

Published:
with international search report (Art. 21(3))

(Continued on next page)

(51) International Patent Classification:
G01Q 10/04 (2010.01) G01Q 60/24 (2010.01)
G01Q 20/02 (2010.01) G01Q 60/38 (2010.01)

(21) International Application Number:
PCT/US20 16/060234

(22) International Filing Date:
3 November 2016 (03.11.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/250,220 3 November 2015 (03.11.2015) US

(71) Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM [US/US]; 201 West 7th Street, Austin, Texas 78701 (US).

(72) Inventors: CULLINAN, Michael; 2903 Beanna Street, Austin, Texas 78705 (US). YAO, Tsung-Fu; 7630 Wood Hollow Drive, #390, Austin, Texas 78731 (US).

(74) Agents: ANDERSON, Bjorn G et al; Menier Carlin & Curfman LLC, 999 Peachtree Street, NE, Suite 1300, Atlanta, Georgia 30309 (US).

(54) Title: METROLOGY DEVICES AND METHODS FOR INDEPENDENTLY CONTROLLING A PLURALITY OF SENSING PROBES

(57) Abstract: An example metrology device can include a plurality of flexure elements configured to independently displace the MEMS devices. Each of the flexure elements can be coupled to a respective MEMS device, and each of the flexure elements can be configured to displace the respective MEMS device in at least one direction.

FIG. 1

[Continued on next page]
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/250,220, filed on November 3, 2015, entitled "METROLOGY DEVICES AND METHODS FOR INDEPENDENTLY CONTROLLING A PLURALITY OF SENSING PROBES," the disclosure of which is expressly incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH

[0001] This invention was made with government support under Grant no. EEC1160494 awarded by the National Science Foundation. The government has certain rights in the invention.

BACKGROUND

[0002] In the nano-fabrication industry, metrology is an important issue because it is needed to ensure the correct alignment and patterning of features. Integrating a sensing system which can instantaneously send back the dimensional information about manufactured products can reduce losses and defect rates. However, it is difficult to perform in-line metrology in nano-fabrication systems because it requires not only real-time inspection but also nanoscale resolution of complex features.

[0003] Atomic force microscopy (AFM) has high resolution ability (e.g., sub-nm-scale) and is widely utilized in scientific and industrial applications. However, there are two main drawbacks to the use of AFM metrology in in-line manufacturing applications. The first is the low scanning speed of the AFM sensing probe. The second is the time it takes to place and align samples in the AFM (i.e., long setup times). For example, optical systems and technologies are typically used to align samples by determining the location of the AFM sensing probe relative to the sample. As a result, displacements of the AFM sensing probe are limited to on the order of \(\mu m \) to achieve sub-\(\mu m \) precision.
SUMMARY

[0004] An example metrology device can include a plurality microelectromechanical (MEMS) devices, where each of the MEMS devices has a probe, and a plurality of flexure elements configured to independently displace the MEMS devices. Each of the flexure elements can be coupled to a respective MEMS device, and each of the flexure elements can be configured to displace the respective MEMS device in at least one direction.

[0005] For example, in some implementations, the flexure elements can include a first flexure element coupled to a first MEMS device and a second flexure element coupled to a second MEMS device. The first flexure element and the second flexure element can be configured to independently displace the first MEMS device and the second MEMS device, respectively. Alternatively or additionally, in some implementations, a first stage defines a two-dimensional plane, and the at least one direction is within the two-dimensional plane (e.g., an X-direction or a Y-direction). Alternatively, each of the flexure elements can be configured to displace the respective MEMS device in at least two directions (e.g., an X-direction and a Y-direction). Optionally, each of the flexure elements can be a flexure bearing such as a double parallelogram flexure element, for example.

[0006] Alternatively or additionally, each of the flexure elements can be configured to displace the respective MEMS device with millimeter (mm)-scale range (e.g., 5-10 mm). Alternatively or additionally, each of the flexure elements can be configured to displace the respective MEMS device with sub-micron (μm) precision.

[0007] Alternatively or additionally, the metrology device can optionally include a controller operably coupled to the flexure elements, where the controller is configured to transmit one or more signals to the flexure elements. The one or more signals can independently control displacement of each of the MEMS devices. For example, the controller can be further configured to transmit a first signal to a first flexure element and to transmit a second signal to a second flexure element. The first flexure element and the second flexure element can simultaneously displace a first MEMS device and a second MEMS device, respectively, in response to the first and second signals.
Alternatively or additionally, the metrology device can optionally include a controller operably coupled to the flexure elements and the MEMS devices, where the controller is configured to transmit one or more signals to the flexure elements and the MEMS devices. The one or more signals can independently control a respective scanning pattern of each of the MEMS devices. For example, a first respective scanning pattern of a first MEMS device can be different than a second respective scanning pattern of a second MEMS device.

Alternatively or additionally, the MEMS device can optionally be an atomic force microscopy (AFM) chip or a scanning probe microscopy (SPM) chip.

An example method for controlling a plurality of probes of a metrology device is also described herein. The method can include driving a first probe of the metrology device according to a first scanning pattern, and driving a second probe of the metrology device according to a second scanning pattern. The first and second probes of the metrology device can be driven independently of each other, and at least one characteristic of the first scanning pattern can be different from the at least one characteristic of the second scanning pattern. Optionally, the at least one characteristic can be at least one of a direction or a magnitude of displacement.

Alternatively or additionally, each of the first probe and the second probe can optionally be respectively driven in at least one of an X-, Y-, or Z-direction. Alternatively, each of the first probe and the second probe can optionally be respectively driven in X-, Y-, and Z-directions.

Alternatively or additionally, the first scanning pattern can scan a first feature of a sample, and the second scanning pattern can scan a second feature of the sample. Additionally, the first and second features of the sample can have at least one different characteristic. For example, the at least one different characteristic can optionally be a width, length, or height.

Alternatively or additionally, the first and second probes of the metrology device can optionally be controlled simultaneously.

Alternatively or additionally, the metrology device can optionally be an atomic force microscope (AFM) or a scanning probe microscope (SPM).
Other systems, methods, features and/or advantages will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views.

FIGURE 1 illustrates an example metrology device according to implementations described herein.

FIGURE 2A illustrates an example kinematic coupling of the example metrology device of FIG. 1. FIGURE 2B illustrates an example out-of-plane flexure element. FIGURE 2C is another illustration of an out-of-plane flexure element.

FIGURE 3 illustrates an example first stage of a metrology device that includes a plurality of MEMS devices.

FIGURE 4A illustrates an example single chip MEMS device (e.g., a single chip AFM).

FIGURE 4B illustrates an example packaged instrument. FIGURE 4C illustrates an example layout of a MEMS device.

FIGURE 5 illustrates a model of a double parallelogram flexure mechanism (DPFM).

FIGURE 6 illustrates an example design for the XY precision stage (e.g., the first stage) using a DPFM as the flexure element. The left side illustrates the top stage with the MEMS device, and the right side illustrates the wafer sample stage (e.g., the second stage).

FIGURE 7 is a perspective view that illustrates the metrology device with an XY precision stage used position the MEMS device and a sample stage used to hold the sample (e.g., a wafer) for inspection.

FIGURE 8 illustrates mapping of stiffness of an example flexure element varied with beam length \(L\) and flexure width \(w\).
FIGURE 9 illustrates an example metrology device machined from a 15-mm thick 7075-T6 aluminum plate using a water jet cutting machine. FIGURE 9A shows the XY precision stage (e.g., the first stage) with the flexure element. FIGURE 9B illustrates the sample stage (e.g., the second stage) with the sample. FIGURE 9C illustrates the metrology device with first and second stages assembled. FIGURE 9D illustrates the MEMS device and the flexure element under the first stage.

FIGURE 10 illustrates setup for the parasitic motion test.

FIGURE 11 illustrates the capacitance probe setup.

FIGURE 12 illustrates is a schematic diagram of the single-chip stage parallelism.

FIGURE 13 illustrates repeatability performance in X, Y, Z positions and rotation of X-Y plane for the XY precision stage.

FIGURE 14 is a graph that illustrates X-Axis Translational Error.

FIGURE 15 is a graph that illustrates Y-Axis Translational Error.

FIGURE 16 is a graph that illustrates Z-Axis Translational Error.

FIGURE 17 is a graph that illustrates Rotational Repeatability Error.

FIGURE 18 is a block diagram that illustrates an example computing device.

DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure. As used in the specification, and in the appended claims, the singular forms "a," "an," "the" include plural referents unless the context clearly dictates otherwise. The term "comprising" and variations thereof as used herein is used synonymously with the term "including" and variations thereof and are open, non-limiting terms. The terms "optional" or "optionally" used herein mean that the subsequently described feature, event or circumstance may or may not occur, and that the description includes instances where said feature, event or circumstance occurs and instances where it does not. This disclosure contemplates that the metrology devices and methods described herein can be used
with nanoscale and/or microscale metrology applications such as atomic force microscopy, scanning tunneling microscopy, and/or nearfield optical scanning microscopy. The metrology devices and methods can be used to reduce setup time for nanoscale and/or microscale metrology applications.

[0036] A metrology device described herein includes a probe stage (also referred to herein as a first stage or an XY precision stage) used to hold a probe-based microscope such as an atomic force microscope (AFM), for example, that can be actuated in the X, Y, and/or Z directions and that can be repeatably placed relative to an object (e.g., a sample or specimen such as a semiconductor wafer) being measured. The metrology device can include actuators connected to flexural bearings, which produce decoupled displacements of the probe-based microscope in the X, Y, and/or Z planes. For example, the flexural bearings can have double-parallelgram flexural bearing design, which allows for highly repeatable displacement of the probe-based microscope over a range of millimeters (e.g., 5-10 mm). The probe stage can be removed from a sample stage (e.g., a second stage) for loading/unloading of samples and can then be repeatably placed back to the same location, which reduces the setup time for probe-based metrology operations in the manufacturing environment. The metrology device can include a kinematic coupling for facilitating repeated removal and replacement of the first stage relative to the second stage. The metrology device can be used to rapidly and automatically align a sample surface with the probe stage to enable high throughput metrology.

[0037] Another metrology device described herein includes a plurality of flexure elements to independently actuate a plurality of MEMS devices (e.g., atomic force microscope (AFM) chips) in the X, Y, and/or Z directions. In other words, a plurality of XY flexure elements can be integrated into the metrology device, and each of the XY flexure elements can be individually controlled. By independently actuating the MEMS devices on the stages, multiple points can be measured on the same sample (e.g., a semiconductor wafer) simultaneously. Each MEMS device can be controlled and activated independently in the in-plane directions (X and Y-axis) and the out-of-plane (Z-axis) direction. By parallelizing the automatic approach of MEMS devices to their sample locations, the metrology device described herein allows rapid scanning of samples at a number of locations. Accordingly, the metrology
device can scan irregular or curved samples because each of the probes is independently actuated in the Z-axis.

[0038] Referring now to FIG. 1, an example metrology device is shown. The metrology device can include a first stage 100 (also referred to herein as a probe stage or an XY precision stage) including a microelectromechanical (MEMS) device 150 having a probe, and a second stage 200 (also referred to herein as a sample stage) configured to hold a sample or specimen 250. This disclosure contemplates that the probe of the MEMS device 150 can optionally be a piezoelectric cantilever tip of the MEMS device. Optionally, the MEMS device can be an atomic force microscopy (AFM) chip or a scanning probe microscopy (SPM) chip. It should be understood that the MEMS device is not limited to AFM and SPM chips. As described above, the metrology systems and methods described herein can be used in other metrology applications. Optionally, the sample can be a semiconductor wafer. It should be understood that the sample is not limited to being semiconductor wafer. The metrology device can also include a kinematic coupler 300 for constraining the first stage 100 in a fixed position relative to the second stage 200. As shown in FIG. 1, the probe of the MEMS device 150 is aligned with a portion of the sample 250 when the first stage 100 is constrained in the fixed position relative to the second stage 200.

[0039] The kinematic coupler 300 can optionally be configured to constrain the first stage 100 in six degrees of freedom. The kinematic coupler 300 can optionally constrain the first stage 100 in the fixed position relative to the second stage 200 using a magnetic force (e.g., using magnets) and/or using the force of gravity. This disclosure contemplates that the kinematic coupler 300 can include at least one fastener and a corresponding groove, where the fastener interfaces with the corresponding groove such that the first stage 100 is constrained in the fixed position relative to the second stage 200. Referring now to FIG. 2A, the kinematic coupler 300 can optionally include a plurality of fasteners 320 coupled to the first stage 100 and a plurality of grooves 340 arranged on the second stage 200. Optionally, the kinematic coupler 300 can include three fasteners and three corresponding grooves. This disclosure contemplates that the kinematic coupler 300 can include more or less than three fasteners and grooves, which are provided only as an example. As shown in FIG. 2A, each of the fasteners 320 can be configured to interface with one of the grooves 340 to constrain the first stage 100
in the fixed position relative to the second stage 200. For example, as shown in FIG. 2A, each of the
fasteners 320 can optionally be a ball configured to interface with one of the grooves 340 to constrain
the first stage 100 in the fixed position relative to the second stage 200. As shown in FIG. 2A, each of
the grooves 340 can optionally be a vee-block. It should be understood that the kinematic coupler 300
is not limited to a fastener and corresponding groove as shown in FIG. 2A.

[0040] Referring again to FIG. 1, the metrology device can also optionally include a plurality
of micrometers 400. The micrometers 400 can be attached to the first stage 100. Additionally, the
micrometers 400 can be configured to adjust the position of the first stage 100 relative to the second
stage 200. The micrometers can be used to make fine adjustments to the position of the first stage 100
relative to the second stage 200. For example, one or more micrometers can be used to adjust the
position of the first stage 100 relative to the second stage 200 in an out-of-plane direction (e.g., the Z-
direction or Z-axis translation). As described below, in some implementations, the first stage 100
defines a two-dimensional plane (e.g., the X-Y plane). Accordingly, displacements or translations in an
X-direction and/or a Y-direction are referred to herein as the in-plane directions and displacements or
translations in a Z-direction, which are orthogonal to the X and Y-directions, are referred to as the out-
of-plane direction. Alternatively or additionally, one or more micrometers can be used to adjust X-axis
or Y-axis rotation. Optionally, after a fixed position is established (e.g., using a first sample), the
micrometers 400 can be locked, and the first stage 100 can be repeatedly removed from and returned
to the fixed position relative to the second stage 200 using the kinematic coupler 300. Referring now to
FIG. 2A, in some implementations, the fasteners 320 can optionally extend from or be attached to the
micrometers 400. For example, each of the fasteners 320 can be a spindle of a micrometer 400 press-
fitted to a truncated ball.

[0041] Referring now to FIG. 3, the first stage 100 can optionally include a flexure element
170 coupled to a MEMS device 150. The flexure element 170 can be configured to displace the MEMS
device 150 in at least one direction. For example, as shown in FIG. 3, the first stage 100 defines a two-
dimensional plane (e.g., the X-Y plane). The flexure element 170 can be configured to displace the
MEMS device 150 in the in-plane direction (e.g., the X-direction), e.g., using flexure element 170a.
Alternatively or additionally, the flexure element 170 can be configured to displace the MEMS device 150 in the in-plane direction (e.g., the Y-direction), e.g., using flexure element 170b. Alternatively or additionally, the flexure element 170 can be configured to displace the MEMS device 150 in at least two directions (e.g., both the X-direction and the Y-direction), e.g., using flexure elements 170a and 170b. Thus, as used herein, the flexure element 170 can refer to either or both flexure element(s) configured to displace the MEMS device 150 in the X-direction and/or the Y-direction.

[0042] Optionally, as shown in FIG. 3, the first stage 100 can include a plurality of MEMS devices 150 and a plurality of flexure elements 170a-170j, where each of the flexure elements 170 is coupled to a respective MEMS device 150. For example, as shown in FIG. 3, the metrology device includes a first flexure element 170a or 170b coupled to a first MEMS device 150 and a second flexure element 170c or 170d coupled to a second MEMS device 150. The first flexure element 170a or 170b and the second flexure element 170c or 170d can be configured to independently displace the first MEMS device and the second MEMS device, respectively. For example, flexure elements 170a and 170c can be configured to displace their respective MEMS devices 150 in the in-plane direction (e.g., the X-direction), and flexure elements 170b and 170d can be configured to displace their respective MEMS devices 150 in the in-plane direction (e.g., the Y-direction).

[0043] The metrology device can optionally include a controller operably coupled to the flexure elements 170, where the controller is configured to transmit one or more signals to the flexure elements 170. Alternatively or additionally, the controller can optionally be configured to transmit one or more signals to an actuator (e.g., as shown in FIG. 3), which transmits the signals to the flexure elements 170. This disclosure contemplates that the controller can be implemented using a computing device (e.g., computing device 1800 of FIG. 18). The signals can independently control displacement of each of the MEMS devices 150. For example, the controller can be further configured to transmit a first signal to a first flexure element 170a and/or 170b and to transmit a second signal to a second flexure element 170c and/or 170d. The first flexure element 170a and/or 170b and the second flexure element 170c and/or 170d can simultaneously displace a first MEMS device and a second MEMS device, respectively, in response to the first and second signals. For example, this disclosure contemplates that
the signals can be thermal control signals that cause the flexure elements 170 to heat up/cool down, which cause the flexure elements 170 to expand/contract and displace the MEMS devices 150.

[0044] Alternatively or additionally, the metrology device can optionally include a controller operably coupled to the MEMS devices 150, where the controller is configured to transmit one or more signals to the MEMS devices 150. Alternatively or additionally, the controller can optionally be configured to transmit one or more signals to an actuator (e.g., as shown in FIG. 3), which transmits the signals to the MEMS device 150. This disclosure contemplates that the controller can be implemented using a computing device (e.g., computing device 1800 of FIG. 18). The one or more signals can independently control a respective scanning pattern of each of the MEMS devices 150. For example, a first respective scanning pattern of a first MEMS device can be different than a second respective scanning pattern of a second MEMS device. This disclosure contemplates that the controller/actuator for operating the flexure elements 170 can depend on feedback from the MEMS devices 150, but the controller/actuator for operating the MEMS devices 150 does not depend on feedback from the flexure elements 170. In this way, when the flexure elements 170 are locked, the MEMS devices 150 can be independently operated or controlled, for example, to execute respective scanning patterns.

[0045] As described herein, the first and second MEMS devices can be independently controlled. In other words, respective signals can be transmitted to each of the flexure elements 170 and/or MEMS devices 150, which can independently drive the probes of first and second MEMS devices. For example, the first MEMS device can be driven according to a first scanning pattern. The first scanning pattern can be defined by its characteristics including but not limited to a magnitude and direction of displacement. Additionally, the first scanning pattern can include displacements in one or more of the X-, Y-, and Z-directions. Optionally, the first scanning pattern cause the first MEMS device to scan a first feature of the sample or specimen, where the first feature is defined by a length, width, and/or height. Additionally, the second MEMS device can be driven according to a second scanning pattern. The second scanning pattern can be defined by its characteristics including but not limited to a magnitude and direction of displacement. Additionally, the second scanning pattern can include displacements in one or more of the X-, Y-, and Z-directions. Optionally, the second scanning pattern
cause the second MEMS device to scan a second feature of the sample or specimen, where the second feature is defined by a length, width, and/or height. In these examples, the characteristics of the first and second scanning patterns can be different than each other (e.g., each having different directions of displacement). Additionally, the first and second features of the sample can have different features (e.g., each having different heights). In this way, the first and second scanning patterns can be different from one another.

[0046] In the implementations described herein, each of the flexure elements 170 can be configured to displace the MEMS device 150 with millimeter (mm)-scale range (e.g., 5-10 mm) in the in-plane directions. In addition, each of the flexure elements 170 can be configured to displace the MEMS device 150 with sub-micron (μm) precision in the in-plane directions. Accordingly, the metrology devices described herein allow for mm-scale travel with sub-μm precision in the in-plane directions (e.g., the X-direction and/or the Y-direction). Additionally, as shown in FIGS. 2B and 2C, the MEMS device 150 is located on an out-of-plane flexure element 180 (e.g., a double parallelogram flexure element) that allows the height of the MEMS device 150 to be set or adjusted in the out-of-plane direction (e.g., the Z-direction). The out-of-plane flexure element 180 provides a range of travel of about 1 mm in the out-of-plane axis. It should be understood that the out-of-plane flexure element 180 is separate from the flexure elements that are configured to displace the MEMS device in the in-plane directions (e.g., flexure elements 170). The out-of-plane flexure element 180 can be controlled by one or more control signals provided by a controller and/or actuator, for example, using actuator 190 of FIGS. 2B and 2C. It should be understood that finer Z-axis displacements can be made by controlling the MEMS device 150 itself (e.g., by controlling the probe). As described above, conventional AFM rely on optical systems to determine the location of the probe and as a result are limited to displacements on the order of μm to achieve sub-μm precision.

[0047] Examples

[0048] In some implementations, the flexure element can optionally be can be a flexure bearing such as a double parallelogram flexure element (or a double parallelogram flexure mechanism (DPFM)), for example. It should be understood that the flexure element is not limited to a DPFM. An
XY precision stage including a double parallelogram flexure mechanism (DPFM) is capable of mm-scale displacement in two dimensions. This design provides precise positioning of the MEMS device (e.g., an AFM chip) for wafer inspection. As long as the geometric dimensions of the flexure element are optimized, it is possible to put multiple stages in a narrow space, which enables simultaneous inspection of a plurality of areas on a wafer for in-line nanomanufacturing applications. For example, in order to provide 3-mm motion length for both X and Y axis, the DPFM requires about 50-mm² area per AFM chip. It should be understood that this can limit the number of MEMS devices that can be utilized per unit area. This limitation can be overcome by providing flexure elements in the XY precision stage having various shapes and sizes. For example, with reference to FIG. 3, flexure elements 170e, 170f are arranged around flexure elements 170g, 170h, which increases the number of MEMS devices per scanning area.

[0049] Flexure bearings are used in the metrology device described herein because of their precision and mechanical simplicity. The flexure bearings are used to position the MEMS device (also referred to as single-chip AFMs) relative to the wafer that is being inspected. The precision positioning stage is designed to be able to achieve mm-scale displacements with micron level precision. In addition, multiple stages with multiple independent AFMs can be incorporated into the metrology device to increase the inspection speed and area, as shown in FIG. 3. In order to be able to incorporate multiple stages into a single metrology device, the size of the flexure elements can be minimized and the space utilization in the metrology device can be maximized.

[0050] Flexure mechanisms are used in micro-positioning XY stages due to their superior isolation of motion between the X and Y axis and their great difference between in-plane and out-of-plane stiffness. DPFMs have been shown to demonstrate extreme precision with mm-scale displacement range. FIG. 5 illustrates a simple model of a DPFM.

[0051] Because of the mm-scale deflection of the flexure beams, stiffness in the axial direction is affected by tangential displacement and tangential stiffness is affected by axial force. That is,
where \(w, L, \) and \(E \) are the flexure width, beam length, and Young's modulus, respectively and \(I \) is the second moment of area of the flexure beam.

Fig. 6 illustrates an example design for the XY precision stage (e.g., the first stage 100) using a DPFM as the flexure element 170. The left side is the first stage 100 with the MEMS device 150, and the right side is the wafer sample stage (e.g., the second stage 200 with the sample 250).

Fig. 7 is a perspective view illustrating the metrology device with the first stage 100 (e.g., an XY precision stage) used position the MEMS device 150 and a second stage 200 (e.g., the sample stage) used to hold the sample 250 (e.g., a wafer) for inspection. As described herein, a kinematic coupling can be used to quickly and precisely align the XY precision stage to the sample stage.

As shown in Fig. 6, the X and Y motions of the flexure elements 170 are driven by a set of micrometer heads (e.g., arrows 175). Each axis of motion can be modeled as a spring system with two parallel sets of springs and two series sets of springs \((K_x, K_y)\). Since stiffness in the axial direction is much greater than stiffness in the tangential direction, total stiffness in the X-direction will be two times the stiffness of each of the DPFMs in the tangential direction. Sensitivity analysis for those multiple variables demonstrates that only variations in the beam length \((L)\) and the flexure width \((w)\) have a significant effect on the stiffness. Therefore, the stiffness of the flexure element can be plotted as a function of the beam length and flexure width, as shown in Fig. 8, which illustrates mapping of stiffness varied with beam length \((L)\) and flexure width \((w)\).

Fig. 9 illustrates an example metrology device machined from a 15-mm thick 7075-T6 aluminum plate using a water jet cutting machine. Fig. 9A shows the XY precision stage (e.g., the first stage 100) with the flexure element 170. As shown in Fig. 9A, the MEMS device can be located in an opening formed in the first stage. Fig. 9B illustrates the sample stage (e.g., the second stage) with the sample 250. Fig. 9C illustrates the metrology device with first and second stages assembled. Fig.
9D illustrates the MEMS device 150 and the flexure element 170 under the first stage. In order to provide reasonable stiffness and to minimize size, the flexure element 170 was designed to be cut from a 15mm-thick block of 7075-T6 aluminum. A length of 20 mm and a width of 0.40 mm was selected for the flexure elements which resulted in a predicted 19.4 N/mm in-plane stiffness. The first mode natural frequency of the stage (e.g., the first stage) was 133 Hz, which is two orders magnitude higher than largest frequencies generated by the laboratory environment. The maximum force input to the mechanism is 50 N per axis, which results in a 2.58mm displacement of the center stage.

As described above with regard to FIG. 2A, translation in the Z-direction and rotations about the X and Y axes are accomplished via actuation of three micrometers 400 attached to the XY precision stage (e.g., the first stage 100). The spindle of each micrometer can be press-fit to precision truncated balls, shown as FIG. 2A. The balls interface with three vee-blocks, and when the micrometers are locked the ball and vee-block coupling kinematically constrains all 6 DOFs of the XY precision stage relative to the wafer alignment stage.

Measurements

Asymmetric arrangement of the flexure mechanisms and manufacturing error created in-plane yaw error motion. As a result, the motion of the stage differed from the cumulative input from the X and Y actuators. This parasitic motion was measured with two fiber-based optical displacements with 1.0-pm sensitivity and 100-mm working range. The parasitic motion test setup is shown in FIG. 10.

Repeatability of the kinematic coupling between the XY precision stage (e.g., the first stage) and the sample stage (e.g., the second stage) was tested with capacitance probes. Three capacitance probes from LION Precision with 0.14-nm resolution and 2.0-mm working range were mounted on the optical table as the sensors for X, Y, and Z displacements. The experimental setup is shown in FIG. 11, which illustrates the capacitance probe setup. This setup was used to measure the repeatability in position during the repeated engagement of the kinematic couplings, as the two stages must be separated in order to change samples.
RESULTS

In the flexure motion test, the XY precision stage (e.g., the first stage) exhibited 1.47-μm deviation in the Y-direction over 100-μm of actuation in the X-Direction and 3.80-μm deviation in the X-direction over 100-μm of actuation in the Y-direction. The results indicated that the motion of the XY precision stage is not in a set of perfect perpendicular lines, as shown in FIG. 12, which is a schematic diagram of the single-chip stage parallelism. This error was caused by geometric asymmetry and manufacturing errors. However, these errors are repeatable and therefore can be calibrated for in the actuation system (e.g., the controllers and/or actuators described above).

Finite Element Analysis (FEA) was used to calculate the parasitic motion without manufacturing error. The results indicated 7.55-μm X-deviation per 100-μm Y-actuator travel and negative 8.31-μm Y-deviation per 100-μm X-actuator travel. The difference between parallelism test and FEA result suggests that manufacturing tolerances contributed to the parasitic motion. Water jet cutting the stage yielded uneven flexure thicknesses which affected the motion of flexure.

FIG. 13 is a table illustrating the repeatability performance in X, Y, Z positions and rotation of X-Y plane for the XY precision stage (e.g., the repeatability for each degree of freedom). Results for the repeatability of the kinematic coupling were recorded for translation in X, Y, and Z positions as well as rotated angle about the Z-axis of the stage. FIGS. 14, 15, and 16 show the error distribution for position error over 50 trials in X, Y, and Z respectively. FIG. 17 shows rotational error about the Z-Axis. Repeatability is defined as the standard deviation calculated from the trials. The XY precision stage has in-plane repeatability of 350 to 400 nm with in-plane rotation of 0.140 μrad and about 60-nm out-of-plane translational repeatability. Generally, AFM equipment scans in a couple of micron meter range, which is greater than the repeatable error. Therefore, an in-plane error of 400 nm is acceptable to be used in single-chip AFM operation.

The XY precision stage of the metrology device described herein is capable of mm-scale displacement with μm-scale precision and enables the in-line inspection of wafers with single-chip AFMs. Parasitic error when actuating the stage was 1.47 and 3.80 μm deviation in X and Y direction respectively per 100-μm of actuator travel in the orthogonal direction. The kinematic coupling exhibited
sub-micron in-plane repeatability of 390 nm and 361 nm, as well as 60-nm precision in out-of-plane direction, which are acceptable in operation of AFM scanning.

[0069] This flexure mechanism design can be extended to a stage with a plurality of independently actuated AFM chips (e.g., 5 as shown in FIG. 3) to allow for simultaneous measurements at multiple points on a wafer. This disclosure contemplates that closed-loop feedback control can be implemented to approach the sample in the Z-direction. Optionally, using closed-loop feedback control, the micrometers (e.g., micrometers 400 of FIGS. 1 and 2) are not needed in some implementations. The XY precision stage described herein, when kinematically coupled to a sample stage, and automatically actuated in the z-direction enables in-line metrology of silicon wafers.

[0070] EXAMPLE COMPUTING DEVICE

[0071] It should be appreciated that the logical operations described herein with respect to the various figures may be implemented (1) as a sequence of computer implemented acts or program modules (i.e., software) running on a computing device (e.g., the computing device described in FIG. 18), (2) as interconnected machine logic circuits or circuit modules (i.e., hardware) within the computing device and/or (3) a combination of software and hardware of the computing device. Thus, the logical operations discussed herein are not limited to any specific combination of hardware and software. The implementation is a matter of choice dependent on the performance and other requirements of the computing device. Accordingly, the logical operations described herein are referred to variously as operations, structural devices, acts, or modules. These operations, structural devices, acts and modules may be implemented in software, in firmware, in special purpose digital logic, and any combination thereof. It should also be appreciated that more or fewer operations may be performed than shown in the figures and described herein. These operations may also be performed in a different order than those described herein.

[0072] Referring to FIG. 18, an example computing device 1800 upon which embodiments of the invention may be implemented is illustrated. This disclosure contemplates that the controller(s) for operating the flexure elements and/or MEMS devices can be implemented using computing device
It should be understood that the example computing device 1800 is only one example of a suitable computing environment upon which embodiments of the invention may be implemented. Optionally, the computing device 1800 can be a well-known computing system including, but not limited to, personal computers, servers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, network personal computers (PCs), minicomputers, mainframe computers, embedded systems, and/or distributed computing environments including a plurality of any of the above systems or devices. Distributed computing environments enable remote computing devices, which are connected to a communication network or other data transmission medium, to perform various tasks. In the distributed computing environment, the program modules, applications, and other data may be stored on local and/or remote computer storage media.

In its most basic configuration, computing device 1800 typically includes at least one processing unit 1806 and system memory 1804. Depending on the exact configuration and type of computing device, system memory 1804 may be volatile (such as random access memory (RAM)), non-volatile (such as read-only memory (ROM), flash memory, etc.), or some combination of the two. This most basic configuration is illustrated in FIG. 18 by dashed line 1802. The processing unit 1806 may be a standard programmable processor that performs arithmetic and logic operations necessary for operation of the computing device 1800. The computing device 1800 may also include a bus or other communication mechanism for communicating information among various components of the computing device 1800.

Computing device 1800 may have additional features/functionality. For example, computing device 1800 may include additional storage such as removable storage 1808 and non-removable storage 1810 including, but not limited to, magnetic or optical disks or tapes. Computing device 1800 may also contain network connection(s) 1816 that allow the device to communicate with other devices. Computing device 1800 may also have input device(s) 1814 such as a keyboard, mouse, touch screen, etc. Output device(s) 1812 such as a display, speakers, printer, etc. may also be included. The additional devices may be connected to the bus in order to facilitate communication of data among
the components of the computing device 1800. All these devices are well known in the art and need not be discussed at length here.

[0075] The processing unit 1806 may be configured to execute program code encoded in tangible, computer-readable media. Tangible, computer-readable media refers to any media that is capable of providing data that causes the computing device 1800 (i.e., a machine) to operate in a particular fashion. Various computer-readable media may be utilized to provide instructions to the processing unit 1806 for execution. Example tangible, computer-readable media may include, but is not limited to, volatile media, non-volatile media, removable media and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. System memory 1804, removable storage 1808, and non-removable storage 1810 are all examples of tangible, computer storage media. Example tangible, computer-readable recording media include, but are not limited to, an integrated circuit (e.g., field-programmable gate array or application-specific IC), a hard disk, an optical disk, a magneto-optical disk, a floppy disk, a magnetic tape, a holographic storage medium, a solid-state device, RAM, ROM, electrically erasable program read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.

[0076] In an example implementation, the processing unit 1806 may execute program code stored in the system memory 1804. For example, the bus may carry data to the system memory 1804, from which the processing unit 1806 receives and executes instructions. The data received by the system memory 1804 may optionally be stored on the removable storage 1808 or the non-removable storage 1810 before or after execution by the processing unit 1806.

[0077] It should be understood that the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination thereof. Thus, the methods and apparatuses of the presently disclosed subject matter, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium
wherein, when the program code is loaded into and executed by a machine, such as a computing device, the machine becomes an apparatus for practicing the presently disclosed subject matter. In the case of program code execution on programmable computers, the computing device generally includes a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. One or more programs may implement or utilize the processes described in connection with the presently disclosed subject matter, e.g., through the use of an application programming interface (API), reusable controls, or the like. Such programs may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language and it may be combined with hardware implementations.

[0078] ADVANTAGES

[0079] The metrology device described herein has a simple mechanical structure and low mass which facilitate high throughput metrology. Conventional technologies for large-displacement stages utilize two independent mechanisms to translate, i.e., a probe stage that actuates only in the Z-direction and a sample stage that moves in the relative X and Y directions. The optics, actuators, bearings, and sensors in conventional technologies are contained in the sample stage. This results in an excessive mass compared to the metrology device described herein, which leads to inferior mechanical performance.

[0080] The metrology device described herein incorporates a feedback mechanism to automatically approach the sample in the Z-direction. The MEMS device (e.g., the AFM) on the XY precision stage is used to determine distance from the sample. Thus, only the stage containing the AFM moves during the approach. This feature reduces setup time for the AFM instrument and enables rapid measurement (e.g., less than 1 minute). Conventional technologies rely on auxiliary sensors and manual approach. Furthermore, conventional technologies require the movement of comparatively massive stages which cannot not be positioned as quickly as the metrology device described herein.
The metrology device described herein supports in-line measurement and inspection of semiconductor wafers. In-line wafer metrology requires precision on the order of nanometers and setup time on the order of minutes. Microscope stages based on conventional technology are incredibly precise, but are slow to operate. The double-parallellogram flexure mechanism and automatic Z-approach of the metrology device described herein allow for nanometer resolution measurement at comparatively high speeds. In order to align the probe with the sample, the metrology device described herein uses kinematic couplings to mount the XY precision stage on the sample stage. Three pairs of vee-blocks and balls constrain all six degree of freedom, making it static enough when scanning operated, providing high resolution as well. Furthermore, the compact and simple design of the metrology device described herein requires fewer parts to be driven, and increases reliability significantly.

The metrology device described herein is simpler than existing technologies, and just as accurate. The combination of kinematic couplings and highly repeatable flexural bearings allows the metrology device described herein to provide highly repeatable positioning without the need for bulky and slow-moving optical alignment techniques. The simplicity of the design of the metrology device described herein allows it to be easily integrated into current nanofabrication systems in order to perform inline inspection. The flexural bearings allow for a larger travel range than conventional systems are capable of. Additionally, the metrology device described herein is significantly faster than conventional technologies. Loading the specimen into the metrology device described herein and approaching the specimen so that features of interest are within the measuring range of the microscope takes less than one minute. The same process can take up to thirty minutes using conventional technologies.

The metrology device described herein uses an AFM to measure distance from the AFM to the sample as a function of the AFM's bridge voltage. Because the AFM instrument and specimen-setup system are separate but not electrically isolated from each other, when the metrology device described herein is running auto-approach (which turns on the piezo actuator responsible for Z-direction motion), there is significant noise in the AFM
bridge signal. This noise is of a greater magnitude than that of changes in the bridge signal. The problem is overcome with the application of a notch filter. An active filter rejects frequencies sufficiently far from the resonant frequency of the AFM tip and a clean signal remains.

[0084] Another advantage of the metrology device described herein is its combined positioning speed and precision. The metrology device described herein allows inline metrology of semiconductor wafers, and can be applied to other semiconductor manufacturing processes, such as R2R (roll-to-roll) imprint lithography. The chip-based AFM is capable of high speed scanning, which combined with metrology device described herein makes inline metrology a reality for a variety of semiconductor manufacturing processes.

[0085] The metrology device described herein allows for the positioning of a plurality of AFM chips whereas conventional technologies are limited to one AFM device at a time. The metrology device described herein allows for independent positioning of a plurality of chips, whereas conventional technologies can position one AFM chip or a number of chips that are attached to each other (e.g., an array of chips). In conventional technologies, when an array of chips is displaced, the displacement (i.e., magnitude and/or direction) of all chips is the same.

[0086] The metrology device described herein does not rely on the optical positioning systems that conventional technologies use to align AFM with the sample.

[0087] The metrology device described herein is relatively compact compared to conventional technologies. It is lower in mass than conventional technologies a lighter weight, making it easier to realize high throughput metrology. Additionally, the compact design allows for a plurality of AFM chips to scan in a small space and over large areas.

[0088] Conventional AFM or SPM instruments can only check topography within a small area (e.g., 10's of micron scale) because the motion of tip takes time and extremely high resolution means extreme numbers of pixels for long-term scanning length. Measuring features over a large area using conventional technology requires multiple scans and positioning of the AFM between scans. This process is time-consuming and has thus far prevented AFM and SPM metrology from being integrated into in-line manufacturing processes. Even though some instruments utilize arrays of AFM tips for
scanning, the AFM or SPM instruments are fixed relative to each other and as a result setup requires extreme parallelism between the array of cantilevers and the surface to be sampled. Furthermore, it is impossible to scan surfaces that are not flat with fixed arrays of cantilever tips in conventional AFM and SPM technologies. The metrology device described herein uses multiple moving stage/actuators, each for one sensing tip, to operate multiple AFM tip at different location of specimen simultaneously.

Compared with conventional technologies, the metrology device described herein significantly reduces the setup time as well as the tolerances for initial misalignment between the sample and the XY precision stage. The metrology device described herein makes in-line inspection with AFM and SPM chips a viable solution for semiconductor and nanomanufacturing metrology.

[0089] The metrology device described herein has the following advantages as compared to conventional technologies:

[0090] the ability to separately control motions in X, Y, and Z direction of each MEMS device (e.g., scanning tip or sensing probe);

[0091] better performance when scanning a curved specimen;

[0092] potential of in-line inspection system;

[0093] higher tolerance for misalignment between sample and stage; and/or

[0094] more compact and capable of relatively high speed positioning.

[0095] Another advantage of the metrology device described herein is positioning speed and the ability to independently position multiple scanning probes relative to a sample. This allows for high speed and high area scanning of specimens compared to conventional technologies. The metrology device described herein can be integrated into the product-line of semiconductor manufacturing processes such as R2R (roll-to-roll) lithography systems as well as photolithography processes.

[0096] Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
WHAT is CLAIMED:

1. A metrology device, comprising:
 a plurality microelectromechanical (MEMS) devices, wherein each of the MEMS devices has a probe; and
 a plurality of flexure elements configured to independently displace the MEMS devices, wherein each of the flexure elements is coupled to a respective MEMS device and is configured to displace the respective MEMS device in at least one direction.

2. The metrology device of claim 1, wherein the flexure elements comprise a first flexure element coupled to a first MEMS device and a second flexure element coupled to a second MEMS device, and wherein the first flexure element and the second flexure element are configured to independently displace the first MEMS device and the second MEMS device, respectively.

3. The metrology device of any one of claims 1 or 2, wherein each of the flexure elements is a flexure bearing.

4. The metrology device of any one of claims 1-3, wherein each of the flexure elements is configured to displace a respective MEMS device with millimeter (mm)-scale range.

5. The metrology device of any one of claims 1-4, wherein each of the flexure elements is configured to displace a respective MEMS device with sub-micron (µm) precision.

6. The metrology device of any one of claims 1-5, wherein each of the flexure elements is configured to displace a respective MEMS device in at least two directions.

7. The metrology device of claim 6, wherein each of the flexure elements is a double parallelogram flexure element.

8. The metrology device of any one of claims 1-7, further comprising a controller operably coupled to the flexure elements, wherein the controller is configured to transmit one or more signals to the flexure elements, wherein the one or more signals independently control displacement of each of the MEMS devices.

9. The metrology device of claim 8, wherein the controller is further configured to transmit a first signal to a first flexure element and to transmit a second signal to a second flexure element.
10. The metrology device of claim 9, wherein the first flexure element and the second flexure element simultaneously displace a first MEMS device and a second MEMS device, respectively, in response to the first and second signals.

11. The metrology device of any one of claims 1-7, further comprising a controller operably coupled to the flexure elements and the MEMS devices, wherein the controller is configured to transmit one or more signals to the flexure elements and the MEMS devices, wherein the one or more signals independently control a respective scanning pattern of each of the MEMS devices.

12. The metrology device of claim 11, wherein a first respective scanning pattern of a first MEMS device is different than a second respective scanning pattern of a second MEMS device.

13. The metrology device of any one of claims 1-12, wherein the MEMS device is an atomic force microscopy (AFM) chip or a scanning probe microscopy (SPM) chip.

14. A method for controlling a plurality of probes of a metrology device, comprising:
 driving a first probe of the metrology device according to a first scanning pattern; and
 driving a second probe of the metrology device according to a second scanning pattern, wherein the first and second probes of the metrology device are driven independently of each other, and wherein at least one characteristic of the first scanning pattern is different from the at least one characteristic of the second scanning pattern.

15. The method of claim 14, wherein the at least one characteristic is at least one of a direction or a magnitude of displacement.

16. The method of any one of claims 14 or 15, wherein each of the first probe and the second probe is respectively driven in at least one of an X-, Y-, or Z-direction.

17. The method of claim 16, wherein each of the first probe and the second probe is respectively driven in X-, Y-, and Z-directions.

18. The method of any one of claims 14-17, wherein the first scanning pattern comprises scanning a first feature of a sample, the second scanning pattern comprises scanning a second feature of the sample, and the first and second features of the sample have at least one different characteristic.
19. The method of claim 18, wherein the at least one different characteristic is a width, length, or height.

20. The method of any one of claims 14-19, wherein the first and second probes of the metrology device are controlled simultaneously.

21. The method of any one of claims 14-20, wherein the metrology device is an atomic force microscope (AFM) or a scanning probe microscope (SPM).
X, Y - IDEAL COORDINATE SUPPOSED TO BE
X', Y' - ACTUAL COORDINATE IN MOTION

FIG. 12

<table>
<thead>
<tr>
<th>REPEATABILITY</th>
<th>X(μm)</th>
<th>Y(μm)</th>
<th>Z(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. D.</td>
<td>0.390</td>
<td>0.361</td>
<td>0.060</td>
</tr>
</tbody>
</table>

FIG. 13
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: 1-3
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.: 4-13, 18-21
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☒ Claims Nos.: 4-13, 18-21
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

- Group I: Claims 1-3 drawn to a metrology device.
- Group II: Claims 14-17, drawn to method for controlling a plurality of probes of a metrology device.

- see extra sheet

1. ☒ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- ☒ No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/60234

A. CLASSIFICATION OF SUBJECT MATTER
IPC (...) Hepdesk: 571-272-4300
Facsimile No. 571-273-8300 PCT OSP: 571-272-7774
Form PCT/ISA/210 (second sheet) (January 2015)

P.O. Search Name Electronic CPC
Patbase; Facsimile Name Electronic CPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
CPC - G01R1/06705, B82Y35/00, G01Q70/06, G01Q 60/38, G01Q 10/04, G01Q 10/045
IPC (8) - G01Q10/04, G01Q20/02, G01Q60/24, G01Q60/38 (2017.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
CPC - G01R1/06705, B82Y35/00, G01Q70/06, G01Q60/38, G01Q10/04, G01Q10/045, G01R1/0671, G01R3/00
IPC(8) - G01Q10/04, G01Q20/02, G01Q60/24, G01Q60/38 (2017.01), USPC - 310/300

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Patbase; Google Web, Google Patent
Search terms used: probe cantilever micromechanical mems flex flexure metrology scanning probe microscopy atomic force spm
amf displace motion movement travel actuate chip

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2010/0001616 A1 (FERREIRA et al.) 07 January 2010 (07.01.2010), Fig 15A; para [0012], [0013], [0034], [0133], [0188], [0224]</td>
<td>1-3</td>
</tr>
<tr>
<td>X</td>
<td>US 2015/0152548 A1 (SADEGHIAN et al.) 02 July 2015 (02.07.2015), para [0001]-[0013], [0030], [0033], [0043]; Fig 6B; claims 2, 8</td>
<td>14-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

F later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
G document member of the same patent family

Date of the actual completion of the international search
28 February 2017

Date of mailing of the international search report
17 MAR 201?

Authorized officer: Lee W. Young
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
Continuation of Box No. III – Observations where unity of invention is lacking

Note: Claims 4-13 and 18-21 are determined to be unsearchable because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a) and are, therefore, not included in any claim group.

The inventions listed as Groups I through II do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2; they lack the same or corresponding special technical features for the following reasons:

Special Technical Features
Group I includes the special technical feature of each of a plurality of flexure elements coupled to a respective MEMS device and configured to displace the respective MEMS device in at least one direction, not included in the other group.

Group II includes the special technical feature of driving a first probe of the metrology device according to a first scanning pattern; and driving a second probe of the metrology device according to a second scanning pattern, not included in the other group.

Common Technical Features:
The only technical feature shared by Groups I and II that would otherwise unify the groups, is a metrology device comprising a plurality of probes and displacable in at least one direction. However, this shared technical feature does not represent a contribution over prior art, because the shared technical feature is disclosed by US 2010/0064395 A1 to (Clark).

Clark discloses a metrology device (abstract; para [0012]; scanning probe microscope...present calibration system and method uses Electro Micro-Metrology (EMM) techniques) comprising a plurality of probes and displacable in at least one direction (para [0197]; four probe tips 102 may be independently controlled for movement from 10s to 100s of microns by a controller).

As the common technical feature was known in the art at the time of the invention, this cannot be considered a special technical feature that would otherwise unify the groups.

Therefore, Groups I-II lack unity under PCT Rule 13.