wo 2015/175555 A1 |]I NF 0 00 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/175555 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

LLP, 2 N. Market St., 3rd Floor, San Jsoe, CA 95113 (US).

19 November 2015 (19.11.2015) WIPO | PCT
International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/38 (2006.01) GO6F 9/45 (2006.01) kind of national protection available). AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2015/030411 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
International Fi]ing Date: HN, HR, HU, ID, IL, H\I, IR, IS, JP, KE, KG, KN, KP, KR,
12 May 2015 (12.05.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Priority Data: . L
61/991,951 12 May 2014 (12.05.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
Applicant: SOFT MACHINES, INC. [US/US]; 3211 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Scott Boulevard, Suite 202, Santa Clara, CA 95054 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Inventors: ABDALLAH, Mohammad; 3868 Suncrest TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Avenue, San Jose, CA 95132 (US). AVUDAIYAPPAN DK, EE, ES, F1, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

> k] o
Karthikeyan; 824 Sweetbay Drive, Sunnyvale, CA 94086 LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
US) ’ g g SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
: GW, KM, ML, MR, NE, SN, TD, TG).
Agent: SOCHOR, Michael, D.; Murabito, Hao & Barnes, .
Published:

with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR PROVIDING HARDWARE SUPPORT FOR SELF-MODIFYING CODE

0

(57) Abstract: A method and apparatus for providing support for self modi-

fying guest code. The apparatus includes a memory, a hardware bufter, and a

an
Accass A Guest { \

e

3 7
instruction Branch?

402

Exectits
Conwerled
Instruction

440

Excepiion

424

)

invelidate Code

NO
¥ Cache Line

Select PCR Enlry For 426
Eviction

412

Perfom Eviction

Feich Cache Line From

PCY

418

¥

Siore Entries From
PCTinte PCB
418

Update PCB
Andfor PCY
A3

FIG. 4A

processor. The processor is configured to convert guest code to native code
and store converted native code equivalent of the guest code into a code
cache portion of the processor. The processor is further configured to main-
tain the hardware buffer configured for tracking respective locations of con-
verted code in a code cache. The hardware butfer is updated based a respect-
ive access to a respective location in the memory associated with a respective
location of converted code in the code cache. The processor is further con-
figured to perform a request to modify a memory location atter accessing the
hardware buffer.

WO 2015/175555 PCT/US2015/030411

METHOD AND APPARATUS FOR PROVIDING HARDWARE SUPPORT FOR SELF-
MODIFYING CODE

CROSS REFERENCE TO RELATED APPLICATIONS

[001] The present application claims priority to and the benefit of the commonly owned,
provisional patent application, U.S. Serial No. 61/991,951, entitled "METHOD AND APPARATUS
FOR PROVIDING HARDWARE SUPPORT FOR SELF MODIFYING CODE," with filing date
May 12, 2014, and having attorney docket number SMII-207.A, which is herein incorporated by

reference in its entirety.

BACKGROUND

[002] Self modifying code (SMC) is an optimization technique where some software code
modifies a part of itself before executing. SMC may be used in just-in-time compilation (JIT)
compilation systems such as with the Java programming language. In systems that use code
conversion, self modification of guest code presents a specific problem, as guest code modification
(GCM) must be detected and corresponding converted traces in the code cache must be either

invalidated or regenerated based on the new code.

[003] Detection of GCM can be challenging because of corner cases that can occur. The corner
cases can include code and writable data that are finely interleaved and for Harvard processors, for
example having separate instruction and data paths, the GCM may require specific code sequences

in guest architecture to make the code change visible if the code was stored in cacheable memory.

[004] The corner cases can further include when code locations are written by memory masters
different from a central processing unit (CPU). For example, some direct memory access (DMA)
process downloads code from an external peripheral before executing the code. Oftentimes, an
Input/Output Memory Management Unit (IOMMU) is present so that the DMA memory write

operations are visible to the CPU and can be taken into account.

WO 2015/175555 PCT/US2015/030411

SUMMARY

[005] A need exists to handle self modifying guest code and DMA modification of guest code,
together known as GCM. Embodiments are configured for identifying changes to memory arcas
that correspond to traces of code stored in a code cache. Embodiments may further be configured
for tracking locations of converted code in a code cache. Fetching of data where self modifying
code may be present can be supported. Performance is enhanced while detection of self modifying

code and replacement of traces of code in the code cache is performed.

[006] An embodiment is implemented as an apparatus for providing support for self modifying
code. The apparatus includes a memory, a hardware buffer, and a processor. The processor is
configured to convert guest code to native code and store converted guest code into a code cache
portion of the processor. The processor is further configured to maintain the hardware buffer
configured for tracking respective locations of converted code in a code cache. The hardware buffer
is updated based on a respective access to a respective location in the memory associated with a
respective location of converted code in the code cache. The processor is further configured to

perform a request to modify a memory location after accessing the hardware buffer.

[007] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive
features, and advantages of the present invention, as defined solely by the claims, will become

apparent in the non-limiting detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] Further aspects of the present disclosure will become apparent from the following
description which is given by way of example only and with reference to the accompanying

drawings in which:

[009] Figure 1 shows a diagram depicting a block-based translation process where guest
instruction blocks are converted to native conversion blocks, in accordance with various

embodiments.

WO 2015/175555 PCT/US2015/030411

[0010] Figure 2 shows a diagram of an exemplary hardware accelerated conversion system
illustrating the manner in which guest instruction blocks and their corresponding native conversion

blocks are stored within a cache, in accordance with various embodiments.

[0011] Figure 3 shows exemplary components of a system for tracking guest code at a

granularity smaller than a page size of the system, in accordance with various embodiments.

[0012] Figures 4A-B show a flowchart of an exemplary electronic component controlled process

for tracking location of converted code in a code cache, in accordance with various embodiments.

[0013] Figure 5 is a block diagram of an exemplary computing system including various

embodiments.

DETAILED DESCRIPTION

[0014] In the following detailed description, numerous specific details such as specific method
orders, structures, elements, and connections have been set forth. It is to be understood however that
these and other specific details need not be utilized to practice embodiments of the present
invention. In other circumstances, well-known structures, elements, or connections have been
omitted, or have not been described in particular detail in order to avoid unnecessarily obscuring this

description.

[0015] References within the specification to "one embodiment” or "an embodiment" are
intended to indicate that a particular feature, structure, or characteristic described in connection with
the embodiment is included in at least one embodiment of the present invention. The appearance of
the phrase "in one embodiment" in various places within the specification are not necessarily all
referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive
of other embodiments. It is noted that any claimed embodiment does not necessarily include all of

the “objects"” or "embodiments" of the disclosure.

[0016] Morcover, various features are described which may be exhibited by some embodiments
and not by others. Similarly, various requirements are described which may be requirements for

some embodiments but not other embodiments.

WO 2015/175555 PCT/US2015/030411

[0017] Some portions of the detailed descriptions, which follow, are presented in terms of
procedures, steps, logic blocks, processing, and other symbolic representations of operations on data
bits within a computer memory. These descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey the substance of their work to others
skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and
generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired
result. The steps are those requiring physical manipulations of physical quantities. Usually, though
not necessarily, these quantities take the form of electrical or magnetic signals of a computer
readable storage medium and are capable of being stored, transferred, combined, compared, and
otherwise manipulated in a computer system. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters,

terms, numbers, or the like.

[0018] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to these
quantities. Unless specifically stated otherwise as apparent from the following discussions, it is
appreciated that throughout the present invention, discussions utilizing terms such as "processing" or
"accessing" or "writing" or "storing" or "replicating" or the like, refer to the action and processes of
a computer system, or similar electronic computing device that manipulates and transforms data
represented as physical (electronic) quantities within the computer system's registers and memories
and other computer readable media into other data similarly represented as physical quantitics
within the computer system memories or registers or other such information storage, transmission or

display devices.

[0019] Reference will now be made in detail to the various embodiments of the present
disclosure, examples of which are illustrated in the accompanying drawings. Furthermore, in the
following detailed description of the present disclosure, numerous specific details are set forth in
order to provide a thorough understanding of the present disclosure. However, it will be understood
that the present disclosure may be practiced without these specific details. In other instances, well-
known methods, procedures, components, and circuits have not been described in detail so as not to

unnecessarily obscure aspects of the present disclosure.

WO 2015/175555 PCT/US2015/030411

[0020] Embodiments are configured for identifying changes to memory areas that correspond to
traces of code stored in a code cache. Embodiments may further be configured for tracking
locations of converted code in a code cache. Performance is enhanced while detection of self

modifying code and replacement of traces of code in the code cache is performed.

[0021] The Figures illustrate example components used by various embodiments. Although
specific components are disclosed in the Figures, it should be appreciated that such components are
exemplary. That is, embodiments are well suited to having various other components or variations
of the components recited in the Figures. It is appreciated that the components in the Figures may
operate with other components than those presented, and that not all of the components of the

Figures are required to achieve the goals of embodiments.

[0022] Figure 1 shows a diagram depicting a block-based conversion process, where guest
instruction blocks are converted to native conversion blocks, in accordance with various
embodiments. As illustrated in Figure 1, a plurality of guest instruction blocks 101 are shown being

converted to a corresponding plurality of native conversion blocks 102.

[0023] Embodiments of the present invention function by converting instructions of a guest
instruction block into corresponding instructions of a native conversion block. Each of the blocks
101 are made up of guest instructions. These guest instructions can be from a number of different
guest instruction architectures (e.g., Java, JavaScript, x86, MIPS, SPARC, etc.). Multiple guest
instruction blocks can be converted into one or more corresponding native conversion blocks. This

conversion occurs on a per instruction basis.

[0024] Figure 2 shows a diagram of an exemplary hardware accelerated conversion system 200
illustrating the manner in which guest instruction blocks and their corresponding native conversion
blocks are stored within a cache, in accordance with various embodiments. As illustrated in Figure
2, a conversion look aside buffer (CLB) 206 is used to cache the address mappings between guest

and native blocks; such that the most frequently encountered native conversion blocks are accessed

through low latency availability to the processor 208.

[0025] The Figure 2 diagram illustrates the manner in which frequently encountered native

conversion blocks are maintained within a high-speed low latency cache, the conversion look aside

WO 2015/175555 PCT/US2015/030411

buffer 206. The components depicted in Figure 2 implement hardware accelerated conversion

processing to deliver a much higher level of performance.

[0026] The guest fetch logic unit 202 functions as a hardware-based guest instruction fetch unit
that fetches guest instructions from the system memory 201. Guest instructions of a given
application reside within system memory 201. Upon initiation of a program, the hardware-based
guest fetch logic unit 202 starts prefetching guest instructions into a guest fetch buffer 203. The
guest fetch buffer 207 accumulates the guest instructions and assembles them into guest instruction
blocks. These guest instruction blocks are converted to corresponding native conversion blocks by
using the conversion tables 204. The converted native instructions are accumulated within the
native conversion buffer 205 until the native conversion block is complete. The native conversion
block is then transferred to the native cache 207 and the mappings are stored in the conversion look
aside buffer 206. The native cache 207 is then used to feed native instructions to the processor 208
for execution. In one embodiment, the functionality implemented by the guest fetch logic unit 202

is produced by a guest fetch logic state machine.

[0027] As this process continues, the conversion look aside buffer 206 is filled with address
mappings of guest blocks to native blocks. The conversion look aside buffer 206 uses one or more
algorithms (e.g., least recently used, ctc.) to ensure that block mappings that are encountered more
frequently are kept within the buffer, while block mappings that are rarcly encountered are evicted
from the buffer. In this manner, hot native conversion blocks mappings are stored within the
conversion look aside buffer 206. In addition, it should be noted that the well predicted far guest
branches within the native block do not need to insert new mappings in the CLB because their target
blocks are stitched within a single mapped native block, thus preserving a small capacity efficiency
for the CLB structure. Furthermore, in one embodiment, the CLB 206 is structured to store only the
ending guest to native address mappings. This aspect also preserves the small capacity efficiency of

the CLB.

[0028] The guest fetch logic 202 looks to the conversion look aside buffer 206 to determine
whether addresses from a guest instruction block have already been converted to a native conversion
block. As described above, embodiments of the present invention provide hardware acceleration for

conversion processing. Hence, the guest fetch logic 202 will look to the conversion look aside

WO 2015/175555 PCT/US2015/030411

buffer 206 for pre-existing native conversion block mappings prior to fetching a guest address from

system memory 201 for a new conversion.

[0029] In one embodiment, the conversion look aside buffer is indexed by guest address ranges,
or by individual guest address. The guest address ranges are the ranges of addresses of guest
instruction blocks that have been converted to native conversion blocks. The native conversion
block mappings stored by a conversion look aside buffer are indexed via their corresponding guest
address range of the corresponding guest instruction block. Hence, the guest fetch logic can
compare a guest address with the guest address ranges or the individual guest address of converted
blocks, the mappings of which are kept in the conversion look aside buffer 206 to determine whether
a pre-existing native conversion block resides within what is stored in the native cache 207 or in the
code cache of Figure 3. If the pre-existing native conversion block is in either of the native cache or
in the code cache, the corresponding native conversion instructions are forwarded from those caches

directly to the processor.

[0030] In this manner, hot guest instruction blocks (e.g., guest instruction blocks that are
frequently executed) have their corresponding hot native conversion blocks mappings maintained
within the high-speed low latency conversion look aside buffer 206. As blocks are touched, an
appropriate replacement policy ensures that the hot blocks mappings remain within the conversion
look aside buffer. Hence, the guest fetch logic 202 can quickly identify whether requested guest
addresses have been previously converted, and can forward the previously converted native
instructions directly to the native cache 207 for execution by the processor 208. These aspects save
a large number of cycles, since trips to system memory can take 40 to 50 cycles or more. These
attributes (e.g., CLB, guest branch sequence prediction, guest & native branch buffers, native
caching of the prior) allow the hardware acceleration functionality of embodiments of the present
invention to achieve application performance of a guest application to within 80% to 100% the

application performance of a comparable native application.

[0031] In one embodiment, the guest fetch logic 202 continually prefetches guest instructions
for conversion independent of guest instruction requests from the processor 208. Native conversion
blocks can be accumulated within a conversion buffer "code cache"” in the system memory 201 for
those less frequently used blocks. The conversion look aside buffer 206 also keeps the most

frequently used mappings. Thus, if a requested guest address does not map to a guest address in the

7

WO 2015/175555 PCT/US2015/030411

conversion look aside buffer, the guest fetch logic can check system memory 201 to determine if the

guest address corresponds to a native conversion block stored therein.

[0032] In one embodiment, the conversion look aside buffer 206 is implemented as a cache and
utilizes cache coherency protocols to maintain coherency with a much larger conversion buffer
stored in higher levels of cache and system memory 201. The native instructions mappings that are
stored within the conversion look aside buffer 206 are also written back to higher levels of cache
and system memory 201. Write backs to system memory maintain coherency. Hence, cache
management protocols can be used to ensure the hot native conversion blocks mappings are stored
within the conversion look aside buffer 206 and the cold native conversion mappings blocks are
stored in the system memory 201. Hence, a much larger form of the conversion buffer 206 resides

in system memory 201.

[0033] In one embodiment, the Figure 2 architecture implements virtual instruction set
processor/computer that uses a flexible conversion process that can receive as inputs a number of
different instruction architectures. In such a virtual instruction set processor, the front end of the
processor is implemented such that it can be software controlled, while taking advantage of
hardware accelerated conversion processing to deliver the much higher level of performance. Using
such an implementation, different guest architectures can be processed and converted while each
receives the benefits of the hardware acceleration to enjoy a much higher level of performance.
Example guest architectures include Java, JavaScript, x86, MIPS, SPARC, etc. In one embodiment,
the "guest architecture” can be native instructions (e.g., from a native application/macro-operation)
and the conversion process produces optimize native instructions (e.g., optimized native
instructions/micro-operations). The software controlled front end can provide a large degree of
flexibility for applications executing on the processor. As described above, the hardware
acceleration can achieve near native hardware speed for execution of the guest instructions of a

guest application.

WO 2015/175555 PCT/US2015/030411

TRACKING CONVERTED CODE IN THE CODE CACHE

[0034] Architectures that employ binary translation to convert guest (e.g., source) code to native
(e.g., target) code, in the same or a different Instruction Set Architecture (ISA), have to deal with
issues of self-referencing codes, self-modifying codes, and cross code-modification by I/0O devices
via DMA. Embodiments are configured to handle true and false self modification of guest code and

DMA modification of guest code.

[0035] When dealing with a situation involving DMA modification of guest code, it is possible
to write protect a guest page, from where instructions have been converted and kept in a code cache.
However, write protected pages are unable to prevent a copy of the guest code in the code cache
from becoming stale due to modification by a DMA device, in systems that do not employ an
IOMMU. Further, write protection at guest page granularity has a significant performance impact, if

cither code is mixed with data in the same page or when a big page is sparsely converted.

[0036] Figure 3 shows exemplary components of a system for tracking guest code at a
granularity smaller than a page size of the system, in accordance with various embodiments. Figure
3 depicts components for executing code, executing self modifying code, and maintaining a code
cache in response to self modifying code. The system 300 includes a processor 302 and memory
310. It is noted that system 300 may further include other components that are present in other

Figures.

[0037] The processor 302 is configured to execute programs and/or code that stored in the
memory 310. The processor 302 includes a Present in Code Cache Buffer (PCB) 308, PCB
associated registers 314, a cache 320, a self-modifying code (SMC) detection module 330, and an
execution functionality module 350. The memory 310 includes a Present in Code Cache Table
(PCT) 312. The execution functionality module 350 can include one or more processing cores and

functionality for fetching instructions.

[0038] The SMC detection module 330 is configured to detect and/or determine modification to
code by self-modifying code. In some embodiments, the SMC detection module 330 communicates

with the execution functionality module 350 to determine when self-modifying code modifies itself.

WO 2015/175555 PCT/US2015/030411

[0039] The execution functionality module 350 is configured to allow the processor 302 to
execute programs and/or code accessed from cache 320 and/or the memory 310. The cache 320
includes a code cache 322 and a data cache 324. The code cache 322 is configured to cache code
from the memory 310 to increase performance of the processor 302. The data cache 324 is

configured to cache data from the memory 310 to increase performance of the processor 302.

[0040] Insome embodiments, the code cache 322 and the data cache 322 are combined thereby
the cache 320 includes code and data stored together. For example, code and data can be interleaved

in the cache 320.

[0041] Embodiments are configured to track guest code at a granularity smaller than the smallest
page size thereby improving tracking and protection of guest code. At this smaller granularity, the
size of a cache line for, ¢.g., the MMU may not be able to trap on stores to converted guest code
pages. Embodiments use the Present in Code Cache Table (PCT) 312 to map and track converted
code in code cache 322. A store or a DMA write consults the PCT 312 before the store or the DMA

write is globally visible.

[0042] In some embodiments, to hide memory latency associated with accessing the PCT 312,
which is a memory resident structure, a smaller cached version of the PCT 312 is stored on the
processor 302 and known as the Present in Code Cache Buffer (PCB) 308. When a store or a DMA
write happens to a given page address (PA), an access is performed in the PCB 308. If the access
misses in the PCB 308, an access is performed in the PCT 312. In looking up the PCB 308 and/or
the PCT 312, if the store is to a cache line which has been converted, an option is provided to raise
an exception on the thread/core which executed the store in what is known as the eager method. It is
noted that it is possible to steer the exception to a thread/core that is different from the thread/core

executing the store by storing the exception target ID of the thread/core in a system register.

[0043] Insome embodiments, the exception can be raised at a later time, when a guest branch
the PCB 308 and/or the PCT 312, in what is known as the lazy method. It is also possible to

suppress any exception both on reference and on modification.

[0044] Upon a store or a DMA write to a cache line in a page (e.g., 4K page) that has been
converted, an entry is added in the PCB 308 and the entry is marked as modified. In some

embodiments, stores to data or guest code that have not been converted do not go to the PCT 312 for

10

WO 2015/175555 PCT/US2015/030411

cach store. Access to the PCB 308 upon ecach store to data or guest code that has not been converted
can be avoided if the PCB 308 is sized to map cach page (e.g., 4K pages) in a cache (¢.g., L2 cache)
and the PCB 308 caches PCT 312 hit and miss information in the PCB 308.

[0045] The code cache 322 can be a variety of sizes. For example, the guest code can be up to
64 MB in size. In some embodiments, a guest cache line does not have its converted native
instructions in the code cache 322, without the guest page (¢.g., 4K page) in which the guest cache
line belongs, not being mapped in the PCT 312. In other words, a guest cache line will have its
converted cache line in the code cache 322 with the guest page in which the guest cache line belongs
being mapped in the PCT 312. For example, each 64 byte cache line in the code cache 322 can be
from a unique guest code 4K page and with the PCT 312 having 1 million entries (e.g., 64MB/64B).
The PCT 312 can be sized to allow organization of the code cache 322 in a different number of
manners. Table 1 shows the bit layout of an entry in the PCT 312 which is known as a Present in

Code cache Table entry (PCTE) (e.g., may be similar to a translation table entry (TTE)).

Bit index Field name | Field explanation

[0] M Modified: Indicates that store or DMA write has modified
onc or many of the guest Code Cache lines, which has Bit
index[$i] setto a 1.

[7:1] Reserved

[9:8] A Action: 00 - No exception; 01 - Lazy; 10 - Eager; 11 -
Lazy and Eager.

[73:10] C Converted: If C[$i] is a 1, then guest code from cache line
at (PA+8i*64) is converted into native code with a copy
existing at Code Cache.

[101:74] Tag[y:x] These bits are the Tag. They represent some of higher
order bits of the PA, where y <40 and x > 11. This is
explained in greater detail later.

[113:102] FlexPA Reserved for future growth in PA.

11

WO 2015/175555 PCT/US2015/030411

[114] NS Non-Secure bit for TrustZone.

[115] v PCTE valid bit.

[127:116] Meta Data SW can use this field for any book keeping.

Table 1 — Exemplary layout for a PCTE

[0046] In some embodiments, multiple PCTEs of the PCT 312 are grouped into a single cache
line thereby allowing caching of multiple PCTEs in response to fetching a cache line. For example,
four successive PCTEs can be grouped into one 64B cache line and upon fetching the group, the
four successive PCTEs are cached into a single L2 cache line. The PCT 312 can be organized in

memory as a hash table or a cache that is an N way sct associative.

[0047] In some embodiments, an entry is inserted into the PCT 312 by software, before inserting
an entry into the CLB/CLT to make a conversion visible to a guest branch. The PCT 312 may be
maintained by software with hardware setting the modified bit to 1 upon write back from the PCB
308. Updates to the PCT 312 can be handled by a software or hardware or a combination thereof.
Updates to the PCT 312 can be cached in hardware based caches and the updates by one thread/core
is visible to other threads/cores. In some embodiments, logic associated with the PCB 308 updates
the modified bit of a PCTE (e.g., a 0 to 1 transition) and software can update each bit of a PCTE. To
avoid data corruption by simultancous update by both hardware and software, the seven higher order
bits to the modified bit of a PCTE can be kept as reserved. This allows byte writes by hardware to

the modified bits, without colliding with software updates to the same cache line.

[0048] The PCB associated registers 314 may include a PCT Tag Register (PCTTR). In some
embodiments, the translator or convertor programs the PCTTR register to indicate to hardware (e.g.,
the processor 302) the tag and index bits of the PCT 312. Table 2 shows exemplary ficlds of the
PCTTR.

Bits Name Description Type | Access | Reset
[11:0] Reserved Cfg R 0
[39:12] | PAM PA Mask of continuous 1s and 0s Cfg RW 0

12

WO 2015/175555 PCT/US2015/030411

Table 2 — Exemplary fields of the PCTTR

[0049] In some embodiments, the Page Address Mask (PAM) is configured to not have non-
continuous Is. The PAM field acts as a mask for the page address value found in the PCTE Tag
(c.g., as PCTE.Tag[39:12] & PAM[39:12]). For example, if PAM[39:12] == OxFFF_FF00, then
PAM][19:12] acts as an index into the PCT 312, while PAM[39:20] are the tag bits in the PCT 312.
Thus, when putting a PCTE in the PCT 312, the convertor programs the PAM[39:20] bits in the
PCTE.Tag[101:82]. The PCTE.Tag[81:74] bits may be do not care.

[0050] The PCB associated registers 314 may include a PCT Configuration Register (PCTCR).
GCM as used herein refers to an exception. Table 3 shows exemplary fields of the PCTCR.

Bits Name Description Type | Access | Reset
0 SETV Store Exception Target Valid Cfg RwW 0
7:1 SET Store Exception Target Cfg RW 0
8 BETV Branch Exception Target Valid Cfg RwW 0
15:9 | BET Branch Exception Target Cfg RW 0
16 DETV DMA Exception Target Valid Info RW |
23:17 | DET DMA Exception Target Cfg RW 0
24 SEV Store Exception Valid Cfg RwW |
25 BEV Branch Exception Valid Cfg RW |
26 DEV DMA Exception Valid Cfg RW |
27 DMAGCMEN | DMA GCM Enable. Enables the Cfg RW 1

participation of DMA in GCM

logic.
28 GCMEN GCM Enable. Enables GCM logic. | Cfg RW 0

13

WO 2015/175555 PCT/US2015/030411

29 SA Set Associtivity of PCT. 0: Direct | Cfg RW 0

Mapped, 1: 4 ways associative.

Table 3 — Exemplary fields of the PCTCR

[0051] Insome embodiments, if the SETV and the BETV are 1, then an exception is raised (in
confirmance with the PCTE.A field) on the thread/core programmed in the SET and the BET fields.
Otherwise, the exception is raised (in confirmance with the PCTE.A ficld) on the thread/core from
which the store or the branch was executed. In some embodiments, the DETV field is always a 1.
An exception is raised (in confirmance with PCTE.A field) on the thread/core programmed in the
DET field. If the SEV is zero, no exception is raised on stores. If the BEV is zero, no exception is
raised on branches. If DEV is zero, no exception is raised on a DMA access (e.g., a DMA store). If
DMAGCMEN is zero, then the logic is allowed to process a DMA access, without having to look up
the PCB 308 and/or the PCT 312. If GCMEN is zero, the PCB 308 (e.g., including array and logic)

can be powered down.

[0052] In some embodiments, the PCB 308 is on chip (e.g., part of the processor 302) and is a
thread/core agnostic structure that caches PCTEs of the PCT 312, upon stores and guest branches.
The PCB 308 is visible to software through maintenance operations provided via extended system

registers.

[0053] Using a page address obtained from an MMU, the store looks up an entry in the PCB
308. If the access hits in the PCB 308 and the matching cache line has a C (converted) bit set to a 1,
the store will set the M;, (Mpew) to a 1, if the My (M) is not already 1.

[0054] Ifthe store is a miss in the PCB 308, a PCT walk (PCTW) is initiated to fetch a PCTE
from the PCT 312. Upon completing the PCTW, if a matching PCTE was found, the PCTE is
installed in the PCB 308 as is, otherwise, a new entry is created in the PCB 308 with C, Mpey, and
Moyq bits set to 0. In the process of installing a PCTE in the PCB 308, a write back may be
necessary, if the entry being replaced has the M, bit set to a 1.

[0055] It is noted that loads may not have direct interaction with the PCB 308. However, it is
possible to take advantage of locality of reference between loads and stores, by fetching PCTEs for
the page (c.g., 4K page) that was accessed recently by a load into the PCB 308.

14

WO 2015/175555 PCT/US2015/030411

[0056] DMA writes and reads can be routed through to main memory through a processor core
of the processor 302. These DMA writes can snoop the PCB 308 to sct the M bit and optionally

generate an cager exception.

[0057] Insome embodiments, guest branches look up entries in the CLB and the PCB 308 in
parallel (e.g., using the guest physical address obtained from a TLB look up). It is expected that
between the CLB, the CLT, the PCB 308, and the PCT 312, there is a consistent view for a given
guest physical address. For example, an entry cannot be a hit in CLB/CLT and a miss in the PCT
312 or a hit in the PCT 312 butno C bitsetto a 1.

[0058] Ifa guest branch is a miss in the PCB 308, a PCTW is initiated, even if it may be a miss
in the CLB.

[0059] Upon completion of the PCTW, the PCTE may be installed (e.g., allowing increases in
performance for future guest branches to the same target) in the PCB 308. In the process of
installing the PCTE in the PCB 308, a write back may be necessitated, if the entry being replaced
has the M, bit setto a 1.

[0060] Insome embodiments, a guest branch traps or not based on the PCTE.M[pew) and
PCTE Mg of the PCB 308 along with the PCTE.A bits.

[0061] Embodiments are configured to support branch instructions. The branch instruction
looks up in the PCB 308 and/or the PCT 312 to confirm that the conversion has gone stale due to
guest modification. The branch instruction initiates a TLB look up followed by a lookup in the PCB
308 and/or the PCT 312. For example, if the look up results in a miss in the PCB 308, a PCTW is
initiated to fetch a PCTE from the PCT 312.

[0062] Upon completion of the PCTW, the PCTE may be installed in the PCB 308 (e.g.,
allowing increases in performance for future branch instructions to the same trace). In the process
of installing the PCTE into the PCB 308, a write back may be necessary, if the entry being replaced
has the M, bit setto a 1.

[0063] In some embodiments, the PCB 308 stores PCT hit and miss information. This is based
on the fact that most stores are cither to data or code that has not been converted and such stores will
miss in the PCT 312. To avoid performing a PCT look up on most such stores that are expected to

15

WO 2015/175555 PCT/US2015/030411

miss in the PCT 312, the PCB 308 is used to cache PCT hit and miss information. This allows
avoidance of future PCT lookups in response to stores to the same page (e.g., 4K page).

[0064] For example, since the PCB 308 is configured to map each possible 4K page that is
resident in a L2 cache, the PCB 308 can be configured as a cache with the same number of ways as

the L2 cache (e.g., there can be a maximum of 32 4K pages in each way of the L2 cache).

[0065] Insome embodiments, the PCB 308 is an 8 way associative cache with 32 entries in ecach
way. Each entry provides PCT hit and miss information for a 4K page. The PA[16:12] bits are the
index bits to select the set. Table 4 shows a layout of an exemplary PCB entry (PCBE).

PCBE.Tag PCBE.Data

V[M, (c.g, PCTEM) |M, |PCTENS |PA[y:17]* | PCTE.C[63:0] | PCTE.A[1:0]

Table 4 — Exemplary layout for a PCB entry

* The value of y can be the same as found in the PCTE.Tag. In a Large Physical Address Extension
(LPAE) system that supports up to 40b of address, y is 39.

[0066] Insome embodiments, the PCB 308 can be maintained through software with system
registers. A PCBE can be invalidated based on a PA. For example, when a conversion becomes
stale or a new trace is created, software can invalidate an entry in the PCB. A PCBE can be cleaned
based on a PA. For example if Mg and My are set and the entry is valid, then the PCBE is written
to the memory 310 and the PCT 312 and the PCBE continues to remain valid. This operation allows
the convertor to synchronize up the PCTE with the PCBE before any maintenance on the PA in the
PCT 312. A PCBE can be cleaned and invalidated based on a PA. For example, if Mg and Mpeyw
are set and the entry is valid, then the PCBE is written to the memory 310 and the PCBE is
invalidated. Each PCBE entry can be invalidated during initialization or when the convertor clears
the code cache 322. Tt is noted that modified entries may not be written back to the memory 310 and
the PCT 312. Each PCBE can be cleaned and invalidated. For example, this operation allows each
modified entry in the PCB 308 to be written back to the PCT 312 and then each entry in the PCB
308 is invalidated.

16

WO 2015/175555 PCT/US2015/030411

[0067]
Table 5 shows fields of the PCBMR. In some embodiments, if maintenance is index based,

PA[16:12] are used as index bits along with the WAY bits.

The PCB associated registers 314 may include a PCB Maintenance Register (PCBMR).

Bits Name Description Type | Access | Reset

3:0 CMD RW 0

Command Encoding Cfg
0 - NOP
1 - Invalidate on PA
2 - Clean on PA
3 - Clean and Invalidate on PA
4 - Invalidate on Index, Way
5 - Clean on Index, Way
6 - Clean and Invalidate on Index, Way
7 - Invalidate all

8 - Clean and Invalidate all

8:4 Reserved 0

11:9 WAY PCB Way

39:12 PA PA Cfg RW 0

Table 5 — Exemplary fields of the PCBMR

[0068] The PCB associated registers 314 may include a PCT Base Address Register (PCTBAR).
Table 6 shows ficlds of the PCTBAR.

Bits Name Description Type Access Reset
5:0 Reserved -- 0
39:6 PA BAR PA Cfg RW 0

Table 6 — Exemplary fields of the PCTBAR

17

WO 2015/175555 PCT/US2015/030411

[0069] The PCB associated registers 314 may include a GCM Syndrome 0 Register (GCMSOR).
Table 7 shows fields of the GCMSOR.

Bits Name Description Type | Access | Reset
39:0 PA Store, Load or DMA PA that triggered Cfg RW 0
GCM Exception.
40 NS PCTE.NS Cfg | RW 0
42:41 A PCTE.A Cfg | RW 0

Table 7 — Exemplary fields of the GCMSOR

[0070] The PCB associated registers 314 may include a GCM Syndrome 1 Register (GCMS1R).
Table 8 shows fields of the GCMSIR.

Bits Name Description Type | Access | Reset

63:0 C PCTE.C Cfg RW 0

Table 8 — Exemplary fields of the GCMSIR

[0071] Embodiments are configured to handle corners cases using a variety of techniques
including, but not limited to, breaking a trace on Guest Instruction Branch (GIB) interaction, PCT

maintenance, and PCB prefetching.

[0072] Insome embodiments, a guest branch is used to detect stale code in the code cache. The

convertor breaks a trace upon encountering a guest branch and continues with a single trace.

[0073] In some embodiments, the PCT 312 is maintained by software using loads and stores.
Logic of the PCB 308 can write back a modified PCBE to the PCT 308.

[0074] Insome embodiments, each PCBE maps to a 4K page. If bigger guest page sizes are
employed, PCB logic can sequentially prefetch the PCTE for the next sequential 4K page, for cach
load or store reference that hits in the PCB 308.

18

WO 2015/175555 PCT/US2015/030411

[0075] With reference to Figure 4, flowchart 400 illustrates example functions used by various
embodiments for protecting data, as described herein. Although specific function blocks (“blocks™)
are disclosed in flowchart 400, such steps are exemplary. That is, embodiments are well suited to
performing various other blocks or variations of the blocks recited in flowchart 400. It is
appreciated that the blocks in flowchart 400 can be performed in an order different than presented,
and that not all of the blocks in flowchart 400 need be performed.

[0076] Figures 4A-B show a flowchart of an exemplary electronic component controlled process
for tracking locations of converted code in a code cache, in accordance with various embodiments.
Figures 4A-B depict a process 400, with respect to some embodiments, for tracking whether
converted code is in a code cache with a PCB and PCT, as described herein. It is appreciated that
while the process 400 is described with respect to a PCB and a PCT, the process 400 may be

performed with other data structures and configurations with similar functionality.

[0077] Atblock 402, a guest instruction is accessed. In some embodiments, the guest
instruction is accessed by a translator that converts guest instructions to native instructions, as

described herein.

[0078] At block 404, whether the guest instruction is a branch is determined. If the guest
instruction is not a branch instruction, block 406 is performed. If the guest instruction is a branch

instruction, block 450 is performed.

[0079] At block 406, whether the guest instruction is a store to a guest physical address is
determined. If the guest instruction is a store to a guest physical address, block 408 is performed. If

the guest instruction is not a store to a guest physical address, block 440 is performed.

[0080] At block 408, whether there is a miss in the PCB is determined. A miss in the PCB can
be determined based on the page or address of the guest instruction. If there is a miss in the PCB,

block 410 is performed. If there is not a miss in the PCB, block 422 is performed.

[0081] Atblock 410, whether there is a miss in the PCT is determined. A miss in the PCT can
be determined based on the page or address of the guest instruction. If there is a miss in the PCT,

block 420 is performed. If there is not a miss in the PCT, block 412 is performed.

19

WO 2015/175555 PCT/US2015/030411

[0082] Atblock 412, a PCB entry is selected for eviction. The selection of a PCB entry for

eviction can be based on a least recently used basis, as described herein.

[0083] Atblock 414, the eviction of the selected PCB entry is performed. At block 416, a cache
line sized selection from the PCT is fetched. As described herein, the cache line sized selection can

include multiple PCT entries (¢.g., four PCTESs).

[0084] At block 418, an entry from the PCT is stored into the PCB (¢.g., into the location of the
evicted PCB entry).

[0085] At block 420, the converted guest instruction is performed. In some embodiments, the
code cache is updated as part of the guest instruction conversion. Block 402 may then be performed

for the next guest instruction.

[0086] At block 422, whether the location has converted code is determined, as described herein.
If the location has converted code, block 424 is performed. If the location does not have converted

code, block 420 is performed.

[0087] At block 424, an exception is raised, as described herein. This may be known as the
cager method. In some embodiments, an exception is not raised. In some embodiments, when the
exception is raised, code conversion is halted to allow updating of the code cache and/or accessing

of memory, among other things.

[0088] At block 426, the code cache line associated with the address in the guest instruction is
invalidated. For example, the invalidation can be based on the code cache line being determined to

be stale based modification indicators of the PCB and/or the PCT, as described herein.

[0089] Atblock 428, whether there is a miss in the PCT is determined. A miss in the PCT can
be determined based on the page or address of the guest instruction. If there is a miss in the PCT,

block 420 is performed. If there is not a miss in the PCT, block 430 is performed.

[0090] At block 430, the guest instruction is converted. In some embodiments, the code cache is

updated as part of the guest instruction conversion.

[0091] Atblock 432, the PCB and/or the PCT is updated, as described herein, to reflect the

performance of the store instruction to a guest physical address and associated location in the code
20

WO 2015/175555 PCT/US2015/030411

cache. For example, the PCB and/or PCT may be updated to reflect that the request has modified a

code cache line. Block 402 may then be performed for the next guest instruction.

[0092] At block 440, a converted instruction based on the guest instruction is executed. Block

402 may then be performed for the next guest instruction.

[0093] Referring to Figure 4B, at block 450, the branch instruction is replaced with a guest

branch instruction.

[0094] At block 452, whether the location has converted code is determined, as described herein.
If the location has converted code, block 460 is performed. If the location does not have converted

code, block 454 is performed.

[0095] At block 454, the guest branch instruction is converted (e.g., to a native branch
instruction). At block 456, code at the location of the converted guest branch instruction is

executed.

[0096] At block 460, whether the location (e.g., address) of the guest branch instruction has been
modified is determined. Whether the contents of the location of the guest branch instruction has
been modified is determined based on accessing the PCB and/or PCT. If the contents of the location
have been modified, block 424 of Figure 4A is performed. This may be known as the lazy method.

If the contents of the location have not been modified, block 462 is performed.

[0097] At block 462, the location of the guest branch instruction is accessed. The location may

be accessed from the code cache or memory.
[0098] Atblock 464, the code at the location of the guest branch instruction is executed.

[0099] Figure 5 is a block diagram of an exemplary computing system 500 including various
embodiments. Computing system 500 broadly represents any single or multi-processor computing
device or system capable of executing computer-readable instructions. Examples of computing
system 500 include, without limitation, workstations, laptops, client-side terminals, servers,
supercomputers, distributed computing systems, handheld devices, or any other computing system
or device. In its most basic configuration, computing system 500 may include at least one processor

514 and a system memory 516.

21

WO 2015/175555 PCT/US2015/030411

[00100] Processor 514 generally represents any type or form of processing unit capable of
processing data or interpreting and executing instructions. In certain embodiments, processor 514
may receive instructions from a software application or module. These instructions may cause
processor 514 to perform the functions of one or more of the example embodiments described
and/or illustrated herein. For example, processor 514 may perform and/or be a means for
performing, either alone or in combination with other elements, one or more of the identifying,
determining, using, implementing, translating, tracking, receiving, moving, and providing described
herein. Processor 514 may also perform and/or be a means for performing any other steps, methods,

or processes described and/or illustrated herein.

[00101] System memory 516 generally represents any type or form of volatile or non-volatile
storage device or medium capable of storing data and/or other computer-readable instructions.
Examples of system memory 516 include, without limitation, RAM, ROM, FLASH memory, or any
other suitable memory device. Although not required, in certain embodiments computing system
500 may include both a volatile memory unit (such as, for example, system memory 516) and a non-

volatile storage device (such as, for example, primary storage device 532.

[00102] Computing system 500 may also include one or more components or elements in
addition to processor 514 and system memory 516. For example, in the embodiment of Figure 5,
computing system 500 includes a memory controller 518, an I/O controller 520, and a
communication interface 522, each of which may be interconnected via a communication

infrastructure 512.

[00103] Communication infrastructure 512 generally represents any type or form of infrastructure
capable of facilitating communication between one or more components of a computing device.
Examples of communication infrastructure 512 include, without limitation, a communication bus
(such as an ISA, PCI, PCle, or similar bus) and a network. In one embodiment, system memory 516

communicates via a dedicated memory bus.

[00104] Memory controller 518 generally represents any type or form of device capable of
handling memory or data or controlling communication between one or more components of
computing system 500. For example, memory controller 518 may control communication between

processor 514, system memory 516, and 1/O controller 520 via communication infrastructure 512.

22

WO 2015/175555 PCT/US2015/030411

Memory controller may perform and/or be a means for performing, either alone or in combination

with other elements, one or more of the operations or features described herein.

[00105] 1/O controller 520 generally represents any type or form of module capable of
coordinating and/or controlling the input and output functions of a computing device. For example,
I/O controller 520 may control or facilitate transfer of data between one or more elements of
computing system 500, such as processor 514, system memory 516, communication interface 522,
display adapter 526, input interface 530, and storage interface 534. 1/0 controller 520 may be used,
for example, to perform and/or be a means for performing, either alone or in combination with other
elements, one or more of the operations described herein. 1/0 controller 520 may also be used to
perform and/or be a means for performing other operations and features set forth in the instant

disclosure.

[00106] Communication interface 522 broadly represents any type or form of communication
device or adapter capable of facilitating communication between example computing system 500
and one or more additional devices. For example, communication interface 522 may facilitate
communication between computing system 500 and a private or public network including additional
computing systems. Examples of communication interface 522 include, without limitation, a wired
network interface (such as a network interface card), a wireless network interface (such as a wireless
network interface card), a modem, and any other suitable interface. In one embodiment,
communication interface 522 provides a direct connection to a remote server via a direct link to a
network, such as the Internet. Communication interface 522 may also indirectly provide such a
connection through, for example, a local area network (such as an Ethernet network), a personal arca
network, a telephone or cable network, a cellular telephone connection, a satellite data connection,

or any other suitable connection.

[00107] Communication interface 522 may also represent a host adapter configured to facilitate
communication between computing system 500 and one or more additional network or storage
devices via an external bus or communications channel. Examples of host adapters include, without
limitation, SCSI host adapters, USB host adapters, IEEE (Institute of Electrical and Electronics
Engineers) 594 host adapters, Serial Advanced Technology Attachment (SATA) and External SATA
(eSATA) host adapters, Advanced Technology Attachment (ATA) and Parallel ATA (PATA) host

adapters, Fibre Channel interface adapters, Ethernet adapters, or the like. Communication interface

23

WO 2015/175555 PCT/US2015/030411

522 may also allow computing system 500 to engage in distributed or remote computing. For
example, communication interface 522 may receive instructions from a remote device or send
instructions to a remote device for execution. Communication interface 522 may perform and/or be
a means for performing, cither alone or in combination with other elements, one or more of the
operations disclosed herein. Communication interface 522 may also be used to perform and/or be a

means for performing other operations and features set forth in the instant disclosure.

[00108] As illustrated in Figure 5, computing system 500 may also include at least one display
device 524 coupled to communication infrastructure 512 via a display adapter 526. Display device
524 generally represents any type or form of device capable of visually displaying information
forwarded by display adapter 526. Similarly, display adapter 526 gencrally represents any type or
form of device configured to forward graphics, text, and other data from communication

infrastructure 512 (or from a frame buffer, as known in the art) for display on display device 524.

[00109] Asillustrated in Figure 5, computing system 500 may also include at least one input
device 528 coupled to communication infrastructure 512 via an input interface 530. Input device
528 generally represents any type or form of input device capable of providing input, cither
computer- or human-generated, to computing system 500. Examples of input device 528 include,
without limitation, a keyboard, a pointing device, a speech recognition device, or any other input
device. In one embodiment, input device 528 may perform and/or be a means for performing, cither
alone or in combination with other elements, one or more of the operations disclosed herein. Input
device 528 may also be used to perform and/or be a means for performing other operations and

features set forth in the instant disclosure.

[00110] Asillustrated in Figure 5, computing system 500 may also include a primary storage
device 532 and a backup storage device 533 coupled to communication infrastructure 512 via a
storage interface 534. Storage devices 532 and 533 generally represent any type or form of storage
device or medium capable of storing data and/or other computer-readable instructions. For example,
storage devices 532 and 533 may be a magnetic disk drive (e.g., a so-called hard drive), a solid state
disk, a floppy disk drive, a magnetic tape drive, an optical disk drive, a FLASH drive, or the like.
Storage interface 534 generally represents any type or form of interface or device for transferring

data between storage devices 532 and 533 and other components of computing system 500.

24

WO 2015/175555 PCT/US2015/030411

[00111] Continuing with reference to Figure 5, storage devices 532 and 533 may be configured to
read from and/or write to a removable storage unit configured to store computer software, data, or
other computer-readable information. Examples of suitable removable storage units include,
without limitation, a floppy disk, a magnetic tape, an optical disk, a FLASH memory device, or the
like. Storage devices 532 and 533 may also include other similar structures or devices for allowing
computer software, data, or other computer-readable instructions to be loaded into computing
system 500. For example, storage devices 532 and 533 may be configured to read and write
software, data, or other computer-readable information. Storage devices 532 and 533 may also be a

part of computing system 500 or may be separate devices accessed through other interface systems.

[00112] Storage devices 532 and 533 may be used to perform, and/or be a means for performing,
cither alone or in combination with other elements, one or more of the operations disclosed herein.
Storage devices 532 and 533 may also be used to perform, and/or be a means for performing, other

operations and features set forth in the instant disclosure.

[00113] Many other devices or subsystems may be connected to computing system 500.
Conversely, all of the components and devices illustrated in Figure 5 need not be present to practice
the embodiments described herein. The devices and subsystems referenced above may also be
interconnected in different ways from that shown in Figure 5. Computing system 500 may also
employ any number of software, firmware, and/or hardware configurations. For example, the
example embodiments disclosed herein may be encoded as a computer program (also referred to as
computer software, software applications, computer-readable instructions, or computer control

logic) on a computer-readable medium.

[00114] The computer-readable medium containing the computer program may be loaded into
computing system 500. All or a portion of the computer program stored on the computer-readable
medium may then be stored in system memory 516 and/or various portions of storage devices 532
and 533. When executed by processor 514, a computer program loaded into computing system 500
may cause processor 514 to perform and/or be a means for performing the functions of the example
embodiments described and/or illustrated herein. Additionally or alternatively, the example
embodiments described and/or illustrated herein may be implemented in firmware and/or hardware.
For example, computing system 500 may be configured as an ASIC adapted to implement one or

more of the embodiments disclosed herein.

25

WO 2015/175555 PCT/US2015/030411

[00115] While the foregoing disclosure sets forth various embodiments using specific block
diagrams, flowcharts, and examples, each block diagram component, flowchart step, operation,
and/or component described and/or illustrated herein may be implemented, individually and/or
collectively, using a wide range of hardware, software, or firmware (or any combination thercof)
configurations. In addition, any disclosure of components contained within other components
should be considered as examples because many other architectures can be implemented to achieve

the same functionality.

[00116] The foregoing description, for purpose of explanation, has been described with reference
to specific embodiments. However, the illustrative discussions above are not intended to be
exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and
variations are possible in view of the above teachings. The embodiments were chosen and described
in order to best explain the principles of the disclosure and its practical applications, to thereby
enable others skilled in the art to best utilize the disclosure and various embodiments with various

modifications as may be suited to the particular use contemplated.

[00117] Embodiments according to the present disclosure are thus described. While the present
disclosure has been described in particular embodiments, it should be appreciated that the disclosure
should not be construed as limited by such embodiments, but rather construed according to the

below claims.

26

10

15

20

25

30

WO 2015/175555 PCT/US2015/030411

CLAIMS

What is claimed:

1. An apparatus comprising:

a memory;
a hardware buffer; and
a processor configured to:

convert guest code to native code;

store converted guest code into a code cache portion of the processor;

maintain the hardware buffer configured for tracking respective locations of
converted code in a code cache, wherein the hardware buffer is updated based on a
respective access to a respective location in the memory associated with a respective
location of converted code in the code cache; and

perform a request to modify a memory location after accessing the hardware buffer.

2. The apparatus of Claim 1, wherein the memory comprises a table associated with the hardware

buffer for tracking converted code present in the code cache.

3. The apparatus of Claim 2, wherein the hardware buffer is configured to act as a cache of the
table associated with the hardware buffer and the hardware buffer comprises a subset of data of

the table associated with the hardware buffer.

4. The apparatus of Claim 1, wherein the processor is configured to raise an exception if the
request is to modify a location in memory associated with a location in the code cache that

comprises converted guest code.

5. The apparatus of Claim 1, wherein the processor is configured to raise an exception in response

to a guest code branch.

6. The apparatus of Claim 1, wherein the request is a store by self modifying code.

27

35

40

45

50

55

60

WO 2015/175555 PCT/US2015/030411

7. The apparatus of Claim 1, wherein the request is a direct memory access (DMA) write.

8. The apparatus of Claim 1, wherein the processor comprises the hardware buffer.

9. A system comprising:

a memory, and;
a processor comprising a hardware buffer and a code cache, wherein the processor is
configured to:
convert guest code to native code;
store converted guest code into a code cache in the processor; and
maintain the hardware buffer configured for tracking respective locations of
converted code in a code cache, wherein the hardware buffer is updated based a
respective access to a respective location in the memory associated with a respective
location of converted code in the code cache;
maintain a table associated with the hardware buffer for tracking converted code
present in the code cache, wherein the memory comprises the table associated with the
hardware buffer; and

perform a request to modify a memory location after accessing the hardware buffer.

10. The system of Claim 9, wherein the hardware buffer is configured to act as a cache of the table
associated with the hardware buffer and the hardware buffer comprises a subset of data of the

table associated with the hardware buffer.

11. The apparatus of Claim 9, wherein the processor is configured to raise an exception if the
request is to modify a location in memory associated with a location in the code cache that

comprises converted guest code.

12. The apparatus of Claim 9, wherein the processor is configured to raise an exception in response

to a guest code branch.

13. The apparatus of Claim 9, wherein the request is a store by self modifying code.
28

65

70

75

80

85

90

95

14.

15.

16.

17.

18.

19.

WO 2015/175555 PCT/US2015/030411

The apparatus of Claim 9, wherein the request is a direct memory access (DMA) write.

A system for converting guest code, the system comprising:

a memory, and;
a processor comprising a hardware buffer and a code cache, wherein the processor is
configured to:

convert guest code to native code;

store converted guest code into a code cache in the processor; and

maintain the hardware buffer configured for tracking respective locations of
converted code in a code cache, wherein the hardware buffer is updated based a
respective access to a respective location in the memory associated with a respective
location of converted code in the code cache, and wherein the hardware buffer is updated
in response to self modifying code;

maintain a table associated with the hardware buffer for tracking converted code
present in the code cache, wherein the memory comprises the table associated with the
hardware buffer; and

perform a request to modify a memory location after accessing the hardware buffer.
The system of Claim 15, wherein the hardware buffer is configured to act as a cache of the table
associated with the hardware buffer and the hardware buffer comprises a subset of data of the
table associated with the hardware buffer.
The system of Claim 15, wherein the processor is configured to raise an exception if the request
is to modify a location in memory associated with a location in the code cache that comprises

converted guest code.

The system of Claim 15, wherein the processor is configured to raise an exception in response to

a guest code branch.

The system of Claim 15, wherein the request is a store.

29

WO 2015/175555 PCT/US2015/030411

20. The system of Claim 15, wherein the request is a direct memory access (DMA) write.

30

PCT/US2015/030411

WO 2015/175555

1/6

-

i

; {
| |
| B z z |
BT Lo L85 |

= = =
i = O B O 8 C 00 |

<L > < > <L >

i

! Z>m Z > m Z
| o))) !
| ® ® < m
m f
; i
L e e et e s oo oo e e emn e oe oo en eome memn s e soem ee wome meen s s woem ee womn meen e s woem e wome momn e e oo oo 4
e rnney
I m
| 3 m
i
| 5 Z Z !
288 553 Aags |
m =0 — IR — s
| =t o e D i

OFm O ~=m Ao
i & w o i
| = Z £ |
; i
; i
; i

WO 2015/175555

]
L

281

SYSTEM MEMORY

2/6

PCT/US2015/030411

PROCESSOR

208

T

NATIVE INSTRUCTION

207

BUFFER
J J
202
[3;0]
GUEST FETCH CONVERSION LOOK <%
LOGIC & ASIDE BUFFER -
203
GUEST FETCH
BUFFER
| 204
CONVERSION TABLES TSIV
CONVERSION
BUFFER
205

PCT/US2015/030411

WO 2015/175555

3/6

01t
AOUIBIN

r45%
(LDd) set
SYSED 8RO Ul Jussaid

T
1085800id
Agreuosoun.y 088
UGHNOSX] DING
Y47
SLYOR T
(24 2t
It 2g) sUYRD
eI} apon)
Vit
H0d UL WA

POIEDOSSY
siosiBay

BT
{a04g) =yng
ayoen 8pon

U juesalyg

-
o0

WO 2015/175555 PCT/US2015/030411

4/6

Qo

Access A Guest

) Pl Branch?
insh‘uction AAAAAAAAAAA B A 4@4
402 —

NO

Execite _~Store T__ i
Converted " Guest Physical e NO - ~
S8 LanD *‘
instruction . Address? Converted -
440 T 408 e Code?

(((((((((((((((((((((((((((rYE

YES

" Miss in POBT

(((((((<
YES 408 Raiss
NO Exception
“Miss in PCT? ™,
410 P T Perform %
- YES Coh»'eﬁed g
Instruction
NO 420 Invakidate Code
¥ Y Cache Ling
428
Select PCB Entry For

Eviction

Pearform Eviction
414 YES i

Y

" Miss in POTY

Feich Cache Line From i\%:)
PCY
418 Parform
Converled
%’ insiruction
430
Store Eniries From
PCT into PCRB g
418
Update PCB
Andior PCT
432

FIG. 4A

WO 2015/175555 PCT/US2015/030411

5/6

400
Replace Branch With
Guest Branch
instruction
450
NTe S e Code? > YES
Convert o Lac;atiori
nstruction { [T o, Modified? P
i YES
Execute Access Location in v
Code Guest Branch
458 insuction 424
462 (FIG. 4A)
Execute
Code
464

FIG. 4B

PCT/US2015/030411

WO 2015/175555

6/6

30IA30 I0IATQ
AOVHOLS H4OVHOLS IOIATG
MY AN muu\/w,mﬁm:&zm AY 1481
e rA% - EZAY
A w w
IOVAHILNI FOVAHTLINI WALV Y
B IOVHOLS e 1LAdN AY1ASIG .
55T YT 5o ¢
W i \\
— 1 : : : g I~
JOVAMILINI HITIOULNOD SITIOMANDD AHOWIN .
NOLLY DINOWINOD O AHOWIN WILSAS MOmme%oma
225G 4] [eaXs) 51 :

-
ke

International application No.

INTERNATIONAL SEARCH REPORT PCT/US2015/030411

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 9/38(2006.01)i, GOGF 9/45(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/38; GOGF 9/30; GO6F 12/00; GOGF 9/00, GO6F 9/45

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electromic data base consulted during the international search (name of data base and, where practicable, search terms used)
¢KOMPASS(KIPO internal) & Keywords: self-modifying code

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2009-0210627 A1 (ALEXANDER GREGORY W. et al.) 20 August 2009 1-20
See abstract, claims 1-5, and figures 3-4b.
A US 05826073 A (BEN-MEIR; AMOS et al.) 20 October 1998 1-20
See abstract, column 3, lines 12-60, and figures 1-5.
A US 2011-0320784 A1 (ALMOG ELI et al.) 29 December 2011 1-20

See abstract, paragraphs [0003]-[0005], [0021]1-[0023], and figures 3-5.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priotity claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search
21 July 2015 (21.07.2015)

Date of mailing of the international search report

21 July 2015 (21.07.2015)

Name and mailing address of the ISA/KR
International Application Division
& Korean [ntellectual Property Office
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No, +82-42-472-7140

Authorized officer
3\\

JL, Jeong Hoon N
kY

Telephone No.

B
& X
& SN

+82-42-481-5688

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2015/030411
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009-0210627 Al 20/08/2009 US 8015362 B2 06/09/2011
US 05826073 A 20/10/1998 EP 0853779 Al 11/08/1999
EP 0853779 B1 13/08/2003
EP 0853780 Al 19/03/2003
EP 0853781 Al 22/07/1998
EP 0853782 Al 29/11/2000
EP 0853782 B1 27/06/2001
EP 0853783 Al 08/12/1999
EP 0853783 B1 16/08/2001
EP 0853784 Al 08/09/1999
EP 0853784 B1 12/04/2000
EP 0853785 Al 18/10/2000
EP 0853786 Al 08/01/2003
EP 0853786 Bl 04/06/2003
EP 0853787 Al 22/07/1998
EP 0853787 Bl 02/07/2003
EP 0853789 Al 30/10/2002
EP 0853789 Bl 03/03/2004
EP 0870228 Al 22/01/2003
EP 0870228 Bl 13/08/2003
EP 0876646 Al 30/10/2002
EP 0876646 Bl 14/06/2006
JP 03-681761B2 10/08/2005
JP 03-714961B2 09/11/2005
JP 03-714962B2 09/11/2005
JP 03-720370B2 24/11/2005
JP 03-720371B2 24/11/2005
JP 11-510287A 07/09/1999
JP 11-510288A 07/09/1999
JP 11-510289A 07/09/1999
JP 11-510290A 07/09/1999
JP 11-510291A 07/09/1999
JP 11-512855A 02/11/1999
JP 2000-503425A 21/03/2000
JP 2000-506635A 30/05/2000
JP 2000-506636A 30/05/2000
JP 2000-515268A 14/11/2000
JP 2001-500288A 09/01/2001
JP 2001-517333A 02/10/2001
KR 10-0384213 B1 19/08/2003
KR 10-0459152 Bl 23/06/2005
KR 10-0513358 Bl 01/02/2006
US 05745724 A 28/04/1998
US 05754812 A 19/05/1998
US 05794063 A 11/08/1998
US 05799165 A 25/08/1998
US 05809273 A 15/09/1998
US 05819056 A 06/10/1998

Form PCT/ISA/210 (patent family annex) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2015/030411
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 05835747 A 10/11/1998
US 05881261 A 09/03/1999
US 05884059 A 16/03/1999
US 05920713 A 06/07/1999
US 05926642 A 20/07/1999
US 06093213 A 25/07/2000
US 06141742 A 31/10/2000
US 06161173 A 12/12/2000
US 6195744 Bl 27/02/2001
US 6336178 Bl 01/01/2002
US 6453278 Bl 17/09/2002
WO 97-13192 Al 10/04/1997
WO 97-13193 Al 10/04/1997
WO 97-13194 Al 10/04/1997
WO 97-13195 Al 10/04/1997
WO 97-13196 Al 10/04/1997
WO 97-13197 Al 10/04/1997
WO 97-13198 Al 10/04/1997
WO 97-13199 Al 10/04/1997
WO 97-13200 Al 10/04/1997
WO 97-13201 Al 10/04/1997
WO 97-13202 Al 10/04/1997
WO 97-27538 Al 31/07/1997
US 2011-0320784 Al 29/12/2011 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

