponding to the second

attribute of the second input data stream.

{88131 In some embodiments, the method further comprises identifving a common attribute,
the common attribute identified as being present in the first input data stream and being present
in the second input data stream; gencrating a homogencous schema, the homogencous schema
including a representation of one or morg atiributes of the first input data stream and the sccond
input data stream, the representation including at least the common attribute, the first dynamic
data type and the second dynamic data type; and gencrating the combined data stream based at

least in part on the homogencous schema.

{0614] In some embodiments, the method further comprises detecting the pattern based at
icast in part on analyzing the combined data stream, whercin the pattern identifics a first cvent in

the first input data stream followed by a second event in the second input data stream.

{081S] In accordance with some cmbodiments, a service provider deviee is provided. The
service provider device may comprise an input data stream recciving unit , configured to roceive
a plurality of input data streams comprising at least a first input data stream and a second input
data stream; a first dynamic data type genecration unit, configured to gencrate 3 first dynamic data
type for the first input data streamy; a scoond dynamic data type gencration unit, configured to
generate a second dynamic data type for the second input data stream; combined data stream
generation unit, configured to combine the first input data stream and the second input dats
stream to gencrate a combined data stream based at least in part on the first dynamic data type
and the second dynamic data type; and a pattern detection unit, configured to process a
continuous query over the combined data stream to detect a pattern.

{3816] In some embodiments, the first dynamic data type generation unit is further
configured to: identify a first atiribute of the first input data stream as not being present in the

second data streany and generate the first dynamic data type for the first atiribute.

10

5

WO 2015/085103 PCT/US2014/068641

{88171 In some embodiments, the first dynamic data type is configured to store a first data

vahie corresponding to the first attribute of the first input data stream.

{G018] Insome embodiments, the second dynamic data type generation unit is further
configured to identity a second attribute of the second input data stream as not being present in
first data stream; and generate the second dynamic data type for the second attribute, the second
dynamic data type configured to store a second data value corresponding to the second attribute

of the second input data stream,

{6019] Insome embodiments, the service provider device may further comprise a common
attribute identification unit, configured to identify a common atiribute, the common atiribute
identificd as being present in the first input data stream and being present in the second input
data stream; and homogencous schema generation unit , configured to gencrate a homogeneous
schema, the homogeneous schema including a representation of one or more attributes of the first
input data stream and the second input data stream, the representation including at least the

common attribute, the first dynamic data type and the second dynamic data type.

16028] In some embodiments, the homogencous schema comprises at least one of a stream
name identifier attribute, a first timestamp attribute associated with the first input data stream or

a second timestamp attribute associated with the second input data stream.

{8021} Insomc embodiments, the combined data strcam gencration unit may be further
configured to sclect a first sct of tuples from the first data stream, the first input data stream
identificd by the homogencous schema; select a sccond set of tuples from the second input data
stream, the sccond input data stream identified by the homogencous schema; and process a sub-
query over the first set of tuples and the second set of tuples to generate the combined data

stream.
{80221 In some embodiments, the pattern may be detected based at least in part on analyzing
the combined data stream, wherein the pattern dentifies a first event 1o the first input data stream

followed by a second cvent in the sccond input data stream.

LA

10

J—
(v

20

WO 2015/085103 PCT/US2014/068641

BRIEF DESCRIPTION OF THE DRAWINGS

{68231 The detailed deseription is set forth with reference to the accompanying figures. In
the figures, the left-most digit{s) of a reference number identifies the FIG. in which the reference
number first appears. The use of the same reference numbers in different FIGS. indicates similar

or identical items.

8024] FIG. 1 depicts a simplified example system or architecture in which techniques for

identifving patterns across mutttiple input data streams may be implemented.

{6025] FIG. 2 illustrates a simplified block diagram with which features for the detection of

patterns across multiple input data streams may be described.

I8026] FIG. 3 is an exemplary Hustration of performing pattern recognition using a CQL
query that identifics multiple input data streams, in accordance with one embodiment of the

present disclosure.

100271 FIG. 4 is an exemplary iHlustration of performing pattern recognition using a CQL
query that identifics multiple input data streams, in accordance with another embodiment of the

present disclosure.

{00281 FIG. S is a high level flowchart depicting a process for detecting patterns across

multiple input data streams, in accordance with one embodiment of the present disclosure.

I029] FIG. 6 is a high level flowchart depicting a process for generating a homogenous

schema, in accordance with one embodiment of the present disclosure.

100381 FIG. 7 depicts a simplified high level diagram of an event processing system that may

incorporate an embodiment of the present disclosure.

{B031] FIG. 8 depicts a simplified diagram of a distributed system for implementing onc of

the embodiments.

{88321 FIG. 9 is a simplified block diagram of one or more components of a system
environment by which services provided by one or more components of an embodiment system

may be offered as cloud services, in accordance with an embodiment of the present disclosure.

1o

5

WO 2015/085103 PCT/US2014/068641

3. G, 10 ilustrates an exemplary computer system, in which various embodiments of
$433 FIG. 10 iHustrat fary t fem, hich bod s of

the present invention may be implemented.

{6034] FIG. 11 illustrates a simplified block diagram of an exemplary service provider

device, in which various embodiments of the present invention may be implemented.

DETAILED BDESCRIPTION

{6035] Inthe following description, various embodiments will be described. For purposes of
explanation, specific configurations and detatls are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be apparent to one skilled in the art that
the embodiments may be practiced without the specific details. Furthermore, well-known

features may be omitted or simplified in order not to obscure the embodiment being described.

18036] In some applications, data may take the form of continuous, unbounded data streams,
rather than finite stored data scots. Examples of such data streams may include stock tickers in
financial applications, performance measurcments in network monitoring and traffic
management, log records or click-streams in web tracking and personalization, data feeds from
sensor applications, network packets and messages in firewall-based security, call detail records
in telecommunications, and the like. Due to their continuous nature, these data streams may

typically be queried using continuous queries rather than traditional one-time SQL querigs.

{B037] In general, a continuous data stream {also referred to as an event stream) may include
a stream of data or cvents that may be continuous or unbounded in nature with no explicit end.
Logically, an cvent or data stream may be a scquence of data clements (also referred to as
events), cach data clement having an associated timestamp. A continuous gvent stream may be
iogically represented as a bag or set of clements (s, T), where "s" represents the data portion, and

1t

"T" 15 in the time domain. The "s" portion is generally referred to as a tuple or event. An cvent

strcam may thus be a sequence of time-stamped tuples or events,

{B038] In somc aspects, the timestamps associated with events in a stream may cquate 1o a
clock time. Tn other examples, however, the time associated with events in an event stream may
be defined by the application domain and may not correspond to clock time but may, for
example, be represented by a sequence of murnbers instead. Accordingly, the time information

associated with an cvent in an event stream may be represented by a mumber, a timestamp, or any
7

10

I

[

5

e

WO 2015/085103 PCT/US2014/068641

other information that represents a notion of time. For a system recetving an input event stream,
the events arrive at the system in the order of increasing timestamps. There could be more than

one event with the same timestamp.

{6039] Insome exarmples, an event in an event stream may represent an occurrence of some
worldly event {(¢.g., when a temperature sensor changed value to a new value, when the price of a
stock symbol changed, etc.} and the time information associated with the event may indicate

when the worldly event represented by the data stream event occuarred.

{B048] For events received via an event stream, the time information associated with an
event may be used to ensure that the events in the cvent stream arrive in the order of increasing
timestamp values. This may enable events received in the event stream to be ordered based upon
thetr associated time information. In order to enable this ordering, timestamps may be associated
with cvents in an cvent stream in a non-decreasing manner such that a later-generated cvent has a
iater timestamp than an carlicr-generated event. As another example, if scquence numbers are
being used as time information, then the sequence number associated with a later-generated
cvent may be greater than the sequence number associated with an earlicr-generated event. In
some examples, muitiple events may be associated with the same timestamp or sequence
number, for example, when the worldly cvents represented by the data stream events occur at the
same time. Events belonging to the same gvent stream may generally be processed in the order
imposcd on the events by the associated time information, with carlicr cvents being processed

prior to later events,

{8041] The time information {e.g., timestamps) associated with an event in an event stream
may be set by the source of the stream or alternatively may be set by the system receiving the
stream. For exarple, in certain embodiments, a heartbeat may be maintained on a system
receiving an event stream, and the time associated with an cvent may be based upon a time of
arrival of the ovent at the system as measured by the heartbeat, 1t is possible for two cvents in an
event stream o have the same time information, It is to be noted that while timestarmp ordering is

spectfic to one event sircam, eveots of different streams could be arbitrarily interleaved.

{8042] Ancvent stream way have an associated schema "S," the schema comprising time

information and a sct of one or more naroed atiributes. All events that belong to a particular

8

10

5

WO 2015/085103 PCT/US2014/068641

event stream conform to the schema associated with that particular event stream. Accordingly,
for an event stream {8, T), the event stream may have a schema 'S’ as (<time_stamp>,
<attribute(s)>), where <attributes™> represents the data portion of the schema and can comprise
one or more attributes. For example, the schema for a stock ticker event stream may comprise
attributes <stock symbol>, and <stock price>. Each event recetved via such a stream will have a
time stamp and the two atiributes. For example, the stock ticker event stream may receive the

following events and associated timestamps:

{<timestamp N>, <NVDA,4>)

{<timestamp N+1>, <ORCL,62>}
{<timestamp N+2>, <PCAR,38>)
{(<timestamp N+3>, <SPOT,53>)
{<timestamp N+4>, <PDC0,44>)
(<timestamp N+5>, <PTEN, 533>}

in the above stream, for stream clement (<timestamp N+1>, <QRCL,62>), the cvent is
<ORCL,62> with atiributes "stock _symbol” and "stock value.” The timestamp associated with

the stream element is "timestamp N+1". A countinuous event stream 18 thus a flow of events,
cach cvent having the same series of attributes.

{6843] As noted, a stream may be the principle source of data that COL queries may act on.
A stream S may be a bag (also referred to as a “multi-set”) of elements (s, T), where “s” 18 in the
schema of S and “T7 is in the time domain. Additionally, stream elements may be tuple-
timestamp pairs, which can be represented as a sequence of timestamped tuple nsertions., In
other words, a strearn may be a sequence of timestamped tuples. In some cases, there may be
more than one tuple with the same timestamp. And, the tuples of an input data stream may be
requested to arrive at the system in order of increasing timestamps. Alternatively, a relation {(also
referred to as a “time varying relation,” and not to be confused with “relational data,” which may
include data from a relational database) may be a mapping from the time domain to an
unbounded bag of tuples of the schema R. In some examples, a relation may be an enordered,

time-varying bag of tuples (i.c., an instantancous relation}. In some cases, at cach instance of

9

10

J—
(v

WO 2015/085103 PCT/US2014/068641

time, a relation may be a bounded set. It can also be represented as a sequence of timestamped
tuples that may include insertions, deletes, and/or updates to capture the changing state of the
relation. Similar to streams, a relation may have a fixed schema to which cach tuple of the
relation may conform. Further, as used herein, a continuous query may generally be capable of
processing data of (i.c., queried against) a stream and/or a relation. Additionally, the relation may

reference data of the stream.

{8844] In some examples, business intelligence {(BI) may help drive and optimize business
operations at particular intervals {¢.g., on a daily basis in some cases). This type of Bl is usually
called operational business intelligence, real-time business intelligence, or operational
intelligence (O1). Operational Intelligence, in some examples, blurs the line between BI and
business activity monitoring {BAM}. For example, Bl may be focused on periodic guerics of
historic data. As such, it may have a backward-looking focus. However, BI may also be placed
into operational applications, and it may therefore expand from a mere strategic analytical tool
into the front lines in business operations. As such, B systems may also be configured fo analyze

event streams and compute aggregates in real time.

108431 In some cxamples, a continuous query language service (CQ Service) may be
configurcd to extend a Bi analytics server to handle continuous queries and enabie real-time
alerts. The CQ Service, in some aspects, may provide integration with a Bl analytics server and a
CQL enginc. By way of cxample only, a Bl analytics server may delegate continuous queries to
the CQ Service and the CQ Service may also act as a logical database (DB) gateway for a CQL
engine. In this way, the CQL cngine may be able to leverage the BI analytics server for its

analytics capabilities and semantic modeling.
{8046] In some cxamples, the CQ Service may provide, among other things, the following
functionalities:

Remoting service for Bl Analytics Server as CQL engine Gateway;

¢ Event source/sink adapter;

¢ Generate data definition langoages (DDLs) froro logical SQL phus CQL
extensions;

10

10

-
[

WO 2015/085103 PCT/US2014/068641

e Provide unified model for all types of continuous querics and
implementation selections;

& Maintain metadata and support restartability; and

e High availability and scalability support.
{60471 Additionally, in some examples, O is a form of real-time dynamic, business analytics
that can deliver visibility and insight into business operations. O is often linked to or compared
with Bl or real-time B, in the sensc that both help make sense out of large amounts of
information. But there are some basic differences: Ol may be primarily activity-centric, whercas
Bi may be primarily data-centric. Additionally, O may be more appropriate for detecting and
responding to a developing situation {¢.g., trend and pattern), unlike Bl which may traditionally

be used as an after-the-fact and report-based approach to identifying patterns.

13048] In some examples, a business ¢vent analysis and monitoring (BEAM) system may
include a CQL engine to process and/or reccive in-flight data. For example, a CQL engine may
be an in-memory real-time event processing engine configured to guery or otherwise process
incoming real-time information {¢.g., Bl or Of). The CQL engine may wtilize or understand
temporal semantics and be configured to allow definttion of a window of data to process.

Utihizing a CQL engine may, in some cascs, involve always running a query on incoming data.

{8049] In some aspects, the COL engine may include a full blown query language. As such, a
user may speeify computations in terms of a query. Additionally, the CQL engince may be
designed for optimizing memory, utilizing query language features, operator sharing, rich pattern
matching, rich language constructs, cte. Additionally, in some examples, the CQL engine may
process bath historical data and streaming data. For example, a user can set a query o send an
alert when Californua sales hit above a certain target. Thus, in some examples, the alert may be

based at least in part on historical sales data as well as incoming live (i.c., real-time) sales data.

{6058] Tn some exaroples, the CQL engine or other features of the below described concepts
may be configured to combine a historical context {i.e., warchouse data) with incoming data ina
real-time fashion. Thus, in some cases, the present disclosure may deseribe the houndary of

database stored information and in-flight information. Both the database stored information and

the inflight information may include BI data. As such, the database may, in soroe examples, be a

it

I

I

[

0

5

e

WO 2015/085103 PCT/US2014/068641

Bl server or it may be any type of database. Further, in some examples, the features of the
present disclosure may enable the implementation of the above features without users knowing
how to program or otherwise write code. In other words, the features may be provided in a
feature-rich user interface (UT) or other manner that allows non-developers to implement the

combination of historical data with real-time data.

{6051] In certain embodiments, events received in a continuous data stream may be
processed at run time to detect occurrences of a specified pattern in the data stream. A ‘pattern’
may constitute a sequence of consecutive events or tuples in the continuous data stream, cach
satisfving certain conditions. As an ¢xample, an gccurrence of an event such as a change in the
trading volume of a stock that results in the occurrence of another event such as a change in
pricing of the stock valie and may constitute a ‘pattern’ in a continuous data stream that reccives

‘stock tick” cvents related to a financial application.

13052] In the context of multiple continuous data streams, a ‘pattern’ may constitute an
occurrence of a first event in a first data stream followed by the occurrence of another eventina
second data stream, and so on. As an cxample, consider a first business process that is driven by
a first sequence of events, wherein the cvents relate to a car rental reservation application.
Similarly, consider a second business process that is driven by a second sequence of cvents,
wherein the events relate to a flight reservation application. Additionally, assume that the first
sequence of events is received via a first continuous input data stream and that the second
sequence of cvents is reccived via a sccond continuous input data stream. In such a situation, it
may be desirable to output a pattern match when the arrival of an event (¢.g., a car reservation by
a user} in the first continuous input data stream is followed by the arrival of another event{c.g., a

flight ticket issuance to the user) in the second continuous input data stream.

{B053] In onc embodiment, pattern matching across multiple continuous input data streams
may be performed by applying a continuous query (e.g., a CQL guery} to the incoming input
data strearos. In one approach, pattern matching across multiple continuous input data streams
may be performed by first performing a UNION of all or a subset of all of the relevant input data
streams over which pattern matching is to be performed with the result defining a view

corresponding to an intermediate stream. The pattern to be matched can then be specified over

1o

J—
(¥

WO 2015/085103 PCT/US2014/068641

this single intermediate strearn. In one embodiment, the CQL language construct
MATCH RECOGNIZE clause may be used for performing pattern recognition in a CQL query
that identifies multiple input data streams. The pattern may then be matched to all the streams

inclhuded in the view,

{B054] As an example, consider the following CQL query, Q1, wherein Q1 is a continuous
query that specifies a pattern to be matched across a first input data stream 51 and a second input

data stream, 82.

Q1
SELECT *
FROM
{SELECT clemntid, pl, -1L as p2 from S UNION ALL SELECT clientld, 1L as
pl, p2 from S1) AS S MATCH RECOGNIZE
{
PARTITION BY clientid
MEASURES

A.plaspl,

B.P2AS P2

PATTERN (A b)

DEFINE

A as (P 1=-1D)

bas (P2 1=-11}

)
{B055] Additionally, assume that strcam S1 is defined by a first schema: Si{int pl, int
clientid) and stream S2 is defined by a second schema: S2(int p2, int clientld), where pl, p2 and

clicutld correspond to onc or more attributes of stream S1 and S2.

{3056] Query Q1 comprises a FROM clause that specifies a UNION of the streams ST and
S2. Inorder for the UNION ALL query to cornbine the result sets of the sircams 51 and 82, each
CQL SELECT statement within the CQL UNION ALL quoery 18 typically required to have the

same number of fields in the results sets with similar data types. In the example of query Q1

i3

1o

I

[

5

e

WO 2015/085103 PCT/US2014/068641

shown above, the schema of stream ST is different from the schema of stream S2. Inonge
approach, the streams S1 and S2 may be combined by normalizing the schemas of streams 51

and S2.

{B057] In onc example, the normalization of the schemas may be performed by adding an
additional column to each of the schemas of streams ST and 52, In the example of query Q1
shown above, a column is added to cach of the schemas of streams S1 and S2 and populated with
a hard coded value such as “~1L7 to normalize the schemas, However, introducing hard-coded
data values into cach stream is a manual process which is prone to error since hard-coded values
have to be entered cach time a CQL query that identifics multiple input data strcams with

different schemas is processed.

{B038] In onc embodiment of the present disclosure, a homogeneous schema representing
one or more participating input data streams is generated. In some embodiments, the
homogencous schema may be generated by creating one or more dynamic data types for one or
more attributes of the participating input data streams. The generation of the dynamic data types
and the homogenous schema enables cach SELECT statement within the UNION ALL sub-
query to include the same number of ficlds and similar data types so that the result sets of the
streams S1 and 82 may be combined using the SELECT statements. Additionally, the generation
of the dynamic data type for the attributes of the participating input data streams is performed in
real-time, and hard-coded values need not be introduced into the participating input data streams
cach time a CQL query is processed. In onc example, and as will be discussed in detail below,
the dynamic data types may refer to a composite data type identified for one or more atiributes of

the input data streams.,

{80589] In certain embodiments, the input data strcams may then be combined to generate a
combined data stream based on the homogenous schema. A continnous query may then be
processed over the combined data stream to detect a pattern across the input data streams. In one
embodiment, the CQL langoage construct MATCH RECOGNIZE clause may be used for
performing pattern recognition in a CQL guery that identifies multiple input data streams.

Additional details of the manner in which the bomogeneous schema and the dynamic data types

i4

I

I

[

{

5

e

WO 2015/085103 PCT/US2014/068641

may be generated and utilized to perform patiern recognition in a CQL query that identifics

multiple input data streams is discussed in detail 1o FIGS, 1-4 below.

{3068] Using a MATCH RECOGNIZE clause, a user can define conditions on the attributes
of incoming events and identity conditions for pattern matching by using identificrs called
correlation variables. As discussed above, a sequence of consecutive events or tuples i an input
data stream, cach satisfving certain conditions constitutes a pattern. The pattern recognition
functionality allows a user to define conditions on the attributes of incoming events or tuples and

to wdentify these conditions by using string names called correlation variables.

{6061] Inthe query Q1 shown above, "A” and ‘B’ are the correlation variables. The patiern to
be matched is specified as a regular expression over these correlation variables and it determines
the sequence or order in which conditions should be satisfied by different incoming events to be
recognized as a valid match. A sequence of consecutive events in the input data stream satisfying
these conditions constitutes a pattern. In one embodiment, the output of a

MATCH RECOGNIZE query is a stream. In the gquery Q1 shown above, the

MATCH RECOGNIZE clause also includes scveral sub-clauses.

130621 The DEFINE sub-clause specifies the Boolean condition for cach correlation variable.
This may be specified as any logical or arithmetic expression and may apply any single-row or
aggregate function to the attributes of events that match a condition. On receiving a new cvent
via the input data stream, the conditions of the correlation variables that are relevant at that point
in time arc evaluated. An cvent s said to have matched a corrclation variable if it satisfics its
defining condition. A particular input can match zero, one, or more corrclation variables. The
relevant conditions to he evaluated on receiving an input event are determined by the processing
logic governed by the PATTERN clause regular expression and the state in the pattern
recognition process that has been reached after processing the carlier inputs. The condition can
refer to any of the attributes of the schema of the stream or view that evaluates to a stream on
which the MATCH RECOGNIZE clause 1s being apphied. A correlation varniable in the
PATTERN claose need not be specified in the DEFINE clause: the default for such a correlation

variable is a predicate that is always true. Such a correlation variable matches every event.

10

5

WO 2015/085103 PCT/US2014/068641

{8063] The PARTITION BY sub-clause specifies the stream attributes by which a

MATCH RECOGNIZE clause should partition its results. Without a PARTITION BY clause,
all stream atiributes belong to the same partition. When a PARTITION BY clause is present
along with pattern matching, the input data stream is logically divided based on the atiributes
mentioned in the partition list and pattern matching is done within a partition. In the query Q1
shown above, the ‘chientld’ attribute (which is an attribute that is common to the streams Si and
S2} is specified in the PARTITION BY clause by which the MATCH RECOGNIZE clause may

partition its results,

{8064] The MEASURES sub-clause exports {¢.g., makes available for inclusion in the
SELECT clause) one or more atiribute values of events that successfully match the pattern
specitied and also cnables expressions to be speeified on those attribute values. This clause may
be used to define expressions over attributes of the events in the event stream that match the
conditions {correlation variables) in the DEFINE clause and to alias these expressions so that
they can suitably be used in the SELECT clause of the main query of which this

MATCH RECOGNIZE condition is a part. The attributes of an event stream may be referred to

cither directly or via a correlation variable.

{8065] The PATTERN sub-clause specifics the pattern to be matched as a regular expression
over ong or more correlation variables. Incoming cvents must match these conditions in the order
given {from left to right). The regular cxpression may be composed of correlation variables and
pattern gualifiers such as:

* 1 0 or more times

+: 1 ot more times

?7:0ort time, cic.

{8066] In certain embodiments, the one-character pattern quantificrs shown above are
maximal or "greedy™; they will aticmpt to maich as many instances of the regular expression on
which they are applied as possible. The pattern quantifiers can also be two characters, which are
minimal ot "reluctant”; they will attempt to match as fow instances of the regular expression on
which they are applied as possible, Exaroples of two character quantifiers include without

fumitation:

I

I

L

b2

0

5

(v

WO 2015/085103 PCT/US2014/068641

7. § or roore times
+?7 + 1 or more times

7 Gor i time

{8067] As an example of pattern matching, consider the following pattern:
PATTERN (AB*C)
This pattern clanse means a pattern match will be recognized when the following conditions are
met by consecutive incoming input events:
State 1: Exactly one event tuple matches the condition that defines correlation variable A,

followed by
State 2: Zero or more tuples that match the correlation variable B, followed by
State 3: Exactly one tuple that matches correlation variable C.

{0068] The states State 1, State 2, and State 3 may represent the various states for the patiern
AB*C), with State 3 being the final state for the pattern. When a pattern match is in a particular
state and can either remain in the same particular state or can transition from the particular state
to the next state due to the next event, it may imply that the binding can grow. A pattern may be
considered matched if the binding is in the final state. While in state 2, if a tuple or event arrives
that matches both the correlation variables B and C {since it satisfics the defining conditions of
both of them) then as the quantifier * for B is greedy, that tuple may be considered to have
matched B instead of C. Accordingly, due to the greedy property B may get preference over
and a greater mumber of B may be matched. Had the pattern expression be A B*7 C, one that
uses a lazy or reluctant quantificr over B, then a tuple matching both B and C may be treated as
matching C only. Thus, in that example, C may get preference over B and a fower number of B

may be matched.
{6069] In the query Q 1 shown above, the pattern {AB) is matched when:

State 1: Exactly onc event tuple matches the condition that defines correlation variable A, 18

followed by

State 2 (Final state): Exactly one tuple that matches corrclation variable B.

17

10

5

[\
LA

WO 2015/085103 PCT/US2014/068641

The states State 1 and State 2 represent the various possible states for the pattern (AB), with

State 2 being the final state for the patiern.

{B078] The techniques described sbove and below may be implemented in a nurmber of ways
and in a number of contexts. Several example implementations and contexts are provided with
reference to the following figures, as described below 1n more detail. However, the following

implementations and contexts are but a few of many.

{8071] FIG. 1 depicts a simplified example system or architecture 100 in which techniques
for performing pattern matching across multiple input data streams may be implemented. In
architecture 100, one or more users 102 {¢.g., account holders) may utilize user computing
devices 1341 -{N) (collectively, "user devices 1347} to access one or more servige provider
computers 106 via one or more networks 108, In some aspects, the service provider computers
106 may also be in communication with one or more streaming data source compiters 110
and/or one or more databases 112 via the networks 108, For example, the users 102 may utilize
the service provider computers 106 1o access or otherwise manage data of the streaming data
source computers 110 and/or the databases 112 {e.g., queries may be run against either or both of
118, 112}, The databases 112 may be relational databases, SQL servers, or the like and may, in
some examples, manage historical data, cvent data, relations, archived relations, or the like on
behalf of the users 102, Additionally, the databases 112 may receive or otherwise store data
provided by the streaming data source computers 110, In some cxamples, the users 102 may
utilize the user devices 104 to interact with the service provider computers 106 by providing
queries {also referred to as “query statements™) or other requests for data {c.g., historical cvent
data, streaming cvent data, cte.). Such querics or requests may then be executed by the service
provider computers 106 to process data of the databases 112 and/or incoming data from the
streaming data source computers |10, Forther, 1n some examples, the streaming data source
computers |10 and/or the databases 112 may be part of an integrated, distributed environment

associated with the service provider computers 106,

{80721 In some exaoples, the networks 108 may include any one or a combination of
multiple different types of networks, such as cable networks, the Internet, wireless networks,

cellular networks, intranet systems, and/or other private and/or public networks, While the

i&

10

5

WO 2015/085103 PCT/US2014/068641

illustrated example represents the users 102 accessing the service provider computers 106 over
the networks 108, the deseribed techniques may equally apply in instances where the users 102
interact with one or more service provider computers 136 via the one or more user devices 104
over a landline phone, via a kiosk, or in any other manner. It 18 also noted that the described
techniques may apply in other chient/server arrangements (¢.2., set-top boxes, etc.}, as well as in

non-client/server arrangements {e.g., locally stored applications, et¢.}.
[4d L Ltk - 2 s

1868731 The user devices 104 may be any type of computing device such as, but not limited
to, a mobile phone, a smart phone, a personal digital assistant (PDA), a laptop computer, a
desktop computer, a thin-client device, a tablet PC, etc. In some examples, the user devices 104
may be in communication with the service provider computers 136 via the networks 10&, or via
other network connections. Further, the user devices 104 may also be configured to provide ong
or more querics or query statements for requesting data of the databases 112 {or other data

stores) to be processed.

100741 In some aspects, the service provider computers 106 may also be any type of
computing devices such as, but not limited to, mobile, desktop, thin-client, and/or cloud
computing devices, such as servers. In some examples, the service provider computers 106 may
be in communication with the user devices 104 via the networks 108, or via other network
connections. The service provider computers 106 may include one or more servers, perhaps
arranged in a claster, as a server farm, or as individual servers not associated with one another.
These servers may be configured to perform or otherwise host featurcs described herein
inchuding, but not limited to, the management of CQL relations, generation of input relations,
configurable window operators associated with the input relations, and the generation of output
relations, described herein. Additionally, in some aspects, the service provider computers 106
may be configured as part of an integrated, distributed computing environment that includes the

strcaming data source computers 110 and/or the databases 112,

{B078] In one illustrative configuration, the service provider coroputers 106 may include at
least one memory 114 and one or more processing units {or processor{s})) 134, The processor(s)
134 may be implemented as appropriate in hardware, computer-cxecutable instructions,

firmware, or combinations thereof. Computer-executable instruction or firmware

19

10

[

(v

e

WO 2015/085103 PCT/US2014/068641

implementations of the processor{s) 134 may nchude computer-exccuntable or machine-
executable instroctions written in any suitable programming language to perform the various

functions described.

{6076] The memory 114 may store program instructions that are loadable and executable on
the processor(s) 134, as well as data generated during the execution of these programs,
Depending on the configuration and type of service provider computers 106, the memory 114
may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only
memory {ROM), flash memory, etc.}. The service provider computers 106 or servers may also
include additional storage 136, which may inchade removable storage and/or non-removable
storage. The additional storage 136 may include, but is not limited to, magnetic storage, optical
disks, and/or tape storage. The disk drives and their associated computer-readable media may
provide non-volatiie storage of computer-readable instructions, data structures, program
modules, and other data for the computing devices. In some implementations, the memory 114
may include multiple difforent types of memory, such as static random access memory {SRAM},

dynamic random access memory (DRAM), or ROM.

100771 The memory 114, the additional storage 136, both removable and non-removable, are
all examples of computer-readable storage media. For example, computer-readable storage
media may include volatile or non-volatile, removable or non-removable media implemented in
any mcthod or technology for storage of information such as computer-readable instructions,
data structures, program modules, or other data. The memory 114 and the additional storage 136

are all examples of computer storage media.

{B078] The service provider computers 106 may also contain communications connection{s)
138 that allow the service provider computers 106 to communicate with a stored database,
another computing device or server, user terminals, and/or other devices on the networks 108,
The service provider computers 106 may also include input/output (V/O) device(s) 140, such as a
kevboard, a mouse, a pen, a voice input device, a touch input device, a display, one or more
speakers, a printer, etc.

{60791 Turning to the contents of the memory 114 in more detail, the memory 114 may
include an operating system 124 and one or more application programs or services for

20

1

[

{

(v

e

WO 2015/085103 PCT/US2014/068641

imaplementing the features disclosed herein including at least an input data stream module 116, a
dynamic data type generation module 118, a combined data stream generation module 120 and a
pattern detection module 122. As used herein, modules may refer to programming modules
executed by servers or clusters of servers that are part of a service. In this particular context, the
modules may be executed by the servers or clusters of servers that are part of the service
provider computers 106, In other embodiments, the modules may be executed by a CQL Engine
and/or a CQ Service 200 (shown in FIG. 2} that may be part of the service provider computers
106. In various embodiments, and as will be discussed in detail below, the modules 116, 118,
120 and 122 may be configured to porform functionality that enables the detection of patterns
across a plurality of input data streams. These modules may be implemented in hardware, or
software, or combinations thereof. The various modules depicted in FIG. 1 are meant for
Hhastrative purposes and are not intended to Himit the scope of embodiments of the present
invention, Alternative embodiments may include more or fewer modules than those shown in

FiG. 1.

{00881 In one embodiment, the input data stream module 116 may be configured to, receive,
identify, generate, or otherwise provide one or more input data stream{s} 126, In one cxample,
the input data strcamds} 126 may include an incoming continuous data strecam of data or events
related to one or more applications. In some embodiments, the input data strcams 126 may be

reecived from the data source computers 110 and/or the database 112,

{8081] In some cxampiles, the input data stream(s) 126 may include a sequence of time
stamped taples or data records related to one or more applications. For example, cach data record
in the input data stream(s) 126 may include an cvent stream entry that may be represented by the
following schema: (<time _stamp>, <attribute{(s)>}, where <attributes™ represents the data

portion of the schema and can comprise onc or more attributes,

{8082] As an example, consider that the input data stream(s) 126 include a first data stream
and a second data stream. For purposes of this exarople, further consider that the first input data
stream includes a first set of events related to a first application {e.g., a car rental reservation
application) and that the second input data stream includes a second set of events related to a

seeond application {¢.g., a flight reservation application), Additionally counsider that the first

3

A

I

I

[

0

5

e

WO 2015/085103 PCT/US2014/068641

input data stream 1s defined by a first schema, ST {cl, integer, ¢2 integer) and that the second

input data stream is defined by a second schema, 82: {¢l, integer, ¢3 nteger).

{30831 In onc embodiment, the first mput data stream and the second input data stream may
be analyzed to detect a pattern, wherein a ‘pattern” may constitute the occurrence of an ¢vent in a
first data stream followed by the occurrence of another event in a second data stream. In one
example, pattern matching may be performed by applving a continuous query {e.g., a CQL
query) to the incoming continuous data streams. FIG. 2 describes at feast one implementation of
the CQL Engine and/or a CQ Service 200 for performing pattern matching by applving a CQL
query over multiple input data streams. Although the above discussion relates to the detection of
detecting a pattern across a first data stream and a sccond data stream, it is to be appreciated that
the disclosed technigue may be applied to detecting patterns across multiple continuous input

data streams, in at least some embodiments.

13084] In some embodiments, the analysis of the input data streams may initially be
performed by the dynamic data type generation module 11€. In one embodiment, the dynamic
data type generation module 118 may be configured to reccive the first input data stream and the
sccond input data stream from the input data stream module 116 and identify one or more
attributes in the input data streams. In some examples, the dynamic data type generation module
118 may be configurced to identify a first attribute of the first data stream and a second attribute
of the sccond data stream. In one cxarple, the first attribute may be identificd as an attribute that
is not present in the sccond data stream and the sccond atribute may be identified as an atiribute

that is not present in the first data stream,

{B088] Per the cxample of the data streams 81 and S2 discussed above, in one embodiment,
the dynamic data type generation module 118 may identify a first attribute “¢2” as an attribute in
the first data strcam S1 that i3 not present in the sccond data stream S2. Similarly, the dynamic
data type gencration module 118 may identify a second attribute ‘c3’ as an attribute in the sccond
data strearn S2 that is not present in the first data stream S1. Although the above discussion
relates to a first attribute and a second attribute 1dentified n streams ST and S2, wis to be
appreciated that the dynamic data type generation module 118 may be configured to identify

additional atiributes from the streams S and 52, in other embodiments,

10

J—
(¥

WO 2015/085103 PCT/US2014/068641

{B086] In some embodiments, the dynamic data type generation rmuodule 118 may then be
configured to gencrate a first dynamic data type for the first attribute and a second dynami¢ data
type for the second attribute. In one example, the first dynamic data type is configured to store a
first data value corresponding to the first attribute of the first data stream and the second dynamic
data type 15 configured to store a second data value corresponding to the second attribute of the

second data stream.

{0871 In some embodiments, the dynamic data type may be implemented as a composite
data type that includes one or more member types, referred to herein as “fields.” In one example,
a member ficld may include a name and an associated type. The ficld type may be any CQL
native type, such as, for example, a CQL extensible type. In some examples, a service (e.g., the
CQL Engine and/or CQ Service 200 shown in FIG. 2) may be configured to implement a CQL
extensible type for the dynamie data type by providing one or more application programing
interfaces {APIs) by which the dynamic data type may be created and defined by specifying its

public ficlds (e.g., ficld name, data type of ficld).

{00881 In cortain embodiments, the dynamic data type gencration module 118 may be
configured to identify a comumon attribute, which may be identificd as an attribute that is present
in both the first data stream and the second data stream. In one embodiment, the dynamic data
type gencration module 118 may then be configured to generate a homogencous schema 128 to
represent the first input data stream and the second input data stream. In one example, the
homogeneous schema 128 may include a representation of onc or more attributes of the first
input data stream and the second input data stream including the common atiribute and the first

dynamic data type and the second dynamic data type.

{B089] Per the cxample of the first input data stream 81 and the second input data stream 82
shown above, in one embodiment, a homogencous schema S for the streams S1 and S2 may he
generated as follows:

Homogeneous Schema S: (SstreamName char, ¢f int, ST Typl@DynamicTypeCartridge, 82

Typ2twDynamicTypeCartridge)

10

5

WO 2015/085103 PCT/US2014/068641

160901 Here, ‘SstreamName’ refers to an attribute having a data type char in the homogenous
schema. The ‘SstreamName” attribute identifies the input data stream source of the received
input tuple {event) from the input data stream. For an event ‘¢, the “$streamName” attribute may
store the name of the stream alias in which "¢’ is an ¢vent. Thus, the ‘SstreamName’ attribuie
enables the identification of a particular input data stream to which the current input event {tuple)
belongs. ‘¢l refers to a common attribute in the homogeneous schema, wherein the common
attribute is identificd as an attribute that has the same datatype and the same name in every
participating input data stream. For example, the common attribute ‘¢l may refer to a user
attribute that identifics a uscr accessing the first application and the second application related to
the input data streams S1 and S2. In some examples, a homogencous schema including a
common attributc may cnable the specification of a PARTITION by clause to create a sub-

stream which itscif could contains events from different input data streams.

18091] In addition, "Typl@DynamicTypeCartridge’ refers to a first dynamic data type
configurcd to store a first data value corresponding to the first attribute of the first data stream. In
onc example, the "Typl@DynamicTypeCartridge’ may be used to store data vahues
corresponding to the first attribute *¢2” in the first input data stream S1. As an example, the first
attribute "¢2” in the first input data strecam 51 may refer to a car reservation attribute that stores a
car reservation identification number from a uscr accessing the first application {¢.g., the car

rental reservation application) .

{B092] Similarly, "Typ2@DynamicTypeCartridge’ refers to a sccond dynamic data type
configured to store a second data value corresponding to the second attribute of the second data
stream. In one example, the "Typ2@DynamicTypeCartridge’ may be used to store data values
corresponding to the second attribute ‘¢3’ in the seccond mput data strearm S2. As an example, the
second attribute ¢37 in the second input data strearn S2 may refer to a flight reservation attribute
that stores a flight reservation identification number for the user accessing the second application
{c.g., the flight reservation application).

{80931 For the above example, it may be observed that there s one attribute {e.g., ‘¢2”) for
Stoftype, ‘Typl@DynamicTypeCartridge” and one attribute {¢.g., ‘¢37) for 82 of type

“Typ2awDynamicTypeCartridge.” ‘Typl@DynamicTypeCartridge” may inchude one public field

o

24

10

J—
(v

[\
LA

WO 2015/085103 PCT/US2014/068641

for cach attribute of siream St of the same datatype. Similarly, ‘Typ2(@DynamicTypeCartridge’
may inchide one public field for cach attribute of stream S2. It may be noted that the Typl and
Typ2 are internal types and may not be visible to the end user. For the example considered, Typ]

may inchide public fields ‘¢’ and *¢2” while Typ2 may inclade public ficlds ‘¢l and *¢3.

{8094] Based on the homogeneous schema thus generated, in one embodiment, the combined
data stream generation module 120 may be configured to gencrate a combined data stream. In
one example, the combined data stream may be generated by performing a UNION of the first
input data stream and the second input data stream, wherein the first input data stream and the
sccond input data stream are represented by the homogenous schema S. In one example, a CQL
UNION ALL sub-query may be applied to the first data stream S1 and the second data stream S2
to combine the result scts of the streams 81 and S2 based on the homogencous schema. The
generation of a homogeneous schema cnables cach CQL SELECT statement within the UNION
ALL sub-query to have the same number of fields and similar data types in the results sets.
Agccordingly, the result sets of the streams St and S2 may be combined using the SELECT
statcments in the UNION ALL sub-query based on the homogeneous schema. The manner in
which a first data stream and a sccond data strcam may be combined using a UNION ALL sub-

query to gencrate a combined data stream is discussed in FIG. 4.

{00931 In some embodiments, the pattern detection module 122 may then be configured to
detect a pattern 132 based on the combined data stream. In one embodiment, the pattern
detection module may be configured to output a pattern match by applying a

MATCH RECOGNIZE clause to the combined data stream. As an example, a detected pattern
may include the arrival of a first event {c.g., a car rescrvation by a uscr) in the first input data
strcam S1 followed by the arrival of a sccond event {c.g., a flight ticket issuance to the user} in
the second input data stream 82, The manner in which the pattern detection roodule may be
configured to perform patiern recognition in a COL query that wdentifies wultiple input data

streams 1s discussed i FIG. 3.

{6096] FIG. 2 illustrates a simplified block diagram with which features for the detection of
patierns across multiple input data streams may be described. As shown, FIG. 2 describes at least

one implementation of a CQL Engine and/or CQ Service 200 for managing multiple input data

25

P,

10

J—
(v

30

WO 2015/085103 PCT/US2014/068641

streams. In some embodiments, the modules 116, 118, 120 and 122 shown in FIG. | may be
executed by the CQL Engine and/or a CQ Service 200. The COL Engine and/or T Service 200
may initially receive information from an input source 204, In one example, the input source
204 may inchude the data source computers 110 that receive incoming continuous input data
streams that include a stream of data or events related to one or more applications. In certain
embodiments, when a query (¢.g., a COL query) is identified or received that inchudes a first
input data stream S1 206 and a sccond input data stream S2 208, the CQL engine 200 may parse
the query to detect a pattern across the streams ST and 82, In one embodiment, the CQL engine
and/or COQ Service 200 may exccute the CQL query by first performing a UNION of the first
input data stream and the second input data stream, wherein the first input data stream and the
second input data stream are represented by a homogenous schema 8. In one embodiment, the
homogencous schoma S may be generated by the dvnamic data type generation module 118 as

discussed in FIG. 1.

{60971 The input data streams 81 and 82 may then be combined to gencrate a combined data
stream based on the homogenous schema. In one embodiment, the combined data stream may be
generated by the combined data stream module 120, The pattern detection module 122 may then
process a continuous query {¢.g., a COL query) over the combined data stream to detect a pattern
across the input data streams. In one embodiment, the pattern detection module may be
configured to output a pattern match by applying a MATCH RECOGNIZE clause to the
combined data strcam. In some examples, the CQLU Engine and/or CQ Scrvice 200 may then
store the detected pattern in an output destination 212, such as for exaraple, in the databases 112

shown in FIG. 1.

{B098] FIG. 3 is an cxemplary iHustration of performing pattern recognition using a CQL
query that identifics multiple input data streams, in accordance with one embodiment of the
present disclosure. In one example, the query 300 is a continuous {e.g., a CQL) query that
specifies a pattern to be matched across a first input data stream 51 and a second nput data
stream S2. In the example shown 10 FIG. 3, the streams St and S2 are specitied in a comma
separated bist surrounded by parenthesis and provided as an input to the MATCH RECOGNIZE
clause. As a result, the FROM clause of the query 300 roay be conventently expressed using the
following expression: (81, 82) MATCH _RECOGNIZE. Tn some cxamples, cach stream in the

26

10

5

WO 2015/085103 PCT/US2014/068641

st may be identified as a base stream or a view evaluating to a stream or a sub~query cvaluating

{0 a siream,

{3099] Wheo streams St and S2 are specified using a conuma separated list as discussed
above, ¢ach of the participating streams may need to be identified with a distinet alias. So, for
example, if a MATCH RECOGNIZE clause is applied over {5, 5§} then the FROM clause may
need to be specified as (5, S AS S1) MATCH RECOGNIZE. That i3, an optional AS clause may
need to be introduced to alias the second stream 8 o ensure distingt alias names. It may be noted
that if no explicit AS clause is specified, the stream name may be considered as the alias name,

in other examples.

{B0108] In some embodiments, the expression of the streams 81 and S2 as a comma separated
fist may cvaluate to a UNION of the input data streams S1 and 82, wherein the streams S1 and
S2 are defined by a homogencous schema. In one embodiment, and as discussed in detail in FIG.
4, a combined data stream may be gencrated based upon the execution of the UNION ALL sub-
query and the combined data stream may be provided as input to the MATCH RECOGNIZE
clause. The MATCH RECOGNIZE may then be utilized to detect a pattern in the combined data

streaim.

{06101] As discussed above, using the MATCH RECOGNIZE clause, a user can defing
conditions on the attributes of incoming events and identify conditions for pattern matching by
using identifiers called correlation variables. The patiern recognition functionality allows a user
to define conditions on the attributes of incoming events or tuples and to identify these

conditions by using string names called corrclation variables,

{80102] In the guery 300, "A’ is a correlation variable. The pattern to be matched is specified
as a regular expression over this correlation variable and it determines the sequence or order in
which conditions should be satisficd by different incoming cvents to be recognized as a valid
match. In one cxample, a sequence of consceutive cvents in the input data streams 51 and 52
satisfying these conditions constitutes a pattern. In one embodiment, the output of a

MATCH RECOGNIZE query is a strcam.

{B0103] FIG. 4 is an cxemplary iHustration of performing pattern recognition using a CQL

query that identifics multiple input data streams, in accordance with another embodiment of the
27

o
e

WO 2015/085103 PCT/US2014/068641

present disclosure. In one embodiment, the query 400 shown in FIG. 4 depicts an internal
representation of the FROM clause of the query 300. In one example, the FROM clause may be
represented as a UNION ALL sub-query of the streams ST and 82, wherein the streams St and

52 are represented by a homogenous schema.

{B0104] For the example shown in FIG. 4, a homogenous schema representing stream S1 and

S2 may be gencrated as follows:

Homogeneous Schema S: (SstreamName char, of int, ELEMENT TIME int, S1

Typlt@DynamicTypeCartridge, S2 Typ2@ DynamicTypeCartridgeCartridge)

{G0185] Here, ‘Typli@DynamicTypeCartridge’ represents a first dynamic data type generated
for an attribute of stream S1 that is not present in stream S2. Similarly,
Typ2e@DynamicTypeCartridge’ represents a second dynamic data type generated for an
attribute of stream 52 that is not present in stream S1. For the example shown in FIG. 4, the
TyplwDynamicTypeCartridge’ represents a first dynamic data type for a first attribute ‘c2” in
stream S1 that is not present in stream S2 and the “Typ2@BynamicTypeCartridge’ represents a
second dynamic data type for a second attribute ‘¢3’ in stream 82 that is not present in stream

S1.

{08106] In one embodiment, the generation of the dynamic data types and the homogenous
schema discussed above may enable individual stream specific attributes of the streams S1 and
82 to be accessed as follows. At runtime, for an event received from stream S1, the
TyplwDynamicTypeCartridge’ dynamic data type may be configured to represent the first
attribute ‘c2” from strecam S1 that is not in 82 using the cxpression:
Typl@DynamicTypeCartridge{c!, ¢2)} AS S1°, while the “Typ2@DynamicTypeCartridge’
dynamic data type may be configured to represent the second atiribute “¢3” from stream 52 that
is not in 51 using the expression: “Typ2@DynamicTypeCartridge{)} AS S2.” In one cxample,
the ‘Typ2(@DynamicTypeCartridge” may store a NULL value for the second atiribute "¢3” of

stream S2 for the received event.

>

{B0107] Similarly, for an event received from stream S2, the “Typl@DynamicTypeCartridge
dynamic data type may be configured to represent the first attribute (*¢2’) from stream S1 that is
not in S2 as “Typl@DynamicTypeCartridge!{ } AS S17 and store a NULL value for the

28

1o

5

WO 2015/085103 PCT/US2014/068641

attribute ‘c2.” Additionally, the "Typ2@DynamicTypeCartridge’ may be configured to represent
the second attribute *¢3” from stream S2 that is not in 81 using the expression:
Typ2e@DynamicTypeCartridge(el, ¢33 AS 52,7 In one embodiment, using the dynamic data
type representations discussed above, the attribute ‘¢2” may be accessed in a COL query as S1.c2

and the attribute ‘¢3” may be accessed in the CQL query as S2.¢3.

{G0108] Additionally, in the example shown in FIG. 4, the attributes ‘cl” and

ELEMENT TIME’ (timestamp value) may be identified as the common attributes. In some
examples, the common atiribute “¢1” may be accessed nsing the homogencous schema either as
A.ctor ASILcl. Insome examples, a PARTITION BY clause may also be used to access the

common atiribute.

{60189] 1t may be appreciated that the generation of a homogeneous schema and the dynamic
data types discussed above enables cach CQL SELECT statement within the UNION ALL guery
to have the same nmumber of ficlds and similar data types in the results sets. Additionally, the
dynamic data types cnable the assignment of *“NULL’ values to attributes that do not belongtoa
speeitic stream. In one embodiment, the result sets of the streams S1 and 82 may then be
combined to gencrate a combined data stream based on the homogencous schema by applying a
COL UNION ALL sub-query to combine the result sets of the streams S1 and S2. The manner in
which a combined data stream may be generated may be explained using the following non-

fimiting cxample.

{B0118¢] As an cxample, consider that the first input data stream S1 receives the following

events and associated timestamps:

(<timestamp 1000>, <C1 1, C2 5>)
{<timestamp 2000>, <Ct 1,C2 10>)
(<timestamp 3000>, <Ct 1 C2 15>)

160111} Similarly, consider that the sceond input data stream S2 receives the following events

and associated timestamps:

10

J—
LA

WO 2015/085103 PCT/US2014/068641

{(<timestamp 000>, <Ct 1, C3 5>)
{<timestamp 2000>, <C1 1,C3 10>)
{<timestamp 3000>, <C1 1 C3 15>)

{B8112] The result sets of the streams 81 and 82 shown above may be combined to generate a
combined data stream as shown below. In one example, the combined data stream includes the
resulf sets of the streams S1 and 52 that may be combined using the SELECT statements in the
UNION ALL sub-query based on the homogencous schema as discussed above. In one example,
the combined data stream may be identificd by the following homogenous schema
{BstreamMName, ¢l, S1.¢2, S2,¢3) and may include the following events and associated

timestamps:

{<timestamp 000>, <S1, Ct |, C2 5, NULL>})
{<timestamp 000>, <82, C1 |, C2 NULL, €3 5>)
{<timestamp 2000>, <S1, C1 |, C2 10, C3 NULL>)
{<timestamp 2000>, <82, C1 |, C2 NULL, C3 10>)
(<timestamp 3000>, <S1, Ct |, C2 1, C3 NULL>)
(<timestamp 3000>, <S2, Ct |, C2 NULL, C3 15>)

{68113] FIGS. 5 and 6 illustrate example flow diagrams showing respective processes 300 and
600 for implementing the detection of pattorns across multiple input data streams, described
herein. These processes 500 and 600 arc illusirated as logical flow diagrams, cach operation of
which represents a sequence of operations that can be implomented in hardware, computer
instructions, or a combination thereof. o the context of computer instructions, the operations
represent computer-executable instructions stored on one or more computer-readable storage
media that, when executed by one or more processors, perform the recited operations. Generally,
computer-executable instructions inclode routines, programs, objects, components, data
structures and the like that perform particular functions or implement particular data types. The

order in which the operations are described is not intended to be construed as a limitation, and

30

1o

5

WO 2015/085103 PCT/US2014/068641

any number of the described operations can be combined in any order and/or in paraliel to

implement the processes.

{B0114] Additionally, some, any, or all of the processes may be performed under the control
of one or more computer systems configured with executable tnstructions and may be
implemented as code {e.g., executable instructions, one or more computer programs, or one or
more applications) executing collectively on one or more processors, by hardware, or
combinations thereof. As noted above, the code may be stored on a computer-readable storage
medium, for example, in the form of a computer program comprising a plorality of mmstractions
executable by one or more processors. The computer-readable storage medinm may be non-

transitory.

{B0115] FIG. 5 is a high level flowchart depicting a process for detecting patterns across
multiple input data streams, in accordance with one embodiment of the present disclosure. In
some exampies, the one or more service provider computers 106 (¢.g., utilizing at least the input
data stream module 116, the dynamic data type generation module 118, the combined data
stream generation module 128 or the pattern detection module 122} shown in at least FIG. 1 {and
othersy may perform the process 580 of FIG. 5. The process SO0 may begin at 502 by including

identifying and/or receiving a first input data stream and a second input data stream.

180116] At 304, the process 500 may include generating a homogeneous schema to represent
the first input data stream and the second input data stream. The process by which a

homogeneous schema may be generated is discussed in detail in FIG. 6.

{B0117] At 306, the process 300 may include combining the first input data stream and the
sccond input data stream to generate a combined data stream based on the homogenecous schoma.
in onc embodiment, gencrating a combined data stream may include selecting a first set of tuples
{via a first CQL SELECT statcment} from the first input data stream, sclecting a second sct of
tuples (via a first CQL SELECT statement) from the sccond input stream and processing a sub-
query {¢.g., a UNION all sub-guery) over the first set of tuples and the second set of tuples to
generate the combined data stream. As discussed above, the generation of a homogenceous
schema enables cach CQL SELECT statement within the UNION ALL sub-query to have the

same number of fields and similar data types in the results sets. Accordingly, the result sets of

31

10

I

[

5

e

WO 2015/085103 PCT/US2014/068641

the streams S1 and S2 may be combined using the SELECT statements in the UNION ALL sub-

query hased on the homogeneous schema to generate the combined data stream.

IBOTIB] At 308, the process 500 may include processing a continuous query {e.g., 8 CQL
query} over the combined data stream to identify a pattern. In one embodiment, the combined
data stream generated based upon the execution of the UNION ALL sub-query may be provided
as an input to the MATCH RECOGNIZE clause. As discussed in FIG. 3, the

MATCH RECOGNIZE clause may be used to process a CQL query over the combined data

stream to detect a pattern in the combined data stream.

{60119] FIG. 6 is a high level flowchart depicting a process for generating a homogenous
schema, in accordance with one embodiment of the present disclosure. In one embodiment, the

process 600 describes more details of performing the process 504 discussed in FIG. 5.

IB0128] At 602, the process 600 may include identifying a first attribute of the first input data

stream.

I00121] At 604, the process may include identifying a second attribute of the second input
data stream. In one embodiment, the first attribute may be identified as an attribute that is not
present in the second input data stream and the second attribute may be identified as an attribute

that is not present in the first input data stream.

IB0122] At 600, the process 600 may include generating a first dynamic data tvpe to represent
the first attribute of the first input data stream. At 60¥, the process 600 may include generating a

second dynamic data type to represent the second attribute of the second input data stream.

IB0123] At 610, the process 604 may include identifying a common attribute. In one
embodiment, the common attribute may be identificd as an atiribute that is present in the first

input data stream and the second input data stream.

{B0124] At 612, the process 600 may include generating a homogencous schema, In one
embodiment, and as described in FIG. 2 in detatl, the homogenous schema may include a
representation of one or more attributes of the first input data stream and the second mput data
stream, the representation including at least the common attribute, the first dynamic data type

and the sccond dynamic data type .

10

-
[

WO 2015/085103 PCT/US2014/068641

IB0125] FIG. 7 depicts a simplified high level diagram of an event processing systermn 700 that
may incorporate an embodiment of the present disclosure. Event processing system 700 may
comprise one or more event sources (784, 706, 708}, an event processing server (EPS) 702 that is
configured to provide an environment for processing event streams, and one or more event sinks
(710, 712}. The event sources generate event streams that arve received by EPS 702, EPS 702
may receive one or more event streams from one or more event sources. For example, as shown
in FIG. 7, EPS 702 receives an input cvent stream 714 from event source 704, a second input
event stream 716 from event source 706, and a third event stream 718 from event source 708,
One or more event processing applications (720, 722, and 724) may be deployed on and be
executed by EPS 702, An cvent processing application executed by EPS 702 may be configured
to listen to one or more input cvent streams, process the gvents received via the one or more
cvent streams based upon processing logic that selects one or more events from the input event
streams as notable events. The notable events may then be sent to one or more event sinks (710,
712} in the form of onc or more output event streams, For example, in FIG. 7, EPS 702 outputs
an output cvent stream 726 to cvent sink 710, and a sccond output event stream 728 to event sink
712. In certain embodiments, event sources, event processing applications, and event sinks are
decoupled from cach other such that one can add or remove any of these components without

causing changes to the other components.

{38126] In onc embodiment, EPS 702 may be implemented as a Java server comprising a
Hightweight Java application container, such as one based upon Equinox OSGi, with shared
services. In some embodiments, EPS 702 may support ultra-high throughput and microsecond
latency for processing events, for example, by using JRockit Real Time. EPS 702 may also
provide a development platform (e.g., a complete real time end-to-end Java Event-Driven
Avchitecture (EDA) development platform) including tools {e.g., Oracle CEP Visualizer and

Oracle CEP IDE) for developing event processing applications,

{B0127] An event processing application is configured to listen to one or more input event
streams, execute logie (e.g., a query) for selecting one or more notable events from the one or
more input event strearns, and output the selected notable cvents to one or more event sources
via one or more output event streams. FIG. 7 provides a drilidown for one such event processing
application 720. As shown in FIG. 7, event processing application 720 is configured to listen to

33

I

I

[

0

5

e

WO 2015/085103 PCT/US2014/068641

input event stream 718, execute a query via the CQL engine/CQ service 200 comprising logic for
selecting one or more notable events from input event stream 718, and output the selected
notable events via output event stream 728 to event sink 712, Examples of event sowrces include,
without limitation, an adapter {¢.g., IMS, HTTP, and file}, a channel, a processor, a table, a
cache, and the like. Exampies of event sinks include, without Himitation, an adapter {e.g., JMS,

HTTP, and file), a channel, a processor, a cache, and the like.

IB0128] Although event processing application 720 in FIG. 7 is shown as listening o one
input stream and outputting sclected events via one output stream, this is not intended to be
limiting. In alternative embodiments, an event processing application may be configured to listen
to multiple input streams received from one or more event sources, sclect events from the
monitored streams, and output the selected cvents via onc or more output ovent streams to one or
more cvent sinks. The same query can be associated with more than on¢ event sink and with

different types of cvent sinks.

168129] Due to its unbounded nature, the amount of data that is received via an event strcam
is generally very large. Consequently, it is generally impractical and undesirable to store or
archive all the data for querying purposes. The processing of ¢vent streams requires processing
of the events in real time as the events are received by EPS 702 without having to store all the
reecived events data, Accordingly, EPS 702 provides a special querying mechanism that cnables
processing of cvents to be performed as the cvents are received by EPS 702 without having to

store all the received events.

{68138] Event-driven applications arc rule-driven and these rules may be expressed in the
form of continuous querics that arc used to process input streams. A continuous query may
comprisc instructions {¢.g., business logic) that identify the processing to be performed for
received cvents including what cvents are to be sclected as notable events and output as results of
the guery processing. Continuous guerics may be persisted to a data store and used for

processing input streams of events and generating output streams of events. Contingous gueries
typically perform filtering and aggregation functions to discover and exiract notable events from

the input event streams. As a result, the number of outbound events in an output event stream is

34

10

J—
(¥

WO 2015/085103 PCT/US2014/068641

generally muach lower than the mumber of events in the input event stream from which the cvents

are selected.

{B0131] Unlike a SQL query that is run once on a finite data set, a continuous query that has
been registered by an application with EPS 702 for a particular event stream may be executed
gach time that an event is received in that event stream. As part of the contimious gquery
execution, EPS 702 evaluates the received event based upon instructions specified by the
continuons query to determine whether one or more events are to be sclected as notable events,

and output as a result of the continuous query execution,

{60132] The continuous guery may be programmed using different languages. In certain
embodiments, continuous queries may be configured using the CQL provided by Oracle
Corporation and used by Oracle's Complex Events Processing (CEP) product offerings. Oracle's
CQL is a declarative language that can be used to program querics {referred to as CQL queries)
that can be cxecuted against event streams. In certain embodiments, CQL 18 based upon SQL

with added constructs that support processing of streaming cvents data.

{08133] In one embodiment, an cvent processing application may be composed of the

following component types:

180134] (1) One or morc adapters that interface directly to the input and output stream and
relation sources and sinks. Adapters are configured to understand the input and output stream
protocol, and are responsible for converting the cvent data into a normalized form that can be
quericd by an application processor. Adapters may forward the normalized cvent data into
channels or output streams and relation sinks. Event adapters may be defined for a varicty of data

sources and sinks.

{2} Onc or more channels that act as gvent processing endpoints. Among other things, channels

are responsible for queuing event data until the event processing agent can act upon it,

{3) Onc or more application processors {or cvent processing agents) are configured to consume
normalized event data from a channel, process it using guerics to select notable events, and

forward {or copy) the sclected notable events to an output channel.

(V]
W

I

I

[

0

5

e

WO 2015/085103 PCT/US2014/068641

{4) One or more beans are configured to Usten to the output channel, and are triggered by the
insertion of a new event into the output channel. In some embodiments, this user code is a plain-
old-Java-object {POIO). The user application can make use of a set of external services, such as

MS, Web services, and file writers, to forward the generaied events to external event sinks,
IMS, Wet ,and fit ters, o f d the ¢ ied te i i i t sind

{5) Event beans may be registered to listen to the output channel, and are triggered by the
insertion of a new event into the output channel. In some embodiments, this user code may use

the Oracle CEP event bean API so that the bean can be managed by Oracle CEP.

{60135] In onc embodiment, an event adapter provides event data to an input channel, The
input channel is connected to a CQL processor associated with one or more COL queries that
operate on the events offered by the input channel. The CQL processor is connected to an output

channel to which query results are written.

{B8136] In some embodiments, an assembly file may be provided for an event processing
application describing the various components of the cvent processing application, how the
components are connected together, event types processed by the application. Scparate files may

be provided for specifying the continuous query or business logic for selection of cvents.

10137] 1t should be appreciated that system 700 depicted in FIG. 7 may have other
components than those depicted in FIG. 7. Further, the embodiment shown in FIG. 7 is only one
cxample of a system that may incorporate an embodiment of the present disclosure. In some

.
Ji
i

other embodiments, system 700 may have more or fower components than shown in FIG. 7, may
combine two of more components, or may have a different configuration or arrangement of
componcents, System 700 can be of various types including a personal computer, a portable
device {e.g., a mobile telephone or device}, a workstation, a network computer, a mainframe, a
kiosk, a server, or any other data processing system. In some other embodiments, system 700

may be configured as a distributed system where one or more components of system 700 are

distributed across one or more networks in the cloud.

{80138] The onc or more of the components depicted in FIG. 7 may be implemented in
software, in hardware, or combinations thercof. In some embodiments, the software may be

stored in memory {¢.g., a non-transitory computer-readable medium), on a memory device, or

36

10

J—
(¥

WO 2015/085103 PCT/US2014/068641

some other physical memory and may be excecuted by one or more processing units {(e.g., one or

NOTE Processors, ONe oF MOTre processor cores, one or more GPUSs, ete.).

{B0139] Systems depicted in some of the figures may be provided in various configurations,
In some crmbodiments, the systems may be configured as a distributed system where one or more
components of the system are distributed across one or more networks in a ¢loud computing

system.

{60148] FIG. 8 depicts a simplified diagram of a distributed system &00 for implementing one
of the embodiments. In the illustrated embodiment, distributed system 800 includes one or more
client computing devices 802, 804, 806, and 80K, which are configured to execute and operate a
clicnt application such as a web browser, proprietary client (e.g., Oracle Forms), or the like over
onc or more network(s) 810, Server 812 may be communicatively coupled with remote client

computing devices 802, 804, 806, and 808 via network 810,

{00141] In various embodiments, server 812 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. The services or
software applications can include nonvirtual and virtual environments. Virtual environments can
include those used for virtual events, tradeshows, simulators, classrooms, shopping ¢xchanges,
and enterpriscs, whether two- or three-dimensional (3D} representations, page-based logical
environments, or otherwise. In some embodiments, these services may be offered as web-based
or cloud services or under a Software as a Scrvice (SaaS) model to the users of client computing
devices 802, 804, 806, and/or 808, Uscrs operating clicnt computing devices 802, 804, 806,
and/or 808 may in turn utilize one or more client applications to interact with server 8§12 to

utilize the services provided by these components.,

{88142] In the configuration depicted in the figure, the software components 818, 820 and 822
of system 800 are shown as being implemented on server 812, In other ernbodiments, one or
more of the components of system 800 and/or the services provided by these components may
also be implemented by one or more of the client computing devices 802, 804, 806, and/or 808.
Users operating the client computing devices may then utilize one or more chient applications to
use the services provided by these components. These components may be implemented in

hardware, fumware, software, or combinations thereof. It should be appreciated that various

37

I

[

0

(v

e

WO 2015/085103 PCT/US2014/068641

different systern configurations are possible, which may be different from distributed system
800. The embodiment shown in the figure is thus one example of a distributed system for

imoplementing an embodiment system and 18 not intended to be imiting.

{60143] Client computing devices 802, 804, 806, and/or 808 may be portable handheld
devices {e.g., an 1(Phone®, cellular telephone, an 1Pad®, computing tablet, a personal digital
assistant (PDA)}) or wearable devices (e.g., a Google Glass® head mounted display), running
software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems
such as 105, Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being
Internct, e~-mail, short message service (SMS), Blackberry®, or other communication protocol
cnabled. The client computing devices can be general purpose personal computers inchuding, by
way of example, personal computers and/or laptop computers running various versions of
Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running any of a varicty of commercially-
avatlable UNIX® or UNIX-like operating systems, including without limitation the variety of
GNU/Linux operating systems, such as for example, Google Chrome O85. Alternatively, or in
addition, clicnt computing devices 802, 804, 806, and 808 may be any other electronic device,
such as a thin-client computer, an Internet-cnabled gaming system (c¢.g., a Microsoft Xbox
gaming console with or without a Kinect® gesture input device), and/or a personal messaging

device, capable of communicating over network(s) 810,

{68144] Although excmplary distributed system 800 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 812,

{80145] Network(s) 810 in distributed system 800 may be any type of network familiar to
those skilled in the art that can support data communications using any of a varicty of
commercially-available protocols, including without limitation TCP/IP {(iransmission control
protocol/Tuternet protocol), SNA (svstems network architecture), IPX {(Internct packet exchange),
AppleTalk, and the like. Mercly by way of example, network(s) 810 can be a local arca network
{1LAN), such as one based on Ethernet, Token-Ring and/or the like. Network{s} K10 canbea

wide-arca network and the Internet. It can include a virtual network, including without limitation

38

I

[

0

(v

e

WO 2015/085103 PCT/US2014/068641

a virtual private network (VPN}, an intranct, an extranct, a public switched telephone network
(PSTN), an infra-red network, a wireless network {¢.2., a network operating under any of the
Institute of Electrical and Electronies (IEEE) 802,11 suite of protocols, Bluctooth®, and/or any

other wircless protocol); and/or any combination of these and/or other networks.

100146] Server 812 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer} servers, UNEX®
servers, mid-range servers, mainframe computers, rack-mounted servers, ete.}, server farms,
server clusters, or any other appropriate arrangement and/or combination. Server 8§12 can
include onc or more virtual machines running virtual operating systems, or other computing
architecturcs involving virtualization. One or more flexible pools of logical storage devices can
be virtualized to maintain virtual storage devices for the server. Virtual networks can be
controlled by server 812 using software defined networking. In various embodiments, server
812 may be adapted to run one or more services or software applications described in the
foregoing disclosure, For example, server 812 may correspond to a server for performing

processing described above according to an embodiment of the present disclosure.

106147] Server 812 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 812 may also run any of a
varicty of additional server applications and/or mid-tier applications, inchuding HTTP (hypertext
transport protocol) servers, FTP {file transter protocol) servers, CGI (common gateway interface)
servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, IBM

(International Business Machines), and the like.

{60148] In some implementations, server 812 may include one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
802, 804, 506, and 808. As an example, data feeds and/or event updates may inchude, but are not
fimited to, Twitter® feeds, Facebook® updates or real-time updates received from one or more
third party information sources and continuous data streams, which may include real-time events
related to sensor data applications, financial tickers, network performance measuring tools (e.g.,

network monttoring and traffic roanagement applications), clickstream analysis tools, automobile

39

I

I

[

0

5

e

WO 2015/085103 PCT/US2014/068641

traffic monitoring, and the like. Server 8§12 may also include one or more applications to
display the data feeds and/or real-time events via one or more display devices of chient

computing devices 802, 804, 806, and 808,

{60149] Distributed system 800 may also inclhude one or more databases 814 and 816.
Databases 814 and 816 may reside in a variety of locations. By way of example, one or more of
databases 814 and 816 may reside on a non-transitory storage medium local to {and/or resident
in} server 812, Alternatively, databases 814 and 8§16 may be remote from server 812 and in
communication with server 812 via a network-based or dedicated connection. In one set of
embodiments, databascs 814 and &16 may reside in a storage-arca network (SAN). Similarly, any
necessary files for performing the functions attributed to server €12 may be stored locally on
sorver 812 and/or remotely, as appropriate. In one set of embodiments, databases 814 and 816
may include relational databasces, such as databases provided by Oracle, that are adapted to store,

update, and retrieve data in response to SQL-formatted commands.

{001S8] FIG. 9 is a simplified block diagram of one or more components of a system
environment 900 by which services provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present
disclosure. In the iHustrated embodiment, system environment 900 includes one or more client
computing devices 904, 206, and 908 that may be used by users to interact with a cloud
infrastracture system 902 that provides cloud services. The client computing devices may be
configurcd to operate a client application such as a web browser, a proprictary client application
{c.g.. Oracle Forms), or some other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system 302 to use services provided by

cloud infrastructure system 902,

{B01581] 1t should be appreciated that cloud infrastructure systerm 902 depicted in the figure
may have other components than those depicted. Further, the embodiment shown in the figure i
only one example of a cloud infrastructure system that may incorporate an embodiment of the
invention. In some other embodirnents, cloud infrastructure systern 302 may have more or fewer
components than shown in the {igure, may combine two or more components, or may have a

different configuration or arrangement of componenis,

40

10

J—
(v

WO 2015/085103 PCT/US2014/068641

{B0152] Clent computing devices 904, 906, and 908 may be devices similar to those

described above for 802, 804, 806, and 808,

{60153] Although exemplary system environment 900 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as

devices with sensors, ete. may interact with cloud infrastructure system 902,

{60154] Network(s) 910 may facilitate cormmunications and exchange of data between clients
904, 906, and 908 and cloud infrastructure system 902, Each network may be any type of
network familiar to those skilled in the art that can support data conmmunications using any of a

variety of commercially-available protocels, inchuding those described above for network(s) &1,

{B01585] Cloud infrastracture system 902 may comprise one or more computers and/or servers

that may include those described above for server 812,

{60156] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions, Web-based ¢-mail services, hosted
office suites and document collaboration services, database processing, managed technical
support services, and the like. Services provided by the cloud infrastructure system can
dynamically scale to meet the needs of its users. A specific instantiation of a service provided by
clond infrastructure system is referred to hercin as a “service instance.” In general, any service
made available to a user via a communication network, such as the Internet, from a cloud service
provider's system is referred to as a “clound service.” Typically, in a public cloud environment,
servers and systems that make up the cloud service provider's system are different from the
customer's own on-premises servers and systems. For example, a cloud service provider's
system may host an application, and a user may, via g commmunication nctwork such as the

Internet, on demand, order and usc the application.

{B0187] Insome cxamples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software
application, or other service provided by a cloud vendor to a user, or as otherwise known in the
art. For example, a service can include password-protected access to remote storage on the cloud

through the Intcrnet. As another example, a service can include a web service-based hosted
41

I

I

[

{

5

e

WO 2015/085103 PCT/US2014/068641

relational database and a script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor's web site,

{B0158] In certain embodiments, cloud infrastructare system 902 may include a suite of
applications, middieware, and database service offerings that are delivered to a customer in a
self-service, subscription-based, clastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud provided

by the present assignee.

{60159] ‘Big data’ can be hosted and/or manipulated by the infrastructure system on many
levels and at different scales. Extremely large data sets can be stored and manipulated by
analysts and rescarchers to visualize large amounts of data, detect trends, and/or otherwise
interact with the data. Tens, hundreds, or thousands of processors linked in parallei can act upon
such data in order to present it or simulate external forces on the data or what it reprosents,
These data scts can involve structured data, such as that organized in a databasc or otherwise
according to a structured model, and/or unstructured data (e.g., emails, images, data blobs
{binary large objects), web pages, complex event processing). By leveraging an ability of an
embodiment to relatively quickly focus more {or fewer) computing resources upon an objective,
the cloud infrastructure system may be better available to carry out tasks on large data sets based
on demand from a business, government agency, rescarch organization, private individual, group

of like-minded individuals or organizations, or other entity.

{80168] In various embodiments, cloud infrastructure system 902 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
infrastructore system 902, Cloud infrastructure system 902 may provide the cloud services via
different deployment models. For example, services may be provided under a public clound
madel in which cloud infrastructure system 902 is owned by an organization selling cloud
services {¢.g., owned by Oracle) and the services are made available to the general public or
different industry enterprises. As another example, services may be provided under a private
cload model in which cloud infrastructure system 902 is operated solely for a single organization

and may provide services for one or more entities within the organization. The cloud services

1o

I

[

5

e

WO 2015/085103 PCT/US2014/068641

may also be provided under a community cloud model in which cloud mfrastructure system 902
and the services provided by ¢loud infrastructure system 902 are shared by several organizations
in a related community. The cloud services may also be provided under a hybrid cloud model,

which is a combination of two or more different models.

{B8161] In some embodiments, the services provided by cloud infrastructure systern 902 may
include one or more services provided under Software as a Service (Saal) category, Platform as
a Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories of
services including hybrid services. A customer, via a sabseription order, may order one or more
services provided by cloud infrastructure system 902, Cloud infrastructure system 902 then

performs processing to provide the services in the customer’s subscription order,

{60162] Insome embodiments, the services provided by cloud infrastructure system 902 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure system via a
SaaS platform. The SaaS platform may be configured to provide cloud services that fall under
the SaaS category. For example, the SaaS platform may provide capabilities to build and deliver
a suite of on-demand applications on an integrated development and deployment platform. The
SaaS platform may manage and control the underlying software and infrastructure for providing
the SaaS services. By utilizing the services provided by the SaaS platform, customers can utilize
applications cxecuting on the cloud infrastructure system. Customers can acquire the application
services without the need for customers to purchase separate licenses and support. Various
different SaaS services may be provided. Examples inchude, without limitation, services that
provide solutions for sales performance management, enterprise integration, and business

flexihility for large organizations.

{B0163] In somc embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the PaaS category. Examples of platform services may include without limitation
services that cnable organizations (such as Oracle) to consohdate existing applications on a
shared, common architectare, as well as the ability to build new applications that leverage the

shared services provided by the platform. The PaaS platform may manage and control the

43

10

I

[

5

e

WO 2015/085103 PCT/US2014/068641

underlying software and infrastructure for providing the PaaS services. Customers can acquire
the Paa$ services provided by the cloud infrastructure system without the need for customers to
purchase separate hicenses and support. Examples of platform services include, without

~

limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others,

{00164] By utilizing the services provided by the PaaS platform, customers can employ
programming fanguages and tools supported by the cloud infrastructure system and also control
the deploved services. In some embodiments, platform services provided by the elond
infrastructure system may inclnde database cloud services, middieware cloud services (e.g.,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database
cloud services may support shared service deployment models that enable organizations to pool
databasc resources and offer customers a Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for customers to develop and deploy various
business applications, and Java cloud services may provide a platform for customers to deploy

Java applications, in the cloud infrastructure system.

180165] Various different infrastructure services may be provided by an faaS platform in the
cloud infrastructure system. The infrastructure scrvices facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the SaaS platform and the PaaS

platform.

{80166] In certain embodiments, cloud infrastructure system 302 may also include
infrastructure resources 930 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources 930
may include pre-integrated and optimized combinations of hardware, such as servers, storage,
and networking resources to exccute the services provided by the PaaS platform and the SaaS

platform.

{68167} In some embodiments, resources in cloud infrastructure system 202 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones. For exarple, cloud infrastructure system 930 may
enable a first set of users 1n a first time zone to utilize resources of the cloud infrastrocture

44

1o

5

WO 2015/085103 PCT/US2014/068641

system for a specified mumber of hours and then enable the re-allocation of the same resources o
another set of users located in a different time zone, thereby maximizing the utilization of

FCeSQUICes.

{60168] In certain embodiments, a number of internal shared services 932 may be provided
that are shared by different components or modales of cloud infrastructure system 902 and by the
services provided by cloud infrastructure system 902, These internal shared services may
include, without limitation, a security and identity service, an integration service, an enterprise
repository service, an enferprise manager service, a virns scanning and white list service, a high
avatlability, backup and recovery service, service for enabling cloud support, an email service, a

notification service, a file transfer service, and the like,

{60169] In certain embodiments, cloud infrastructure system 902 may provide comprehensive
management of cloud services {¢.g., Saa8, PaalS, and laaS services) in the cloud mfrastructure
system, In onc embodiment, cloud management functionality may inclade capabilitics for
provisioning, managing and tracking a customer’s subscription received by cloud infrastructure

system 902, and the like.

{0178] In onc embodiment, as depicted in the figure, cloud management functionality may be
provided by one or more modules, such as an order management module 920, an order
orchestration module 922, an order provisioning module 924, an order management and
monitoring module 926, and an identity management module 928, These modules may include
or be provided using one or more computers and/or servers, which may be general purpose
computers, specialized server computers, server farms, server clusters, or any other appropriate

arrangement and/or combination.

{B0171] In cxemplary operation 934, a customer using a client device, such as chient device
904, 906 or 208, may interact with cloud infrastructure system 202 by requesting one or more
services provided by cloud mfrastructure system 902 and placing an order for a subscription for
one or more services offered by cloud infrastructure system 902, In certaim embodiments, the
customer may access a cloud User Interface (UT), cloud Ul 912, cloud Ul 914 and/or cloud U
916 and place a subscription order via these Uls. The order information received by cload

infrastructure system 902 in response to the customer placing an order may inclade information

4

W

I

I

[

0

5

e

WO 2015/085103 PCT/US2014/068641

identifving the customer and one or more services offered by the cloud infrastructure system 902

that the customer intends o subscribe to.

{B0172] After an order has been placed by the customer, the order information is received via

the cloud Uls, 912, 914 and/or 916,

1681731 At operation 936, the order is stored in order database 918, Order database 918 can
be one of several databases operated by cloud infrastructure system 918 and operated in

conjunction with other system clements.

{60174] At operation 938, the order information is forwarded to an order management module
928. In some instances, order management module 920 may be configured to perform billing
and accounting functions related to the order, such as verifving the order, and upon vertfication,

booking the order.

IB8175] Atoperation 940, information regarding the order is communicated to an order
orchestration module 922, Order orchestration module 922 may utilize the order information to
orchestrate the provisioning of services and resources for the order placed by the customer. In
some instances, order orchestration module 922 may orchestrate the provisioning of resources to

support the subscribed services using the services of order provisioning module 924,

168176] In certain embodiments, order orchestration module 922 enables the management of
business processes associated with cach order and applics business logic to determine whether an
order should proceed to provisioning. At operation 942, upon receiving an order for a new
subscription, order orchestration module 922 sends a request to order provisioning module 924 to
allocate resources and configure those resources necded to fulfill the subscription order. Order
provisioning module %24 cnables the allocation of resources for the services ordered by the
customer. Order provisioning module 924 provides a level of abstraction between the cloud
services provided by cloud infrastructure system 900 and the physical implementation layer that
is used to provision the resources for providing the requested services. Order orchestration
module 922 may thus be isolated from implementation details, such as whether or not services
and resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned

upon request.

10

-
[

[\
LA

WO 2015/085103 PCT/US2014/068641

{B0177] Atoperation 944, once the services and resources are provisioned, a notification of
the provided service may be sent to customers on client devices 904, 906 and/or 30K by order

provisioning module 924 of cloud mfrastructure system 902.

{B0178] At operation 946, the customer’s subscription order may be managed and tracked by
an order management and monitoring module 926, In some instances, order management and
monttoring moduole 926 may be configured to collect usage statistics for the services in the
subscription order, such as the amount of storage used, the amount data transferred, the number

of users, and the amount of system up time and system down time.

{B8179] In certain embodiments, cloud infrastructure system 900 may include an identity
management module 928, Identity management module 928 may be configured to provide
identity services, stich as access management and authorization services in cloud infrastructure
system 900, In some embodiments, identity management module 928 may control information
about customers who wish to utilize the services provided by cloud infrastructure system 202.
Such information can include information that authenticates the identitics of such customers and
information that describes which actions those customers are authorized to perform relative to
varigus system resources {e.g., files, directories, applications, communication ports, memory
segments, cte.} Identity management module 928 may also include the management of
descriptive information about cach customer and about how and by whom that descriptive

information can be accessed and modified.

{60188] FIG. 10 illustrates an exemplary computer system 1000, in which various
embodiments of the present invention may be implemented. The system 1000 may be used to
implement any of the computer systems described above. As shown in the figure, computer
system 1000 includes a processing unit 1004 that communicates with a number of peripheral
subsysterns via a bus subsystem 1002, These peripheral subgysterns may include a processing
acceleration unit 1006, an /O subsystem 1008, a storage subsystem 1018 and a communications
subsystern 1024, Storage subsystern 1018 inchudes tangible computer-readable storage media

1622 and a system memory 1010,

{B0I81] Bus subsystem 1002 provides a mechanism for letting the various components and

subsysterns of computer system 1000 communicate with cach other as intended. Although bus

47

I

[

0

(v

e

WO 2015/085103 PCT/US2014/068641

subsystern 1002 1s shown schematically as a single bus, alternative erobodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 1002 may be any of several types of bus
structures including a memory bus or memory controlier, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may inchide an Industry
Standard Architecture {ISA} bus, Micro Channel Architecture (MCA) bus, Enhanced ISA

(EISA) bus, Video Electronics Standards Association {VESA} local bus, and Peripheral

manufactured to the IEEE P1386.1 standard.

{B0182] Processing unit 1004, which can be implemented as one or more integrated circuits
{c.g., a conventional microprocessor or microcontroller), controls the operation of computer
system 1000, Onc or more processors may be included in processing unit 1004, These
processors may include single core or multicore processors. In certain embodiments, processing
unit 1004 may be implemented as one or more independent processing units 1032 and/or 1034
with single or multicore processors included in cach processing unit. In other embodiments,
processing unit 1304 may also be implemented as a quad-core processing unit formed by

integrating two dual-core processors into a single chip.

{0183] In various embodiments, processing unit 1004 can exccute a varicty of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be exccuted can be resident in
processor{s) 1004 and/or in storage subsystem 1018, Through suitable programming,
processor{s) 1004 can provide various functionalitics described above. Corputer system 1000
may additionally include s processing acceleration unit 1006, which can include a digital signal

processor (DSP), a special-purpose processor, and/or the like.

{B0184] 1O subsystem 1008 may include user interface input devices and user interface
output devices, User interface input devices may include a keyboard, pointing devices such as a
mouse or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click
wheel, a dial, a button, a switch, a keypad, audio put devices with voice comumand recoguoition
systeras, microphones, and other types of input devices. User interface input devices may

include, for example, motion sensing and/or gesture recognition devices such as the Microsoft

48

10

J—
(v

[\
LA

WO 2015/085103 PCT/US2014/068641

Kinect® motion sensor that enables users to control and interact with an input device, such as the
Microsoft Xbox® 360 game controlier, through a natural user interface using gestures and
spoken commands. User interface input devices may also include eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity {(e.g., ‘blinking” while
taking pictores and/or making a menu selection) from users and transforms the eye gestures as
input into an input deviee {e.g., Google Glass®). Additionally, user interface input devices may
include voice recognition sensing devices that enable users to interact with voice recognition

systems {e.g., Siri® navigator), through voeice commands.

{B0185] User interface input devices may also include, without limitation, three dirnensional
{3D} mice, joysticks or pointing sticks, gamepads and graphic tabicts, and audio/visual devices
such as speakers, digital cameras, digital camcorders, portable media players, webcams, image
scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and
eye gaze tracking devices. Additionally, user interface input devices may include, for example,
medical imaging input devices such as computed tomography, magnetic resonance imaging,
position emission tomography, medical ultrasonography devices. User interface input devices
may also include, for example, audio input devices such as MIDI keyboards, digital musical

instruments and the ke,

{00186] User interface output devices may include a display subsystem, indicator lights, or
non-visual displays such as andio output devices, ete. The display subsysterm may be a cathode
ray tube (CRT), a flat-pancl device, such as that using a liquid crystal display (LCD) or plasma
display, a projection device, a touch screen, and the like. In gencral, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 1000 to a user or other computer. For cxample, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monttors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.
{68187] Computer system 1000 may comprise a storage subsystem 1018 that comprises

software elements, shown as being currently located within a systern memory 1018, System

49

10

J—
(v

[\
LA

WO 2015/085103 PCT/US2014/068641

memory 1010 may store program instructions that are loadable and executable on processing unit

1004, as well as data generated during the execution of these programs.

{B0I8B] Depending on the configuration and type of computer system 1000, system memory
1010 may be volatile (such as random access memory {(RAM}} and/or non-volatile {such as read-
only memory (ROM), flash memory, etc.} The RAM typically contains data and/or program
modules that are immediately accessible to and/or presently being operated and executed by
processing unit 1004, In some implementations, system memory 1010 may include multiple
different types of memory, such as static random access memory (SRAM) or dynamic random
access memory (BRAM). In some implementations, a basic input/output system {BIOS),
containing the basic routines that help to transfor information between clements within computer
system 1000, such as during start-up, may typically be stored in the ROM. By way of cxample,
and not limitation, system memory 1810 also illustrates application programs 1012, which may
include client applications, Web browsers, mid-tier applications, refational database management
systems (RDBMS), cte., program data 1814, and an operating system 1416, By way of example,
operating system 1016 may include various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems, a varicty of commercialiy-available UNIX® or
UNIX-like operating systems {(including without limitation the variety of GNU/Linux operating
systems, the Google Chrome® OF, and the like) and/or mobile operating systems such as 1085,

Windows® Phone, Android® O8, BlackBerrv® 10 OS5, and Palm® OS operating systoms,

{B0189] Storage subsystem 1018 may also provide a tangible computer-readable storage
medium for storing the basic programming and data constructs that provide the functionality of
some embodiments. Sofiware (programs, code modules, instructions) that when executed by a
processor provide the functionality described above may be stored in storage subsystem 1018,
These software modules or instractions may be executed by processing umit 1004, Storage
sabsystem 1018 may also provide a repository for storing data used in accordance with the

present invention,

{68198] Storage subsystem {000 may also include a computer-readable storage media reade
1020 that can further be connected to computer-readable storage wedia 1022, Together and,

optionally, in corabination with system memory 1010, computer-readable storage media 1022

50

10

J—
(v

[\
LA

WO 2015/085103 PCT/US2014/068641

may coroprehensively represent remote, local, fixed, and/or removable storage devices plus
storage media for temporanily and/or more permaneuntly containing, storing, transmitting, and

retrieving computer-readable information.

{60191] Computer-readable storage media 1022 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communteation media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangible, non-transitory computer-readable storage media such as
RAM, ROM, electronically crasable programmable ROM (EEPROM), flash memory or other
memory technology, CD-ROM, digital versatile disk {DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other
tangible computer readable media. When specified, this can also include nontangible, transitory
computer-readable media, such as data signals, data transmissions, or any other medium which
can be used to transmit the desired information and which can be accessed by computing system

1600,

{08192] By way of example, computer-readable storage media 1022 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM,
DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 1022 may
inchude, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash
drives, secure digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable
storage media 1022 may also include, solid-state drives (SSD}) based on non-volatile memory
such as flash-memwory based SSDs, enterprise flash drives, solid state ROM, and the tike, SSDs
based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) S8Ds, and hybrid SSDs that use a combination of
DRAM and flash memory based SSDs. The disk drives and their associated computer-readable
media may provide non-volatile storage of computer-readable instructions, data structures,

program modules, and other data for computer system 1000,

10

5

WO 2015/085103 PCT/US2014/068641

{B0193] Communications subsystern 1024 provides an interface to other computer systems
and networks. Communications subsystem 1024 serves as an interface for receiving data from
and transmitting data to other systems from computer system 1000, For example,
communications subsystem 1824 may enable computer system 1000 to connect to one or more
devices via the Internet. In some embodiments communications sabsvstem 1024 can include
radio frequency {(RF) transceiver components for accessing wireless voice and/or data networks
{(c.g., using celiular telephone technology, advanced data network technology, such as 3G, 4G or
EDGE (cnhanced data rates for global evolution), WiFi (JEEE ¥02.11 family standards, or other
mobile communication technologics, or any combination thereof), global positioning system
{(GPS) receiver components, and/or other components. In some embodiments communications
subsystem 1024 can provide wired network connectivity {e.g., Ethernet) in addition to or instead

of a wireless interface.

130194] In some embodiments, communications subsystem 1024 may also reccive input
communication in the form of structured and/or unstructured data feeds 1026, cvent streams
1028, event updates 1030, and the like on behalf of onc or more users who may use computer

system 1000

{68195] By way of example, communications subsystem 1024 may be configured to receive
data feeds 1026 in real-time from users of social media networks and/or other communication
serviges such as Twitter® foeds, Facebook® updates, web feeds such as Rich Site Summary

{RSS) feeds, and/or real-time updates from onc or more third party information sources.

{00196] Additionally, communications subsystem 1024 may also be configured to receive
data in the form of continuous data streams, which may include event streams 1028 of real-time
cvents and/or cvent updates 1030, that may be continuous or unbounded in nature with no
exphcit end. Exarples of applications that generate continnous data may include, for example,
sensor data applications, financial tickers, network performance measuring tools {¢.g. network
monitoring and traffic management applications), clickstream analysis tools, automobile traffic

monttoring, and the hke.

{36197] Communications subsystern 1024 may also be configured o output the structured

and/or unstructured data feeds 1026, event streams 1028, event updates 1030, and the tike to one

52

10

I

[

5

e

WO 2015/085103 PCT/US2014/068641

or more databases that may be in communication with one or more streaming data source

computers coupled to computer system {000,

IB0198] Computer systerm 1000 can be one of various types, including a handheld portable
device {e.g., an 1Phone® celiular phone, an iPad® computing tablet, a PDA}, a wearable device
{¢.g., a Google Glass® head mounted display}, a PC, a workstation, a mainframe, a kiosk, a

server rack, or any other data processing system.

{68199] Duce to the ever-changing nature of computers and networks, the deseription of
computer system 1000 depicted in the figure 1s intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure are
possible. For example, customized hardware might also be used and/or particular clements
might be implemented in hardware, firmware, software (including applets), or a combination,
Further, connection to other computing devices, such as network input/output devices, may be
cmployed. Based on the disclosure and teachings provided herein, a person of ordinary skifl in
the art will appreciate other ways and/or methods to implement the various embodiments. In
other words, in some embodiments, configurations of computer system 1000, as a whole, may
include: means for recetving a plurality of input data streams comprising at least a first input data
strcam and a second input data stream; means for generating a first dynamic data type for the
first input data stream; means for generating a second dynamic data type for the second input
data stream; means for combining the first input data stream and the second input data stream to
generate a combined data stream based at least in part on the first dynamic data type and the
second dynamic data type; and means for processing, by the computer system, a continuous

query over the combined data stream to detect a pattern.

{60208] FIG. 11 illustrates a simplified block diagram of an exemplary service provider
device, in which various cmbodiments of the present invention may be implemented. The blocks
of the service provider device 1100 may be implemented by hardware, software, ora
combination of hardware and software to carry out the principles of the invention. Tt is
understood by persouns of skill in the art that the blocks described 1n FIG. 11 may be combined or

separated into sub-blocks fo iraplement the principles of the invention as described above,

N
(9]

10

J—
(v

WO 2015/085103 PCT/US2014/068641

Therefore, the description herein may support any possible combination or separation or further

definition of the functional blocks described herein.

{B0281] As shown in FIG. 11, the service provider device 1100 may comprise an ioput data
stream receiving unit 1101, a first dynamic data type generation unit 1103, a second dynamic
data type generation unit 1105, a combined data stream generation unit 1 147 and a pattern
detection unit 1109, The input data stream recetving unit 1181 may configured to receive a
plurality of input data streams comprising at least a first input data stream and a second input
data stream. The first dynamic data type generation umit 1103 may be configured to generate a
first dynamic data type for the first input data stream. The second dynamic data type generation
unit 1105 may be configured to generate a second dynamic data type for the second input data
stream. The combined data stream generation unit 1107 may be configured to combine the first
input data stream and the second input data stream to generate a combined data stream based at
least in part on the first dynamic data type and the second dynamic data type. The pattern
detection unit 1109 may be configured to process a continuous query over the combined data
stream to detect a patiern. In one embodiment, cach unit may be implemented as a processor that

performs corresponding processes by reading computer program instructions,

160202] In onc embodiment, the first dynamic data type generation unit 1103 may be further
configurcd to identify a first attribute of the first input data stream as not being present in the

second data streamy; and generate the first dynamic data type for the first atiribute.

{B0283] In onc embodiment, the first dynamic data type may be configured to store a first data

valuc corresponding to the first attribute of the first input data stream.

{80204] 1In one embodiment, the second dynamic data type generation unit 1 105 may be
further configured to identify a second attribute of the sccond input data stream as not being
present in first data stream; and generate the sccond dynamic data type for the second attribute,
the second dynamic data type configured to store a second data value corresponding to the

sccond attribute of the second input data stream.

{80205] In one embodiment, the service provider device 1100 may further comprise a
common attribute identification unit 1111 and a homogeneous schema generation umit 1113, The

common atiribute identification unit 111 may be configured to identity a common atiribute, the
54

I

I

[

{

5

e

WO 2015/085103 PCT/US2014/068641

common atiribute identified as being present in the first input data stream and being present in
the second input data stream. The homogeneous schema generation unit 1113 may be configured
to generate a homogeneous schema, the homogeneous schema including a representation of one
or more attributes of the first input data stream and the second input data stream, the
representation including at feast the common atiribute, the first dynamic data type and the second

dynamic data type.

{B0206] In one embodiment, the homogeneous schema may comprise at least one of a stream
name identifier attribute, a first timestamp attribute associated with the first input data stream or

a second timestamp attribute associated with the second input data stream.

{B0207] In one embodiment, the combined data strearn generation unit 1107 may be further
configured to sclect a first set of tuples from the first data stream, the first input data stream
identified by the homogencous schema, sclect a second set of tuples from the second input data
stream, the second input data stream identified by the homogeneous schema, and process a sub-
query over the first set of tuples and the sccond set of tuples to generate the combined data

stream.

IB0208] In onc embodiment, the pattern may be deteeted based at feast in part on analyzing
the combined data stream, wherein the pattern identifics a first ovent in the first input data stream

followed by a second event in the seccond input data stream.

10209] The blocks described in Figure 11 may be combined or separated into sub-blocks to
implement the principles of the invention as described above. For example, the first dynamic
data type generation unit 103 and the second dynamic data type gencration unit 1105 may be
integrated as a dynamic data type generation unit. The integrated dynamic data type generation
unit can also incorporate the common atiribute identification unit 1111 and the homogencous

schema generation unit 1113,

{80218] Those skilled in the art can understand that, the service provider device 1100 may be
an excemplary implementation of the service provider computer 106 described in the previous
exemplary embodiments. Those skilled in the art can also understand that, the service provider
device 1100 may be modified as desired to perform any of operations or the combination thereof

according to the principle of the invention.

N
W

WO 2015/085103 PCT/US2014/068641

802111 In the foregoing specification, aspects of the invention are described with reference to
specific embodiments thereof, but those skilled in the art will recognize that the invention is not
limited thereto, Various features and aspects of the above-described invention may be used
individually or jointly. Further, embodiments can be utilized in any number of environments and
applications beyond those deseribed herein without departing from the broader spirit and scope
of the specification. The specification and drawings are, accordingly, to be regarded as

hustrative rather than restrictive,

(]
o

~J

L 3 b

(v

b2

(93]

b

WO 2015/085103 PCT/US2014/068641

CLAIMS

WHAT IS CLAIMED IS:

i A compuier-implemented method, comprising:.

receiving, by a computer system configured with computer-executable
instructions, a plurality of input data streams comprising at least a fivst input data stream and a
second mput data stream;

generating, by the computer system, a first dynamic data type for the first input
data stream;

generating, by the computer system, a second dynamic data type for the second
input data stream;

combining, by the computer system, the first input data stream and the second
input data stream to gencrate a combined data stream based at least in part on the first dynamic
data type and the second dynamic data type; and

processing, by the computer system, a continuous query over the combined data

stream to detect a pattern.

2. The computer-implemented method of claim 1, wherein generating the
first dynamic data type compriscs:

identifying a first attribute of the first input data stream as not being present in the
second data stream; and

generating the first dynamic data type for the first attribute.

3. The computer-implemented method of claim 2, wherein the first dynamic
data type is configured to store a first data value corresponding to the first attribute of the first

input data stream.

4. The computer-implemented method of any onc of claims 1-3, whercin

generating the sccond dynamic data type comprises:

identifying a second attribute of the second input data stream as not being present

in first data stream; and

SN WA

~J

[

ot EE S #S

-3

J

S

J

N B W2

-3

8

L 3 b

WO 2015/085103 PCT/US2014/068641

generating the second dynamic data type for the second attribute, the second
dynamic data type configured to store a sgcond data value corresponding to the second atiribute

of the second input data stream,

(¥

The computer-implemented method of any one of claims 1-4, further
Comprising:

identifying a8 common attribute, the common attribute identified as being present
in the first input data stream and being present in the second input data stream; and

generating a homogeneous schema, the homogeneous schema inclading a
representation of one or more attributes of the first input data stream and the second nput data
stream, the representation including at least the common attribute, the first dynamic data type

and the second dynamic data type.

6. The computer-implemented method of claim S, wherein the homogeneous
schema comprises at least one of a stream name identifier attribute, a first timestamp attribute
associated with the first input data stream or a second timestarp atiribute associated with the

second nput data stream.

7. The computer-implemented method of claim S or 6, wherein combining

the first input data stream and the second input data stream further comprises:

selecting a first set of tuples from the first data stream, the first input data stream
identified by the homogencous schema,

selecting a second sct of tuples from the second input data stream, the second
input data stream identified by the homogencous schema; and

processing a sub-query over the first set of tuples and the second set of tuples to

generate the combined data stream.

. The computer-implemented method of any onc of claims 1-7, wherein the
pattern is detected based at least in part on analyzing the combined data stream, whercin the
pattern identifics a first event in the first input data stream followed by a second event in the

second input data stream.

9. A system, comprising:

[

ot EE S #S

~3

I

J—
(v

b2

(93]

b

3

b2

~FaN W s e

WO 2015/085103 PCT/US2014/068641

a memory storing a plurality of instructions; and
a processor configured to access the memory, wherein the processor is further
configured to execute the plurality of fnstructions to at least:
recetve a continuous query identifving a first input data stream and a
second input data stream;
identify a first dynamic data type for a first attribute of the first input data
stream;
identify a second dynamic data type for a second attribute of the second
input data stream,
gencrate a combined data stream based at least in part on the first dynamic
data type identified in the first input data stream and the second dynamic data type
identified in the sccond input data stream; and
execute the continuous query over the combined data stream to detect a

paticrn.

10, The system of claim 9, wherein the at least one processor is configured to
execute the computer-executable instructions to identify the first atiribute of the first input data

stream as not being present in the second data stream.

it. The system of claim 9 or 1, wherein the at feast onc processor i
configured to cxecute the computer-cxecutable instructions to identity the second attribute of the

sccond input data stream as not being present in first data stream.

i2. The system of any onc of claims 9-11, wherein the at least one processor
is further configured to exccute the computer-cxecutable instructions to:

identify a common attribute, the common attribute identified as being present in
the first input data stream and the second input data stream; and

generate a homogencous schema, the homogencous schema comprising a
representation of at least the common attribute, the first attribute, the first dynamic data type, the

second attribute and the second dynamic data type.

~J

g

J

~3 O L s

oo

10
|3

WO 2015/085103 PCT/US2014/068641

i3. The system of claim 12, wherein the homogeneous schema further
comprises at lcast one of a stream name identifier atiribute, a {irst tirnestamp attribute associated
with the first tnput data stream or a second timestarop attribute associated with the second input

data stream,

id. The systern of claim 13, wherein the at least one processor is {orther
configured to execute the computer-cxecutable instructions to generate a combined data stream
by executing instructions to:

select a first set of tuples from the first data stream, the first input data stream
identified by the homogeneous schema;

select a second set of tuples from the second input data stream, the second input
data stream identified by the homogeneous schema; and

process a sub-query over the first set of tuples and the second set of tuples to

generate the combined data stream.

i5. The system of any one of claims 9-14, wherein the pattern is detected
based at least in part on analvzing the combined data stream, wherein the pattern identifies a first

event in the first input data stream followed by a second event in the second 1input data stream.

i6. One or more non-~transitory coroputer-readable media storing compute
executable instractions executable by one or more processors, the computer-executable
Mstructions comprising:

instructions that cause the one or more processors to receive a plurality of input
data streams comprising at feast a first input data stream and a second input data stream;

instructions that cause the one or more processors to generate a first dynamic data
type for the first input data streamy;

instructions that cause the one or more processors to generate a second dynamic
data type for the sccond input data stream;

instructions that cause the one or more processors to combine the first input data
stream and the second input data stream to gonerate a combined data stream based at feast in part

on the first dynamic data type and the sccond dynamic data type; and

60

3
14

~3 N n dae w2

J

ot EE S #S

-3

8

J

(2N] EES [

-3

8

10
1

WO 2015/085103 PCT/US2014/068641

instructions that cause the one ot more processors 1o process a Continuous query

over the combined data stream to detect a pattern,

i7. The computer-readable media of claim 16, wherein the nstructions to
generate the first dynaroie data type further coroprise instructions to

wdentify a first attribute of the first input data sircam as not being present in the
second data stream; and

generate the first dynamic data type for the first atiribute, the first dynamic data
type configured to store a first data value corresponding to the first attribute of the first input data

stream.

iR, The computer-readable media of claim 16 or 17, wherein the instructions
to generate the second dynamic data type further comprise instructions that cause the one or
HOTE Processors 1o

identify a second attribute of the second input data stream as not being present in
first data stream; and

generate the second dynamie data type for the second attribute, the second
dynamic data type configured to store a second data value corresponding to the second attribute

of the second input data stream.

i9. The computer-readable media of any one of claims 16-18, wherein the
computer-cxecutable instructions further comprise:

instructions that cause the one or more processors to identify a common attribute,
the common attribute identificd as being present in the first input data stream and being present
in the second input data stream;

mstructions that cause the onc or more processors to gencrate a homogencous
schema, the homogeneous schema including a representation of onc or more attributes of the first
input data stream and the second input data stream, the representation including at least the
common attribute, the first dynamic data type and the sccond dynamic data type; and

instructions that causc the onc or more processors to gencrate the combined data

stream based at least in part on the homogencous schema.

61

WO 2015/085103 PCT/US2014/068641

20. The computer-readable media of any one of clairos 16-19, wherein the
compuier-executable instructions further coroprise instructions that cause the one or more
processors to detect the pattern based at least in part on analyzing the combined data sirecam,
wherein the paticrn identifies a first event in the first input data stream followed by a second

event in the second input data stream,

PCT/US2014/068641

WO 2015/085103

111

{S)HIOMLIN

Y
{SHILNINOD
I0UN0S ViV €
ONINYINLS
N
[NM3LIYd Q3103130 e
oncny Py,
T, hae N
'S
e,
o
“heny
e en
SH0IATIC W3SH
899 -

WYRILS VYD

| oo

Q3aNIGAOT

{(Lv0L

[7 1 YWEHOS SNO3NICOWOH w....

G717 (SIVIHLS VIVA LndNj wy

m& (ShFLNAWOT
HAAACYH IIAYES

T OEERETD
acl .ZZQO HWNGD

E—

L 7Ll ?E?ﬁﬁx&

.

. 221 MNAOW
NOILOFL30
= NY3LLY A

&

AR
NOHLYHINTO
WYIHLS VYO GIN

%

HEWOD) |

m 21 SI0

J

STT 3NCON NOHLYYIND
ddAL YLV DINYNAQG

J

GIT 300N
WYIHLS YIVG LNdN

FIT Adonap

PCT/US2014/068641

WO 2015/085103

2111

717 NOLLYNILSI(]

LdinG

¢ Old

(S} L0938
T NOING {1Q) 103738
871 3naon
NOLLYHINIO WYIHLS
¥1¥0 GINIFGNOT)

S VIWIHOS SHOCINIDONOH

802 2S
90¢ 1S

80C €5

WY3YLS
ViV Q3NIBINCT

&S WYdHLS Yiva LNdN]
GNQD3IS HO4 YWZHOG

LS WIVERLS YivE L0dN
L1844 HOS YWIHOS

[7 AHIND SNOMNLINOD

ST TINCOW NOILYYENTED
AdAL YIVQ OINYNAQ

Y

Zel nGon

e

e NOILOT130 NY3LLVA

[a B

SEIMERE]

207 30IA38 DOANIONT 100

902 1S

4
I0HN0S

10N

PCT/US2014/068641

WO 2015/085103

311

¢ Old

18ed
(L=ileyy
ANIHAC

(v} NY3LLVd
‘LY SB EUISY
T Se VIS
1oy 8B {0y
SUIBL SB BUIBNLIBSHSS

STHNSYIN
)
FZINOOOTY HOLYW
(7S '18) NOMA
< 1103738

f..iJ

008 AYEN0

PCT/US2014/068641

WO 2015/085103

4/11

¥ Old

Lsef

{l=t)svy
N3
{7} NYF LIV
‘Lo S8 £0ZSY
20 SR 7018y
L0V 8B |0y
Sllgy se mEszmmbwm
SIHNSYIN
}

FZINDODIY HOLYI

SYITY 0S8y (Zgwoy zs sy (g0 oebpupenadh ouueuh@zediy (1g se
JebipuyenedA onuBuAg@ L e0AL ML INIWT TS 10 ‘suBpweasss 8,28, 108js
1% NOINA

S WG 28 SY
{ JebpuenedA ouweuAq@zadis ‘15 v (20 ‘1oebpuienadA onsuAn@ LedAt
LT LNIWT TS 10 ewenwessss se 18, 1099S)
WNOUA

<L L0ETES

fva..J

00y AYEN0

WO 2015/085103 PCT/US2014/068641

5/11

~ o

RECEIVE A FIRST INPUT DATA STREAM AND A SECOND INPUT DATA
STREAM 502

X

r Y w
(GENERATE A HOMOGENEQUS SCHEMA TO REPRESENT THE FIRST
INPUT DATA STREAM AND THE SECOND INPUT DATA STREAM 504

%

'

COMRINE THE FIRST INPUT DATA STREAM AND THE SECOND
INPUT DATA STREAM TO GENERATE A COMBINED DATA
STREAM BASED ON THE HOMOGENEOUS SCHEMA 508

y

PROCESS A CONTINUQUS QUERY OVER THE COMBINED DATA
STREAM TO IDENTIFY A PATTERN 508

WO 2015/085103 PCT/US2014/068641
6/11

IDENTIFY A FIRST ATTRIBUTE IN THE
FIRST INPUT DATA STREAM 802

;

{DENTIFY A SECOND ATTRIBUTE IN THE
SECOND INPUT DATA STREAM 604

;

(GENERATE A FIRST DYNAMIC DATA TYPE 70
REPRESENT THE FIRST ATTRIBUTE §06

:

(GENERATE A SECOND DYNAMIC DATA TYPE 70
REPRESENT THE SECOND ATTRIBUTE 608

IDENTIFY A COMMON ATTRIBUTE 810
(JENERATE A HOMOGENOUS SCHEMA 812
Ren

PCT/US2014/068641

WO 2015/085103

711

LAOINIS ENJAT

017 SINIS LNAAT

e

00, —%F

L Ol

07 I0IANIS

874 WYIHLS LNAING

DOENONA 103

77 ddy INIAT TFT ddy INIAT

%

97/ WYI¥LS LNAING

204 MIAHIG ONISSIDON INIAT

R

01/ WYTHLS 14N

&

507 20MN08 IN3AT

-t
O}/ WYIHLS 1NdN

G07 30MN0S 1N3AT

o

Pl J WYIHLS INaM

&

Lid

oHN0S

NIAT

WO 2015/085103 PCT/US2014/068641
&/11

DATABASE
816

DATABASE
814

COMPONENT COMPONENT
818 820

COMPONENT
822

SERvER 812

{ NETWORK({S)

PCT/US2014/068641

WO 2015/085103

911

6 Ol

706 SADINGAS GIUYHES TYNGTLN 443
= DIAYES
(56 S30MN0STY FUNLOMHLSYHAN] mmg\a&f I
- P \ I0IA3C
76 INTWIOUNYIY ALLLNICE N HOG 1SANOTY INFTD
{ IDIANIS
" BTE ONMOLING ONY |
- INFAEOYNYIN H3OH0 | LI
{ShomLIN
44 \,%
rads vk mu_w,wmm
NOLLYHLSTHONO HIAH0 L ONINCISIAOHA ¥ITH0 | mwagom&//, 5
ire -
V5 \% » DA
e e s HOG 18INOTY
0eh q18 smEg] S——
INAWASYNYIN H3AHO ASYAYLY(HATUD
5EB 40!
IDANZEG
- NS — G30IADYd
L6 Vb AL » M I01A3C
1N 9007 nanot 11900 -~ pE6 153NDTY TONIG INATD
Z0R WALSAS NLONYLSYEAN GROTD
4

PCT/US2014/068641

WO 2015/085103

10/11

0004

0L~

Old

Ah

Pl

$e0 STA) TAN)
CEINERTE ELNELIES B B EER
INIAT IN3AZ Y1v(]
Za))
WALSASENS SNOILYOINAWAGD

T0T WILSASENS JOVH0LS

9101
WALSAS ONILYEELD

TEOT Viaan

HFNdWCTD

IOVHOLS TIEVaYIY

70t
Y1Y(] WYND0Ud

¢iot
SHYHOOUEA NOILYDIIddY

nelt

LOL AMOWIN WALSAS

HALNdNOD

MIAYIY VIO
IOYHOLS TIEVAYaN

AV

5007

WALSASENS 0l

50T LINN PEOT LNA FEHT LND
NOILYHITIOOY ONISRIOOU ANS ONISSTIONd 8NS
ONISEIOOH
IHOVD) FHOV) IHOYD
O 307 400
7001

NN OMISSE00d

PCT/US2014/068641

1111

60LL
LINA NOILOZLA
NUILLYd

0011 J0IAT0 HIAGACH I0IANES

ehil PELL
LNDY LN
NOILLYYINAS NOLYOIHELNA
YIHEROS HiNALLY
SNOINTDONOH NOWINOTS
LINA , —
mww zwmﬁwm%o £0}) LINA V0L
A o MOLLYHINID LINDY ONIAIZO3Y
NOHLYHINTD 3dAL o
e R JdAL V1VG AYTHLS
WYILS VY DIYNAC OINYNAG LSHI ViYG 1NN
T GANIAWNOD aNODIS e

WO 2015/085103

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/068641

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraph [0025]
paragraph [0054]

A CHUCK CRANOR ET AL:

OF DATA , SIGMOD '03,

New York, New York, USA
DOI: 10.1145/872836.872838
the whole document

X US 2012/324453 Al (CHANDRAMOULI BADRISH
[US] ET AL) 20 December 2012 (2012-12-20)
paragraph [0001] - paragraph [0002]

paragraph [0032] - paragraph [0039]
"Gigascope",
PROCEEDINGS OF THE 2003 ACM SIGMOD
INTERNATIONAL CONFERENCE ON ON MANAGEMENT

9 June 2003 (2003-06-09), - 9 June 2003
(2003-06-09), page 647, XP055170688,

1-20

1-20

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 February 2015

Date of mailing of the international search report

26/02/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

de Castro Palomares

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/068641

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

ARVIND ARASU ET AL: "The CQL continuous
query language: semantic foundations and
query execution",

THE VLDB JOURNAL ; THE INTERNATIONAL
JOURNAL ON VERY LARGE DATA BASES,
SPRINGER, BERLIN, DE,

vol. 15, no. 2, 22 July 2005 (2005-07-22),
pages 121-142, XP019431176,

ISSN: 0949-877X

the whole document

DANIEL J. ABADI ET AL: "Aurora: a new
model and architecture for data stream
management",

THE VLDB JOURNAL THE INTERNATIONAL JOURNAL
ON VERY LARGE DATA BASES,

vol. 12, no. 2, 16 July 2003 (2003-07-16),
pages 120-139, XP055009044,

ISSN: 1066-8888, DOI:
10.1007/s00778-003-0095-z

page 120 - page 122

page 130

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/068641
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012324453 Al 20-12-2012 CA 2838966 Al 20-12-2012
CN 103620584 A 05-03-2014
EP 2721511 A2 23-04-2014
JP 2014524175 A 18-09-2014
KR 20140038462 A 28-03-2014
US 2012324453 Al 20-12-2012
WO 2012174023 A2 20-12-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - wo-search-report
	Page 76 - wo-search-report
	Page 77 - wo-search-report

