(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Burcau

(43) International Publication Date (10) International Publication Number
21 August 2003 (21.08.2003) PCT WO 03/069485 A2
(51) International Patent Classification”: GO6F 13/00 Lupin Lane, Apt. F, Calabasas, CA 91302 (US). SOUTH-
WORTH, Robert; 980 S. Euclid Avenue, Pasadena, CA
(21) International Application Number: PCT/US03/04344 91106 (US).

(22) International Filing Date: 11 February 2003 (11.02.2003) (74) Agent: VILLENEUVE, Joseph, M.; BEYER WEAVER
& THOMAS LLP, P.O. Box 778, Berkeley, CA 94704-0778

(25) Filing Language: English (US).
(26) Publication Language: English (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(30) Priority Data: CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
60/357,201 12 February 2002 (12.02.2002) US GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
10/212,574 1 August 2002 (01.08.2002) US LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
(71) Applicant: FULCRUM MICROSYSTEMS, INC. SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
[US/US]; 26775 Malibu Hills Road, Suite 200, Calabasas, VN, YU, ZA, ZM, ZW.

CA 91301 (US).
(84) Designated States (regional): ARIPO patent (GH, GM,
(72) Inventors: DAVIES, Michael, L.; 2519 4th Street, #11, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Santa Monica, CA 90405 (US). LINES, Andrew; 3858 N. Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: TECHNIQUES FOR FACILITATING CONVERSION BETWEEN ASYNCHRONOUS AND SYNCHRONOUS DO-

—
—
—
=
== MAINS
—
——] (57) Abstract: An interface for
—_— use between an asynchronous
— domain and a synchronous domain
— >—_
= SRR a— >Ry is described. = The asynchronous
— ASYNCH'\&ONOUS : . domain is characterized by
—
— 1-ofn by e | : SYNCHII;ONOUS transmission of data in accordance
— CHANNELS L A2S ————R, QUTPUTS with a delay-insensitive handshake
= T e— LR, protocol. The synchronous domain is
L, R 'characterlzed by t'ransmlss'ls)n of data
— 0 in accordance with transitions of a
— L ————>s°) SYNCHRONOUS clock signal. The interface includes
rm— 802—/ S } SIGNALS a datapath operable to transfer a
— ‘——< CLK data token between the domains.
— The interface also includes control
— circuitry operable to enable transfer
— of the data token via the datapath in
response to a transition of the clock
o~ signal and at least one completion of
the handshake protocol.
F— p
< Ly e—— ———— Rut
: M
N : . ASYNCHRONOUS
) SYNCHRONOUS . _—é R, 1-of-n
o] INPUTS Ly OUTPUT
< $24 R CHANNELS
) Ly —
2 e
= ChREmeel s
——] ~
- SIGNALS { 80— NP
O CLK>———I

wO 03/069485 A2 NN 0000 0 0O

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, For two-letter codes and other abbreviations, refer to the "Guid-
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, ance Notes on Codes and Abbreviations" appearing at the begin-
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ning of each regular issue of the PCT Gazette.

GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

10

15

20

25

WO 03/069485

PCT/US03/04344

TECHNIQUES FOR FACILITATING CONVERSION BETWEEN
ASYNCHRONOUS AND SYNCHRONOUS DOMAINS

BACKGROUND OF THE INVENTION

The present invention relates to systems integrating asynchronous and
synchronous components. More specifically, the invention provides methods and
apparatus for facilitating conversion of data between asynchronous and synchronous
domains.

Asynchronous design methodologies and the resulting circuits and systems are
emerging as a likely mechanism by which the performance of digital systems can
continue the historical adherence to Moore’s Law which postulates a monotonic
increase in available data processing power over time. As asynchronous circuits and
systems become more commonplace, there will be an increasing need to integrate
such circuits and systems with circuits and systems designed according to currently
prevalent synchronous design methodologies. More specifically, there will be a need
to provide low-penalty interfaces for converting data between the asynchronous and
synchronous domains.

Previous solutions for converting from the asynchronous domain to the
synchronous domain typically have dealt with converting only one or some very
small number of signals. An example of such a solution is the conversion of an
asynchronous signal generated in response to the activation of a switch or button by a
human to a synchronous signal which may be employed by synchronous circuitry.
Often, such an asynchronous signal will simply be gated through two or more latches,

thereby generating a synchronous version of the original asynchronous signal. This

WO 03/069485 PCT/US03/04344

10

15

20

25

approach simply allows a minimum of one clock period (and typically as long as two)
for any metastability in the signal to resolve.

While such an approach may be suitable for one or a very small number of
signals, it is not suitable for simultaneously converting a large number of signals as
represented, for example, by the 32 and 64-bit wide datapaths employed by many
digital processing systems today. That is, the latency associated with conversion of a
single bit of data encoded using 1of2 encoding may be 2 or more clock cycles due to
the fact that the validity of the data to be transferred must be verified. While
tolerating such latency may be feasible where the asynchronous signal is only
generated infrequently or is only one bit, allowing sufficient time for eliminating
metastability and verifying validity when 32 or 64 bits of data are involved is not.

Moreover, certain types of synchronous systems, e.g., memory architectures
such as SDRAM systems, are not tolerant of “wait” states which may result from the
unpredictable manner in which asynchronous data are transmitted. That is, such
systems expect to receive or transmit blocks of consecutive data tokens. The
occurrence of clock transitions where valid data are not present can cause the storage
of inaccurate data or the failure to store the entire block being transferred.

In view of the foregoing, there is a need for interfaces between asynchronous
and synchronous systems which are capable of handling wide datapaths with
acceptable latency. There is also a need for interfaces which mitigate the “wait” state

problem associated with certain types of synchronous systems.

SUMMARY OF THE INVENTION
According to the present invention, low-latency, high-throughput solutions are

provided for converting data between asynchronous and synchronous domains where

2

WO 03/069485 PCT/US03/04344

10

15

20

25

transmission of data in the asynchronous domain is accomplished using an
asynchronous handshake protocol. For data transfers from an asynchronous domain
to a synchronous domain, transfer of data to the synchronous domain is not allowed
until valid data are present as indicated by completion of the asynchronous handshake
associated with the asynchronous domain for each of the bits in the datapath. For
data transfers from a synchronous domain to an asynchronous domain, transfer of
data to the asynchronous domain is not allowed until an enable is received which is
also generated with reference to the asynchronous handshake.

According to a more specific embodiment in which the synchronous domain
requires data to be transferred in blocks of consecutive data tokens, transfer of data
from the asynchronous domain to the synchronous domain is not allowed until an
enable is received which indicates the required number of consecutive tokens are
ready to be transferred. The enable is generated with reference to the asynchronous
handshake.

According to another specific embodiment, in which the synchronous domain
requires data to be transferred in blocks of consecutive tokens, transfer of data from
the synchronous domain to the asynchronous domain is not allowed until an enable is
received which indicates sufficient memory is available to store the block of
consecutive tokens. The enable is generated with reference to the asynchronous
handshake.

Thus, the present invention provides an interface for use between an
asynchronous domain and a synchronous domain. The asynchronous domain is
characterized by transmission of data in accordance with an asynchronous handshake
protocol. The synchronous domain is characterized by transmission of data in

accordance with transitions of a clock signal. The interface includes a datapath

3

WO 03/069485 PCT/US03/04344

10

15

20

25

operable to transfer a data token between the domains. The interface also includes
control circuitry operable to enable transfer of the data token via the datapath in
response to a transition of the clock signal and at least one completion of the
handshake protocol.

According to a specific embodiment, an interface is provided for use between
an asynchronous domain and a synchronous domain, the asynchronous domain being
characterized by transmission of data in accordance with an asynchronous handshake
protocol, and the synchronous domain being characterized by transmission of data in
accordance with transitions of a clock signal. The interface includes a datapath
operable to receive a data token generated in the asynchronous domain and
comprising a plurality of bits. The interface also includes control circuitry operable
to facilitate transfer of the data token to the synchronous domain via the datapath in
response to a transition of the clock signal and completion of the handshake protocol
for each of the bits.

According to a more specific embodiment in which the synchronous domain
requires a data transfer to comprise a block of consecutive data, the datapath is further
operable to accumulate data tokens generated in the asynchronous domain to form the
block of consecutive data. The control circuitry is further operable to facilitate
transfer of the accumulated data tokens to the synchronous domain via the datapath in
response to transitions of the clock signal and after completion of the handshake
protocol for each of the bits of each of the data tokens.

According to another specific embodiment, an interface is provided for use
between a synchronous domain and an asynchronous domain, the synchronous
domain being characterized by transmission of data in accordance with transitions of

a clock signal, and the asynchronous domain being characterized by transmission of

4

WO 03/069485 PCT/US03/04344

10

15

20

data in accordance with an asynchronous handshake protocol. The interface includes
a datapath operable to receive a data token generated in the synchronous domain and
comprising a plurality of bits. The interface also includes control circuitry operable
to facilitate transfer of the data token to the asynchronous domain via the datapath in
response to a transition of the clock signal and an enable signal generated in
accordance with the handshake protocol and indicating that the asynchronous domain
is ready to receive the data token.

According to a more specific embodiment, in which the synchronous domain
requires a data transfer to comprise a block of consecutive data, the control circuitry
is further operable to facilitate transfer of a plurality of data tokens as the block of
consecutive data to the asynchronous domain via the datapath in response to
transitions of the clock signal and an enable signal generated in accordance with the
handshake protocol and indicating that the asynchronous domain has sufficient
memory to receive the plurality of data tokens.

According to yet another embodiment, an interface for use between an
asynchronous domain and a synchronous domain is provided. A first datapath is
operable to receive a first data token generated in the asynchronous domain and
comprising a plurality of bits. A second datapath is operable to receive a second data
token generated in the synchronous domain. Control circuitry is operable to facilitate
transfer of the first data token to the synchronous domain via the first datapath in
response to a transition of the clock signal, completion of the handshake protocol for
each of the bits, and an enable signal generated in accordance with the handshake
protocol and indicating that the asynchronous domain is ready to receive the second

data token.

WO 03/069485

10

15

20

25

PCT/US03/04344

A further understanding of the nature and advantages of the present invention

may be realized by reference to the remaining portions of the specification and the

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a simplified block diagram of an asynchronous-to-synchronous (A2S)
interface designed according to a specific embodiment of the invention.

Fig. 2 is a simplified block diagram of a synchronous-to-asynchronous (S2A)
interface designed according to a specific embodiment of the invention.

Fig. 3 is a simplified block diagram of a burst mode A2S interface designed
according to a specific embodiment of the invention.

Fig. 4 is a simplified block diagram of a transfer token generation circuit
according to a specific embodiment of the invention.

Fig. 5 is a simplified block diagram of a transfer token distribution circuit
according to a specific embodiment of the invention.

Fig. 6 is a simplified block diagram of a burst mode S2A interface designed
according to a specific embodiment of the invention.

Figs. 7-25 illustrate various components of specific implementations of an
A2S interface and an S2A interface according to various specific embodiments of the
invention.

Figs. 26-35 illustrate various components of specific implementations of an
A2S interface and an S2A interface according to various other specific embodiments
of the invention.

Figs. 36-44 illustrate various implementations of A2S and S2A burst-mode

interfaces according to specific embodiments of the invention.

6

WO 03/069485 PCT/US03/04344

10

15

20

25

Figs. 45-49 illustrate various implementations of A2S and S2A burst-mode

interfaces according to other specific embodiments of the invention.

ETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Reference will now be made in detail to specific embodiments of the
invention including the best modes contemplated by the inventors for carrying out the
invention. Examples of these specific embodiments are illustrated in the
accompanying drawings. While the invention is described in conjunction with these
specific embodiments, it will be understood that it is not intended to limit the
invention to the described embodiments. On the contrary, it is intended to cover
alternatives, modifications, and equivalents as may be included within the spirit and
scope of the invention as defined by the appended claims. In the following
description, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. The present invention may be practiced
without some or all of these specific details. In addition, well known process
operations have not been described in detail in order not to unnecessarily obscure the
present invention.

At the outset, it should be noted that some of the techniques and circuits
described in the present application are described and implemented as quasi-delay-
insensitive asynchronous VLSI. However it will be understood that many of the
principles and techniques of the invention may be used in other contexts such as, for
example, non-delay insensitive asynchronous VLSI as well as synchronous VLSL

Tt should also be understood that the various embodiments of the invention
may be implemented in a wide variety of ways without departing from the scope of

the invention. That is, the asynchronous processes and circuits described herein may

7

WO 03/069485 PCT/US03/04344

10

15

20

25

be represented (without limitation) in software (object code or machine code), in
varying stages of compilation, as one or more netlists, in a simulation language, in a
hardware description language, by a set of semiconductor processing masks, and as
partially or completely realized semiconductor devices. The various alternatives for
each of the foregoing as understood by those of skill in the art are also within the
scope of the invention. For example, the various types of computer-readable media,
software languages (e.g., Verilog, VHDL), simulatable representations (e.g., SPICE
netlist), semiconductor processes (e.g., CMOS, GaAs, SiGe, etc.), and device types
(e.g., FPGAs) suitable for designing and manufacturing the processes and circuits
described herein are within the scope of the invention.

The present application also employs the pseudo-code language CSP
(concurrent sequential processes) to describe high-level algorithms and circuit
behavior. CSP is typically used in parallel programming software projects and in
delay-insensitive VLSI. It will be understood that the use of this particular
language and notation is merely exemplary and that the fundamental aspects of the
present invention may be represented and implemented in a wide variety of ways
without departing from the scope of the invention. Applied to hardware processes,
CSP is sometimes known as CHP (for Communicating Hardware Processes). For a
description of this language, please refer to “Synthesis of Asynchronous VLSI
Circuits,” by A.J. Martin, DARPA Order number 6202. 1991, the entirety of which
is incorporated herein by reference for all purposes.

In addition, transformation of CSP specifications to transistor level
implementations for various aspects of the circuits described herein may be
achieved according to the techniques described in “Pipelined Asynchronous

Circuits” by A.M. Lines, Caltech Computer Science Technical Report CS-TR-95-
8

WO 03/069485 PCT/US03/04344

10

15

20

25

21, Caltech, 1995, the entire disclosure of which is incorporated herein by
reference for all purposes. However, it should be understood that any of a wide
variety of asynchronous design techniques may also be used for this purpbse.

The CSP used herein has the following structure and syntax. A process is
static and sequential and communicates with other processes through channels.
Together a plurality of processes constitute a parallel program. The [and] demark
if statements, and a «[and] demark loops.

Multiple choices can be made by adding pairs of B — S inside an if
statement or a loop, separated by a (indicates deterministic selection) or a |
(indicates non-deterministic selection), where B is a Boolean expression and S is a
statement. Thus [B1 - §1 B2 — S2] means if expression Bl is true, execute S1
or if expression B2 is true, execute S2. If neither Bl or B2 is true, this statement
will wait until one is (unlike an if-else construct). The shorthand «[.S] means repeat
statement S infinitely. The shorthand [B] means wait for boolean expression B to
be true. Local variables are assumed to be integers, and can be assigned the value
of integer expressions as inx :=y + 1. The semicolon separates statements with
strict sequencing. The comma separates statements with no required sequencing.
The question mark and exclamation point are used to denote receiving from and
sending to a channel, respectively. Thus «[4%x; y :=x + 1; B!y] means receive
integer x from channel 4, then assign integer y to the value x + 1, then send y to
channel B, then repeat forever.

According to various specific embodiments of the invention, the latching of
data happens in channels instead of registers. Such channels implement a FIFO
(first-in-first-out) transfer of data from a sending circuit to a receiving circuit. Data

wires run from the sender to the receiver, and an enable (i.e., an inverted sense of

9

WO 03/069485 PCT/US03/04344

10

15

20

an acknowledge) wire goes backward for flow control. According to spéciﬁc ones
of these embodiments, a four-phase handshake between neighboring circuits
(processes) implements a channel. The four phases are in order: 1) Sender waits
for high enable, then sets data valid; 2) Receiver waits for valid data, then lowers
enable; 3) Sender waits for low enable, then sets data neutral; and 4) Recerver
waits for neutral data, then raises enable. It should be noted that the use of this
handshake protocol is for illustrative purposes and that therefore the scope of the
invention should not be so limited.

According to specific embodiments, data are encoded using 1ofN encoding
or so-called “one hot encoding.” This is a well known convention of selecting one
of N+1 states with N wires. The channel is in its neutral state when all the wires
are inactive. When the kth wire is active and all others are inactive, the channel is
in its kth state. It is an error condition for more than one wire to be active at any
given time.

For example, in certain embodiments, the encoding of data is dual rail, also
called 10f2. In this encoding, 2 wires (rails) are used to represent 2 valid states and
a neutral state. The wires associated with channel X are written X°, X' for the data,
and X° for the enable. According to other embodiments, larger integers are
encoded by more wires, as in a 1of3 or 1of4 code.

For much larger numbers, multiple 10fN’s may be used together with
different numerical significance. For example, 32 bits can be represented by 32
1of2 codes or 16 1of4 codes. In this case, a subscript indicates the significance of
each 10fN code, i.e., L} is the rth wire of the gth bit (or group), and Ly is the

associated enable. According to still other embodiments, several related channels

10

WO 03/069485

10

15

20

PCT/US03/04344

may be organized into a 1-D or 2-D array, such as L[i] or V [, j]. To identify
individual wires in such embodiments, the notation L[i]" or L[] is used.

Fig. 1 is a simplified block diagram illustrating an exemplary interface 100 for
transferring data tokens from an asynchronous domain 102 to a synchronous domain
104 according to a specific embodiment of the invention. According to the
embodiment shown, a 32-bit wide data token, i.e., L[0..31], encoded using 10f2
encoding is assumed. However, it will be understood that data tokens having any
number of bits and encoded in many different ways may be transferred from one
domain to the other according to the described embodiment.

The 32-bit wide datapath includes a multi-stage buffer queue 106 which
receives and transfers the data tokens generated in the asynchronous domain from one
stage to the next according to the delay-insensitive handshake protocol described
above. Although buffer 106 is shown having 8 stages, i.e., being capable of
accommodating 8 data tokens, it will be understood that according to various
embodiments, the length of this buffer may vary. As the transfer of each data token
into buffer 106 is achieved, completion of the transaction for each of the bits is
signaled backwards by the first stage of buffer 106 in accordance with the handshake.

The datapath also includes one or more asynchronous-to-synchronous (A2S)
datapath transfer units (one for each bit of the data token) represented by DTU block
108. As will be described, DTU 108 effects the transfer of each data token to
synchronous domain 104 in response to an A2S “go” signal and the clock signal
(CLK) associated with synchronous domain 104. The manner in which the A2S “go”
signal is generated according to a specific embodiment of the invention is described

below.

11

WO 03/069485 PCT/US03/04344

10

15

20

25

In response to the indication that each of the bits of the token has been
successfully transferred to buffer 106 (i.e., the completed handshake), completion
block 110 generates a 1of1 transfer token representing the completed transfer.
According to a specific embodiment, completion block 110 employs a pipelined
architecture to minimize the impact of the latency inherent in generating a single
transfer token from the completion signals for each of the bits of the data token. A
specific implementation of such a completion block is described below.

The transfer token generated by completion block 110 is received by control
block 112 which, in turn, generates a request signal to the synchronous domain
indicating that valid data are available to be transferred. Upon receiving a grant
signal from the synchronous domain and in response to a transition of the clock
signal, control block 112 generates the A2S “go” signal which causes DTU block 108
to simultaneously latch all of the bits of the data token currently at the end of buffer
106 to the synchronous domain. According to an alternative embodiment in which
the synchronous domain is always ready for data, the grant and request signals may
be omitted, the A2S “go” signal being generated in response to the transfer token and
the clock signal.

According to a specific embodiment, distribution of the A2S “go” signal
among the individual datapath transfer units in DTU 108 is accomplished using a
pipelined tree structure which minimizes the effect of the latency inherent in such a
distribution. According to an alternative embodiment, the A2S “go” signal is
distributed to the individual datapath transfer units using an electrically continuous
conductor, e.g., a single wire.

Fig. 2 is a simplified block diagram illustrating an interface 200 for

transferring data tokens from a synchronous domain 202 to an asynchronous domain

12

WO 03/069485 PCT/US03/04344

10

15

20

25

204 according to another specific embodiment of the invention. As with the
embodiment discussed above with reference to Fig. 1, an exemplary 32-bit wide data
token, i.e., L[0..31], is assumed. Data tokens generated in the synchronous domain
are transferred to the asynchronous domain via a datapath which includes a plurality
of synchronous-to-asynchronous (S2A) datapath transfer units (shown as DTU 206)
and a multi-stage buffer queue 208.

Buffer 208 receives and transfers the data tokens received from DTU 206
from one stage to the next according to the delay-insensitive handshake protocol
described above. And although buffer 208 is shown having 8 stages, i.e., being
capable of accommodating 8 data tokens, it will be understood that according to
various embodiments, the length of this buffer may vary. Data tokens generated in
the synchronous domain are transferred into buffer 208 by DTU 206 in response to an
S2A “go” signal generated by control block 210. Generation of this S2A “go” signal
is described below.

In response to the indication that each of the bits of the data token at the end
of buffer 208 has been successfully transferred out of buffer 208, completion block
212 generates a 1of1 transfer token representing the completed transfer and the fact
that room is now available in buffer 208 for at least one additional data token.
According to a specific embodiment, completion block 212 employs a pipelined
architecture to minimize the impact of the latency inherent in generating a single
transfer token from the completion signals for each of the bits of the data token. A
specific implementation of such a completion block is described below.

The transfer token generated by completion block 212 is received and
transferred through the stages of transfer token buffer 214 (which can accommodate

multiple tokens) according to the delay-insensitive handshake protocol. The number

13

WO 03/069485 PCT/US03/04344

10

15

20

25

of tokens in token buffer 214 at any given time corresponds to the number of
available spaces in buffer 208 for additional data tokens to be transferred from the
synchronous domain. The length of token buffer 214 may vary according to different
implementations, different buffer lengths being more suitable for particular datapath
widths.

When control block 210 receives a transfer token from buffer 214 and there is
an outstanding request from the synchronous domain for transfer of a data token,
control block 210 generates a grant signal indicating that the asynchronous domain is
ready to receive the data token. Control block 210 also generates the S2A “go” signal
which enables the transfer of the data token by DTU 206 to the first stage of buffer
208. According to a specific embodiment, the S2A “go” signal is distributed among
the individual datapath transfer units of DTU 206 using a pipelined tree structure
which minimizes the effect of the latency inherent in such a distribution. According
to an alternative embodiment, the S2A “go” signal is distributed to the individual
datapath transfer units using an electrically continuous conductor, €.g., a single wire.

According to various embodiments, and as will be understood with reference
to Figs. 1 and 2 and the corresponding discussion, the pipelining of the various
elements which generate and distribute the “go” signals results in a low latency
solution by which large data tokens may be transferred between asynchronous and
synchronous domains. According to some embodiments, the latency for large
datapaths, e.g., 32 or 64-bit, can be as little as one clock period.

For certain types of synchronous systems in which data transfers must occur
in blocks of consecutive data and/or which are not tolerant of wait states, the
foregoing A2S and S2A interfaces may not be sufficient by themselves to effectively

transfer data between domains. Therefore, according to various specific

14

WO 03/069485 PCT/US03/04344

10

15

20

25

embodiments of the invention referred to herein as “burst mode” interfaces, solutions
are provided which ensure that the data transmission requirements of the synchronous
domain are satisfied.

Fig. 3 is a simplified diagram illustrating an exemplary “burst mode” interface
300 for transferring data tokens from an asynchronous domain 302 to a synchronous
domain 304 according to a specific embodiment of the invention in which the
synchronous domain expects data to be transmitted in uninterrupted blocks or
“bursts” of consecutive tokens. It should be noted that although the term
asynchronous may be used with respect to certain circuitry, the nature of the
interfaces of the present invention mean that timing constraints exist on the
asynchronous side, e.g., the buffer must be fast enough to feed one data token per
clock cycle. While this is a fairly easy constraint to meet in that such a buffer feeds
tokens through significantly faster than the typical clock cycle, it is a constraint
nevertheless.

According to a more specific embodiment, synchronous domain 304 is a
synchronous memory architecture and interface 300 is a “write” interface. It should
be understood, however, that a burst mode interface designed according to the
invention is more generally applicable than the specific implementation shown in Fig.
3. That is, various implementation details shown in Fig. 3 may not be necessary or
may be replaced with other details for burst mode interfaces designed for other
applications.

According to the embodiment shown, a 32-bit wide data token, i.e., L[0..31],
encoded using 102 encoding is assumed. However, it will be understood that data
tokens having any number of bits and encoded in many different ways may be

transferred from one domain to the other according to the described embodiment.

15

WO 03/069485 PCT/US03/04344

10

15

20

25

Control information associated with the data token, e.g., a write command bit and the
address to which the data are to be written, is split off from the data token and
transmitted via control path 303. The 32-bit data tokens are transmitted via data path
305.

As will be understood, the nature of the control information will depend upon
the type of memory architecture in the synchronous domain. As will also be
understood, the data tokens may include dummy tokens where only specific words in
a block of memory are to be written. These dummy tokens may be included in the
bursts and may be identified, for example, by a mask bit associated with each of the
tokens.

The 32-bit wide datapath includes a multi-stage buffer queue 306 which
receives and transfers the data tokens generated in the asynchronous domain from one
stage to the next according to the delay-insensitive handshake protocol described
above. Although buffer 306 is shown having 24 stages, i.e., being capable of
accommodating 24 data tokens, it will be understood that according to various
embodiments, the length of this buffer may vary. As the transfer of each data token
into buffer 306 is achieved, completion of the transaction for each of the bits 1s
signaled backwards by the first stage of buffer 306 in accordance with the handshake.

The datapath also includes a plurality of asynchronous-to-synchronous (A2S)
datapath transfer units (one for each bit of the data token) represented by DTU block
308. As will be described, DTU 308 effects the transfer of each data token to
synchronous domain 304 in response to an A2S “go” signal and the clock signal
(CLK) associated with synchronous domain 304. The manner in which the A28 “go”
signal is generated according to a specific embodiment of the invention is described

below.

16

WO 03/069485 PCT/US03/04344

10

15

20

In response to the indication that each of the bits of a token has been
successfully transferred to buffer 306 (i.e., the completed handshake for each bit),
completion block 310 generates a 1of1 transfer token representing the completed
transfer. According to a specific embodiment, completion block 310 employs a
pipelined architecture to minimize the impact of the latency inherent in generating a
single transfer token from the completion signals for each of the bits of the data
token. A specific implementation of such a completion block is described below.

According to a specific embodiment, buffer 306 is implemented as a series of
asynchronous stages each of which receives and transmits one 32-bit data token at a
time via intervening buffer channels using the four-phase asynchronous handshake
described above. According to an even more specific embodiment, each buffer stage
comprises 16 buffer elements in parallel, each of which is responsible for receiving
and transmitting two bits of the data using the handshake. As will be appreciated,
there are a number of ways in which buffer 306 and its buffer stages may be
implemented without departing from the scope of the invention.

A transfer token is generated for every data token which is successfully
transferred to the buffer for the purpose of tracking whether there are a sufficient
number of tokens in the buffer for sending a burst. According to a specific
embodiment, completion block 310 employs a pipelined architecture to minimize the
impact of the latency inherent in generating a single transfer token from the
completion signals for each of the bits of the data token. More specifically,
completion block 310 is implemented as a tree structure which generates the transfer
token from a copy of the data token sent to buffer 306. An example of such a tree

structure, including the circuit to copy the data token, is shown in Fig. 4.

17

WO 03/069485 PCT/US03/04344

10

15

20

Each buffer element 402 receives and transmits two bits of data using an
asynchronous handshake protocol. Each buffer element also generates a completion
signal, e.g., a copy of the enable, when a successful transfer has occurred. This
completion signal (along with three other completion signals for adjacent buffer
elements) is received by a 4-way token collection circuit 404 which generates a single
token when all four completion signals are received. This token (along with three
others generated by similar circuits 404) are transmitted to a final 4-way token
collection circuit 406 which generates the transfer token in much the same way. The
CSP for an exemplary 4-way token collection circuit which may be used in such an
implementation is given by * [<||i: 0.3 : L[{] ?>; R !]. The CSP for an exemplary
transfer buffer element which may be used in such an implementation is given by * [
L?x;R'x,T!].

The transfer token is received by accumulator block 312 which generates a
single synchronization token when a specific number of transfer tokens have been
accumulated indicating the presence of at least one burst of data in the buffer; e.g., if
each data token is a single word of data and a burst must be 8 words of data, a
synchronization token is generated for every 8 transfer tokens received.

Synchronization buffer 314 is simply a buffer which copies its inputs to its
outputs but won’t let the control information on control path 303, e.g., the address and
write command, through until it receives the synchronization token from accumulator
block 312 which indicates that sufficient data are present in buffer 306 to effect a
write to the address identified by the control information. The control information is
then transmitted to A2S interface 316 which may comprise a simple buffer stage

similar to the datapath transfer units of DTU block 108 and 308 described above.

18

WO 03/069485 PCT/US03/04344

10

15

20

25

Alternatively, A2S interface 316 may be implemented using something more
elaborate such as, for example, A2S interface 100 of Fig. 1.

According to a specific embodiment, the synchronization token generated by
accumulator block 312 is distributed to the individual buffer elements of
synchronization buffer 314 using a pipelined tree structure, a portion of which is
shown in Fig. 5. As with the tree structure of Fig. 4 (which essentially works the
reverse function), tree structure 500 minimizes the impact of the latency inherent in
distributing copies of a single token to each of the buffer elements.

As shown in Fig. 5, a 4-way token copy circuit 502 receives the
synchronization token and copies the token to each of a plurality of subsequent token
copy circuits 504 (which may have different numbers of outputs, e.g., 2-way, 3-way)
until there are a sufficient number of copies to distribute to the individual buffer
elements 506 of synchronization buffer 314. The CSP for an exemplary 4-way token
copy circuit which may be used in such an implementation is given by * [L 7 ; <|| ; :
0..3: R[{]!>]. The CSP for an exemplary synchronization buffer element which
may be used in such an implementation is givenby * [L?x,T? ;R!x].

In any case, once the control information, e.g., a write request, has been
transmitted to the synchronous domain, the A2S “go” signal is asserted by
synchronous control circuitry 318 and, in response to the successive clock signals,
DTU block 308 transfers a burst of data tokens to be written to the specified memory
locations according to the protocol by which the synchronous memory architecture is
characterized. When the burst is complete, the “go” signal is deasserted.

Fig. 6 is a simplified diagram illustrating an exemplary “burst mode” interface
600 for transferring data tokens from a synchronous domain 602 to an asynchronous

domain 604 according to a specific embodiment of the invention. In the embodiment

19

WO 03/069485

10

15

20

25

PCT/US03/04344

shown, synchronous domain 602 comprises a synchronous memory architecture, and

interface 600 is the read interface for use with the write interface of Fig. 3.

According to various other embodiments, S2A interfaces similar to interface 600 may
be employed in any of a wide variety of contexts in which the synchronous domain is
required to transfer data in bursts of consecutive tokens.

As with write interface 300 of Fig. 3, a 32-bit wide data- path, i.e., L[0..31],
encoded using 10f2 encoding is assumed. However, it will be understood that data
tokens having any number of bits and encoded in many different ways may be
transferred from one domain to the other according to the described embodiment.
The datapath includes a plurality of synchronous-to-asynchronous (S2A) datapath
transfer units (one for each bit of the data token) represented by DTU block 606. As
will be described, DTU 606 effects the transfer of each data token to asynchronous
domain 604 in response to an S2A “go” signal and the clock signal (CLK) associated
with synchronous domain 304. The manner in which the S2A “go” signal is
generated according to a specific embodiment of the invention is described below.

The 32-bit wide datapath also includes a multi-stage buffer queue 608 which
receives and transfers the data tokens from one stage to the next according to the
delay-insensitive handshake protocol described above. Buffer 608 is shown having
24 stages because in a particular embodiment, this provides space for three 8-token
bursts of data. However, it will be understood that according to various
embodiments, the length of this buffer may vary. As the transfer of each data token
out of buffer 608 is achieved, completion of the transaction for each of the bits is
signaled backwards in accordance with the handshake.

As with write interface 300, control information, e.g., a read command and

address range, generated in asynchronous domain 604 is not transmitted into

20

WO 03/069485 PCT/US03/04344

10

15

20

synchronous domain 602 until there is sufficient room in buffer 608 to accept the
expected burst of consecutive data tokens. According to one embodiment, the size of
the bursts are constant. According to another embodiment, the size of the bursts vary
and may be determined with reference to the control information. In any case,
interface 600 is configured to ensure that whatever the size of the data transfer from
the synchronous domain there is sufficient buffer space to accommodate it.

According to a specific embodiment, this is achieved by keeping track of the
number of tokens transferred out of buffer 608 with completion block 610 which
generates a transfer token for every data token which is successfully transferred out of
buffer 608. According to a specific embodiment, completion block 610 employs a
pipelined architecture to minimize the impact of the latency inherent in generating a
single transfer token from the completion signals for each of the bits of the data
token. More specifically, completion block 610 may be implemented as tree structure
which generates the transfer token from the completion signals generated by the
asynchronous cifcuitry subsequent to the final stage of buffer 608. Alternatively,
completion block 610 may comprise its own buffer stage following buffer 608. An
example of such a tree structure is described above with reference to Fig. 4.

The transfer token generated by completion block 610 is received by
accumulator block 612 which generates a single synchronization token when a
specific number of transfer tokens have been accumulated indicating there is space in
buffer 608 for at least one burst of data; e.g., if each data token is a single word of
data and a burst is 8 words of data, a synchronization token is generated for every 8
transfer tokens received. The synchronization tokens generated by accumulator block

612 are stored in a token buffer 614 for application to synchronization buffer 616.

21

WO 03/069485 PCT/US03/04344

10

15

20

25

Token buffer 614 is shown as being able to accommodate 3 synchronization
tokens at a time. This corresponds to the number of data bursts which may be
accommodated by buffer 608. However, it will be understood that token buffer 614
may vary in length along with buffer 608 without departing from the scope of the
invention. {Are there any timing assumptions associated with the length chosen for
the token buffer or is it dictated by the number of bursts which can be accommodated
by buffer 608. It will also be understood that when the interface is powered up, token
buffer 614 is fully populated with synchronization tokens to reflect the fact that buffer
608 is completely empty.

Synchronization buffer 616 is simply a buffer which copies its inputs to its
outputs but won’t let the control information on control path 605, e.g., the address
range and read command, through until it receives the synchronization token from
token buffer 614 which indicates that sufficient space exists in buffer 306 to effect a
read of data from the address range identified by the control information. The control
information is then transmitted to A2S interface 618 which may comprise a simple
buffer stage similar to the datapath transfer units of DTU block 108 and 308
described above. Alternatively, A2S interface 618 may be implemented using
something more elaborate such as, for example, A2S interface 100 of Fig. 1.

As discussed above with reference to interface 300, there are some timing
constraints in the circuitry of interface 600. That is, for example, interface 600 is
configured such that each time synchronization buffer 616 receives a synchronization
token from token buffer 614 any data tokens in buffer 608 have migrated far enough
toward the end of the buffer such that there is sufficient space at the beginning of the
buffer to accommodate the burst of data precipitated by transmission of the

synchronization token. According to a specific embodiment, this may be achieved, at

22

WO 03/069485 PCT/US03/04344

10

15

20

25

least in part, because of the speed with which buffer 608 transfers tokens from stage
to stage.

According to a specific embodiment, each synchronization token transmitted
from token buffer 614 is distributed to the individual buffer elements of
synchronization buffer 616 using a pipelined tree structure as discussed above with
reference to Fig. 5.

In any case, once the control information, e.g., a read request, has been
transmitted to the synchronous domain, the A2S “go” signal is asserted by
synchronous control circuitry 620 and, in response to the successive clock signals,
DTU block 606 transfers a burst of data tokens from synchronous domain 602 to
buffer 608. When the burst is complete, the “go” signal is deasserted. Generation of
such a “go” signal will be described below with reference to more specific
embodiments.

More specific implementations of A2S and S2A interfaces will now be
described with reference to Figs. 7 et seq. In the subsequent description, an
asynchronous channel refers to a 1ofN channel plus a handshaking "enable" wire.
The enable wire is identified by an "e" superscript. Communication on these wires
happens according to the asynchronous four-phase handshake protocol discussed
above. "Validity" refers to the state of the 1ofN channel. When one rail is high, the
channel is said to be "valid". Otherwise, it is said to be "neutral" or invalid. A
"token" is an abstraction referring to the propagation of valid states from one
asynchronous channel to the next in a system.

The converter designs described below also make use of a pair of synchronous
handshaking signals (referred to as S° and S") to implement flow control. According

to a specific embodiment illustrated in Fig. 7, the handshake protocol used is the

23

WO 03/069485 PCT/US03/04344

10

15

20

25

following: On a rising clock edge, if both A and B are high, the receiver reads the
data. If A is high and B is low, the data channel contains an unread value, and the
sender is waiting for the receiver to raise B. If A is low and B is high, the data
channel is "empty". The receiver has read any previous value and is ready for the
next one. If A and B are both low, the channel is empty and the receiver is not ready
to read from the channel value.

The following abbreviations and notation are used to represent various
signals, channels, and constants: CLK - Clock; Tclk - Clock period; S° - synchronous
handshake output signal, S' - synchronous handshake input signal; A - PC lof1
output channel; go - Control signal to the DTU array indicating whether to transfer a
token (either a synchronous single-rail broadcast or a 10f four-phase asynchronous
channel); and en - Internal enable signal in a cell (sometimes en is also the enable to
its input channels, sometimes not).

Each of the embodiments described below implement high-performance
conversion circuitry between clocked (synchronous) logic and locally-handshaking,
(asynchronous) logic. In the asynchronous domain, the transfer of data occurs on
1ofN rail channels, following a four-phase local handshaking protocol. In the
synchronous domain, transfer of data happens according to timing relationships with
the transitions of a clock signal. Any circuit which mixes the two communication
conventions inevitably introduces metastability to the system. Localizing that
metastability to a single signal per data token transfer while maintaining low-latency,
high-throughput transfers is an objective of various embodiments described
hereinafter.

The port interfaces of the Asynchronous-to-Synchronous (A2S) and

Synchronous-to-Asynchronous (S2A) converters 802 and 804, respectively, are
24

WO 03/069485 PCT/US03/04344

10

15

20

illustrated in Fig. 8. It should be noted that in the following discussion all
synchronous signals are assumed to be single-rail. However, embodiments of the
invention can trivially accommodate other synchronous signaling conventions (e.g.
dual-rail or differential).

A simplified description of the behavior of A2S interface 802 is as follows:

1. An asynchronous token arrives on the L channel, indicated by all Ly ... Ly
channels going valid.

2. On the next rising edge of CLK, if either S' is high or if S° is low, a transfer
occurs (go to state 4). Otherwise,

3. The converter waits until a rising CLK transition when S' is high.

4. The data value on L is read (enables go low, the Ly..Ly.; data rails go
neutral). On the falling edge of CLK, the value is asserted on Ry...Ry.; and S° is set
high.

5. Operation returns to state 1. Until the next token arrives, on each rising
CLK edge, if S' is high, S° is set low on the subsequent falling CLK transition.

This is a simplified description due to nonzero slack on the L channel internal
to A2S converter 802. The precise timing relationship between the L handshake and
the converter's synchronized transfer is unknown (but can only happen at times earlier
than those indicated above).

A similarly simplified description of the behavior of S2A interface 804 is as
follows:

1. The Ry...Rym.1 channels all go neutral, and the converter waits for all RS
enables to be high (indicating readiness to receive a token). As long as at least one RS

is low, S° is set low on the falling edge of CLK.

25

WO 03/069485 PCT/US03/04344

10

15

20

2. On the next rising edge of CLK, if S' is high, a transfer occurs (go to state
4). Whether or not a transfer occurs, S° is asserted high on the next falling CLK edge.

3. The converter waits until a rising CLK transition when S' is high.

4. The data value on Ly...Liy. 1s written to the R channels (Ry..Ry.) go valid,
the enables transition low). Operation returns to state 1.

The A2S interface and S2A interface designs described below implement the
above-described behavior. In addition, specific implementations of the described
embodiments are characterized by the following properties. With regard to timing,
various designs of the present invention impose a minimum of timing assumptions on
all signals. Races exist only against the clock, and on synchronous inputs which are
assumed to conform to specified setup and hold times relative to the rising edge of
CLK. Assuming all timing assumptions hold, metastability arises only at a single
point in the design. This metastability is resolved by a Seitz arbiter. 1/2 Tclk (minus
epsilon) is allowed for metastability resolution. All synchronous outputs transition
during some range [tOmin,tOmax] following CLK+.

According to various embodiments, both S2A and A2S directions can sustain
one transfer per clock cycle. The maximum latency penalty of the conversion is one
clock cycle (relative to a synchronous-to-synchronous transfer), suffered only in
pathological cases. Completion of incoming A2S and outgoing S2A tokens is
pipelined (with local DI handshakes) to keep cycle times low.

According to various embodiments, minimized synchronization to CLK
allows "overclocking": correctness is maintained even as Tclk drops below its
minimal value ("nop" cycles are introduced via synchronous handshaking).

Assuming all timing races are met, the only possibility of metastability propagating

26

WO 03/069485 PCT/US03/04344

10

15

20

25

beyond the arbiter is if the arbiter resolves during a period of one transition exactly
Tclk/2 following CLK+.

The internal high-level organization of the A2S and S2A converters 802 and
804 according to a specific embodiment is shown in Fig. 9. Each interface includes
four high-level components:

1. Pipelined Completion (PC) 902. The purpose of this component is to
identify and acknowledge an incoming (A2S) or outgoing (S2A) data token. This
"completion" logic involves feeding the OR'd data rails of each data channel into a
tree of C-elements, i.e., condensing these data rails into a single "data valid" signal.
For all but single-channel tokens, this combinational logic tree introduces too much
forward-latency to sustain a high cycle rate. Therefore, according to a specific
embodiment, the incoming token is completed in a pipelined manner, buffering
intermediate completion signals at each stage.

According to a specific embodiment, PC 902 is identical for both A2S and
S2A converters of the same token size & type. It appears on the asynchronous side of
each (i.e. at the input of the A2S, at the output of the S2A).

2. Control Processes (CTRL) 904 and 906 (e.g., see Fig. 10). CTRL processes
904 and 906 are responsible for (1) issuing a "go" signal to the datapath when both
asynchronous and synchronous sides are ready for a transfer, (2) sequencing the
asynchronous and synchronous handshaking signals (Acd, AS)and (S', S%), and (3)
synchronizing as necessary to CLK.

The control processes for the A2S and S2A designs (CTRL 904 and 906,
respectively) are nearly identical. The only difference between A2S CTRL 904 and
S2A CTRL 906 is their reset state: A2S CTRL 904's S° signal resets low, while S2A

CTRL 906's S° resets high. (The former reflects the empty state of the synchronous
27

WO 03/069485 PCT/US03/04344

10

15

20

25

output channel, the latter reflects the empty state of the S2A's asynchronous capture
buffer.)

3. Datapath Transfer Units (DTU) 908 and 910 (e.g., see Fig. 11). Generally,
the DTU unit is responsible for transferring a data token across the
synchronous/asynchronous boundary once a transfer ("go") signal is received from
the associated CTRL process. The A2S and S2A datapath transfer units differ
significantly. The details of each are described below.

4. Datapath buffering 912 and 914. Both the A2S interface and the S2A
interface require additional stages of asynchronous buffers between their PC and
datapath transfer units. The buffers either store data tokens prior to transfer (A2S
buffer 912) or prior to being consumed by subsequent asynchronous circuitry (S2A
buffer 914). In both cases, timing assumptions are imposed on these buffer stages.
Specifically, the buffers are capable of passing tokens faster than the DTU units can
consume or produce them. Stated another way, the buffer array has no critical cycles
longer than the clock period.

Given the above high-level decomposition of A2S interface 802, a more
detailed description of its operation can now be provided. Beginning from the
asynchronous L input, a token (comprising N 1ofM channels following the four-phase
handshake protocol) enters A2S converter 802 and is immediately copied to two
branches: one into Pipelined Completion (PC 902), and the other into datapath buffers
912 preceding the A2S DTU array. PC 902 condenses the token into a single 1of1
token through several stages of logic, the number of stages depending on the size of N
and M. The 1of7 token (on the " A. " channel in Fig. 9) is then presented to A2S
CTRL process 904 as a notification that an asynchronous token has arrived and is

ready to be converted.

28

WO 03/069485 PCT/US03/04344

10

15

20

25

A2S CTRL process 904 samples the state of the 1of7 A; channel on the next
rising edge of CLK. Seeing that it contains valid data (Acd asserted), it makes the
decision whether to transfer the token to the synchronous domain or not, depending
on the states of the output channel and the synchronous "grant" (R) signal. If the R
channel is empty (R" low) or if the grant signal is high, A2S CTRL process 904 will
raise its request signal (R"). If R®is also high, CTRL 904 will assert the "go"
datapath signal to the DTU array indicating that the datapath transfer units should
acknowledge the asynchronous data token and latch the value to the synchronous R¢
bits. By this time, the asynchronous token will have propagated through buffer 912
and will be ready for consumption by the array of DTUs 908.

If, on the other hand, A2S CTRL process 904 does not transfer the token, i.e.,
if RY was high and R® was low, then it will neither acknowledge the A. token nor
assert "go". On some subsequent clock cycle when R® goes high (indicating the
recipient has accepted the stale synchronous value on R), it will then transfer the
asynchronous token as described above.

According to various embodiments, this operational description of A2S
converter 802 relies on several timing assumptions:

1. In order to maintain full-throughput transfers (i.e. one every clock period
when neither side stalls), each asynchronous pipeline unit must be capable of
completing its input and output handshake cycles in under one clock period. For
example, it is the inability of a single-stage PC to complete a 32-bit datapath in a
sufficiently short time which necessitates the pipelining of this unit.

Note that in particular the two branches on the input L path must satisfy this
requirement when the pipelines are both at peak dynamic capacity (steady-state

condition) and at peak static capacity (following a synchronous-side stall). The latter

29

WO 03/069485 PCT/US03/04344

10

15

20

25

condition is more difficult to satisfy, but must be if the converter is to promptly
respond to the case that R® goes high after several cycles of stalling low.

Also note that once this condition is satisﬁéd within the A2S asynchronous
circuitry, no further timing assumptions must be imposed on the asynchronous
circuitry feeding into the A2S converter. Outside the A2S, the handshake can stall
unpredictably for arbitrarily long times, and the A2S converter will always maintain
correctness, converting tokens at peak throughput whenever possible.

2. The A2S must be able to sample the A state at the rising edge of CLK and
then, if it decides to transfer, it must assert the "go" signal to all A2S DTU elements,
which then must latch the L data value to R? bits, all within a single clock cycle,
never exceeding some maximum output time. Given that the sampling of A, relative
to clock fundamentally requires a nondeterministic period of time to reach a decision
(due to metastability resolution), this timing assumption must be verified under the
worst-possible arbitration time. If the sampling were ever to take longer than some
critical amount (approximately half a clock cycle in this design), then the converter
runs the risk of violating its max output time (or, more precisely, propagating a
metastable state outside the A2S CTRL arbitration logic). This failure condition must
be treated as catastrophic, and the probability of such a failure must be characterized.
From this, the MTBF (Mean Time Between Failure) of the A2S converter can be
determined, given some assumptions about input/output stall conditions.

3. The A2S converter must never change its synchronous outputs (R*, R?) too
early following the rising edge of CLK. This is a standard synchronous timing ("hold
time") constraint. The design presented here satisfies this by conditioning all output
changes on ~CLK, i.e. as long as the hold times of the output synchronous circuitry

are less than Tclk/2, there is no possibility of failure. There is no reason to more

30

WO 03/069485 PCT/US03/04344

10

15

20

25

aggressively optimize this minimum output time (in order to give the output
synchronous circuitry more time for calculation within the clock cycle) since the
design assumes a worst-case metastability resolution time of approximately Tclk/2.
That is, the minimum possible max output time is also greater than Tclk/2.

In S2A converter 804, the arrival of a token to transfer is indicated by the
synchronous-side's assertion of L. S2A CTRL process 906 decides whether to grant
a transfer or not by sampling the state of the 1of7 A, token at the rising edge of CLK.
The presence of a token on A, indicates space in datapath output buffer 914 for an
additional token. In this case (when A, ¢ is set at the rising edge of CLK), S2A CTRL
906 will set its L® grant line high and acknowledge the A, token. If both L* and L" go
high, the "go" signal to the array of DTUs 910 is asserted to transfer the synchronous
input value to the asynchronous capture buffer.

As the output asynchronous circuitry consumes the converted tokens captured
in S2A buffer 914, copies are sent to Pipelined Completion (PC) 902, becoming new
A, tokens. In this manner the total number of A, tokens are conserved in the system,
representing the fixed token capacity of S2A converter 804. If at any point the output
asynchronous circuitry stalls (stops draining buffer 914), buffer 914 fills up and no
new A, tokens are produced. The A2S CTRL process 906 then lowers its grant (L°)
line and stops converting tokens until the output logic reads from R, producing an A,
token. Pictorial representations the reset condition, normal operation, and the
asynchronous-side stall condition are illustrated in Figs. 12A-12C, respectively.

S2A converter 804 must satisfy the same three general categories of timing
requirements described above with reference to A2S converter 802. Namely:

1. All asynchronous pipeline cells within the S2A converter must be able to

sustain clock period handshake cycles under all operating conditions.

31

WO 03/069485 PCT/US03/04344

10

15

20

In fact, the requirement on the asynchronous output buffer is even more
critical for the S2A converter than it is on the A2S converter's input buffer. In the
A2S converter, if the input asynchronous buffering "stutters" somewhat when
transitioning from a full (previously stalled) to a dynamic condition, at worst an
unnecessary send-stall "no-op" cycle will be introduced. In the S2A converter,
however, if the output buffers cannot fully drain a single token in one clock cycle out
of a full receiver-stall state, the S2A DTU array may not be able to transfer the
granted token when the S2A CTRL process thinks it can. The result would be a lost
or corrupted data token.

2. The S2A converter must be able to set its synchronous output signal (L°)
within some reasonable max output time in order to satisfy the setup time of the input
synchronous circuitry, even under the worst-case metastability resolution time. This
requirement is also imposed on the internal go synchronous control broadcast to the
S2A datapath; go must not transition too late into the clock cycle in order for the
datapath units to be able to transfer (or not) a token on the next clock cycle.

3. All synchronous outputs (L°, go) must not transition too early in the clock
cycle. As in the A2S converter, this requirement is satisfied by conditioning changes
on ~CLK.

Implementation details of specific embodiments of the converter designs are
given below. Some details of the circuits have been omitted for clarity. These
include staticizers on the output nodes of all dynamic logic, and extra reset circuitry
which any practical implementation would require. Both of these additions are
straightforward to implement. The specifications of the units described below are

given in CSP.

32

WO 03/069485 PCT/US03/04344

10

15

20

25

Pipelined Completion unit 902 includes a validity detection element per input
channel. An example of such a circuit is PCS0 1300 of Fig. 13 which has a 1of4
input. PCSO0 1300 is followed by a log(N)-deep tree of cells, an example of which is

PCS1 cell 1400 of Fig. 14. PCS0 unit 1300 implements the simple CSP specification:

*[L?x; R!x, V!]

According to a specific embodiment, the "R!x" output operation is done in a "slack-
zero" manner, i.e., the L and R data rails are wired together. When one of the L data
rails goes high, a 1of7 token is sent on V.

A four-input PCS1 unit 1400 implements the CSP specification:

*[L[0]?, L[1]?, L[2]?, L[3]?; R!]

i.e., it reads the 1of7 inputs from four PCSO units, and then outputs a single 1of7
token. An example with N=4 1of¢ input channels (i.e., 8 bits' worth of data) is shown
in Fig. 15. The PCS1 units can be combined in a tree structure to complete arbitrarily
large datapaths. Larger completion trees can be constructed in an analogous manner.
An exemplary CTRL process is shown in Fig. 16. The CSP specification of

either of the A2S and S2A control processes is the following:

S° :=s0 = so_init_state;
*[[#Ac & CLK ->a:=1|~#Ac & CLK ->a:=0],
[CLK ->si :=S'];

[~a & (si|~s0) ->xso:=0[]elsexso:=1],

33

WO 03/069485 PCT/US03/04344

10

15

20

25

[a&(si|~s0)->Ac? []else->skip];
SO :=XS0;
[~CLK -> S° := s50]]

|

*[go :=S' & §°]

It should be noted that for the A2S CTRL process, "so_init_state" is 0; for the S2A
CTRL process itis 1.

The "S°" output maps to the R" validity signal in the A2S converter. In the
S2A converter, it maps to the L® enable signal. Likewise, in the A2S converter the
"S™ is the input R® and in the S2A converter it is L'. The assertion of S° can be
considered to indicate the presence of a token in the control process. For the A2S
converter, it indicates that the converter has asserted a data token to be consumed by
the synchronous circuitry; for the S2A converter, it indicates that the converter is
ready to consume a data token.

On each rising clock edge, the control process probes the input asynchronous
channel A and sets the internal variable "a" high if the channel is ready to be read.
The process also latches its synchronous input (Si). If A¢ has valid data (a), or if the
synchronous side is not ready (Si low), then xso (to become S°) is set high. If A; does
not have valid data (~a) and the synchronous side is ready, then xso is set low. In all
other cases, xso (S°) is left in its prior state.

If A has valid data and either S'is high or S° is low, the A, token is
consumed. This can happen when either S° was asserted (indicating ownership of a
token in the CTRL process) and S' was high (indicating the consumption of that token

on the clock cycle in question), or when S° was not asserted (indicating that the

34

WO 03/069485 PCT/US03/04344

10

15

20

25

CTRL process can accept an A, token regardless of the synchronous side's state.) In
this case of the logic, the process lowers the A.© signal, it waits for A; 4 t0 be de-
asserted, and then it re-asserts A °. In the circuit implementation given below, it is
critical that the A, ¢ go low in response to A, ° within the clock cycle; if it remains
high on the next rising edge of CLK, then the control process will duplicate the token.
(The Pipelined Completion design outlined in the previous section satisfies this
requirement.)

On the falling edge of the clock, the "so" internal state variable is written to
the synchronous handshake output (S°). Once high, S° will stay high until S' goes
high.

In parallel to this process, the "go" signal is combinationally generated as the
conjunction of S' and S°. On any rising clock edge with S° and S' both high, the
datapath sees an asserted "go", and a data token passes from one domain to the other.

As shown in the embodiment of Fig. 16, the circuit implementation of the
control process includes five components: internal completion logic 1602 responsible
for sequencing the enable signal, arbitration logic 1604, S' input latching circuitry
1606, S° output control and state logic 1608, and the A, acknowledge logic 1610.

Central to the design of the control process is the internal enable signal ("en"),
which triggers the set (en high) and reset (en low) phases of the internal dynamic
logic. "en" is not strictly synchronized to CLK. It will cycle once per clock cycle,
but "en" is sequenced by the validities if the internal signals, not CLK. A specific
circuit implementation of the internal completion logic 1700 is shown in Fig. 17.

A specific implementation of an arbitration logic circuit 1800 for the control
process is given in Fig. 18. Arbiter 1802 shown in this circuit can be any standard

mutual exclusion element such as, for example, a Seitz arbiter or a QFR. The "a"

35

WO 03/069485 PCT/US03/04344

10

15

20

variable is implemented as a dual-rail signal pair to allow the use of domino pull-
down logic stages elsewhere in the circuit. Doing so facilitates the synchronized-QDI
(quasi-delay insensitive) design style used throughout the converters.

For exemplary implementations of Seitz arbiter and QFR circuits, please refer
to C.L. Seitz, System Timing, chapter 7, pp. 218-262, Reading, Massachusetts,
Addison-Wesley, 1980, and F.U. Rosemberger, C.E. Molnar, T.J. Chaney, and T.P.
Fang, OQ-modules: Internally clocked delay-insensitive modules, IEEE Trans.
Computers, vol. 37, no.9, pp. 1005-1018, Sept. 1988, respectively. The entire
disclosures of each of these references are incorporated herein by reference for all
purposes.

Theke signal in this logic is used to disable the arbitration logic's clock grant
signal (Ago) once the A.° input wins the arbitration (Ag1 asserted). This must be done
to protect the rest of the circuit from seeing a glitch on Ag0 in the case that A, °

transitions negative while CLK and en are still high.

A more specialized arbitration circuit 1900 which incorporates the ke
function into a variant of the Seitz arbiter is given in Fig. 19. This design removes
the need for an extra dynamic logic stage to generate a. However, elsewhere in the
CTRL unit logic stages, wherever "a'" might have been used with the more general
design, the series combination "Agl & CLK" must be included instead (i.e., requiring
an extra transistor).

The circuits in Figs. 18 and 19 limit the metastability hazard to the case that
an arbiter output resolves exactly as CLK transitions negative. In the case that Agl

wins, Ag' transitioning high as CLK transitions low can cause an unstable voltage on

a' (or whatever logic stage depends on Agl). In the case that Ag0 wins, Ag0

36

WO 03/069485 PCT/US03/04344

10

15

20

25

transitioning high as CLK transitions low can cause A’ to return low before it has

completely pulled down a’ (or some other logic stage in the more specialized
design.) In either case, the metastable condition propagates beyond the arbiter. Note
that if the arbiter were to resolve at some time past CLK transitioning low, then the
metastable condition does not propagate: if Ag1 wins at some point following CLK
transitioning low, the transfer is simply deferred until the next rising clock edge; if
Ago does not win by CLK transitioning low, Agl wins due to the CLK input's
withdrawn request.

Thus the failure mode due to metastability is dependent on the time required
for the CLK to transition low. Ensuring a fast slew rate for CLK’s negative transition
will help protect the circuits from this fundamental hazard.

According to a specific embodiment, the S' input signal is captured using an
edge-triggered, self-disabling single-rail to dual-rail circuit 2000 shown in Fig. 20.

The en signal is used to set and reset the 50!

input rails and facilitates the use of
asynchronous self-sequencing logic throughout the control process. Furthermore, the
design relies on this latch's synchronizing relationship to the rising edge of CLK to
keep the process from repeatedly cycling in a subtle case of the logic (when the clock
period is significantly slower than the A. cycle time). The protection comes from the
circuit's property that, once en transitions low and s; resets, the s and s;' rails remain
low until the next rising edge of CLK.

The s;" signal encodes the validity of the 5! rails. It is used in the internal
completion logic to allow safe, delay-insensitive sequencing of en.

A specific implementation of a S° synchronous output control circuit 2100 is

shown in Fig. 21. Since the control process must know the value of S° from the prior

clock cycle, an asynchronous state element (i.e., STATEBIT circuit 2102) is used. A
37

WO 03/069485 PCT/US03/04344

10

15

20

specific implementation of STATEBIT circuit 2102 is shown in Fig. 22. The
STATEBIT circuit provides automatic sequencing of the so” and s, signals over the
unit's internal cycle. An alternative design might use an additional input latch of Fig.
20 to resample the state from the synchronous S° signal, but such a design would
require additional circuitry to complete the s, terms in the sequencing of en.

The cross-coupled NANDs and output latch of Fig. 21 provide a safe
synchronization of the asynchronous g terms, which only pulse low during the en

rising edge phase of the control process. The cross-coupled NANDs convert the

pulse to a persistent value, and the output latch restricts the S° output from
transitioning while CLK is high. Since only one of s.° or s,' can transition low at a

time, and can only transition low while CLK is high, S° is set in an entirely
synchronous manner.

Like the s;" signal of the S’ input latch, the s, signal encodes the validity of
y

the s; state logic. Here, by including the xso and xso terms in the signal's pull-up

logic, the assertion of s, additionally implies that the cross-coupled NANDs have

successfully captured the appropriate sow'” value.

A specific implementation of an A; Acknowledge logic circuit 2300 is shown
in Fig. 23. This circuit is a relatively straightforward dynamic logic stage, encoding

the "a & (si | ~s0) -> Ac?" expression of the cell's CSP. When "a" is set (meaning

"Agl & CLK") and s;' or so. is asserted, the ack' rail is pulled low, causing A.° to go

low, acknowledging the A input token.

Thekc term is included in the A sequencing to ensure that it has disabled the
arbiter's clock selection by this time (to avoid the potential glitch on Ago when A

goes low in response to the falling edge of A.°).
38

WO 03/069485 PCT/US03/04344

10

15

20

The s, term is redundantly included in the ;l(—fpull-down to prevent the
repeated cycling scenario described above in the S' input latch section.

The ack’, like the s;" and s, signals, encodes the completion state of this block
of logic. When ack® is selected, the ack” is delayed until the falling edge of CLK by

including CLK in the pull-up; when ack' is selected, ack" additionally completes the

A negative transition. ack’ does not return low until Acd has been withdrawn

(completed by the AgI term in the ack’ pull-up) and A.® has returned to its asserted
state.

According to a specific embodiment, the A2S and S2A datapath transfer units
(e.g., DTUs 908 and 910 of Fig. 9) are single-channel converter elements which
transfer tokens based on the value of their synchronous "go" input at various phases
of the clock period. In order to avoid metastability hazards within these circuits,
timing assumptions must be made on the asynchronous handshake transitions. For
example, when the A2S DTU sees an asserted "go", it must also receive a token on its
L input during that clock cycle. Likewise, when the S2A DTU receives an asserted
"go", its R® must be high and ready to transition low once an R data rail is asserted.
As discussed above, the high-level architecture of the A2S and S2A converters
ensures that these assumptions are satisfied.

According to a specific embodiment, the A2S datapath transfer units have the

following CSP specification:

*[[CLK]; [go -> L? [] else -> skip];
*[~CLK ->[go -> R :=#L? [] else -> skip]

1l

39

WO 03/069485 PCT/US03/04344

10

15

20

This process transfers the asynchronous L input to the synchronous R output
on every cycle that "go" is asserted. The unit makes the assumption that go
transitions high sometime following the falling edge of CLK but sufficiently before
next risirig edge of CLK to satisfy the setup time constraints of the recipient
synchronous logic. When CLK transitions high on a cycle when go is asserted, L is
acknowledged.

A circuit implementation of an exemplary A2S data transfer unit 2400 for a
single 1o0f2 input is shown in Fig. 24. The data bit latch of R is transparent when
CLK is low and go is high. When go is low, R is kept low to protect the output from
transitioning unpredictably when L arrives.

In order to keep the circuit from repeatedly acknowledging L tokens within a
single clock period, the L° negative transition is conditioned on the rising edge of
CLK, and the L° positive transition is conditioned on the falling edge of CLK.

In order to avoid metastability hazards in this unit, the assumption is made
that L" will transition low soon after the falling edge of L°. That is, L must not ever
stall in a valid state. This can be satisfied if the A2S input buffer units follow a
PCHB or PCFB template as described in “Synthesis of Asynchronous VLSI Circuits,”
by A.J. Martin incorporated herein by reference above.

According to a specific embodiment, the CSP specification of the S2A

datapath transfer unit is

*[[CLK]; [go -> RIL [] else -> skip]; [~CLK]]

40

WO 03/069485 PCT/US03/04344

10

15

20

Aside from the handshake with the R output channel, this unit is entirely
synchronous in nature; specifically, on each clock cycle, on the rising edge of CLK, it
samples its inputs and evaluates some output condition. In this case, it checks if the
"go" control signal from the S2A control process is set, and, if so, writes its L bit (or
bits) to the R output channel in a 1ofN rail encoding following the four-phase
handshake protocol. Fig. 25 shows an exemplary one-bit circuit implementation of
the S2A DTU 2500. This design can easily be extended to support a two-bit input,
with a 1074 rail output data encoding.

According to a specific embodiment, the A2S converter requires at least a
single stage of buffering on the datapath, following the point that L is copied to the
pipelined completion (PC) circuitry. The need for this is primarily due to
performance considerations; i.e.,.in order to allow the PC to operate in a pipelined
manner, it must not be bottlenecked by tokens backing up in the datapath branch.
Essentially, the datapath is "slack matched" to the control (and completion) path.

Another reasoh for buffering the asynchronous data at the input of the DTU
array is to ensure that the input to the DTU elements have the correct handshake
properties. Namely, the A2S DTU described above relies on its input reseting
(returning to its neutral state) promptly after the falling edge of L°. This can be
guaranteed by having a PCHB or PCFB buffer stage directly preceeding the DTU
array.

According to a specific embodiment, the S2A converter imposes a much
stricter requirement for additional buffering. It needs several buffer stages between
its datapath output and its output PC, as well as on the A; completion channel output

of the PC. The A, channel buffers initializes "filled", i.e. with a number of tokens

41

WO 03/069485 PCT/US03/04344

10

15

20

corresponding to the amount of slack available in the datapath (minus one token with
which the S2A control process initializes out of reset.)

At least two tokens must be present in the S2A datapath-to-completion loop in
order to support a transfer on every clock cycle. One token is consumed by the S2A
control process and DTU elements during a transfer. Since the asynchronous portion
of the loop has non-zero latency, a second token must always be present in that
branch in order to pipeline the transfers.

According to specific embodiments, both the datapath and completion
branches have sufficient buffering to absorb the two tokens in the loop. If the
datapath buffer capacity is insufficient, the S2A DTU output handshake will stall if
the S2A's R output stalls, potentially causing metastability hazards in the datapath or
lost tokens. If the completion path buffer capacity is insufficient, data tokens will be
trapped in the output buffer when the synchronous side stalls. In this case, the S2A
converter will not output a received R token until the next token is received by the
converter, which may take an arbitrarily long amount of time.

A final performance-related factor influences the loop token (and therefore
buffering) requirements of the S2A converter. When the forward latency through the
PC becomes too great, additional tokens must be present in the loop to keep the
pipeline at peak capacity.

The internal high-level organization of A2S and S2A converters 2602 and
2604 according to an alternate embodiment is shown in Fig. 26. Each interface

includes four high-level components:

42

WO 03/069485 PCT/US03/04344

10

15

20

25

1. Pipelined Completion Stage (PCS) 2606. This component is identical to the
PC unit described earlier, although 2606 is drawn such that it includes the datapath

copy circuitry described in PCSO circuit 1300.

2. Control Processes (CTPs) 2608 and 2610. The CTP is responsible for (1)
issuing a "transfer" signal to the datapath when both asynchronous and synchronous
sides are ready for the transfer, (2) sequencing the asynchronous and synchronous
handshaking signals (A%, A% and (S', $°), and (3) synchronizing as necessary to CLK.
CTP_A2S 2608 and CTP_S2A 2610 share many circuit elements and have the same
port interface, but are not identical. Details of each design, highlighting common

functionality, are given below.

3. Datapath Transfer Units (DTU) 2612 and 2614. Generally, the DTU unit is
responsible for transferring a data token across the synchronous/asynchronous
boundary once a "transfer" (go) token is received from the CTP. In the DTU_A2S
case, the unit latches an asynchronous 1ofN data token to the synchronous side at a
time acceptable to the synchronous clocking discipline (specifically some time after
the the falling edge of CLK and before the next rising edge). In the DTU_S2A case,
the unit samples the synchronous input on the rising edge of CLK and converts the
value to an asynchronous one-hot token once the asynchronous channel is ready

(enable asserted).

4. Pipelined Datapath Broadcast (PDB). An exemplary implementation of a
PDB 3000 is shown in Fig. 27. This unit implements the complementary function of

the PCS. That is, it distributes a single "transfer data" (g0°) signal to each DTU in the
43

WO 03/069485 PCT/US03/04344

10

15

20

25

datapath. In this case, the N backward-going enable signals feed into a log(N)-deep
C-element tree to generate the final go° signal. Pipelining the completion adds some

forward latency the go” broadcast, but allows the handshake cycle time to stay low.

According to one embodiment, S2A converter 2604 additionally requires extra
asynchronous buffering stages 2618 between its datapath output and its output PCS,
and on the "A" channel output of the PCS (i.e., buffer 2620). These provide a
guarantee that any transfer initiated by an "A" token can be absorbed in the datapath
if the environment is not prepared to read.

Exemplary implementation details of converters 2602 and 2604 according to
specific embodiments are given below. Some elements of the designs have been
omitted for clarity. These include staticizers on the output nodes of all dynamic logic,
and extra reset circuitry which any practical implementation would require. Both of
these additions are straightforward to implement. Other circuit details (particularly of
the control processes) are not covered since there are many different solutions, and all
are fairly straightforward applications of the design style described herein.

An exemplary CSP specification of A2S control process 2608 is the
following:

*[#HA & CLK >a:=1|~#A & CLK ->a:=0],

[CLK ->si :=S.i];

[a|~a&~si&x->x"=1[]else >x"=0],

[a & (si|~x)->go!, A? []else->skip];

X =X,

[~CLK ->S.0 :=x"]]

44

WO 03/069485 PCT/US03/04344

10

15

20

25

On each rising clock edge, the process probes the input asynchronous channel A and
sets the internal variable "a" high if the channel is ready to be read. The process also
latches its synchronous input (S', which indicates if the synchronous side is ready to
receive data on that clock cycle). If A has valid data, or if the synchronous side is not
ready to receive data and the synchronous datapath output holds an unread value ("x"
high), then "x" is set high. The "x™ variable sets the state of the synchronous
datapath output channel ("x") on the next clock cycle. If the asynchronous channel A
contains valid data (indicating the presence of an input data token to the datapath),
and if either the synchronous side is ready to receive data or if the synchronous
datapath output channel is empty ("x" low), then A is read and a "transfer" token
(god) is sent to the datapath.

On the falling edge of the clock, the "x" variable is written to the synchronous
handshake output (S°). This signal encodes the state of the datapath output to the
synchronous logic: if it is high, a new data value is sitting on the wires. Once high,
S° will stay high until S' goes high. On any rising clock edge with S° and S’ both
high, a data token passes from A2S to the synchronous-side logic.

According to a specific embodiment, S2A control process 2610 is somewhat

simpler since it does not need to store the state of the synchronous datapath channel:

*[#A & CLK ->a:=1|~#A & CLK -> a :=0],
[CLK ->si :=S.i];
[a&si->A? []else->skip],
[x & si->go! [] else -> skip];
X :=a,

[~CLK ->S.0 :=2a]]
45

WO 03/069485 PCT/US03/04344

10

15

20

25

In this case, S' is a synchronous request to transfer a data token; S° grants the transfer,
indicating to the synchronous side that the output (R) asynchronous channel is empty.

Implicit in the design of these control processes is the internal enable signal
("en"), which triggers the set (en high) and reset (en low) phases of the internal
dynamic logic. "en" is not strictly synchronized to CLK. It will cycle once per clock
cycle (except in the case that a cycle is missed due to a maximum arbiter resolve
time), but "en" is sequenced by the validities if the internal signals, not CLK (as
illustrated in Fig. 28).

Several structural similarities between the two control processes described
above are evident from their CSP descriptions. From the first line of each loop, an
arbitrated select, it's clear that the same arbitration logic is used in both. A particular
implementation of such arbitration logic 3200 is shown in Fig. 29. According to
various embodiments, arbiter 3202 shown in this circuit can be any standard mutual
exclusion element such as, for example, a Seitz arbiter or a QFR. The "a" variable is
implemented as a dual-rail signal pair to allow the use of domino pull-down logic
stages elsewhere in the circuit. Doing so facilitates the synchronized, quasi-delay-
insensitive design style used throughout the converters.

The circuit in Fig. 29 limits the metastability hazard to the case that an arbiter

output resolves exactly as CLK goes low. In the case that Ag1 wins, the rising edge of

A,' as CLK goes low can cause an intermediate on a' . In the case that Ay wins, the

rising edge of A,’ as CLK goes low can cause A’ to return low before it has

completely pulled down a°. In either case, the metastable condition propagates
beyond the arbiter. Note that if the arbiter were to resolve at some time past CLK

going low, then the metastable condition does not propagate: if A,' wins at some
46

WO 03/069485 PCT/US03/04344

10

15

20

point following the falling edge of CLK, the transfer is simply deferred until the next
rising clock edge; if A,,;O does not win by the falling edge of CLK, Ag1 wins.

According to a specific embodiment, both control processes also share an
internal state variable, "x". The A2S circuit sets this state based on an intermediate
variable "x'", a logical expression of its inputs; the S2A circuit sets it directly from the
arbiter component output z “a” (in this case, x' == a).

According to a specific embodiment, both control processes use the same state
variable to set their synchronous output signal, S°. Fig. 30 illustrates an exemplary
combined statebit-to-synchronous-latch circuit. The "xv" signal shown in the

diagram encodes the validity of the "x" variable (plus the following RS latch),

needed for subsequent completion (i.e., "en" control). This combination of a dynamic
pull-down stage (x) followed by an RS flip-flop, followed by a clocked latch, plus
the associated xv validity circuit, provides a convenient asynchronous-to-
synchronous circuit fragment when the timing of X is sufficiently restricted to ensure

stability of the output clocked latch. Specifically, x cannot go valid too close to the
falling edge of CLK. This condition is satisfied in the CTP.

A final shared component of the designs according to a particular
embodiments is the handling of the control processes' synchronous input S'. To
minimize the hold time requiremeqt on the signal, the edge-triggered, self-disabling
single-rail to dual-rail (S2DE) latch 3400 shown in Fig. 31 may be used. The S2DE
latch provides a sufficiently safe synchronous-to-asynchronous conversion when it is
possible to ensure that the rising edge of en will never coincide with the falling edge
of CLK, which could cause a metastable condition on s;'*". This requirement

establishes the following timing constraint on the rising edge of en: given the latest

47

WO 03/069485 PCT/US03/04344

10

15

20

25

time into a clock cycle that "a" may be set (the event which triggers all other
sequencing in the processes), the rising edge of en must occur before the following
cycle's CLK negative transition. The case of en going low then high before the
falling edge of CLK of the transfer cycle must also be prohibited, but this can easily
be ensured by conditioning the falling edge of en on the falling edge of CLK. The
latest "a" may be set is at the falling edge of CLK (maximum arbiter resolution case),
so the CTP has a maximum of one clock cycle to complete the en cycle.

A more robust latch design (e.g., latch 3500 of Fig. 32) can be used to

eliminate any potential metastability on s;'*"’

at the expense of extra transitions on its
handshake cycle and an additional arbiter. These extra transitions can be hidden by
inserting a buffer stage 3502 (slack 1/2) between the central control process and the
S2DE latch 3400.

The remaining details of these particular implementations of CTP_A2S 2608
and CTP_S2A 2610 can be implemented in a variety of ways according to various
embodiments following the general production rule synthesis techniques of the quasi-
delay-insensitive design style described in “Synthesis of Asynchronous VLSI
Circuits,” by A.J. Martin incorporated herein by reference above. This flexibility
arises from different reshuffling possibilities of the A? and go! handshaking
expansions, and from different transition completion strategies. Finally, internal
timing races may be introduced to simplify and/or speed up the circuits.

According to a specific embodiment, the A2S datapath transfer units 2612

have the following CSP specification:

*[L?], go?; [~CLK]; R:=1]

48

WO 03/069485 PCT/US03/04344

10

15

20

25

L is the asynchronous input channel from the PCS, "go" is the channel from the CTP |
indicating that a transfer should occur. The DTU_AZ2S reads from the L and go
channels, waits for CLK to be low (note it may already be low), and then outputs the
data value to the synchronous R output. As long as the forward latency of go®
through the PDB is minimal, and assuming the PCS is properly slack-matched (as it is
in the implementation discussed above), the behavior of the CTP_A2S guarantees that
the L and go channels will both go valid during some bounded range surrounding the
falling edge of CLK. The upper end of this range, accounting for the additional R:=1
latency of the DTU_A2S and the setup time on the R output signal, imposes an
important lower bound on tau.

A specific circuit structure which implements the above CSP specification is
given in Fig. 33. The x-to-R latch and Xv circuitry is identical to that used for the S°

signal in the CTP circuits. The timing constraint on x (that it not go valid too close
to the falling edge of CLK) is satisfied here.
The CSP specification of a particular implementation of S2A datapath transfer

unit 2614 is given by:

*[[~CLKL[CLK]; x:=L] || *[go?; R!x]

This implementation includes two parallel processes: one which captures the
synchronous input L on every rising clock edge (and converts the single-rail data
format into a 1ofN rail format), and another which writes the value to the
asynchronous output channel (R) once a "go" transfer token is received. In the case
that N is 4, the first process can be implemented using the S2Q sampler circuit 3700

shown in Fig. 34. S2Q circuit 3700 captures the values of its two synchronous inputs
49

WO 03/069485 PCT/US03/04344

10

15

20

25

on every rising edge of CLK, and outputs their combined value on a 10f4 channel, x.
X transitions through its all-low state immediately following the rising edge of CLK
before asserting the selected data rail. Similar circuits for N other than 4 can be
implemented by changing the input combinational logic.

The second process in this DTU_S2A implementation is the circuit 3800
shown in Fig. 35. It is a WCHB stage (see “Synthesis of Asynchronous VLSI
Circuits,” by A.J. Martin incorporated herein by reference above) modified to
accomodate its unstable x input. It treats x as an unacknowledged input, and writes
its output R once go and x are valid. The inclusion of Ry in the pull-down logic (a
departure from the WCHB template) provides some protection if R® and R/® do not
transition low before the next validity phase of x (i.e., some time after the next rising
edge of CLK), which might otherwise result in the assertion of multiple R rails.

Doing so imposes less rigid synchronization of the transfer cycle to CLK.

The x' rails can be excluded from the R pull-up networks (another departure
from the WCHB template) since the design guarantees that the R low-to-high
transition occurs during a range of the clock cycle surrounding the falling edge of
CLK, excluding the rising edge of CLK. As long as the minimum time between the
rising edge of CLK and the rising edge of R, is longer than the maximum x reset time
(a timing assumption of the design), the unacknowledged x input poses no threat of
destabilizing R.

A specific implementation of the pipelining of the "go" channel broadcast to
the datapath is illustrated in Fig. 27. According to a specific embodiment, BUF
element 3002 is a 1ofI channel PCHB buffer. For a 16-node broadcast tree, four
transitions are added to the rising edge of go® broadcast. In return, the CTP go®

positive transition is acknowledged in three transitions instead of a minimum of
50

WO 03/069485 PCT/US03/04344

10

15

20

25

seven, and the rising edge of go® can follow the falling edge of golina single
transition compared to a minimum of seven. Thus the pipelining saves 10 transitions
to what would otherwise be the critical cycle of the design.

As mentioned above and according to various embodiments, S2A converter
2604 of Fig. 26 requires extra asynchronous buffering stages 2618 between its
datapath output and its output PCS, and on the "A" channel output of the PCS (buffer
2620). According to one such embodiment, the "A" channel buffers must initialize
"filled", i.e., with a number of tokens corresponding to the amount of slack available
in the datapath. This slack is defined by the number of data tokens a DTU plus its
output buffers plus the PCS can hold before the go® signal would stall, i.e., not
transition high following the falling edge of go’.

According to a more specific embodiment, at least one unit of slack (two half-
buffer stages) is needed between the DTUs and the PCS to ensure that the PCS can
never issue an "A" token when its subsequent transfer at the datapath might stall.
Specifically, validity on the DTU output channels should not by itself result in an "A"
token to be generated, since the R”’s of the DTUs (implied directly by the
environment) may stall high. If a DTU's R® stalls high, its go® into the PDB stalls
low. In this case, the CTP's god transaction will not complete within a clock cycle,
which the CTP_S2A specification above assumes.

According to various embodiments, when the outer-loop forward latency (i.e.,
rising edge of CLK to rising edge of A% becomes too great (inevitable with large
word sizes), an additional unit of slack can be added to the DTU R channels and the
A channel (with another initialization token). Doing so amortizes the outer loop
latency over two clock cycles. The benefit of additional slack on these channels

diminishes as the backward "hole" propagation latency becomes the critical cycle,

51

WO 03/069485 PCT/US03/04344

10

15

20

25

incurred when the environment drains the outermost token in a full (previously
stalled) state.

According to various embodiments, the A2S and S2A converter architectures
described above can be adapted to handle burst-mode transfers. It will be understood
that, although one specific category of protocols is used herein to illustrate a specific
implementation, various embodiments of the invention support a wide variety of burst
transfer protocols. The following definitions are useful for understanding the
described burst mode implementations.

Burst Transfer: A conversion (either A2S or S2A) allowing more than one
data token transfer per request/grant control handshake. For example, in
implementations described above, one data token is transferred per clock cycle with
both S' and S° high. By contrast, a burst transfer might transfer two, four, or any
number of data tokens per clock cycle with both S'and S° high. According to al
particular implementation, a maximum burst size is imposed, a constant referred to
below as MAX LEN.

Message: A sequence of data tokens. According to a specific embodiment,
each data token has an associated tail bit which is zero on every data phase except the
last token in the sequence. In a particular implementation described below, a
message may be of arbitrary length, and the converters segment the message into
bursts of lengths up to MAX_LEN. Fig. 36 is a timing diagram which serves to
illustrate such an implementation in which a message comprising data tokens D0O-D9
is segmented into 3 bursts.

Pipelined Burst Transfer: A burst transfer protocol which allows the
request/grant control phase of a burst transfer to take place during the transfer of a

prior burst's message. The number of messages that the receiver will grant in advance

52

WO 03/069485 PCT/US03/04344

10

15

20

25

of the communication of those messages is referred to herein as the number of grant
control tokens in the sender-receiver loop. According to various embodiments, an
arbitrary number of such tokens may be supported. A particular implementation
imposes some finite maximum number of such outstanding granted bursts, a constant
referred to as MAX GRANT. Fig. 37 includes two timing diagrams, a first
illustrating the signal timing for non-pipelined 3-word burst transfers, and a second
illustrating signal timing for pipelined 4-word burst transfers.

Because a benefit of burst transfers arises from the receiver being able to
commit to a sustained acceptance of data tokens, and therefore implying some finite
amount of available buffer space, a limit to the length of each message 1s established
(MAX_LEN). According to various embodiments, the message length may be fixed
(e.g., as shown in Fig. 37) or, alternatively, messages can be allowed to have a
variable length up to MAX LEN.

A specific embodiment of a burst-mode converter designed according to the
invention employs a message tail bit to support variable-length messages. Alternative
embodiments employ other mechanisms for encoding variable message lengths (e.g.,
a burst count sent during the control handshake phase, or included in-band as a header
word of the message). Alternative implementations eliminate such mechanisms
where message sizes are fixed.

In order to support burst transfers, the A2S design described above with
reference to Figs. 26-35 includes two additional cells. Otherwise the general
architecture is similar to that described above. Fig. 38 is a high level diagram
showing such a burst mode A2S converter (BURST_A2S) 4100. The two new cells
are burst complete logic (BURST COMPLETE) 4102 and burst repeat cell

(BURST_REPEAT) 4104.
53

WO 03/069485 PCT/US03/04344

10

15

20

25

30

According to one embodiment, burst complete logic 4102 is a simple

asynchronous delay-insensitive logic unit with the following CSP specification:

BURST COMPLETE ==
1:=0;
*[Ac?, T,
[~t->1i:=(+1) % MAX _LEN
(Jt->i=0];
[i==0->Bc![] else -> skip
1]
The unit reads an input tail token per pipelined completion token from the datapath
and whenever the tail token is “1,” or when it has received MAX_LEN tokens
without a “1” tail token, it sends a 1-of-1 “Burst Completion” token to its Bc output
channel. .

According to various embodiments, the implementation of the burst complete
logic varies in relation to the value of MAX_LEN. For example, for small values of
MAX_LEN (e.g., 2 to 4), the cell can be implemented in a single pipeline stage with
internal state bits. For larger values, the cell may be decomposed into separate stages
for incrementing the "i" internal variable and for comparing and reinitializing "1.” A
specific circuit implementation of the burst complete logic is described below for a
fixed-size message variation of a burst mode A2S converter.

The burst repeat cell extends the “go” signal pulse to the datapath over several

clock cycles corresponding to the length of the burst. According to various

embodiments, the burst repeat cell may have the following specification:

BURST REPEAT =—

g =0, bent :=0;
*[[CLK]; xgo :=go, t :=T;
[xgo & ~t & (bent '=MAX_LEN-1) -> g :=g+1

54

WO 03/069485 PCT/US03/04344

10

15

20

25

30

[1~xgo & g0 & (t | (bent = MAX_LEN-1)) -> g == g-1
[] else -> skip

I
[~t & (xgo | g>0) -> bent := (bent+1) % MAX_LEN
[Jt->bent:=0

[] else > skip

K

[~CLK];

]

I
*[bgo := go | g>0]

According to specific embodiments, this cell may be implemented in a
straightforward manner by applying standard synchronous design techniques.
According to such embodiments, all of the cell’s inputs and outputs are synchronous;
that is, inputs are sampled on the rising edge of the clock and outputs (including state
variables) can be expressed as combinational functions of its inputs (e.g., either
registered, as for “g” and “cnt”, or not, as for “bgo”).

According to one embodiment, the burst repeat cell implements two counters:
one tracking the number of outstanding bursts that have been granted by the control
process (e.g., “g” incremented every time “go” is asserted within an active burst), and
one tracking the length of the current active burst (e.g., “bent”). According to this
embodiment, the “g” counter is required to support pipelined burst grants, and the
“bent” counter is required to support segmentation of messages greater than
MAX_LEN into multiple bursts. According to various implementations, the burst
repeat cell may be simplified by eliminating either or both of these features.

Another difference in the burst mode A2S converter from the baseline A2S
converter described above (e.g., A2S converter 802 of Fig. 9) is the amount of

internal buffering on the LD and LT channels. That is, in a particular implementation

of the baseline A2S converter, only a single input buffer (i.e., static slack 1) is

55

WO 03/069485 PCT/US03/04344

10

15

20

25

required for correctness, although various implementations might use more for
performance optimization (e.g., slack-matching to the control-to-datapath branch.)
By contrast and according to a specific embodiment of the invention, for the burst
mode A2S converter a single message (e.g., of MAX LEN words) of buffering is
required for correctness. Since now the control path is used only once per message,
slack matching to it is less of a consideration.

According to one embodiment, two requirements are placed on the message
buffer:

1. It must be able to receive and source tokens once per clock cycle regardless
of how full it is.

2. The forward latency through the buffer must be less than the control path
to DTU latency.

In an alternate embodiment which supports pipelined burst transfers,
additional messages' worth of buffering are added. In genéral, in order to support the
requesting of N burst transfers in advance, (N+1)*MAX_LEN amount of buffer space
is provided.

It should be noted that as buffer slack needs increase, a linear array of
PCHB/PCFB/WCHB buffers may become an inappropriate choice due to area
implications and to difficulty satisfying the above timing constraints. Therefore,
various such embodiments may employ a dual-ported FIFO memory implementation
of this buffering.

According to a specific embodiment, the burst mode A2S converter of Fig. 38
has two asynchronous input channels: the datapath LD channel (a collection of N
lofM channels), and an LT tail bit 10f2 channel. Each data token received by the

burst mode A2S converter on LD is accompanied by a tail token on LT. For each

56

WO 03/069485 PCT/US03/04344

10

15

20

25

data token except the last in a message, the LT token is “0.” On the last data token,
the value of LT is “1.” The tail bit is also added to the burst mode A2S converter's
synchronous output interface as another data bit (denoted “R.t” in the figure). As LD
data words enter the burst mode A2S converter, they are copied to two units:
message buffer 4106 and pipeline completion (PC) unit 4108. Message buffer 4106
stores the token until the array of data transfer units (DTUs) 4110 is ready to transfer
it. PC unit 4108 consumes the LD token and outputs a single 1of1 Ac token to burst
complete logic 4102.

The LT tail token associated with the LD data token is also copied to these
two units: one copy is buffered with the data, and the other is sent to burst complete
logic 4102.

Upon receiving both Ac and LT tokens, burst complete logic 4102 either
increments its internal burst counter (if LT is “0” and the counter has not reached
MAX_LEN), or else it sends a 1ofI token on its B¢ output channel to A2S control
unit 4112 (if LT is “1” or its counter has reached MAX_LEN).

Control unit 4112 handles the "Bc" token just as it handles the "Ac" token in
the non-burst A2S design. Namely, it asserts its "S°" handshake signal synchronously
with CLK, waiting for its ngin input to be asserted. Once both are asserted, it asserts
its output "go" signal to the datapath for a single clock cycle. In the burst mode A2S
converter design, the assertion of "go" represents the granting of an entire burst (up to
MAX_LEN tokens) of data, rather than the single word it granted in the non-burst
A2S design.

Burst repeat cell 4104 provides the appropriate translation between the per-
burst "go" signal from control unit 4112 and the per-word "bgo" control from

datapath. Simply stated, it extends the single-cycle assertion of "go" over a number

57

WO 03/069485 PCT/US03/04344

10

15

20

25

of cycles matching the length of the burst. In order to know when to end the burst,
burst repeat cell 4104 both watches the output tail bit (i.e., R.t) and maintains an
internal counter in case the message is longer than MAX_LEN (i.e., in case it must
terminate the burst and continue the message over a subsequent burst when "go" is
reasserted). According to an embodiment in which pipelined burst transfers are
support, burst repeat cell 4104 also increments a grant counter whenever it sees an
asserted "go" from control unit 4112 while a burst is still in progress.

The modifications to the A2S design in order to implement the burst protocol
described above may be applied in a symmetrical manner to the S2A converter. Fig.
39 is a high level diagram of such a burst mode S2A converter 4200 designed
according to a specific embodiment of the present invention. According to a more
specific embodiment, burst complete logic 4202 and burst repeat cell 4204 may be
implemented as described above.

Burst mode S2A converter 4200 has the same synchronous interface as the
baseline S2A converter (e.g., S2A converter 804 of Fig. 9) with the addition of an L.t
tail bit which can be considered an additional bit of data, its state serving to segment
the data sequence on L.d into messages. The asynchronous output interface also
remains unchanged except for the addition of the output tail bit, RT (a 1of2 channel).
The data output channel "R" in the baseline S2A becomes "RD" in the burst mode
S2A converter.

For every burst grant cycle negotiated by L.e and L.v, up to MAX_LEN data
tokens are transferred by the burst mode S2A converter's array of DTUs 4206. The
extension of the "go" signal of control unit 4208 over multiple clock cycles
corresponding to the length of each burst is handled by burst repeat cell 4204 in a

manner similar to that described above with reference to burst mode A2S converter

58

WO 03/069485 PCT/US03/04344

10

15

20

4100. If the L.t bit stays low for MAX_LEN cycles, burst repeat cell 4204 terminates
the burst, requiring an additional grant control token to be negotiated (which may
have happened concurrently if the implementation supports pipelined grants).

As bursts are collected in data buffer 4210 their words are completed to "Ac"
lof1 tokens which are then further completed by burst complete logic 4202 to "Bc¢"
lof1 tokens. The "Bc" tokens are returned to control unit 4208 indicating that a
burst's worth of buffer space has drained. According to a specific embodiment, the
burst mode S2A converter design initializes with its data buffer completely empty and
the "Bc" channel initialized with as many tokens as data buffer 4210 and burst repeat
cell 4204 will support. The number of initial "Bc" tokens greater than one
corresponds to the number of pipelined grant tokens control unit 4208 will issue.
Thus, the internal "g" counter of burst repeat cell 4204 must support counts up to this
number.

According to specific embodiments in which all burst messages are of a fixed
length MAX_LEN, there is no need to include a tail bit in the design. In such
embodiments, the fixed-length burst mode A2S converter always sends MAX_LEN
tokens per transfer, and the recipient synchronous logic counts the number of tokens
transferred following a cycle with both S' and S° asserted to know when the message
ends.

Likewise, the synchronous logic feeding a fixed-length burst mode S2A
converter always provides valid data for MAX_LEN cycles beginning from a cycle
with both S' and S° asserted (or following the end of the prior transfer when the
control phase is pipelined). The asynchronous recipient logic then counts the data

tokens it receives to know when messages begin or end.

59

WO 03/069485 PCT/US03/04344

10

15

20

25

Block diagrams of these simpler burst converter designs are given in Figs. 40
and 41 According to specific embodiments, fixed burst complete logic 4302 and

4402 are simply token counters which may be implemented as follows:

FIXED BURST COMPLETE ==

1:=0;
*[Ac?;1:=(i+1)%MAX_LEN;
[i=0->Bc!
[] else ->skip
11

The remainder of the converter blocks operate as described above with reference to
Figs. 38 and 39.

An example implementation of fixed burst complete logic when MAX LEN
equals two is given in Fig. 42 (DECIMATE2_lofl). When MAX_LEN is any power
of two (2V), a cascade of N DECIMATE_2_1of1 units may be used to implement the
fixed burst complete logic. When MAX_LEN is not a power of two, or when the
forward latency through cascaded DECIMATE?2_1of1 units becomes unacceptably
high, a more general counter design may be used.

The fixed-length burst mode A2S and S2A converter designs may use the
burst repeat cell described above by simply wiring the "T" tail bit input to logic zero.
Alternatively, the unit may be simplified for this application by factoring out the tail
bit logic from its implementation.

In certain applications it is desirable to transfer data tokens on both falling and
rising edges of the synchronous clock, i.e., so-called double data rate (DDR)
applications. As long as the application calls for an even number of data transfers per

burst beginning on a rising edge of the clock, the only changes necessary to the burst

60

WO 03/069485 PCT/US03/04344

10

15

20

25

30

mode A2S converter and burst mode S2A converters described above (e.g., in Figs.
38-41) are to the respective Datapath Transfer Units.
According to a specific embodiment, the DDR version of the A2S Datapath

Transfer Unit can be specified as follows:

A2S DDR DTU==
CLKO :=0;
*[[CLK != CLKO];

[go -> LR [] else -> skip],
CLKO :=CLK

]

The unit waits for a transition on CLK, and when "go" is asserted, it reads from its
asynchronous input "L" to its synchronous output "R".
According to a similar embodiment, the DDR version of the S2A Datapath

Transfer Unit has the following specification:

S2A DDR DTU ==
CLKO :=0;
*[[CLK != CLKO];
[go -> RIL [] else -> skip],
CLKO :=CLK
]

The unit waits for a transition on CLK, and when "go" is asserted, it sends its
synchronous input "L" to its asynchronous output channel "R".
Circuit implementations of these DDR DTU variants are given in Figs. 43 and

44. Note that when burst mode DDR A2S and S2A converters (and their fixed-length

61

WO 03/069485 PCT/US03/04344

10

15

20

25

variants) are constructed using these datapath transfer units, the synchronous recipient
or sender logic counts two tokens per clock cycle.

When using the variable-length burst designs (with tail bit control), the tail bit,
like the synchronous handshake control signals S' and S°, remains a single-data rate
signal. Each tail bit value applies to the pair of data tokens transferred on that cycle.

According to yet other embodiments which will now be described with
reference to Figs. 45-49, A2S and S2A conversion circuits are used to implement a
DDR-SDRAM interface. According to a specific embodiment, extensions to the
circuits described above make such an implementation possible. These extensions
include a master/slave converter system, which allows the conversion of different
types of information to be linked, and a nop-counter, which can give increased
performance when there are complex constraints on the minimum spacing between
data items.

In one such embodiment, the SDRAM inferface uses a master/slave design in
which multiple slave converters are controlled by commands sent through a "master"
A2S converter. Basically, the control process of each of the slave converters is
replaced with a shared mechanism that generates "go" signals for each. Based on the
command word transferred, the system may also trigger one or more of the slave
converters, possibly after some number of clock cycles of delay.

As described here, the master converter is A2S. However, it will be
understood that a similar system could be designed with a master S2A converter and
still remain within the scope of the invention.

The DDR-SDRAM protocol specifies that data are transferred (read or write)
in a continuous burst starting a specified number of clock cycles after the

corresponding read or write command. Hence the asynchronous side must ensure that

62

WO 03/069485 PCT/US03/04344

10

15

20

25

data are available for writing, or empty buffer space available for reading, before
issuing the associated read or write command. This requires that the converters for
commands and data be linked.

A slave A2S or S2A converter comprises a normal converter (such as any of
those described above) with its control process removed. According to various
embodiments, such normal converters may comprise, for example, single-word
converters (e.g., Fig. 45), burst converters (e.g., Fig. 46), or fixed burst converters
(e.g., Fig. 47). Such converters may also be double data rate (DDR) converters, but
are not required to be so.

Deleting the control process leaves the slave converter with an input signal
"go" and an output completion channel Ac. (For embodiments described above, the
completion channel was called Ac for single-word converters and Bc for burst-mode
converters). These channels will be referred to below as Ac for simplicity.

According to a particular implementation, a slave converter does not itself
perform a synchronous handshake. Instead, it simply transfers data on every rising
clock edge on which its input signal "go" is asserted. It is the responsibility of the
larger system to satisfy the same conditions as are placed on the control unit of a
standalone converter, i.e., to wait for a token on Ac, and perform any necessary
synchronous flow control, before asserting the "go" signal. In a slave S2A converter,
as described above with reference to a standalone S2A converter, the Ac channel is
initialized with tokens to match the amount of datapath buffering.

The general organization of an exemplary master/slave converter system is
shown in Fig. 48. Before a command is sent to master A2S converter 5102, it passes
through a control block MASTER_COMPLETE 5104 which checks that the

necessary slave converters are ready. According to one embodiment,

63

WO 03/069485 PCT/US03/04344

10

15

20

25

MASTER _COMPLETE 5104 executes the following operation, specified in

pseudocode, for every command:

L?command,;
for each slave converter S,
if command requires a transfer on S,
Ac[S]?; //receive completion token from S

R!command

Once the command emerges from MASTER_COMPLETE 5104, it is passed through
standalone A2S converter 5102 (the "master" converter).

On the synchronous side, a SLAVE_TRIGGER unit 5106 is responsible for
raising the "go" signals of the appropriate slave converters at the appropriate times,
depending on the command. A simple version of SLAVE_TRIGGER 5106 could
observe the output channel C from master A2S converter 5102. On each rising clock
edge, if C is valid (C.v and C.e both high) and the command C.d indicates a slave
transfer, then the corresponding slave converter is triggered through a delay line. Ina
particular embodiment, the delay in each delay line is programmable and corresponds
to an integer number of clock periods. In general, SLAVE_TRIGGER 5106 may be
more complex including, for example, synchronous handshaking on the slave
converters or other forms of synchronous control.

According to some embodiments, slave converters 5108 and 5110 have more
datapath buffering than their standalone counterparts. That is, in place of the control
process of the standalone converter, with its relatively small latency from Ac to "go",
the control latency of the slave converter passes through MASTER_COMPLETE

5104, master A2S 5102, and SLAVE _TRIGGER 5106 (with the associated delays).

64

WO 03/069485 PCT/US03/04344

10

15

20

25

Therefore, the datapath buffering of the slave converter is increased to match this
greater latency. The number of initial tokens on the Ac channel of slave S2A
converter 5108 (representing initial empty buffer space) may be increased
accordingly.

According to various embodiment, the NOP_COUNTER is a synchronous
unit the responsibility of which is to ensure that items sent through an A2S converter
are separated by at least a minimum number of clock cycles. The number is given
with each item, and specifies the minimum number of skipped cycles between that
item and the previous one.

The DDR-SDRAM protocol has numerous requirements on the timing of
commands which, for particular implementations, can all be expressed as minimums:
before a certain command can be issued, there must have been at least a minimum
number of cycles skipped (issuing null commands, or NOPs) since the previous
command.

According to one embodiment, the required number of NOPs may be
generated on the asynchronous side and passed through the A2S. According to such
an implementation, it would then merely be necessary for the synchronous side to
generate additional NOPs when no command was available. The disadvantage of this
approach is that it may add unnecessary delay between commands that are already
widely separated. The minimum number of NOPs is not known until the following
command is known, so passing those explicit NOPs through the A2S before the
following command would add extra delay even though more than enough delay may
have already passed.

Referring now to Fig. 49, NOP_COUNTER 5202 is a synchronous block

attached to the output of A2S 5204. Its input and output each comprise synchronous
65

WO 03/069485 PCT/US03/04344

10

15

20

25

30

handshake channels. The input channel carries items (commands) with an associated
minimum NOP count, and the output channel sends out those same items spaced by
the required number of cycles. One possible CSP specification of this unit is the

following:

count := lcount := rcount := 0;

has 1:=has_r = false;

L.e :=R.v ;= false;

*[[~CLK];
[has_r & (count >=rcount) -> R.d:=r, R.v:=true
[]else -> R.v:=false
1,
(L.e :==~has_l);
[CLK];

[R.v & R.e -> count:=0, has_r:=false
[Jelse ->count:=count+1

1,

[L.v & L.e->(llcount):=L.d, has_l:=true
[Jelse ->skip

l;

[has_1 & ~has_r -> has_l:=false, has_r:=true, (r,rcount):=(l,lcount)
[1else -> skip

l;

]

In this program, the variable "count" holds the number of cycles since the last output

on R. The pair (1,lcount) holds the input data and associated minimum NOP count;
66

WO 03/069485 PCT/US03/04344

10

15

20

25

this is copied to (r,rcount) for output. The booleans has_| and has_r indicate when
each of these pairs hold valid tokens. Having two variable pairs allows the unit to
input and output on the same clock cycle.

On each falling clock edge, NOP_COUNTER 5202 sets its output signals.
When there is a token in r (has_r high), and the number of cycles since the last output
is greater than rcount (count >= rcount), it sets R.d and R.v to send the value r;
otherwise, it does not send. Also, if there is no token in 1 (has_l low), it raises L.e to
enable input.

Data are transferred on the rising clock edge. If there is an output on R (R.v
and R.e high), then the token is removed from r, and the count of cycles since the last
output is reset to 0; otherwise, the count is incremented. If there is an input on L, the
data and nop-count are read into a token in (1,lcount). Finally, if there is now a token
in 1 but not one in r, the token is transferred from 1 tor.

The SDRAM interface uses a NOP_COUNTER in conjunction with the
master/slave design above. The NOP_COUNTER is attached to the master converter
and may be considered part of the master converter for purposes of the rest of the
design. In a particular implementation, the SLAVE_TRIGGER unit observes the
output channel of the NOP_COUNTER as though it were the output of the master
converter. This keeps the timing of the slave converters consistent with the command
stream that emerges from the NOP_COUNTER and is visible to the other
synchronous circuitry.

While the invention has been particularly shown and described with reference
to specific embodiments thereof, it will be understood by those skilled in the art that
changes in the form and details of the disclosed embodiments may be made without

departing from the spirit or scope of the invention. For example, various interfaces

67

WO 03/069485 PCT/US03/04344

10

have been described herein with reference to a particular asynchronous design style.
However, it will be understood that any of a variety of asynchronous domain types
are within the scope of the invention. Moreover, the specific details of the circuits
described herein are merely exemplary and should not be considered as limiting the
invention. Rather, any circuits implementing the basic functionality of the circuits
described herein are also within the scope of the invention.

In addition, although various advantages, aspects, and objects of the present
invention have been discussed herein with reference to various embodiments, it will
be understood that the scope of the invention should not be limited by reference to
such advantages, aspects, and objects. Rather, the scope of the invention should be

determined with reference to the appended claims.

68

WO 03/069485 PCT/US03/04344

10

15

20

25

WHAT IS CLAIMED IS:

1. An interface for use between an asynchronous domain and a
synchronous domain, the asynchronous domain being characterized by transmission
of data in accordance with an asynchronous handshake protocol, the synchronous
domain being characterized by transmission of data in accordance with transitions of
a clock signal, the interface comprising a datapath operable to transfer a data token
between the domains, the interface further comprising control circuitry operable to
enable transfer of the data token via the datapath in response to at least one transition
of the clock signal and at least one completion of the asynchronous handshake

protocol.

2. The interface of claim 1 wherein the datapath is operable to transfer
the data token from the asynchronous domain to the synchronous domain, and the at
Jeast one completion of the asynchronous handshake protocol corresponds to the data

token.

3. The interface of claim 2 wherein the data token comprises a plurality
of parallel bits, and the at least one completion of the asynchronous handshake
protocol comprises completion of the asynchronous handshake protocol for each of

the bits.

4. The interface of claim 3 wherein the datapath comprises a buffer
which is operable to store a plurality of data tokens including the data token, and a
plurality of datapath transfer units which are operable to transfer the bits of the data
token from the buffer to the synchronous domain in response to the transition of the

clock signal and a transfer signal generated by the control circuitry in response to a

69

WO 03/069485 PCT/US03/04344

10

15

20

25

synchronous handshake with the synchronous domain and completion of the

asynchronous handshake protocol for all of the bits.

5. The interface of claim 4 wherein the buffer comprises a multi-stage,
asynchronous, first-in-first-out (FIFO) buffer, each successive stage of which is
operable to receive and transfer all of the bits of the data token in accordance with the

asynchronous handshake protocol.

6. The interface of claim 4 wherein each datapath transfer unit comprises
a latch which is operable to latch a respective bit of the data token into the
synchronous domain after the transition of the clock signal and before a next

transition of the clock signal.

7. The interface of claim 4 further comprising broadcasting circuitry

which is operable to proVide the transfer signal to each of the datapath transfer units.

8. The interface of claim 7 wherein the transfer signal comprises a token,
and the broadcasting circuitry comprises a pipelined tree structure for distributing the

token.

9. The interface of claim 8 wherein the pipelined tree structure comprises

a plurality of Mueller C-elements.

10. The interface of claim 4 wherein the control circuitry comprises a

pipelined completion stage for facilitating generation of the transfer signal.

11. The interface of claim 3 wherein each of the bits is encoded using

1ofN encoding where N is greater than or equal to one.

70

WO 03/069485 PCT/US03/04344

10

15

20

25

12. The interface of claim 2 wherein the synchronous domain requires a
data transfer to comprise a block of consecutive data, the datapath further being
operable to accumulate data tokens generated in the asynchronous domain to form the
block of consecutive data, each data token comprising a plurality of bits, and wherein
the control circuitry is operable to facilitate transfer of the accumulated data tokens to
the synchronous domain via the datapath in response to a synchronous handshake
with the synchronous domain and consecutive transitions of the clock signal, and
after completion of the asynchronous handshake protocol for each of the bits of each

of the data tokens.

13. Anintegrated circuit comprising the interface of claim 1.

14. The integrated circuit of claim 13 wherein the integrated circuit

comprises a CMOS integrated circuit.

15. The integrated circuit of claim 13 wherein the integrated circuit
comprises a system-on-a-chip which includes both the asynchronous and synchronous

domains.

16. The interface of claim 1 wherein the datapath is operable to transfer
the data token from the synchronous domain to the asynchronous domain, and the at
least one completion of the asynchronous handshake protocol corresponds to a

previously transferred data token.

17. The interface of claim 16 wherein each of the data token and the
previously transferred data token comprises a plurality of parallel bits, and the at least

one completion of the asynchronous handshake protocol comprises completion of the

71

WO 03/069485 PCT/US03/04344

10

15

20

25

asynchronous handshake protocol for each of the bits of the previously transferred

data token.

18. The interface of claim 17 wherein the datapath comprises a buffer
which is operable to store a plurality of data tokens including the previously stored
data token, and a plurality ofdatapath transfer units which are operable to transfer the
bits of the data token from the synchronous domain to the buffer in accordance with
the asynchronous handshake protocol and a transfer signal generated by the control
circuitry in response to completion of a synchronous handshake with the synchronous
domain and the asynchronous handshake protocol for all of the bits of the previously

stored data token.

19. The interface of claim 18 wherein the buffer comprises a multi-stage,
asynchronous, first-in-first-out (FIFO) buffer, each successive stage of which is
operable to receive and transfer all of the bits of the data token in accordance with the

asynchronous handshake protocol.

20. The interface of claim 18 wherein each datapath transfer unit
comprises a latch which is operable to transfer a respective bit of the data token into

the buffer on the transition of the clock signal.

21. The interface of claim 18 further comprising broadcasting circuitry

which is operable to provide the transfer signal to each of the datapath transfer units.

22. The interface of claim 21 wherein the transfer signal comprises a
token, and the broadcasting circuitry comprises a pipelined tree structure for

distributing the transfer token.

72

WO 03/069485 PCT/US03/04344

10

15

20

25

23. The interface of claim 18 wherein the control circuitry comprises a

pipelined completion stage for facilitating generation of the transfer signal.

24. The interface of claim 23 wherein the transfer signal comprises a
transfer token, the control circuitry further comprising a transfer token buffer which is
operable to store a plurality of transfer tokens each corresponding to completion of

the asynchronous handshake protocol for a corresponding data token.

25. The interface of claim 17 wherein each of the bits is encoded using

1ofN encoding where N is greater than or equal to one.

26. The interface of claim 16 wherein the synchronous domain requires a
data transfer to comprise a block of consecutive data, the control circuitry further
being operable to facilitate transfer of a plurality of data tokens as the block of
consecutive data to the asynchronous domain via the datapath in response to a
synchronous handshake with the synchronous domain, consecutive transitions of the
clock signal, and an enable signal generated in accordance with the asynchronous
handshake protocol and indicating that the asynchronous domain has sufficient

memory to receive the plurality of data tokens.

27. The interface of claim 1 wherein the control circuitry is operable to
enable transfer of the data token on both positive and negative transitions of the clock

signal.

28. The interface of claim 1 wherein the control circuitry is operable to
enable transfer of the data token on only one of positive and negative transitions of

the clock signal.

73

WO 03/069485 PCT/US03/04344

10

15

20

25

29. The interface of claim 1 wherein the control circuitry is operable to
enable transfer of the data token only upon completion of a synchronous handshake

with the synchronous domain.

30. The interface of claim 29 wherein the datapath is operable to transfer
the data token from the asynchronous domain to the synchronous domain, the
synchronous handshake comprising a first signal from the control circuitry indicating
the data token is ready to be transferred, and a second signal from the synchronous

domain indicating the synchronous domain is ready to receive the data token.

31. The interface of claim 29 wherein the datapath is operable to transfer
the data token from the synchronous domain to the asynchronous domain, the
synchronous handshake comprising a first signal from the control circuitry indicating
the datapath is ready to receive the data token, and a second signal from the
synchronous domain indicating the synchronous domain is ready to transfer the data

token.

32. The interface of claim 29 wherein the control circuitry is further
operable to operate as a zero-bit converter by converting between the asynchronous
handshake protocol and the synchronous handshake without transferring data via the

datapath.

33. The interface of claim 1 wherein the datapath is operable to transfer
the data token from the asynchronous domain to the synchronous domain within one

period of the clock signal upon completion of the asynchronous handshake protocol.

74

WO 03/069485 PCT/US03/04344

10

15

20

25

34. The interface of claim 1 wherein the control circuitry is operable to
enable transfer of the data token without regard to flow control information from the

synchronous domain.

35. Aninterface for use between an asynchronous domain and a
synchronous domain, the asynchronous domain being characterized by transmission
of data in accordance with an asynchronous handshake protocol, the synchronous
domain being characterized by transmission of data in accordance with transitions of
a clock signal, the interface comprising a datapath operable to receive a data token
generated in the asynchronous domain and comprising a plurality of bits, the interface
further comprising control circuitry operable to facilitate transfer of the data token to
the synchronous domain via the datapath in response to a transition of the clock
signal, completion of a synchronous handshake with the synchronous domain, and
completion of the asynchronous handshake protocol for each of the bits, transfer of
the data token to the synchronous domain occurring within one period of the clock

signal after completion of the asynchronous handshake protocol.
36. Anintegrated circuit comprising the interface of claim 35.

37. The integrated circuit of claim 36 wherein the integrated circuit

comprises a CMOS integrated circuit.

38. The integrated circuit of claim 36 wherein the integrated circuit
comprises a system-on-a-chip which includes both the asynchronous and synchronous

domains.

75

WO 03/069485 PCT/US03/04344

10

15

20

25

39. Aninterface for use between a synchronous domain and an
asynchronous domain, the synchronous domain being characterized by transmission
of data in accordance with transitions of a clock signal, the asynchronous domain
being characterized by transmission of data in accordance with an asynchronous
handshake protocol, the interface comprising a datapath operable to receive a data
token generated in the synchronous domain and comprising a plurality of bits, the
interface further comprising control circuitry operable to facilitate transfer of the data
token to the asynchronous domain via the datapath in response to a transition of the
clock signal, completion of a synchronous handshake with the synchronous domain,
and an enable signal generated in accordance with the asynchronous handshake
protocol and indicating that the asynchronous domain is ready to receive the data
token, transfer of the data token to the synchronous domain occurring within one

period of the clock signal after generation of the enable.

40. Anintegrated circuit comprising the interface of claim 39.

41. The integrated circuit of claim 40 wherein the integrated circuit

comprises a CMOS integrated circuit.

42. The integrated circuit of claim 40 wherein the integrated circuit
comprises a system-on-a-chip which includes both the asynchronous and synchronous

domains.

43. Aninterface for use between an asynchronous domain and a
synchronous domain, the asynchronous domain being characterized by transmission
of data in accordance with a delay-insensitive handshake protocol, the synchronous

domain being characterized by transmission of data in accordance with transitions of

76

WO 03/069485 PCT/US03/04344

10

15

20

25

a clock signal and requiring a data transfer to comprise a block of consecutive data,
the interface comprising a datapath operable to accumulate data tokens generated in
the asynchronous domain to form the block of consecutive data, each data token
comprising a plurality of bits, the interface further comprising control circuitry
operable to facilitate transfer of the accumulated data tokens to the synchronous
domain via the datapath in response to completion of a synchronous handshake with
the synchronous domain and consecutive transitions of the clock signal, and after

completion of the handshake protocol for each of the bits of each of the tokens.

44, An integrated circuit comprising the interface of claim 43.

45. The integrated circuit of claim 44 wherein the integrated circuit

comprises a CMOS integrated circuit.

46. The integrated circuit of claim 44 wherein the integrated circuit
comprises a system-on-a-chip which includes both the asynchronous and synchronous

domains.

47. The interface of claim 43 wherein the block of consecutive data

comprises a fixed number of data tokens.

48. The interface of claim 47 further comprising counter circuitry for

counting the fixed number of data tokens.

49, The interface of claim 43 wherein the block of consecutive data

comprises a variable number of data tokens.

77

WO 03/069485 PCT/US03/04344

10

15

20

25

50. The interface of claim 49 wherein an indicator is associated with a

final one of the variable number of tokens to indicate an end of the block.

51. The interface of claim 49 wherein information is associated with the

block representing the variable number.

52. The interface of claim 43 wherein a message corresponds to a single

block of consecutive data.

53. The interface of claim 43 wherein a message corresponds to a plurality

of consecutive blocks of consecutive data.

54. The interface of claim 53 further comprising counter circuitry for

counting the consecutive blocks.

55. The interface of claim 43 wherein the control circuitry is pipelined.

56. The interface of claim 43 wherein the control circuitry is operable to
facilitate transfer of the data tokens in response to both positive and negative

transitions of the clock signal.

57. The interface of claim 43 wherein the control circuitry is operable to
enable transfer of the data tokens on both positive and negative transitions of the

clock signal.

58. An interface for use between a synchronous domain and an
asynchronous domain, the synchronous domain being characterized by transmission
of data in accordance with transitions of a clock signal and requiring a data transfer to

comprise a block of consecutive data, the asynchronous domain being characterized

78

WO 03/069485 PCT/US03/04344

10

15

20

25

by transmission of data in accordance with a delay-insensitive handshake protocol,
the interface comprising a datapath operable to receive data tokens generated in the
synchronous domain, the interface further comprising control circuitry operable to
facilitate transfer of a plurality of data tokens as the block of consecutive data to the
asynchronous domain via the datapath in response to completion of a synchronous
handshake with the synchronous domain and consecutive transitions of the clock
signal, and an enable signal generated in accordance with the asynchronous
handshake protocol and indicating that the asynchronous domain has sufficient

memory to receive the plurality of data tokens.

59. Anintegrated circuit comprising the interface of claim 58.

60. The integrated circuit of claim 59 wherein the integrated circuit

comprises a CMOS integrated circuit.

61. The integrated circuit of claim 59 wherein the integrated circuit
comprises a system-on-a-chip which includes both the asynchronous and synchronous

domains.

62. The interface of claim 58 wherein the block of consecutive data

comprises a fixed number of data tokens.

63. The interface of claim 62 further comprising counter circuitry for

counting the fixed number of data tokens.

64. The interface of claim 58 wherein the block of consecutive data

comprises a variable number of data tokens.

79

WO 03/069485 PCT/US03/04344

10

15

20

25

65. The interface of claim 64 wherein an indicator is associated with a

final one of the variable number of tokens to indicate an end of the block.

66. The interface of claim 64 wherein information is associated with the

block representing the variable number.

67. The interface of claim 58 wherein a message corresponds to a single

block of consecutive data.

68. The interface of claim 58 wherein a message corresponds to a plurality

of consecutive blocks of consecutive data.

69. The interface of claim 68 further comprising counter circuitry for

counting the consecutive blocks.

70. The interface of claim 58 wherein the control circuitry is pipelined.

71. The interface of claim 58 wherein the control circuitry is operable to
facilitate transfer of the data tokens in response to both positive and negative

transitions of the clock signal.

72. The interface of claim 58 wherein the control circuitry is operable to
enable transfer of the data tokens on both positive and negative transitions of the

clock signal.

73. At least one computer-readable medium having data structures stored

therein representative of the interface of claim 1.

80

WO 03/069485 PCT/US03/04344

10

15

20

25

74. The at least one computer-readable medium of claim 73 wherein the

data structures comprise a simulatable representation of the interface.

75. The at least one computer-readable medium of claim 74 wherein the

simulatable representation comprises a netlist.

76. The at least one computer-readable medium of claim 73 wherein the

data structures comprise a code description of the interface.

77. The at least one computer-readable medium of claim 76 wherein the

code description corresponds to a hardware description language.

78. A set of semiconductor processing masks representative of at least a

portion of the interface of claim 1.

79. An interface for use between an asynchronous domain and a
synchronous domain, comprising:

a first datapath operable to transfer first data tokens generated in the
asynchronous domain to the synchronous domain;

a second datapath operable to transfer second data tokens generated in the
synchronous domain to the asynchronous domain;

control circuitry operable to control both the first and second datapaths in
response to flow control signals indicating completion of a synchronous handshake
with the synchronous domain, and completion of an asynchronous handshake

protocol in the asynchronous domain.

81

WO 03/069485 PCT/US03/04344

10

15

20

25

80. The interface of claim 79 wherein the control circuitry comprises
completion circuitry for transmitting the flow control signals in response to first and
second completion signals from the first and second datapaths indicating whether the

first and second datapaths are ready to transmit data.

81. The interface of claim 80 wherein the flow control signals transmitted

by the completion circuitry correspond to the asynchronous handshake protocol.

82. The interface of claim 80 wherein the flow control signals transmitted

by the completion circuitry correspond to the synchronous handshake.

83. The interface of claim 79 wherein the control circuitry further
comprises trigger circuitry for generating first and second enable signals in response

to the flow control signals for enabling the first and second datapaths to transmit data.

84. The interface of claim 83 wherein the flow control signals in response
to which the first and second enable signals are generated correspond to the

asynchronous handshake protocol.

85. The interface of claim 83 wherein the flow control signals in response
to which the first and second enable signals are generated correspond to the

synchronous handshake.

86. The interface of claim 79 wherein the control circuitry is operable to
enable transfer of data via both of the first and second datapaths on both positive and

negative transitions of a clock signal associated with the synchronous domain.

82

WO 03/069485 PCT/US03/04344

10

15

87. The interface of claim 79 wherein the first datapath is further operable
to accumulate the first data tokens to form a first block of consecutive data, and
wherein the control circuitry is operable to facilitate transfer of the first block of
consecutive data to the asynchronous domain via the first datapath, and to facilitate
transfer of a second block of consecutive data comprising the second data tokens to

the asynchronous domain via the second datapath.

88. A synchronous dynamic random access memory (SDRAM) controller

comprising the interface of claim 87.

89. The SDRAM controller of claim 88 wherein the control circuitry is
operable to enable transfer of data via both of the first and second datapaths on both
positive and negative transitions of a clock signal associated with the synchronous

domain.

83

PCT/US03/04344

WO 03/069485

L Old
}senbay <«
eo | jonuo) |e
>>
cll oLl
A
Y10 >> M
. P / & V4 m
[1eold e nta e
01 a0l
<«— 70l
ooL—"

uonajdwo)

3

Z.

7

201 —>

A%

[Leoln

1/45

PCT/US03/04344

WO 03/069485

¢ Old

}senbay >

JuelS) < |0uoD P e uona|dwod

A0 >> vic
012 e

Y
[Le-oh e » NLa 7'2e ze
_/

902 80¢

«— 202 ¥0c —>

0oz—"

> [L£0ld

2/45

PCT/US03/04344

WO 03/069485

€ 9Old
, |ojuo) . ng | €0€ yq aum
SNOUOIYJUAS Sev JUAG | lppe
8Le 9L rie
uonajdwo)
Zie
A
0l
A
M0 >> "
. < Z P / m Z .
[Le ol 7oe nia 7o 7oe /:m ol
S0¢
80€
«— P0€ c0e —>
0os—"

3/45

PCT/US03/04344

WO 03/069485

G "Old

90—

A

YOv—

yop—"

4/45

PCT/US03/04344

WO 03/069485

[Leoln

9 "OId

jojuod | . ing |, 509 yqpea
SNOUOJYOUAS | Sev OUAG | lppe
029 gio— 99— 1
Pl e < uonajdwo)
v19
29
049 ,
4
7o nLa 7o % > [0l
909
<«— 209 09 —>
oomi\«

5/45

WO 03/069485

PCT/US03/04344

SYNCHRONOUS HANDSHAKE PROTOCOL

DATA >
Synchronous A
Source
Sile— B

i Synchronous
Receiver

SO

%

CLK

CLK

\

\V
A high
B low

&

new data,
not read on
this cycle

A high
B high

&

new data,
read on
this cycle

FIG. 7

6/45

A low
B high
A low
B low
stale data,
ready to
read stale data,
not ready
for data

WO 03/069485

L1 e——7>——— F———> Ry
M . .
ASYNCHRONOUS | L,, . | .
1-of-n —— | .
CHANNELS] s R,
1 (> L R,
L, >
0 — R,
L ——— S°
1
802 7 s
— CLK
L R
N-16E— < M1
N : .
SYNCHRONOUS . r___<_—‘> R,
INPUTS Lys— |
L S2A [2R
1 ———— |
Loy | <Ry
SYNCHRONOUS (
HANDSHAKE — A
SIGNALS S° N\ s04

CLK>

FIG. 8

7/45

PCT/US03/04344

N
SYNCHRONOUS
OUTPUTS

SYNCHRONOUS

HANDSHAKE
SIGNALS

M
ASYNCHRONOUS
1-of-n
OUTPUT
CHANNELS

PCT/US03/04344

WO 03/069485

6 OlId 199AUOD STV NG-N

18HBAUOD VZS HA-N N v
906 Mw_ m 141D 5y
C R ob (0dYz06
A\ l a2
b Al \"4 N
TH41D | ¢ A1 0¥ nLd . i< o
ob ‘ - 0 ‘ #
.vllJ o PMA D.—.D W__ Py < PI_
Oy¢)
Y 3 Ndf— 7 / T |3 _
[& < c
Y v_u_ .|ﬁ_:.n,_\ — 2el¢ _ nid m | 1 (poyiwo
w 3 s)q ndino 806 g so|geus)
z 4 - SNOUOJYOUAS H sinduj p
(papiwo S m | Nn.La < RSREAY % nouoJyou M<
sa|qeus)) . M o 3
sindinQ ﬂ 0L6 — . v .
SnouoJyouAs o v . NOUOJYOUAS . % .
. m . N1 o - L . a |
. § . "Ny n.d S
d L—)
-)| v LN 806 41 M
e NLd —— Ny \
<08

-y

vL6 0L6 M
08

NOILISOdWOO3d T3ATT-dO1L

WO 03/069485 PCT/US03/04344

go (1}
"tra?sfler, synlc;[hrgn?us "
904/906 control signal to datapa
AN
d (o]

A(s:);nrgg{gtri\g#s L >S Synchronous
Sional Handshake
(1-of-1) (Ac® e— ————s!) S

FaN
CLK
FIG. 10
910
Lm > TR
. . -of-n
m
. . Asynchronous
Synchronous | 2 S2A DTU [———R?
Input bits L1 Eg ot
L) SE— — Channel
L0 —————— I l —— < R®
CLK go
908
N\
n-1)>——— % R™1
1 -gf-n : . SynchTonous
f\syr}cCLonouesl L' >———1 A2S_DTU ———— R%2 (Qutput bits
nput Channel} - : L SR

I

CLK

l

go

FIG. 11

9/45

WO 03/069485 PCT/US03/04344

DTU

L*©— ctrL .
Lo (1)e—] o

(A) Reset Condition

A

DTU

DTU |

LY (M— cTRL L*(0—1 cTRL
L® (1)¢— . Le (1)—] .

(B) Normal Operation

Y . (blocked) ey
DTy ’ DTU { | (unblocked)

L"(— cTRL (M cTRL-
Le (0)—| Le (je—] o

(C) Stall Condition
(Asynchronous Side Stalls)

FIG. 12

10/45

WO 03/069485

o
8

PCT/US03/04344

N

>R3

> R2

>R

—_—

A4

| 1T .

> RO

en

Re

I

‘K 1300

* [L?x; RIx, V!]

FIG. 13

11/45

WO 03/069485 PCT/US03/04344

PCS1
—
——
L >
3
Ld >
2
Ld
1
LS >
o—
\V/
e——> Rd
L® ¢ < R®
\1400
FIG. 14

12/45

WO 03/069485 PCT/US03/04344

0,1,2,3 0,1,2,3
L3 > P) N\ R3
L < PSCO ~ R,
0,1,2,3 0,1,2,3
|_2 S o —— < > R2
Lo < PSCE f—|— <R;
|1
N d
PSC1 > Ac
< Ac®
0,1,2,3 0,1,2,3
L1) ~ —|— 7 —> R1
e — |- <
L, PSCH ~R,
0,1,2,3 0,12,3
LO > — ~ 7 RO
e yl / e
18 € PSCP k— R,

8-bit 1-of-4 PC Tree

FIG. 15

13/45

PCT/US03/04344

WO 03/069485

8091~

vﬁ 9. ‘OI4
21607 uonenIqy
~~y001
0S y
olelS A yole
uonejdwo) d
pue |0JJu0) k—— 5 leuisu| 5 jnau|
oS S
AlS
TI
_,_o_m
9091
|osuo) abpajmoundy OV
10°S

0Ll

ob

< oV

a9V

14/45

PCT/US03/04344

WO 03/069485

uo

Ll "Old

oe

A0S

v/ 001

NOIL3TdWOD TVYNHTLNI

15/45

PCT/US03/04344

WO 03/069485

81 "OId

— P

N UU<

us
N\
Lot
= ! 1Yy
H_ By
0
_ <C
_ Fm<
L
. -
omA _
1B ¢ _ <}
2 < l
b —p ——
A e e

0081

JI90TNOILYYLIgYY TVHINIO

16/45

PCT/US03/04344

WO 03/069485

OV

uo

=
&)

0PV

(pOV-SAMP) JID0 T NOILVILIgHY

/L\ e
|O

< poV

v/ 0061

17/45

WO 03/069485

Si'
Si0

S' INPUT LATCH

clk
en

PCT/US03/04344

en —g

18/45

cl
Si

FIG. 20

PCT/US03/04344

WO 03/069485

198
A0S < h ‘

00lc

L Oid

AV %4

J1V1S ANV TOHLNOD oS

108 ¢——

X Li831vis

_X

_/

19/45

PCT/US03/04344

WO 03/069485

¢c¢ Oid

(‘1es@1 Jo 1no ybiy pazijeniul si ox)

\w A
1089y |Iv_|mv

umop-jjind

WX
Y

umop-|ind

X
N

e b

o ; -
L

\» us
cole

INJWOVYHS 11931V1S

20/45

PCT/US03/04344

WO 03/069485

I_l ooe £¢ Old

Moe < h

| joe
OV T|oA_|+H —

TJOYINOD IOATTMONNIV OV

oBv—_

05—

s—

o ¢

[1

21/45

PCT/US03/04344

WO 03/069485

ve¢ "Oid

.

a0

— o6

|

-
?
a—
——o6
mT._m e
7 wu .
oorz—" (NOIS¥3A Z-40°1)

LINN Y34SNVHL H1VdVYLVA SV

T

e

22/45

PCT/US03/04344

WO 03/069485

GgZ "Oid

ob

I A S I S I S

l_! dpisT [
dijs «—os|a [J

7Y <« of]
Biol ‘priod 1

AR > = 11g-v¥Zs-nLd

00S6¢ \\A

LINN ¥34SNVHL H1VdV1vAd VEs

23/45

PCT/US03/04344

WO 03/069485

H3193ANOD Vs HA-N

9¢ ‘Old

s 019¢
029¢~ .v| wes ,x._o
ele] dID mn_%
pvY ob ob .
] (Y
_ \ﬁvwm
Oy -+ — nia [T
N
—N_ —H K — N1d \qul
(popiwo 4 : :
mm_n%xwv e F A nafe sindu|
sjna} SOd NOUOIYOUAS
SNOUOJYOUASY Sy] ~ NLa VFI N et 0q
X . . sndino
. : add ., SNOUOIYOUAS
. : .) 1 ZmOm
LWy —nialT
|
»; T
909¢ ¥19¢
wmmm:mm 919¢
gl9z- WedeEa » o9z

H31H3ANOD S¢ZV HA-N

SOd

8092
10> 2y
m/
0S¢ d1o
ob| |[,0b
219~ | L& e
p— .
AF. Du_-o 4
L]
S nLa
T I
1 n1a K+
11
S nLa g
. gad

aVv
A on_
%
; ¢ T_ <
———< %7 | (pspiwo
so|qeud)
sindu

———< €9 fsnouoiyouAhsy

NBN \ _ ©O©N\

019¢

WO 03/069485 PCT/US03/04344
d
> R3e
— R3
Ld N Ld Rd
>R,
BUF <R
X L® R®
d
\3002 | ——Rie
z 1
> R,
N Ree
T PDBO P
---------------------------- S 3000
d s
PDBR[—
e A
PDBR—
d e N
go- <
) llgoll S
CTTOP § To DTU's
PDBo
e -
Example
16-node
d 2 PDB tree
PDBoH—
e
FIG. 27

25/45

WO 03/069485 PCT/US03/04344

>
o
N

VALIDITIES en
OF INTERNAL
SIGNALS

(All signals valid) = en]
(All signals invalid)}=>en4

FIG. 28

ARBITRATION LOGIC CIRCUIT FRAGMENT

clk >

30 51 '/_3200
PPN
& 1= 4ET
s Al
> Sl a0
> k@
3202\ |: _”: _'|[(to acknowledge
Aq! k@ Tin enl for DI
g [correctness)
> Ago]
Arbite —
I B

WO 03/069485

PCT/US03/04344
en 1 %ﬁ] —
I %[—q_
SO < N S1
: ﬁ .
] L
'S0 3!
v 50 3 Y
(inputs)> pull_l(-)%?;/vn PU'LZZ?:V“
i F
SV «

%

= AR

FIG. 30

27/45

SO

WO 03/069485 PCT/US03/04344

'/3400
en > 1t I
0 =
rt « —]
CLK> I {H" L
T] a
1> J r r I
> C [
]
3 i
clk] LJJ Y
17 S2DE

FIG. 31

28/45

PCT/US03/04344

WO 03/069485

¢€ "Old

Y M0
AV 4 N
Y
us H ol <ue8
HOLVY (z-40-1)
3azs 4Nng
Ao
o] > of
.n 7 1
oove 20s¢g

V/ 00s€

29/45

WO 03/069485

L®L

N

0L1 L2L3 god goe

PCT/US03/04344

L

it

4-2 ralil
Conversion
logic
IIO“

4-2 rail
Conversion
logic
Il1 "

IF
I

N
{i{

v
M4

I

DTU_A2S

FIG. 33

30/45

(1 of 4 version)

WO 03/069485 PCT/US03/04344

»FO—-DO——)FO
— x3
L>—— SINGLE RAIL +— S
TOQUADRAIL |— 5 x? rr
COMBINATIONAL _[
CONVERSION |—— X!
LOGIC
LO>—————- |[
x° !
V v
A A
en Cco
S2Q SAMPLER
v en co

17

|
4
[&

1

3700

FIG. 34

31/45

WO 03/069485 PCT/US03/04344

f ﬁi {>° i
>R
go¥>-

go°¢
Ly s X
> s2a [
L s SAMPLER [
CLK >

DTU-S2A
(1-of-4 version)

FIG. 35

32/45

PCT/US03/04344

WO 03/069485

=N37 XV uoneluswbes abessay Q€ "O) |

€1sing zZ1sing L 1sing

X 18 X omJ..ﬁ ea X 28 X 8 X od vzﬁmmUA za X 18 X o8 | Px

abesso\ pajeulusl-jie]

_ .
X 6a X 8a X 20 X ea X sa X va X €a X zd X 1 X 0od px
AN ANV AN VAN VA VA VA N A

33/45

PCT/US03/04344

WO 03/069485

|ooojoid Jojsuel) sing /€ O
(1oysuely Buipue)sino auo }sow e sjuelb Jaaieday)
siojsuel) 1sINq piom- pauljadid
~— - |

| “
Y oa X ea X za X 1a X oa X ea X za X ta X 0d PX
\ _.v./ a h

[Y
[Y

o'X

e

3o

-

slajsuel }sing piom-¢ pauljadid-uoN

| | [
X za X wa X oa X za X ld X od pX
h

34/45

WO 03/069485

4110

PCT/US03/04344

BURST_A2S == —J otu -
4100 4106 5
\\ o !
LD q Data . R.d
Buffer L
4108 L » DTU }—m7-p
PC |
- » DTU |—p |
Tail DTU
LT —™ Buffer Rt
A bgo
4104_ | BURST_
Ac REPEAT
4102 \ A 4112 g0
| BURST_ Bc |] A2S. —»Ruv
COMPLETE > ™ CTRL Re
FIG. 38
BURST S2A == 4200
B DTU F——
o 4210
4206 * | ™
Ld ’
. Data
Buffer >RD
DTU |— »
1 PC
| — | DTU |—»
DTU Tail
L.t 1 Buffer » RT
bgo Q
4204
BURST_ | % A
REPEAT
go 4 4208 Y 1202
Ly —» S2A_ [ol @ leBc | BURST |~
Le «— | CTRL “ COMPLETE

FIG. 39

35/45

WO 03/069485

PCT/US03/04344

FIXED_BURST_A2S == | b1U -
X
’ R.d
. Data .
LD Buffer
———» DU —»
@ |
—» DTU | — |
ngo
BURST
Ac REPEAT
Ago
4302 FIXED Bc
“~ BURST A2S_ t———»Ruwv
COMPLETE CTRL | — Re
FIG. 40
FIXED BURST_S2A ==
———» DTU [—»
X
Ld ’
. Data
| Buffer >RD
——» DTU [(—p
| e
| ————» DTU |—»
bgo 4
BURST _ A
REPEAT c
go 4
FIXED 4402
Lv ———™ (S:%’F\{—L « | ©| @ |l«—BS | BURST [—
Le «—— COMPLETE

FIG. 41

36/45

WO 03/069485 PCT/US03/04344

DECIMATE2_ 1 of 1

Weak-condition output logic:

£ «|
Ld—s P R—

[Dc >Rd

s
Re—|
en—- en—{

o
I_J'l_l iy
[[
Y

State Logic:

o e

e e o

FIG. 42

37/45

WO 03/069485 PCT/US03/04344

A2S DDR _DTU =

S R

I G R ckO— clk0—q
—iL ok — ok —
noR
cko—[clko—] clk0—]
clk —| clk —] ctk —]

go— — > go—
1

WO 03/069485

aHo—_
clk __c{[

R? R'noR

cko—f clko—]
clk——[ok —

Y
L
en—-—cl[en——-<{[

+— R +—— RO
>
en-———[en-——--[

Re [RemE

go———i 90--—[l]
RO Jl>c— >R
R % >R

39/45

en

PCT/US03/04344

clk0—{ >o— clk0

1 1

-— noR

go

go — >0

. 44

I

WO 03/069485 PCT/US03/04344

SLAVE_AZ2S ==

——> DTU —

LD > Data
Buffer

R.d

——® ©® ©® —P>

- DTU ——

e . DTU ——

SLAVE_S2A ==
—> DTU —>
®
[J
Ld T Data » RD
Buffer
—p DTU ——p
| — DTU [—» PC
(number of
® | initial tokens
e | dependson
go buffering)
Ac

FIG. 45

40/45

WO 03/069485 PCT/US03/04344

SLAVE_BURST_AZ2S == L » DTU +———
*
Data . R.d
LD Buffer
———P» DTU -
e |
—» DU [— |
LT— tal L, DTU Rt
Buffer)
Ac T bgo
BURST BURST _
COMPLETE REPEAT
l Bc Tgo
FIG. 46A
SLAVE_BURST_S2A ==
[[———» DTU ——»
*
L.d)
. Data
Buffer RD
———» DTU >
| e
| — »| DTU |——»
Lt DTU | ,f Tai - —»RT
) Buffer A
bgo 4 c
BURST_ BURST
REPEAT COMPLETE
o
9 7
® (number of
initial tokens
PY depends on
FIG. 46B buffering
41/45 l Bc

WO 03/069485

PCT/US03/04344
SLAVE_FIXED_BURST_AZ2S ==
—» DTU [———]
+
) R.d
Data .
LD ™ Buffer]
- » DTU |—p»
e I
- » DTU |—p |
Ac Tbgo
FIXED_ BURST_
BURST_ REPEAT
COMPLETE T
go
ch
SLAVE_FIXED_BURST_S2A ==
——» DTU [——»
+
L.d : ,
. Data
Buffer » RD
—_—> DTU -
‘ e
| —— > DTU |—p
bgof Ac
BURST_
REPEAT FIXED.
go BURST _
COMPLETE
v
@ | (numberof
initial tokens
Py depends on
buffering
FIG. 47 v B

42/45

WO 03/069485

SLAVE_FIXED_BURST_A2S ==

PCT/US03/04344

—» DTU |————»]
*
: R.d
Data .
LD > Buffer
e |
- » DTU [—» |
Ac ? bgo
FIXED BURST _
BURST. REPEAT
COMPLETE
go
l Bc
FIG. 47A
SLAVE_FIXED_BURST_S2A ==
———»{ DTU [——
+
L.d *
. Data
Buffer » RD
L DTU N .
‘ ©
bgo t Ac
BURST _
REPEAT
go BURST _
COMPLETE
v
® (number of
initial tokens
Py depends on
buffering
i Bc

FIG. 47B

43/45

WO 03/069485 PCT/US03/04344

master/slave system: 5102
f
5104
-
MASTER "master"
= compLETE = A2S ¢ >
A A 5106
AC |o o o SLAVE 4
TRIGGER
eee (JO
l———————
SLAVE
_ ——
- son @
5108
/
®
®
[]
-
SLAVE
— ¢ﬁ
A2S
/5110

FIG. 48

44/45

PCT/US03/04344

WO 03/069485

(Auo eyep)

oYy—————»

NY ¢——m]

Py

6v Old
M1
L >
97
-«
AT
i
R (3unoo JON
¥3LNNOD . sz ® e1ep)
dON AH_
P elep
@
[]
[J
\
Junoy
dON
20257 vozs

45/45

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

