(54) 发明名称
一种纯水机的检漏系统及其检漏方法

(57) 摘要
本发明涉及一种纯水机的检漏系统及其检漏方法。所述检漏系统包括压力检测开关、用于接受并处理压力检测开关信号的电脑板，以及与电脑板控制连接的报警装置。所述压力检测开关设置在进水电磁阀和冲水管道进水口之间的管道上。本发明的检漏系统对工作环境要求小，压力检测开关设置在管道内，对水压变化非常敏感，其发出的信号通过电脑板处理分析之后能够快速得出结论，并通过报警装置提醒用户。
1. 一种纯水机的检测系统，包括进水管道，在进水管道上依次设置有进水电磁阀、高压泵和反渗透过滤器，所述反渗透过滤器设有与进水管道连接的进水管口以及纯水管口和废水管口，所述纯水管口连接有纯水管道，所述废水管口连接有废水管道。所述纯水管道连接有纯水龙头，其特征在于：还包括用于检测管道内水压的压力检测开关、用于接收并处理压力检测开关信号的电脑板，与电脑板控制连接的报警装置和检漏电磁阀，所述检漏电磁阀设置在废水管道末端，压力检测开关设置在进水电磁阀和检漏电磁阀之间的管道上。

2. 根据权利要求1所述的一种纯水机的检测系统，其特征在于：所述压力检测开关包括压力检测开关a和压力检测开关b，压力检测开关a设置在进水电磁阀和高压泵之间的进水管上，压力检测开关b设置在高压泵和检漏电磁阀之间的管道上。

3. 根据权利要求1所述的一种纯水机的检测系统，其特征在于：所述进水管道上还设置有预过滤装置和低压开关，低压开关设置在进水磁力阀之前的进水管上，预过滤装置设置在反渗透过滤器之前的进水管上。

4. 根据权利要求3所述的一种纯水机的检测系统，其特征在于：所述预过滤装置包括一级过滤器、二级过滤器和三级过滤器。

5. 根据权利要求1所述的一种纯水机的检测系统，其特征在于：在检漏电磁阀之前的废水管道上还设置有废水比例器以及与废水比例器并联的冲水管道，所述冲水管道上设置有冲洗电磁阀。

6. 根据权利要求1所述的一种纯水机的检测系统，其特征在于：所述检测系统还包括云端服务器、无线通信模块、移动终端和控制监测中心，所述电脑板通过无线通信模块与云端服务器连接，移动终端与云端服务器无线连接，控制监测中心与云端服务器连接；所述电脑板进行运算处理分析后将分析结果通过无线通信模块发送给云端服务器，云端服务器将分析结果发送至移动终端和控制监测中心。

7. 一种基于权利要求1所述的检测系统的检测方法，其特征在于：包括对管道滴漏、管道爆管和进水电磁阀关闭不严情况的检测，其步骤如下所述：
 1). 关闭检漏电磁阀；
 2). 压力检测开关检测管道内水压变化，并将信号传递给电脑板；
 3). 电脑板接收并处理信号，判断管道内水压是否异常，如异常，电脑板控制警报装置发出警报。

8. 根据权利要求7所述的检测方法，其特征在于：所述对管道滴漏的检测包括以下步骤：
 1). 当纯水机制满纯水后停机瞬间，电脑板控制进水电磁阀、高压泵和检漏电磁阀关闭；
 2). 压力检测开关检测管道内水压变化情况，并将信号发送给电脑板；
 3). 电脑板经过处理判断后确认管道内水压是否异常，若异常，将切断自来水进水，并故障报警，上传异常信息。

9. 根据权利要求7所述的检测方法，其特征在于：所述对管道爆管的检测，包括以下步骤：
 1). 在纯水机制取纯水时段检测，电脑板控制检漏电磁阀、高压泵和进水电磁阀同时关闭；
2) 压力检测开关检测管道内水压变化情况，并将信号发送给电脑板；
3) 电脑板接收信号后经过处理判断后确认管道内水压是否异常，若异常，则切断自来水
水进水，并故障报警，上传异常信息；若管道情况正常，则管道内水压正常，则纯水机恢复正
常工作。
10. 根据权利要求7所述的检漏方法，其特征在于：所述对进水电磁阀是否关闭不严的
检测，其基于管道没有滴漏或爆管情况，包括以下步骤：
1) 电脑板控制进水电磁阀关闭，检漏电磁阀打开；
2) 管道内的水通过废水管道排出，压力检测开关感应管道内水压变化并将信号传递
给电脑板，电脑板控制检漏电磁阀关闭；
3) 压力检测开关持续检测管道内水压变化情况，并将信号发送给电脑板；
4) 电脑板接收信号后经过处理判断后确认管道内水压是否异常，若异常，则控制警报
装置报警提醒用户并上传异常信息。
一种纯水机的检漏系统及其检漏方法

技术领域
[0001] 本发明属于水处理设备技术领域，尤其涉及一种纯水机的检漏系统及其检漏方法。

背景技术
[0002] 如图1～图2所示，目前市场上常见的纯水机一般包括进水阀1、反渗透过滤器2以及连接两者的进水管3。在进水口端设置有进水阀4，进水管道5上进水阀4和反渗透过滤器2之间依次设置有一级过滤器5、二级过滤器6和三级过滤器7。在进水管道5上进水阀4和反渗透过滤器2之间还依次设置有低压开关8和进水电磁阀9。在进水电磁阀9和反渗透过滤器2之间设置有高压泵10，高压泵10可设置在进水电磁阀9之后。反渗透过滤器2之前的进水管道3上任意一处。通过反渗透过滤器2处理后的自来水，一部分通过废水管道13排出，一部分通过纯水管道10流向纯水龙头11。通过储水管道25流向储水压力桶12处。在废水管道上设置有废水比例器17，在废水管道13上还连接有废水管道16，该废水管道16的入口位于废水比例器17之前，废水管道16的出口在废水比例器17之后，所述废水管道16上设置有冲洗电磁阀14。

[0003] 在制取纯水的过程中，打开进水阀4、进水电磁阀9，自来水通过一级过滤器5、二级过滤器6和三级过滤器7过滤后得到符合反渗透过滤要求的纯水，其间高压泵15工作，将自来水增压到符合反渗透过滤器2工作要求的水压，自来水通过反渗透过滤器2后的制取的纯水通过纯水管道10流向纯水龙头11处，在纯水管道10上还设置有五级过滤器18。当纯水龙头11关闭时，纯水通过储水管道25流向储水压力桶12备用；通过反渗透过滤器2后得到的废水则通过废水管道13排出。当需要对反渗透过滤器2进行冲洗时，将冲洗电磁阀14打开，高压泵产生的大流量高压水迅速冲刷反渗透膜表面残留的污物经由废水管路排放。

[0004] 市场上经常出现用户家里的纯水机由于爆管、漏水等原因导致房内地板、家具被水浸湿损坏，造成财物损失。

[0005] 目前市场上的对纯水机的检漏方法一般是采用在纯水机下方增设漏水检测插座，当机器出现漏水时，漏出的自来水将漏水检测插座浸湿，产生电阻值信号由纯水机电脑板接收后而产生报警。但是，这种检漏方式虽然能有效发现漏水，但是仅限于在干燥环境下运作，当处于潮湿环境下时，往往会发生误报警的情况，或者由于检测插座放置的位置不当未能探测到漏水，给用户带来困扰。

发明内容
[0006] 为了解决上述的技术问题，本发明的目的是提供一种纯水机的检漏系统，该检漏系统受环境影响小，可有效对纯水机管道滴漏、爆管及进水电磁阀开关不严等情况进行有效监控，并根据该检漏系统设计了一套完整的检漏方法，高效、有序完成检漏过程。

[0007] 为了实现上述的目的，本发明采用了以下的技术方案：

一种纯水机的检漏系统，包括进水管道，在进水管道上依次设置有进水电磁阀、高压泵...
和反渗透过滤器，所述反渗透过滤器设置有与进水管连接的进水管口以及纯水管口和废
水管口，所述纯水管口连接有纯水管道，所述废水管口连接有废水管道，所述纯水管道连接
有纯水龙头，还包括用于检测管道内水压的压力检测开关，用于接收并处理压力检测开关
信号的电脑板，与电脑板控制连接的报警装置和检测电磁阀。所述检测电磁阀设置在废水
管道末端，压力检测开关设置在进水电磁阀和检测电磁阀之间的管道上。

【0008】作为优选，所述压力检测开关包括压力检测开关a和压力检测开关b，压力检测开
关a设置在进水电磁阀和高压泵之间的进水管上，压力检测开关b设置在高压泵和检测电
磁阀之间的管道上。

【0009】作为优选，所述进水管上还设置有预过滤装置和低压开关，低预开关设置在进
水磁力阀之前的进水中。预过滤装置设置在反渗透过滤器之前的进水管道上。

【0010】作为优选，所述预过滤装置包括一级过滤器、二级过滤器和三级过滤器。

【0011】作为优选，在检测电磁阀之前的废水管道上还设有废水比例器以及与废水比例
器并联的冲水管道，所述冲水管道上设置有冲洗电磁阀。

【0012】作为优选，所述检测系统还包括原水水源池、无线通信模块、移动终端和控制监
测中心，所述电脑板通过无线通信模块与原水源源池连接，移动终端与原水源源池无线连
接，控制监测中心与原水源源池连接；所述电脑板进行运算处理后将处理结果通过无线通
信模块发送至原水源源池，原水源源池将处理结果发送至移动终端和控制监测中心。

【0013】一种基于上述所述的检测系统的检测方法，包括对管道滴漏、管道爆管和进水电
磁阀关闭不严情况的检测，其步骤如下所述：

1). 关闭检测电磁阀；
2). 压力检测开关检测管道内水压变化，并将信号传送给电脑板；
3). 电脑板接收并处理信号，判断管道内水压是否异常，如果异常，电脑板控制警报装
置发出警报。

【0014】作为优选，所述对管道滴漏的检测包括以下步骤：

1). 当纯水机制纯水后停机瞬间，电脑板控制进水电磁阀、高压泵和检测电磁阀关
闭；
2). 压力检测开关检测管道内水压变化情况，并将信号传送给电脑板；
3). 电脑板经过处理判断后确认管道内水压是否异常，若异常，则切断自来水水源，
并故障报警，上传异常信息。

【0015】作为优选，所述对管道爆管的检测，包括以下步骤：

1). 在纯水机制纯水时段检测，电脑板控制检测电磁阀、高压泵和进水电磁阀同时关
闭；
2). 压力检测开关检测管道内水压变化情况，并将信号传送给电脑板；
3). 电脑板接收信号后经过处理判断后确认管道内水压是否异常，若异常，则切断自
来水进水，并故障报警，上传异常信息；若管道情况正常，则管道内水压正常，则纯水机恢
复正常工作。

【0016】作为优选，所述对进水电磁阀是否关闭不严的检测，其基于管道没有滴漏或爆管
情况，包括以下步骤：

1). 电脑板控制进水电磁阀关闭，检测电磁阀打开；
2) 管道内的水通过废水管道排出，压力检测开关感应管道内水压变化并将其信号传递给电脑板，电脑板控制检测电磁阀关闭；
3) 压力检测开关持续检测管道内水压变化情况，并将信号发送给电脑板；
4) 电脑板接收信号后经过处理判断后确认管道内水压异常，若异常，则控制警报装置报警提醒用户并上传异常信息。

[0017] 与现有技术相比，本发明的有益效果是：
1) 与传统的装置相比，本发明的检测系统对工作环境要求小，压力检测开关设置在管道内，对水压变化非常敏感，其发出的信号通过电脑板处理后能够快速得出结论，当系统发现漏水则关闭纯水机，以切断自来水供水，并故障报警，上传异常信息。
2) 与现有装置相比，本发明的检测装置不仅可以检测管道漏水（滴水、爆管）等进行检测，还可以对进水电磁阀是否存在关闭不严的情况进行检测，以防止纯水机常年累月的浪费自来水，增大了对纯水机的检测范围，提高了检测的完整度与准确性。
3) 采用两个压力检测开关用于检测管道内水压，且一个设置在高压泵增压前，一个设置在高压泵增压后，从而更准确地感知管道内的水压变化。
4) 加入网络功能，将纯水机的使用信息发送到用户的移动终端，便于用户对纯水机的使用状况进行实时监控。

附图说明
[0021] 图1是背景技术中纯水器的结构示意图。
[0022] 图2是背景技术中纯水器的另一种结构示意图。
[0023] 图3是检测系统的结构框图。
[0024] 图4是实施例中纯水器的结构示意图。
[0025] 图5是实施例中纯水器的另一种结构示意图。
[0026] 图6是实施例中纯水器的第三种结构示意图。

具体实施方式
[0027] 下面结合附图对本发明的具体实施方式做一个详细的说明。
[0028] 如图3～图6所示的一种纯水机的检测系统，所述纯水机包括进水口1、反渗透过滤器2以及连接两者的进水管道3，在进水口端设置有进水阀4，在进水管道3上进水阀4和反渗透过滤器2之间设置有预过滤装置、进水电磁阀9和低压开关8，进水电磁阀9设置在低压开关8之后，在进水管道3上进水电磁阀9和反渗透过滤器2之间设置有高压泵15，所述反渗透过滤器2设置有与进水管道3连接的进水管口（图上未标识）以及纯水管口（图上未标识）和废水口（图上未标识），所述纯水管口连接有纯水管道10，所述废水口连接有废水管道13，废水管道13连接废水排放口，在废水管道13上设置有废水比例器17，所述废水比例器17的两端还并联设置有冲洗管道16，所述冲水管道16的进水口1连接废水比例器17之前的废水管道13，冲水管道16的出水口连通废水比例器17之后的废水管道13，在冲水管线16上设置有冲洗电磁阀14，所述废水管道13末端设置有检测电磁阀19，该检测电磁阀19为普通电磁阀，其控制废水管道的打开或关闭，配合进水电磁阀9使用可起到保持管道10内水压稳定的辅助作用；所述纯水管道10连接有纯水龙头11。所述预过滤装置包括一级过滤器5、二级过滤器6。
器6和三级过滤器7，所述一级过滤器5和PP棉过滤器，二级过滤器6为活性炭过滤器，三级过滤器7为第三级PP棉过滤器。高压泵15可以设置在进水电磁阀9之后，反渗透过滤器2之前的进水管3上的任意一处位置。所述纯水管道10上还连接有储水管道25，所述储水管道25另一端连接有储水压力桶12，在储水管道25进水口1与纯水龙头11之间还设置有五级过滤器18。

[0029] 所述检测系统包括压力检测开关，用于接收并处理压力检测开关信号的电脑板22，以及与电脑板22控制连接的报警装置（图上未标识），所述压力检测开关设置在进水电磁阀9和冲水管道16进水口1之间的管道上。所述压力检测开关包括压力检测开关a20和压力检测开关b21，压力检测开关a20设置在进水电磁阀9和高压泵15之间的进水管道3上，压力检测开关b21设置在高压泵15和反渗透过滤器9之间的管道上。

[0030] 上述纯水机的主要结构的功能如下所示：

进水阀4：纯水机进水阀4，打开进水阀，自来水进纯水机，安装位置位于进水三通侧口，便于检修时关断水源。

[0031] 一级过滤器5—PP棉过滤器，孔径5微米，沉积式前过滤，除去尘土，铁锈，砂砾等大于5微米的物质。

[0032] 二级过滤器6—活性炭过滤器，预过滤，除去氯臭味，甲烷、农药、化肥及其它物质。

[0033] 三级过滤器7—第三级PP棉过滤器，孔径1微米预过滤，除去由于活性炭脱落产生细小颗粒物质。

[0034] 低压开关8，当水压达到预设压力时，接通电源，使机器正常运行；当断水，或水压达不到预设时，切断电源，机器发出蜂鸣报警。

[0035] 进水电磁阀9，当电源接通时，自来水经过进水电磁阀9，使纯水机正常制水；当机器停止后切断水源，阻止自来水过去，通过废水管道排走。

[0036] 高压泵15，给自来水加压达一定压力值，以满足反渗透过滤器2的压力及流量需求。

[0037] 反渗透过滤器2，它是依靠机器对自来水所施加压力，使自来水中水分透过反渗透膜，而把自来水中的细微杂质，过多的无机盐、有机物、重金属离子、细菌、病毒、农药、亚硝酸等其它有害物质统统截留下来，并通过连续排放的浓水将这些水中有害物质及盐分排出，进而得到十分洁净的饮用水。它的孔径只有0.0001微米，它对水中粒径最小的无机盐离子的去除率在90—96%以上，对细菌、病毒等有害物质的去除率在99.99%以上（理论上可以说成是100%）。

[0038] 压力储水桶12，储存纯水，以供备用。

[0039] 五级过滤器18—活性炭过滤器，除去异味使水质甘醇甜美，避免压力储水桶内纯水二次污染。

[0040] 纯水龙头11，取用纯净水的开关。

[0041] 废水比例器17，使浓缩废水排出，经小孔限流憋压，保证反渗透过滤器的工作压力。它的作用就是控制流量，保证恒定的系统压力。

[0042] 冲洗电磁阀14，由电脑板22自动控制，对反渗透过滤器进行高压大流量冲洗。

[0043] 压力检测开关a20，用于检测进水电磁阀9和高压泵15之间的进水管3内的水压变化。
说明书

压力检测开关b21，用于检测高压泵15和冲水管道16进水口1之间的管道内的水压变化。

检漏电磁阀19，用于与压力检测开关a20、压力检测开关b21配合检测进水电磁阀9的工作情况。

基于上述所述的纯水机的检漏系统，设计了一种检漏方法，包括以下步骤：

1. 关闭检漏电磁阀19；
2. 压力检测开关检测管道内水压变化，并将信号传给电脑板22；
3. 电脑板22接收并处理信号，判断管道内水压是否超出正常值，如果不正常，电脑板22控制警报装置发出警报。

具体针对滴漏、爆管、进水电磁阀关闭不严等情况，其具体过程略有不同，如下所述：

针对管道滴漏的情况—当纯水机制备纯水后停机瞬间，电脑板22控制进水电磁阀9、高压泵15和检漏电磁阀19关闭。在正常情况下，此时管路内的水压将保持稳定。此时，若有关漏的情况发生，则压力检测开关a20、压力检测开关b21检测到水压下降的情况，并将信号发送给电脑板，电脑板经过处理判断后控制警报装置报警提示用户。由于滴漏情况下水压下降较慢，对漏水检测一般需要花费2小时左右时间。当此过程中，纯水机再次进入制水状态时，电脑板的检漏程序取消，确保制水程序优先。

针对爆管的情况—在纯水机制备纯水的时段检测，受电脑板22程序控制，每8～10分钟重复间隔检测，方法如下：电脑板22控制检漏电磁阀19、高压泵15和进水电磁阀9同时关闭，若有管道内爆，则管道内的水压将急速下降，压力检测开关a20、压力检测开关b21检测到情况后发出信号，电脑板22接收信号后经过处理识别，控制报警器发出报警并切断自来水。若管道内水压正常，则管道内水压不变，纯水机保持正常工作。此过程持续20～30秒。

针对进水电磁阀9关闭不严的情况—在完成对管道滴漏和管道爆管的检测并排除故障后进行此项检查。首先，电脑板22控制进水电磁阀9关闭，检漏电磁阀19打开，管道内的水通过废水管道11排出，压力检测开关a20和压力检测开关b21检测管道内的水压并将信号传给电脑板22，电脑板22控制检漏电磁阀19关闭，若果进水电磁阀9关闭不严，自来水将进入管路内，由于管道封闭，管路内的水压将逐渐上升，最终被压力检测开关a20、压力检测开关b21检测到并发出信号，电脑板22接收信号后，控制警报装置发出报警。此过程视进水电磁阀9关闭不严的严重程度，花费的时间不同。

除此之外，所述检漏系统还可以设置云端服务器（图上未标识）、无线通信模块（图上未标识）、移动终端（图上未标识）和控制监测中心（图上未标识），所述电脑板22通过无线通信模块与云端服务器连接，移动终端与云端服务器无线连接，控制监测中心与云端服务器连接，所述电脑板进行运算处理分析后将分析结果通过无线通信模块发送给云端服务器，云端服务器将分析结果发送至移动终端和控制监测中心，在监测中心安排专人看管，保证对纯水机的反渗透过滤器进行实时监控。对压力检测开关a20、压力检测开关b21发出的信号也可在云端服务器上进行分析处理，从而代替电脑板22的作用，减少硬件使用，降低成本。

本说明书中所描述的以上内容仅仅是对本发明所作的举例说明。本发明所述技术
领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代，只要不偏离本发明说明书的内容或者超越本权利要求书所定义的范围，均应属于本发明的保护范围。
图3