ES 3 001 562 T3

OFICINA ESPANOLA DE
PATENTES Y MARCAS

by v ~
z é ESPANA @Namero de publicacién: 3 001 562
@Int. Cl.:

HO4N 21/4728 01101
HO4N 21/84 (2011.01)
HO4N 21/854 (2011.01)

®@ TRADUCCION DE PATENTE EUROPEA T3

Fecha de presentacién y nimero de la solicitud europea: 09.02.2016 E 22187970 (3)
Fecha y nimero de publicacion de la concesion europea: 25.12.2024 EP 4102850

Titulo: Encapsulacion de datos de imagenes

Prioridad: @ Titular/es:
10.02.2015 GB 201502205 CANON KABUSHIKI KAISHA (100.00%)
17.02.2015 GB 201502666 30-2, Shimomaruko 3-chome Ohta-ku
Tokyo, Tokyo 146-8501, JP
Fecha de publicacién y mencién en BOPI de la (@ Inventores:
traduccion de la patente: MAZE. FREDERIC:
05.03.2025 DENOUAL, FRANCK;

CONCOLATO, CYRIL y
LE FEUVRE, JEAN

Agente/Representante:
DURAN-CORRETJER, S.L.P

AVisO:En el plazo de nueve meses a contar desde la fecha de publicacion en el Boletin Europeo de Patentes, de
la mencién de concesion de la patente europea, cualquier persona podra oponerse ante la Oficina Europea
de Patentes a la patente concedida. La oposicion debera formularse por escrito y estar motivada; sélo se
considerara como formulada una vez que se haya realizado el pago de la tasa de oposicién (art. 99.1 del
Convenio sobre Concesion de Patentes Europeas).

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

DESCRIPCION
Encapsulacion de datos de imagenes
SECTOR DE LA INVENCION

La presente invencion se refiere al almacenamiento de datos de imagenes, tales como imagenes fijas,
rafagas de imagenes fijas o datos de video en un contenedor multimedia con metadatos descriptivos. Dichos
metadatos, en general, proporcionan un acceso facil a los datos de imagenes y a porciones de los datos de
imagenes.

ESTADO DE LA TECNICA ANTERIOR

Algunos de los enfoques descritos en esta seccion podrian ser implementados pero, no son necesariamente
enfoques que hayan sido concebidos o implementados anteriormente. Por lo tanto, los enfoques descritos en
esta seccion no son necesariamente técnica anterior a las reivindicaciones de esta solicitud, y no estan
admitidos como técnica anterior por inclusion en esta seccion.

El estandar HEVC define un perfil para la codificacion de imagenes fijas, y describe herramientas especificas
para comprimir imagenes fijas individuales o rafagas de imagenes fijas. Se ha propuesto una extension del
formato de archivo multimedia basado en 1SO (ISO Base Media File Format, ISOBMFF) utilizado para este
tipo de datos de imagen para su inclusion en el estandar ISO/IEC 23009, en la Parte 12, bajo el nombre de
“Image File Format”. El estandar abarca dos formas de almacenamiento correspondientes a diferentes casos
de uso:

- el almacenamiento de secuencias de imagenes, con temporizacion que se utiliza opcionalmente en el
decodificador, y en el que las imagenes pueden depender de otras imagenes, y

- el almacenamiento de imagenes individuales y conjuntos de imagenes codificadas de manera
independiente.

En el primer caso, la encapsulacion es parecida a la encapsulacion de las pistas de video en el formato de
archivo multimedia basado en 1SO (véase el documento “Information technology - Coding of audio-visual
objects - Part 12: ISO base media file format”, ISO/IEC 14496-12:2008, Tercera edicion, octubre de 2008), y
se utilizan las mismas herramientas y conceptos, tales como las cajas “trak” y el agrupamiento de muestras
para la descripcion. La caja “pista” es una caja de formato de archivo que contiene sub-cajas para describir
una pista, es decir, una secuencia temporizada de muestras relacionadas.

En el segundo caso, un conjunto de cajas de ISOBMFF, se utilizan las cajas “meta”. Estas cajas y su
jerarquia ofrecen menos herramientas de descripcion que las cajas "pista’ y se refieren a "elementos de
informacion” o “elementos”, en lugar de a muestras relacionadas.

El formato de archivo de imagen se puede utilizar para visualizar localmente archivos multimedia o para
transmitir en continuo presentaciones multimedia. Las imagenes fijas de HEVC tienen muchas aplicaciones
que plantean muchos problemas.

Las rafagas de imagenes son una aplicacion. Las rafagas de imagenes son secuencias de imagenes fijas
capturadas por una camara y almacenadas como una sola representacion (muchos elementos de imagen que
hacen referencia a un bloque de datos). Los usuarios pueden querer realizar varios tipos de acciones en
estas imagenes: seleccionar una como miniatura o portada, aplicar efectos a estas imagenes o similares.

Por lo tanto, existe una necesidad de metadatos descriptivos para identificar la lista de imagenes con sus
bytes correspondientes en el bloque de datos.

La fotografia digital es otra aplicacion. En la fotografia digital, los usuarios tienen acceso a diferentes
resoluciones de la misma imagen (diferentes exposiciones, diferentes enfoques, etc.). Estas diferentes
resoluciones tienen que ser almacenadas como metadatos para que se pueda seleccionar una y se pueda
localizar y extraer el fragmento de datos correspondiente para su procesamiento (renderizado, edicion,
transmision o similar).

Con el aumento de la resolucion de la imagen en términos de tamafo, existe la necesidad de proporcionar
una descripcion suficiente para que solo algunas partes espaciales de estas imagenes grandes puedan ser
identificadas y extraidas faciimente.

Otro tipo de aplicaciones es el acceso a imagenes especificas a partir de una secuencia de video, por
gjemplo, para el resumen de video, imagenes de prueba en datos de videovigilancia o similares.

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

Para este tipo de aplicaciones, existe la necesidad de metadatos de imagen que permitan acceder facilmente
a las imagenes clave, ademas de los datos de video comprimidos y los metadatos de las pistas de video.

Ademas, las camaras profesionales han alcanzado altas resoluciones espaciales. Los videos o imagenes con
resolucion 4K2K son actualmente comunes. Incluso los videos o imagenes 8k4k son actualmente comunes.
En paralelo, los videos se reproducen cada vez mas en dispositivos moéviles y conectados con capacidades
de transmision de video en continuo. Por lo tanto, dividir los videos en teselas resulta importante si el usuario
de un dispositivo moévil desea visualizar o desea centrarse en subpartes del video manteniendo o incluso
mejorando la calidad. Utilizando teselas, el usuario puede solicitar de manera interactiva subpartes espaciales
del video.

Por lo tanto, existe la necesidad de describir estas subpartes espaciales del video de manera compacta en el
formato de archivo, para que sean accesibles sin un procesamiento adicional mas alla del simple andlisis
sintactico de las cajas de metadatos. En el caso de las imagenes correspondientes a los videos descritos de
esta manera, también resulta de interés para el usuario acceder a subpartes espaciales.

El estandar ISO/IEC 23009 abarca dos modos de encapsular imagenes fijas en el formato de archivo, que
han sido analizados recientemente.

Un modo se basa en cajas “pista” y en la nocién de secuencia temporizada de muestras relacionadas con
herramientas de descripcion asociadas, y otro se basa en cajas “meta’, basadas en elementos de
informacioén, en lugar de muestras, que proporcionan menos herramientas de descripcion, especialmente
para la descripcion de la zona de interés y el soporte de la teselacion.

Por lo tanto, existe la necesidad de proporcionar soporte para la teselacion en el nuevo formato de archivo de
imagen.

La utilizacién de teselas es conocida comunmente en |a técnica anterior, especialmente en el momento de la
compresion. En lo que respecta a su indexacion en el formato de archivo multimedia basado en 1SO, existen
descriptores de teselacion en los borradores para enmienda de la Parte 15 del estandar ISO/IEC 14496
“Carriage of NAL unit structured video in the ISO Base Media File Format”.

Sin embargo, estos descriptores se basan en cajas “pista” y en herramientas de agrupamiento de muestras, y
no se pueden utilizar en el formato de archivo de imagen fija cuando se utiliza el enfoque basado en "meta”.
Sin dichos descriptores, resulta complicado seleccionar y extraer teselas de una imagen codificada
almacenada en este formato de archivo.

La figura 1 muestra la descripcion de una imagen fija codificada con teselas en la caja “meta” (100) del
formato de archivo multimedia basado en ISO, tal como se da a conocer en la contribucion de MPEG
m32254.

Un elemento de informacion esta definido para la imagen completa 101, ademéas de los elementos de
informacion respectivos para cada imagen de tesela (102, 103, 104 y 105). Esos elementos de informacion se
almacenan en una caja denominada “ltemInfoBox” (iinf). La caja (106), denominada “ltemReferenceBox”, del
estandar ISO BMFF se utiliza para indicar que existe una relacién de “tesela” (107) entre el elemento de
informacion de la imagen completa y los cuatro elementos de informacion correspondientes a las imagenes
de tesela (108). Se utilizan identificadores de cada elemento de informacion, de modo que una caja (109),
denominada “ltemLocationBox”, proporciona el o los intervalos de bytes en los datos codificados (110) que
representan cada elemento de informacion. Otra caja “ltemReferenceBox” (112) se utiliza para asociar
metadatos EXIF (111) con el elemento de informacién para la imagen completa (101) y se crea un bloque de
datos (111) correspondiente en la caja de datos multimedia (110). Asimismo, se crea un elemento de
informacion (113) adicional para identificar los metadatos EXIF.

Incluso si la imagen completa y sus teselas se introducen como elementos de informacion, en este caso no
se proporciona informacion de teselacion. Ademas, al asociar metadatos adicionales con un elemento de
informacion (tal como EXIF), no se crea ningun bloque de datos referenciado mediante un
“ltemReferenceBox” adicional.

La reutilizacién de la informacion sobre teselacion desde EXIF y la reutilizacion del mecanismo definido en el
borrador del formato de archivo de imagen fijas no permitiria describir una cuadricula no regular con las
etiguetas de EXIF existentes.

Por lo tanto, sigue existiendo la necesidad de mejoras en el formato de archivo para imagenes fijas,
especialmente imagenes fijas de HEVC. En concreto, existe una necesidad de procedimientos para extraer
una zona de interés en imagenes fijas almacenadas con este formato de archivo.

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

La invencién se encuentra dentro del contexto anterior.

CARACTERISTICAS DE LA INVENCION

Segun la invencion, se da a conocer un procedimiento para encapsular un flujo de bits codificado que
representa una o varias imagenes, un procedimiento para procesar un archivo de datos encapsulado, un
dispositivo servidor, un dispositivo cliente y un programa informatico segun las reivindicaciones adjuntas.

BREVE DESCRIPCION DE LOS DIBUJOS

Otras caracteristicas y ventajas de la invencion resultaran evidentes a partir de la siguiente descripcion de
realizaciones a modo de ejemplo no limitativas, haciendo referencia a los dibujos adjuntos, en los que,
ademas de la figura 1:

- la figura 2 muestra un ejemplo de un video teselado;

- la figura 3 muestra diversas configuraciones de tesela/corte en HEVC;

- la figura 4 muestra la encapsulacion de teselas segun el formato de archivo multimedia basado en ISO con
cajas “pista’;

- la figura 5 muestra los metadatos estandar para describir elementos de informacion en cajas “meta” del
ISOBMFF;

- la figura 6 muestra una extensién a modo de ejemplo de la descripcion del elemento de informacion;

- la figura 7 muestra los mecanismos de referencia entre elementos de informacion;

- la figura 8 muestra un contexto de implementacion de realizaciones de la invencion;

- la figura 9 es un diagrama de blogues esquematico de un dispositivo informatico para la implementacion
de una o varias realizaciones de |a invencion.

DESCRIPCION DETALLADA DE LA INVENCION
A continuacion se describen realizaciones de la invencion.

Para comprender mejor el contexto técnico, se explica la teselacion de video haciendo referencia a la
figura 2, que muestra un video (200) que tiene cuadros temporales consecutivos. Cada cuadro (201) esta
dividido en 8 porciones (en este caso, porciones rectangulares) denominadas “teselas” T1 a T8. El nimero y
la forma de las teselas pueden ser diferentes. A continuacién, se considera gue la teselacion es la misma
cualquiera que sea el indice del cuadro de video.

El resultado de esta teselacion son 8 sub-videos (202) independientes. Estos sub-videos representan una
particion del video completo. Cada sub-video independiente puede ser codificado como un flujo de bits
independiente, segun los estandares AVC o HEVC, por gjemplo. El sub-video también puede formar parte de
un solo flujo de bits de video, tal como, por ejemplo, teselas del estandar HEVC o cortes del estandar AVC.

El estandar HEVC define diferentes subdivisiones espaciales de imagenes: teselas, cortes y segmentos de
corte. Estas diferentes subdivisiones (o particiones) han sido introducidas para diferentes propositos: los
cortes estan relacionados con aspectos de transmision en continuo, mientras que las teselas y los segmentos
de corte han sido definidos para un procesamiento en paralelo.

Una tesela define una zona rectangular de una imagen que contiene un nimero entero de unidades de arbol
de codificacion (Coding Tree Units, CTU). La figura 3 muestra la teselacion de una imagen (300) definida por
limites de fila y columna (301, 302). Esto hace de las teselas buenas candidatas para la descripcion de zonas
de interés en términos de posicion y tamafio. No obstante, la organizacion del flujo de bits estandar de HEVC
en términos de sintaxis y su encapsulacion en unidades de capa abstracta de red (Network Abstract Layer,
NAL) esta basada mas bien en cortes (como en el estandar AVC).

Segun el estandar HEVC, un corte es un conjunto de segmentos de corte, donde como minimo el primer
segmento de corte es un segmento de corte independiente, y los demas, si existen, son segmentos de corte
dependientes. Un segmento de corte contiene un numero entero de CTU consecutivas (en el orden de
escaneo de rasterizado). No tiene necesariamente una forma rectangular (por lo que es menos apropiado que
las teselas para representar la zona de interés). Un segmento de corte se codifica en el flujo de bits de HEVC
como una cabecera denominada “slice_segment _header” seguida de datos denominados
“slice_segment_data”. Los segmentos de corte independientes y los segmentos de corte dependientes se
diferencian por su cabecera: los segmentos de corte dependientes tienen una cabecera méas corta debido a
que reutilizan informacion de la cabecera del segmento de corte independiente. Tanto los segmentos de corte
independientes como los dependientes contienen una lista de puntos de entrada en el flujo de bits: ya sea a
teselas o a puntos de sincronizacion de decodificacion entrépica.

La figura 3 muestra diferentes configuraciones de las imagenes 310 y 320 de cortes, segmentos de corte y

4

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

teselas. Estas configuraciones difieren de la configuracion de imagen 300 en la que una tesela tiene un corte
(que contiene solo un segmento de corte independiente). La imagen 310 esta dividida en dos teselas
verticales (311, 312) y un corte (con 5 segmentos de corte). La imagen 320 esta dividida en dos teselas
(321, 322), la tesela izquierda 321 que tiene dos cortes (cada uno con dos segmentos de corte), la tesela
derecha 322 que tiene un corte (con dos segmentos de corte). El estandar HEVC define reglas de
organizacion entre teselas y segmentos de corte que pueden ser resumidas de la siguiente manera (se tienen
que cumplir una o ambas condiciones):

- todas las CTU en un segmento de corte pertenecen a la misma tesela, y
- todas las CTU en una tesela pertenecen al mismo segmento de corte.

Para tener transporte y soporte de zona de interés coincidentes, se prefiere la configuracion 300, en la que
una tesela contiene un corte con un segmento independiente. No obstante, la solucién de encapsulacion
funcionaria con las otras configuraciones 310 o 320.

Si bien la tesela es el soporte apropiado para las zonas de interés, el segmento de corte es la entidad que
realmente se colocaréd en las unidades de NAL para el transporte en la red y se afiadira para formar una
unidad de acceso (imagen codificada o muestra a nivel de formato de archivo). Segun el estandar HEVC, el
tipo de unidad de NAL se especifica en una cabecera de unidad de NAL. Para unidades de NAL del tipo
“segmento de corte codificado”, el slice_segment_header indica por medio del elemento de sintaxis
“slice_segment_address” la direccion del primer bloque del arbol de codificacion en el segmento de corte. La
informacion de teselacion se proporciona en una unidad de NAL de PPS (conjunto de parametros de imagen,
Picture Parameter Set). La relacién entre un segmento de corte y una tesela se puede deducir a partir de
estos parametros.

Por definicion, en las fronteras de las teselas, las predicciones espaciales se restablecen. Sin embargo, nada
impide que una tesela utilice predictores temporales de una tesela diferente en el o los cuadros de referencia.
Para construir teselas independientes, en el momento de |a codificacion, los vectores de movimiento para las
unidades de prediccion dentro de una tesela estan obligados a permanecer en la tesela ubicada
conjuntamente en el o los cuadros de referencia. Ademas, los filtros en bucle (desbloqueo y SAQ) tienen que
ser desactivados en las fronteras de las teselas para que no se introduzca ninguna deriva del error al
decodificar solo una tesela. Este control de los filtros en bucle ya esta disponible en el estandar HEVC y se
establece en cabeceras de segmentos de corte con el indicador denominado
“loop_filter_across_tiles_enabled_flag”. Estableciendo explicitamente este indicador en 0, los pixeles en las
fronteras de las teselas no dependen de los pixeles que caen en la frontera de las teselas vecinas. Cuando
se cumplen las dos condiciones sobre vectores de movimiento y sobre filtros en bucle, se dice que las teselas
son “decodificables de manera independiente” o “independientes”.

Cuando una secuencia de video se codifica como un conjunto de teselas independientes, puede ser
decodificada utilizando una decodificacion basada en teselas de un cuadro a otro sin correr el riesgo de
perder datos de referencia o de propagar errores de reconstruccion. Esta configuracion posibilita reconstruir
solo una parte espacial del video original que corresponde, por ejemplo, a una zona de interés.

A continuacion, se consideran teselas independientes.

Haciendo referencia a la figura 4, se describe la encapsulacion de teselas en formato de archivo ISOBMFF.
Por ejemplo, cada tesela es encapsulada en una pista dedicada. La informacién de configuracion e
inicializacion comun a todas las teselas se encapsula en una pista especifica, denominada por ejemplo “pista
base de teselas”. El video completo se encapsula, por lo tanto, como una composicion de todas estas pistas,
a saber, |a pista base de teselas y el conjunto de pistas de tesela.

La figura 4 muestra una encapsulacion a modo de ejemplo. Un modo de encapsular video teselado segun el
estandar ISOBMFF es dividir cada tesela en una pista dedicada, encapsular la informacién de configuracion e
inicializacién comun a todas las teselas en una pista especifica, denominada por ejemplo “pista base de
teselas” y encapsular el video completo como una composicion de todas estas pistas: pista base de teselas
mas un conjunto de pistas de tesela. La encapsulacion se denomina, por lo tanto, “encapsulacion de tesela
multipista”. En la figura 4 se proporciona un ejemplo de encapsulacion de tesela multipista.

La caja 401 representa la caja ISOBMFF principal “moov”, y contiene la lista completa de pistas con sus
identificadores. Por ejemplo, las cajas 411 a 414 representan pistas de tesela (cuatro teselas en el presente
gjemplo) y la caja 420 representa la pista base de teselas. Se pueden utilizar pistas adicionales, tales como
pistas de audio o de texto, y encapsularlas en el mismo archivo. Sin embargo, por razones de concision,
dichas pistas adicionales no se analizan en el presente documento.

Tal como se representa en la figura 4, los datos de tesela son divididos en pistas independientes y
direccionables, de modo que cualquier combinacién de pistas de tesela puede ser reconstruida facilmente a

5

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

partir de la pista base de teselas haciendo referencia a las pistas de tesela para decodificacion y
visualizacion. La pista base de teselas también se puede denominar “pista compuesta” o “pista de referencia’,
puesto que esta disefiada para permitir la combinacion de cualesquiera teselas: una, muchas o todas las
teselas. La pista base de teselas 420 contiene informacion comun a todas las pistas de tesela y una lista de
muestras 450 (solo se representa la primera en la figura 4) en una caja “mdat”. Cada muestra 450 de la pista
base de teselas 420 se construye por referencia a cada pista de tesela mediante el uso de extractores (451
a 454, cada uno de los cuales representa un extractor para cada tesela). Cada pista de tesela 411 a 414
representa una parte espacial del video integro, o con todos los cuadros. La descripcion de la tesela
(posicion, tamafio, ancho de banda, etc.) se almacena en las cajas de cabecera de pista (no representadas)
de cada pista de tesela 411 a 414. La pista base de teselas y cada pista de tesela estan referenciadas entre
si (405) mediante una caja “TrackReferenceBox” en cada pista. Cada pista de tesela 411 a 414 se refiere a la
pista base de teselas 420 como la pista “tbas” (“tbas” es un codigo especifico que indica una dependencia de
codificacion de cada pista de tesela con la pista base de teselas, en concreto dénde encontrar el parametro
“HEVCDecoderConfigurationRecord” que permite configurar el decodificador de video que procesara el flujo
elemental resultante del analisis sintactico del formato de archivo). Por el contrario, para permitir la
reconstruccion completa del video, la pista base de teselas 420 indica una dependencia de tipo “scal” a cada
pista de tesela (405). Esto es para indicar la dependencia de codificacion y reflejar la definicion de
muestra 450 de la pista base de teselas como extractores de los datos de pistas de tesela. Estos extractores
son extractores especificos que, en el momento del analisis sintactico, pueden soportar la ausencia de datos.
En la figura 4, para proporcionar una version del archivo que pueda ser transmitida en continuo, cada pista se
descompone en segmentos multimedia (431 a 434 para las pistas de tesela y 460 para la pista base de
teselas). Cada segmento multimedia comprende uno o varios fragmentos de pelicula, indicados por la caja
“moof’ mas los datos. Para las pistas de tesela, la parte de datos corresponde a una subparte espacial del
video, mientras que para la pista base de teselas contiene los conjuntos de parametros, los mensajes SEI
cuando estan presentes y la lista de extractores. La caja “moov” 401 en el caso de una aplicacion de
transmision en continuo encajaria en un segmento de inicializacion. La figura 4 muestra solo un segmento,
pero las pistas se pueden descomponer en cualquier nimero de segmentos, siendo la limitacion el que los
segmentos para las pistas de tesela y para la pista base de teselas sigan la misma descomposicion temporal
(es decir, estén alineados temporalmente); esto es para hacer posible conmutar entre un video completo y
una tesela o un conjunto de teselas. La granularidad de esta descomposicion temporal no se describe en el
presente documento, por razones de concision.

El formato de archivo tiene metadatos descriptivos (tales como “VisualSampleGroupEntries”, por ejemplo, o
tipos de referencia de pista en cajas “tref”’) que describen las relaciones entre las pistas, de modo que los
datos correspondientes a una tesela, una combinacion de teselas o todas las teselas se puedan identificar
facilmente mediante el analisis sintactico de metadatos descriptivos.

A continuacién, las imagenes fijas se describen al mismo nivel. De este modo, cuando el usuario selecciona
cualquier tesela, combinacion de teselas o todas las teselas de una imagen, se facilita |la identificacion y la
extraccion. En caso de que las imagenes se mezclen con datos de video, la descripcion se realiza en paralelo
a los metadatos descriptivos del video. Por lo tanto, para el mismo conjunto de datos, se proporciona una
capa de indexacion adicional para las imagenes (ademas de las capas de indexacion para el video y para el
audio).

En los formatos de archivo de imagen fija que utilizan cajas “meta”, las imagenes con la informacion
relacionada se describen como elementos de informacién. Tal como se muestra en la figura 5, los elementos
de informacién se enumeran en una sub-caja dedicada “lteminfoBox” 500 de la caja “meta”. Esta sub-caja
proporciona el nimero de elementos de informacion presentes en el archivo. La sub-caja también
proporciona para cada elemento metadatos descriptivos representados como “lteminfoEntry” 501. Existen
varias versiones 502 (0, 1, 2) de esta caja segun la evolucion del estandar 1ISO BMFF.

Los elementos “meta” no pueden ser almacenados de manera contigua en un archivo. Asimismo, no hay
ninguna limitacion concreta en relacion con el intercalado de los datos de los elementos. Por lo tanto, dos
elementos de un mismo archivo pueden compartir uno o varios bloques de datos. Esto es especialmente (til
para teselas de HEVC (las teselas pueden ser almacenadas de manera contigua o no), puesto que puede
hacer que sea sencillo tener un elemento por tesela decodificable de manera independiente. Este elemento
indica el desplazamiento de datos en la imagen de HEVC principal y la longitud del uno o varios cortes
utilizados para la tesela por medio de un ItemLocationBox.

Segun las realizaciones, se puede afiadir un nuevo tipo de elemento para describir una imagen de tesela,
denominado por ejemplo: “hvct” o “tesela” o reutilizado de ISO/IEC 14496-15: ’hvt1’. Cada elemento que
representa la imagen de tesela (cualquiera que sea el codigo de cuatro caracteres elegido) puede tener una
referencia de tipo “tbas” al elemento ’hvci1’ del que se extrae. Cada elemento tiene un identificador
“item ID” 503 y se describe ademds en una caja “ltemlocationBox” en términos de posicion de byte y tamafio
en la caja de datos multimedia que contiene los datos comprimidos para las imagenes.

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

Dicha sintaxis hace posible que un lector de formato de archivo (o “analizador sintactico”) determine, por
medio de la lista de elementos de informacion, cuantos elementos de informacion estan disponibles con
informacion sobre su tipo 504, por ejemplo “tesela” para indicar que un elemento de informacion es una
imagen de tesela de una imagen completa.

De este modo, se hace posible seleccionar un subconjunto de elementos de informacién en el archivo, una
combinacion de los mismos, o el conjunto completo de elementos de informacion, para descargar solo una
tesela de la imagen y la configuracion de decodificador asociada, mientras se omiten las otras teselas.

En los casos en los que una tesela de HEVC depende de otra tesela de HEVC para la decodificacion, la
dependencia se indicard mediante una referencia de elemento de tipo “dpnd” (o cualquier codigo de cuatro
caracteres especifico que indiqgue dependencias de codificacion) tal como se describe en el
documento w14123, WD de ISO/IEC 14496-15:2013 AMD 1, “Enhanced carriage of HEVC and support
of MVC with depth information”, MPEG 107 San José, enero de 2014.

Este documento define herramientas para asociar NALU de tesela de HEVC con descripciones de grupos de
muestras que indican la posicion espacial de la tesela (utilizando el descriptor “TileRegionGroupEntry”). No
obstante, no existe un equivalente directo de agrupamiento de muestra para elementos de informacién de
metadatos que pudiera permitir la reutilizacion de estos descriptores.

Por lo tanto, segun las realizaciones, se define un elemento de descripcion de tesela por cada tesela, y la
tesela se vincula a su descripcion utilizando una versién modificada de |a caja “ltemReferenceBox”, tal como
se explica a continuacion.

Segun otras realizaciones, solo se proporciona una descripcion de |a teselacion, preferentemente de manera
genérica. De esta forma, la lista de elementos no resulta demasiado larga.

El disefio puede ser como sigue:

- permitir que algunos elementos describan un conjunto de metadatos, similares a los grupos de muestras
pero especificos para cada tipo de elemento,

- para cualquier elemento, afiadir la capacidad de describir un parametro para un tipo determinado de
referencia de elemento. El parametro se interpretaria entonces en funcion del tipo del elemento referido
(similar al tipo de agrupamiento).

Una actualizacién de los metadatos descriptivos para un elemento de informacion puede ser necesaria tal
como se explica a continuacién haciendo referencia a la figura 6.

Segun el estandar ISOBMFF, el mecanismo de agrupamiento de muestras se basa en dos cajas principales
que tienen un parametro “grouping_type” como sigue:

- la caja "SampleGroupDescriptionBox” tiene un parametro “sgpd” que define una lista de propiedades (una
lista “SampleGroupEntry”,

- la caja “SampleToGroupBox” tiene un parametro “sbgp” que define una lista de grupos de muestras con su
mapeo a una propiedad.

El parametro “grouping_type” vincula una lista de grupos de muestras a una lista de propiedades, estando
especificado en la lista en la caja “"SampleToGroupBox” el mapeo de un grupo de muestras a una propiedad.

Para proporcionar la misma funcionalidad para los elementos de informacién, se tienen que describir una lista
de grupos de elementos de informacion y una lista de propiedades. Asimismo, deberia ser posible asignar
cada grupo de elementos de informacion a una propiedad.

A continuacién, se describe como hacer posible que dichos metadatos descriptivos se incorporen en el
formato de archivo de imagen fija. En otras palabras, como vincular un descriptor a un elemento de imagen.
Incluso si los casos de uso se describen para el formato de archivo de imagen fija de HEVC, las siguientes
caracteristicas se pueden utilizar en otros estandares, tales como ISO/IEC 14496-12, para asociar cualquier
tipo de elemento de informacion con metadatos descriptivos adicionales.

Segun las realizaciones, la caja “ltemInformationEntry” 601 con el parametro “infe” se amplia con un nuevo
numero de version (602 y 603), con el fin de vincular cada elemento a una propiedad mediante un nuevo
parametro denominado “iref_type” 604, tal como se muestra en la figura 6. Esto permite evitar la creacion de
nuevas cajas y mejora la descripcion, al mismo tiempo que la mantiene breve.

La definicion original de la caja ItemInformationEntry viene dada por:

ES 3001 562 T3

Segun otras realizaciones, mas cerca de la caja “SampleToGroupBox”, la definicion de la caja

“ItemInformationBox” con codigo de cuatro caracteres “iinf’ se cambia como sigue, por ejemplo introduciendo
10 una nueva version de esta caja:

la version actual:

15

20 Alternativamente, para indicar si el grupo esta en uso o no, la version actual se cambia a:

aligned(8) class ItemInfoBox extends FullBoxz{ ‘*liinf",
unsigned int{l)group is
if (group is used == 0}{
overhead

version = 1, 0) ¢

used;

@ Q@

// standard iinf box but with 1 additional byte

10

15

20

25

30

35

40

ES 3001 562 T3

unsigned int{7)reserved; // for byvte alignment
ungigned ink {186} entry count;
Iteminfolntry! entry wount] item infos;

alsa |

unsigned int(15lgroup entry county

foer {int g=0; g< group enbtry count;gtt) {
unsigned int {16} item run;
unsignhed xnt {16} grouping type;
unsigned int{l6} property index;
unsigned int)} entry count;
TtemInfolntry! entry count 1 item infos;

1
!

unsigned int {18} remaining entry count;
IteminfeEntryi{remaining entry count] item infos;

El parametro “group_entry_count” define la cantidad de grupos de elementos de informacion en el archivo
multimedia. Para cada grupo de elementos de informacion, se indica una cantidad de elementos de
informacion, empezando desde item_ID=0. Puesto que los elementos de informacién no tienen relaciones ni
limitaciones de tiempo, a diferencia de las muestras, el moédulo de encapsulacion puede asignar los
identificadores de los elementos de informacion en cualquier orden. Asignando numeros de identificadores
crecientes después del grupo de elementos, la lista de grupos de informacién se puede representar de
manera mas eficiente utilizando un parametro item_run, que identifica las series de identificadores de
elementos de informacion consecutivos en un grupo.

Los elementos de informacion relacionados tienen un indice denominado, por ejemplo, “property_index”. Este
parametro “property_index” asociado con el parametro “grouping_type” permite a un analizador sintactico de
formato de archivo (o “lector”) identificar una referencia a metadatos descriptivos o los propios metadatos
descriptivos. La figura 7 muestra dos realizaciones a modo de ejemplo.

La caracteristica de grupo en la caja “SingleltemTypeReferenceBox” 701 se puede utilizar con una
identificacion de grupo “group_|D”, en lugar de la identificacion de elemento de informacion (item_I|D) que se
utiiza habitualmente para el valor del parametro from_item_ID. Por disefio, la caja
“SingleltemTypeReferenceBox” facilita la busqueda de todas las referencias de un tipo especifico o desde un
elemento especifico. Su uso con un “group_|ID” en lugar de un “item_|D” permite encontrar un grupo de
elementos para identificar facilmente todas las referencias de un tipo especifico. Ventajosamente, puesto que
hay como maximo una caja “ltemInformationBox” por cada archivo encapsulado, no hay necesidad de definir
identificaciones de grupo. El médulo de encapsulacién (durante la codificacion) y el moédulo de andlisis
sintactico (durante la decodificacion) pueden ejecutar un contador respectivo (como la variable “g” en la caja
“ltemInformationBox”) en la lista de grupos de elementos de informacion a medida que se crean o leen.
Alternativamente, se puede informar al analizador sintactico, utilizando el indicador “group_used_flag”, de si
mantener o no el contador de identificacion de grupo.

Volviendo al ejemplo con un grupo de elementos de informacion correspondientes a las imagenes de tesela,
un grupo puede contener cuatro entradas, y la referencia 700 “SingleltemTypeReference” puede indicar la
lista de elementos de informacion 704 de los que dependen los cuatro elementos de informacion de imagen
de tesela y, por lo tanto, para un tipo de referencia 703 concreto.

Segun otras realizaciones a modo de gjemplo, el elemento de informacién se utiliza en un nuevo tipo de caja
“ltemReferenceBox”, tal como se describe a continuacion, que hace posible, a partir de un elemento 722,
enumerar multiples tipos de referencia 723 para diversos elementos de informacion 724 adicionales.

Para este ultimo caso, la caja “ltemReferenceBox” 721 especifica se puede implementar como sigue:

aligned{8) class MultipleltemTypeRefershceBox{void) extends
Foxz {veid) {
nsigned int(16) from iltem ID;
igned int {18} reference count;
for {(1=0; j<reference count; 3++) {

unsigned int{32) reference_ﬁype; // new parameter to allow
multiple types

ungigned int {16} to item ID;

10

15

20

25

30

35

ES 3001 562 T3

En cuanto a la caja estandar “ltemInformationBox”, se describe la lista de entradas de elementos, pero esta
vez con un orden diferente segun el agrupamiento. En el ejemplo de tesela, esto puede conducir a un primer
grupo de cuatro elementos de informacién correspondientes a las imagenes de tesela reunidas en un grupo
con un parametro que se puede denominar “tesela”, seguido de elementos de informacién no agrupados para
la informacién de configuracion, para el elemento de informacién de imagen completa y, opcionalmente, para
los metadatos EXIF.

De este modo, se modifica una caja y se crea una caja que es un tipo especifico de ItemReferenceBox. A
continuacion, se describe este nuevo tipo de ltemReferenceBox.

La caja “ltemReferenceBox” también se puede ampliar distinguiendo entre los distintos tipos de
ItemReferenceBox mediante el uso de los parametros de indicador en la caja “FullBox” que forma parte de
“ltemReferenceBox” de la siguiente manera:

sigue:

Este disefio hace que sea bastante mas facil encontrar todas las referencias de cualquier tipo de un elemento
especifico.

El soporte de descripcion 711 para una lista de elementos 712 que hacen referencia a un mismo
elemento 714 con un tipo 713 determinado puede ser como sigue:

rencaox {ret Typsd

El disefio de |a caja “SharedltemTypeReferenceBox” facilita la busqueda de todas las referencias de un tipo

10

10

15

20

25

30

35

40

45

ES 3001 562 T3

especifico que apuntan a un elemento especifico. Esto contrasta con la caja “SingleltemTypeReferenceBox”.
Pero, puesto que la mayoria de las ‘“reference_type” definidas para referencias de pista no son
bidireccionales, la caja “SingleltemTypeReferenceBox” no se puede utilizar con algun tipo de referencia
unidireccional para sefializar todos los elementos que tienen este tipo de referencia a otros elementos.
Alternativamente, se puede proporcionar un indicador en la “SingleltemTypeReference” para indicar si es una
referencia directa o una referencia inversa, aliviando de este modo la necesidad de la nueva
SharedltemTypeReferenceBox.

En vista de lo anterior, un elemento de informacion se puede asociar con informacién de teselacion. A
continuacion, se tiene que proporcionar una descripcion de esta informacion de teselacion.

Por ejemplo, cada tesela se puede describir utilizando un descriptor de tesela, tal como el
“iref_parameter” 605 de la “IltemInfoEntry” 601 extendida. Un descriptor especifico puede ser como sigue:

ainfolatallinek ()

Segun las realizaciones, se puede utilizar un descriptor para aplicar la cuadricula de teselas a las una o
varias imagenes a almacenar.

Dicho descriptor puede ser como sigue:

i lanad {8

Este descriptor “TilelnfoDataltem” permite describir una cuadricula de teselacion (regular o irregular). La
cuadricula se describe fila por fila comenzando desde la parte superior izquierda.

El descriptor se almacenara como un elemento de tipo “tesela”. Cuando otro elemento hace referencia a este
elemento, utilizara una referencia de tipo “tesela” a esta descripcion, y tendra un parametro “iref_parameter”
especificado, cuyo valor es el indice basado en 0 de la celda en la cuadricula definida por el descriptor,
donde 0 es el elemento superior izquierdo, 1 es la celda inmediatamente a la derecha de la celda 0, y asi
sucesivamente.

En el descriptor:

- “version” (version) indica la version de la sintaxis para el TileInfoDataltem. Solo se define el valor 0.

- “regular_spacing” indica si todas las teselas de la cuadricula tienen la misma anchura y la misma altura.

- “reference_width, reference_height” indica las unidades en las que se describe la cuadricula. Estas
unidades pueden coincidir o no con la resolucion de pixeles de la imagen a la que se refiere este elemento.
Si la cuadricula es regular, “reference_width” (resp. “reference_height”) debe ser un multiplo de
“nb_cell_horiz” (resp. “nb_cell_vert”).

- “cell_width” proporciona la division horizontal de la cuadricula en teselas no regulares, comenzando desde
la izquierda.

- “cell_height” proporciona la division vertical de la cuadricula en teselas no regulares, comenzando desde
arriba.

11

10

15

20

25

30

35

40

45

50

55

ES 3001 562 T3

El enfoque anterior permite compartir la informacion de teselacion para todas las teselas.

Ademas, en caso de que haya multiples imagenes que compartan la misma teselacion, se puede compartir
incluso més descripcion simplemente haciendo referencia a una celda en la cuadricula de teselas.

La configuracion de teselacion se puede colocar en la caja de datos multimedia o en una caja dedicada
compartida (por referencia) entre los elementos de informacion de tesela.

Los descriptores anteriores son descriptores espaciales puros en el sentido de que solo proporcionan
ubicaciones espaciales y tamafios para una o varias subimagenes en una imagen mas grande. En algunos
casos de uso, por gjemplo, con conjuntos de imagenes o composicion de imagenes, una ubicacion espacial
no es suficiente para describir la imagen, habitualmente cuando las imagenes se superponen. Esta es una
limitacion del descriptor TilelnfoDataBlock anterior. Para permitir la composicion de la imagen, sea cual sea la
imagen, es decir, una tesela o0 una imagen independiente/completa, puede ser Util definir un descriptor que
contenga, por un lado, las posiciones y tamafios de la imagen (relaciones espaciales) y, por otro lado,
informacion de visualizacion (color, recorte...) para esa imagen. Por ejemplo, se puede proporcionar
informacion de color para transformar una subimagen de un espacio de color a otro, para visualizacion. Este
tipo de informaciéon se puede transmitir en la ColorIinformationBox “colr” del ISOBMFF. Puede ser (til, por
conveniencia, tener los mismos datos preparados para diferentes tipos de visualizaciéon simplemente
proporcionando los parametros de transformacion a aplicar en lugar de transmitir las dos imagenes diferentes
transformadas de este modo. Asimismo, la relacion de aspecto de pixel como la caja PixelAspectRatio “pasp”
definida en la Parte 12 del ISOBMFF se puede colocar en este descriptor para redefinir una anchura y una
altura que pueden ser diferentes de la anchura y la altura codificadas de cada imagen. Esto indicaria la
relacion de escala que se aplicara en la pantalla después de la decodificacion de una imagen. Por lo tanto, se
tendrian los tamanios codificados almacenados en las entradas de muestra de video (caja “stsd” por gjemplo)
y los tamafios de pantalla deducidos de la caja “pasp”. Otra informacién posible para la visualizacién podria
ser la caja de informacion de apertura limpia “clap” también definida en ISOBMFF. Segun el estandar
SMPTE 274M, la apertura limpia define un éarea dentro de la cual la informacion de la imagen esta
subjetivamente no contaminada por todas las distorsiones transitorias de borde (posibles efectos de zumbido
en las fronteras de las imagenes después de las conversiones de analégica a digital). Esta lista de
parametros (tiles para la visualizacion no es limitativa y se podria poner como componentes opcionales en el
descriptor de subimagen cualquier otra caja de metadatos descriptivos. Estos pueden ser mencionados
explicitamente porque ya forman parte del estandar y proporcionan herramientas genéricas para indicar el
recorte de la imagen, la modificacion de la relacion de aspecto de la muestra y los ajustes de color.
Desgraciadamente, su uso solo era posible para pistas multimedia, no para formatos de archivo de imagen
que dependen de cajas “meta”. Por lo tanto, se sugiere un nuevo descriptor denominado, por ejemplo,
“SimplelmageMetaData” para soportar la descripcion espacial de los elementos de imagen, junto con otras
propiedades, tales como la apertura limpia o la relacion de aspecto de la muestra. Esto aplica a cualquier
subimagen (tesela o imagen independiente) destinada a ser compuesta en una imagen mas grande o, al
revés, extraida de una imagen mas grande:

O su variacion cuando se consideran los parametros de extension para ayudar al proceso de visualizacion (a
través, por ejemplo, de extra_boxes):

class SimplelmageMetalata |

clap;i // optional
pasp: // optional
coloury /7 optional
locatiorn; // optional
extra DoXss boxes; // opticnal

}

Donde ImageSpatialRelationBox es una extension de TileinfoDataBlock tal como se describe a continuacion.
Otro parametro Util a considerar es la posibilidad de componer imagenes como capas. A continuacion, se
sugiere insertar un parametro para indicar el nivel asociado a una imagen en esta composicion en capas.
Esto suele ser util cuando las imagenes se superponen. Esto se puede denominar “capa” para un ejemplo
con indicacion de informacion de capa. Se proporciona un ejemplo de sintaxis para dicho descriptor:

Definicién:

12

10

15

20

25

30

35

40

45

50

ES 3001 562 T3

Tipo de caja: “isre”

Contenedor: elemento de metadatos de imagen individual (“simd”)
Mandatorio: no

Cantidad: cero o uno por cada elemento

Sintaxis:

alignad {3}

con la semantica asociada:

Horizontal_display_offset especifica el desplazamiento horizontal de la imagen.

Vertical_display_offset especifica el desplazamiento vertical de la imagen.

Display_width especifica la anchura de la imagen.

Display_height especifica la altura de la imagen.

Layer especifica el orden de adelante atras de la imagen; las imagenes con nimeros mas bajos estan mas
cerca del espectador. 0 es el valor normal y -1 estaria delante de la capa 0, y asi sucesivamente.

Este nuevo tipo de caja “isre” da la capacidad de describir la posicion relativa de una imagen con otras
imagenes en un conjunto de imagenes. Proporciona un subconjunto de las funcionalidades de la matriz de
transformacion que normalmente se encuentra en la caja de cabecera de pelicula o pista de un archivo
multimedia. Las coordenadas en ImageSpatialRelationBox se expresan en una cuadricula que proporciona el
tamafio de visualizaciéon previsto por el autor del conjunto; estas unidades pueden coincidir o no con el
tamafio codificado de la imagen. El tamafio de visualizacién previsto esté definido por:

- Horizontalmente: el valor maximo de (horizontal_display_offset + display_width) para todas las cajas “isre”
- Verticalmente: el valor maximo de (vertical_display_offset + display_height) para todas las cajas “isre”

Cuando algunas imagenes no tienen ningun “isre” asociado mientras que otras imagenes en el archivo si lo
tienen, las imagenes predeterminadas sin ningun “isre” se tratardn como si sus desplazamientos horizontales
y verticales fueran 0, su tamafio de visualizacion fuera el tamafio de visualizacion previsto y su capa fuera 0.

El ImageSpatialRelationBox indica la posicion espacial relativa de las imagenes después de que se haya
aplicado a las imagenes cualquier recorte o relacion de aspecto de muestra. Esto significa que, cuando “isre”
se combina con “pasp”, etc. en un SimplelmageMetaData, la imagen se decodifica, se aplican “pasp”, “clap”,
“colr” si estan presentes y, a continuacion, la imagen se desplaza y escala al desplazamiento y tamafo

declarados en la caja “isre”.

Este nuevo descriptor se puede utilizar como descripcion de una imagen (tesela o imagen individual)
definiendo una asociacion entre la informacion del elemento que representa la imagen y la informacion del
elemento que representa el descriptor (asignese el tipo “simd” para la definicion de SimplelmageMetadata,
cualquier codigo reservado de 4 caracteres seria aceptable para un analizador sintactico de mp4 para
identificar facilmente el tipo de metadatos que esta procesando actualmente). Esta asociacion se realiza con
un ltemRefererenceBox y con un nuevo tipo de referencia; “simr” para indicar “relacion de imagen espacial’.
La descripcion de ejemplo a continuacidon muestra el caso de una composicion de 4 imagenes donde la
composicion en si no tiene ningun elemento asociado. Cada elemento de imagen estd asociado a un
elemento SimplelmageMetaData por medio de una referencia de elemento de tipo “simr”, y comparte la
informacion de DecoderConfigurationRecord en un elemento “hvcC” dedicado.

= thavoe!, compatible-brands = fheve!

13

10

15

20

ES 3001 562 T3

4 miaple

La organizacion de datos anterior se proporciona como ejemplo: imagen y metadatos podrian estar
entrelazados en la caja de datos multimedia, por ejemplo, para tener una imagen mas sus metadatos
direccionables como un solo intervalo de bytes. Al recibir esta descripcion, se informa a un analizador
sintactico, mediante el analisis sintactico de la informacion en los elementos “simd”, si una subimagen esta
recortada de una imagen completa o, por el contrario, si una imagen completa es una composicion de
subimagenes. En caso de recorte, el elemento de imagen completa y la imagen recortada compartirian el
mismo intervalo de datos que en el gjemplo siguiente, y la misma informacién de configuracion del
decodificador. La subimagen se asociaria por lo tanto a un elemento “simd” que solo tiene informacion “clap”
y no tiene posicionamiento, por lo tanto no tiene “isre”.

En caso de composicion: en dicho caso, el elemento de imagen completa se asocia a un elemento “simd” que
solo contiene informacion “isre”, y la subimagen se asociaria a un elemento “simd” que refleja su posicién en
la imagen completa.

El ejemplo siguiente muestra el caso en el que 4 imagenes se componen en una mas grande. Todas las
imagenes, incluida la compuesta, se exponen como un elemento reproducible utilizando el descriptor
propuesto.

14

ES 3001 562 T3

-t

mr

I

sount

¢

eyt

T

de HEVC

imagen

Este otro ejemplo muestra el caso en el que la imagen completa es en realidad una

teselada (4 teselas)

10

15

20

25

30

ES 3001 562 T3

Dependiendo de los casos de uso, seria posible tener varios elementos de imagen que compartan los
mismos metadatos, por ejemplo, cuando se tiene que aplicar el mismo recorte a todas las imagenes. También
es posible que un elemento de imagen tenga multiples referencias “simr” a diferentes SimplelmageMetaData,
por ejemplo, cuando el recorte se comparte entre imagenes, pero no la informacién espacial.

Una realizacion alternativa a la nueva version de ItemInfoEntry (tal como se muestra en la figura 6) es definir
mas de un parametro (605) por cada entrada y referencia de elemento de informacion. En la realizacion de la
figura 6, el iref_parameter es un coédigo de cuatro bytes que es Util en el caso de un indice de tesela para
hacer referencia a una celda en una cuadricula de teselacién. Pero para tener una descripcion mas rica y
poder incrustar una descripcion vinculada dentro de la entrada de informacion del propio elemento, en lugar
de con los datos (en la caja mdat), la siguiente extension puede ser (til:

ceParamnete;

noafaramatarintey

En la extensién anterior:

- item_iref_parameter_count proporciona la cantidad de tipos de referencia para los que se proporciona un
parametro. Esto no cambia en comparacion con el elemento 605 en la figura 6.

iref_type proporciona el tipo de referencia, tal como se indica en la caja “iref”, para el que se aplica el
parametro para este elemento. Esto no ha cambiado en comparacion con el elemento 605 de la figura 6.

el parametro en este caso difiere de iref_parameter (elemento 605 de la figura 6) debido a que proporciona
un medio de extension por medio de la nueva caja ltemReferenceParameterEntry. Especializando esta
nueva caja (tal como se hizo anteriormente con TilelndexltemReferenceParameterEntry para el indice de
tesela en una configuracion de teselacion), cualquier tipo de metadatos adicionales se pueden asociar con
una entrada de elemento de informacion siempre que los médulos de encapsulacion y andlisis sintactico
conozcan la estructura de esta caja especializada. Esto se puede realizar mediante tipos estandar de
ItemReferenceParameterEntry o proporcionando por construccién, o en una etapa de negociacion, la
estructura de la entrada de parametro. La semantica del parametro viene dada por la semantica del
elemento con tipo iref_type.

16

10

15

ES 3001 562 T3

A continuacion, se dan a conocer metadatos descriptivos, a modo de ejemplo, para elementos de informacion
que describen una imagen con 4 teselas y los metadatos EXIF de la imagen completa.

En la técnica anterior, las imagenes de tesela se enumeraban como elementos de informacion sin
proporcionar ninguna descripcion correspondiente, tal como se muestra a continuacion. Ademas, la
informacion de configuracion designada como tipo “hveC” no se describia como un elemento. Esto hace
posible factorizar los datos comunes relacionados con los conjuntos de parametros de HEVC y los mensajes
de SEI que se aplican a todas las imagenes de tesela y a la imagen completa.

fanased) =>

fanased) =>

{uanased) =>

)

ngth Q)

R, willh leogth &)

Segun las realizaciones, utilizando la extension con la version 3 (véase la figura 6, 602, 603) de la caja
ItemInfoEntry (601): se enumera informacion de imagen de tesela con referencias asociadas a partes de la
configuracion de teselacion que también se describe como un elemento de informacion (ID=8).

ftyp box: major-brand = ‘hevc’, compatible-brands = ‘hewvc’
meta box: {container)
handler box: hdlr = ‘hvecl’ primary item: itemID = 1;
ITtem information:
item type = ‘hvel’, itenID=1, item protection index = 0 (unused)
item type = ‘Exif’, itemlD=2, item protection index = O {(unused)
item type = ‘hveC’, itemlID=3, item protection indexz = 0 [unused]
item type = “hvet’, itemID=4, parameter for ireftype==tile:
tile index=0
item type = “hvct’, itemlID=53, parameter for dreftype==tile:

17

10

15

20

25

ES 3001 562 T3

tile index=1

item type = ‘hvet’, itemlD=6, parametar for ireftypes=tile:
tile index=2

item type = ‘hvct’, ditemlID=7, parameter for ireftype==tile:
tile index=3

item type = ‘tile’, itemID=8, (tiling configuration)

Item Location:

itemID = 1, entent count = 1, extent offset = ¥, extent length = ¥3
itemID = 2, extent count = 1, extent offset = P, extent length = Q;
itemID = 3, extent count = 1, extent offset = R, sextent length = 3;
itemID = 4, extent count = 1, extent offset = X, extent length = ETL;
itemID = 5, extent count = 1, extent offset = X+ET1, extent length =
BTd;

itemId = 6, extent count = 1, extent offget = X+ETZ, extent length =
ET3;

itemiD = 7, extent count = 1, extent offset = X+ET3, extent length =
BT4;

itemID = 8, extent count = 1, extent offset = 1, extent length = I;

ITtem Reference:
type=‘cdsc’, fromID=2, toID=1;

type="init’, fromID=1, tolD=3;

type='tbas’, fromID=4, tolD=l;

type=’thas’, fromID=5, tolb=l;

type="thas’, fromiD=6, tolID=1;

type=’thas’, fromID=7, teclID=1l;

type=’tile’, fromID=4, tolD=8; //

type='tile’, fromID=5, tolD=8; // link each tile pict.
type="tile’, fromID=6, toll=8; // to the tiling config item
type="tile’, fromID=7, toID=8; //

Media data box:
HEVC Image (at file offset ¥, with length Y}
Exif data block (at file offset P, with length Q)
HEVC Config Record {at file offset R, with length I)
Tile description data hlock {at file offzet i, with length I)

T

s

La figura 8 muestra un contexto de implementacion de realizaciones de la invencion. En primer lugar, se
registran diferentes medios: por ejemplo, audio durante la etapa 800a, video durante la etapa 800b, y una o
varias imagenes durante la etapa 800c. Cada medio se comprime durante las respectivas etapas 801a, 801b
y 801c. Durante estas etapas de compresion se generan los flujos elementales 802a, 802b y 802c. A
continuacion, a nivel de aplicacion (seleccion del usuario desde la interfaz grafica de usuario; configuracion
del sistema de generacion multimedia, etc.), se selecciona un modo de encapsulacion para determinar si
todos estos flujos elementales deben ser fusionados o no. Cuando se activa el modo “fusionar” (prueba 803,
“si”}, los datos de audio, video e imagenes fijas se encapsulan en el mismo archivo durante la etapa 806c tal
como se ha descrito anteriormente. Si el modo “fusionar” no esta activado (prueba 803, “no”), entonces se
generan dos archivos encapsulados durante las etapas 806a y 806b consecutivamente o en paralelo, lo que
conduce respectivamente a la creacion de un archivo de datos multimedia en tiempo sincronizado durante la
etapa 807a, y un archivo adicional con solo las imagenes fijas 907b. Durante la etapa 806a, los flujos
elementales de audio y video se encapsulan segun el estandar ISOBMFF y las imagenes fijas se encapsulan
durante la etapa 806b, tal como se ha descrito anteriormente en este documento, con el fin de proporcionar
una descripcion de tesela y caracteristicas de la zona de interés. Finalmente, se obtiene una presentacion
multimedia 807, y se le puede proporcionar a un generador de DASH para prepararla para su transmision en
continuo (etapa 820a) o almacenarla en una memoria (etapa 820b) o renderizarla en una unidad de
visualizacion (etapa 820c) o transmitirla (etapa 820d) a una entidad remota, ya sea integramente o después
de gue algunas partes (tal como teselas) hayan sido extraidas analizando sintacticamente los metadatos
descriptivos.

De acuerdo con descripciones anteriores de realizaciones, cabe sefialar que los metadatos descriptivos, tales

como por ejemplo la caja SimplelmageMetadata (“simd”) (también denominados ISOBMFFMetaData en la
ultima version de la especificacion de formato de archivo de imagen fijas), se describen como elementos

18

10

15

20

25

30

35

40

45

50

ES 3001 562 T3

completos. Los metadatos descriptivos o prescriptivos adicionales también se definen en la especificacion de
formato de archivo de imagenes fijas, tal como se describe en el documento wi14878, estudio del comité
de ISO/IEC 23008-12:2013 1.2 edition, “Information technology - MPEG systems technologies - Part 12:
Image File Format’”, MPEG 110 Estrasburgo, octubre de 2014. Ejemplos de metadatos descriptivos o
prescriptivos son CleanApertureBox (“clap”), ImageRotation (“irot”), ExifDataBlock (“exif’) o ImageOverlay
(“iovl™). En términos mas generales, los metadatos descriptivos son metadatos que proporcionan informacion
adicional o descripcién para un elemento como una imagen o una subimagen (por ejemplo, metadatos Exif), y
los metadatos prescriptivos son operaciones o transformaciones que se aplicaran a un elemento (por
gjemplo, una rotacién, un recorte 0 una combinacién de varios elementos que forman los operadores de
transformacion).

Sin embargo, puede resultar bastante molesto tener que almacenar dichos metadatos descriptivos o
prescriptivos en la especificacion como elementos completos; estos son solo pseudo-elementos, que
requieren que los metadatos descriptivos o prescriptivos se almacenen con datos codificados en la caja
mdat (110), y que se definan entradas en itemlocationBox (iloc) (109), itemInfoBox (iinf) e itemProtectionBox
(ipro). Requerir esas entradas en iloc, iinf e ipro para esto es una sobrecarga bastante grande. Por ejemplo,
una entrada en itemInfoBox requiere el uso de una caja completa como minimo con una cabecera de 12
bytes; ademas, se tiene que definir un item_protection_index (16 bits) mas un item_name (8 bits) vacio para
un total de 15 bytes de coste adicional por cada entrada en itemInfoBox (iinf). Una entrada en itemlocationBox
(lloc) también requiere como minimo 9 bytes en los mejores casos (base offset_size= offset_size=
length_size= 1, 1 extension). En la practica, la entrada itemlocationBox se utiliza con base_offset_size =
offset_size=length_size=2 o 4, lo que significa 12 o0 18 bytes de coste adicional. Ademas, estos metadatos
suelen ser pequefios y permiten una lectura eficiente de los demas elementos. Tenerlos almacenados como
elementos dedicados puede complicar el andlisis sintactico de archivos, especialmente la obtencion parcial
de un archivo (multiplicacion de solicitudes de HT TP, por ejemplo).

En una realizacion alternativa segun la invencion reivindicada, todos los metadatos descriptivos y
prescriptivos pueden estar definidos como elementos integrados que pueden ser almacenados en la caja
meta (100) como parte de otras cajas en lugar de en la caja mdat (110) y, por lo tanto, pueden evitar el coste
adicional de definir las entradas itemInfoBox e itemlocationBox.

Para almacenar metadatos descriptivos y prescriptivos en la caja meta, se define una caja de elementos
virtuales denominada “VirtualltemBox”. Segun una realizacién acorde con la invencion reivindicada, todas las
cajas de metadatos descriptivos y prescriptivos se heredan de esta clase de elemento virtual.

Un elemento virtual tiene asignados un item_ID y un item_type, junto con un conjunto de cajas. Los
elementos virtuales son datos adicionales que se utilizan habitualmente para describir metadatos que se
asociaran con otros elementos. Segun una realizacién acorde con la invencién reivindicada, el elemento
virtual permite asociar una entrada de la itemInfoBox que identifica un elemento (imagen o subimagen) y la
operacion o la transformacion que se aplicard a este elemento. Habitualmente, esta asociacion se puede
describir definiendo una entrada de tipo “simr” en la itemReferenceBox desde el item_ID de la imagen hasta
el item_ID de la caja de descripcion de la operacion o transformacion de metadatos. Los elementos virtuales
solo se pueden referenciar en cajas de referencia de elemento y cajas de elemento principal, y no se deben
declarar ni referenciar en ninguna otra caja (por ejemplo, itemlocationBox (iloc), iteminfoBox (iinf),
itemProtectionBox (ipro)). “VirtualltemBox” se define como sigue:

aligned{8) class VirtualltemBoz (unsigned int{32} item type)

extends FullBox{‘'vite’, version, 0) {
if {version == 03} {
ungigned int (16} item ID;
b else |
unsigned int (32} item ID;
}
unsigned int {32} item type;

3
!

con la siguiente semantica para sus parametros:

item_ID: ID (o identificador) de este elemento. Es ilegal tener entradas en iinf, iloc o ipro con el mismo valor
de item_ID

item_type: es un valor de 32 bits, habitualmente 4 caracteres imprimibles, que es un indicador de tipo de

19

10

15

20

25

30

35

ES 3001 562 T3

elemento valido definido, como “mime”.

Opcionalmente, en una variante, “VirtualltemBox” también puede incluir un parametro adicional denominado
“descriptor_family”. La familia de descriptores indica si la caja de metadatos son metadatos descriptivos o
prescriptivos. En una variante, la familia de descriptores indica el tipo de caja de metadatos a partir de una
lista de valores predefinidos. Por ejemplo: transfo_operator, composed_image, descriptive_metadata.

Heredando de esta caja de elementos virtuales, todas las cajas de metadatos descriptivos y prescriptivos se
pueden almacenar en la caja meta sin la necesidad de definir entradas asociadas en itemInfoBox (iinf) e
itemlocationBox (iloc) pero aun conservan la ventaja de ser direccionables por las cajas de referencia de
elemento.

Segun esta realizacion, ImageOverlay (iovl), SubSampleltemData (subs), AuxiliaryConfiguration (auxC),
ExifDataBlock (exif), SimplelmageMetadata (simd) y el elemento de imagen derivada se heredan de la clase
de elemento virtual.

También segun una realizacion de la invencion reivindicada, se introduce un tipo de elemento individual y
genérico denominado “dimg”, con referencias de elemento de tipo “simr” a elementos de tipo “simd”. Este
enfoque permite la reutilizacion de propiedades cuando sea apropiado y reduce el nimero de elementos y
referencias de elementos. Se afiade ImageRotationBox a los SimplelmageMetadata (simd). El tipo de
referencia “simr” define un vinculo desde un elemento de imagen hacia un elemento “simd”, para proporcionar
acceso directo a los metadatos descriptivos de la imagen.

Ademas, la caja de metadatos de ImageOverlay (iovl) se redisefia de la siguiente manera para que ya no
dependa del orden de referencia.

aligned{2) class ImageOverlay {
unsigned int(8) wversion = 0;
unsigned int{8) flags:
for (3=0Q; 3<3; J++) {

unsigned int{le¢) canvas fill wvalue;

FieldLength = {{flags & 1) + 1} * 18&;
unsigned int{FieldLength)} output width;
unsigned int{FieldLength) output height;
for {i=0; i<reference count; i++} |
unsigned int (16} item id;
signad int (FieldLength) horizontal offset;

signed int{FieldLength) vertical offiset;

Se afiade un item_id explicito para cada entrada en el bucle para identificar explicitamente el elemento que
estd compuesto.

En una realizacion alternativa, todas las cajas incluidas en SimplelmageMetadata (simd) se definen como
cajas de metadatos independientes que se heredan de la caja de elementos virtuales.

En una realizacion alternativa, la rotacion de imagen individual se puede declarar integrando la operacion de
rotacion directamente en la caja del descriptor de metadatos de imagen SimplelmageMetadata (“simd”)
(también denominada ISOBMFFMetaData en la ultima version de la especificacion de formato de archivo de
imagen fija) como sigue:

20

10

15

20

25

30

35

40

ES 3001 562 T3

aligned{8) class I30BMFFMetaData |{

CleanApertureBox c<lap; // optional
PixelAspactRatioBox pasp: 7/ optional
ColourInformationBox colour; // optiocnal
ImageSpatialRelationBox location; // optional
ImageRotationBox rotation; // optional
Box extra boxesz[]; // optional

-

aligned{8) class TImageRotatlonBox

extands FullBeox('irot', version = 0, flags = 0y { // 12 axtra-
bytes
unsigned int (&) reserved = 0}

unsigned int {(2) angle;

Aunque la caja de rotacion es ligeramente mas grande que los elementos “irot” (12 bytes), el beneficio de
usar este enfoque es claro cuando se combinan transformaciones, tales como rotacion y CleanApperture,
puesto que solo se necesita un “simd”, en lugar de una cascada de elementos derivados.

En dicho caso, el elemento derivado genérico, “dimg” (descrito anteriormente), se puede usar para hacer
referencia tanto al elemento de imagen como a la descripcion de metadatos. Un elemento de este tipo podria
entonces ser enumerado como elemento principal en PrimaryltemBox (“pitm”).

Otro beneficio de este enfoque es que un autor puede indicar claramente que solo desea que se muestre el
elemento rotado.

Los parrafos siguientes proponen una alternativa a la realizacion descrita anteriormente, fuera del alcance de
la invencion reivindicada.

Esta alternativa es ventajosamente simple en lo que respecta a como se pueden aplicar las transformaciones
(o “efectos”) a imagenes en el formato de archivo de imagen fija ISO. En concreto, se resuelven los siguientes
problemas con esta realizacion alternativa:

- el elevado nimero de referencias de elementos;

- el creciente nimero de elementos cuando se aplican efectos en cascada; y

- la imposibilidad de mutualizar los efectos para un conjunto determinado de elementos, es decir, un conjunto
de iméagenes o porciones de imagenes como la zona de interés.

Las soluciones existentes propusieron mutualizar los efectos como diferentes extensiones (es decir,
desplazamientos de bytes en la parte de datos) del elemento. Mas en detalle, extension significa que una
imagen derivada se describiria como una lista de extensiones en la itemlocationBox (“iloc”), identificando
cada extension un fragmento de la parte de datos (“mdat”), correspondiendo cada fragmento a uno o varios
metadatos descriptivos o prescriptivos o de transformacion.

Pero varios inconvenientes son inherentes a esta solucién:

- la creacion de un archivo de imagenes encapsuladas resulta bastante complicada: tocar un efecto en un
elemento de imagen derivada implica inspeccionar todas las imagenes derivadas para verificar si
comparten la misma extension y potencialmente reescribir parte de ella;

- el analisis sintactico tampoco es muy simple, puesto que el lector del archivo de imagenes necesitara
averiguar si una cadena de transformaciones/efectos es la misma en diferentes elementos en dicho archivo
(sin senalizacion directa);

- para cada transformacion/efecto se necesitara una nueva extension en la itemlocationBox (“iloc”) siempre
que la nueva transformacion/efecto no se almacene continuamente con la transformacion/efecto en la
cadena de transformaciones/efectos a aplicar. Ademas, la combinacion o conexion en cascada de efectos

21

10

15

20

25

30

35

40

45

ES 3001 562 T3

puede resultar costosa cuando no se almacenan en extensiones contiguas en |a parte de datos.

Ademas, estas soluciones requerian almacenamiento de implementacion, lo que implica la creacion de una
caja para almacenar el efecto, a fin de comprender su tipo (hasta ahora, el tipo de efecto lo proporcionaba el
item_type). Definiendo un nuevo formato de caja para el efecto, una solucion mas sencilla es definir los
efectos por separado de los elementos y tener un mapeo directo entre elementos y efectos sin ningin coste
adicional.

La realizacion alternativa propone una simplificacion del manejo de los efectos teniendo una separacion
limpia en los formatos de archivo:

- elementos regulares (imagenes o porciones de imagenes) (por ejemplo: hvcl, ...) vinculados con sus
metadatos descriptivos (tal como se propuso anteriormente: ya sea por medio del tipo de referencia “init” o
“simr” o cualquier tipo de referencia que describa metadatos descriptivos);

- “imagenes derivadas”, que son un conjunto de efectos (o transformaciones) aplicados a uno o varios
elementos fuente (imagen o porcion de imagen) identificados por medio de una referencia de elemento
“dimg” desde el elemento de “imagen derivada” al elemento fuente; y

- una estructura que representa las transformaciones/efectos, incluyendo un conjunto de varios efectos
diferentes.

Las ventajas de esta realizacion alternativa son:

- la reusabilidad de efectos: declarados una vez y potencialmente referenciados varias veces
descripciones mas compactas definiendo conjuntos de efectos (mas sobre esto a continuacion);
legibilidad general, incluyendo que no se necesitan nuevas extensiones de la itemlocationBox; y
manteniendo pequefia la cantidad de referencias de elementos.

Segun esta realizacién alternativa, se define un nuevo elemento derivado unico con el tipo de elemento
“dimg”. Este elemento derivado Unico se representa concretamente por:

aligned(8) class DerivedImage |{
bit(2) index mode;
bit {6) reserved;

if (index mode==0) nb bits effect = 8;

i
'.J
o

else 1f {index mode==1) nb bi

t ffect
else 1f {(index mode==2) nb bits effect = 32;

unsigned int(nb hits effect) nb effects;
for (i=0; i<nb_effects; i++) |

unsigned int (nb bits effect) effect id;

[

i
b

Donde nb_effects representa el nimero de efectos que se aplicaran a una imagen de origen para componer
la imagen derivada, y effect_id es un identificador Unico en el archivo encapsulado del efecto que se aplicara.
Los efectos se aplican en orden inverso a su aparicion en la lista de efectos.

La imagen derivada o el elemento transformado denominado “Derivedimage” define una imagen como un
conjunto de efectos que se aplicaran a una imagen de origen antes de ser presentada a un usuario 0 a una
pantalla de visualizacion, por ejemplo. La imagen de origen se identifica mediante una referencia de elemento
de tipo “dimg” (o cualquier tipo de referencia reservado) desde el elemento derivado hasta la imagen de
origen. La propia imagen de origen puede ser cualquier elemento de imagen (imégenes o porciones de
imagenes, superposicion de imagenes, imagen derivada) definido en la especificacion de formato de archivo
de imagen fija ISO. No debe haber mas de una referencia de elemento “dimg” del mismo elemento (pero
puede haber varias en el mismo elemento, si este elemento se reutiliza varias veces para diferentes
composiciones).

22

10

15

20

25

30

35

40

ES 3001 562 T3

La imagen derivada se almacena en la parte de datos del archivo.

Al editar el archivo encapsulado, por ejemplo, eliminando un efecto de un archivo de imagen, se deben
eliminar todas las referencias a este efecto de las imagenes derivadas.

Los efectos se pueden aplicar a imagenes, porciones de imagenes, imagenes compuestas 0 imagenes
derivadas por medio de los elementos Derivedlmage. Cada efecto se describe mediante una caja que se
deriva de una estructura BaseEffectBox mostrada a continuacion.

class Ba

[¢4]

abffTetBox (effect type} extends

FullBox{effect type, version, flags)|{

if (version==0) nb bilts effect = 8;
else 1f (version ==1) nb bits effect = 16;
else if (version ==2)} nb bits effect = 3Z;

unsigned int(nb bits effect) effect id;
}

Con la siguiente semantica:

effect_type es el tipo de caja de efectos que se derivan de esta clase, un cédigo Unico de cuatro caracteres
que identifica el tipo de caja;

effect_id es un identificador Gnico para un efecto o transformacion determinados. Este identificador debe ser
Unico dentro de la caja “meta”.

nb_bits_effect se deriva del valor de la version e indica la cantidad de bits utilizados para representar el
effect_id

Los efectos se pueden declarar en una EffectDeclarationBox opcional, contenida en la caja “meta™

Tipo de caja: “effd”
Contenedor: meta
Obligatorio: no
Cantidad: vero o uno

class EffectDeclarationBox sxtends Box{teffd') {
Slone or more offect boxes
1

Por ejemplo, se pueden definir los siguientes efectos (sin lista limitativa):

el Efecto de rotacion: el efecto de rotacion transforma la imagen de origen en sentido antihorario en unidades
de 90 grados.

Tipo de caja: “erot”
Contenedor: effd
Mandatorio: No
Cantidad: cero o mas

class RotationEffectBox extands

gungigned int 16) reserved = 0;

unsigned int {2} angle;

23

10

15

20

25

30

35

ES 3001 562 T3

La semantica es:
angulo *90: especifica el angulo (en sentido antihorario) en unidades de grados

- Efecto de apertura limpia: el efecto de apertura limpia modifica la parte visible de la imagen de origen.
Tipo de caja: “ecla”
Contenedor: effd

Mandatorio: no
Cantidad: cero o mas

class CleanAperturekffectBox extends
BaseEffectBox{'ecla'}{
unsigned int (nb _bits effect)
cleanfApertureWidthi;
unsigned int{nb bits effect)
cleanApertureWidthD;
unsigned int(nb _bits effect)
cleanApertureHeightN;
unsigned int {nb bits effect)
cleanApertureHeightD;
unsigned int(nb bits effect) horizQffN;
unsigned int(nb bits effect) horizOffD;
unsigned int{nb bits effect) vertOLfN;
unsigned intink bits effect) vertOffD;
}
La semantica es:
nb_bits_effect se deriva de la clase padre BaseEffectBox e indica la cantidad de bits utilizados para
representar los diferentes campos de CleanApertureEffectBox;
hSpacing, vSpacing: definen la anchura y |a altura relativos de un pixel;
cleanApertureWidthN, cleanApertureWidthD: un nimero fraccionario que define la anchura de apertura limpia
exacto, en pixeles contados, de la imagen;
cleanApertureHeightN, cleanApertureHeightD: un nimero fraccionario que define |a altura de apertura limpia
exacta, en pixeles contados, de la imagen;
horizOffN, horizOffD: un nimero fraccionario que define el desplazamiento horizontal del centro de apertura
limpia menos (anchura-1)/2 (habitualmente 0);
vertOffN, vertOffD: un nimero fraccionario que define el desplazamiento vertical del centro de apertura limpia
menos (altura-1)/2 (habitualmente 0).
El conjunto de efectos: la caja Conjunto de efectos permite definir un conjunto de varios efectos como un solo
efecto, con el fin de reutilizarlo para varias imagenes y reducir de este modo el coste de la descripcion en
términos de bytes.
Tipo de caja: “ecol”
Contenedor: effd

Mandatorio: No
Cantidad: cero o mas

24

10

15

20

25

30

35

ES 3001 562 T3

class EffectCollectionBox extends

\

BaseRffectBox{Tacol'y |

unsigned int{nb bits effect) nb effects;

for {(1=0; i<nk effects; 1i++} {

unsigned int{nb bits effect) apply effect id;

La semantica es:

nb_bits_effect se deriva de la clase padre BaseEffectBox, e indica la cantidad de bits utilizados para
representar los diferentes campos de EffectCollectionBox.
apply_effect-id: indica el ID de un efecto que se aplicara a la imagen de origen.

Los efectos en un conjunto de efectos se aplican en el mismo orden que los efectos en el elemento
Derivedlmage; por ejemplo, cada efecto se aplicara a la entrada en el orden inverso de su aparicion en la lista
de efectos.

La OverlayEffectBox declara una composicién de imagenes como una superposicion. Para este efecto
especifico, la imagen derivada resultante no tiene referencia a ninguna imagen de origen, puesto que este
efecto declara la lista de imagenes de origen que forman parte de la composicion.

con la siguiente semantica:

nb_bits_effects se deriva de la clase padre BaseEffectBox e indica la cantidad de bits utilizados para
representar los diferentes campos de OverlayEffectBox;
fill_required indica si hay huecos en la imagen compuesta resultante para rellenar con un valor de fondo;

canvas_fill_value: indica el valor de pixel por cada canal utilizado si ningun pixel de ninguna imagen de
entrada se encuentra en una ubicacion de pixel concreta. Si las imagenes de entrada contienen menos de
tres canales, la semantica de canvas_fill_value correspondiente a los canales que no estan presentes en las
imagenes de entrada no se especifica;

nb_images indica la cantidad de imagenes a componer, cada una identificada por su item_|D, tal como indica
el parametro image_item_|ID.

output_width, output_height: especifican la anchura y la altura, respectivamente, de la imagen de salida en la
que se colocan las imagenes de entrada. El area de imagen de la imagen de salida se conoce como el lienzo.

horizontal_offset, vertical_offset: especifica el desplazamiento, desde la esquina superior izquierda del lienzo,
hasta el cual se ubica la imagen de entrada. Las ubicaciones de pixeles con un valor de desplazamiento
negativo no se incluyen en la imagen de salida. Las ubicaciones de pixeles horizontales mayores o iguales
que output_width no se incluyen en la imagen de salida. Las ubicaciones de pixeles verticales mayores o
iguales que output_height no se incluyen en la imagen de salida.

25

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

La figura 9 es un diagrama de bloques esquematico de un dispositivo informatico 900 para la implementacion
de una o varias realizaciones de la invencion. El dispositivo informatico 900 puede ser un dispositivo tal como
un micro-ordenador, una estacion de trabajo o un dispositivo portatil ligero. El dispositivo informatico 900
comprende un bus de comunicacion conectado a:

- una unidad central de procesamiento 901, tal como un microprocesador, denominada CPU;

- una memoria de acceso aleatorio 902, denominada RAM, para almacenar el codigo ejecutable del
procedimiento de las realizaciones de la invencion, asi como los registros adaptados para registrar las
variables y parametros necesarios para implementar el procedimiento para leer y escribir los manifiestos
y/o para codificar el video y/o para leer o generar los datos bajo un formato de archivo determinado,
pudiendo ampliarse la capacidad de memoria de la misma mediante una RAM opcional conectada a un
puerto de expansion, por ejemplo;

- una memoria de solo lectura 903, denominada ROM, para almacenar programas informaticos para
implementar las realizaciones de |a invencion;

- una interfaz de red 904 estd conectada habitualmente a una red de comunicacion a través de la cual se
transmiten o reciben datos digitales a procesar. La interfaz de red 904 puede ser una sola interfaz de red, o
estar compuesta por un conjunto de diferentes interfaces de red (por ejemplo, interfaces cableadas e
inalambricas, o diferentes tipos de interfaces cableadas o inalambricas). Los datos se escriben en la
interfaz de red para transmision o son leidos desde la interfaz de red para la recepcion bajo el control de la
aplicacion de software que se ejecuta en la CPU 901;

- una interfaz de usuario 9805, para recibir entradas de un usuario 0 para mostrar informacién a un usuario;

- un disco duro 906, denominado HD

- un modulo de E/S 907 para recibir/enviar datos desde/hacia dispositivos externos, tales como una fuente o
una pantalla de video.

El cédigo ejecutable puede ser almacenado en la memoria de solo lectura 903, en el disco duro 906 o en un
medio digital extraible, tal como por ejemplo un disco. Segun una variante, el cédigo ejecutable de los
programas puede ser recibido por medio de una red de comunicacion, a través de la interfaz de red 904, para
ser almacenado en uno de los medios de almacenamiento del dispositivo de comunicacion 900, tal como el
disco duro 906, antes de ser ejecutado.

La unidad central de procesamiento 901 esta adaptada para controlar y dirigir la ejecucion de las
instrucciones o porciones del codigo de software del programa o programas, segun las realizaciones de la
invencion, instrucciones que se almacenan en uno de los medios de almacenamiento mencionados
anteriormente. Tras ser encendida, la CPU 901 es capaz de ejecutar instrucciones desde la memoria RAM
principal 902 relacionadas con una aplicacion de software después de que esas instrucciones hayan sido
cargadas desde la ROM de programa 903 o el disco duro (HD, Hard-Disc) 906, por ejemplo. Dicha aplicacion
de software, cuando es ejecutada por la CPU 901, hace que se realicen las etapas de un procedimiento
segun las realizaciones.

Alternativamente, la presente invencion puede ser implementada en hardware (por gjemplo, en forma de un
circuito integrado de aplicacion especifica o ASIC (Application Specific Integrated Circuit)).

La presente invencion puede ser integrada en un dispositivo tal como una camara, un teléfono inteligente o
una tableta que actia como un controlador remoto para un televisor, por ejemplo, para hacer zum en una
zona de interés concreta. También puede ser utilizada desde los mismos dispositivos para tener una
experiencia de navegacion personalizada del programa de TV, seleccionando areas de interés especificas.
Otro uso desde estos dispositivos por un usuario es compartir con otros dispositivos conectados algunas
subpartes seleccionadas de sus videos preferidos. También puede ser utilizada en un teléfono inteligente o
tableta para monitorizar lo que sucedi6é en un area especifica de un edificio sometido a vigilancia, siempre
que la camara de vigilancia admita la parte de generacion de esta invencion.

Si bien la invencién ha sido mostrada y descrita en detalle en los dibujos y en la descripcion anterior, dicha
ilustracion y descripcion deben ser consideradas ilustrativas o a modo de gjemplo, y no limitativas, y la
invencion no esta limitada a la realizacién dada a conocer. Los expertos en la materia pueden comprender y
llevar a cabo otras variaciones de la realizacién dada a conocer poniendo en practica la invencion
reivindicada, a partir del estudio de los dibujos, de la descripcion y de las reivindicaciones adjuntas.

En las reivindicaciones, la expresion “que comprende” no excluye otros elementos o etapas, y los articulos
indefinidos “un” o “una” no excluyen una pluralidad. Un solo procesador u otra unidad puede cumplir las
funciones de varios elementos enumerados en las reivindicaciones. El mero hecho de que se citen diferentes
caracteristicas en reivindicaciones dependientes diferentes entre si no indica que no se pueda utilizar
ventajosamente una combinacién de estas caracteristicas. Cualesquiera signos de referencia en las
reivindicaciones no deben ser interpretados como limitativos del alcance de la invencion.

26

10

15

20

25

30

35

40

45

50

55

60

65

ES 3001 562 T3

REIVINDICACIONES

1. Procedimiento de encapsulacion de un flujo de bits codificado que representa una o varias imagenes, en
un archivo de datos encapsulado, comprendiendo el archivo de datos encapsulado una parte de datos y una
parte de metadatos, segun define el estandar de encapsulacion de formato de archivo multimedia basado
en 1SO, ISOBMFF, comprendiendo el procedimiento:

- obtener informacién de elemento de imagen que identifica una porcion de la parte de datos, representando
dicha porcion una imagen individual 0 una subimagen de una imagen individual del flujo de bits codificado;

- obtener propiedades de imagen que comprenden una propiedad relacionada con la anchura y la altura de
una o varias imagenes; y

- encapsular dicho flujo de bits codificado junto con dicha informacién de elemento de imagen proporcionada
y las propiedades de imagen en el archivo de datos encapsulado,

en el que

- la parte de metadatos se incluye en una caja “meta” de ISOBMFF,

- las propiedades de imagen se almacenan en cajas en la parte de metadatos, estando asociada, cada una,
con un identificador, y

- el identificador asociado con cada una de las cajas se utiliza para asociar entradas de una 'itemInfoBox' de
ISOBMFF gue identifica elementos de imagen o elementos de subimagen con las propiedades de imagen.

2. Procedimiento, segun la reivindicacion 1, en el que las propiedades de imagen comprenden ademas uno o
varios parametros de entre:

- posicion de la imagen,

- relacion de aspecto de pixeles,

- informacién de color, y

- propiedades transformativas, que comprenden una o varias propiedades de entre:

- recorte,
- rotacion.

3. Procedimiento, segun la reivindicacion 1, en el que las entradas comprenden:

- informacién de tipo, y
- un identificador utilizado para vincular una informaciéon de elemento de imagen a las propiedades de
imagen.

4. Procedimiento, segun cualquiera de las reivindicaciones 1 a 3, en el que el identificador en las entradas de
una “itemInfoBox” de ISOBMFF se utiliza para asociar elementos de imagen o elementos de subimagen con
las propiedades de imagen por medio de una caja de referencia.

5. Procedimiento de procesamiento de un archivo de datos encapsulado, que comprende una parte de datos
y una parte de metadatos, segun se define en el estandar de encapsulacion de formato de archivo multimedia
basado en 1SO, ISOBMFF, comprendiendo el procedimiento:

- obtener el archivo de datos encapsulado que incluye un flujo de bits codificado correspondiente a una o
varias imagenes en la parte de datos y, en la parte de metadatos, informacién de elemento de imagen que
identifica una porcién de la parte de datos, representando dicha porcién una imagen individual o una
subimagen de una imagen individual del flujo de bits codificado, e informacién que incluye propiedades de
imagen que comprenden una propiedad relacionada con la anchura y la altura de una o varias imagenes o
subimagenes; y

- generar la una o varias imagenes 0 subimagenes,

en el que

- la parte de metadatos se incluye en una caja “meta” de ISOBMFF,

- las propiedades de imagen se almacenan en cajas en la parte de metadatos, estando, cada una, asociada
con un identificador, y

- el identificador asociado con cada una de las cajas se utiliza para asociar entradas de una “itemInfoBox” de
ISOBMFF que identifica elementos de imagen o elementos de subimagen con propiedades de imagen.

6. Procedimiento, segun la reivindicacién 5, en el que un identificador en las entradas de una “itemInfoBox”
de ISOBMFF se utiliza para asociar elementos de imagen o elementos de subimagen con propiedades de
imagen por medio de una caja de referencia

7. Dispositivo para encapsular un flujo de bits codificado que representa una o varias imagenes, que

comprende una memoria configurada para almacenar los datos de imagen y un dispositivo configurado para
implementar un procedimiento segun cualquiera de las reivindicaciones 1 a 4.

27

ES 3001 562 T3

8. Dispositivo para procesar un flujo de bits codificado encapsulado que representa una o varias imagenes,
que comprende una memoria configurada para almacenar el flujo de bits codificado encapsulado y un
dispositivo configurado para implementar un procedimiento segun la reivindicacién 5 o 6.

9. Programa informatico que comprende instrucciones que, cuando son ejecutadas en un ordenador, hacen
que dicho ordenador realice el procedimiento segun cualquiera de las reivindicaciones 1 a 6.

28

ES 3001 562 T3

{souejue eowogy) | By

v y

L N Trorums ™ ek
g G Well O | o0 wel W O ey o
L = Jno sousmeN c O e o -
PO usy 03 | o) iy woy
e =adil sousime) y = ned”asusise)
9 y =) oy
- 01— ain,=90A BousIaI0
Al AR =R 1%, .\\
Jor e -
g
Ko
g Ty
X
U
TN,
s
A | N
e e ne o R 4 ——
{g1y) {go1) {701 feat} tzot) {1013 oh
Gefl WS pef WS C=RE U Z=Di WiE) L=P W) Q=8 ey ; L .L
ooy

(TT——— Iy
i
mcacsesms SO N,
R {1} 410y
N
Lyl
oy

-
-
=
|
.f
+.J
L
g

29

ES 3001 562 T3

AL

Si

I
-

T

30

ES 3001 562 T3

[AA

e o Y 126 ZiE |
/ « \ LiE
3 M \
e \ —
M \
£[osa) e
BT —
BI04 f,fx;f
~y
% o){.r\.
. EBllj 8D SEI8IUO0I 4
2 !«.f. wﬁwm\c

BULLIMOO 8P seISju0ly’ s
S

SOE

31

ES 3001 562 T3

v Bl

H

m
asy

e

B B N O LT

X3

X3 Sd

1
!
:

1

epu i}
:w " joow

=Pt HOR 1oAY,
OAZH 8P QBSOS 8P 88Eq BiSid;

i
i
§

PEY

| uensenpy

OPEOIEPOD 8100 8p 0jusLIBas 8p N1TYN

i b BASOIN

H
wmma W oou

. ueisenpy

0pRINIPOD 81100 8p ojueLBas ap (TTYN

epul’

i b EUSOOA §

L#RlL OATH 1

U ensanpy

OpEOPOs 8100 ap ojuswbas ap NTYN

b BAsey

LRIl OATH

(4%
" | Opeoypos 81109 ap Cluswibas op NTYN ” w C R et L wx&
A= e P joow | MOMLOASH]

1tP

P0BI LIAU, m_\\\

L=Ri 0BG LAY,

- ~w
H
5 &am

R shulaludatoly uv
! it
r\N*
M R
b WM
- {g=p1) 4
i 3
LoNesp
\~\\I iiiiii *«
. H
w

O

32

ES 3001 562 T3

33

ES 3001 562 T3

34

ES 3001 562 T3

i
/"
]
b
ot

2
. -
e “ \ SN Y
M e : |
T e N |
! T y
o~ L ' Mt
3 [o w
27 Ee e
T |
5 wey ol M maﬁimocmémm“ OF wey woly
_/{Aomomi Kog@ouaialaysdAl wal sy .
iz2 —
g1 /
/ N
+ ™,
A N
bid -

oy we sy tadAy souspy T I Wey T Wwokd
Aoa_wv xogasusiseyediiusipeieys \\.

\\.\\\
LLd 7

B T R I T R PR

YOL

~.

! w w\ ‘m..

et ,m,:swt;ti/ilﬁ.w- .

/.// H . ixi\\..s\s\\.s\a
V@ M
g wsy o)

i
H
1
1
3
b

adA poueiaiey ¢ O wial T Woi4

(odn) xogeouasjeyedAijueysibug

\\

M

-
oo
¥

35

ES 3001 562 T3

g 'Bid

e

12 e RLOR
e QL0¢ J)
~Iniwsuen e seyed ep cowoombxm“ o . 7 T f
i “ P
poze —— . seusbeuw) ;
) UCIORZIeNSIA 8P OpeZiSpLaMie f«z})e}flc! 0 CQOWE_) GGCOQWE_ Qmmu.w\/ i
s pmale T ospiA - ~ ousbew) - | opny -
egze - ompny - el ap OMUIIY! BIpBUIINLS OAIYINY,
e \\\\\ oL ALY JDT N
\\.5\.\ T R PP R PR PRI st pme o B
9028 T BIpaUINUL UOIDEJUBSaI @
| 1

lm@%mvm ONUH0D UB UOISHUSUESR Ried GSBfuEL) N 4B Londiosaq

t

EGZ8

uoIun ep ugioensdesu

ke

efly uafiews sp uopemsdeouy

43N80S! 2p uoognsdesu

agog ~7 4, ‘ N~ a80e ,/f
_msw;\\m\mcoa:% e
el ! .
gog

T

usbews ap sig ~.

9
7 ~ 9703
/
el uafiews op uoisaIdLI)t,

/

§0}0} Op SeBRIRI [0104 . cng

268

OSPIA 9P jEIUBWSIS Oy -

| oapin ap uosaidwopb, o

09pIA BP SO0~

ojprie op (BB ONjF ~,
- BZ0B

N

| 0IpE 8p UgISIdWOD cLo8

olpne 8p soleq ~_

36

ES 3001 562 T3

6 einbi

906 506 ¥06
olensn ap
aH ’ 9} 8P Zel|u
Jeyal pes ap zZepejy
Ol
L06

NOH NVHd Ndo

€06 06 T06

006

37

	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - DRAWINGS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS

