(54) Title

Designer osteogenic proteins
(51) International Patent Classification(s)

C07K 14/51 (2006.01)
A61K 38/18 (2006.01)
(21) Application No: 2017200239
(22) Date of Filing: $\quad 2017.01 .13$
(43) Publication Date: 2017.02 .02
(43) Publication Journal Date: 2017.02 .02
(44) Accepted Journal Date: 2018.06 .28
(62) Divisional of:

2015202418
(71) Applicant(s)

Wyeth LLC
(72) Inventor(s)

Berasi, Stephen Peter;Brown, Christopher Todd;Cain, Michael John;Calabro, Valerie Perrine;Juo, Zong Sean;Martinez, Robert Vincent Paul;Seeherman, Howard Joel;Wozney, John Martin
(74) Agent / Attorney

Shelston IP Pty Ltd., Level 21, 60 Margaret Street, Sydney, NSW, 2000, AU
(56) Related Art

WO 2009086131 A1
EP 1571159 A1
WO 2008051526 A2

Abstract of the Disclosure

The invention relates to novel designer osteogenic proteins having altered affinity for a cognate receptor, nucleic acids encoding the same, and methods of use therefor. More preferably, the novel designer osteogenic proteins are designer BMPs and have altered affinity for a cognate BMP receptor. The designer BMPs demonstrate altered biological characteristics and provide potentiai useful novel therapeutics.

DESIGNER OSTEOGENIC PROTEINS

The present application is a divisional application of Australian Application No. 2015202418, which is incorporated in its entirety herein by reference.

FIELD OF THE INVENTION

This application relates to the field of osteogenic proteins, methods of making improved osteogenic proteins, and methods of treating patients with osteogenic proteins.

BACKGROUND OF THE INVENTION

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

The cystine knot cytokine superfamily is divided into subfamilies, which include, the transforming growth factor β (TGF β) proteins, the glycoprotein hormones, the platelet-derived growth factor-like (PDGF-like) proteins, nerve growth factors (NGF), and the differential screening-selected gene aberrative in neuroblastoma (DAN) family (e.g., cerberus). In turn, the TGF β superfamily comprises approximately 43 members, subdivided into three subfamilies: the TGF βs, the activins and the bone morphogenetic/growth differentiation factor proteins (BMP/GDF).

The TGF- β superfamily members contain the canonical cystine knot topology. That is, cystine knots are the result of an unusual arrangement of six cysteine residues. The knot consists of bonds between cysteines $1-4$, cysteines $2-5$, and the intervening sequence forming a ring, through which the disulfide bond between cysteines 3-6 passes. The active forms of these proteins are homodimers or heterodimers. In each case the monomer topology is stabilized by the cysteine knot and additional cysteines contribute to additional intrachain bonds and/or mediate dimerization with another protein unit. See Kingsley, 1994, Genes Dev. 8:133-146; Lander et al, 2001, Nature 409:860-921.

BMP/GDFs are the most numerous members of the TGF- β protein superfamily. The BMP/GDF subfamily includes, but is not limited to, BMP2, BMP3 (osteogenin), BMP3b (GDF-10), BMP4 (BMP2b), BMP5, BMP6, BMP7 (osteogenic protein-1 or OP1), BMP8 (OP2), BMP8B (OP3), BMP9 (GDF2), BMP10, BMP11 (GDF11), BMP12 (GDF7), BMP13 (GDF6, CDMP2), BMP15 (GDF9), BMP16, GDF1, GDF3, GDF5 (CDMP1; MP52), and GDF8 (myostatin). BMPs are sometimes referred to as Osteogenic Protein (OPs), Growth Differentiation Factors (GDFs), or Cartilage-Derived Morphogenetic Proteins
(CDMPs). BMPs are also present in other animal species. Furthermore, there is some allelic variation in BMP sequences among different members of the human population.

BMPs are naturally expressed as pro-proteins comprising a long pro-domain, one or more cleavage sites, and a mature domain. This pro-protein is then processed by the cellular machinery to yield a dimeric mature BMP molecule. The pro-domain is believed to aid in the correct folding and processing of BMPs. Furthermore, in some but not all BMPs, the pro-domain may noncovalently bind the mature domain and may act as a chaperone, as well as an inhibitor (e.g., Thies et al., Growth Factors 18:251-9 (2001)).

BMP signal transduction is initiated when a BMP dimer binds two type I and two type II serine/threonine kinase receptors. Type I receptors include, but are not limited to, ALK-1 (Activin receptor-Like Kinase 1), ALK-2 (also called ActRla or ActRI), ALK-3 (also called BMPRIa), and ALK-6 (also called BMPRIb). Type II receptors include, but are not limited to, ActRIla (also called ActRII), ActRIllb, and BMPRII. The human genome contains 12 members of the receptor serine/threonine kinase family, including 7 type I and 5 type II receptors, all of which are involved in TGF- β signaling (Manning et al., Science 298:1912-34 (2002)), the disclosures of which are hereby incorporated by reference). Thus, there are 12 receptors and 43 superfamily members, suggesting that at least some TGF- β superfamily members bind the same receptor(s). Following BMP binding, the type II receptors phosphorylate the type I receptors, the type I receptors phosphorylate members of the Smad family of transcription factors, and the Smads translocate to the nucleus and activate the expression of a number of genes.

BMPs are among the most numerous members of TGF- β superfamily, and control a diverse set of cellular and developmental processes, such as embryonic pattern formation and tissue specification as well as promoting wound healing and repair processes in adult tissues. BMPs were initially isolated by their ability to induce bone and cartilage formation. BMP signaling is inducible upon bone fracture and related tissue injury, leading to bone regeneration and repair. BMP molecules which have altered affinity for their receptors would have improved biological activity relative to the native proteins. Such BMPs include proteins with increased in vivo activity and may provide potential improved therapeutics for, among other things, tissue regeneration, repair, and the like, by providing greater or altered activity at lower protein levels thereby providing improved protein therapeutics.

It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.

SUMMARY OF THE INVENTION

According to a first aspect, the present invention provides a designer BMP protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 70 and SEQ ID NO: 12.

According to a second aspect, the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a designer BMP protein of the invention.

According to a third aspect, the present invention provides a method of producing the designer BMP protein of the invention comprising introducing a nucleic acid encoding the designer BMP protein into a host cell, culturing the host cell under conditions where the protein is produced, and purifying the protein.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

The invention includes a designer BMP protein comprising at least one mutation in at least one type I or type II receptor binding domain, wherein the mutation confers altered binding to the type I or type II BMP receptor compared with the binding to the type I or type II receptor by a corresponding wild type BMP.

In one aspect, the protein is selected from the group consisting of BMP2, BMP4, BMP5, BMP6, BMP7, BMP8 and BMP9.

In another aspect, the protein comprises at least one mutation within: the type II binding domain A; the type II binding domain B; the type I binding domain; and any combination thereof.

The invention also includes a designer osteogenic protein comprising an amino acid sequence comprising at least one mutation in at least one type I or type II receptor binding domain, wherein the mutation confers altered binding to the type I or type II BMP receptor compared with the binding to the type I or type II receptor by wild type BMP2.

In one aspect, the mutation is a mutation within the type II binding domain A wherein said mutation is at least one mutation selected from the group consisting of a mutation at V33, P36, H39, and F41 with respect to the sequence of SEQ ID NO:1.

In another aspect, the is a mutation within the type II binding domain A wherein said mutation is at least one mutation selected from the group consisting of V33I, P36K, P36R, H39A, and F41N with respect to SEQ ID NO:1.

 respect ta her sequence of SEO IO NOL.

 respect to the senuenoe of SEO IO MO,

 s\%m, amd ysel.

世 $87 \mathrm{M}, \mathrm{an} \mathrm{V} \mathrm{EO}$.

 nes located withy the fye t of the lype 1 bimdme regions.
 one of SEO H NOES-T3
 SEOIOMOT2

The nyention moldes a designey ustengenie pobem comprowy the ammo axd seyuence of SEW $10 \mathrm{WO} / 4$.
 SEOIO KOO
 सEQ ID NOWT.

 probeins.

 at least one matation in at feazk ons typa f or bye 1 reasptor binobn toman, werein the mutation
 spe Msmeplor sy whe type RMPD.

 Nos, rek and Des wheresoo to the semsenca of 8 co 10 NO 4 .

 mgence of SEO M NOA.

 10 NO .4

 he arime acd sequence of SEQ 10 NOA

 673

 \$0.37, \$3
 selecked from the group conakting of SEO If NOM. 4 to 130

 poducad, and punfymes salid poberin.

Fgurs 1, compring ponet A.C, is a dragrm showing the aigmone of varous wid type and

 has coresponding wid type BAP 8 sMpe.

 E onf onf\& (Fbue 3 B)

 जhy de of BuF conaming smopes of be fachova oblahed by he peparatue reversed phase pmficator shap:

 canditions.

 moksad in the grabl legend

 sanamp to Burzib.

Fgure 4 , conprining panels A and B, shows the estopic bone fomation medrated by varous

 We dese fodicated (0) or 05 wh) The data pesenter ats bon 2 separak experments.

Fore 10 , comprinc paneds A-D, shews mage of radiographe mewna the rembe of a nom-

 compared wh 8 BP? wd type at 4 weens and 9 weeks, respoctivesy:
 contralateral Gmbs areated with $\$ 182$.

 herewodmer.

Fgere 14 ts a jraph showing the smourt of echopis mone (calcosised as milfigrams of

 treased onvtrataveral binos.

 at 13 mogm usimg a whloum phosphere based cement as a camer folowha he wedge debec model

 out the rexuls for Nhe number 3 as deacobed for AhP th in Figure $1 / \mathrm{A}$.

 gluan is show sy doted hes sepresentiog the heractims of the arsmine wh the givan:

 upos strictural anaysis.

 degyoosyabd Beoble countopants.

 Minked atachmeni sta of the pycar:

 much lewa actuc bran \$ME-GER in vmo.

 correxpondmy $8 \times R$.

Defintikeras

 chemetry and whwidiziston desenbed terem ase those won known and commony used in the ant.

 \& Sons, NY 2002 , and harlow and Lans, Anbibobies A Leberaboy Aanual, Cobl Syring Harbor

 hary me ebemenk

In this appliontion the use af or means andior untess stated ofvenvse.

0 ysins
Arginime
Arg
Hz
sm
Lys
4 sm
Sh
Sese
The
Cy
As
ver
Ley
16
ABET
Pro
phe
Tp

Cuncurts Sobe
D
E
$<$
R
H
y
8
θ
Q
$\$$
Y
©
A
4
\&
1
$\%$
p
F
W

 PAM2 1 log Sikemome mamk.

 By sefmentes

 caries genetc inommaion, froleding the momston used by cekuar machinoy to moke protens and

 of coneximing catwhydmes, w Mocd.

 nuclobtide sequenoss encode a poypephice newns conimom funchonza ackiby, or moode a pommon

 os referenteseruencs.
 ancede desginer bups.

The tems promin anc powpeptioe ane used htarohangeaby haren, These tems refer to a

 reacybur

 instance, 6 correspond wity be relative to andor be respecteve with the amino acd secpence of the whe bpe corvspmonigy of refermos BMP sequence.

The polena of he pesem mention indide trapmenk, fenvetives, arame, or venartis of the

 porion or a given polpepede that is sugue bo or chanakinistic of hat mypeptde The tem as used heren also reters to my discres potion of a pren poypeythe bat retains at lean a faction of the

 $5,90,15,20,25,30,35,40,45,60$ or more ammo acds of tre bilfaght polpoptide fragnent of

Qanants of he protema of the preaent menwon mobue tratmentas as dexribed above, and aiso

 onsevaive ammo ace subsiuvions, deleions or adotons.

 contain one or more nakialy cocurny armo ade denvahves of the twenty standard amino acids for example, 4 hydroyprome may bs substhed for prome, stybrowyyine nay be subetubed for lyshe:
 onthme may be substubo th lyshe.

 one or more gevete modibation, for cxample the has cads may be genaticaly modited ty the

 ewogenous genes.

 banmo scid or huckit acd hamolesy),

To deternane the percent denthy of fwo amo acd sequences of of two nucec ands the

 The dethminamon of percent homoingy betwenn tho sequences wan be acomplimed using a

 shaved by the sequences takng info accom the number of gaps and the kngit of each pap which

 44, 12, $10,8,6$ or 4 and a lengh weght of $1,2,3,4,5$ or a in yes anothat enbodimemt be percent

 gap extend penaty of 4 and a fameshm pap perchly of s 5

 pendily of 12 and a pap penalty of \&

 moborty as disolsoer elswherch hereh
 compound andor composton of hak invention or be shipped beether whe a contaner whith consaisk the
 the contaner with the bisntion that the rechant uses the instuctional materah and he ompound कoperakey.

 rabiks, rat⿳ and mback and oher anmak Peferaby patem refers k a humans.

 Bercheuk response such as, bul nol himed to, whwhion of andor doceased hbrask, moreased wone
 induding, c 9 , subh medruds as diachsed herem.

 Be bse

 biserase.

 mose preferably, as least turefold onearer tham backoround aignal or nons, and more bpicaly, mare han

 merswben.

 constank (KO).

 BMPs anverally bind a receptor faster and tew is reman bound knger A waiky of nethode of

 unke sec.
 anbody armen merackon tis cambaed by the fomula:

$$
k_{m} / k_{p m}=K_{p}
$$

 orresponding wh type dap to the same the I andior typ I I weptor. The designe bup may bivd

 Whe corresponding deabner bup bind that receptor whi greater or tesses awhiny compare wh the whd

 tesser kor vabe compared wim the kes vabe of the coresponong wid type byp suof that the Ko the

Oescrink

 onsists esentialy of a nigle marromolerilar spackes.

 (Ee, on a molar basis if is more zhumam than any oher molvidual spaches in the composition) and

Bades:

	Alx	ALK 2	AK K 3	AL48	Actua	$A C T 18$	80\%Pl
$8 \% \rho \cdot 2$	No Qramy	Ao Binking	$4+3$	$\rightarrow+$ tor	\rightarrow	+6	$+$
$8 \mathrm{Pr}+4$	No Efrome	No Wimbing	4*2	+t+	+	+t	+
$8,8 \%$	No Erromg	A b Fmome	$4 *$	\rightarrow	+ + +	$4+6$	$t+t$

	AK 3	ALK^{2}	ALK ${ }^{\text {a }}$	AK 60	ACTMA		$8 \times \mathrm{Cbl}$
S*MP	Ne Efrobing	No Empling	+	$+$	+4.4.		+t+
$\mathrm{Sm} \mathrm{P} / \mathrm{S}$	$\underline{+3}+$	No Emakis	R W B nown	No Btiding	+ +	¢や\%	+h+

 Tmble 2.

TABLE2

8 Br	Type 3 domenin A ammo acids	Typ: / 6onain ammo acids	Type tr bormane P aminc acors
80\%9 (SEQ \$D NO I)	31-44	48-76	83×100
	3845	5) 78	$85-102$
BMPG (SCOM 3 MOS)	64 ch	$7 \mathrm{l} \cdot 1 \mathrm{~m}$	$368-129$
	85.69	73.102	108-126
8NP\% (SEQ SD NOT)	98-69	$73-102$	108-126
	558	73-102	$108-726$
SNOG SEO W6 NOT\%	25×3	42.7 \%	7806

 tye 9 and h rencytors.

TABLE

	Type 3		Types3	
Ligame	4143 $\mathrm{K}_{\mathrm{s}}(\mathrm{nOH})$	AKW $K_{\mathrm{g}}(\mathrm{OW} \pi$	AORBUA 	Ackulle $k_{0}\left(6{ }^{2}\right)$
89\%e	0.68	O. 17	14	\$2
BNF\%	350	962	073	20
80\%2\%	1.67	6.83	238	315

 The designer drop comptises one or more munations in me kye \& bincing domain.

 probled win the wholostre provided heran, ham forxtom of posshe muknons thet wan be mede that os

 Shoubd mot be mutated wh shouk he changed wht conservitye substmons, whe oher amino ados may
 semgnay RNP.

 cibrerent residses bomg more preterted.

 whesponotre wibtype BNP pratem smgence.
 probery propertes such as stabliy or mmanogmichy or whoh crable or prevem porkranational

 domank, am akdion of pepxbe tage or lobels
 made, all of which moode the despner Bhes of the prexent invendinn, by simply modifing he sequence. of one of more codons in a way that daes not thange the amine ado sequmoe of the deminer tmp. The
 WO20000gotst.

 these and oths forms:

 of motations listod in these trams

ABLEA

Q 8×2	C8MP4	QMPS	SMes	LRM\%	80\% 8	Q8P9	posebise mumetions
P 48	\bigcirc	Sr	S\%2	A\%2	E72	F2	$F, N M, A$
F*	F31	F72	173	F\%	(1)	543	Y
AS2	AS4	N75	N7\%	176	OF\%	A46	$\mathrm{N}_{\mathrm{C}} \mathrm{A}$
053	Qss	Ars	A/f	$81 / 7$	ST\%	04	A, ED
M64	H66	ATS	NT8	>78	68	5×8	D, 6
4 5	Ls\%	N/76	*/73	879	STR	1648	M, V/
+ $\times 6$	+495	NTS	A 8 \%	N00	Nab	T60	Y, N
857	809	800		AB?	A 8	¢5	AP
NS6	169	N82	A83	A198	N103	K5s	K ${ }^{2}$
863	88	8\%	V87	187	L8	V/S	TY,
T65	T0\%	T88	\%89	Tos	S83	TOP	$\mathrm{A}_{\sim} \mathrm{B}^{\text {m }}$
N68	N70	Hst	H\%2	K82	H82	H\&2	Hed
S6\%	S 31	58	SS3	FQ3	193	\& 8	4. 2,5
170	V72	8183	AM34	194	K98	K64	$\mathrm{M}, \mathrm{S}, \mathrm{B}, \mathrm{Y}$
Wht	V73	个 ${ }^{\text {a }}$	$\sqrt{195}$	र68	\%8\%	F6s	F, M, M
		F\%	996	996	Y 5	P6s.	
372	854	596	E\%	E\%7		76	Q MED
193	575	H19?	898	T80	AS8	163	Y, A, $, 4,6$
174	W6	Vse	V89	64s	V99	168	AV/
F\%	97\%	P39	P100	P100	P100	675	86

(6)

TADCES

80\%2	8W\%	EMPS	8NP\%	8NPT	QWP	BMPQ	Poss bie matamions
\%3	V3	150	155	185	67	129	18

-	Ps\%	pss	85	K0\%	\%6\%	080	130	NR, P, \& Q
\checkmark	437	630	S60	S63	Q6T	Q6t	Es\%	OE
m	H08	Q43	862	803	863	863	¢0	A \& , 5.2
	Fl	543	F64	$N 85$	yos	Y65	\% 35	M, Y, F
	Y/2	rst	\%\%	Y68	Y6\%	866	E36	Y, E
\cdots	Ha	H46	DG7	D68	E88	E6\%	138	FG, R,
	ABLEs							
N								
	63682	6AP\%	\$ 10×5	SMes	8 mb	SAPB	Bntes	Fassibe mocelons
\bigcirc	E82	585	KTO?	KME	0100	KTOR	KF8	$\mathrm{Q}_{.} \mathrm{K} \mathrm{E}$
	\$85	53	Mos	M\%	M100	S! 5	830	AS
	A86	A89	A10	AtM	ATM	Atl?	Y)	P, A
	\$ 189	\$ 9 \%	8113	VT 14	V114	Y!\&	Vek	M, V
	192	19	¢ 110	E1T	¢ 11	रा?	687	
	Es4	095	DT, 8	OTS	0168	DT, ${ }^{\text {a }}$	O89	D,
	109	Y97	S198	N120	S120	819	A 60	\%, 内, \%
	CSS	O8\%	S120	S12?	812t	St20	69	S, Q, 0
	K9\%	K020	NT23	N122	NQ22	$\begin{aligned} & N / 21 \\ & N 22 \end{aligned}$	Vez	N, V, K
	W6:	v<60	V122	V123	V/23	\%123	\%	${ }^{2}$
	V69	Vot	$1 / 23$	122		1124	T84	T, X

 spe 4 reseptors.

Tables 4 4 above provide a norvionime comphtaron of example muthions of the preaent

 ommemathas of materions

 respect to the semence of SEO ID NOS,

 He semance of sec OHON .

 wherspert to the swquence of SEQ W NOT.

 NOS:

 PSE $639 \mathrm{OA1}, \mathrm{~A} 4, \mathrm{Y} 44$, and H46 Of SEOTONO2.

 NO2.

 and ver or SeO lo No2.

 SEQ 10 NOW

 SEO IO MOR.

 SEQ 10 NOS

 of $5 \subset Q$ N $\mathrm{NO} Q$.

 SEQ IONOT.

 CQ1, VS2, PGS or TQA of SEQ ID NOT.
 hhows fre name ant sequence of the desigued molscuje.

SAESET

(MME	SEWUSVEE	5 m m NO
$838 P^{-A}$	 	8
Q 68.8	 	9
8 ma - C	 	10
Bxplo	 	\bigcirc

NAME	\$6,	$\begin{aligned} & \$ \operatorname{k} 10 \\ & M \infty \end{aligned}$
Gmar	 	12
Snict	 	13
nkbrw	 	\$
BKPPA	 	83
$8 \mathrm{mb} \mathrm{S}^{\text {a }}$	 	S 8
B 62	 	T
SBMEK	 	\$8
AW5.\%	 	18
	 	30
801P A\%	 	21
$8 \mathrm{kP}-\mathrm{A}$	 	23
$33 \times 1)$	 	23
83NFMS	 	24
8 31888	 	23
$5 \mathrm{SH}^{3}$. E10	 	26
	 	23
B 380×6	 	2 L
Cobath	 	29
8nobe	 	36
P\% ${ }^{\text {PER }}$	 	81
BAP-GP	 	32
Q	 	3 s
$\triangle \mathrm{OP} \times \mathrm{CN}$	 	34
	 	3%
8 PP - CE	 	36
$\begin{aligned} & B 3 b^{3}+3= \\ & 8 \end{aligned}$	 	$3)$
	 	38
S 3 \% ${ }^{\text {P }}$	 	3 S
SME-JK	 	S 0
W3mer	 	43
	 	k 3

NAME		$\begin{aligned} & \$ E \mathrm{~L} \mathrm{~L} \\ & \mathrm{Mm} \end{aligned}$
B4Pras	 	43
$\begin{aligned} & 8 \mathrm{BF}^{\circ} \\ & \mathrm{y} \theta \end{aligned}$	 	44
$888{ }^{2}-69$	 	45
P1／ 93	 	46
818pO3\％	 	\＄
$808-9$ sho $3 \Delta C A$	 	42
$\mathrm{BH} \mathrm{NB}^{\circ}$ 0 ABSA CM C	 	48
$3 \mathrm{M}{ }^{\circ}$ CB C	Q2064 	83
$\begin{aligned} & \mathrm{Sx} \times \mathrm{m}=2 \\ & 5 \mathrm{~A} \end{aligned}$	 	51
$\begin{aligned} & \mathrm{S} / \mathrm{FP} 6 \\ & \mathrm{~S} \end{aligned}$	 	62
SHP64	 3 Sa ，	53
Abombe	 区 C	5
36860	 क＜	35
346864	 cs．	\％
$\left\{\begin{array}{l} B \times N P 6 \\ B D B+L \end{array}\right.$	 	5%
$\begin{aligned} & \mathrm{BROR} \\ & \mathrm{BK} / \mathrm{Km} \end{aligned}$	 	58
SbPEG RKkR ADEA brye	 	36
$\begin{aligned} & \mathrm{BXPO} \mathrm{CA} \\ & \mathrm{BK} / \mathrm{KR} \end{aligned}$	 4	80
BmP ADHL bunes	 6\％．	B］
	 sc.	82
$\mathrm{BRO}=6$ RKM和 Prycy	 （\＄8）	8
SXP6P－ WKMK	 	84

C
R

 emmo acid seguence at least about $70 \%, 75 \%$ bu\%, $85 \%, 87 \%, 90 \%, 92 \%, 36 \%, 86 \%, 97 \%, 98 \%, 98 \%$

 another embediment we desigher bMF s EMPE

 yet awoter smbodment the demgrer ghm io BupC.

 amother cmbodment, he desgerer bite be bigeces

 mintermpled $20,22,24,26,26,27,22,30,32,32,34,36,2\rangle, 37,38,40,41,43,44,40,47,50,53,54$,

 servences of SEQ D MDS 8 -T3

TI s well known be the ant hat BRES ane ofem helarogenenss whe respent to the amine andior

 mote preferably, 7 amine acid resduea, prefersby 0 amine asb residses, even more preterably, 5 ambino

 of the wesbrar Bife.

 2 aminy ache rashouss, and most proterxby 1 ammo axd sesbe from the 6 and or N kermma of ha sember EnP protein amino mod seghenoz.

Whout whing to be bruno by amy parionar theory, the dak deolosed herem sugeen, for the

 provdmg a designer Qme wh aherad recoplon theding.

 desimner s derived.

 deaigner Bbe why a ymal reckpor.

 spe MBE.

 decreased or more proterably elmanated.

 iskant mwntion. Theretors the preame mwention encompasses the dergn of TGFP superianty

 Biological solwy.

Thus, in some entodmend the menton provides methors far designing and prowurg Bups

 Wher hat wh atg the corfomanon of a pyan and hereby aher the combmathe of the hand such

 nethock known m he ant

 drected ligatoh recurse PCR cassete mutagenesss siledrected mutagenexs or oher techiches

 an armin acid seguence at wem 70\%, $75 \%, 80 \%, 85 \%, 87 \%, 90 \%, 92 \%, 9 \%, 94 \%, 95 \%, 36 \%, 97 \%$,

 sek futh in Toble 8

 as set forthin Table 8.

 se ser foring sale α.

WRMME	Stusumb\%	SkQ NO
G36 ${ }^{2}$ A	क巾 	74

NAME	\$ WUE VOE	$\begin{gathered} \mathrm{SEQ} \\ \mathrm{NQ} \end{gathered}$
9) 8 - 8		73
$8 M^{2} 6$		76
8403	 Oh A 	77
$83 M^{2}$		78

तame	\$ $646 \%<6$	$5 \in \mathrm{~S} \mathrm{~L}$ NO
Sk 6×5	 	79

GAPLH

BME m

 WCALQ

NAME	\$ \% Wkenkem	$\begin{gathered} S C+10 \\ N O \end{gathered}$
B3M-J		33
WMPM		34
936Pr	Cमmली W0, 	85
	 	56

NAME	\$ $64 \leqslant \% C 8$	$\begin{gathered} S T+\omega \\ N 0 \end{gathered}$
Bnb Co		\$)
836 $\mathbb{E} 0$		32

SMmek

 Wめ

 WMA

NAME		$\begin{gathered} \text { SEY } \mathrm{NO} \\ \hline \end{gathered}$
BSM ${ }^{\text {a }}$ ET		84
Q8P\%		9 S
bisp ${ }^{\text {as }}$		\$6
BMEMER	人	O\%

NAME		SED 13 10
	W. 	
B 68.68	 कल W\& K W CTHA 	38
	 	8%
SHEPCK	 वमस 	\/ ${ }^{\text {a }}$

3 x^{2}. GY

NAME	\$\% Wus WCE	SEQ No
Q8PMSE		102
$\begin{gathered} \mathrm{BN} \\ \operatorname{cen} \end{gathered}$		102
Q SP^{3}		104
$88 / 8.18$		103

NaME	\$ WUSMCE	$\begin{gathered} \text { SEQU } \\ N Q \end{gathered}$
	 מ" सम大马, 	
$\mathrm{BM}^{\text {P }} \mathrm{JK}$		106
	 	1 \%7
		\$68

NAME	\$2 Cut MQE	$\begin{gathered} 9 E \% 1 O \\ N 0 \end{gathered}$
948389		168
$\begin{aligned} & 8 \times \beta \\ & 8 \beta \end{aligned}$		110
804,-C3		(1)
$\begin{aligned} & 8 \times 12 \\ & 820 \end{aligned}$	 जक्षल 	3

NAME	SEWUENOE	$5 \in \mathrm{SO}$ NO
$\begin{aligned} & \mathrm{BNO} \\ & 969 \end{aligned}$		38
QWP OAK no $\operatorname{sag} \mathrm{A}$	 से बमक syevemecorras	\} 18
B/BP QAKS © C	ARPR WROWQ समे 	315
$\begin{aligned} & 8 x \rho_{2} \\ & \operatorname{sen} \end{aligned}$	O世सेकम世पल 	

NAME	S\% Wum MOE	$\begin{gathered} \text { SENW } \\ N Q \end{gathered}$
	X 人स 	
$\begin{aligned} & \mathrm{BH} / \mathrm{m} \mathrm{~b} \\ & \mathrm{~S} \end{aligned}$	 फलस क्ष 	18
$\begin{aligned} & 8 \times 196- \\ & 3 L \end{aligned}$	 	\% ${ }^{\text {P/ }}$
8386	 कापद 	3×8

NAME	\$ QuSk ${ }^{\text {a }}$	$5 \mathrm{sos} \mathrm{~s}$
GMP6-8		120
		$\bigcirc \hat{3}$
83mbe	 	123

NAME	\$5QUENCE	$\begin{gathered} \$ E Q \mathrm{SO} \\ \mathrm{NO} \end{gathered}$
	फलिस Cumbervan Whm, 	
B8bosABML	 Texcen 	123
$\begin{aligned} & \text { QKKR } \\ & \text { QK~KR } \end{aligned}$	 लिथल उसक 	124
$3 \times 1 \times 2 \times$ स $\mathrm{K}=6 \mathrm{~K}$ ADHL bung	KTOM 3कल⿰亻	325

NaME	\$ WUENQE	$\begin{gathered} \text { SET } 10 \\ 10 \end{gathered}$
$\begin{aligned} & \text { EMebsA } \\ & \text { RK-KR } \end{aligned}$	Wल ल क्यु AKCM, सूप creypracx 	129
$\begin{aligned} & \text { BVFe- } \\ & \text { ADHL } \\ & \text { onsg } \end{aligned}$	 क्ष< CxMy 	127
$\begin{aligned} & \mathrm{BXPO} \mathrm{CO} \\ & \mathrm{RK}+\mathrm{CR} \end{aligned}$ ADH	फलसलकल 	123

Name	\$ W M M	SE 26 18
8 Bm B BK KR bsye	S. WORQ 	323
	A $206 \% \mathrm{~K}$ Q WhA 	\%
$0 \% 89$ $\varepsilon 2$	 	331

NAME	\$EMUS WCE	$\begin{gathered} 5 E \square \omega \\ N O \end{gathered}$
BRP9. E6	 	132
GMEM Short	 	333
$\begin{aligned} & 80 \% \mathrm{~S} \\ & \mathrm{Sa} \end{aligned}$	 क्थक 	134

Wanc		$\begin{gathered} S \in Q \omega \\ N Q \end{gathered}$
$\$ \mathrm{BP}$ $\$$	 	136

世

NAME	W\%	$9 \in \mathrm{~S}$ IS NO
$\begin{aligned} & 8 \mathrm{Y}, \mathrm{E} \\ & \mathrm{YB}, \mathrm{~B} \end{aligned}$	 	138
$88 \%{ }^{2}$ C6 MB	 	W

 a muclec acd sequerce at leak 40%, 50%, 60%, $65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 87 \%, 90 \%, 92 \%, 93 \%$,

Metmons of Frodecimg Dasigney EXMEs

 in a simisr manner. The proconain is beteved bo pky a rowe th the fobime and procesing of Butpe.

 segrences In adition, he aypession yextw may comptse adobional denents, sich as wo replication
 vactors of vectors hat integrate into a hosh cells genome h some embodmente, the wpresson verbor

 signal qeptides ma known in fae art.

 mebhom wh thuctuction is targely bictated by the host wall bpe. Exemplary mehmod of

 hoek coll genome or may axst trangenty or subhy in the cyopisem.

 acid.

 depending on the cesired use ard in some inetmeen no punficator wim be necassary.

 proken why an orgame dervabzing agent capable of reanwny why selectad side chaing ar ferminal

 Eashon, $8 \mathrm{~A}(1080)$

 abkoment sa is well kown in the ars.

 Crasky O Mos2).

 cosumon prokins.

 rate of he whis a messured as he analye binca the smaor and uhen it base bmome.

¢\&

Cह

 mwentry

pammanembincomaghings

 adranctered by any subable neans, ag, parenteraby, wally or bcaly. When the designed abps is to

 parizular can mokde glycerol and oher compondens of high viacowiy.

 ammistration n fer fom of naxal dros or as a ge bo be appled mbanasally.
 as desmbed heren may be ammisterd onaly for exambe mbib fombatons of dexigne shPs wan

 copstes or laenges andebe for ora abmintrobor.

 (bishosphonakes) sae known to biod to bone mineral parbicuary zt zones of bona remodeling, when

 8,003 513

 for wample $3 \&$ ratam no 5260,683

 ambingal agente onagssics and mestrestox.

 movecal applicxuons.

The owice of matrix matmial is based on Bwompathiny bodegrocomby, mechanicas

 scaming, among memy arrercoughized mehoos:

 Basue.

Theranextic 0 ges

 patways. Designer BMEs nutuce greater bone awmenkaton and repar heluding but nof hmited to,

 may be used to mouce probtention of bone and andiage in a vertety of hocturs in the body. Fer

to anothet mbxdment, the mendion whludes a mehor of bone augmenaion andor repait.
 ste whem it medistet tete dable kone aumentaion or tepair.

 wabl a desherer Bum ar the inventions

 bexues

 $3,133,078$, be discossures of which ane hereby heomerated by reference.

 focomonatod by retenence Benigner BufPs may se used for teament of chonk renal felune Genemas

 remaname

 whot ase Marehy mompormen by fatmento.

 dochowures of when are bereby murxperated by ssference

 The present bwembon to varius therapente bses deswbed above Examplary minowiments of

 foxs wimis wre howrs of me mury.

 fegenenas upon humy durne poshfexth he:

 seabixa am Whya the sexty by stancard prozedmes.
 vanous para of the body and cam be of a pantoular kind, to example, tha thoross may be bocted, th the

 syskm,

 Spe $1 /$ mutations dischasd akembere herem, to ather receptor binding and provide a potembat ucetuf Eemapeuse for Germent of heyows in a pabent in neen therats

 कenatrating mbens of be CRG.

Kik

The mevenion moludes a kif lor treatment to prevert toss of andior horemas bone mase in a

 bome mass andor meresase bone mass in the paukyb.

 ByPGer
 lass mblor moracse bone mass Such agants are set tom prevously ard modude harapenke campounds.

 patem:

 ohers.

 morease brene mass or to treat or prevenh foross

 a sexul of the reactruy movided herem.

SXAMESS

 grow ha near combence for 34 day. Aher the growth phase growty medium was decaried and the

 Fgue SC. The protem was concentrated and weetontme was removed uang a speedvae and the

EXAMPLS2

Alomps posonotsseassay

 zyp Betre2s heteroximee (Fgure 7).

 Derar-Glo asay kit

Whoun whthry to be bound by any partcuixr hassy, hese dak sugest that tre adifion of

 $A L C 2,3, \operatorname{ABd} 6$

 pubushed protcols.

 ascays as disxbect previonsly heram.

 Gigure 9 and atmo presented in Table vo.

Teedrymens	$\mathrm{B} R 1 \mathrm{P}$	B4P2/5	BKPC
S nc / m	\bigcirc	\cdots	\cdots
23 ngma	\cdots	+7	\%
S0 nom	\cdots	*)	t
10 mmgm	\cdots	$4+4$	+ + \%

TAELE 16

CH\%s*	AB-knos	806410	Qat xcwooc bon* fommabon
BAS 9 +T	+ +	4\%	$4+$
BMP盛	+t+	$4+4+$	+ + +
Q $\beta^{2} \times 2$	\%	+ $\%$	4 s
Bxis	+	+	4 t
8 yP ¢	+\%	+	+ +
Brg\%	tttttt	3t+1+	xt+ts
Q BP F	+ + + ${ }^{\text {a }}$	tratr	+ +6
By9	$4+4$	+ $+1+4$	$t+t+5$
St/mi	+4	+t	\dagger.

BAES	2)	46	$4+$
SNPS	*	+	+
BYPFIO	+ ${ }^{2}$	+	+ +
BnPP-short	+64	+t+	+19\%

CABPIES

8mp Becuptor Xinding

TABx $m 12$

mexamis	skex (3)	2nser 	38 $3 \times 2 \mathrm{k} \%$
\& \quad ces	2 cma	5 mbs 88	zCO
, <<<<	*	3	3
	8	x	*
Ac\%**	*	*	2 s
AxC\%	\%	* 5	γ
smixyy及	发	3	3

TABLE13

Sexayer	\& Bl^{2}.	\%\%\%	$\begin{gathered} \mathrm{E}_{\mathrm{KN}}^{2} \\ 3 \% \end{gathered}$	gne-	\% ${ }^{\text {meg }}$	RGP, GER
* $\mathrm{k}_{6} 2$	21000	700	230	2	$\gg \ldots 0$	2
48ks	1	11	2	3	1	2
Akx	1	2\%	0.5	1	1	1
A	\% 3	3	2.3	89	2	\%
Arxak	*	6.5	1	*	0.5	0.5
\%\%\%x/m	2	4	3	\%2	4	3.6

 marapenkics.

EXAMPL 4

Nyp Heis orogotom noores

 human pimate) fibula osteobomy noodel,

 The sponge was wappec around the derect tolownoy nungery An apprembetely 2 mom frecture of the

 Q4 6 P in the ontralatesal hmb.

 groke, demonstrated hast the cabs fomed eniler and mare robushy in the bmbe beated with exch
 Hat wht bone fomation observed th the hmb hasted whe wh bye BMF2.

38 814

NHR	Lefle gime	Ripht-wh 8\&户2	\% morease ys.
5008	7232200	80.3317	18%
$50 \% 8$	601.403	889700	3/3\%
8154	5414216	313.6301	83\%
SKum	$634 \% 16$	¢78,6849	11%
18104	7945123	536.6931	33%
17604	6315733	406.1204	6
22505	635,7593	460w707	$3 * \%$
		3nerage	26\%
		std des	3\%\%
		sid error	7.40%
		patrex l-gsst	0, 004\%

YABEE
gone volome (nmos)

N3m	纟 BAME	roph - Wy 8482	W mereasa ves 8
6364	857.4842	7200308	26\%
5604	6328525	¢04.3523	12\%
610	8838513	3661737	70\%
8904	8730165	507.0014	13%
16204	8525689	5612446	$55 \times$
11554	514226	482 9475	\$\%
22606	780859	528.5033	45%
		3vermge	33\%
		std dey	25%
		sid errer	380\%
		pared ttast	3-.6079

 Fommer m the acone ware gbamber by w T molys.

 omurbleters mbus trated with smer

 in the zane anmman.

 ushy a caloum phosphaxe cement based carrer Radiographoally, fhe heahoy ard bome fomatom whe

 Byed

Emp Simctural Analysis

EXMPL A

 quany,

 preserve contibutm at highremotion cath

 If the seach modek, and cepions in guexim (espectaly areas involviy tpe / and ype in reseptor Birdiopl whe streped from the onginal modil for raboiding m orger to avod model biac.

 0.217002510 , mad bonds $=0000$, mad angles $=1162$ All ares stroches are 10 very sood geonedry Based er Prehet resots.

 Bryed loop has a uniquely Toopy confomaion when companea to the same reyon h backenaly refoded

 p4s of ALLS is shown it carkergey.

 heracton wh the slyen sa depoced using tolled lones beween the glyen and the teher Rope wheh is
 Bether nay aeve to abolise the cantomation of the prehthical lcap of the BHP2 molecute noch that the

 altered recolor bixolng.

 causes a mone ngid combmatom of the gycan woh that a bonger oycan is rendered for BNPE ty the

 cambhydrate is essentiat for morazsed receptor binding and ostangente antwhy, these resule indicate

Combliam but E m EuFGER

 Sor sebudding im order to avold model blas.

 region from BMPE, mantans the overat framewow of BWpZ whe possessing he Type recmpor.

 plycomation monedaing Ak 2 recognibn for bMpe

EXAMEEA

Nomovin Kasistance

 desener protehe disolosed herem owid te mpered ever futher by heronoration of actink

 even in the peseme of high anounts of Nogum.

TABE E 10

	Acrable amby (mb)
BMPE	9 m
BXP-ENR	0.0
g8p-E\%	2 m
RMPCERNTE	O.O\%
	Nowmin Afriky
smpe	100
BMPE VR	6.06
bumgek	400

BMPremar	780
घmet	no bhrime
EmP ENT	no brwime
कMPGER	100\% 06
BME Gerave	

 oclwety of we designer BMP.

 ama rapar.
 hereky monporated harein hyreferchee in them ondrey.
 oktar ambabments and varkizons of the mention may be deysee by others skiled in the ant whout

CLAIMS

1. A designer BMP protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 70 and SEQ ID NO: 12.
2. The designer BMP protein of claim 1 wherein the BMP protein comprises the amino acid sequence of SEQ ID NO. 70.
3. The designer BMP protein of claim 1 wherein the BMP protein comprises the amino acid sequence of SEQ ID NO. 12.
4. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a designer BMP protein of claim 1.
5. A method of producing the designer BMP protein of claim 1 comprising introducing a nucleic acid encoding the designer BMP protein into a host cell, culturing the host cell under conditions where the protein is produced, and purifying the protein.
13 Jan 2017
2017200239

Figure 1A

Tyose				
)				
WQ				

Thae 18 Bnoling
Oomaima

3%

Figure 1B $2 / 29$

201720023913 Jan 2017
$3 / 29$

Figure

201720023913 Jan 2017

201720023913 Jan 2017
$5 / 29$
201720023913 Jan 2017
Figure 4
A

Figure 5

13 Jan 2017
$8 / 29$

$<$
13 Jan 2017
Figure 7

13 Jan 2017

$12 / 29$

BMP2

201720023913 Jan 2017

Figure 108

201720023913 Jan 2017
Figure 10D

0
BNP2
201720023913 Jan 2017
Figure 11

Total volume
13 Jan 2017
Figure 12

ng BMP
13 Jan 2017

Figure 14

201720023913 Jan 2017

19/29

201720023913 Jan 2017
Figure 16

4
$0^{(4 \mathrm{Lum}) \text { emmon smes }}$
2017

Fiqure 17A

201720023913 Jan 2017
201720023913 Jan 2017

Figure 17 C
 NHP \#3

$\frac{\alpha}{\frac{1}{0}}$

BMP-2

201720023913 Jan 2017
Figure 20

13 Jan 2017
$27 / 29$
201720023913 Jan 2017
Figure 22


```
<110> WWETH LLC
<120> DESI GNER OSTEOGENI C PROTEI NS
<130> PC071685A
<<140>
```

<150> 61/375, 636
< 151> 2010-08-20
<160> 139
<170> Pat entIn version 3.5
<210> 1
<211> 114
<212> PRT
<213> Homo sapi ens
<400> 1

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr $\mathrm{His} \underset{40}{\mathrm{Al}}$ a Phe Tyr Cys His $\underset{45}{\mathrm{G} y}$ Gu Cys Pro

Thr
65
Pro Thr Gu Leu $\underset{85}{\text { Ser }}$ Al a IIe Ser Met $\underset{90}{\text { Leu Tyr Leu Asp Gu }} \underset{95}{\text { Asn }}$ Gu

Cys Arg
<210> 2
<211> 116
<212> PRT
<213> Homo sapi ens
<400> 2

Arg Arg His $\underset{20}{\text { Ser }}$ Leu Tyr Val Asp $\underset{25}{\text { Phe }}$ Ser Asp Val $\operatorname{ay} \underset{30}{\operatorname{Tr} p} \operatorname{Asn}$ Asp
Page 1

Cys | Pro Phe Pro Leu Al a Asp His Leu Asn Ser |
| :--- |
| 50 |
| 50 |
| 60 |
| Thr |

Tyr Asp Lys Val Val Leu Lys Asn $\begin{aligned} & \text { Tyr } \\ & 100\end{aligned}$
Cys Gy Cys $\begin{gathered}\text { Arg } \\ 115\end{gathered}$
$<210>3$
<211> 138
<212> PRT
<213> Homo sapi ens
<400> 3
$\underset{1}{\text { Al a Al a Asn Lys }} \underset{5}{\operatorname{Arg}}$ Lys Asn Gn Asn $\underset{10}{\operatorname{Arg}}$ Asn Lys Ser Ser $\underset{15}{\text { Ser }}$ His

Gn Lys $\underset{35}{\text { G } n \text { Al a Cys Lys Lys }} \underset{40}{\text { His }}$ Gu Leu Tyr Val $\underset{45}{\text { Ser }}$ Phe Arg Asp

Tyr Cys Asp Gy Gu Cys
65
65

His Val Pro Lys Pro Cys Cys Al a Pro Thr Lys Leu Asn Al a Il e Ser
100105110
Val Leu $\underset{115}{\text { Tyr }} \underset{11}{ }$ Phe Asp Asp Ser Ser Asn Val $\begin{array}{r}\text { II e Leu Lys } \\ 120\end{array}$
Asn Met Val Val Arg Ser $\begin{gathered}\text { Cys } \\ 130\end{gathered}$ Gy Cys His
<210> 4
<211> 139
<212> PRT
<213> Homo sapi ens
<400> 4

Ser G n Asp Val Al a Arg Val Ser Ser Al a Ser Asp Tyr Asn Ser Ser

Asn Tyr Cys Asp Gy
65 $\underset{70}{\mathrm{G} u} \mathrm{Cys}$ Ser Phe $\operatorname{Pro} \underset{75}{\text { Leu }}$ Asn Al a His Met Asn $\quad \begin{gathered}80\end{gathered}$

Gu Tyr Val $\begin{array}{r}\text { Pro } \\ 100\end{array} \quad$ Lys Pro Cys Cys Al a $\underset{105}{ }$ Pro Thr Lys Leu Asn Ala Ile
Ser Val $\underset{\substack{\text { Leu } \\ 115}}{\text { Tyr }}$ Phe Asp Asp $\underset{120}{\text { Asn }}$ Ser Asn Val Ile Leu Lys Lys Tyr
Arg $\underset{130}{\text { Asn }} \begin{array}{r}\text { Met } \\ 130\end{array}$
<210> 5
<211> 139
<212> PRT
<213> Homo sapi ens
<400> 5

Asn Gn Gu Ala Leu Arg Met Al a $\underset{20}{\operatorname{Asn}} \underset{20}{ }$ Val Al a Gu Asn Ser Ser Ser

Tyr Tyr Cys Gu Gy
65
60


```
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
    pol ypept i de"
<400> }
G n Al a Lys His Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
His Pro Leu Tyr Val Asp Phe Ser Asp Val Gy Trp Asn Asp Trp II e
```


Thr
65

Cys Arg
<210> 10
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ypeptide"
<400> 10
$\underset{1}{\mathrm{G}} \mathrm{n}$ Al a Lys His $\underset{5}{\text { Lys }}$ G n Arg Lys Arg $\underset{10}{\text { Leu }}$ Lys Ser Ser Cys Lys Arg

Thr
65

Cys Arg

```
<210> 11
<211> 114
<212> PRT
<213> Artificial Sequence
```

<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypeptide"
<400> 11

His Pro Leu $\underset{20}{\text { Tyr Val }}$ Asp Phe Ser $\underset{25}{\text { Asp }}$ Val Gy $\operatorname{Tr} p$ Asn $\underset{30}{\operatorname{Asp}} \operatorname{Trp} \operatorname{II}$ e
Val Ala $\underset{35}{\operatorname{Pro}} \operatorname{Pro}$ Gy Tyr His $\underset{40}{\text { Al a }}$ a Phe Tyr Oys His $\underset{45}{\text { Gy }}$ Gu Cys Pro

Thr
65
Pro Thr Gu Leu $\underset{85}{\text { Ser }}$ Al a IIe Ser Met $\underset{90}{\text { Leu Tyr Leu Asp Gu }} \underset{95}{\text { Asn }}$ Gu

Cys Arg
<210> 12
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
Page 7

SEQUENCE LI STI NG

```
Lys Val Val Leu Lys Asn Tyr G \ N Asp Met Val Val Gu G y M Cys G y
```

Cys Arg
<210> 14
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 14
$\underset{1}{\text { G } n ~ A l a ~ L y s ~ H i s ~} \underset{5}{\operatorname{Lys}}$ Gn Arg Lys Arg Leu Lys Ser Ser Cys Lys $\underset{10}{ } \operatorname{Arg}$

Thr Leu Val Asn Ser
$\begin{aligned} & \text { Val } \\ & 70\end{aligned}$
70
Pro Thr Gu Leu Asn Al a lle Ser Val Leu Tyr Phe Asp Asp Asn Ser
85
90
95
Asn Val Ile Leu Lys Asn Tyr Gn Asp $\underset{100}{ } \underset{105}{ }$ Met Val Val Gu Gy Cys Gy
Cys Arg
<210> 15
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept ide"
<400> 15
$\underset{1}{\text { G } n ~ A l ~ a ~ L y s ~ H i s ~} \underset{5}{\text { Lys }}$ Gn Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys Lys Arg
His Pro Leu Tyr Val Asp Phe Ser Asp Val $\begin{gathered}20 \\ 20\end{gathered}$ y $\operatorname{Tr} p$ Asn Asp $\operatorname{Tr} \mathrm{T}$ IIe

 Cys Arg

```
<210> 16
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synt hetic
            pol ypept i de"
<400> 16
G ( n Al a Lys His Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
His Gu Leu Tyr Val Ser Phe G n Asp Leu G y Trp G n Tr Asp Trp Ile
Ile Al a \underset{35}{Pro Lys Gy Tyr Ala Al a Asn Tyr Cys His G G y G u Cys Pro}
Phe Pro Leu Al a Asp His Leu Asn Ser Thr Asn 
Thr Leu Val Asn Ser \ Val Asn Ser Lys Ile Pro Lys Al a Cys Cys Val
Pro Thr Gu Leu Asn Al a Il e Ser Val 
Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val Arg Al a Cys G y
```

Cys Arg

```
<210> 17
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
                                    pol ypeptide"
<400> 17
|
His Pro Leu Tyr Val Asp Phe Ser \
```

Ile Al a $\underset{35}{\operatorname{Pr} o}$ Lys Gy Tyr His $\underset{40}{\text { Al a }}$ Phe Tyr Cys Asp $\underset{45}{\text { G y }}$ Gu Cys Ser

Thr Leu Val
65
Al a Pro Thr Gu $\underset{85}{\text { Leu Asn Al a IIe Ser }} \underset{90}{\text { Val }}$ Leu Tyr Phe Asp $\underset{95}{\text { Gu } u}$ Asn
Ser Asn Val $\underset{100}{\text { Val }}$ Leu Lys Lys Tyr $\underset{105}{\text { G } n} \begin{aligned} & \text { Asp } \\ & \underset{105}{ }\end{aligned}$
Gy Cys $\begin{aligned} & \text { Arg } \\ & 115\end{aligned}$
<210> 18
$<211>114$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept ide"
<400> 18
$\underset{1}{\text { G } n ~ A l a ~ L y s ~} H i s \underset{5}{\text { Lys }}$ Gn Arg Lys Arg $\underset{10}{\text { Leu }}$ Lys Ser Ser Oys $\underset{15}{\text { Lys }} \operatorname{Arg}$

Val Ala $\underset{35}{\operatorname{Pro}} \operatorname{Pro}$ Gy Tyr $\mathrm{His} \underset{40}{\mathrm{Al}}$ a Phe Tyr Cys His $\underset{45}{\mathrm{G} y} \mathrm{Gu}$ Cys Pro

```
Phe }\underset{50}{Pro Leu Al a Asp His Leu Asn Ser Thr Lys 
Thr Leu Val Asn Ser Val Asn Ser Lys Ile Pro Lys Al a Oys Cys Val
Pro Thr Gu Leu Ser Al a IIe Ser Net 
Lys Val Val 
```

Cys Arg
<210> 19
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 19
$\underset{1}{\text { G } n ~ A l a ~ L y s ~} H i s \underset{5}{\text { Lys }}$ Gn Arg Lys Arg $\underset{10}{\text { Leu }}$ Lys Ser Ser Oys $\underset{15}{\text { Lys }} \operatorname{Arg}$

Val Al a $\underset{35}{\operatorname{Pr}}$ Pro Gy Tyr His $\underset{40}{\text { Al a }}$ a Phe Tyr Cys His $\underset{45}{\text { G } y ~ G u ~ C y s ~ P r o ~}$

Thr
65

Oys Arg
<210> 20
<211> 114
<212> PRT
<213> Artificial Sequence

```
<220>
<221> source
<223> / not e="Description of Artificial Sequence: Synthetic
        pol ypepti de"
<400> 20
G n Al a Lys His Ly Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
His Pro Leu Tyr Val Asp Phe Ser Asp Val G y Trp Asn Asp Trp Il e
Ile Al a \underset{35}{Pro Pro Gy Tyr Al a Al a Asn Tyr Cys His G Gy Gu Cys Pro}
Phe }\underset{50}{\operatorname{Pro}
```



```
Pro Thr Gu Leu Ser Al a lle Ser Met Leu Tyr Leu Asp G u Asn G u
Lys Val Val Leu Lys Asn Tyr G n Asp Met Val Val Gu G y M Cys G y
```

Cys Arg
<210> 21
$<211>114$
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note="Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 21
$\underset{1}{\text { G n Al a Lys His }} \underset{5}{\text { Lys }}$ G n Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys Lys $\underset{15}{ } \operatorname{Arg}$
His Pro Leu Tyr Val Asp Phe Ser $\begin{gathered}\text { Asp } \\ 20\end{gathered}$ Val $\begin{gathered}\text { Gy } \operatorname{Tr} p \text { Asn } \\ 30\end{gathered}$
Ile Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Arg}$ Gy Tyr Al a Al a Asn Tyr Cys His $\underset{40}{\mathrm{G} y} \mathrm{Gu}$ Cys Pro

Thr Leu Val Asn Ser
$\begin{aligned} & \text { Val } \\ & 70\end{aligned}$
70 Asn Ser Lys Ile $\begin{gathered}\text { Pro Lys Al a Cys Cys } \\ 75\end{gathered}$
Page 13

```
Pro Thr Gu Leu Ser Al a Il e Ser Met 
Lys Val Val 
Cys Arg
```

<210> 22
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>/$ note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 22

II e Al a $\underset{35}{\operatorname{Pr} o}$ Lys Gy Tyr Al a $\underset{40}{\text { Al a }}$ Asn Tyr Cys His $\underset{45}{\text { Gy }}$ Gu Cys Pro

Pro Thr Gu Leu $\underset{85}{\text { Ser Al a lle Ser Met }} \underset{90}{\text { Leu Tyr Leu Asp Gu }} \underset{95}{ } \underset{95}{\text { Asn }}$ G u

Cys Arg
<210> 23
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 23

 Thr
65

 Cys Arg

```
<210> 24
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
        pol ypeptide"
<400> 24
|
His Pro Leu Tyr Val Asp Phe Ser Asp Val G y Trp Asn Asp Trp II e
```


Thr Leu Val His Leu Met
65
70

Gu Lys Val Val Leu Lys Asn Tyr Gn Asp Met Val Val Gu Gy Cys
Page 15

Gy Cys $\begin{gathered}\text { Arg } \\ 115\end{gathered}$

```
<210> 25
```

<212> PRT
$<213>$ Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 25
$\underset{1}{\text { G n Al a Lys }} \underset{5}{\text { Lis }} \underset{5}{\text { Ly }}$ G n Arg Lys Arg $\underset{10}{\text { Leu }}$ Lys Ser Ser Oys $\underset{15}{\text { Lys }} \operatorname{Arg}$

Val Ala $\underset{35}{\operatorname{Pro}} \operatorname{Pro}$ Gy Tyr His $\underset{40}{\text { Al a }}$ Phe Tyr Oys Lys $\underset{45}{\text { G y }}$ Gy Cys Phe

Thr
65
Val Pro Thr Gu Leu Ser Al a lle Ser $\underset{85}{\text { Met }} \underset{90}{\text { Leu Tyr Leu Asp }} \underset{95}{\text { Gu } u}$ Asn
Gu Lys Val $\underset{100}{\text { Val }} \underset{10}{ }$ Leu Lys Asn Tyr $\underset{105}{\text { Gn }}$ Asp Met Val Val $\underset{110}{\text { Gu }}$ Gy Cys
Gy Cys $\begin{aligned} & \text { Arg } \\ & 115\end{aligned}$
<210> 26
$<211>115$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ypept ide"
<400> 26

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His Al a Phe Tyr Cys Arg $\underset{40}{\mathrm{G} y} \mathrm{~V}$ Val Cys Asn Tyr $\begin{aligned} & \text { Pro Leu Al a Gu } \\ & 50\end{aligned}$

Gy Cys Arg
<210> 27
$<211>115$
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
$<223>/$ not $\mathrm{e}=$ " Description of Artificial Sequence: Synt hetic pol ypeptide"
<400> 27

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\text { G }}$ y Gu Cys Ser

Thr Leu Val His Leu Met
65
60

Gu Lys Val $\begin{aligned} & \text { Val } \\ & 100\end{aligned}$ Leu Lys Asn Tyr $\underset{105}{\text { G } n} \begin{aligned} & \text { Asp Met }\end{aligned}$
Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$
$<210>28$
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
$<221>$ sour ce
<223> / not e=" Description of Artificial Sequence: Synthetic
<400> 28
$\underset{1}{\text { G } n ~ A l a ~ L y s ~ H i s ~} \underset{5}{\text { Lys }}$ Gn Arg Lys Arg Leu Lys Ser Ser Cys Lys $\underset{10}{\operatorname{Arg}}$

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His Ala Phe Tyr Cys Asp $\underset{40}{\text { A }}$ y Gu Cys Ser
Phe $\underset{50}{\operatorname{Pro}} \begin{aligned} & \text { Leu Asn } \\ & 50\end{aligned}$
Thr Leu Val His Leu Met
65
65

Gy Cys $\begin{array}{r}\mathrm{Arg} \\ 115\end{array}$
<210> 29
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 29

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Arg}$ Gy Tyr His $\underset{40}{\text { Al a Phe Tyr Cys His Gy Gu Cys } \operatorname{Pr} 0 .}$
Phe Pro Leu Al a Asp His Leu Asn Ser Thr Asn His Al a II e Val Gn
50
55
60

Pro Thr Gu Leu Ser Al a lle Ser Met $\underset{85}{\operatorname{Len}} \underset{90}{\text { Leur Leu Asp Gu Asn Gu }} \underset{95}{ }$

Cys Arg
<210> 30
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>/$ not $e=$ " Description of Artificial Sequence: Synt hetic
pol ypept i de"
<400> 30
$\underset{1}{\text { G }} \mathrm{n}$ Al a Lys His $\underset{5}{\operatorname{Lys}}$ G n Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys $\underset{15}{\operatorname{Lys}} \operatorname{Arg}$

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His $\underset{40}{\text { Al a Phe Tyr Cys Gu Gy Leu Cys Gu }}$

Thr Leu Met Asn Ser
$\begin{aligned} & \text { Met } \\ & 70\end{aligned}$ Asp Pro Gu Ser
$\underset{75}{\text { Thr }}$

Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$
<210> 31
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce

SEQUENCE LI STI NG

```
<223>/note=" Description of Artificial Sequence: Synthetic
    pol ypeptide"
<400> }3
|
His Pro Leu Tyr Val Asp Phe Ser 
```

Val Al a $\underset{35}{\operatorname{Pro}} \mathrm{Arg}$ Gy Tyr $\mathrm{His} \underset{40}{\text { Al a }}$ Phe Tyr Cys His $\underset{45}{\text { G } y ~ G u ~ C y s ~} \operatorname{Pro}$

Thr
65

Cys Arg
<210> 32
$<211>114$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept ide"
<400> 32
$\underset{1}{\text { G }} \mathrm{n}$ Ala Lys $\mathrm{His} \underset{5}{\text { Lys }}$ Gn Arg Lys Arg $\underset{10}{\text { Leu }}$ Lys Ser Ser Oys $\underset{15}{\text { Lys }} \operatorname{Arg}$

Ile Al a $\underset{35}{\operatorname{Pro}} \operatorname{Pro}$ Gy Tyr Al a $\underset{40}{\text { Al a }}$ Phe Tyr Cys His $\underset{45}{\text { Gy Gu Cys }} \operatorname{Pro}$

Thr
65
Pro Thr Gu Leu Asn Al a Ile Ser Val Leu Tyr Phe Asp Asp Asn Ser
Page 20

Cys Arg
<210> 33
$<211>114$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 33

II e Al a $\underset{35}{\operatorname{Pro}} \mathrm{Arg}$ Gy $\operatorname{Tyr} \mathrm{Al}$ a $\underset{40}{\mathrm{Al}}$ a Phe Tyr Cys His $\underset{45}{\mathrm{G} y} \mathrm{Gu}$ Cys Pro

Thr
65
Pro Thr Gu Leu $\underset{85}{\text { Asn Al a } \operatorname{lle} \text { e Ser Val }} \underset{90}{\text { Leu Tyr Phe Asp Asp }} \underset{95}{\text { Asn Ser }}$

Cys Arg
<210> 34
$<211>114$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypeptide"
<400> 34

 Thr
65

Cys Arg
<210> 35
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic pol ypept ide"
<400> 35

Thr
65


```
<210> 36
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
<400> 36
G n Al a Lys His Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
His Pro Leu Tyr Val Asp Phe Ser Asp Val G y Trp Asn Asp Trp Ile
```

IIe Al a $\underset{35}{\operatorname{Pr} o}$ Lys Gy Tyr Al a $\underset{40}{\text { Al a Phe Tyr Cys Asp }} \underset{45}{\text { Gy }}$ Gu Cys Ser

Thr Leu Val His Leu Met Asn Pro Gu Tyr $\underset{70}{ } \begin{aligned} & \text { Val } \\ & 65\end{aligned}$ Pro Lys Pro Cys Cys
70

Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$
$<210>37$
$<211>115$
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
$<223>/$ not $e=$ " Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 37
$\underset{1}{\text { G n Al a Lys }} \mathrm{His} \underset{5}{\text { Lys }}$ Gn Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Oys Lys Arg

Page 23
 Thr Leu Val His Leu Met Asn Pro Gu Tyr
65
60 Al a Pro Thr Gu Leu Asn Ala lle Ser Val Leu Tyr Phe Asp Asp Asn $\begin{gathered}95 \\ \\ \\ 90\end{gathered}$ Ser Asn Val $\begin{aligned} & \text { Ile Leu Lys Asn Tyr } \\ & 100\end{aligned} \underset{105}{\text { G } n} \begin{array}{r}\text { Asp } \\ 100\end{array}$ Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$
<210> 38
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note="Description of Artificial Sequence: Synthetic pol ypept i de"
<400> 38
$\underset{1}{\text { G } n ~ A l a ~ L y s ~ H i s ~} \underset{5}{\operatorname{Lys}}$ Gn Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys Lys $\underset{15}{\operatorname{Arg}}$

IIe Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\operatorname{Gy}}$ y Gu Cys Ser
 Thr Leu Val His Leu Met Asn Pro Gu Tyr Val Pro Lys Pro Cys Cys
65
70 Al a Pro Thr Gu Leu Asn Ala lle Ser $\begin{gathered}\text { Val } \\ \\ 90\end{gathered}$
Ser Asn Val $\begin{aligned} & \text { Val } \\ & 100\end{aligned}$ Leu Lys Lys Tyr $\begin{aligned} & \text { Gn } n \text { Asp Met } \\ & 105\end{aligned}$
Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$

```
<210> 39
<211> 115
<212> PRT
```

```
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
    pol ypept i de"
<400> 39
G n Al a Lys His Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
```


Ile Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Arg}$ Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\text { A } y ~ G u ~ C y s ~ S e r ~}$

Thr Leu Val His Leu Met Asn Pro Gu Tyr
65
60
Al a Pro Thr Gu Leu Asn Al a lle Ser Val Leu Tyr Phe Asp $\begin{gathered}\text { Gu } \\ \\ \\ 90\end{gathered}$

Gy Cys $\begin{array}{r}\mathrm{Ar} g \\ 115\end{array}$
<210> 40
$<211>115$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 40
$\underset{1}{\mathrm{G}} \mathrm{n}$ Al a Lys His $\underset{5}{\text { Lys }}$ G n Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys Lys Arg

IIe Al a $\underset{35}{\operatorname{Pr} o}$ Lys Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\text { A }}$ y Gu Cys Ser

Thr Leu Val His Leu Met Asn Pro Gu Tyr Val Pro Lys Pro Cys Cys
Page 25

Al a Pro Thr Gu Leu Asn Al a Ile Ser | Val |
| :---: |
| |
| |
| 90 |

Gy Cys Arg
Gy Cys Arg
<210> 41
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>$ / not $\mathrm{e}=$ " Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 41
$\underset{1}{\mathrm{G}} \mathrm{n}$ Al a Lys $\mathrm{His} \underset{5}{\text { Lys }}$ Gn Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys $\underset{15}{\text { Lys }} \operatorname{Arg}$

Ile Ala $\underset{35}{\operatorname{Pr} o}$ Lys Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\text { A }}$ y Gu Cys Ser

Al a Pro Thr Gu Leu Asn Al a II e Ser Val Leu Tyr Phe Asp $\begin{gathered}\text { Gu } \\ \\ \\ 90\end{gathered}$

Gy Cys Arg
<210> 42
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>/$ not $e="$ Description of Artificial Sequence: Synthetic
pol ypeptide"

```
G <400> 42 ( Lys His Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
Hi s Pro Leu Tyr Val Asp Phe Ser Asp Val G y Trp Asn Asp Trp Il e
I|e Al a \underset{35}{Pro Lys Gu Tyr Gu Al a Tyr Gu Cys His G G G Gu Cys Pro}
Phe Pro Leu Al a Asp His Leu Asn Ser Thr Asn His Al a Il e Val G n
Thr Leu Val Asn Ser \al Asn Ser Lys Ile 
Pro Thr Gu Leu Ser Al a Il e Ser Met \underset{80}{\mathrm{ Leu Tyr Leu Asp G u Asn G u}}\underset{90}{~}
```


Cys Arg
<210> 43
<211> 114
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>$ /not $\mathrm{e}=$ " Description of Artificial Sequence: Synt hetic
pol ypeptide"
<400> 43

His Pro Leu Tyr Val Asp Phe Ser Asp Val $\begin{gathered}25 \\ 20\end{gathered}$


```
IIe Al a }\underset{35}{Pro}\mathrm{ Lys Gu Tyr Gu Alla Tyr Gu Oys His G G y Gu Cys Pro
Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Al a lle Val Gn
                            50 55 60
Thr Leu Val Asn Ser Val Asn Ser Lys II e Pro Lys Al a Cys Cys Val
Pro Thr Gu Leu Ser Pro Ile Ser Val 
```


Cys Arg
$<210>46$
$<211>115$
$<212>$ PRT
$<213>$ Artificial Sequence
<220>
<221> sour ce
$<223>/$ not $\mathrm{e}=$ " Description of Artificial Sequence: Synt het ic
pol ypept i de"
<400> 46

Thr Ser Leu $\underset{20}{\operatorname{Arg}}$ Val Asn Phe Gu $\underset{25}{\text { Asp }}$ IIe Gy Trp Asp $\underset{30}{\text { Ser }} \operatorname{Trp} \operatorname{II}$ e
IIe Al a $\underset{35}{\operatorname{Pro}}$ Lys Gu Tyr Gu $\underset{40}{\text { Al a }}$ Tyr Gu Oys His $\underset{45}{\text { Gy Gu Cys }} \operatorname{Pro}$
Phe $\underset{50}{\operatorname{Pro}}$ Leu Ala Asp His $\underset{55}{\text { Leu }}$ Asn Ser Thr Asn $\underset{60}{\mathrm{His}}$ Ala lle Val Gn
Thr
65
Pro Thr Lys Leu $\underset{85}{\text { Ser }} \underset{85}{ }$ Pro IIe Ser Val $\underset{90}{\text { Leu }}$ Tyr Lys Asp Asp $\underset{95}{\text { Met }}$ Gy

Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$
<210> 47
$<211>116$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>$ / not $\mathrm{e}=$ " Description of Artificial Sequence: Synt hetic
pol ypept ide"
<400> 47
$\underset{1}{\mathrm{G}} \mathrm{n}$ Al a Lys His $\underset{5}{\text { Lys }}$ Gn Arg Lys $\operatorname{Arg} \underset{10}{\text { Leu }}$ Lys Ser Ser Cys $\underset{15}{\text { Gn Lys }}$

Cys Gy Cys $\underset{1}{\text { Crg }}$
$<210>48$
$<211>116$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 48
$\underset{1}{\text { G } n ~ A l a ~ L y s ~ H i s ~} \underset{5}{\text { Lys }}$ Gn Arg Lys Arg Leu Lys Ser Ser Cys $\underset{10}{\operatorname{Gn}}$ Lys

Ile Al a $\underset{35}{\operatorname{Pr} o}$ Lys Gu Tyr Gu $\underset{40}{\mathrm{Al}}$ a Tyr Gu Cys Lys $\underset{45}{\mathrm{G} y}$ Gy Cys Phe
Phe Pro Leu Al a Asp Asp Val Thr Pro Thr Lys His Ala Ile Val G n
Page 30
Thr Leu Val His Leu Lys Phe Pro Thr Lys Val Gy Lys Al a Cys Cys
Thr Leu Val His Leu Lys Phe Pro Thr Lys Val Gy Lys Al a Cys Cys
Val Pro Thr Lys Leu Ser Pro ||e Ser Val Leu Tyr Lys Asp Asp Met
Val Pro Thr Lys Leu Ser Pro ||e Ser Val Leu Tyr Lys Asp Asp Met

Oys Gy $\underset{115}{\mathrm{Cys}} \mathrm{Arg}$
<210> 49
<211> 123
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypeptide"
<400> 49

Al a G y Ser $\underset{20}{\operatorname{His}}$ Oys G n Lys Thr $\underset{25}{\text { Ser }}$ Leu Arg Val Asn $\underset{30}{\text { Phe } G u}$ Asp

Lys Val Gy Lys $\underset{85}{\text { Al }} \underset{85}{ }$ Cys Cys Val Pro $\underset{90}{\operatorname{Thr}}$ Lys Leu Ser $\operatorname{Pro} \underset{95}{11 \text { e Ser }}$

Gu Gy $\underset{115}{\operatorname{Met}}$ Ser Val Al a Gu $\underset{120}{\text { Oys }}$ Gy Oys Arg
<210> 50
<211> 115
<212> PRT
<213> Artificial Sequence
<220>

SEQUENCE LI STI NG

```
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
        pol ypepti de"
<400> 50
G n Al a Lys His L
Hi s Pro Leu Tyr Val Asp Phe Ser Asp Val G y Trp Asn Asp Trp Il e
I|e Al a \underset{35}{Pro Pro Gy Tyr Al a Al a Phe Tyr Cys Asp G y G Gu Cys Ser}
```


Thr Leu Val His Leu Met
65

Al a Pro Thr Gu $\underset{85}{\text { Leu }}$	

Ser Asn Val II e Leu Lys Asn Tyr Gn Asp Met Val Val Gu Gy Cys
Gy Cys $\begin{aligned} & \text { Arg } \\ & 115\end{aligned}$
<210> 51
$<211>117$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 51
$\underset{1}{\text { Val }}$ Ser Ser Al a $\underset{5}{\text { Ser }}$ Asp Tyr Asn Ser $\underset{10}{\operatorname{Ser}}$ Gu Leu Lys Thr $\underset{15}{\text { Al a Cys }}$
Arg Lys His Gu Leu Tyr Val Ser $\underset{20}{\operatorname{Phe}}$ Gn Asp Leu Gy $\underset{30}{\operatorname{Tr} p}$ Gn Asp

Cys Ser Phe Pro Leu Asn $\begin{gathered}\text { Al a Al a Met Asn Al a Thr } \\ 50 \\ 50\end{gathered}$ Asn His Al a Ile


```
Ser G n Asp Val Al a Arg Val Ser Ser Al a Ser Asp Tyr Asn Ser Ser
Gu Leu Lys Thr Al a Cys Arg Lys His His Gu Leu Tyr Val Ser Phe Gn
Asp Leu Gy Trp Gn Asp Trp lle lle Al a Pro Lys Gy Tyr Al a Al a
Asn Tyr Cys Asp Gy G Gu Cys Ser Phe Pro Leu Al a Asp Hi s Leu Asn
Ser Thr Asn His Al a lle Val G n Thr Leu Val Asn Ser Val Asn Pro
```

Gu Tyr Val $\begin{array}{r}\text { Pro Lys Pro Cys Cys Al a } \\ 100\end{array}$
Ser Val $\underset{\substack{\text { Leu } \\ 115}}{\text { Tyr }}$ Phe Asp Asp $\underset{120}{\text { Asn }}$ Ser Asn Val IIe Leu Lys Lys Tyr
Arg $\underset{130}{\text { Asn }} \begin{gathered}\text { Met } \\ 130\end{gathered}$
$<210>54$
<211> 138
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 54

Ser Gn Asp $\underset{20}{\text { Val }} \underset{20}{ }$ Al a Arg Val Ser $\underset{25}{\operatorname{Ser}}$ Al a Ser Asp Tyr Asn Ser Ser
Gu Leu Lys Thr Ala Cys Arg $\underset{35}{\text { Lys }}$ His Gu Leu Tyr Val $\underset{45}{ }$ Ser Phe Gn

Asn Tyr Cys His Gy
65 $\underset{70}{\text { Gu }}$ (Cys Pro Phe $\operatorname{Pro} \underset{75}{\text { Leu Al a Asp His Leu Asn }}$


```
Lys ||e Pro Lys Al a Cys Cys Val Proo Thr Lys Leu Asn Al a Il (100 Ser
```

Val Leu Tyr Phe Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg $\begin{array}{r}120 \\ 115\end{array}$
Asn Met Val Val Arg Ala Cys $\begin{array}{r}\text { Cy } \\ 135 \\ 130\end{array}$ y Cys His
<210> 55
<211> 139
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
$<223>/$ not $\mathrm{e}=$ " Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 55

Ser Gn Asp Val Al a Arg Val Ser $\underset{20}{ } \underset{25}{\operatorname{Ser}}$ Al a Ser Asp Tyr Asn Ser Ser
Gu Leu Lys Thr Ala Cys Arg Lys $\underset{40}{ } \underset{40}{ }$ His Gu Leu Tyr Val Ser Phe Gn

Phe Tyr Cys Asp Gy
65 $\underset{70}{\mathrm{G} u} \mathrm{Cys}$ Ser Phe $\operatorname{Pro} \underset{75}{\text { Leu }}$ Asn Al a His Met $\begin{gathered}\text { Asn } \\ 80\end{gathered}$

Gu Tyr Val $\begin{gathered}\text { Pro Lys } \\ 100\end{gathered} \quad$ Pro Cys Cys Al a $\operatorname{Pro} \begin{array}{r}105\end{array}$

Arg $\underset{130}{\text { Asn }} \underset{130}{ }$ Met Val Val Arg $\underset{135}{\text { Al a Cys G y Cys His }}$
<210> 56
<211> 138
<212> PRT
<213> Artificial Sequence
<220>
<221> source
$<223>/$ not $e=$ " Description of Artificial Sequence: Synthetic
Page 35


```
Cys Cys Al a Pro Thr Lys Leu Asn Al a 
```



```
Al a Cys Gy Cys His
<210> 58
<211> }11
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
        pol ypept i de"
<400> 58
Val Ser Ser Al a Ser Asp Tyr Asn Ser Ser G u Leu Lys Thr Al a Cys
Lys Arg His Gu Leu Tyr Val Ser Phe G n Asp Leu G y 
Trp|le lle Al a Pro Lys Gy Tyr Al a Al a Asn Tyr Cys Asp Gy G G u
Oys Ser Phe Pro Leu Asn Al a His Met Asn Al a Thr Asn His Al a Il e
Val G n Thr Leu Val 
Cys Cys Al a Pro Thr Lys Leu Asn Al a 
Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val Arg
Al a Cys Gy Cys His
<210> 59
<211> 117
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synt hetic
    pol ypept i de"
<400> 59
```

-	$\begin{aligned} & \text { Val } \quad \mathrm{Se} \\ & 1 \end{aligned}$	Ser Ser Al	$\begin{aligned} & \text { Al a Se } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Ser As } \\ & 5 \end{aligned}$	Asp T			SEQU Ser	$\begin{aligned} & \text { JENCE } \\ & \text { Ser } \\ & 10 \end{aligned}$	LI STI NG Gu Leu			Al 15	
$\underset{\approx}{\xi}$	Lys Ar	$\text { Arg His } \underset{21}{\mathrm{G}}$	$\begin{aligned} & \text { G u Le } \\ & 20 \end{aligned}$	Leu T	Tyr V		Ser	$\begin{aligned} & \text { Phe } \\ & 25 \end{aligned}$		Asp Leu		$\begin{aligned} & \text { Tr } p \end{aligned}$		Asp
	Trp 1	$11 \text { e }{ }_{35}^{11} \mathrm{e} \mathrm{Al}$	$\text { Al a } \operatorname{Pr}$	Pro L	Lys G	G y	$\begin{aligned} & \text { Tyr } \\ & 40 \end{aligned}$	Al a	Al a	Asn Tyr	$\begin{aligned} & \text { Cys } \\ & 45 \end{aligned}$	Asp		Gu
$\begin{aligned} & \text { à } \\ & \end{aligned}$	Cys	Ser Phe Pr 50	Pro Le	Leu A	$\mathrm{Al} \text { a } \mathrm{As}$	$\begin{aligned} & \text { Asp } \\ & 55 \end{aligned}$	His	Leu A	Asn	$\text { Al a } \mathrm{Thr}_{60}$	Asn	His		11 e
\mathbb{N}	$\begin{aligned} & \text { Val } \\ & 65 \end{aligned}$	G n Thr L	Leu Va	Val $\quad 4$	$\begin{aligned} & \mathrm{Hi} \mathrm{~s} \\ & 70 \end{aligned}$	Leu	Met	Asn P		$\mathrm{G}_{75} u \mathrm{Tyr}$	Val	Pro	Ly	$\begin{aligned} & \mathrm{Pr} \mathrm{O}^{2} \\ & 80 \end{aligned}$
\bigcirc	Cys O	Cys Ala Pr	Pro Thr	$\begin{aligned} & \text { Thr L } \\ & 85 \end{aligned}$	Lys L		Asn		$\begin{aligned} & 11 \mathrm{e} \\ & 90 \end{aligned}$	Ser Val	Leu	Tyr	Ph 95	Asp
	Asp A	Asn Ser A	$\begin{aligned} & \text { Asn Va } \\ & 100 \end{aligned}$	Val I	11 e	Leu	Lys	$\begin{aligned} & \text { Lys } \\ & 105 \end{aligned}$	Tyr	Arg Asn	Met	$\begin{aligned} & \mathrm{Val} \\ & 110 \end{aligned}$	Va	Arg
	Al a O	$\text { Cys } \underset{115}{\text { G y }}$	Cys Hi	Hi										
	$\begin{aligned} & <210> \\ & <211> \\ & <212> \\ & <213> \end{aligned}$	$\begin{aligned} & >60 \\ & >139 \\ & \gg \text { PRT } \\ & \gg \text { Artific } \end{aligned}$	cial	Sequ	uence									
	$\begin{aligned} & <220 \gg \\ & <221> \\ & <223> \end{aligned}$	$\begin{aligned} &> \text { sour ce } \\ & \gg \text { Inot e=" } \\ & \text { pol ypep } \end{aligned}$	" Descr	$\begin{gathered} \mathrm{e}^{\prime \prime} \mathrm{c}^{\prime \prime} \end{gathered}$	tion	of	Artif	ficia	al S	Sequence:		t het		
	$\begin{aligned} & <400> \\ & \text { Ser Al } \\ & 1 \end{aligned}$	>60 Al a Ser	$\text { Ser } \begin{gathered} \mathrm{Ar} \\ 5 \end{gathered}$	Arg A	Arg Ar		G n			Arg Asn	Arg	Ser	Th 15	G n
	Ser G	Gn Asp ${ }_{2}$	$\begin{aligned} & \text { Val Al } \\ & 20 \end{aligned}$	Al a A	Arg Va	Val	Ser	$\begin{aligned} & \text { Ser } \\ & 25 \end{aligned}$	Al a	Ser Asp	Tyr	$\begin{aligned} & \text { Asn } \\ & 30 \end{aligned}$	Se	Ser
	G u L	Leu Lys T	Thr Al	Ala	Cys Ly	Lys	$\begin{aligned} & \text { Arg } \\ & 40 \end{aligned}$	His	Gu	Leu Tyr	$\begin{aligned} & \text { Val } \\ & 45 \end{aligned}$	Ser	Ph	G n
	Asp L	$\begin{aligned} & \text { Leu Gy } \\ & 50 \end{aligned}$	$\operatorname{Tr} p \mathrm{G}$	$\mathrm{G} \cap \mathrm{~A}$	$\text { Asp } \operatorname{Tr}_{51}$	Tr_{55}	$11 e$	$11 \mathrm{e}$	Al a	Pro Lys	G y	Tyr	Al	Al a
	$\begin{aligned} & \text { Asn Ty } \\ & 65 \end{aligned}$	Tyr Cys A	Asp G	ay_{7}	$\mathrm{F}_{70}^{\mathrm{G} u} \mathrm{O}$	Cys	Ser	Phe	Pro	$\begin{aligned} & \text { Leu Al a } \\ & 75 \end{aligned}$	Asp	His	Le	$\begin{aligned} & \text { Asn } \\ & 80 \end{aligned}$
	Ser Thr	Thr Asn	His $\begin{array}{r}\text { Al } \\ 85\end{array}$	$\begin{aligned} & \text { Al a I } \\ & 85 \end{aligned}$	$11 e \mathrm{~V}$	Val	G n	Thr	$\begin{aligned} & \text { Leu } \\ & 90 \end{aligned}$	Val Asn	Ser	Val	$\begin{aligned} & \text { As } \\ & 95 \end{aligned}$	Pro
	Gu	Tyr Val Pr	Pro Ly	Lys P	Pro O	Cys	Cys	Al a	Pro Pag	Thr Lys	Leu	Asn		11 e

```
Ser Val }\underset{115}{Leu
```


<210> 61
<211> 139
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ypeptide"
<400> 61

Gu Leu Lys $\underset{35}{\text { Thr }}$ Ala Cys Arg $\underset{40}{\text { Lys }}$ His Gu Leu Tyr $\underset{45}{\text { Val }}$ Ser Phe Gn

Asn
65 Tyr Cys Asp Gy $\underset{70}{\mathrm{G} u}$ Cys Ser Phe Pro $\underset{75}{\text { Leu }}$ Al a Asp His Leu $\underset{80}{\text { Asn }}$

Ser Val $\underset{115}{\text { Leu }}$ Tyr Phe Asp Asp $\underset{120}{\text { Asn }}$ Ser Asn Val 11 e $\underset{125}{\text { Leu }}$ Lys Lys Tyr
Arg $\underset{130}{\text { Asn }}$ Met Val Val Arg $\begin{gathered}\text { Al a } \\ 135\end{gathered}$
<210> 62
<211> 139
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypeptide"
<210> 63
<211> 139
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synthetic
<400> 63

N	Al a Thr Asn His	His Ala II e Val 85	$\mathrm{Gn} \stackrel{\mathrm{SI}}{\mathrm{Tr}}$	$\begin{aligned} & \text { SEQUE } \\ & \text { Thr } \mathrm{L} \\ & \\ & \hline \end{aligned}$		$\begin{aligned} & \text { E LI STI NO } \\ & \text { Val Hi } \end{aligned}$	Leu	Met	$\begin{aligned} & \text { Asn } \\ & 95 \end{aligned}$	
$\underset{\sim}{6}$	Gu Tyr Val \quad Pr	Pro Lys Pro Cys 100	$\text { Cys } \begin{gathered} \mathrm{Al} \\ 10 \end{gathered}$	$\begin{aligned} & \text { Al a P } \\ & 105 \end{aligned}$		Thr Lys	Leu	$\begin{aligned} & \text { Asn } \\ & 110 \end{aligned}$		
\cdots	Ser Val $\underset{115}{ } \begin{gathered}\text { Leu } \\ 115\end{gathered}$	Tyr Phe Asp Asp	$\begin{aligned} & \text { Asn } \mathrm{S} \\ & 120 \end{aligned}$	Ser A		Val II e	$\begin{aligned} & \text { Leu } \\ & 125 \end{aligned}$			Tyr
\hat{m}	Arg Asn Met V	$\text { Val Val Arg } \begin{gathered} \text { Al a } \\ 135 \end{gathered}$	Cys G	G y C		His				
\cdots	$\begin{aligned} & <210>64 \\ & <211>138 \\ & <212>\text { PRT } \\ & <213>\text { Artific } \end{aligned}$	cial Sequence								
\bigcirc	```<220> <221> source <223> / not e=" pol ypep```	" Description of pt i de"	Artifi	ficia	al S	Sequence:	Synt	t het	c	
	$<400>64$ Ser Al a Ser S 1	Ser $\operatorname{Arg} \operatorname{Arg} \operatorname{Arg}$ 5	$\mathrm{G} \cap \mathrm{G}$	$G \cap \underset{1}{S}$	$\begin{aligned} & \text { Ser } \\ & 10 \end{aligned}$	Arg Asn	Arg	Ser	$\begin{aligned} & \text { Thr } \\ & 15 \end{aligned}$	G n
	Ser G n Asp Va	Val Al a Arg Val 20	$\text { Ser } \mathrm{Se}$	$\begin{aligned} & \text { Ser A } \\ & 25 \end{aligned}$		Ser Asp	Tyr	$\begin{aligned} & \text { Asn } \\ & 30 \end{aligned}$		Ser
	Gu Leu Lys ${ }_{35}$	Thr Al a Cys Lys	$\begin{aligned} & \mathrm{Arg} \mathrm{Hi} \\ & 40 \end{aligned}$	His		Leu Tyr	$\begin{aligned} & \text { Val } \\ & 45 \end{aligned}$	Ser		G n
	$\underset{50}{\text { Asp }} \underset{ }{\text { Leu }} \mathrm{G} \text { T }$	$\operatorname{Tr} p$ G n Asp $\operatorname{Tr}_{55} \mathrm{p}$	lle l	Ile Al		$\begin{array}{cc} \text { Pro } \begin{array}{c} \text { Lys } \\ 60 \end{array} \end{array}$	$G y$	Tyr		Al a
	Asn Tyr Cys H 65	His Gy $\underset{70}{\mathrm{G} u}$ Cys	$\text { Pro } \mathrm{Pr}$	Phe Pr		Leu Al a 75	Asp	His	Leu	$\begin{aligned} & \text { Asn } \\ & 80 \end{aligned}$
	Ser Thr Asn His	His Al a lle Val 85	$\mathrm{G} \cap \mathrm{Tr}$	$\begin{aligned} & \text { Thr } \\ & \\ & 9 \end{aligned}$	Leu	Val Asn	Ser	Val	$\begin{aligned} & \text { Asn } \\ & 95 \end{aligned}$	Ser
	Lys Ile Pro Ly	$\begin{aligned} & \text { Lys Al a Cys Cys } \\ & 100 \end{aligned}$	$\begin{array}{ll} \text { Val } \begin{array}{ll} \mathrm{Pr} \\ & 10 \end{array}{ }^{2} \end{array}$	$\begin{aligned} & \text { Pro T } \\ & 105 \end{aligned}$	Thr	Lys Leu	Asn	$\begin{aligned} & \text { Al a } \\ & 110 \end{aligned}$	$11 e$	Ser
	Val Leu Tyr $\begin{array}{r}115 \\ 115\end{array}$	Phe Asp Asp Asn	$\begin{aligned} & \text { Ser As } \\ & 120 \end{aligned}$	Asn V	Val	IIe Leu	$\begin{aligned} & \text { Lys } \\ & 125 \end{aligned}$	Lys	Tyr	Arg
	$\begin{aligned} & \text { Asn Met } \\ & 130 \end{aligned}$	$\begin{array}{r} \text { Val } \begin{array}{r} \text { Arg Al a Cys } \\ 135 \end{array} ~ \end{array}$	G y	Cys H	His					
	$\begin{aligned} & <210>65 \\ & <211>113 \\ & <212>\text { PRT } \\ & <213>\text { Artific } \end{aligned}$	cial Sequence								

```
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
    pol ypept i de"
<400> 65
Arg Gu Lys Arg Ser Al a Gy Al a Gy Ser His Cys G n Lys Thr Ser
Leu Arg Val Asn Phe Gu Asp Il e Gy Trp Asp Ser Trp I| e I| A Ala
    20 25 Trp
Pro Lys Gu Tyr Gu Al a Tyr Gu Cys His Gy Gu Cys Pro Phe Pro
Leu Al a Asp His Leu Asn Ser Thr Asn His Al a 
```


Thr Leu Lys Tyr His Tyr Gu Gy Met Ser Val Al a Gu Cys Gy Cys
Arg
<210> 66
$<211>110$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 66

Gu Al a $\underset{35}{\operatorname{Ty}}$ Gu Cys Asp Gy $\underset{40}{\text { Gu }}$ Cys Ser Phe Pro Leu Asn Al a His
Met $\begin{aligned} & \text { Asn } \\ & 50\end{aligned}$


```
Pro IIe Ser Val 
Tyr Hils Tyr Gu Gy Met Ser Val }\underset{100}{Ala Gu Cys Gy Oys Arg
<210> 67
<211> 117
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
    pol ypept i de"
<400> }6
Val Ser Ser Al a Ser Asp Tyr Asn Ser Ser Gu Leu Lys Thr Al a Cys
```


Cys $\underset{50}{\text { Ser }}$ Phe ProLeu Asn $\underset{55}{\text { Ala }} \mathrm{His}$ Met Asn Ala $\underset{60}{\operatorname{Thr}}$ Asn His Al a II e
Val
65
Cys Cys Ala $\operatorname{Pro} \underset{85}{\operatorname{Thr}}$ Lys Leu Asn Ala $\underset{90}{11}$ e Ser Val Leu Tyr $\underset{95}{\text { Phe }}$ Asp

Ala Cys $\underset{115}{\mathrm{G} y} \mathrm{Cys} \mathrm{His}$
<210> 68
$<211>117$
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 68
$\underset{1}{\text { Val }}$ Ser $\operatorname{Ser} \underset{5}{\text { Al a }} \underset{5}{\text { Ser }}$ Asp Tyr Asn Ser $\underset{10}{\text { Ser }}$ Gu Leu Lys Thr $\underset{15}{\text { Al a Cys }}$
Arg Lys His Gu Leu Tyr Val Ser Phe Gn Asp Leu Gy Trp Gn Asp
Page 43

<210> 70
<211> 115
<212> PRT
<213> Artificial Sequence
$<220>$
$<221>$ sour ce
<223> / not e=" Description of Artificial Sequence: Synt hetic
<400> 70

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\text { A }}$ y Gu Cys Ser

Thr Leu Val His Leu Met
65
60

Gu Lys Val $\begin{gathered}\text { Val } \\ 100\end{gathered}$ Leu Lys Asn Tyr $\underset{105}{\text { Gn }} \begin{aligned} & \text { Asp }\end{aligned}$
Gy Cys $\begin{array}{r}\text { Arg } \\ 115\end{array}$
<210> 71
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ypept i de"
<400> 71

Ile Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Arg}$ Gy Tyr Al a $\underset{40}{\text { Al a Phe Tyr Cys Asp }} \underset{45}{ }$ y Gu Cys Ser
Phe Pro Leu Asn Al a His Met Asn Al a Thr Asn His s Al a ll e Val G n
Phe Pro Leu Asn Al a His Met Asn Al a Thr Asn His s Al a ll e Val G n
5 0
5 0
Thr Leu Val His Leu Met
65
70 Asn Pro Gu Tyr $\begin{gathered}\text { Val } \\ 75\end{gathered}$ Pro Lys Pro Cys Cys

G y Cys Ser
<210> 72
<211> 115
<212> PRT
<213> Artificial Sequence
<220>
<221> sour ce
$<223>/$ not $e=$ " Description of Artificial Sequence: Synt hetic
pol ypept ide"
<400> 72
$\underset{1}{\text { G }} \mathrm{n}$ Al a Lys His $\underset{5}{\operatorname{Lys}}$ G n Arg Lys Arg $\underset{10}{\text { Leu }}$ Lys Ser Ser Cys $\underset{15}{\operatorname{Lys}} \operatorname{Arg}$

Val Al a $\underset{35}{\operatorname{Pr} o} \operatorname{Pro}$ Gy Tyr His Al a Phe Tyr Cys Asp $\underset{40}{\operatorname{Gy}}$ y Gu Cys Ser

Gy Cys His
115
<210> 73
<211> 115
<212> PRT
<213> Artificial Sequence

```
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synthetic
    pol ypeptide"
<400> 73
G n Al a Lys His Lys G n Arg Lys Arg Leu Lys Ser Ser Cys Lys Arg
His Pro Leu Tyr Val Asp Phe Ser Asp Val Gy Trp Asn Asp Trp Il e
Ile Al a \underset{ Pro Arg Gy Tyr Al a Al a Phe Tyr Cys Asp Gy G Gu Cys Ser}{40}\mp@code{Ma}
Phe Pro Leu Asn Al a His Met Asn Al a Thr Asn 
```

Thr Leu Val His Leu Met Asn Pro Gu Tyr $\begin{aligned} & \text { Val } \\ & 65 \\ & 65\end{aligned} \quad$ Pro Lys Pro Cys Cys
70

Ser Asn Val $\begin{array}{r}\text { IIe } \\ 100\end{array}$
Gy Cys His
115
<210> 74
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
$<223>/$ not $\mathrm{e}=$ " Description of Artificial Sequence: Synthetic
pol ynucl eot i de"
<400> 74

SEQUENCE LI STI NG

<210> 75
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note="Description of Artificial Sequence: Synthetic pol ynucl eot i de"
<400> 75

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gt cgggccgc ccct cat ccc agccotct ga cgaggt cot g agcgagttcg agt gcggct gctcagcat g $t t$ cggect ga aacagagacc caccoccagc agggacgecg tggt geccec ct acat geta gacct gt at c gcaggcact c aggt cagccg ggct caccog ccccagacca coggt tggag agggcagcca gccgagccaa cact gt gcgc agct tccacc at gaagaat $c t t t g g a a g a a$ ct accagaaa cgagt gggaa aacaaccogg agat cttct t aat ttaag ttct at cccc acggaggagt t tat cacctc agcagagct t caggttttcc gagaacagat gcaagat gct $t t$ aggaaaca at agcagt t ccat caccga at t aat at t at gaaat cat aaaacctgca acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggt ggt gaat cagaat gcaagcaggt gggaaagt tt tgat gt cacc ccogctgtga tgcggt ggac tgcacaggga cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gt ct cc aagagacat $g t t a g g a t$ aag caggtctttg caccaagat g aacacagct g gt cacagat a aggccat gc tagt aact tt tggccat gat ggaaaagggc at cotctcca caaagagaa aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccct

SEQUENCE LI STI NG


```
<210> 77
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
        pol ynucl eot i de"
```


SEQUENCE LI STI NG


```
<210> 78
<211> }119
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
    pol ynucl eot i de"
```

<400> 78

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc
ccct cat ccc agccetct ga cgaggt cot g agcgagttcg agt tgcggct gctcagcat g

SEQUENCE LI STI NG

<210> 79
<211> 1191
$<212>$ DNA
<213> Artificial Sequence
<220>
<221> sour ce
$<223>/$ not $\mathrm{e}=$ " Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"
<400> 79

SEQUENCE LI STI NG

```
gct gcctttt act gccacgg agaat gccct tttcctctgg ct gat cat ct gaact ccact
aat cat gcca ttgttcagac gt tggt caac t ct gt taact ct aagat tcc taaggcat gc
t gt gt cccga cagaact cag tgct at ct cg at gct gt acc t tgacgagaa t gaaaaggt t
gt at t aaaga act at cagga cat ggt gt g gagggttgt g ggt gt cgct g a
<210> 80
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
    pol ynucl eot i de"
```1191
<400> 80

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc 120
ccot cat ccc agccotct ga cgaggt cot g agcgagttcg agttgcggct gctcagcatg 180
ttcggcot ga aacagagacc cacccocagc agggacgccg tggt gccocc ct acat get a 240
gacct gt at c gcaggcact c aggt cagcog ggct caccog ccccagacca coggt tggag 300
agggcagcca gccgagccaa cactgtgcgc agcttccacc at gaagaat \(c\) tttggaagaa 360
ct accagaaa cgagt gggaa aacaaccogg agat cttct ttaattaag ttctat cccc 420
acggaggagt \(t\) at cacct c agcagagct t caggttttcc gagaacagat gcaagat gct 480
\(t t\) aggaaaca at agcagt tt ccat caccga at taat at t at gaaat cat aaaacctgca 540
acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggttggt gaat cagaat 600
gcaagcaggt gggaaagt tt tgat gt cacc cccgct gt ga tgcggt ggac tgcacaggga 660
cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gtctcc 720
aagagacat \(\mathrm{g} t \mathrm{taggat}\) aag caggtctttg caccaagat \(g\) aacacagctg gtcacagat a 780
aggccattgc tagt aacttt tggccat gat ggaaaagggc at cotctcca caaaagagaa 840
aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagctgt aa gagacaccot 900
\(t \mathrm{t}\) gt acgt gg act tcagt ga cgt ggggt gg aat gact gga \(t\) tat gcacc caagggct at 960
gct gcctttt act gccacgg agaat gccet tttcctctgg ct gat cat ct gaact ccact 1020
aat cat gcca ttgttcagac gttggtcaac tctgttaact ctaagattcc taaggcatgc 1080
tgt gtccoga cagaact caa tgccatct cg gttctttact ttgat gacaa ct ccaat gtc 1140
at \(t \mathrm{t}\) aaaga act at cagga cat ggttgtg gagggttgtg ggtgt cgctg a 1191
```

<210> }8
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>

```

\section*{SEQUENCE LI STI NG}
```

<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"
<400> 81
at ggt ggccg ggaccogct g tct tct agcg ttgct gct tc cccaggt cot cot gggcggc

```60120180

\section*{SEQUENCE LI STI NG}

<400> 83
at ggt ggccg ggaccogct \(g\) tct \(t\) ctagcg \(t t g c t g c t t c\) cccaggt cot \(\cot g g g c g g c\)

\section*{SEQUENCE LI STI NG}
\begin{tabular}{|c|c|}
\hline aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccct & 900 \\
\hline ttgt acgt gg acttcagt ga cgt ggggt gg aat gact gga ttat gct cc caaggggt at & 960 \\
\hline cacgectttt actgcgat gg agaat gct cc ttcceactca acgcacacat gaat gcaacc & 1020 \\
\hline aaccacgega ttgt gcagac cttggttcac cttat gaacc cogagt at gt ccccaaaccg & 1080 \\
\hline tget gt gcge cgacagaact caat get at c tcggttctgt actttgacga gaattccaat & 1140 \\
\hline gttgt at ta agaaat at ca ggacat ggt t gt gagaggt t gt gggt gt cg ctga & 1194 \\
\hline \[
\begin{aligned}
& <210>84 \\
& <211>1191 \\
& <212>\text { DNA } \\
& <213>\text { Artificial Sequence }
\end{aligned}
\] & \\
\hline ```
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
 pol ynucl eot i de"
``` & \\
\hline \begin{tabular}{l}
\[
<400>84
\] \\
at ggt ggccg ggaccogctg tct \(\mathrm{ct} \operatorname{agcg} \mathrm{t}\) tgct gct tc cccaggt cct cotgggcggc
\end{tabular} & 60 \\
\hline gcggct ggce tcgttccgga gct gggccgc aggaagttcg cggcggcgt c gt cgggccgc & 120 \\
\hline coct cat ccc agccetctga cgaggt cot g agcgagttcg agttgcggct gct cagcat g & 180 \\
\hline ttcggcet ga aacagagacc cacccccagc agggacgccg tggt gccecc ct acat gct a & 240 \\
\hline gacct gt at c gcaggcact c aggt cagcog ggct cacccg ccccagacca ccggt t ggag & 300 \\
\hline agggcagcca gccgagccaa cact gt gcgc agcttccacc at gaagaat c tttggaagaa & 360 \\
\hline ct accagaaa cgagt gggaa aacaaccogg agat cttct ttaatttaag ttctat cccc & 420 \\
\hline acggaggagt ttat cacctc agcagagctt caggttttcc gagaacagat gcaagat gct & 480 \\
\hline \(t \mathrm{taggaaaca}\) at agcagt \(t \mathrm{t}\) ccat caccga at t aat at t at gaaat cat aaaacct gca & 540 \\
\hline acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggttggt gaat cagaat & 600 \\
\hline gcaagcaggt gggaaagt t t gat gt cacc cccgct gt ga tgcggt ggac tgcacaggga & 660 \\
\hline cacgccaacc at ggattcgt ggt ggaagt g gcceacttgg aggagaaaca aggt gt ct cc & 720 \\
\hline aagagacat g ttaggat aag caggtctttg caccaagat g aacacagctg gt cacagat a & 780 \\
\hline aggceat tge tagt aacttt tggccat gat ggaaaagggc at cot ct cca caaaagagaa & 840 \\
\hline aaacgt caag ccaaacacaa acagcggaaa cgecttaagt ccagct gt aa gagacaccot & 900 \\
\hline ttgt acgt gg acttcagt ga cgt ggggt gg aat gact gga ttgt ggct cc cccggggt at & 960 \\
\hline cacgecttt actgccacgg agaat gccet tttcctetgg ctgat cat ct gaact ccact & 1020 \\
\hline aaacat gcca ttgttcagac gttggt caac tctgttaact ct aagattcc taaggcat gc & 1080 \\
\hline t gt gt ccoga cagaact cag t gct at ct cg at gct gt acc ttgacgagaa t gaaaaggt t & 1140 \\
\hline gt at taaga act at cagga cat ggttgt g gagggttgt g ggt gt cgcta g & 1191 \\
\hline
\end{tabular}
```

<210> }8
<211> 1191

```
<212> DNA
<213> Artificial Sequence
<220>
\(<221>\) source
<223>/note="Description of Artificial Sequence: Synthetic
    pol ynucl eot i de"
<400> 85
at ggt ggccg ggaccogct \(g\) tct tct agcg ttgct get tc cccaggt cct cot gggcggc
gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gt cgggccgc 120
ccct cat ccc agccot ct ga cgaggt cct \(g\) agcgagt tcg agt tgcggct gct cagcat \(g\)
tt cggcct ga aacagagacc cacccccagc agggacgccg tggt gccccc ct acat gct a
gacct gt at c gcaggcact c aggt cagccg ggct cacccg ccccagacca ccggt tggag
agggcagcca gccgagccaa cact gt gcgc agcttccacc at gaagaat c tttggaagaa
ct accagaaa cgagt gggaa aacaacccgg agat cttct ttaattaag ttctat cccc
acggaggagt \(t t\) at cacctc agcagagct t caggttttcc gagaacagat gcaagat gct
\(t t\) aggaaaca at agcagt \(t t\) ccat caccga at taat at \(t\) at gaaat cat aaaacctgca
acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggt tggt gaat cagaat
gcaagcaggt gggaaagt tt tgat gt cacc ccogct gt ga tgcggt ggac tgcacaggga
cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gtctcc
aagagacat \(g t t\) aggat aag caggtctttg caccaagat \(g\) aacacagct g gtcacagat a
aggceat tgc tagt aacttt tggccat gat ggaaaagggc at cotctcca caaaagagaa
aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccct

cacgectttt act gccacgg agaat gccot \(t t t c c t c t g g\) ct gat cat ct gaact ccact
act cat gcca ttgttcagac gttggtcaac tctgttaact ct aagat tcc taaggcat gc

gt at taaga act at cagga cat ggt gt g gagggttgt g ggt gt cgcta g
<210> 86
\(<211>1191\)
<212> DNA
<213> Artificial Sequence
<220>
<221> source
\(<223>/\) not \(e=\) " Description of Artificial Sequence: Synthetic
    pol ynucl eot i de"
<400> 86

ccct cat ccc agccotct ga cgaggt cot \(g\) agcgagttcg agt gcggct gctcagcat \(g\)

\section*{SEQUENCE LI STI NG}

```

<210> 87
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 87
at ggt ggccg ggaccogctg tct tctagcg ttgct gcttc cccaggt cct cotgggcggc

\section*{SEQUENCE LI STI NG}

at ggt ggccg ggacccgct g tet tct agcg ttgct gct tc cccaggt cct cot gggcggc
gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc
coct cat ccc agccetctga cgaggt cotg agcgagttcg agttgcggct gctcagcat g
ttcggcct ga aacagagacc cacccccagc agggacgccg tggt gccccc ct acat gct a gacct gt at c gcaggcact c aggt cagccg ggct caccog ccccagacca ccggt tggag agggcagcca gccgagccaa cactgtgcgc agcttccacc at gaagaat \(c t t t g g a a g a a\) ct accagaaa cgagt gggaa aacaaccogg agat tcttct \(t\) aat ttaag \(t \mathrm{tct}\) at \(\operatorname{ccc} \mathrm{c}\) acggaggagt \(t t\) at cacct \(c\) agcagagct \(t\) caggttttcc gagaacagat gcaagat gct tt aggaaaca at agcagttt ccat caccga at aat at tt at gaaat cat aaaacctgca acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggt tggt gaat cagaat gcaagcaggt gggaaagt tt tgat gt cacc ccogct gt ga tgcggt ggac tgcacaggga cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gt ctcc aagagacat \(g t t\) aggat aag caggtctttg caccaagat \(g\) aacacagct g gtcacagat a aggccat tgc tagt aact tt tggccat gat ggaaaagggc at cctctcca caaaagagaa aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccct \(t t g t a c g t g g\) act tcagt ga cgt ggggt gg aat gact gga \(t t\) at \(t\) gcacc caagggct at get gecaat t act gccacgg agaat gecot \(t \mathrm{t}\) tcctctgg ct gat cat ct gaact ccact aaacat gcca thgtcagac gttggtcaac tct gttaact ct aagat tcc taaggcat gc tgt gt cccga cagaact cag tget at ct cg at get gtacc ttgacgagaa tgaaaaggt t gt at taaaga act at cagga cat ggttgtg gagggttgtg ggt gt cgctga
```

<210> 89
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 89
at ggt ggccg ggaccogct \(g\) tct ct agcg t tgct gct tc cccaggt cct cot gggcggc
```

<210> 90
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 90
at ggt ggccg ggacccgct \(g\) tct tct agcg ttgct gct tc cccaggt cct cot gggcggc

\section*{SEQUENCE LI STI NG}

```

<210> 91
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 91

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc
coct cat ccc agccotet ga cgaggt cot \(g\) agcgagttcg agt gcggct gctcagcat \(g\)

\section*{SEQUENCE LI STI NG}

<210> 92
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> sour ce
<223>/note="Description of Artificial Sequence: Synthetic pol ynucl eot i de"
<400> 92


\section*{SEQUENCE LI STI NG}
```

t gct gt gt cc cgacagaact cagt gct at c t cgat gct gt acct t gacga gaat gaaaag
gt tgt at t aa agaact at ca ggacat ggt t gt ggagggt t gt gggt gt cg ct ag
<210> 93
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 93

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc
ccct cat ccc agccotct ga cgaggt cot \(g\) agcgagttcg agt gcggct gctcagcat \(g\)
ttcggcct ga aacagagacc cacccccagc agggacgccg tggt gccccc ct acat gcta
gacct gt at c gcaggcact c aggt cagcog ggct caccog ccccagacca ccggt tggag 300
agggcagcea gccgagccaa cact gt gcgc agcttccacc at gaagaat c tttggaagaa 360
ct accagaaa cgagt gggaa aacaaccogg agat cttct ttaattangtctat cccc 420
acggaggagt \(t\) tat cacct \(c\) agcagagct t caggttttcc gagaacagat gcaagat gct 480
ttaggaaaca at agcagt tt ccat caccga at tatat t at gaaat cat aaaacctgca 540
acagccaact cgaaattcce cgt gaccaga cttttggaca ccaggttggt gaat cagaat 600
gcaagcaggt gggaaagttt tgat gtcacc ccogctgtga tgcggt ggac tgcacaggga 660
cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggtgtctcc 720
aagagacat \(\mathrm{g} t \mathrm{t}\) aggat aag caggtctttg caccaagat \(g\) aacacagctg gtcacagat a 780
aggccat tgc tagt aact tt tggccat gat ggaaaagggc at cctctcca caaaagagaa 840
aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagctgt aa gagacaccct 900
\(t t g t\) acgt gg act tcagt ga cgt ggggt gg aat gact gga \(t \mathrm{tgt} \operatorname{ggct} \mathrm{cc}\) ccoggggt at 960
cacgccttt actgcgat gg agaat getcc ttcccactca acgcacacat gaat gcaacc 1020
aaacacgcga ttgt gcagac cttggt cac cttat gaacc cogagt at gt ccccaaaccg 1080
t get gt gcge cgacagaact cagt gct at c t cgat gct gt acct tgacga gaat gaaaag 1140
gt tgtat aa agaact at ca ggacat ggt t gt ggagggt t gt gggt gt cg ct ga 1194
```

<210> 94
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```

\section*{SEQUENCE LI STI NG}

<400> 95

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc
ccct cat ccc agccetct ga cgaggt cot \(g\) agcgagttcg agt tgcggct gctcagcat \(g\)
\(t t\) cggcet ga aacagagacc cacccccagc agggacgecg tggt gccecc ct acat get a
gacct gt at c gcaggcact c aggt cagccg ggct caccog ccccagacca ccggt tggag
agggcagcca gccgagccaa cact gt gcgc agcttccacc at gaagaat c tttggaagaa
ct accagaaa cgagt gggaa aacaaccogg agat tcttct \(t t\) aat ttaag \(t t c t\) at cccc
acggaggagt \(t t\) atcacctc agcagagct t caggttttcc gagaacagat gcaagat gct

\section*{SEQUENCE LI STI NG}

```

<210> 96
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 96

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc

ttcggcct ga aacagagacc cacccccagc agggacgccg tggt gccecc ct acat get a
gacct gt at c gcaggcact c aggt cagccg ggct cacccg ccccagacca ccggt tggag
agggcagcca gccgagccaa cactgtgcgc agcttccacc at gaagaat \(c t t t g g a a g a a\)
ct accagaaa cgagt gggaa aacaaccogg agat cttct ttaattaag ttct at cccc
acggaggagt \(t t\) at cacct \(c\) agcagagct \(t\) caggttttcc gagaacagat gcaagat gct
\(t t\) aggaaaca at agcagt \(t\) t coat caccga at taat at t at gaaat cat aaaacct gca
acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggt tggt gaat cagaat


1020 1080
```

<210> 98
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>

```

\section*{SEQUENCE LI STI NG}

\section*{<221> source}
<223>/note=" Description of Artificial Sequence: Synthetic pol ynucl eot i de"
<400> 98
at ggt ggccg ggaccogct \(g\) tct ct agcg t tgct gct tc cccaggt cct cot gggcggc
ccct cat ccc agccot ct ga cgaggt cct \(g\) agcgagt tcg agttgcggct gct cagcat \(g\) 180 ttcggcct ga aacagagacc cacccccagc agggacgccg tggt gccccc ct acat gct a 240 gacct gt at c gcaggcact c aggt cagccg ggct caccog ccccagacca ccggt t ggag agggcagcca gccgagccaa cact gt gcgc agcttccacc at gaagaat c tttggaagaa ct accagaaa cgagt gggaa aacaacccgg agat cttct ttaattaag ttctat cccc acggaggagt \(t\) tat cacct \(c\) agcagagct \(t\) caggttttcc gagaacagat gcaagat gct tt aggaaaca at agcagttt ccat caccga at taat at t at gaaat cat aaaacct gca acagccaact cgaaattcce cgt gaccaga cttttggaca ccaggt tggt gaat cagaat gcaagcaggt gggaaagt tt tgat gt cacc cccgct gt ga tgcggt ggac tgcacaggga cacgccaacc at ggat tcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gt ct cc aagagacat \(g\) ttaggat aag caggtcttg caccaagat \(g\) aacacagct g gt cacagat a aggceat tgc tagt aacttt tggccat gat ggaaaagggc at cotctcca caaaagagaa aaacgtcaag ccaaacacaa acagcggaaa cgccttaagt ccagctgt aa gagacaccct ttgt acgt gg act tcagt ga cgt ggggt gg aat gact gga \(t \mathrm{t}\) at t gcacc ccogggct at gct gectttt act gccacgg agaat gccot \(t t t c c t g g\) ct gat cat ct gaact ccact aat cat gcca ttgttcagac gttggt caac tctgttaact ct aagat tcc taaggcat gc tgt gtccoga cagaact caa tgccatct \(c g\) gttctttact \(t t\) gat gacaa ct ccaat gtc at \(t t t\) aaaga act at cagga cat ggttgtg gagggttgtg ggtgtcgctga
```

<210> 99
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 99
at ggt ggccg ggaccogct g tct tct agcg ttgct gct tc cccaggt cct cct gggeggc
gcggct ggcc tcgttccgga gct gggcogc aggaagttcg cggcggcgtc gtcgggccgc
ccct cat ccc agccct ct ga cgaggt cctg agcgagttcg agt gcggct gct cagcat g
ttcggcct ga aacagagacc cacccccagc agggacgccg tggt gccccc ct acat get a
gacct gt at c gcaggcact c aggt cagcog ggct caccog ccccagacca coggt tggag
agggcagcca gccgagccaa cact gt gcgc agcttccacc at gaagaatc tttgaagaa

\section*{SEQUENCE LI STI NG}

```

<210> 100
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 100
at ggt ggccg ggaccogctg tcttctagcg ttgct gcttc cccaggt cct cct gggcggc

\section*{SEQUENCE LI STI NG}
aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccctttgt acgt gg act tcagt ga cgt ggggt gg aat gact gga \(t\) tat gcacc caagggct atgct gcct ttt act gccacgg agaat gccct tttcctctgg ct gat cat ct gaact ccactaaacat gcca ttgttcagac gttggt caac tct gttaact ct aagat tcc taaggcat gctgt gt cccga cagaact caa tgccatctcg gttctttact ttgat gacaa ct ccaat gtcat \(t \mathrm{t}\) aaaga act at cagga cat ggttgt g gagggttgt g ggt gt cgct \(g\) a
<210> 101
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
    pol ynucl eot i de"
<400> 101
at ggt ggccg ggaccogct \(g\) tct tctagcg ttgct gcttc cccaggt cct cot gggcggc
gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gt cgggccgc
ccct cat ccc agccetct ga cgaggt cot \(g\) agcgagttcg agt geggct gctcagcat g
ttcggcet ga aacagagacc cacccccagc agggacgecg tggt gccocc ct acat get a
gacct gt at c gcaggcact c aggt cagccg ggct caccog ccccagacca coggt tggag
agggcagcca gccgagccaa cactgtgcgc agcttccacc at gaagaat c tttggaagaa
ct accagaaa cgagt gggaa aacaaccogg agat cttct \(t\) taatttaag ttctat cccc
acggaggagt \(t t\) at cacct \(c\) agcagagct t caggttttcc gagaacagat gcaagat gct
\(t t\) aggaaaca at agcagt \(t t\) ccat caccga at t aat at \(t\) at gaaat cat aaaacct gca
acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggttggt gaat cagaat
gcaagcaggt gggaaagt tt tgat gtcacc cccgctgtga tgcggt ggac tgcacaggga
cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gt ct cc
aagagacat \(g t t a g g a t\) aag caggtctttg caccaagat \(g\) aacacagct g gt cacagat a
aggccat tgc tagt aact tt tggccat gat ggaaaagggc at cctctca caaaagagaa
aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccot
\(t t g t\) acgt \(g g\) act tcagt ga cgt ggggt gg aat gact gga \(t t\) at \(t\) gcacc caagggct at
gct gcctttt act gccacgg agaat gccot \(t t t c c t g g\) ct gat cat ct gaact ccact
act cat gcca \(t\) tgttcagac gttggt caac tct gttaact ct aagat tcc taaggcat gc
tgt gt cccga cagaact caa tgccatct cg gttcttact ttgat gacaa ct ccaat gtc
at \(t t\) aaaga act at cagga cat ggt gt g gagggt gt g ggt gtcgct g a
```

<210> 102
<211> 1194

```
```

<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"
<400> 102
at ggt ggct g gcaccagat g t ct gct ggcc ct gct gct gc cccaggt gct gct gggcgga

```
<210> 103
\(<211>1194\)
<212> DNA
<213> Artificial Sequence

\section*{<220>}
<221> sour ce
<223>/note=" Description of Artificial Sequence: Synthetic pol ynucl eot i de"
<400> 103
at ggt ggct g gcaccagat \(g\) tet gct ggce ct gct gct gc cccaggt get gct gggcgga
gct gct ggac tggt gccoga gct gggcaga agaaagttcg ccgct gcctc ct ct ggccgg

\section*{SEQUENCE LI STI NG}

```

<210> 104
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 104
at ggt ggccg ggaccogctg tct tctagcg ttgct gcttc cccaggt cct cotgggcggc

\section*{SEQUENCE LI STI NG}
\begin{tabular}{|c|c|}
\hline cat g tt aggat aag caggt ctttg caccaagat g aacacagctg gt cacagat a & 780 \\
\hline aggceattgc tagt aacttt tggceat gat ggaaaagggc at cotctcca caaaagagaa & 840 \\
\hline aaacgt caag ccaaacacaa acagcggaaa cgecttaagt ccagct gt aa gagacaccet & 900 \\
\hline \(t \mathrm{tgtacgtgg}\) acttcagt ga cgt ggggt gg aat gact gga ttat get cc cccggggt at & 960 \\
\hline cacgectttt actgcgat gg agaat gct cc ttcceactca acgcacacat gaatgcaacc & 1020 \\
\hline aaccacgcga ttgt gcagac cttggttcac cttat gaacc cogagt at gt ccccaaaccg & 1080 \\
\hline t gct gt gcge cgacagaact caat gct at c tcggttctgt actttgacga gaattccaat & 1140 \\
\hline gttgt attaa agaaat at ca ggacat ggtt gt gagaggt t gt gggt gt cg ctga & 1194 \\
\hline \[
\begin{aligned}
& <210>105 \\
& <211>1194 \\
& <212>\text { DNA } \\
& <213>\text { Artificial Sequence }
\end{aligned}
\] & \\
\hline ```
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
    pol ynucl eot i de"
``` & \\
\hline \begin{tabular}{l}
\[
<400>105
\] \\
at ggt ggccg ggaccogetg tct tctageg ttget gettc cccaggt cct cct gggeggc
\end{tabular} & 60 \\
\hline
\end{tabular}

gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gtcgggccgc
coct cat ccc agccetctga cgaggt cotg agcgagttcg agttgcggct gctcagcat g
ttcggcct ga aacagagacc cacccccagc agggacgccg tggt gccccc ct acat gct a gacct gt at c gcaggcact c aggt cagccg ggct caccog ccccagacca ccggt tggag agggcagcca gccgagccaa cactgtgcgc agcttccacc at gaagaat \(c t t t g g a a g a a\) ct accagaaa cgagt gggaa aacaaccogg agat tcttct \(t\) aat ttaag ttct at cccc acggaggagt \(t t\) at cacct \(c\) agcagagct \(t\) caggttttcc gagaacagat gcaagat gct \(t t\) aggaaaca at agcagt \(t t\) ccat caccga at taat at \(t\) at gaaat cat aaaacctgca acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggt tggt gaat cagaat gcaagcaggt gggaaagt tt tgat gt cacc ccogct gt ga tgcggt ggac tgcacaggga cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gt ctcc aagagacat \(g t t\) aggat aag caggtctttg caccaagat \(g\) aacacagct g gtcacagat a aggccat \(t g c\) tagt aact \(t t\) tggccat gat ggaaaagggc at cctctcca caaaagagaa aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccct \(t t g t a c g t g g\) act tcagt ga cgt ggggt gg aat gact gga \(t t\) at \(t\) gct cc cagggggt at cacgcct ttt actgcgat gg agaat gct cc ttcccactca acgcacacat gaat gcaacc aaccacgcga ttgtgcagac cttggttcac ct at gaacc ccgagt at gt ccccaaaccg tgct gt gcgc cgacagaact caat gct at c tcggttctgt actttgacga gaat tccaat
```

<210> 106
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 106
at ggt ggccg ggaccogct \(g\) tct ct agcg t tgct gct tc cccaggt cct cot gggcggc
```

<210> 107
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 107
at ggt ggccg ggacccgct \(g\) tct tct agcg ttgct gct tc cccaggt cct cot gggcggc

\section*{SEQUENCE LI STI NG}

```

<210> 108
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 108
at ggt ggct \(g\) gcaccagat \(g\) tet gct ggcc et gct get gc cccaggt get get gggcgga
get gct ggac tggt gccoga get gggcaga agaaagtteg ccgct gcctc ct ct ggccgg
cottccagcc agcottccga cgaggt getg tccgagttcg agct gcggct gct gtccat \(g\)
ttcggcet ga agcagcggcc caccccttct agggacgccg tggt gccccc ct acat getg
gacct gt acc ggcggcact c cggacagcct ggat ct cct g cccccgacca cagact ggaa
agagccgcct ccogggccaa caccgt gcgg tctttccacc acgaggaat c cotggaagaa

\section*{SEQUENCE LI STI NG}

<210> 109
<211> 1176
<212> DNA
<213> Artificial Sequence
<220>
<221> source
\(<223>/\) not e=" Description of Artificial Sequence: Synthetic pol ynucl eot i de"
<400> 109
at ggt ggct g gcaccagat \(g\) tet gct ggcc ct gct get gc cccaggt get gct gggcgga
gct gct ggac tggt gccoga gct gggcaga agaaagttcg ccgct gcctcetctggccgg cottccagcc agccttccga cgaggt getg tccgagttcg agct gcggct gct gt ccat \(g\) \(t t c g g c c t g a \operatorname{agcagcggcc}\) caccocttct agggacgecg tggt gccocc ct acat getg gacct gt acc ggcggcact c cggacagcct ggat ct cct g ccccogacca cagact ggaa agagccgcct cccgggccaa caccgtgcgg tctttccacc acgaggaat c cctggaagaa ct gccogaga cat coggcaa gaccaccogg cggttctttt tcaacctgtc ctccat cccc accgaagagt tcat cacctc cgccgagct \(g\) caggt gttcc gcgagcagat gcaggacgcc ct gggcaaca act cotcctt ccaccat cgg at caacatct acgagat cat caagccogcc accgccaact ccaagttcce cgt gaccogg ct gct ggaca cccgget ggt gaaccagaac gcct ccagat gggagt cctt cgacgt gacc cct gccgt ga t gagat ggac cgcccagggc cacgccaacc acggctttgt ggt ggaagt g gcccacctgg aagagaagca gggcgt gtcc aagcggcacg tgcggat ct c tcggt ccot \(g\) caccaggacg agcacagct g gt cccagat \(c\) cggccoct gc tggt gacat t cggccacgat ggcaagggcc accccctgca caagagagag aagcggcagg ccaagcacaa gcagcggaag cggct gaagt cct cct gcaa gcggcacccc ct gt acgt gg act tctccga cgt gggct gg aacgact gga tcgt ggccoc tccoggct ac cacggcgagt gccetttccc cot ggccgac cacct gaact ccaccaacca cgccat cgt g cagaccotgg tgaact ccgt gaacagcaag at ccccaagg cct gct gcgt gcccaccgag

\section*{SEQUENCE LI STI NG}
```

ct gt ccccca tct ccgt gct gt acaaggac gacat gggcg tgcccaccct gaagaact ac
<210> 110
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ynucl eot $i$ de"
<400> 110
at ggt ggct g gcaccagat g tct gct ggcc ct gct gct gc cccaggt gct gct gggegga
gct gct ggac tggt gccoga gct gggcaga agaaagttcg cogct gcctc ct ct ggccgg 120
ccttccagcc agccttccga cgaggt gctg tccgagttcg agct gcggct gctgtccatg 180
ttcggcctga agcagcggcc caccccttct aggaacgccg tggt gccccc ct acat gct g 240
gacct gt acc ggcggcactc cggacagcct ggat ct cctg cccocgacca cagact ggaa 300
agagccgcct ccogggccaa caccgtgcgg tctttccacc acgaggaatc cctggaagaa 360
ct gcccgaga cat ccggcaa gaccaccogg cggttcttt tcaacctgtc ctccat cccc 420
accgaagagt tcat cacctc cgccgagctg caggt gttcc gcgagcagat gcaggacgcc 480
ct gggcaaca act cotcctt ccaccat cgg at caacat ct acgagat cat caagccogcc 540
accgccaact ccaagttccc cgt gaccogg ct gct ggaca cccggctggt gaaccagaac 600
gcct ccagat gggagt cett cgacgt gacc cot gccgt ga t gagat ggac cgcccagggc 660
cacgccaacc acggctttgt ggt ggaagt g gcccacct gg aagagaagca gggcgt gtcc 720
aagcggcacg tgcggat ct c tcggt ccctg caccaggacg agcacagctg gtcccagatc 780
cggccoct gc tggt gacat cggccacgat ggcaagggcc accocct gca caagagagag 840
aagcggcagg ccaagcacaa gcagcggaag cggct gaagt cctcct gcaa gcggcacccc 900
ct gt acgt gg act tct ccga cgt gggct gg aacgact gga tcgt ggccoc tccoggct ac 960
cacgect tct act gcgacgg cgagt gct cc ttccocct ga acgcccacat gaacgccacc 1020
aaccacgcca tcgt gcagac cct ggt gcac ct gat gaacc cogagt acgt gcccaagccc 1080
t gct gcgccc ccaccgagct gt cccccatc tccgt gct gt acaaggacga cat gggcgt g 1140
cccaccot ga agaact acca ggacat ggt g gt cgaaggct gcggct gtcg gt ga 1194

```
<210> 111
<211> 1191
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synt hetic
 pol ynucl eot i de"
```


## SEQUENCE LI STI NG



```
<210> 112
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
 pol ynucl eot i de"
```

<400> 112
at ggt ggct $g$ gcaccagat $g$ tct gct ggcc ct gct gct gc cccaggt get get gggcgga

## SEQUENCE LI STI NG


<400> 113
at ggt ggct $g$ gcaccagat $g$ tet gct ggcc ct gct gct gc cccaggt get get gggcgga


```
<210> 115
<211> 1329
```

<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ynucl eot i de"
<400> 115
at gt gt cot $g$ gcget ct gt $g$ ggt ggccet $g$ cct ct gct gt ct ct gct ggc cggcagcct g
cagggcaagc ct ct gcagt c ct ggggcaga ggct ccgetg gcggcaat gc tcacagccct 120
ct gggagt gc ct ggcggcgg act gcccgag cacaccttca acct gaagat gt tcct ggaa
aacgt gaagg tggact tcct gcggt ccot $g$ aacct gt ccg gcgt gcccag ccaggacaag
acccgggt gg aaccccccca gt acat gat c gacct gt aca accggt acac ct ccgacaag
tccaccaccc ccgcctccaa cat cgt gcgg tcct tcagca tggaagat gc cat ct ccat t
accgccaccg aggacttccc atttcagaag cacat cotgc tgttcaacat ctccat cccc
cggcacgagc agat caccag agccgagct g cggct gt acg tgt cct gcca gaaccacgt $g$
gacccct ccc acgacct gaa gggct ccgt g gt gat ct acg acgt gct gga cggcaccgac
gcct gggact ccgct accga gacaaagacc ttcct ggt gt cccaggat at ccaggacgag
ggct gggaga cact ggaagt gt cct ccgcc gt gaagagat gggt gegat c cgact ccacc
aagt ccaaga acaagct gga agt gaccgt g gaat cccacc ggaagggct g cgacaccot g
gacat ct cog tgcccoct gg ct cccggaac ct gccettct tcgt ggt gtt ct ccaacgac
cact cot cog gcaccaaaga gacacggct g gaact gagag agat gat ct c ccacgagcag
gaat ccgt cc tgaagaagct gt ccaaggac ggct ccaccg aggccggcga gt cot ct cac
gaagaggaca ccgacggcca cgt ggcagct ggct ct accc tggccagacg gaagcggcag
gccaagcaca agcagcggaa gcggct gaag tccagctccg ct ggcgcagg ct cccact gc
cagaaaacct ccct gagagt gaacttcgag gacat cggct gggacagctg gatcat tgcc
cccaaagagt acgaggccta cgagt gcaag ggcggctgct tcttccccet ggccgacgac
gt gaccccca ccaagcacgc cat cgt gcag accotggtgc acctgaagt t ccccaccaaa
gt gggcaagg cot gct gcgt gcccaccaag ct gt ccceca tcagcgt gct gt acaaggac
gacat gggcg tgccaaccot gaagt accac tacgagggca tgt ccgt ggc cgagt gt ggc
t gccggt ga

```
<210> 116
<211> 1329
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
 pol ynucl eot i de"
<400> }11
at gt gt cotg gcgct ct gtg ggt ggcoct g cot ct gct gt ct ct gct ggc cggcagcct g

\section*{SEQUENCE LI STI NG}
cagggcaagc ct ct gcagt c ct ggggcaga ggct cogctg gcggcaat gc tcacagccot 120 ct gggagt gc ct ggcggcgg act gccogag cacaccttca acct gaagat gttcct ggaa 180 aacgt gaagg tggacttcct gcggt coctg aacct gt ccg gcgt gcccag ccaggacaag 240 acccgggt gg aaccocccca gt acat gat c gacct gt aca accggt acac ct ccgacaag 300 tccaccaccc cogcctccaa cat cgt gcgg tccttcagca tggaagat gc catctccat \(\quad 360\) accgccaccg aggacttccc atttcagaag cacat cctgc tgttcaacat ctccat cccc 420 cggcacgagc agat caccag agccgagctg cggct gt acg tgt cct gcca gaaccacgtg 480 gaccoct ccc acgacct gaa gggct ccgtg gt gat ct acg acgt gct gga cggcaccgac 540 gcct gggact ccgct accga gacaaagacc ttcct ggt gt cccaggat at ccaggacgag 600 ggct gggaga cact ggaagt gt cct ccgcc gt gaagagat gggt gcgat c cgact ccacc 660 aagt ccaaga acaagct gga agt gaccgt g gaat cccacc ggaagggctg cgacaccctg 720 gacat ct ccg tgccccct gg ct cccggaac ct gcccttct tcgt ggt gt ct ccaacgac 780 cact cct ccg gcaccaaaga gacacggct g gaact gagag agat gat ct c ccacgagcag 840 gaat ccgt cc t gaagaagct gt ccaaggac ggct ccaccg aggccggcga gt cct ct cac 900 gaagaggaca ccgacggcca cgt ggcagct ggct ct accc tggccagacg gaagcggcag 960 gccaagcaca agcagcggaa gcggct gaag tccagctccg ctggcgcagg ctcccactgc 1020 cagaaaacct ccctgagagt gaacttcgag gacat cggct gggacagctg gat cat tgcc cccaaagagt acgaggccta cgagt gcaag ggcggct gct tcttccccct ggccgacgac gt gaccocca ccaagcacgc cat cgt gcag accot ggt gc acct gaagtt ccccaccaaa gt gggcaagg cct gct gcgt gcccaccaag ct gt ccccca tcagcgt gct gt acaaggac gacat gggcg tgccaaccot gaagt accac tacgagggca tgt ccgt ggc cgagt gt ggc t gccggt ga
```

<210> }11
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 117
at gccgggge tggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
tgct gcggge ccccgccgct gcggccgccc ttgccegctg ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg

\section*{SEQUENCE LI STI NG}

\begin{abstract}
cgcggagagc cccctccogg gcgact gaag tccgcgcccc tcttcat gct ggat ct gt ac
aacgccot gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc tggccccacg aagcagccag ct cgt cccag cgt cggcagc cgccccoggg cgccgcgcac ccgct caacc gcaagagcct tct ggccccc ggat ct ggca gcggcggcgc gt ccccact g accagcgcgc aggacagcgc cttcctcaac gacgcggaca tggt cat gag ctttgt gaac ct ggt ggagt acgacaagga gt tct cccct cgt cagcgac accacaaaga gt tcaagttc aact tat ccc agat tcct ga gggt gaggt \(g\) gt gacggct \(g\) cagaat \(t \operatorname{ccg}\) cat ct acaag gact gt gtta tggggagt tt taaaaccaa act ttctta tcagcat ta tcaagt ct ta caggagcat c agcacagaga ctctgacctg tttttgt gg acaccogt gt agt at gggcc tcagaagaag gct ggct gga at ttgacat c acggccact a gcaat ct gt g ggt gt gact ccacagcat a acat ggggct tcagct gagc gt ggt gacaa gggat ggagt ccacgt ccac ccccgagccg caggcct ggt gggcagagac ggccettacg acaagcagcc cttcat ggtg gct ttcttca aagt gagt ga ggt gcacgt g cgcaccacca ggt cagcctc cagcoggcgc cgacaacaga gt cgt aat cg ct ct acccag t cccaggacg tggcgegggt ct ccagt gct t cagat taca acagcagt ga at tgaaaaca gcct gcagga agcat gagct gt at gt gagt ttccaagacc tgggat ggca ggact ggat \(c\) at \(\mathrm{gcacc} a\) aggget at gc tgccaat tac tgt gat ggag aat gct cct t cccact caac gcagccat ga at gcaaccaa ccacgcgat t gt gcagacct tggt cacct t at gaaccoc gagt at gtcc ccaaaccgtg ct gt gcgcca act aagct aa at gccatctc ggttctttac tttgat gaca act ccaat gt cattct gaaa aaat acagga at at ggt gt aagaget tgt ggat gccact aa
\end{abstract}
```

<210> 118
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 118
at gccggggc tggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
tgct gcgggc ccccgccgct gcggccgccc ttgcccgctg ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagccoc ggccgcacgg agcagccgcc gccgt cgccg
cagt cct cct cgggettcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag
aaggagat ct tgtcggt gct ggggct cccg caccggccoc ggccoct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgcggagagc cocct ccogg gcgact gaag tccgcgccoc tcttcat gct ggat ct gt ac
aacgccet gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
 Page 81

\section*{SEQUENCE LI STI NG}

```

<210> 119
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 119
at gccgggge t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
t get gcggge ccccgccgct gcggccgcce ttgcccgct g ccgcggccgc egccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt crecg
cagt cct cct cgggcttcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag
aaggagat ct tgt cggt gct gggget ccog caccggcccc ggccoct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgeggagagc cccct ccogg gcgact gaag tccgcgcccc tct cat gct ggat ct gt ac
aacgccct gt ccgccgacaa cgacgaggac ggggcgtcgg agggggagag gcagcagtcc
tggccccacg aagcagccag ct cgt cccag cgt cggcagc cgcccocggg cgccgcgcac
ccgct caacc gcaagagcet tet ggccccc ggat ct ggca gcggcggcgc gt ccccact g

\section*{SEQUENCE LI STI NG}

```

<210> 120
<211> 1539
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 120
at gccggggc tggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
t gct gcggge ccccgccgct gcggccgccc \(t t g c c c g c t g\) ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cct cct cgggcttcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag
aaggagat ct tgt cggt gct ggggct cccg caccggcccc ggccoct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgcggagagc cccct ccogg gcgact gaag tccgcgcccc tct cat gct ggat ct gt ac
aacgccot gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccccacg aagcagccag ct cgt cccag cgt cggcagc cgccccoggg cgccgcgcac
ccgct caacc gcaagagcct tct ggccccc ggat ct ggca gcggcggcgc gt cccoact g
accagcgcgc aggacagcgc cttcctcaac gacgcggaca t ggt cat gag ctttgt gaac
ct ggt ggagt acgacaagga gttctcccot cgt cagcgac accacaaaga gttcaagttc

\section*{SEQUENCE LI STI NG}

```

<210> 121
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 121
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
tgct gcgggc ccccgccgct gcggccgccc ttgcccgctg ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cct cct cgggcttcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag
aaggagat ct tgt cggt get ggggct ccog caccggccco ggccoct gca cggcet ccaa
cagccgcagc ccccggcgct coggcagcag gaggagcagc agcagcagca gcagct gcct
cgeggagagc cocct cocgg gegact gaag tccgcgccoc tct tcat get ggat ct gt ac
aacgccct gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccccacg aagcagccag ctcgtccoag cgt cggcagc cgccccoggg cgccgcgcac
ccgct caacc gcaagagcct tct ggccccc ggat ct ggca gcggcggcgc gt ccccact g

\section*{SEQUENCE LI STI NG}

```

<210> 122
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 122
at gccggggc tggggcggag ggcgcagt gg ct gt gct ggt ggt ggggget get gt gcagc

gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cctcct cgggcttcct gt accggcgg ctcaagacgc aggagaagcg ggagat gcag
aaggagat ct tgtcggt gct gggget ccog caccggccco ggccoct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgeggagagc cocct cocgg gcgact gaag tccgcgcccc tettcat gct ggat ct gt ac
aacgccet gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccccacg aagcagccag ctcgt cccag cgt cggcagc cgcccocggg cgcogcgcac
ccgct caacc gcaagagcct tct ggccccc ggat ct ggca gcggcggcgc gt ccccact g

\section*{SEQUENCE LI STI NG}

\begin{abstract}
ccacagcat a acat ggggct tcagct gagc gt ggt gacaa gggat ggagt ccacgt ccac 1020 ccccgagccg caggcct ggt gggcagagac ggccottacg acaagcagcc cttcat ggt g 1080 gctttcttca aagt gagt ga ggt gcacgt g cgcaccacca ggt cagcct c cagccggcge 1140 cgacaacaga gt cgt aat cg ct ct acccag tcccaggacg tggcgcgggt ct ccagt gct 1200 tcagat taca acagcagt ga at tgaaaaca gcct gcagga agcat gagct gt at gt gagt tt ccaagacc tgggat ggca ggact ggat \(c\) gt ggct cct \(c\) cggggt at ca cgcct ttac t gt gat ggag aat gct cot t cccactcaac gcacacat ga at gcaaccaa ccacgcgat t gt gcagacct tggt tcacct tat gaacccc gagt at gt cc ccaaaccgt g ct gt gcgcca act gaact ca gt gct at ct c gat get gt ac ct tgacgaga at gaaaaggt t gt act gaaa aaat acagga at at ggt gt aagagct tgt ggat gccact aa
\end{abstract}
```

<210> 123
<211> 1542
<212> DNA
<213> Artificial Sequence

```
<220>
<221> source
\(<223>/\) not e=" Description of Artificial Sequence: Synt hetic
 pol ynucl eot i de"
<400> 123
at gccggggc tggggcggag ggcgcagt gg ct gt gct ggt ggt ggggget get gt gcagc
t gct gcggge coccgccgct gcggccgccc ttgcccgct g ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cotcct cgggettcct gt accggcgg ctcaagacgc aggagaagcg ggagat gcag
aaggagat ct tgt cggt get gggget cocg caccggccoc ggccoct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgcggagagc cocctccogg gcgact gaag tccgcgccec tct tcat gct ggat ct gt ac
aacgccot gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccccacg aagcagccag ct cgt cccag cgt cggcagc cgccccoggg cgccgcgcac
ccgct caacc gcaagagcet tet ggccocc ggat ct ggca geggeggcge gt ccccact \(g\)
accagcgcgc aggacagcgc cttcctcaac gacgcggaca tggt cat gag ctttgt gaac
ct ggt ggagt acgacaagga gttctcccet cgtcagcgac accacaaaga gttcaagttc
aact tat ccc agat tcct ga gggt gaggt g gt gacggct \(g\) cagaat \(t \operatorname{cog}\) cat ct acaag
gact gtgtta tggggagttt taaaaccaa actttctta tcagcattta tcaagt ctta
caggagcat c agcacagaga ctctgacctg \(t \mathrm{tt} \mathrm{t} \mathrm{gttgg}\) acacccgt gt agt at gggcc

\section*{SEQUENCE LI STI NG}

t gct gcggge ccccgccgct gcggccgccc ttgcccgct g ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cot cct cgggcttcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag

\section*{SEQUENCE LI STI NG}
```

t gt gat ggag aat gct cctt cccact cgcc gat cacctga at gcaaccaa ccacgcgat t
gt gcagacct tggttcacct tat gaacccc gagt at gt cc ccaaaccgt g ct gt gcgcca
act aagct aa at gccat ctc ggt tctttac ttt gat gaca act ccaat gt cattct gaaa
aaat acagga at at ggttgt aagagcttgt ggat gccact aa
<210> 126
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 126
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
t gct gcgggc ccccgccgct gcggccgccc ttgcccgctg ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt crecg
cagt cct cct cgggettcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag
aaggagat ct tgt cggt get ggggct cccg caccggcccc ggcccct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgcggagagc cocct cocgg gegact gaag tccgcgccec tettcat gct ggat ct gt ac
aacgccot gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccccacg aagcagccag ct cgt cccag cgt cggcagc cgcccocggg cgccgcgcac
ccgct caacc gcaagagcet tct ggccocc ggat ct ggca geggeggcge gt ccccact \(g\)
accagcgcgc aggacagcgc cttcctcaac gacgcggaca tggtcat gag ctttgt gaac
ct ggt ggagt acgacaagga gttctccct cgtcagcgac accacaaaga gttcaagttc
aact tat ccc agat tcct ga gggt gaggt g gt gacggct \(g\) cagaat tccg cat ct acaag
gact gt gtta tggggagttt taaaaccaa acttttcta tcagcatta tcaagt ctta
caggagcat \(c\) agcacagaga ctctgacctg \(t t t t \mathrm{gttgg}\) acaccogt gt agt at gggcc
\(t\) cagaagaag gct ggct gga at \(t \mathrm{t}\) gacat c acggccact a gcaat ct gt g ggt gt gact
ccacagcat a acat ggggct tcagct gagc gt ggt gacaa gggat ggagt ccacgt ccac
ccccgagccg caggcct ggt gggcagagac ggccottacg at aagcagcc cttcat ggt g
gct ttct tca aagt gagt ga ggt ccacgt \(g\) cgcaccacca ggt cagcct c cagccggcgc
cgacaacaga gt cgt aat cg ct ct acccag t cccaggacg tggcgcgggt ct ccagt gct
t cagat taca acagcagt ga at tgaaaaca gcct gcaaga ggcat gagct gt at gt gagt
ttccaagacc tgggat ggca ggact ggat \(c\) at \(\mathrm{gcacc} a\) agggct at gc tgccaat tac
t gt gat ggag aat gct cct t ccot ct gget gat cat ct ga act ccact aa tcat gccat t
gt gcagacct tggt aact c tgt aacccc gagt at gt cc ccaaaccgt g ct gt gcgeca

\section*{SEQUENCE LI STI NG}
```

act aagct aa at gccat ct c ggttctttac tttgat gaca actccaat gt cattctgaaa
aaat acagga at at ggt tgt aagagcttgt ggat gccact aa
<210> 127
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 127
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
<210> 128
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/not e=" Description of Artificial Sequence: Synthetic
 pol ynucl eot i de"
<400> 128
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
```

<210> 129
<211> 1542

```
```

<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"
<400> 129

```
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
```

<210> 130
<211> }153
<212> DNA
<213> Artificial Sequence
<220>

```

\section*{SEQUENCE LI STI NG}
<221> source
<223>/note=" Description of Artificial Sequence: Synthetic
 pol ynucl eot i de"
<400> 130
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc
```

<210> 131
<211> 1287
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```

\section*{SEQUENCE LI STI NG}

```

<210> 132
<211> 1290
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/not e=" Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 132
at gt gt cct \(g\) gcgct ct gt \(g\) ggt ggccot \(g\) cct ct gct gt ct ct gct ggc cggcagcct g
cagggcaagc ct ct gcagt c ct ggggcaga ggct ccgetg gcggcaat gc tcacagccct
ct gggagt gc ct ggcggcgg act gccogag cacaccttca acct gaagat gttcct ggaa
aacgt gaagg tggacttcct gcggt coct g aacct gtccg gcgt gcccag ccaggacaag
acccgggt gg aaccccccca gt acat gat c gacct gt aca accggt acac ct ccgacaag
tccaccaccc ccgcctccaa cat cgt gcgg tcct tcagca tggaagat gc cat ct ccat t

\section*{SEQUENCE LI STI NG}

<400> 133
at gccggggc t ggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct gct gt gcagc

\section*{SEQUENCE LI STI NG}

```

<210> 134
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / note=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 134
at gccggggc tggggcggag ggcgcagt gg ct gt gct ggt ggt gggggct get gt gcagc
tgct gcgggc ccccgccgct gcggccgccc ttgcccgctg ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cct cct cgggettcct gt accggcgg ct caagacgc aggagaagcg ggagat gcag
aaggagat ct tgt cggt get ggggct ccog caccggccco ggccoct gca cggcet ccaa
cagccgcagc ccccggcgct coggcagcag gaggagcagc agcagcagca gcagct gcct
cgeggagagc cocct cocgg gegact gaag tccgcgccoc tct tcat get ggat ct gt ac
aacgccct gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccccacg aagcagccag ctcgtccoag cgt cggcagc cgccccoggg cgccgcgcac
ccgct caacc gcaagagcct tct ggccccc ggat ct ggca gcggcggcgc gt ccccact g

\section*{SEQUENCE LI STI NG}

```

<210> 135
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 135
at gccggggc tggggcggag ggcgcagt gg ct gt gct ggt ggt ggggget get gt gcagc
t get gcggge ccccgccgct gcggccgccc ttgcccgetg ccgcggccgc cgccgccggg
gggcagct gc tgggggacgg cgggagcccc ggccgcacgg agcagccgcc gccgt cgccg
cagt cctcct cgggcttcct gt accggcgg ctcaagacgc aggagaagcg ggagat gcag
aaggagat ct tgtcggt gct gggget ccog caccggccco ggccoct gca cggcct ccaa
cagccgcagc ccccggcgct ccggcagcag gaggagcagc agcagcagca gcagct gcct
cgeggagagc cocct cocgg gcgact gaag tccgcgcccc tettcat gct ggat ct gt ac
aacgccet gt ccgccgacaa cgacgaggac ggggcgt cgg agggggagag gcagcagt cc
tggccocacg aagcagccag ct cgt cccag cgt cggcagc cgccocoggg cgccgcgcac
ccgct caacc gcaagagcct tct ggccccc ggat ct ggca gcggcggcgc gt ccccact g

\section*{SEQUENCE LI STI NG}

<210> 136
<211> 1194
<212> DNA
<213> Artificial Sequence

\section*{<220>}
<221> source
\(<223>/\) not e=" Description of Artificial Sequence: Synthetic pol ynucl eot i de"
<400> 136
at ggt ggccg ggaccogct \(g\) tct tct agcg ttgct gcttc cccaggt cot cotgggegge
gcggct ggcc tcgttccgga gct gggccgc aggaagttcg cggcggcgtc gt cgggccgc coct cat ccc agccotct ga cgaggt cot \(g\) agcgagttcg agt tgcggct gctcagcat \(g\) ttcggcet ga aacagagacc caccccoagc agggacgccg tggt gccecc ct acat get a gacct gt at c gcaggcact c aggt cagcog ggct caccog ccccagacca coggt tggag agggcagcca gccgagccaa cact gt gcgc agct tccacc at gaagaat \(c t t t g g a a g a a\) ct accagaaa cgagt gggaa aacaaccogg agat tcttct ttaattaag ttctat cccc acggaggagt \(t\) tat cacctc agcagagct \(t\) caggttttcc gagaacagat gcaagat gct \(t t\) aggaaaca at agcagt \(t\) ccat caccga at \(t\) aat at \(t\) at gaaat cat aaaacctgca acagccaact cgaaattccc cgt gaccaga cttttggaca ccaggt ggt gaat cagaat gcaagcaggt gggaaagt tt tgat gt cacc ccogctgtga tgcggt ggac tgcacaggga cacgccaacc at ggattcgt ggt ggaagt g gcccacttgg aggagaaaca aggt gt ct cc aagagacat \(g t t a g g a t\) aag caggtctttg caccaagat \(g\) aacacagct \(g\) gt cacagat a aggccat tgc tagt aact tt tggccat gat ggaaaagggc at cctctcca caaaagagaa aaacgt caag ccaaacacaa acagcggaaa cgccttaagt ccagct gt aa gagacaccct \(t t g t a c g t g g\) act tcagt ga cgt ggggt gg aat gact gga ttgt ggct cc cccggggt at

\section*{SEQUENCE LI STI NG}
```

t gct gt gcgc ccaccaagct gagacccat g t ccat gt tgt act at gat ga t ggt caaaac
<210> 137
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```
<400> 137
at ggt ggct g gcaccagat \(g\) tct gct ggcc ct gct gct gc cccaggt get gct gggcgga
gct gct ggac tggt gccoga gct gggcaga agaaagt tcg ccgct gcct c ct ct ggccgg
cot tccagcc agccttccga cgaggt getg tccgagttcg agct gcggct gct gt ccat g
ttcggcct ga agcagcggcc caccccttct agggacgccg tggt gccccc ct acat gctg
gacct gt acc ggcggcact c cggccagcct ggat ct cotg cccccgacca cagact ggaa
agagccgcct ccogggccaa caccgt gcgg tctttccacc acgaggaat c cct ggaagaa
ct gccogaga cat coggcaa gaccaccogg cggttctttt tcaacctgtc at ccat cccc
accgaagagt tcat cacct c cgccgagct g caggt gttcc gcgagcagat gcaggacgcc
ct gggcaaca act cotcctt ccaccaccgg at caacatct acgagat cat caagccogcc
accgccaact ccaagttccc cgt gaccogg ct gct ggaca cccggctggt gaaccagaac
gcct ccagat gggagt cctt cgacgt gacc cct gccgt ga tgagat ggac cgcccagggc
cacgccaacc acggctttgt ggt ggaagt g gcccacctgg aagagaagca gggcgt gt cc
aagcggcacg tgcggatctctcggt ccot \(g\) caccaggacg agcacagct g gt cccagat \(c\)
cggccoctgc tggt gacat t cggccacgat ggcaagggcc accccctgca caagagagag
aagcggcagg ccaagcacaa gcagcggaag cggct gaagt cctcct gcaa gcggcacccc
ct gt acgt gg act tctccga cgt gggct gg aacgact gga \(t\) cat \(\operatorname{gccc}\) caggggct ac
gccgcettct act gcgacgg cgagt get cc ttccccctga acgcccacat gaacgccacc
aaccacgeca tcgtgcagac cotggt gcac ct gat gaacc ccgagt acgt gcccaagcct
tgt gegcce ccaccaagct gagaccoat \(g\) tccat gt gt act at gat ga tggt caaaac
at cat caaaa aggacat tca gaacat gat \(c\) gt ggaggagt gt gggt getc at ag
```

<210> 138
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223> / not e=" Description of Artificial Sequence: Synt hetic
pol ynucl eot i de"

```

\section*{SEQUENCE LI STI NG}

```

<210> 139
<211> 1194
<212> DNA
<213> Artificial Sequence
<220>
<221> source
<223>/note="Description of Artificial Sequence: Synthetic
pol ynucl eot i de"

```
<400> 139
at ggt ggct g gcaccagat \(g\) tct gct ggcc ct gct gct gc cccaggt get get gggcgga
gct gct ggac tggt gccoga gct gggcaga agaaagttcg ccgct gcctc ct ct ggccgg
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SEQUENCE LI STI NG} \\
\hline ct gggcaaca actcctcctt ccaccaccgg at caacat ct acgagat cat caagcccgcc & 540 \\
\hline accgccaact ccaagttccc cgt gaccogg ct gct ggaca ccoggct ggt gaaccagaac & 600 \\
\hline gcet ccagat gggagt cott cgacgt gacc cot gcogt ga t gagat ggac cgcocagggc & 660 \\
\hline cacgccaacc acggctttgt ggt ggaagt g gcceacctgg aagagaagca gggcgt gt cc & 720 \\
\hline aagcggcacg tgcggat ct c tcggt coctg caccaggacg agcacagct g gt cccagat c & 780 \\
\hline cggcocctgc tggt gacatt cggceacgat ggcaagggce accocctgca caagagagag & 840 \\
\hline aagcggcagg ccaagcacaa gcagcggaag cggct gaagt cct cct gcaa gcggcaccoc & 900 \\
\hline ct gt acgt gg acttct ccga cgt ggget gg aacgact gga tcattgccec cagggget ac & 960 \\
\hline gccgccttct act gcgacgg cgagt gct cc ttccocctga acgcccacat gaacgecacc & 1020 \\
\hline aaccacgcca tcgt gcagac cotggt gcac ct gat gaacc cogagt acgt gcocaagcot & 1080 \\
\hline tgttgcgccc caact aagct aaat gccat c tcggttcttt actttgat ga caact ccaat & 1140 \\
\hline gt cattctga aaaat acag gaat at ggtt gt aagagctt gt ggat gcca ctaa & 1194 \\
\hline
\end{tabular}```

