
USOO7779224B2

(12) United States Patent (10) Patent No.: US 7,779,224 B2
Zohar et al. (45) Date of Patent: Aug. 17, 2010

(54) DATA STORAGESYSTEM 5,694,576 A 12/1997 Yamamoto et al.
5,875,481 A 2f1999 Ashton et al.

(75) Inventors: Ofir Zohar, Alfe-Menashe (IL); Yaron 6,000,010 A * 12/1999 Legg 711 114
Revah, Tel-Aviv (IL); Haim Helman, 6,317,815 B1 1 1/2001 Mayer et al.
Ramat Gan (IL); Dror Cohen, 6,404,528 B1 6, 2002 Pfeiffer
Petach-Tikva (IL); Shemer Schwartz, 6.405,284 B1* 6/2002 Bridge 711 114
Herzelia (IL) 6,434,666 Bl 8/2002 Takahashi et al.

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) (Continued)

OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 D. Karger, et al. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the WorldWideWeb.

U.S.C. 154(b) by 411 days. Proceedings of the 29' ACM Symposium on Theory of Computing,
(21) Appl. No.: 11/840,378 pp. 654-663. May 1997.

Continued
(22) Filed: Aug. 17, 2007 ()

Primary Examiner Christian P Chace
(65) Prior Publication Data Assistant Examiner Hashem Farrokh

US 2007/0283093 A1 Dec. 6, 2007 (74) Attorney, Agent, or Firm Griffiths & Seaton PLLC

Related U.S. Application Data (57) ABSTRACT

(63) gE. Stilts A method for storing data, consisting of distributing a first
tion-in-part of application No. 10,620 080, filed on Jul. plurality of groups of logical addresses among one or more
15, 2003, and a continuation-in-part ofapplication No storage devices in a storage system, receiving a second plu
1 o 62O 249 filed on Jul 15, 2003, now Pat. No. 7 293. rality of data-sets containing the data to be stored, and assign
156 s1- I - s • u a-s s • Y-8 s 1-1 - 9 ing each data-set among the plurality of data-sets a random

number chosen from a first plurality of different numbers. The
(51) Int. Cl method further consists of partitioning each data-set into

Go,F i2/00 (2006.01) multiple partitions, so that each partition among the multiple
(52) U.S. Cl 711/173: 711 F114: 71 Of 9 partitions receives a sequential partition number, assigning
58 Fi id ic - - - - - ificati- - - - - -s - - - h s 71/73 each partition within each data-set to be stored at a specific
(58) Field of Classification Search711/1 14: 71 Of9 group of logical addresses in the storage system in accor

S lication file f 1 hhi s dance with the sequential partition number of the partition
ee application file for complete search history. and the random number assigned to the data-set, and storing

(56) References Cited each partition in the storage system at the assigned specific

U.S. PATENT DOCUMENTS

5,615,352 A * 3/1997 Jacobson et al. 711 114

227

group of logical addresses.

23 Claims, 15 Drawing Sheets

US 7,779,224 B2
Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

6,453.404 B1 9/2002 Bereznyi et al. H. Tang et al. Differentiated Object Placement and Location for
6,457,102 B1 9/2002 Lambright et al. Self-Organizing Storage Clusters. Technical Report 2002-32, UCSB,
6,490,615 B1 12/2002 Dias et al. Nov. 2002.
6,901.480 B2 5, 2005 Donet al. 711/114 A. Brinkmann et al. Compact, Adaptive Placement Schemes for Non-Uniform Capacities. Proceedings of the 14" ACM Symposium

2002fOO997.97 A1* 7, 2002 Merrell et al. TO9,219 on Parallel Algorithms and Architectures (SPAA). Aug. 2002.
2003/0005256 A1 1/2003 Grossman et al. T11 202

2003/0221063 A1 1 1/2003 Eguchi et al. * cited by examiner

US 7,779,224 B2 Sheet 1 of 15 Aug. 17, 2010 U.S. Patent

||||||||||

|||||||||||||||||||| |

3

WHISKS ?IOWAHOJAS
| ||||||||||||||||||||

U.S. Patent Aug. 17, 2010 Sheet 2 of 15 US 7,779,224 B2

FG. 2

DETERMINE INITIAL S.
ALLOCATE IDENTITIES TO

DEVICE B
DETERMINE TOTAL NUMBER

OF DEVICEST
-5

54
DETERMINE RANDOM

INTEGER R BETWEEN 1 AND T.
ALLOCATE STRIPE TO DEVICE BR

56

U.S. Patent Aug. 17, 2010 Sheet 3 of 15 US 7,779,224 B2

FG. 3

DETERMINE A MAXIMUM
NUMBER N OF DEVICES,
DETERMINE NUMBER OF
POINTS K FOR EACH DEVICE.
DETERMINE MYX NaK -7

74
FOR EACH DEVICE FIND A SET
OF K DIFFERENT RANDOM

VALUES SAB
CHOSEN FROM 0,1,2,..., M-1}

76

FINDs MOD (M).
FIND F(s MOD(M))

ASSIGN STRIPE s T0
DEVICE OF SAB

M)) CLOSEST TO F(s MOD(

U.S. Patent

N-1

N-SN

N N
N

N N
N

N

c

Aug. 17, 2010

N

Sheet 4 of 15 US 7,779,224 B2

US 7,779,224 B2 Sheet 5 of 15 Aug. 17, 2010 U.S. Patent

N N

U.S. Patent Aug. 17, 2010 Sheet 6 of 15 US 7,779,224 B2

FG. 6

DETERMINE INITIAL S
ALLOCATE IDENTITIES TO

DEVICE B
DETERMINE TOTAL NUMBER

OF DEVICEST
-9

DETERMINE RANDOM
INTEGER R BETWEEN 1 AND T

R
CORRESPONDS
TO INITIAL
DEVICE

NO 92

REALLOCATE STRIPE

TO NEW DEVICE BR

US 7,779,224 B2 Sheet 7 Of 15 Aug. 17, 2010 U.S. Patent

% ? %

r XXX
SKS

S
s SS

SS

S&S
2

SS RSS

N

WEIVIS?S ?IOW80||S

U.S. Patent Aug. 17, 2010 Sheet 8 of 15 US 7,779,224 B2

FG, 8

102

100
-1

DETERMINE SECONDARY 104
LOCATION ASSUMING

PRIMARY LOCATION NOT PRESENT

106
ALLOCATE STRIPE TO

PRIMARY AND SECONDARY
LOCATION

US 7,779,224 B2

gý 68 98

93

{{OSSŒ00 HdH98

Sheet 9 Of 15

~~~~ 

Aug. 17, 2010 U.S. Patent 

  



US 7,779,224 B2 Sheet 10 of 15 Aug. 17, 2010 U.S. Patent 

1 O FG. 

STRIPES 

  



US 7,779,224 B2 Sheet 11 of 15 Aug. 17, 2010 U.S. Patent 

--0---- 
DATA D OFFSET H(F 

STRIPE 71 

STRIPE 41 STRIPE 

11 FG. 

2 3 100 

STRIPES 

1. 

  



U.S. Patent 

FG. 12 

REALLOCATE 
STRIPES TO ADDED 

DEVICE 

STORE PARTITIONS 
OF REALLOCATED 
STRIPES TO ADDED 

DEVICE 

DEVICE ADDED 

Aug. 17, 2010 Sheet 12 of 15 

ALLOCATE STRIPES 
TO DEVICES 

DELINEATE DATA INTO EQUAL 
SIZED PARTITIONS, 

ALLOCATE PARTITIONS 
TO STRIPES ACCORDING 

TO EQUATIONS 

STORE PARTITIONS TO 
DEVICES ACCORDING TO 

STRIPES 

DEVICE REMOWED 

142 

144 

146 

STORE PARTITIONS 
OF REALLOCATED 

STRIPES TO REMAINING 
DEVICES 

REALLOCATE 
STRIPES TO REMAINING 

DEVICES 

US 7,779,224 B2 

140 
-1 

  

  

  

  

  

  

  

  

  

    

    

  

  



U.S. Patent Aug. 17, 2010 Sheet 13 of 15 US 7,779,224 B2 

F.G. 13 
160 

ALLOCATE STRIPES 162 
TO DEVICES 

DELINEATE DATA INTO EQUAL 
SIZED PARTITIONS. 

ALLOCATE PARTITIONS 
TO DEVICES ACCORDING 
TO RANDOMIZING SYSTEM 

164 

REALLOCATE 
PARTITIONS TO 
ADDED DEVICE 

REALLOCATE 
PARTITIONS TO 

REMAINING DEVICES 

STORE PARTITIONS 

TO ADDED 

DEVICE 

STORE PARTITIONS 
TO REMAINING 

DEVICES 

  

    

    

    

  

  

  

  

  





U.S. Patent Aug. 17, 2010 Sheet 15 of 15 US 7,779,224 B2 

FIG. 15 

300 IO REQUEST 
RECEIVED 

IDENTIFY PARTITIONS/ 
DATA-SETS IN REQUEST. 

DETERMINE CORRESPONDING 
STRIPES 

302 

304 

FIND CACHES 
CORRESPONDING TO 

STRIPES, USING MAPPING. 
TRANSMIT PARTITION/ 
DATA-SET TO CACHES 

306 

CACHES RECEIVE 
REQUESTS, GENERATE 

RESPONSES 

  

    

    

    

  

  

  

    

  

  



US 7,779,224 B2 
1. 

DATA STORAGE SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present application is a continuation of U.S. applica 
tion Ser. No. 10/808.232 filed on Mar. 24, 2004, now pending, 
which is a continuation-in-part of U.S. application Ser. No. 
10/620,080 and U.S. application Ser. No. 10/620.249, both 
filed Jul. 15, 2003, the contents of which are herein incorpo- 10 
rated by reference. 

FIELD OF THE INVENTION 

The present invention relates generally to data storage, and 
specifically to data storage in distributed data storage entities. 

BACKGROUND OF THE INVENTION 

A distributed data storage system typically comprises 2O 
cache memories that are coupled to a number of disks wherein 
the data is permanently stored. The disks may be in the same 
general location, or be in completely different locations. 
Similarly, the caches may be localized or distributed. The 
storage system is normally used by one or more hosts external 
to the system. 

Using more than one cache and more than one disk leads to 
a number of very practical advantages, such as protection 
against complete system failure if one of the caches or one of so 
the disks malfunctions. Redundancy may be incorporated 
into a multiple cache or multiple disk system, so that failure of 
a cache or a disk in the distributed storage system is not 
apparent to one of the external hosts, and has little effect on 
the functioning of the system. 

While distribution of the storage elements has undoubted 
advantages, the fact of the distribution typically leads to 
increased overhead compared to a local system having a 
single cache and a single disk. Interalia, the increased over 
head is required to manage the increased number of system 
components, to equalize or attempt to equalize usage of the 
components, to maintain redundancy among the components, 
to operate a backup system in the case of a failure of one of the 
components, and to manage addition of components to, or 
removal of components from, the system. A reduction in the 
required overhead for a distributed storage system is desir 
able. 

An article titled “Consistent Hashing and Random Trees: 
Distributed Caching Protocols for Relieving HotSpots on the 
World WideWeb.” by Karger et al., in the Proceedings of the 
29th ACM Symposium on Theory of Computing, pages 654 
663, (May 1997), whose disclosure is incorporated herein by 
reference, describes caching protocols for relieving "hot 
spots” in distributed networks. The article describes a hashing 
technique known as consistent hashing, and the use of a 
consistenthashing function. Such a function allocates objects 
to devices so as to spread the objects evenly over the devices, 
so that there is a minimal redistribution of objects if there is a 
change in the devices, and so that the allocation is consistent, 
i.e., is reproducible. The article applies a consistent hashing 
function to read-only cache systems, i.e., systems where a 
client may only read data from the cache system, not write 
data to the system, in order to distribute input/output requests 
to the systems. A read-only cache system is used in much of 
the World WideWeb, where a typical user is only able to read 65 
from sites on the Web having such a system, not write to such 
sites. 

25 

35 

40 

45 

50 

55 

60 

2 
An article titled “Differentiated Object Placement and 

Location for Self-Organizing Storage Clusters.” by Tang et 
al., in Technical Report 2002-32 of the University of Califor 
nia, Santa Barbara (November, 2002), whose disclosure is 
incorporated herein by reference, describes a protocol for 
managing a storage system where components are added or 
removed from the system. The protocol uses a consistent 
hashing scheme for placement of small objects in the system. 
Large objects are placed in the system according to a usage 
based policy. 
An article titled “Compact, Adaptive Placement Schemes 

for Non-Uniform Capacities.” by Brinkmann et al., in the 
August, 2002, Proceedings of the 14" ACM Symposium on 
Parallel Algorithms and Architectures (SPAA), whose disclo 
sure is incorporated herein by reference, describes two strat 
egies for distributing objects among a heterogeneous set of 
servers. Both strategies are based on hashing systems. 

U.S. Pat. No. 5,875,481 to Ashton, et al., whose disclosure 
is incorporated herein by reference, describes a method for 
dynamic reconfiguration of data storage devices. The method 
assigns a selected number of the data storage devices as input 
devices and a selected number of the data storage devices as 
output devices in a predetermined input/output ratio, so as to 
improve data transfer efficiency of the storage devices. 

U.S. Pat. No. 6,317,815 to Mayer, et al., whose disclosure 
is incorporated herein by reference, describes a method and 
apparatus for reformatting a main storage device of a com 
puter system. The main storage device is reformatted by 
making use of a secondary storage device on which is stored 
a copy of the data stored on the main device. 

U.S. Pat. No. 6,434,666 to Takahashi, et al., whose disclo 
sure is incorporated herein by reference, describes a memory 
control apparatus. The apparatus is interposed between a 
central processing unit (processor) and a memory device that 
stores data. The apparatus has a plurality of cache memories 
to temporarily store data which is transferred between the 
processor and the memory device, and a cache memory con 
trol unit which selects the cache memory used to store the data 
being transferred. 

U.S. Pat. No. 6,453.404 to Bereznyi, et al., whose disclo 
Sure is incorporated herein by reference, describes a cache 
system that allocates memory for storage of data items by 
defining a series of small blocks that are uniform in size. The 
cache system, rather than an operating system, assigns one or 
more blocks for storage of a data item. 
A number of different types of storage system are known in 

the art. In a storage area network (SAN) data is accessed in 
blocks at a device level, and the data is transferred in blocks. 
Typically, the basic unit of data organization is a logical unit 
(LU) which consists of a sequence of logical blockaddresses 
(LBAs). 

In a network attached storage (NAS) system, data is 
accessed as file data or file meta-data (parameters of the file). 
The basic unit of organization is typically a file. 

In an object storage architecture (OSA), the basic unit of 
storage is a storage object, which comprises file data together 
with meta-data. The latter comprise storage attributes such as 
data layout and usage information. 

Content addressed storage (CAS) is a particular case of 
OSA, designed for data that is intended to be stored and not 
changed. CAS assigns a unique identifier to the stored data, 
the identifier depending on the contents of the data. 

SUMMARY OF THE INVENTION 

In embodiments of the present invention, groups of logical 
addresses are distributed among one or more storage devices 



US 7,779,224 B2 
3 

comprised in a storage system. Each group of logical 
addresses is also herein termed a stripe. The storage system 
receives data to be stored therein in data-sets, and assigns 
each data-set a random value chosen from a set of different 
numbers. In some embodiments, each data-set comprises a 
file or other unit of data created by a file system. The cardi 
nality of the set of different numbers is equal to the number of 
stripes. The system delineates each data-set into equal-sized 
partitions, and for each data-set the system assigns each par 
tition of the data-set a sequential partition number. 

The system allocates each partition to a specific stripe in 
accordance with the sequential partition number and the ran 
dom value of the data-set of the partition, so as to evenly 
distribute the partitions among the stripes. Each partition is 
stored to the storage device corresponding to the partition’s 
allocated Stripe. This method of allocation ensures Substan 
tially even distribution of the partitions among the stripes, 
regardless of the size of the partitions, of the relative sizes of 
the partitions and the stripes, and of differences in sizes of the 
data-sets. The even distribution applies irrespective of the 
type of data-set, which may, for example, be a file or a data 
block. 

In an embodiment of the present invention, the stripes are 
sequentially numbered from 1 to s, where s is the number of 
stripes in the storage system. A set R of different numbers, 
from which the random value is chosen, comprises all integral 
values from 0 to S-1. The storage system assigns a random 
value reR to each specific data-set that it receives for storage. 
Each partition, numbered p, in the specific data-set is allo 
cated for storage in the storage system in the stripe whose 
number is given by (rip)modulo(s) if (rip)modulo(S)z0, and 
in the stripe numbers if (r+p)modulo(s)=0. 

If the storage system comprises more than one storage 
device, the stripes may be distributed among the storage 
devices by a procedure that provides a balanced access to the 
devices. If a storage device is added to or removed from the 
system, the procedure reallocates the Stripes among the new 
numbers of devices so that the balanced access is maintained. 
If a device has been added, the procedure only transfers 
stripes to the added storage device. If a device has been 
removed, the procedure only transfers stripes from the 
removed storage device. In both cases, the only transfers of 
data that occur are of partitions stored at the transferred 
stripes. The procedure thus minimizes data transfer and asso 
ciated management overhead when the number of Storage 
devices is changed, or when the device configuration is 
changed, while maintaining the balanced access. 

Typically, the storage devices comprise one or more slow 
access-time, mass-storage devices, and the storage system 
comprises caches, herein also termed interim, fast-access 
time caches, coupled to the mass-storage devices. Each cache 
is assigned a respective range of stripes of the mass-storage 
devices. The storage system typically comprises one or more 
interfaces, which receive input/output (IO) requests from host 
processors directed to specified data-sets and/or partitions of 
the data-sets. The interfaces convert the IO requests to con 
verted-IO-requests directed to the stripes wherein the data 
sets and/or partitions are allocated, and direct all the con 
verted-IO-requests to the caches to which the stripes are 
assigned. 

Each interface translates the IO requests into the con 
Verted-IO-requests by means of a mapping stored at the 
device, the mapping for each interface being Substantially the 
same. Thus, adding or removing a cache from the storage 
system simply requires updating of the mapping Stored in 
each interface. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
The present invention discloses a data allocation approach 

that can be equally well used for storage area networks, net 
work attached storage systems, or any other kind of storage 
system. The approach is such that configuration changes can 
be easily handled with minimal internal data migration for 
reallocation purposes, while preserving a proper workload 
balance in the system. 

There is therefore provided, according to an embodiment 
of the present invention, a method for storing data, including: 

distributing a first plurality of groups of logical addresses 
among one or more storage devices; 

receiving a second plurality of data-sets containing the data 
to be stored; 

assigning each data-set among the plurality of data-sets a 
number chosen from a first plurality of different numbers; 

partitioning each data-set into multiple partitions, so that 
each partition among the multiple partitions receives a 
sequential partition number, 

assigning each partition within each data-set to be stored at 
a specific group of logical addresses in accordance with the 
sequential partition number of the partition and the random 
number assigned to the data-set; and 

storing each partition at the assigned specific group of 
logical addresses. 
The multiple partitions may include equal size partitions. 
The data-sets may include data from at least one of a file, 

file meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

In an embodiment, the first plurality of groups consists of S 
groups each having a different integral group number 
between 1 and S, the number consists of an integer r chosen 
randomly from and including integers between 0 and S-1, the 
sequential partition number consists of a positive integer p. 
and the group number of the assigned specific group is (rip) 
modulo(s) if (rip)modulo(s)z0, and s if (rip)modulo(s)=0. 
The method may be operative in at least one of a storage 

area network, a network attached storage system, and an 
object storage architecture. 
The number may be chosen by a randomizing function, or 

alternatively by a consistent hashing function. 
There is further provided, according to an embodiment of 

the present invention, a method for data distribution, includ 
1ng: 

receiving at least part of a data-set containing data; 
delineating the data into multiple partitions; 
distributing logical addresses among an initial set of stor 

age devices so as to provide a balanced access to the devices; 
transferring the partitions to the storage devices in accor 

dance with the logical addresses; 
adding an additional storage device to the initial set, thus 

forming an extended set of the storage devices comprising the 
initial set and the additional storage device; and 

redistributing the logical addresses among the storage 
devices in the extended set So as to cause a portion of the 
logical addresses and the partitions stored thereat to be trans 
ferred from the storage devices in the initial set to the addi 
tional storage device, while maintaining the balanced access 
and without requiring a Substantial transfer of the logical 
addresses among the storage devices in the initial set. 
The data-set may include data from at least one of a file, file 

meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 



US 7,779,224 B2 
5 

The initial set of storage devices and the additional storage 
device may be operative in at least one of a storage area 
network, a network attached storage system, and an object 
storage architecture. 

Distributing the logical addresses may include: 
generating a first plurality of sets of logical addresses, 
and delineating the data may include: 
assigning the at least part of the data-set a number chosen 

from a first plurality of different numbers; and 
assigning each partition among the multiple partitions a 

sequential partition number, 
and transferring the partitions may include: 
storing each partition at one of the sets of logical addresses 

in accordance with the sequential partition number of the 
partition and the number. 

There is further provided, according to an embodiment of 
the present invention, a method for data distribution, includ 
ing: 

receiving at least part of a data-set containing data; 
delineating the data into multiple partitions; 
distributing logical addresses among an initial set of Stor 

age devices so as to provide a balanced access to the devices; 
transferring the partitions to the storage devices in accor 

dance with the logical addresses; 
removing a surplus storage device from the initial set, thus 

forming a depleted set of the storage devices comprising the 
initial set less the Surplus storage device; and 

redistributing the logical addresses among the storage 
devices in the depleted set so as to cause the logical addresses 
of the surplus device and the partitions stored thereat to be 
transferred to the depleted set, while maintaining the bal 
anced access and without requiring a substantial transfer of 
the logical addresses among the storage devices in the 
depleted set. 
The data-set may include data from at least one of a file, file 

meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

The initial set of storage devices may be operative in at 
least one of a storage area network, a network attached Stor 
age system, and an object storage architecture. 

Distributing the logical addresses may include: 
generating a first plurality of sets of logical addresses, 
and delineating the data may include: 
assigning the at least part of the data-set a number chosen 

from a first plurality of different numbers; and 
assigning each partition among the multiple partitions a 

sequential partition number, 
and transferring the partitions may include: 
storing each partition at one of the sets of logical addresses 

in accordance with the sequential partition number of the 
partition and the number. 

There is further provided, according to an embodiment of 
the present invention, a data storage system, including: 

one or more mass-storage devices, coupled to store parti 
tions of data at respective first ranges of logical addresses 
(LAS); 

a plurality of interim devices, configured to operate inde 
pendently of one another, each interim device being assigned 
a respective second range of the LAS and coupled to receive 
partitions of data from and provide partitions of data to the 
one or more mass-storage devices having LAS within the 
respective second range; and 

one or more interfaces, which are adapted to receive input/ 
output (IO) requests from host processors, to identify speci 
fied partitions of data in response to the IO requests, to con 
vert the IO requests to converted-IO-requests directed to 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
specified LAS in response to the specified partitions of data, 
and to direct all the converted-IO-requests to the interim 
device to which the specified LAS are assigned. 
At least one of the mass-storage devices may have a slow 

access time, and at least one of the interim devices may have 
a fast access time. 
The one or more mass-storage devices may be coupled to 

provide a balanced access to the first ranges of LAS. 
The storage system may operate in at least one of a storage 

area network, a network attached storage system, and an 
object storage architecture. 

There is further provided, according to an embodiment of 
the present invention, a data storage system, including: 

one or more storage devices wherein are distributed a first 
plurality of groups of logical addresses; and 

a processing unit which is adapted to: 
receive a second plurality of data-sets containing the data 

to be stored, 
assign each data-set among the plurality of data-sets a 

number chosen from a first plurality of different numbers, 
partition each data-set into multiple partitions, so that each 

partition among the multiple partitions receives a sequential 
partition number, 

assign each partition within each data-set to be stored at a 
specific group of logical addresses in the one or more storage 
devices in accordance with the sequential partition number of 
the partition and the number assigned to the data-set, and 

store each partition in the one or more storage devices at the 
assigned specific group of logical addresses. 
The multiple partitions may include equal size partitions. 
The data-sets may include data from at least one of a file, 

file meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 
The first plurality of groups may include S groups each 

having a different integral group number between 1 and S, the 
number may include an integer r chosen randomly from and 
including integers between 0 and S-1, the sequential partition 
number may include a positive integer p, and the group num 
ber of the assigned specific group may be (rip)modulo(s) if 
(r+p)modulo(s)z0, and s if (r+p)modulo(s)=0. 
The one or more storage devices and the processing unit 

may operate in at least one of a storage area network, a 
network attached storage system, and an object storage archi 
tecture. 

There is further provided, according to an embodiment of 
the present invention, data distribution apparatus, including: 

an initial set of storage devices among which are distrib 
uted logical addresses so as to provide a balanced access to 
the devices; 

an additional storage device to the initial set, thus forming 
an extended set of the storage devices consisting of the initial 
set and the additional storage device; and 

a processor which is adapted to receive at least part of a 
data-set containing data, to delineate the data into multiple 
partitions, to transfer the partitions to the initial set of storage 
devices in accordance with the logical addresses, to redistrib 
ute the logical addresses among the storage devices in the 
extended set so as to cause a portion of the logical addresses 
and the partitions stored thereat to be transferred from the 
storage devices in the initial set to the additional storage 
device, while maintaining the balanced access and without 
requiring a substantial transfer of the logical addresses among 
the storage devices in the initial set. 



US 7,779,224 B2 
7 

The data-set may include data from at least one of a file, file 
meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

The initial set of storage devices and the additional storage 
device may operate in at least one of a storage area network, 
a network attached storage system, and an object storage 
architecture. 
The logical addresses may include a plurality of sets of 

logical addresses, and the processor may be adapted to: 
assign the at least part of the data-set a number chosen from 

a plurality of different numbers, 
assign each partition among the multiple partitions a 

sequential partition number, and 
store each partition at one of the sets of logical addresses in 

accordance with the sequential partition number of the parti 
tion and the number. 

There is further provided, according to an embodiment of 
the present invention, data distribution apparatus, including: 

an initial set of storage devices among which are distrib 
uted logical addresses so as to provide a balanced access to 
the devices; 

a depleted set of storage devices, formed by Subtracting a 
Surplus storage device from the initial set; and 

a processor which is adapted to receive at least part of a 
data-set containing data, to delineate the data into multiple 
partitions, to transfer the partitions to the initial set of storage 
devices in accordance with the logical addresses, to redistrib 
ute the logical addresses and the partitions stored thereat of 
the Surplus storage device among the storage devices in the 
depleted set while maintaining the balanced access and with 
out requiring a substantial transfer of the logical addresses 
among the storage devices in the depleted set. 
The data-set may include data from at least one of a file, file 

meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

The initial set of storage devices may be operative in at 
least one of a storage area network, a network attached Stor 
age system, and an object storage architecture. 
The logical addresses may include a plurality of sets of 

logical addresses, and the processor may be adapted to: 
assign the at least part of the data-set a number chosen from 

a plurality of different numbers, 
assign each partition among the multiple partitions a 

sequential partition number, and 
store each partition at one of the sets of logical addresses in 

accordance with the sequential partition number of the parti 
tion and the number. 

There is further provided, according to an embodiment of 
the present invention, a method for storing data, including: 

coupling one or more mass-storage devices to store parti 
tions of data at respective first ranges of logical addresses 
(LAS); 

configuring a plurality of interim devices to operate inde 
pendently of one another, 

assigning each interim device a respective second range of 
the LAS: 

coupling each interim device to receive the partitions of 
data from and provide the partitions of data to the one or more 
mass-storage devices having LAS within the respective sec 
ond range; 

receiving input/output (IO) requests from host processors; 
identifying specified partitions of data in response to the IO 

requests; 

10 

15 

25 

30 

35 

40 

45 

50 

8 
converting the IO requests to converted-IO-requests 

directed to specified LAS in response to the specified parti 
tions of data; and 

directing all the converted-IO-requests to the interim 
device to which the specified LAS are assigned. 
At least one of the mass-storage devices may have a slow 

access time, and at least one of the interim devices may have 
a fast access time. 
The one or more mass-storage devices may be coupled to 

provide a balanced access to the first ranges of LAS. 
The one or more storage devices and the plurality of 

interim devices may operate in at least one of a storage area 
network, a network attached storage system, and an object 
storage architecture. 

There is further provided, according to an embodiment of 
the present invention, a method for data distribution, includ 
ing: 

receiving at least part of a data-set containing data; 
delineating the data into multiple equal size partitions; 
transferring the partitions to an initial set of storage devices 

So as to provide a balanced access to the devices; 
adding an additional storage device to the initial set, thus 

forming an extended set of the storage devices comprising the 
initial set and the additional storage device; and 

redistributing the partitions among the storage devices in 
the extended set so as to cause a portion of the partitions to be 
transferred from the storage devices in the initial set to the 
additional storage device, while maintaining the balanced 
access and without requiring a substantial transfer of the 
partitions among the storage devices in the initial set. 

There is further provided, according to an embodiment of 
the present invention, a method for data distribution, includ 
ing: 

receiving at least part of a data-set containing data; 
delineating the data into multiple equal size partitions; 
transferring the partitions to an initial set of storage devices 

So as to provide a balanced access to the devices; 
removing a surplus storage device from the initial set, thus 

forming a depleted set of the storage devices comprising the 
initial set less the Surplus storage device; and 

redistributing the partitions stored in the surplus device to 
the depleted set, while maintaining the balanced access and 
without requiring a substantial transfer of the partitions 
among the storage devices in the depleted set. 

There is further provided, according to an embodiment of 
the present invention, data distribution apparatus, including: 

an initial set of storage devices; 
an additional storage device to the initial set, thus forming 

an extended set of the storage devices comprising the initial 
set and the additional storage device; and 

a processor which is adapted to receive at least part of a 
data-set containing data, to delineate the data into multiple 
equal size partitions, to transfer the partitions to the initial set 
of storage devices so as to provide a balanced access to the 

5 initial set of storage devices, to redistribute the partitions 

60 

65 

among the storage devices in the extended set So as to cause a 
portion the partitions stored in the initial set to be transferred 
to the additional storage device, while maintaining the bal 
anced access and without requiring a Substantial transfer of 
the partitions among the storage devices in the initial set. 

There is further provided, according to an embodiment of 
the present invention, data distribution apparatus, including: 

an initial set of storage devices; 
a depleted set of storage devices, formed by Subtracting a 

Surplus storage device from the initial set; and 
a processor which is adapted to receive at least part of a 

data-set containing data, to delineate the data into multiple 



US 7,779,224 B2 

equal size partitions, to transfer the partitions to the initial set 
of storage devices so as to provide a balanced access to the 
initial set of storage devices, to redistribute the partitions of 
the Surplus storage device among the storage devices in the 
depleted set while maintaining the balanced access and with 
out requiring a Substantial transfer of the partitions among the 
storage devices in the depleted set. 
The present invention will be more fully understood from 

the following detailed description of the preferred embodi 
ments thereof, taken together with the drawings, a brief 
description of which is given below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates distribution of data addresses among data 
storage devices, according to an embodiment of the present 
invention; 

FIG. 2 is a flowchart describing a procedure for allocating 
addresses to the devices of FIG. 1, according to an embodi 
ment of the present invention; 

FIG. 3 is a flowchart describing an alternative procedure 
for allocating addresses to the devices of FIG. 1, according to 
an embodiment of the present invention; 

FIG. 4 is a schematic diagram illustrating reallocation of 
addresses when a storage device is removed from the devices 
of FIG. 1, according to an embodiment of the present inven 
tion; 

FIG. 5 is a schematic diagram illustrating reallocation of 
addresses when a storage device is added to the devices of 
FIG. 1, according to an embodiment of the present invention; 

FIG. 6 is a flowchart describing a procedure that is a modi 
fication of the procedure of FIG. 2, according to an embodi 
ment of the present invention; 

FIG. 7 is a schematic diagram which illustrates a fully 
mirrored distribution of data for the devices of FIG.1, accord 
ing to an embodiment of the present invention; 

FIG. 8 is a flowchart describing a procedure for performing 
the distribution of FIG. 7, according to an embodiments of the 
present invention; 

FIG. 9 is a schematic diagram of a storage system, accord 
ing to an embodiment of the present invention; 

FIG. 10 is a schematic diagram illustrating distribution of 
data in one or more storage devices of the system of FIG. 9; 

FIG. 11 is a schematic diagram illustrating an alternative 
method of distribution of data D in the system of FIG. 9. 
according to an embodiment of the present invention; 

FIG. 12 is a flowchart showing steps performed when data 
stored in devices of the system of FIG. 9 is redistributed if a 
device is added to or removed from the system, according to 
an embodiment of the present invention; 

FIG. 13 is a flowchart showing steps performed when data 
stored in devices of the system of FIG. 9 is redistributed if a 
device is added to or removed from the system, according to 
an alternative embodiment of the present invention; 

FIG. 14 is a schematic block diagram of an alternative 
storage system, according to an embodiment of the present 
invention; and 

FIG. 15 is a flow chart showing steps followed by the 
system of FIG. 14 on receipt of an input/output request, 
according to an embodiment of the present invention. 

DETAILED DESCRIPTION OF EMBODIMENTS 

Reference is now made to FIG. 1, which illustrates distri 
bution of data addresses among data storage devices, accord 
ing to an embodiment of the present invention. A storage 
system 12 comprises a plurality of separate storage devices 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
14, 16, 18, 20, and 22, also respectively referred to herein as 
storage devices B. B. B. B., and Bs, and collectively as 
devices B. It will be understood that system 12 may comprise 
Substantially any number of physically separate devices, and 
that the five devices B, used herein are by way of example. 
Devices B, comprise any components wherein data 33, also 
herein termed data D, may be stored, processed, and/or Ser 
Viced. Examples of devices B, comprise random access 
memory (RAM) which has a fast access time and which are 
typically used as caches, disks which typically have a slow 
access time, or any combination of such components. A host 
24 communicates with System 12 in order to read data from, 
or write data to, the system. A processor 26 uses a memory 28 
to manages system 12 and allocate data D to devices B. It 
will be appreciated that processor 26 may comprise one or 
more processing units, and that some or all of the processing 
units may be centralized or distributed in substantially any 
Suitable locations, such as within devices B, and/or host 24. 
The allocation of data D by processor 26 to devices B, is 
described in more detail below. 

Data D is processed in devices B, at logical addresses 
(LAs) of the devices by being written to the devices from host 
24 and/or read from the devices by host 24. At initialization of 
system 12 processor 26 distributes the LAs of devices B, 
among the devices using one of the pre-defined procedures 
described below. Processor 26 may then store data D at the 
LAS. 

In the description of the procedures hereinbelow, devices 
B, are assumed to have Substantially equal capacities, where 
the capacity of a specific device is a function of the device 
type. For example, for devices that comprise mass data Stor 
age devices having slow access times, such as disks, the 
capacity is typically defined in terms of quantity of data the 
device may store. For devices that comprise fast access time 
memories, such as are used in caches, the capacity is typically 
defined in terms of the quantity of data the device can store, 
the throughput rate of the device, or both parameters. Those 
skilled in the art will be able to adapt the procedures when 
devices B, have different capacities, in which case ratios of 
the capacities are typically used to determine the allocations. 
The procedures allocate groups of one or more LAS to devices 
B, so that balanced access to the devices is maintained, where 
balanced access assumes that taken over approximately 
10,000xN transactions with devices B, the fraction of 
capacities of devices B, used are equal to within approxi 
mately 1%, where N is the number of devices B, the values 
being based on a Bernoulli distribution. 

FIG. 2 is a flowchart describing a procedure 50 for allocat 
ing LAS to devices B, according to an embodiment of the 
present invention. The LAS are assumed to be grouped into k 
logical stripes/tracks, hereinbelow termed stripes 36 (FIG.1), 
which are numbered 1, ..., k, where k is a whole number. 
Each logical Stripe comprises one or more consecutive LAS, 
and all the stripes have the same length. Procedure 50 uses a 
randomizing function to allocate a stripe S to devices B, in 
system 12. The allocations determined by procedure 50 are 
stored in a table 32 of memory 28. 

In an initial step 52, processor 26 determines an initial 
value of s, the total number T of active devices B, in system 
12, and assigns each device B, a unique integral identity 
between 1 and T. In a second step 54, the processor generates 
a random integer R between 1 and T and allocates stripes to 
the device B, corresponding to R. In a third step 56, the 
allocation determined in step 54 is stored in table 32. Proce 
dure 50 continues, in a step 58, by incrementing the value of 
S, until all n have been allocated, i.e., until Sk, at which point 
procedure 50 terminates. 



US 7,779,224 B2 
11 

Table I below is an example of an allocation table generated 
by procedure 50, for system 12, wherein T-5. The identify 
ing integers for each device B, as determined by processor 26 
in step 52, are assumed to be 1 for B, 2 for B, ..., 5 for Bs. 

TABLE I 

Random 
Stripes Number R Device B. 

1 3 B. 
2 5 Bs 

6058 2 B2 
6059 2 B2 
6060 4 B4 
6061 5 Bs 
6062 3 B. 
6063 5 Bs 
6.064 1 B 
606S 3 B. 
6066 2 B2 
6067 3 B. 
6068 1 B 
6069 2 B2 
6O70 4 B4 
6O71 5 Bs 
6O72 4 B 
6O73 1 B 
6074 5 Bs 
6O75 3 B. 
6O76 1 B 
6O77 2 B2 
6078 4 B4 

FIG.3 is a flowchart showing steps of a procedure 70 using 
a consistenthashing function to allocate stripes to devices B, 
according to an alternative embodiment of the present inven 
tion. In an initial step 72, processor 26 determines a maximum 
number Nof devices B, for system 12, and a number of points 
k for each device. The processor then determines an integer 
M, such that MDNk. 

In a second step 74, processor 26 determines N sets J, ofk 
random values S, each set corresponding to a possible 
device B, as given by equations (1): 

Ji-S11, S12,..., S1} for device B1; 

J2={S21, S22,..., S2} for device B2: (1) 

JN-SN1, SN2, ..., S.N. for device By. 

Each random value S, is chosen from {0,1,2,..., M-1}, 
and the value of each S. may not repeat, i.e., each value may 
only appear once in all the sets. The sets of random values are 
stored in memory 28. 

In a third step 76, for each stripes processor 26 determines 
a value of S mod(M) and then a value of F(s mod(M)), where 
F is a permutation function that reassigns the value of S 
mod(M) so that in a final step 78 consecutive stripes will 
generally be mapped to different devices B. 

In final step 78, the processor finds, typically using an 
iterative search process, the random value chosen in step 74 
that is closest to F(s mod(M)) Processor 26 then assigns the 
device B, of the random value to stripes, according to equa 
tions (1). 

It will be appreciated that procedure 70 illustrates one type 
of consistent hashing function, and that other such functions 
may be used by System 12 to allocate LAS to devices operat 
ing in the system. All Such consistent hashing functions are 
assumed to be comprised within the scope of the present 
invention. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
Procedure 70 may be incorporated into memory 28 of 

system 12 (FIG. 1), and the procedure operated by processor 
26 when allocation of stripes S are required. Such as when data 
is to be read from or written to system 12. Alternatively, a 
table 30 of the results of applying procedure 70, generally 
similar to the first and last columns of Table I, may be stored 
in memory 28, and accessed by processor 26 as required. 

FIG. 4 is a schematic diagram illustrating reallocation of 
stripes when a storage device is removed from storage system 
12, according to an embodiment of the present invention. By 
way of example, device B is assumed to be no longer active 
in system 12 at a time t-1, after initialization timet–0, and the 
stripes initially allocated to the device, and any data stored 
therein, are reallocated to the depleted set of devices B. B. 
Ba, Bs of the system. Device B may be no longer active for a 
number of reasons known in the art, such as device failure, or 
the device becoming Surplus to the system, and Such a device 
is herein termed a surplus device. The reallocation is per 
formed using procedure 50 or procedure 70, typically accord 
ing to the procedure that was used at time t—0. As is illustrated 
in FIG.4, and as is described below, stripes from device Bare 
Substantially evenly redistributed among devices B. B. B. 
Bs. 

If procedure 50 (FIG. 2) is applied at t=1, the procedure is 
applied to the stripes of device B, so as to randomly assign 
the stripes to the remaining active devices of system 12. In this 
case, at step 52 the total number of active devices T-4, and 
identifying integers for each active device B, are assumed to 
be 1 for B, 2 for B, 4 for B 3 for Bs Processor 26 generates 
a new table, corresponding to the first and last columns of 
Table II below for the stripes that were allocated to B at t=0. 
an the stripes are reassigned according to the new table. Table 
II illustrates reallocation of stripes for device B. (from the 
allocation shown in Table I). 

TABLE II 

Random 
Device B. Number R Device B. 

Stripes = 0 t = t = 

1 B 1 B 
2 Bs Bs 

6058 B2 B2 
6059 B2 B2 
6060 B B 
6061 Bs Bs 
6062 B 3 Bs 
6063 Bs Bs 
6.064 B B 
606S B 2 B2 
6066 B2 B2 
6067 B 3 Bs 
6068 B B 
6069 B2 B2 
6O70 B4 B4 
6O71 Bs Bs 
6O72 B B 
6O73 B B 
6074 Bs Bs 
6O75 B 4 B 
6O76 B B 
6O77 B2 B2 
6078 

It will be appreciated that procedure 50 only generates 
transfer of stripes from the device that is no longer active in 
system 12, and that the procedure reallocates the stripes, and 
any data stored therein, Substantially evenly over the remain 
ing active devices of the system. No reallocation of stripes 



US 7,779,224 B2 
13 

occurs in system 12 other than stripes that were initially 
allocated to the device that is no longer active. Similarly, no 
transfer of data occurs other than data that was initially in the 
device that is no longer active. Also, any Such transfer of data 
may be performed by processor 26 transferring the data 
directly from the inactive device to the reallocated device, 
with no intermediate device needing to be used. 

Similarly, by consideration of procedure 70 (FIG.3), it will 
be appreciated that procedure 70 only generates transfer of 
stripes, and reallocation of data stored therein, from the 
device that is no longer active in system 12, i.e., device B. 
Procedure 70 reallocates the stripes (and thus their data) from 
B. Substantially evenly over the remaining devices B. B. B. 
Bs of the system, no reallocation of stripes or data occurs in 
system 12 other than stripes/data that were initially in B, and 
Such data transferas may be necessary may be performed by 
direct transfer to the remaining active devices. It will also be 
understood that if B is returned to system 12 at some future 
time, the allocation of stripes after procedure 70 is imple 
mented is the same as the initial allocation generated by the 
procedure. 

FIG. 5 is a schematic diagram illustrating reallocation of 
stripes when a storage device is added to storage system 12, 
according to an embodiment of the present invention. By way 
of example, a device 23, also herein termed device B, is 
assumed to be active in system 12 at time t-2, after initial 
ization time t—0, and some of the stripes initially allocated to 
an initial set of devices B. B. B. B. Bs, and any data stored 
therein, are reallocated to device B. The reallocation is per 
formed using procedure 70 or a modification of procedure 50 
(described in more detail below with reference to FIG. 6). 
typically according to the procedure that was used at time t O. 
As is illustrated in FIG. 5, and as is described below, stripes 
from devices B. B. B. B. Bs are Substantially evenly 
removed from the devices and are transferred to device B. 
B. B. B. B. Bs, B act as an extended set of the initial set. 

FIG. 6 is a flowchart describing a procedure 90 that is a 
modification of procedure 50 (FIG. 2), according to an alter 
native embodiment of the present invention. Apart from the 
differences described below, procedure 90 is generally simi 
lar to procedure 50, so that steps indicated by the same refer 
ence numerals in both procedures are generally identical in 
implementation. As in procedure 50, procedure 90 uses a 
randomizing function to allocate stripes s to devices B, in 
system 12, when a device is added to the system. The alloca 
tions determined by procedure 90 are stored in table 32 of 
memory 28. 
Assuming procedure 50 is applied at t=2, at step 52 the total 

number of active devices T-6, and identifying integers for 
each active device B, are assumed to be 1 for B, 2 for B, 3 
for B, 4 for B, 5 for Bs, 6 for B. In a step 91 processor 26 
determines a random integer between 1 and 6. 

In a step 92, the processor determines if the random num 
ber corresponds to one of the devices present at time t-0. If it 
does correspond, then processor 26 returns to the beginning 
of procedure 90 by incrementing stripes, via step 58, and no 
reallocation of stripe S is made. If it does not correspond, i.e., 
the random number is 6, corresponding to device B, the 
stripe is reallocated to device B. In step 56, the reallocated 
location is stored in table 32. Procedure 90 then continues to 
step 58. Table III below illustrates the results of applying 
procedure 90 to the allocation of stripes given in Table II. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 

TABLE III 

Random 
Device B. Number R Device B. 

Stripes = 0 t = 2 = 2 

1 B 6 B6 
2 Bs 4 Bs 

6058 B2 5 B2 
6059 B2 3 B2 
6060 B4 5 B4 
6061 Bs 6 B 
6062 B 3 Bs 
6063 Bs 1 Bs 
6.064 B 3 B 
606S B 1 B2 
6066 B2 6 B6 
6067 B 4 Bs 
6068 B 5 B 
6069 B2 2 B2 
6O70 B4 1 B4 
6O71 Bs 5 Bs 
6O72 B 2 B 
6O73 B 4 B 
6074 Bs 5 Bs 
6O75 B 1 B4 
6O76 B 3 B 
6O77 B2 6 B6 
6078 1 

It will be appreciated that procedure 90 only generates 
transfer of stripes, and thus reallocation of data, to device B. 
The procedure reallocates the stripes to B by transferring 
stripes, Substantially evenly, from devices B. B. B. B. Bs 
of the system, and no transfer of stripes, of data stored therein, 
occurs in System 12 other than stripes/data transferred to Be. 
Any such data transfer may be made directly to device B. 
without use of an intermediate device B. 

It will also be appreciated that procedure 70 may be applied 
when device B is added to system 12. Consideration of 
procedure 70 shows that similar results to those of procedure 
90 apply, i.e., that there is only reallocation of stripes, and data 
stored therein, to device B. As for procedure 90, procedure 
70 generates substantially even reallocation of stripes/data 
from the other devices of the system. 

FIG. 7 is a schematic diagram which illustrates a fully 
mirrored distribution of data D in storage system 12 (FIG. 1), 
and FIG. 8 is a flowchart illustrating a procedure 100 for 
performing the distribution, according to embodiments of the 
present invention. Procedure 100 allocates each specific 
stripe to a primary device B., and a copy of the specific stripe 
to a secondary device B., n1zn2. So that each Stripe is mir 
rored. To implement the mirrored distribution, in a first step 
102 of procedure 100, processor 26 determines primary 
device B, for locating a stripe using procedure 50 or proce 
dure 70. In a second step 104, processor 26 determines sec 
ondary device B, for the stripe using procedure 50 or proce 
dure 70, assuming that device B, is not available. In a third 
step 106, processor 26 allocates copies of the stripe to devices 
B, and B, and writes the device identities to a table 34 in 
memory 28, for future reference. Processor 26 implements 
procedure 100 for all stripes 36 in devices B. 

Table IV below illustrates devices B, and B, determined 
for stripes 6058-6078 of Table I, where steps 102 and 104 use 
procedure 50. 



US 7,779,224 B2 
15 

TABLE IV 

Stripe Device B, Device B2 

6058 B2 B 
6059 B2 Bs 
6060 B4 B2 
6061 Bs B4 
6062 B B 
6063 Bs B4 
6.064 B B 
606S B B4 
6066 B2 Bs 
6067 B B 
6068 B B 
6069 B2 Bs 
6O70 B4 B 
6O71 Bs B 
6O72 B4 B2 
6O73 B B 
6074 Bs B 
6O75 B Bs 
6O76 B B 
6O77 B2 B 
6078 B4 B 

If any specific device B, becomes unavailable, so that only 
one copy of the stripes on the device is available in system 12, 
processor 26 may implement a procedure similar to proce 
dure 100 to generate a new second copy of the stripes that 
were on the unavailable device. For example, if after allocat 
ing stripes 6058-6078 according to Table IV, device B 
becomes unavailable, copies of stripes 6062, 6065, 6067, and 
6075, need to be allocated to new devices in system 12 to 
maintain full mirroring. Procedure 100 may be modified to 
find the new device of each stripe by assuming that the 
remaining device, as well as device B, is unavailable. Thus, 
for stripe 6062, processor 26 assumes that devices B and B 
are unavailable, and determines that instead of device B, the 
stripe should be written to device B. Table V below shows the 
devices that the modified procedure 100 determines for 
stripes 6058, 6060, 6062. 6065, 6072, and 6078, when B. 
becomes unavailable. 

TABLEV 

Stripes Device B, Device B2 

6062 B B2 
606S B Bs 
6067 B B 
6O75 Bs B2 

It will be appreciated that procedure 100 spreads locations 
for stripes 36 substantially evenly across all devices B, while 
ensuring that each pair of copies of any particular stripe are on 
different devices, as is illustrated in FIG. 7. Furthermore, the 
even distribution of locations is maintained even when one of 
devices B, becomes unavailable. Either copy, or both copies, 
of any particular stripe may be used when host 24 communi 
cates with system 12. It will also be appreciated that in the 
event of one of devices B, becoming unavailable, procedure 
100 regenerates secondary locations for copies of stripes 36 
that are evenly distributed over devices B. 

Referring back to FIG.1, it will be understood that the sizes 
of tables 30, 32, or 34 are a function of the number of stripes 
in System 12, as well as the number of storage devices in the 
system. Some embodiments of the present invention reduce 
the sizes of tables 30, 32, or 34 by duplicating some of the 
entries of the tables, by relating different stripes mathemati 
cally. For example, if system 12 comprises 2,000,000 stripes, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
the same distribution may apply to every 500,000 stripes, as 
illustrated in Table VI below. Table VI is derived from Table I. 

TABLE VI 

Stripes Stripes Stripes Stripes Device B. 

1 500,001 1,000,001 1,500,001 B 
2 500,002 1,000,002 1,500,002 Bs 

6059 506,059 1,006,059 1,506,059 B 
6060 506,060 1,006,060 1,506,060 

It will be appreciated that procedures such as those 
described above may be applied substantially independently 
to different storage devices, or types of devices, of a storage 
system. For example, a storage system may comprise a dis 
tributed fast access cache coupled to a distributed slow access 
mass storage. Such a storage system is described in more 
detail in the U.S. Application titled “Distributed Independent 
Cache Memory, filed on 15 Jul. 2003, and assigned to the 
assignee of the present invention. The fast access cache may 
be assigned addresses according to procedure 50 or modifi 
cations of procedure 50, while the slow access mass storage 
may be assigned addresses according to procedure 70 or 
modifications of procedure 70. 

FIG.9 is a schematic diagram of a storage system 118, and 
FIG. 10 is a schematic diagram illustrating distribution of 
data D to stripes 36 in one or more storage devices B, of 
system 118, according to an embodiment of the present inven 
tion. Apart from the differences described below, the opera 
tion of system 118 is generally similar to that of system 12 
(FIG. 1), such that elements indicated by the same reference 
numerals in both systems 12 and 118 are generally identical in 
construction and in operation. In the example described with 
respect to FIGS.9 and 10, except where otherwise stated data 
D is assumed to be one set 120 of data, typically comprising 
a single file. Data D is delineated, typically by processor 26, 
into a number of sequential partitions 122, each partition 122 
comprising an equal number of bytes. Specific partitions 122 
are also referred to herein as P1, P2, . . . . and generally as 
partitions P. By way of example, data D is assumed to com 
prise 10 Mbytes, which are delineated into 1000 partitions P1, 
P2, ..., P1000, each partition comprising 10 Kbytes. 

Processor 26 allocates partitions P to stripes 36 so that 
balanced access to the stripes is maintained. Hereinbelow, by 
way of example there are assumed to be 100 stripes 36, 
referred to herein as stripes S1, S2, S100, and generally as 
stripes S, to which partitions P are allocated. Methods by 
which processor 26 may implement the allocation are 
described hereinbelow. 

In one method of allocation of partitions P, the partitions 
are allocated to Stripes S according to the following equa 
tions: 

PneS(n-mod(100)).n mod(100)z0; 

PneS100,n-mod(100)=0; (2) 

ne{1,2,..., 1000 

As is illustrated in FIG. 10 when data D is 10 Mbytes, 
equations (2) distribute partitions P substantially evenly over 
stripes S. 



US 7,779,224 B2 
17 

Equations (2) are a specific case of a generalized method 
for distributing a number p of partitions P over a numbers of 
stripes S. Equations (3) are the corresponding generalization 
of equations (2): 

PneSs,n-mod(s)=0; (3) 

Applying equations (3) to data D will implementa Substan 
tially even distribution for any data D, as long as p>s. It will 
be appreciated that if data D comprises more than one set of 
data, applying equations (3) to each of the sets will distribute 
the data of all the sets approximately evenly over stripes S, as 
long as p>s for every set. 

FIG. 11 is a schematic diagram illustrating an alternative 
method of distributing of data D to stripes 36 in one or more 
storage devices B. Of System 118, according to an embodi 
ment of the present invention. In the example described with 
respect to FIG. 11, data D is assumed to comprise a multi 
plicity of data-sets Ff of data, f={1,2,..., m}, each data-set 
Ff typically comprising one file, although it will be under 
stood that a data-set may comprise Substantially any group of 
data. Processor 26 delineates each data-set Ff into a number 
of partitions 132, each partition 132 comprising an equal 
number of bytes. A general expression used herein for a 
partition of data-set Ff is Pn(Ff), where n is a whole number 
having a maximum value p. The value of p typically varies 
from data-set to data-set, and depends on the number of bytes 
in Ff and the size of the partitions into which data-sets Ffare 
delineated. Specific partitions 132 are P1(F1), P2(F1),..., 
P1(F2), P2(F2),..., Pn(Ff),..., P1(Fm), P2(Fm), ... Pp (Fm). 
Partitions 132 are also referred to generally herein as parti 
tions P. 

In order to distribute partitions P between stripes S. pro 
cessor 26 generates a random positive integral offset H(Ff) for 
each data-set Ff. The processor may generate H(Ff) by any 
randomizing process known in the art, such as a hashing 
function, and sets the value of H(Ff) to be any integer between 
0 and (s-1), where s is the number of stripes S. Processor 26 
applies the respective offset H(Ff) to each data-set Ff, and 
allocates each of the partitions of each data-set Ff according 
to the following equations. 

To illustrate implementation of equations (4), by way of 
examplem is assumed equal to five, so that data D comprises 
data-sets F1, F2, F3, F4, and F5. The data-sets areassumed to 
be delineated into partitions of size 10 Kb. The sizes of 
data-sets F1, F2, F3, F4, and F5 are respectively 1.32 Mb, 
2.03 Mb, 1.01 Mb, 780 Kb, and 15 Kb, so that the value of p 
for each of the data-sets is 132, 203, 101, 78, and 2. The 
number of stripes, S, into which the partitions are allocated is 
assumed to be 100. 

Processor 26 is assumed to generate the following offsets: 
H(F1)=70, H(F2)=99, H(F3)=0, H(F4)=25, and H(F5)=40. 

Applying equations (4) to determine to which stripe parti 
tions are allocated gives: 

For data-set F1: P1(F1)eS71: ...; P30(F1)eS100; P31(F1) 
eS1; P32(F1)eS2: ...; P130(F1)eS100; P131(F1)eS1; P132 
(F1)eS2. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
For data-set F2: P1(F2)eS100; P2(F2)eS1; P3(F2)eS2: 

P4(F2)eS3:... P201 (F2)eS100; P202(F2)eS1; P203(F2)eS2. 
For data-set F3: P1(F3)eS1; P2(F3)eS2: P3(F3)eS3: . . . 

P100(F3)eS100; P101(F3)eS1. 
For data-set F4: P1(F4)eS26: ... P75(F4)eS100; P76(F4) 

eS1; P77(F4)eS2: P78(F4)eS3. 
For data-set F5: P1(F5)eS41; P2(F5)eS42. 
It will be appreciated that in general equations (4) distrib 

ute partitions P substantially evenly over stripes S, the distri 
bution being independent of the size of the partitions and of 
the relation of the number of partitions to the number of 
stripes. It will also be appreciated that while in the examples 
above stripes S are sequential, the allocation of the Stripes to 
physical devices B, typically spreads the individual stripes 
over devices B. 

Equations (2) or (3) may be implemented by storing one or 
more procedures 35 (FIG.9), corresponding to the equations, 
in memory 28. Equations (4) may be implemented by storing 
one or more procedures 39 corresponding to the equations in 
memory 28, together with a table 41 of random integral off 
sets H(Ff) for each data-set Ff. Alternatively, tables corre 
sponding to the results of procedures 35 and/or 39 may be 
stored in memory 28. Processor 26 uses the procedures and/or 
tables when accessing the data, typically for storage and/or 
retrieval of data, in order to determine the stripe correspond 
ing to a required partition. 

Equations (2), (3), and (4) are examples of methods for 
distributing partitions of data-sets among stripes, using a 
combination of a random number and a sequential partition 
number to determine to which Stripe a specific partition is 
allocated, and performing the allocation so that the partitions 
are evenly distributed among the stripes. The random number 
is chosen from a set of different numbers, the cardinality of 
the set being assigned to be equal to the number of stripes. All 
Such methods for distributing partitions evenly among 
stripes, using a sequential partition number and numbers 
chosen randomly from a set of different numbers, the set 
having a cardinality equal to the number of stripes, are 
assumed to be comprised within the scope of the present 
invention. 

FIG. 12 is a flowchart 140 showing steps performed when 
data D, stored in devices B, of system 118, is redistributed if 
a device is added to the system, or if a device is removed from 
the system, according to an embodiment of the present inven 
tion. 

In a first step 142, processor 26 allocates stripes S of 
devices B, according to one of the methods described above 
with respect to FIG. 2, FIG. 3, or FIG.8. 

In a second step 144, the processor delineates data D into 
equal size partitions. The processor then allocates the parti 
tions to stripes S according to equations (3) or (4), using 
procedures 35, 39 and/or tables as described above. 

In a third step 146, the processor stores the partitions to 
devices B, according to the stripes determined in the second 
step. 

If a device is added to system 118, in a fourth step 148, 
processor 26 reallocates the stripes of existing devices to the 
added device, as described above with respect to FIG. 5. In a 
fifth step 150, partitions corresponding to the reallocated 
stripes are stored to the added device. 

If a device is removed from system 118, in a sixth step 152 
processor 26 reallocates the stripes of the removed device to 
the remaining devices, as described above with respect to 
FIG. 4. In a seventh step 154, partitions corresponding to the 
reallocated Stripes are stored to the remaining devices, in 
accordance with the reallocated Stripes. 



US 7,779,224 B2 
19 

After step 150 or 154, the flowchart ends. 
The first three steps of flowchart 140 (steps 142,144, and 

146) use two distribution processes to ensure even distribu 
tion of data over devices B. Step 142 distributes the stripes 
Substantially evenly and randomly over the devices, and step 5 
144 distributes the partitions substantially evenly and ran 
domly over the stripes. The process used in step 142 is then 
typically used if, in steps 148 or 152, a device is added or 
removed, the process ensuring that the least amount of data 
transfer occurs because of the addition or removal. 

Some embodiments of the present invention store data D 
using one randomizing process. An example of such a process 
is described with respect to FIG. 13 below. 

FIG. 13 is a flowchart 160 showing steps performed when 
data D, stored in devices B, of system 118, is redistributed if 
a device is added to the system, or if a device is removed from 
the system, according to an alternative embodiment of the 
present invention. Data D may be in the form of one or more 
data-sets, as exemplified by FIGS. 10 and 11. 

In a first step 162, processor 26 allocates stripes S of 2O 
devices B, according to any convenient manner, typically a 
non-random manner. For example, if five devices B, com 
prise 100 stripes, device B is allocated stripes 1 to 20, device 
B is allocated stripes 21 to 40, . . . . device Bs is allocated 
stripes 81 to 100. 

In a second step 164, processor 26 delineates data D into 
equal size partitions. The processor then allocates the parti 
tions to stripes S according to one of the randomizing or 
consistent hashing procedures described above with respect 
to FIG.2, FIG.3, or FIG.8. The allocation typically generates 
an allocation table, similar to table I, having a first column as 
the partition number, and last columns as the stripe number 
and corresponding device number. The allocation table thus 
gives a relationship between each partition number and its 
stripe number, and is stored as a look-up table 43 in memory 
28, for use by processor 26 in accessing the partitions. Table 
VII below illustrates generation of table 43. Alternatively or 
additionally, a procedure 45 using a consistent hashing func 
tion, similar to the consistent hashing functions described 
above, is stored in memory 28, for use generate the relation 
ship 

In a third step 166, processor 26 stores the partitions to 
stripes, according to the relationship of step 164. 

If a device is added to system 118, in a fourth step 168, 
processor 26 reallocates partitions stored in existing devices 
to stripes of the added device. The reallocation is performed 
in a generally similar manner, mutatis mutandis, to the 
method described above with respect to FIG. 5. In a fifth step 
170, reallocated partitions are stored to the stripes of the 
added device. 

If a device is removed from system 118, in a sixth step 172 
processor 26 reallocates partitions stored in the removed 
device to stripes of the remaining devices. The reallocation is 
performed in a generally similar manner, mutatis mutandis, to 
the method described above with respect to FIG. 4. In a 
seventh step 174, reallocated partitions are stored to the 
stripes of the remaining devices, in accordance with the real 
location determined in step 172. 

After step 170 or 174, flowchart 160 ends. 
Table VII below illustrates generation of table 43 for data D 

corresponding to one set 120 of data (FIG. 10). Table VII 
assumes that partitions Pare stored to 100 stripes 36, referred 
to hereinas stripes S1, S2,..., S100, and the stripes have been 
evenly pre-allocated to five devices B. . . . Bs. A random 
number between 1 and 100 is used to allocate a partition to a 
stripe. 

10 

25 

30 

40 

45 

50 

55 

60 

65 

20 

TABLE VII 

Random 
Partition Number Stripe Device 

P1 12 S12 B1 
P2 32 S32 B2 

P500 36 S36 B2 
P5O1 79 S79 B4 
PSO2 2 S2 B1 
P503 32 S32 B2 

P995 5 S5 B1 
P996 84 S84 B5 
P997 5 S5 B1 
P998 93 S93 B5 
P999 44 S44 B3 
P1 OOO 3 S3 B1 

Table VII illustrates a relationship between partitions and 
stripes for a single set of data, using a random numbergen 
erator. Those skilled in the art will be able to adapt the pro 
cedures described herein for generating table VII using a 
consistent hashing function, and/or in the case of data D 
comprising more than one data-set. 

FIG. 14 is a schematic block diagram of an alternative 
storage system 210, according to an embodiment of the 
present invention. System 210 acts as a data memory for one 
or more host processors 252, which are coupled to the storage 
system by any means known in the art, for example, via a 
network such as the Internet or by a bus. Herein, by way of 
example, hosts 252 and system 210 areassumed to be coupled 
by a network 250. The data stored within system 210 is stored 
at Stripes 251 in one or more slow access time mass storage 
devices, hereinbelow assumed to be one or more disks 212, by 
way of example. The data is typically stored and accessed as 
partitions of data-sets. A system manager 254 acts as a control 
unit for the system. It will be appreciated that manager 254 
may comprise one or more processing units, and that some or 
all of the processing units may be centralized or distributed in 
Substantially any Suitable locations, such as within elements 
of system 210 and/or hosts 252. 

System 210 comprises one or more substantially similar 
interfaces 226 which receive input/output (IO) access 
requests for data in disks 212 from hosts 252. Each interface 
226 may be implemented in hardware and/or software, and 
may be located in storage system 210 or alternatively in any 
other suitable location, such as an element of network 250 or 
one of host processors 252. Between disks 212 and the inter 
faces are a plurality of interim devices, also termed herein 
interim caches 220, each cache 220 comprising memory hav 
ing fast access time, and each cache being at an equal level 
hierarchically. Each cache 220 typically comprises random 
access memory (RAM), Such as dynamic RAM, and may also 
comprise software. Caches 220 are coupled to interfaces 226 
by any suitable fast coupling system known in the art, such as 
abus or a Switch, so that each interface is able to communicate 
with, and transfer data to and from, any cache. Herein the 
coupling between caches 220 and interfaces 226 is assumed, 
by way of example, to be by a first cross-point switch 214. 
Interfaces 226 operate substantially independently of each 
other. Caches 220 and interfaces 226 operate as a data-set 
transfer system 227, transferring data-sets and/or partitions of 
data-sets between hosts 252 and disks 212. 

Caches 220 are typically coupled to disks 212 by a fast 
coupling system. The coupling between the caches and the 
disks may be by a “second plurality of caches to first plurality 
of disks’ coupling, herein termed an “all-to-all’ coupling, 



US 7,779,224 B2 
21 

Such as a second cross-point Switch 224. Alternatively, one or 
more Subsets of the caches may be coupled to one or more 
subsets of the disks. Further alternatively, the coupling may 
be by a "one-cache-to-one-disk’ coupling, herein termed a 
"one-to-one” coupling, so that one cache communicates with 
one disk. The coupling may also be configured as a combi 
nation of any of these types of coupling. Disks 212 operate 
substantially independently of each other. 
At setup of system 210 system manager 254 assigns a range 

of stripes to each cache 220. Manager 254 may subsequently 
reassign the ranges during operation of system, and an 
example of steps to be taken in the event of a cache change is 
described in application Ser. No. 10/620.249. The ranges are 
chosen so that the complete memory address space of disks 
212 is covered, and so that each stripe is mapped to at least one 
cache; typically more than one is used for redundancy pur 
poses. The assigned ranges for each cache 220 are typically 
stored in each interface 226 as a substantially similar table, 
and the table is used by the interfaces in routing IO requests 
from hosts 252 to the caches. Alternatively or additionally, the 
assigned ranges for each cache 220 are stored in each inter 
face 226 as a substantially similar function, Such as the func 
tion exemplified by equations (1) above. Further alternatively, 
any other Suitable method known in the art for generating a 
correspondence between ranges and caches may be incorpo 
rated into interfaces 226. Hereinbelow, the correspondence 
between caches and ranges is referred to as stripe-cache map 
ping 228, and it will be understood that mapping 228 gives 
each interface 226 a general overview of the complete cache 
address space of system 210. 

In system 210, each cache 220 contains a partition location 
table 221 specific to the cache. Each partition location table 
221 gives its respective cache exact location details, on disks 
212, for partitions of the range of stripes assigned to the 
cache. Partition location table 221 may be implemented as 
Software, hardware, or a combination of Software and hard 
ware. The operations of a table similar to partition location 
table 221, and also of a mapping similar to mapping 228, are 
explained in more detail in application Ser. No. 10/620.249. 

FIG. 15 is a flow chart showing steps followed by system 
210 on receipt of an IO request from one of hosts 252, accord 
ing to an embodiment of the present invention. Each IO 
request from a specific host 252 comprises several param 
eters, such as whether the request is a read or a write com 
mand, and which partitions and/or data-sets are included in 
the request. 

In an initial step 300, the IO request is transmitted to 
system 210 according to a protocol under which the hosts and 
the system are operating. The request is received by system 
210 at one of interfaces 226, herein, for clarity, termed the 
request-receiving interface (RRI) interface. 

In a stripe identification step 302, the RRI interface iden 
tifies from the request which partitions and/or data-sets are to 
be read, or which partitions and/or data-sets are to be written 
to. The RRI interface then determines the stripes correspond 
ing to the identified partitions and/or data-sets. 

In a cache identification step 304, the RRI interface refers 
to its mapping 228 to determine the caches corresponding to 
stripes determined in the step 302. For each stripe so deter 
mined, the RRI interface transfers a respective partition and/ 
or data-set request to the corresponding cache. It will be 
understood that each partition and/or data-set requestis a read 
or a write command, according to the originating IO request. 

In a cache response step 306, each cache 220 receiving a 
partition and/or data-set request from the RRI interface 
responds to the request. The response is a function of inter 
alia, the type of request, i.e., whether the request is a read or 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
a write command and whether the request is a “hit' or a 
“miss.” Thus, a partition and/or data-set may be written to one 
or more disks 212 from the cache and/or read from one or 
more disks 212 to the cache. A partition and/or data-set may 
also be written to the RRI from the cache and/or read from the 
RRI to the cache. If the response includes writing to or read 
ing from a disk 212, the cache uses its partition location table 
221 to determine the location on the corresponding disk of the 
partition and/or data-set. 
As stated in the Background of the Invention, there are a 

number of different types of data storage system known in the 
art, the systems differing, interalia, in the basic unit of storage 
that is used. For example, SAN systems use logical units 
(LUs), and NAS systems use files. It will be appreciated that 
embodiments of the present invention may be used substan 
tially regardless of the type of storage system that is imple 
mented. For example, referring back to FIG. 11, sets of data 
F1, F2, F3, . . . may comprise sets of files, or sets of file 
meta-data, so that system 118 may operate within a NAS 
system. Alternatively, sets of data F1, F2, F3, ... may com 
prise sets of storage objects, so that system 118 may operate 
within an OSA system or within a CAS system. Furthermore, 
sets of data F1, F2, F3, ... may comprise other classifications 
of data known in the art, such as data comprising a data 
packet, a video tape, a music track, an image, a database 
record, contents of a logical unit, and/or an email. 

It will be appreciated that the embodiments described 
above are cited by way of example, and that the present 
invention is not limited to what has been particularly shown 
and described hereinabove. Rather, the scope of the present 
invention includes both combinations and Subcombinations 
of the various features described hereinabove, as well as 
variations and modifications thereof which would occur to 
persons skilled in the art upon reading the foregoing descrip 
tion and which are not disclosed in the prior art. 
We claim: 
1. A method for storing data, comprising: 
distributing a first plurality of groups of logical addresses 
among one or more storage devices; 

receiving a second plurality of data-sets containing the data 
to be stored; 

assigning each data-set among the plurality of data-sets a 
number chosen from a first plurality of different num 
bers; 

partitioning each data-set into multiple partitions, so that 
each partition among the multiple partitions receives a 
sequential partition number, 

assigning each partition within each data-set to be stored at 
a specific group of logical addresses in accordance with 
the sequential partition number of the partition and the 
number assigned to the data-set; and 

storing each partition at the assigned specific group of 
logical addresses; wherein: 
the first plurality of groups comprises S groups, each 

having a different integral group number between 1 
and s, 

the number comprises an integer r randomly chosen 
from and including integers between 0 and S-1, 

the sequential partition number comprises a positive 
integer p, and 

the group number of the assigned specific group is (rip) 
modulo(s) if (rip)modulo(s)z0, and s if 
(rip)modulo(s)=0. 

2. The method according to claim 1, wherein the multiple 
partitions comprise equal size partitions. 

3. The method according to claim 1, wherein the data-sets 
comprise data from at least one of a file, file meta-data, a 



US 7,779,224 B2 
23 

storage object, a data packet, a video tape, a music track, an 
image, a database record, contents of a logical unit, and an 
email. 

4. The method according to claim 1, wherein the one or 
more storage devices are operative in at least one of a storage 
area network, a network attached storage system, and an 
object storage architecture. 

5. The method according to claim 1, wherein the number is 
chosen by a randomizing function. 

6. The method according to claim 1, wherein the number is 
chosen by a consistent hashing function. 

7. A data storage system, comprising: 
one or more mass-storage devices, coupled to store parti 

tions of data at respective first ranges of logical 
addresses (LAS); 

a plurality of interim devices, configured to operate inde 
pendently of one another, each interim device being 
assigned a respective second range of the LAS and 
coupled to receive the partitions of data from and pro 
vide the partitions of data to the one or more mass 
storage devices having LAS within the respective second 
range; and 

one or more interfaces, which are adapted to receive input/ 
output (IO) requests from host processors, to identify 
specified partitions of data in response to the IO 
requests, to convert the IO requests to converted-IO 
requests directed to specified LAS in response to the 
specified partitions of data, and to direct all the con 
verted-IO-requests to the interim device to which the 
specified LAS are assigned. 

8. The storage system according to claim 7, wherein at least 
one of the mass-storage devices has a slow access time, and 
wherein at least one of the interim devices has a fast access 
time. 

9. The storage system according to claim 7, wherein the 
one or more mass-storage devices are coupled to provide a 
balanced access to the first ranges of LAS. 

10. The storage system according to claim 7, wherein the 
storage system is operative in at least one of a storage area 
network, a network attached storage system, and an object 
storage architecture. 

11. The data storage system according to claim 7, wherein 
the one or more interfaces are further adapted to receive at 
least part of a data-set containing the data. 

12. The data storage system according to claim 11, wherein 
the data-set comprises data from at least one of a file, file 
meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

13. A data storage system, comprising: 
one or more storage devices wherein are distributed a first 

plurality of groups of logical addresses; and 
a processing unit which is adapted to: 
receive a second plurality of data-sets containing the data 

to be stored, assign each data-set among the plurality of 
data-sets a number chosen from a first plurality of dif 
ferent numbers, 

partition each data-set into multiple partitions, so that each 
partition among the multiple partitions receives a 
sequential partition number, 

assign each partition within each data-set to be stored at a 
specific group of logical addresses in the one or more 
storage devices in accordance with the sequential parti 
tion number of the partition and the number assigned to 
the data-set, and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

24 
store each partition in the one or more storage devices at the 

assigned specific group of logical addresses; wherein: 
the first plurality of groups comprises S groups each 

having a different integral group number between 1 
and s, 

the number comprises an integer r randomly chosen 
from and including integers between 0 and S-1, 

the sequential partition number comprises a positive 
integer p, and 

the group number of the assigned specific group is (rip) 
modulo(s) if (rip)modulo(s)z0, and s if 
(rip)modulo(s)=0. 

14. The data storage system according to claim 13, wherein 
the multiple partitions comprise equal size partitions. 

15. The data storage system according to claim 13, wherein 
the data-sets comprise data from at least one of a file, file 
meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

16. The data storage system according to claim 13, wherein 
the one or more storage devices and the processing unit are 
operative in at least one of a storage area network, a network 
attached storage system, and an object storage architecture. 

17. The data storage system according to claim 13, wherein 
the number is chosen by a randomizing function. 

18. The data storage system according to claim 13, wherein 
the number is chosen by a consistent hashing function. 

19. The data storage system according to claim 13, wherein 
each data-set comprises data from at least one of a file, file 
meta-data, a storage object, a data packet, a video tape, a 
music track, an image, a database record, contents of a logical 
unit, and an email. 

20. A method for storing data, comprising: 
coupling one or more mass-storage devices to store parti 

tions of data at respective first ranges of logical 
addresses (LAS); 

configuring a plurality of interim devices to operate inde 
pendently of one another; 

assigning each interim device a respective second range of 
the LAS: 

coupling each interim device to receive the partitions of 
data from and provide the partitions of data to the one or 
more mass-storage devices having LAS within the 
respective second range; 

receiving input/output (IO) requests from host processors; 
identifying specified partitions of data in response to the IO 

requests; 
converting the IO requests to converted-IO-requests 

directed to specified LAs in response to the specified 
partitions of data; and 

directing all the converted-IO-requests to the interim 
device to which the specified LAS are assigned. 

21. The method according to claim 20, wherein at least one 
of the mass-storage devices has a slow access time, and 
wherein at least one of the interim devices has a fast access 
time. 

22. The method according to claim 20, wherein the one or 
more mass-storage devices are coupled to provide a balanced 
access to the first ranges of LAS. 

23. The method according to claim 20, wherein the one or 
more storage devices and the plurality of interim devices are 
operative in at least one of a storage area network, a network 
attached storage system, and an object storage architecture. 


