wo 2015/021547 A1 I 00N OO OO0 A0 A

(43) International Publication Date
19 February 2015 (19.02.2015)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

=

WIPOIPCT

(10) International Publication Number

WO 2015/021547 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
HO4W 12/08 (2009.01) GO6F 9/445 (2006.01)
GO6F 21/44 (2013.01) HO4W 4/00 (2009.01)

International Application Number:
PCT/CA2014/050761

International Filing Date:
11 August 2014 (11.08.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/864,899 12 August 2013 (12.08.2013) US
62/026,272 18 July 2014 (18.07.2014) US

Applicant: GRAPHITE SOFTWARE CORPORATION
[CA/CA]; 555 Legget Drive, Suite 740, Ottawa, Ontario
K2K 2X3 (CA).

Inventors: MAIN, Alexander, James; 3590 Torwood
Drive, Ottawa, Ontario KOA 1TO (CA). PUDERER,

(74

(8D

(84)

James, Henry, Allan; 293 Bay Street, Ottawa, Ontario
KIR 5Z7 (CA).

Agents: MUELLER-NEUHAUS, Jason et al; Borden
Ladner Gervais LLP, World Exchange Plaza, 100 Queen
Street, Suite 1300, Ottawa, Ontario K1P 1J9 (CA).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(54) Title: OPERATING SYSTEM INTEGRATED DOMAIN MANAGEMENT

100~

Application Space 140

|
APP 1 |450-1] 142 ApP 1 [150-2
Domain Settings | Domain Settings

ApP 2 [152 App 3 (154
Domain Navigator

!
|
46-1 : 146-2
|
|

44-1

Domain Navigator

Domain Admin App |148-1
Domain 1
142-1

Operating System Middleware

Domain Admin App | 148-2
Domain 2
142-2

120

~124 128 134

Domain Message
Service

K1 22
12(’3‘|

Domain Manager

User Manager

System Settings
‘ ‘ Y ¢ ho

Activity Manager

Domain Pelicy
Service

Key Guard Package Window
Mediator Manager Manager
C C C
132 138 138
Linux Kemel 110
e
Secure | Domain Kerngl Enhanced LSM ‘
Store Mi’dUIe .
112 114 116
FIGURE 2

(57) Abstract: A computing device operating system
providing a plurality of secure domains. A domain manager
selectively creates a plurality of secure domains, and one of
the secure domains is selected as a current domain. A do-
main policy service stores and enforces, for each secure do-
main, a policy comprising a rule set controlling access to
files and applications associated with the domain. A pack-
age manager enforces, for each secure domain, installation
of the applications associated with the domain. A domain
message service provides communication between running
processes associated with different ones of the secure do-
mains. An activity manager selectively switches the current
domain. Domain isolation is achieved while enabling a uni-
fied user interface providing concurrent access to the re-
sources of multiple domains.

WO 2015/021547 A1 WK 00T VAT 0O A O O

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Declarations under Rule 4.17:

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, . .)

EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, of inventorship (Rule 4.17(iv))

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, [P ,

GW, KM, ML, MR, NE, SN, TD, TG), with international search report (Art. 21(3))

WO 2015/021547

10

15

20

25

30

35

FIELD
[0001] The present disclosure relates generally to mobile device security. More

particularly, the present disclosure relates to secure domain management for mobile

devices.
BACKGROUND
[0002] There is a need for multiple isolated domains on mobile devices, such as

smartphones, tablets and mobile internet devices based on Android™, Linux™, or any
Unix™-based operating system (e.g. such as an iPhone™), where the applications and
data that reside in a domain are isolated from security threats that may result from
applications that reside outside the domain, on a website, or in another domain on the
same device. Such multiple secure domains would typically be used by a single user, the
device owner, to address the variable ease of access, privacy and security requirements
associated with different mobile device use cases. For example, a device owner may
have different ease of access, privacy and security requirements for mobile banking
applications and data than they have for games applications or a device owner may
desire to share certain applications on their device temporarily with a family member or
friend and not share other applications and data, such as personal emails, contacts and
text messages. Additionally, there is a requirement for different domains to be managed
by different entities, such as the device owner or an external party, such as an institution
or corporation, wherein each entity may have different security requirements for access to
and use of applications and data in the domain they manage. For example, the
requirements may be different across domains for the applications allowed within each
domain, and the conditions under which applications can execute within a domain, each
of which may need to be configurable uniquely for each domain by the entity managing
the domain. There is also a need to support different user authentication mechanisms,
different re-authentication timeframes, (or optionally no authentication) required to enter
different domains depending on the types of apps and data contained in the domain (e.g.
a device owner may not wish to enter a password to play games or to access Google™
Maps but they may desire to have a strong form of authentication to access mobile
banking applications).

[0003] The current state of the art for mobile device security and domain isolation

has been to use traditional personal computer (PC) and server computing security

-1-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

technologies, such as user accounts, hypervisors/virtualization, application wrappers and
anti-virus scanning. The typical use of mobile devices is materially different, however,
from these traditional environments. Mobile devices are, by nature, mobile and always
with the device owner. They are connected, always on and require quick access for short
duration tasks. They are shared in a way that is materially different from traditional
workstation and mainframe sharing. Power consumption is also critical to mobile devices,
which is one reason that power hungry virus scanning and virtualization technologies
have yet to be widely used on mobile devices.

[0004] One conventional domain isolation approach is to create separate user
accounts on the device, whereby each user must log-in to an account that has been
configured for the user. Depending on the operating system (OS), this may force another
user to be logged out. This approach supports multiple users on a single device and
separates or isolates each users application data. The same operating system is
leveraged across all users and all users have the same user interface features. An
installed application is accessible to all users, which is an efficient use of memory and
central processing unit (CPU) resources. This also allows a user to configure their
account with the look and feel they desire.

[0005] While user accounts provide data isolation and the efficiency of using the
same application and OS across different user accounts, this approach suffers the
following limitations. It provides all-or-nothing access to the device, without the flexibility
for temporary access. “Guest” user accounts may be set up with limited access, but this
does not facilitate the spontaneous sharing that is common with mobile devices (e.g. with
a family member or friend). User accounts are not typically available on mobile devices,
which are considered personal devices. The user must still switch between each user
account, which does not reflect the way people desire to use their mobile devices. The
user must log-in when switching user accounts which further inconveniences this
approach, as there is no implied relationship between the first user and a second user
with multi-user accounts. There is typically no inactivity timer or similar mechanism so
that log-in is not always required when switching domains. The isolation between users
(accounts) is at user space, or application level, and enforced by the OS. Anyone or any
software with administrator or root access, including malware, can access the data of all
users. Some systems do enable encryption of some user data to help mitigate this attack,
but generally the user data is still highly vulnerable and any kernel level exploit or process

can modify applications, processes, intercept data and access any files/objects it desires.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

[0006] Moreover, conventional user accounts, which were developed at the time
of mainframe computers and extended to desktops similarly, do not work well on a truly
personal device such as a smartphone. Mobile devices are shared differently than
mainframes or desktop computers. There is increasingly a desire from device owners and
users to have an alternative to the traditional screen lock or ‘all-or-nothing’ access control
mechanisms on mobile devices. For example, it is desirable for the device owner to have
applications that are frequently accessed and that do not contain sensitive information in
a domain that does not require user authentication; this is different from the requirements
for a personal protected domain or a work protected domain. The primary goal of such an
open, shared or common domain is the ease of use and quick access when the security
of such applications and data are deemed not to be important by the user (e.g. weather or
navigation). As such, the user does not want to enter a password or PIN each time they
access such an open domain. Additionally, such an open domain could include
applications that may be less trustworthy than those that the user or a domain owner may
allow in their protected domain. For example, many applications on Android are known to
access the contact database. Finally, while this permission must be granted during install
time to enable installation of the application, many users do not check this closely or

understand the implications of granting such permission.

[0007] Further conventional domain isolation approaches are now described with
reference to FIG.’s 1A to 1D.
[0008] As is known in the art, and as illustrated in FIG. 1A, a computing device

such as a mobile device implementing an operating system may be understood as
including hardware, an operating system including a kernel and middleware, and
application space (or user space). The kernel manages and provides input/output (I/O)
services to software applications for access to the hardware, and the middleware
provides services to software applications additional to those provided by the kernel.

[0009] One conventional domain isolation approach illustrated in FIG.'s 1B & 1C
employs hypervisor-based virtualization or virtual machines. With virtual machines the
operating system is duplicated to some degree to provide different isolated domains.
There are different types of virtual machines depending on the hypervisor. A Type 1 (or
bare-metal) hypervisor illustrated in FIG. 1B runs directly on the device CPU (‘bare
metal’) and provides isolation of domains by supporting complete and separate de-
privileged instances of the operating system for each domain. Isolation depends solely on

the hypervisor. Type 2 hypervisors illustrated in FIG. 1C are another virtualization

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

approach, wherein a second guest OS runs on top of a host OS. There are other hybrid
operating-system level virtualization approaches as well.

[0010] Hypervisor-based virtualization provides isolation between domains but
suffers from the following limitations. Duplication of the OS and applications means that
there is significant device overhead in terms of device memory, CPU and power
consumption. The high resources requirements for hypervisor solutions make the support
of multiple domains impractical. Data, application sharing and inter-process
communications (IPC) are ordinarily not possible, although some cross domain data
sharing is proposed through special messaging services if supported by the hypervisor.
Each OS is exposed to kernel layer malware that may undermine the isolation between
the domains. The user must toggle back and forth between domains (e.g. to switch from a
personal app to a work app), which does not reflect the manner in which people desire to
use their mobile devices. The time and overhead to integrate a Type 1 or Type 2
hypervisor onto a mobile device is very high making this approach infeasible for low cost
mobile devices. The performance impact of toggling between domains is high. Finally,
such solutions support whatever user account and user authentication is provided by
each OS, which is traditional all-or-nothing access.

[0011] A third conventional approach to domain isolation on mobile devices,
illustrated in FIG. 1D, involves application-level containerization. In this case, the
application containers (or domains) share the same hardware and OS, but use
containerization or wrapper technology to act as a proxy between the applications in the
container and the OS. This creates multiple independent domains by providing a layer of
indirection so that the lower level device resources, memory and file system can be
transparently mapped to higher-level resources that should be accessible only by
applications in the container or domain. Containerization is relatively efficient in terms of
the consumption of mobile device resources, especially compared to virtualization as
there is only one version of the OS, although applications are usually duplicated inside
the container and outside the container (e.g. an email app that may be used for work
inside the container and for personal use outside the container). As an application level
solution, container solutions have a very practical benefit in that it can be downloaded to
devices already in the field (e.g. reverse compatibility).

[0012] In containerization, all of the security and all of the enforcements are
wrapped around the container that contains applications. As such, anyone who
downloads a contained application receives not only the application, but also all the

security information associated with that application. With containerization, it remains

-4.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

possible for malicious individuals either: (1) to reverse engineer security policy; or (2) to
execute the application in an environment such as on an emulator where information can
be extracted from it.

[0013] Application-level containerization as an approach to domain isolation
suffers, however, from the following limitations. From a security perspective, it is relatively
easy for a hacker with some basic skills, or malware resident on the device, to intercept
the calls between the container and the OS to break the isolation and capture data and
personal information. Containerization is not enforced in the operating system or kernel
and is exposed to malware that may be present on the device. For example, if the
operating system is Linux or Android and an attacker gains root access privilege, it is
relatively simple to extract domain data or other critical information from RAM (e.g.
passwords used to access the domain, or cryptographic keys used to encrypt data in the
domain) or for such kernel layer malware to eavesdrop on /O drivers, such as the
microphone or frame buffer. Containers isolate the applications and data that are
“‘wrapped” by the container, but do not limit access by other applications not in the
container from accessing memory, files or networks, etc. Sharing a single application
image across domains is not possible and such technology does not allow the same
application both inside and outside a container. As a result, a container will typically only
support pre-determined applications that have been modified to the container, such as
mail, messaging, browsing, contacts, calendar, etc. This does not provide the application
choice that users or a corporate IT department desire. Common applications must be
modified to support the container, which duplicates storage and memory on the device
and increases the effort and involvement of the application developer. Often a private
application store must be created specific for the container solution, which increases lock-
in to a vendor solution and requires involvement by the application developer, further
limiting choice. With application wrapping approaches, the executable code may need to
be patched with security libraries that control how data is stored, shared and transmitted.
This introduces license and copyright issues as licenses do not typically authorize the
licensee to modify an application. The user must still toggle back and forth between
domains or containers, which doesn’t reflect the way people use their mobile devices.
Finally, the domain typically has its own pre-determined user interface, which is different
from the native OS user experience and cannot be customized by the device user.

[0014] A yet further approach to domain isolation is a kernel level platform
security approach in the device operating system, such as Security Enhanced Linux™

(SELinux™). SELinux provides mandatory access control (MAC) for applications and

-5.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

users to objects and resources, such as files. Each user, or application is assigned a
security label and a policy can be assigned to all labels. SELinux may be used for role-
based access controls combined with a domain switching mechanism, although
Android™ does not use user identifiers in such a manner. SELinux uses a special kernel
module that relies on the Linux Security Module (LSM) interface in Linux to enforce
isolation between processes based on the security policy. Applications can be verified
against the SELinux policy before loading and all processes can be confined to pre-
determined access such that one application cannot launch or access another process,
directories or data if that is not allowed by the policy. With the right policy mechanisms,
applications, malware and even kernel root kits can be prevented from accessing the
applications and data that belong to another user or application.

[0015] While a native OS solution has many advantages from a security,
performance and application isolation perspective compared to containers and compared
to virtualization approaches, it suffers from the drawback that the kernel does not have
sufficient visibility to the middleware level to be able to enforce domain isolation required
at the middleware levels.

[0016] Moreover, kernel-level platform security as an approach to domain
isolation suffers the following limitations. Such kernel module approaches do not have
any user interface or the concept of domains, but typically use existing traditional user
accounts, including allowing root or administrator accounts that have privileges across all
domains. The kernel module used in this approach is very low in the operating system
and does not have granular, application specific information to provide the type of policy
control (e.g. user authentication policy for a domain) and application control (e.g.
restriction of applications to certain domains) needed to meet the requirements of
consumer and corporate uses of isolated domains on a mobile device. Extending
SELinux type policy language and enforcement to the middleware significantly increases
complexity of the solution. Such policies are typically static and not updated. There have
been projects to provide remote policy updates for SELinux, but policies apply to the
whole device and are not unique for each domain. Inter-Process Communications (IPC),
on Android for example, are difficult to monitor, because the permission checks and
caller/callee checks are performed in the Android Middleware and the kernel does not
have access to enough information to monitor and control IPC between domains. Finally,
there is typically not granular enough control of the user and application access to define
inter-domain data sharing, which raises issues with data leakage, which is not acceptable

for certain types of data. While this may be acceptable for some shared applications (e.g.

-B-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

camera and picture gallery), there is a higher degree granularity needed for documents
and document reader applications (e.g. pdf viewer) that is not possible with a kernel level
solution.

[0017] Another conventional approach to providing security is encrypted
filesystems, such as a cryptographic stacked filesystem. For example, the eCryptFS

filesystem (http://ecryptfs.org) is a POSIX-compliant enterprise cryptographic stacked

filesystem for Linux. Encrypted filesystems are not a suitable means, however, for
providing multiple domains.

[0018] It is, therefore, desirable to provide means for creating multiple domains on
mobile devices where the applications and data that reside in a domain are isolated from
security threats that may result from applications that reside outside the domain on a
website or in another domain on the same device, and which mitigates one or more
disadvantages of each of the conventional approaches described above, provides
advantages over such conventional approaches, or provides an alternative to such

convention approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Embodiments of the present disclosure will now be described, by way of
example only, with reference to the attached Figures.

[0020] FIG’s 1A, 1B, 1C, and 1D show block diagrams illustrating operating
system structure and conventional methods for domain isolation.

[0021] FIG. 2 shows a block diagram illustrating an inventive system for providing
isolated domains.

[0022] FIG. 3 shows a schematic diagram illustrating an implementation of

multiple user accounts and multiple domains.

[0023] FIG. 4 shows a block diagram illustrating a method of switching from a first
domain to a second domain.

[0024] FIG. 5 shows a block diagram illustrating a domain messaging method.
[0025] FIG. 6 shows a block diagram illustrating a cross domain execution
method.

[0026] FIG. 7 shows a block diagram illustrating a domain application installation
method.

[0027] FIG. 8 shows a block diagram illustrating an update policy method.

[0028] FIG. 9 shows a block diagram illustrating a method of switching from a

current domain to another domain.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

[0029] FIG. 10 shows a block diagram illustrating a method of switching from a
current domain to a target domain which is not running, which is encrypted, and which

requires authentication for access.

DESCRIPTION

[0030] The solution disclosed herein provides flexible, efficient, and secure
isolated domains and management of such domains for mobile devices and mitigates one
or more disadvantages of each of the conventional approaches described above,
provides advantages over such conventional approaches, or provides an alternative to
such conventional approaches.

[0031] The following factors are relevant to a solution which overcomes the above
drawbacks of conventional methods. Firstly, there has been a shift in recent years from
the use of mobile devices primarily for mobile telephony and SMS (Short Message
Service) to the use of mobile devices for web browsing, social networking, gaming, email,
instant messaging, location based services and mobile commerce. With broad Internet
connectivity via service providers and WiFi, mobile computing is always connected and
truly mobile. In addition, due to the proliferation of applications and the capabilities of
devices including sensors such as cameras, GPS, accelerometers, barometers, etc,
there are many more diverse usages of the mobile device. They are used for
entertainment, social networking, cameralvideo, navigation, accessing cloud services for
both personal (e.g. photo sharing), or work (e.g. corporate CRM systems) or combined
(e.g. file sharing such as Drop Box), plus many forms of messaging from text, chat, email
and voice, either over IP or traditional phone networks. Also, with the increasing power,
connectivity and number of applications on such mobile devices, users increasingly store
and track more sensitive information on these devices (e.g. personal data, credentials,
cryptographic keys, credit card numbers, passwords, contacts, past location, current
location, web surfing history, installed applications and current device status (e.g. not
moving), etc.). This sensitive information is often the target of malicious users and
malicious software (malware). Moreover, inasmuch as mobile devices are carried with the
person, and due to their extensive capabilities, there is a desire to be able quickly to
access these devices for a quick reply, a quick web search, etc. The use of a traditional
device lock produces an inconvenience. For example, it may be undesirable for the user
to enter a password, to unlock the device, in order to look up a word in a dictionary. In
addition, mobile devices are often shared (or desired to be shared), e.g. for temporary

purposes, such as making a phone call, letting a family member play a game, or in

-8-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

vehicle navigation while the device owner is driving. This is vastly different than traditional
user accounts in a traditional computing or server environment, where one device or
service is shared between multiple people, but where the users are known in advance
and such shared usage tends to be on an ongoing and regular basis. In addition, due to
the smaller form factor of mobile devices and the frequency and location of use, mobile
devices are lost or stolen much more frequently than laptops or PC’s and hence may fall
into the hands of an attacker. Many users and enterprises require a means to remotely
lock, locate and/or “wipe” (delete all applications and data from the device) mobile device
that are lost or stolen, including smartphone anti-theft regulations in some countries
(http:/iwww.ctia.org/policy-initiatives/voluntary-guidelines/smartphone-anti-theft-voluntary-
commitment). Also, it has been common for an employee in a corporate environment to
use a single device for both personal and work use. This is another form of sharing — but
only of the hardware and network services — where the security, privacy and data
isolation requirements are higher since the corporation desires to own and control the
dissemination of work data (e.g. especially in the event of employee termination), and the
user may have private data that he does not want to share with the employer. In many
cases the same applications may be used for both personal and corporate usage — as
this improves productivity — yet the application data must be isolated so that corporate
data can be deleted (wiped) without impacting the personal data, or vice versa. Moreover,
because of device capabilities, sensitive information, sharing and dual usage there is an
increasing need for privacy and flexible access control. Often notifications display
sensitive personal information (chat messages, software upgrades, advertisements),
which device owners do not always want everyone to see or have access to. Users want
the flexibility to lend their device, but desire to limit access to certain capabilities and/or
services such as read only, receive phone calls only, or certain accounts (e.g. Facebook).
Many users face choosing between the dissatisfactory alternatives of an all-or-nothing
device lock, versus not securing the device at all. Finally, mobile devices by nature
connect to more networks than PC's (e.g. WiFi networks in restaurants, hotels and
airports), which exposes these devices to more network based attacks, intrusions and
packet capture. In addition, mobile device users have access to third party app stores that
enable users to download applications that may contain malicious software (malware).
For example, mobile devices based on the Android operating system now accounts for
over 90% of malware targeting mobile devices.

[0032] A ‘domain’ may be considered herein to stand for a relationship between a

set of resources — data files, applications, and services, for example — and a rule set, or

-9-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

‘policy’, whereby access by processes to the resources is controlled at least in part by the
policy. For example, a particular domain may be considered to include or contain a
number of data files which are associated with that domain, and access to the data files is
controlled at least in part by a policy defined in association with that domain. Similarly, an
application may be installed or otherwise associated with a particular domain, and access
to that application, including the ability to execute the application, for example, is
controlled at least in part by a policy defined in association with that domain.

[0033] For example, it is desirable in a single-user device to be able to provide
multiple domains having different policies providing different access to selected
applications and other resources. In one case, it may be desirable to provide a restricted
domain which requires authentication and contains data or applications which are
intended to be inaccessible to children, and a kids mode domain which does not require
authentication and is intended to be accessible to children (to play games, for example).
When operating in the open domain, therefore, it is desirable for the data or applications
of the restricted domain to be inaccessible to processes associated with the open
domain.

[0034] Some of the desirable functionality of domains, as discussed above, may
be provided by conventional user accounts commonly implemented in multi-user
operating systems. Such user accounts may be considered to constitute a type of domain
inasmuch as a user account stands for, among other things, a set of resources (e.g. a
user's data files, applications) and a rule set, or policy, associated with that user account
(e.g. permissions, privileges) which control access to the user’s resources.

[0035] Conventional user accounts are an inappropriate means, however, for
providing both the benefit of secure isolation of different domain resources as well as a
convenient and unified single-user experience on a mobile device. In addition to the
above desirable functionality, providing the desired experience also requires the ability to
perform actions which involve both domains concurrently, e.g. copying-and-pasting from
one domain to another, providing a single user interface which provides concurrent
access to the resources of multiple domains, or opening from a mail client operating in a
first domain an email associated with a second domain. Conventional user accounts are
not intended to enable such functionality as the user isolation controls which are typically
integrated in operating system services, and which follow logically from the presumption
that different user accounts are intended to be used by different individuals, do not permit,

or do not readily enable, the ready sharing and cooperation of the processes and

-10-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

resources of different domains which is required in order to enable desirable functionality
wherein the domains are used concurrently by an individual.

[0036] While, as discussed above, alternative isolation mechanisms such as
virtualization and containerization may not be limited in the same way as user accounts,
they suffer from different disadvantages as discussed above. It is therefore desirable to
provide isolated domain management as an integrated aspect of an operating system.
And, while as also discussed above, some desirable functionality may be provided by
means of services residing in the kernel of an operating system, current operating system
kernels do not generally enable or permit domain signaling and domain management
sufficient to provide the process sharing and cooperation needed for actions concurrently
involving multiple domains.

[0037] As such, the disclosed solution provides for domain awareness via
modification to existing components or services of the operating system or the
introduction of new components or services. In some embodiments, at least some of the
components and services are provided in the operating system outside of the kernel, that
is in the middleware (used herein to mean the operating system outside of the kernel, and
between the kernel and user applications). In some embodiments, at least some of the
components and services are provided in the operating system kernel. In some
embodiments, domain creation and management is enabled by modified or new
components or services of the operating system middleware, and domain enforcement is
performed by the operating system kernel, and modified or new kernel modules, or kernel
modifications, are provided for this purpose.

[0038] Thus, in a first embodiment, in a mobile device comprising a processor
and a memory storing instructions executable by the processor to implement an Android
operating system, an improvement comprises: a user manager for selectively creating a
plurality of domains different from any user accounts implemented in the Android
operating system; a domain manager for selecting one of the domains as a current
domain; a domain policy service for storing and enforcing, for each domain, a policy
comprising a rule set controlling access to files and applications associated with the
domain; a package manager for, for each domain, selectively allowing or blocking
installation or execution of the applications associated with the domain, based on the
policy of the domain and the policy of the current domain; a domain message service for
providing communication between running processes associated with different ones of
the domains based on the respective policies of the different ones of the domains; and an

activity manager for selectively switching the current domain, wherein the user manager,

11 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

the domain manager, the domain policy service, the package manager, the domain
message service, and the activity manager are implemented in the Android operating
system outside a kernel of the Android operating system. The improvement may further
comprise: a domain kernel module for enforcing, for each domain, the policy associated
with the domain, wherein the domain kernel module is implemented in the kernel of the
Android operating system.

[0039] In a second embodiment, a method performed by a processor of a
computing device to provide a plurality of secure domains in an operating system of the
computing device comprises: (a) for each secure domain: (a1) associating resources
of the secure domain with a unique domain identifier, the resources comprising at least
one data file or at least one application; and (a2) storing a policy in association with the
unique domain identifier, the policy comprising a rule set for controlling access to the
resources, (b) receiving a selection of one of the plurality of secure domains as a current
domain, wherein the plurality of secure domains comprises a target domain different from
the current domain; and (c) controlling access to the target domain resources based on
the policy associated with the current domain and the policy associated with the target
domain.

[0040] In a third embodiment, a method of providing a plurality of secure domains
in an operating system of a computing device comprises. (a) for each secure domain:
(a1) associating resources of the secure domain with a unique domain identifier
associated with the secure domain, the resources comprising at least one data file or at
least one application; and (a2) storing a policy in association with the unique domain
identifier, the policy comprising a rule set for controlling access to the resources; (b)
generating an event message associated with an originating process associated with a
first one of the secure domains; (¢) determining that a target process associated with a
second one of the secure domains is configured to respond to the event message; (d)
processing the event message based on the policy associated with the first domain and
the policy associated with the second domain, to produce a processed event message;
and (e) passing or blocking the processed event message to the target process based on
the policy associated with the first domain and the policy associated with the second
domain.

[0041] In a fourth embodiment, a method of providing a plurality of secure
domains in an operating system of a computing device comprises: (a) for each secure
domain: (a1) associating resources of the secure domain with a unique domain identifier

associated with the secure domain, the resources comprising at least one data file or at

-12-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

least one application; and (a2) storing a policy in association with the unique domain
identifier, the policy comprising a rule set for controlling access to the resources; (b)
receiving from an originating process associated with a first one of the secure domains a
request to launch a target process associated with a second one of the secure domains;
and (c) processing the request based on the policy associated with the first domain and
the policy associated with the second domain.

[0042] In a fifth embodiment, in a data processing system having a processor and
a storage mechanism for storing an operating system that includes a kernel and a
middleware outside of the kernel, a method comprises: providing a first facility in the
middleware for creating domains and associating with the domains corresponding policies
for controlling access to the domains; providing a second facility in the middleware for
switching between the domains;, and providing a third facility at least partly in the
middleware for enforcing the corresponding policies of the domains.

[0043] In a sixth embodiment, a computing device comprises a processor and a
memory storing instructions executable by the processor to implement an operating
system providing a plurality of secure domains, and the operating system comprises: a
domain manager for selectively creating the plurality of secure domains, and for selecting
one of the secure domains as a current domain; a domain policy service for storing and
enforcing, for each secure domain, a policy comprising a rule set controlling access to
files and applications associated with the domain; a package manager for enforcing, for
each secure domain, installation of the applications associated with the domain; a domain
message service for providing communication between running processes associated
with different ones of the secure domains, and an activity manager for selectively
switching the current domain.

[0044] An exemplary system 100 for providing isolated domains is now described
with reference to FIG. 2.

[0045] The system may be implemented in any computing device including a
mobile device such as a smartphone, tablet, laptop, or a desktop, or any other electronic
device having a volatile memory and a processor, the volatile memory containing
computer code executable by the processor to provide an operating system and software
applications (or “applications” or “apps”). The computing device may further include an
interface, which may include a user input device such as a keyboard, pointing device,
touchscreen, and may further include a communications interface such as a radio and

associated control circuitry for communicating over a wired or wireless communications

-13-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

network, which may be the Internet and/or a cellular or WiFi link or Bluetooth, or near field
communication (NFC).

[0046] The operating system may be characterized as including a kernel, which
manages and provides input/output (I/O) services to software applications from the
processor and other hardware components of the device, and middleware which provides
services additional to those provided by the kernel.

[0047] In general, the present solution includes modifying operating-system-level
protocols to enable domain-awareness. A plurality of domains is created on the mobile
device. In embodiments described hereinafter the operating system is Android™,
although such selection should not be construed as limiting the intended scope of the
solution. Android is used only as an example and is similar to other multi-user operating
systems (e.g. QNX, Windows).

[0048] Thus, as shown in FIG. 2, the system 100 includes a kernel, which is a
Linux™ Kkernel 110 when the system 100 is implemented in a mobile device running an
Android™ operating system. The kernel 100 includes: a secure data store 112, a Domain
Kernel Module 116, and a Linux Security Module 114, which in one embodiment is an
Enhanced Linux Security Module, whose respective functions will be discussed further
below. It will be understood by persons of ordinary skill in the art that the kernel 110 may
further have further conventional components (e.g. drivers), or other components different
from the foregoing.

[0049] The system 100 further includes operating system middleware 120
including: a Domain Message Service 122, a Domain Manager 124, a Domain Policy
Service 126, a User Manager 128, a System Settings Module 130, a Key Guard Mediator
132, an Activity Manager 134, a Package Manager 136, and a Window Manager 138.
The User Manager 128, System Settings Module 130, Key Guard Mediator 132, Activity
Manager 134, Package Manager 136, and the Window Manager 138 correspond to and
possess the respective functionalities of known components or services of Android™, but
modified to be domain-aware as discussed below. The Domain Message Service 122, the
Domain Manager 124, and the Domain Policy Service 126 are additional components
whose functionalities are discussed below.

[0050] The system 100 further includes an applications space 140 (or user space)
for implementing one or more domains. For the purposes of illustration, a first domain
142-1 and a second domain 142-2 are shown, but it will be understood that any number
of domains may be implemented. Each domain may include an instantiation of a Domain

Settings Module, such as first and second instantiations of Domain Settings Module 144-

- 14 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

1, 144-2, and in general will include first and second instantiations of a Domain Navigator
Module 146-1, 146-2 and a Domain Administration Application 148-1, 148-2. Each
domain may also have separate instantiations of a first application 150-1, 150-2, while the
first domain 142-1 may instantiate a second application 152 different from a third
application 154 instantiated in the second domain 142-2.

[0051] Domains

[0052] A domain, such as first domain 142-1 and second domain 142-2, is an
isolated area that keeps any apps and the data associated with those apps separate.
Domains may be controlled remotely (e.g. by a corporate information technology (IT)
manager) or locally (e.g. by the device owner) to specify the apps, data, configuration,
connectivity and security policy for the particular domain. For example, network access
from a particular domain may be controlled. The password re-authentication time may be
controlled (e.g. so that a user does not need to re-authenticate when switching domains
within a specified period). An administrator of the domain typically has such control. The
administrator may be a personal user, or a corporate IT manager or other remote entity.
[0053] Due to their isolation and segregated nature, domains as discussed herein
can be considered to be protected domains. For example, one domain may be externally-
managed by a corporation that does not want its information and proprietary business
applications to be compromised in the event the device is lost or stolen, or if the device is
compromised by malware downloaded by device owner in another domain. The device
owner does not want the corporation to track their preferences, web surfing habits or
personal communications, so he wants his own protected domain as well. Yet, the device
owner does not want the same level of authentication to be applied to all applications and
services on the device, but be assured that data in protected domains are still secure.
[0054] Providing multiple domains provides the device owner with an alternative
to traditional “all-or-nothing” device access control. With the ability to support both secure
and open domains, access can be configured by the user as needed, with varying log-out
times and access control (e.g. PIN, password, facial recognition, or nothing). This
flexibility reduces the likelihood of not using any password on the device at all due to
inconvenience, while also giving the owner of the device choice independent of remote
administrators.

[0055] By way of example only, FIG. 3 shows a schematic diagram 300 wherein a
device 305 implementing the system 100 is configured with two users, User A 310 and
User B 315, wherein three domains A1 320, A2 325, A3 330 are created in association

with User A, and two domains B1 335 and B2 340 are created in association with User B.

-15-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

As shown, the policy of Domain A1 may permit access to a selected email account 345,
while the policy of Domain A2 may permit access to a Gmail™ account and to
Facebook™ 350.

[0056] For the sake of clarity, a device implementing the system 100 may also be
configured with only one user, and yet multiple domains as described herein may be
created and the methods and protocols also described herein implemented in connection
with such multiple domains.

[0057] Domain Awareness

[0058] Domain awareness may be provided based on the user identifier (UID)
and group identifier (GID) concepts implemented in the Unix™ and Linux™ operating
systems. The UID and GID are used in Unix and Linux to assign permissions to
processes and files. A superuser, or root, is typically assigned UID 0, and other ranges
are often reserved for system processes.

[0059] In Android™, however, the UID is not used to represent users; instead,
each application is allocated a unique UID and GID when it is installed, and this (UID,
GID) pair, which may be considered an application identifier, is assigned to the processes
and data files associated with the application. In a recent version of Android™ (Android
4.2), multi-user capabilities were introduced, which added signaling throughout the
operating system to indicate which user account is active. Certain bits in the UID are
reserved to represent the user account, and thus constitute a user identifier. When a
process is launched, this user identifier is combined with the application identifier
assigned to the application on installation to create an execution context identifier to
represent the context of the running process and associated private data files. With this
signaling, application data can be created and stored independently based on the user.
[0060] As compared to previous versions, the services of Android™ 4.2 have
been modified to be user account aware. For example, and with reference to FIG. 2, the
Android Package Manager 136 was modified to control which applications are available
for each user. Similarly, the Window Manager 138 was modified to control what is
displayed for each user; and the Activity Manager 134 was modified to control the
launching of applications and enforcement of permissions for each user. In addition, a
new service, called the User Manager 128, was added in Android 4.2 and handles the
creation, authentication, deletion and switching between users.

[0061] In one embodiment of the present solution, a domain-aware signaling
mechanism is added to the operating system which is similar to multi-user capabilities

that were added in Android™ 4.2, with existing services modified to become domain

-16-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

aware. Specifically, domain signaling is added by way of an extension to the UID, or as
an addition of a new field, which constitutes a domain identifier or “DID”. Predetermined
bits in the UID are reserved to represent a domain, and are combined with the application
identifier assigned to an application on installation to create an execution context identifier
to represent the context of the running process and associated private data files with
respect to that domain. In one embodiment, the Package Manager 136 is configured so
as to maintain a list of associations between the application identifier of each installed
application and each domain. The execution context identifier is then created for a
process based on the application identifier of the application and the domain identifier of
the domain in which the application is executed. In one embodiment, the UID also has
reserved bits associated with a particular user account. Such an approach of reserving or
extending the UID field to also represent the domain reduces the degree of operating
system changes, simplifies the implementation, and reduces time to deployment.

[0062] In one embodiment, a new service called Domain Manager 124 is
implemented to manage the creation, authentication, and deletion of domains, which are
described below.

[0063] An alternative method to make the system domain-aware is to use security
labels, such as how SELinux identifies different resources and objects. In some
embodiments SELinux security labels are used for such purpose. In other embodiments
another label or parameter that identifies domains is added.

[0064] Domain Creation

[0065] In one embodiment, the User Manager 128 functionality is modified to
enable both adding a new user and also adding a domain, which may be considered
similar to a sub-account for a single user. Doing so enables multiple domains to be
associated with each user account. Modifying the User Manager 128 functionality
provides certain advantages. For example, in implementations having multiple users (as
is shown in FIG. 3, for example), it is advantageous for domain creation to be integrated
with user creation in the User Manager 128. |In an alternative embodiment having only a
single user (e.g. on a smartphone not supporting multiple user accounts), such
functionality may be implemented in the Domain Manager 124.

[0066] Thus, in one embodiment, the User Manager 128 is modified so as to
provide one or more of the following: (i) to allow easy switching between domains under a
single user, without prompting the typical log-in screen; (ii) to remain logged in to a
domain or domains when switching to another domain for a period of time specified in the

policy for such domain; and (iii) to keep domains active to facilitate quick switching

-17 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

between domains. With the additional domain signaling, the User Manager 128 may be
configured to ask for a username only when there is more than one user account.

[0067] In the case of creating a new domain, the User Manager 128 may call the
Domain Manager Service 124. Creating a new domain may be similar to creating a new
user, with differences specific to domains applied, such as new user welcome screens
would be skipped. During domain creation, the Package Manager 136 may be called
automatically to install pre-existing applications or download new applications to the new
domain. The Domain Policy Service 126 may set a default policy and wizards may be
executed to help the user tailor the policy for the new domain as desired.

[0068] In the event of creation of a work domain (or any other domain whose
policy is externally-controlled at least in part by an entity other than the device owner), the
domain may be registered with a remote domain management server for that particular
work domain. This may require registration using the user's work credentials. The server
would approve the creation of such work domain and then download policy, icons,
credentials, files, wallpaper and applications specific for the user group, the device and
the work domain.

[0069] Domain Policies

[0070] Upon the creation of a domain, a respective security policy, comprising a
policy specification or policy data, is stored in association with it. In some embodiments,
at least some domain-specific and cross-domain policy is enforced at the application level
and/or middleware level (e.g. authentication time-out). In some embodiments, isolation of
processes and entities associated with each domain is enforced at least in part at the
kernel level and in accordance with the respective security policies for the plurality of
domains. In some embodiments, isolation is enforced at least in part at the middleware
level, that is by operating system services and facilities operating outside of the kernel.
The respective policies associated with each domain may be different depending upon
the intended role of the domain or its relationship or association with other entities, such
as a corporate enterprise service.

[0071] For example, in different embodiments, one or more policies may be: (i)
pre-determined and static; (ii) pre-determined, but with some run-time configuration or
selection; (iii) downloaded after configuration on a management server; or (iv) user
configurable on the device. The specific parameters of the respective policies may take
into account any pertinent conditions or variables, again relating to the particular role of
the associated domain and its relationship with other entities. For example, different

policies may be characterized in that: (i) isolation between certain OS services may be

-18-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

static and pre-determined; (ii) there may be provided pre-determined low/med/high
security levels that can be set based on Boolean values; (iii) GPS geo-fencing
parameters, or an application whitelist, may be downloaded; or (iv) an ability for debug
access for personal domains may be configurable locally on the device. Any combination
may also be implemented.

[0072] In some cases, the policy may be modified on the device (e.g. via the
Domain Settings app 144-1, 144-2), and in other cases the policy may be downloaded
from a remote server (e.g. for work domains). In one embodiment, the Domain Message
Service 122 manages the download, verification, authentication and updating of policies,
and the Domain Policy Service 126 manages the application of policies for each domain.
The policy may then be distributed to the system component that applies the policy, which
may be at the application level, middleware level or kernel level.

[0073] Application Management

[0074] Providing domain signaling as discussed above enables domain-specific
installation and management of applications across different domains. In general, the
Package Manager 136 may be configured to permit or forbid installation or execution of
programs based on the DID of the current or a selected domain, or the policy associated
with such.

[0075] Domain-specific installation and management of applications across
different domains enables certain advantages. For example, domain signaling enables
the installation and management of different application versions across domains. It is
currently the case with Android™ that, when an application is updated by one user, it is
also updated for all users. Such result is not always desirable. For example, an update to
an application may request additional permissions or include features that have not been
tested or supported by an enterprise and hence would not be desired in a work domain.
Additionally, an enterprise may want an associated work domain to allow only white-listed
applications, or specifically to black-list certain applications.

[0076] Providing different application access and control in different domains also
provides for improved security options even when the domains are only ever accessed by
a particular individual. For example, an Android™ device owner may prefer not to set up
a Google™ Play™ store account in a generally unrestricted, open domain; if the device
were stolen, the account would be available in the open domain, and the theft could result
in costs to the device owner by the thief using the device owner's account. Thus, a device
owner may desire not to enable the Play™ store application in an open domain, but

instead only in another domain having a more restrictive security policy, e.g. generally

-19-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

requiring an access password which might be considered undesirably inconvenient to
apply to the open domain.

[0077] Accordingly, the solution may include one or more modifications to the
Android™ Package Manager 136 so as to make it domain aware, such that applications
can be installed and updated according to domain policy. In one embodiment, the
Package Manager 136 is configured so as to maintain a list of associations between the
application identifier of each installed application and the domain identifier of each
domain. When a process is launched, the execution context identifier created for the
process is based on the application identifier of the application and the domain identifier
of the domain in which the application is executed. In this way, the Package Manager 136
may be configured: (i) to allow the implementation of application white-lists and/or black-
lists in selected domains, such that only approved applications may be installed in the
domain; (ii) to enable an application to be copied or moved from one domain to another
domain; (iii) when downloading an application, to prompt the user which domain or
domains the application should be installed into regardless of which domain the account
credentials reside; (iv) when setting up a new domain, to enable existing applications, and
their configuration and data, to be copied or moved to the new domain; (v) when
application updates are downloaded, to consider software versions on any application
white-lists or black-lists to enable multiple different versions of an application in different
domains (thus enabling selective control by enterprises, for example, of the installation
and updating of tested and approved application versions, thereby providing a similar
degree of application version control as with hypervisor solutions); and (vi) to enable an
application to be deleted selectively from one domain, or multiple domains, but perhaps
not others, based on user input, or based on downloaded policy with respect to domain
related to that policy.

[0078] Windows Management

[0079] In one embodiment, the default configuration for the Window Manager 138

provides different screens for different domains, similar to state of the art. Domains may
be switched using a notification shade, a navigator application (e.g. Domain Navigator
146-1, 146-2) or via buttons, icons, gestures or some combination of these, etc.

[0080] The solution also enables the Window Manager 138 to provide a more
innovative user interface with a blended Ul where applications associated with different
domains are displayed on a single screen. For example, in one embodiment, the Window
Manager 138 provides an overlay to one or more application icons that indicates with

which domain the application is associated. An application that is associated with more

-20 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

than one domain may provide multiple icons, each with a different overlay (e.g. different
color, different symbol, different outline, etc.) to represent with which domain the
application is associated. Such an approach would eliminate the need to switch between
domains, wherein domain access is indicated by the icon, and the user may be required
to authenticate when accessing an application associated with a domain different from a
current domain as required by the domain policy of the accessed application. Per domain
policies and data isolation are maintained and enforced independently of the display
mechanism. The performance of the solution is not impacted by having multiple icons. An
advantage of this approach is there is no visual switching between domains. A
disadvantage is the device home screen may become cluttered with icons and there is
less visual indication of the domain the user is operating within.

[0081] Cross-Domain Communication

[0082] The system 100 may include a Domain Manager Service 124 for
managing cross-domain communications, such as for cutting and pasting data, launching
phone calls, notifications, data sharing, transferring data and application installation,
among other functions. The Domain Policy Service 126 may act as single point for
enforcing policy between domains.

[0083] For example, a user may wish to move or copy an application between
domains. A work domain policy may implement an application whitelist approach to
ensure that malware cannot enter the work domain to steal corporate information (e.g.
work contacts or work documents). By way of further example, a notification in one
domain may be made opaque when displayed in another domain, or perhaps not
displayed at all, except when inside a corresponding protected domain. As another
example, a work domain may restrict data, such as contacts, from leaving the work
domain to prevent data leakage. While it may be acceptable for the user to import their
personal contacts into the work domain, the reverse may not be permitted by the work
domain policy. This is an example of one-way data sharing between domains configured
by policy that would be managed by the Domain Policy Service 126.

[0084] External Communication

[0085] The system 100 may also manage in-bound and out-bound
communication within the device. For this purpose, in one embodiment the Domain
Manager Service 124 manages network connections and in-bound events that may
require notifications, or intents to multiple domains. A simple example is the case of a
dual number (e.g. dual SIM card) smartphone where policy would specify that calls to one

number should be routed to a specific domain and calls to a second number registered

-21-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

with a different domain. Such communication is much more complicated in the case of a
single phone number device receiving an in-bound phone call. Policy may dictate which
contacts can be accessed for caller-id purposes and where the call log information should
be registered. In some embodiments, the Domain Policy Service 126 may be a point for
at least some policy enforcement, including access to hardware resources such as VPN,
Bluetooth and WiFi network resources. For example, the policy of some protected
domains may allow communications only when on specified networks.

[0086] Domain Enforcement

[0087] The system 100 also provides for enforcement of the domains and per
domain policy, which is an additional requirement to the software functionality that creates
and manages domains. Without enforcement of the domains and the domain policy,
malware or rootkits could modify the system or kernel code statically or dynamically to
prevent policy from being enforced, or to update the policy.

[0088] In one embodiment, the system 100 uses SELinux™ and the Linux™
Security Module (LSM) to implement Mandatory Access Control (MAC). MAC ensures
that subjects (e.g. applications) only have access to the objects (e.g. application, files and
resources) that are permitted by policy. This is enforced via the UID/GID combination
which is created uniquely when each application is installed. As discussed above, in one
embodiment of the system 100, the UID is extended or allocated also to represent
domains.

[0089] SELinux™ generally applies, however, the same type (and thus policy) to
all user downloaded applications, which means it does not enforce domains. Thus,
SELinux may be modified also to become domain aware. In one embodiment, this is done
via the role-based access control fields in the policy, or by creating different policies for
different domains and using the Domain Manager 124 dynamically to adjust policy during
run-time, or in the case of Android™ by assigning domain specific SELinux™ security
labels to processes when they are created by modifying Zygote and/or the Middleware
Mandatory Access Control features of SEAndroid™ to become domain aware.

[0090] Tightly restricting application access to system level resources is just one
of a number of security enhancements that can be implemented at the kernel level. The
Domain Kernel Module 114 can perform other domain aware security, such as: control
debug access, check updates to policies (authentication and integrity verification),
encryption of domain data, check load time application signatures, access secure
hardware and secure operating system components (if available) and control access to

hardware resources such as the network, camera and GPS. The Domain Kernel Module

-22 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

114 may also provide device-wide security settings, such as: integrity verification of the
kernel on boot, secure storage of policies, integrity verification of itself and other system
level resources (e.g. domain policy engine), ensuring SEAndroid™ is turned on, and
remote attestation.

[0091] It should be noted that domains are not the same as user and
administrator accounts. While a device owner could have a special account that granted
certain privileges for creating and deleting accounts, such privileges are not equivalent to
root access and may be limited for domains that are managed by a third party
administrator (e.g. a work IT administrator). By using SELinux™ and SEAndroid™ along
with granular domain signaling as described herein, applications and application data
remain isolated, even when there are different policies and access controls between
domains. Malware in one domain cannot access data or applications in another domain.
[0092] Domain Switching

[0093] A block diagram 400 illustrating one embodiment of a domain switching

method from a first domain 142-1 to a second domain 142-2 is shown in FIG. 4. A user
enters an input requesting a switch to the second domain using Domain Navigator 146-1.
Domain Navigator 146-1 signals (action 405) to Activity Manager 134 to switch to the
second domain 142-2. If the second domain 142-2 is associated with a different user from
the user associated with the first domain 142-1, (e.g. from Domain A1 to Domain B1 in
FIG. 3), then the Activity Manager 134 signals (action 410) to the User Manager Service
128 to log-out the user, but otherwise does not do so. In response to a call (action 412)
from the User Manager Service 128, the Domain Manager service 124 checks with the
System Settings Module 130 the login policy associated with the second domain 142-2
(action 415), as well as with the Domain Policy Service 126 for any other policies for
enabling such switching to occur (e.g. GPS geo-fencing, network access requirements,
kernel integrity) (action 420). The Activity Manager 134 notifies the Key Guard Mediator
132 of any time-out of the first domain 142-1 (which may be immediate or delayed by a
predetermined period) (action 425). The Key Guard Mediator 132 implements the policy
associated with the second domain 142-2. If the policy check is satisfied, then the Key
Guard Mediator 132 is notified of the switch to the second domain 142-2 and decides
access based on the policy, e.g. authentication required for access (action 430), or
directly access domain (e.g. if no authentication is required) (action 435), or alternatively
may deny the switch. Following the switch, the Activity Manager 134 executes an

application launcher 424 in the second domain 142-2.

-23-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

[0094] In another embodiment, as mentioned above, a domain switch could be
implied when selecting an application and the Domain Navigator would not be needed.
[0095] In some embodiments, a domain switching method may be configured to
enable secure switching to an encrypted domain. Data files associated with one or
more domains may be encrypted such as using a cryptographic stacked filesystem. For
example, the eCryptFS filesystem (http://ecryptfs.org) is a POSIX-compliant enterprise
cryptographic stacked filesystem for Linux. Where the data files associated with a domain
are so encrypted, the domain may be considered an encrypted domain. Symmetric keys
may be used to encrypt and decrypt an encrypted domain’s data, and may be stored in
the Linux kernel keyring (a secure store in kernel memory), but may also be stored in any
secure store. In a cryptographic stacked filesystem, it is typical for multiple symmetric
keys to be used, though it will be understood that in some embodiments a single key may
be used.

[0096] As described above, a device having multiple domains may include one or
more domains which require authentication for access. For example, where the device
operating system is Android, the built-in Android lock screen authentication (pattern, pin,
password, etc.) may be used to control access to a domain. If the domain is also
encrypted, this lock screen authentication may also be used to encrypt and decrypt the
keys used by the cryptographic filesystem to access the encrypted domain’s data.

[0097] Inasmuch as a device may have multiple domains, one or more of which
may be encrypted, and one or more of which may require authentication, there are four
possible scenarios when switching from a current domain (the domain currently
possessing the user interface (Ul) focus) to a different, target domain: the domain is
already running; the domain is not running, and is not encrypted; the domain is not
running, is encrypted, but does not require authentication; and the domain is not running,
is encrypted, and requires authentication. (A domain is considered to be running if
processes associated with the domain are running.)

[0098] In view of these possibilities, a method 900 of switching from the current
domain to a target domain is illustrated in FIG. 9. As illustrated, a domain that is running
can be switched to immediately. Upon receiving an input to switch to a target domain
(start 902), it is determined whether the domain is running (decision 904) and, if so
(branch 906) the target domain is shown in the Ul (step 908) and the switch is complete
(end 910). If the domain is not running (branch 912), then it is determined whether the
domain is encrypted (decision 914); if not (branch 916) the domain is started (step 918),
shown in the Ul (step 908), and the switch completes (end 910). If the domain is

-24.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

encrypted (branch 920), then it is determined whether the domain requires authentication
(decision 922); if not (branch 924), then the decryption keys can be loaded and the
filesystem mounted (step 926), the domain started (step 918), shown in the Ul (step 908),
and the switch is complete (end 910). If authentication is required (branch 928), then
authentication information is received (step 930), the filesystem keys are decrypted based
on the authentication information (step 932), the decryption keys are loaded and the
filesystem mounted (step 926), the domain started (step 918), shown in the Ul (step 908),
and the switch is complete (end 910).

[0099] Thus, as may be seen in FIG. 9, an unencrypted domain that is not
currently running can be started and immediately switched to. If an attempt is made to
switch to an encrypted domain, however, the cryptographic filesystem keys must be
loaded into the Linux kernel keyring before the domain can be used. If the encrypted
domain does not require authentication, the cryptographic filesystem keys can be loaded,
and the filesystem mounted without user intervention. If the encrypted domain does
require authentication, however, the cryptographic filesystem keys themselves must first
be decrypted before they can be loaded, and the filesystem mounted. Thus, in the final
case of starting an encrypted domain that requires authentication, a mechanism is
required to collect the authentication data for the target domain before that domain’s data
can be accessed (mounted).

[00100] In many device operating systems, however, the authentication process
must operate in or in association with a current domain. For example, the existing lock
screen authentication mechanism built into Android authenticates the current user or
domain. When switching to a target domain the Android lock screen runs processes for
the target domain from the lock screen, such as: Lockscreen Widgets, Live Wallpapers,
and Input Method Editors (IMEs). In order to preserve the traditional Android user

experience, the authentication needs to happen after the domain switch.

[00101] There are several alternative methods of providing this functionality, as
follows.
[00102] In a first alternative, a custom user interface (Ul) is provided to obtain the

authentication information prior to switching to the target domain. While this method
possesses a number of benefits which may render it appropriate in some circumstances,
it also suffers from certain disadvantages, as follows. For example, this method requires
effort effectively to duplicate the authentication mechanism already built into Android, and
would require updating to maintain interoperability with updates to built-in Android

mechanisms. Moreover, this method introduces security concerns, since the custom

-25.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

authentication Ul processes would be running in the domain that the user is switching
from. A sophisticated attacker could replace important application packages such as Input
Method Editors (IMEs) in a potentially untrusted domain to capture the domain
authentication information for a trusted encrypted domain.

[00103] In a second alternative, a method switches to the target domain first, but
does not mount the target domain’s data. The method then runs only those processes
necessary for the lock screen to function, before mounting the target domain’s data, and
then complete the switch into the target domain. While this method possesses a number
of benefits which may render it appropriate in some circumstances, it also suffers from
certain disadvantages, as follows. For example, the application components that normally
run from the lock screen (Lockscreen Widgets, Live Wallpapers, and Input Method
Editors (IMEs)) can require access to the encrypted filesystem. It is not generally possible
to determine what packages will be running a priori, since it is possible for both the user
and original equipment manufacturer (OEM) to change, upgrade, or remove these
components, so these issues cannot be anticipated and compensated for. Moreover, the
domain switch operation does not complete until the domain authentication information
has been provided. This leaves the device in an in-between, non-defined state that
Android was not designed to deal with. This creates many additional edge cases,
throughout the Android middleware that must be correctly handled, tested, and
maintained between releases of Android.

[00104] In a third alternative, a method switches to an intermediate domain
purposely created on the device to facilitate the secure collection of authentication
information and to enable the safe transition between domains. The intermediate domain
is started when switching to an encrypted domain which is not running, and requires
authentication. This method overcomes many of the disadvantages possessed by the first
two alternatives as described above.

[00105] Thus, a method 1000 of switching from a first, running domain to a
different, target domain, wherein the target domain is an encrypted domain (is associated
with or has data files contained in an encrypted filesystem) and which is not running, is
shown in FIG. 10. A domain switch is initiated to the target domain (start 1002). The
target domain is not running, is encrypted, and requires authentication. The intermediate
domain becomes the current domain (as reported to the Android middleware) (step
1004), and a lock screen process is started in the intermediate domain (step 1006). The

lock screen component is modified or is otherwise provided so that when invoked it will

-26 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

show the authentication challenge for the target domain, and show some indication
identifying the target domain.

[00106] If some Ul elements associated with the target domain are not stored in
the encrypted filesystem, but are instead stored in another location (e.g. metadata in an
unencrypted file or database), then such Ul elements can be shown along with the
authentication challenge. For example, a wallpaper associated with the target domain can
be shown in this case. Alternatively, some other wallpaper or visual may be shown to
indicate that a switch to the target domain is occurring. Similarly, if an IME associated
with the target domain is stored otherwise than in the encrypted filesystem, then it may be
used for receiving the authentication information. Alternatively, a user's selection of an
IME for entering authentication information may be received (step 1008). (This may
include the case where, for example, a language in the intermediate domain differs from
that of the target domain.)

[00107] The authentication information is then received using the selected IME
(step 1010). If the user provides the correct authentication information for the target
domain, the cryptographic filesystem keys for the target domain are decrypted (step
1012), the keys are loaded, and the filesystem is mounted (step 1014). The lock screen
that would normally be displayed in the target domain is dismissed (step 1016). (This is
no different than if the user had authenticated in the domain directly, and provides a
seamless user experience to how lock screen authentication would work for unencrypted
domains.) The target domain is started becomes the current domain (step 1018). The
new domain is shown in the Ul (step 1020), and the domain switch is completed (end
1022).

[00108] As noted, this method overcomes at least some of the disadvantages of
other methods of switching to an encrypted domain that is not running, and further
provides a number of advantages, as follows.

[00109] For example, it is an advantage that the authentication process happens
outside of any user controllable domain, making the collection of authentication
information more secure. Processes run from the lock screen are run in a controlled
environment that is less prone to interference from changes in other user accessible
domains. The changes required in the Android middleware are easier to maintain, and
are more readily compatible with the multi-user state machine built into Android. This
leads to fewer defects, less maintenance, and better forward compatibility. Attacks on the
IME (e.g. replacement, or privilege escalation), or user interface for the key guard are

harder to perform and would minimize the gains (e.g. access to intermediate domain)

-27 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

compared to the other options outlined above. Additional performance and storage
needed is minimal.

[00110] A number of implementation options are available. The intermediate
domain may be created on first boot of the operating system, or alternatively may be
created any other time before a first encrypted domain is created. The intermediate
domain may be locked down to prevent a user from doing anything other than
authenticating. The expression ‘locked down’ may be understood as meaning disabling
any applications, services, or other aspects which are not needed, or instead selectively
enabling only those particular applications, services, or other aspects which are needed.
For example, it may include disabling lock screen widgets and Google search. The
intermediate domain may be further locked down using policy mechanisms (including
SELinux and SEAndroid) to further minimize security risk. Unlike other domains, the
intermediate domain only runs briefly when switching between domains. When running, it
does not get counted as a running domain against the maximum limit of three active
running domains maintained by Android. Thus, moving to the intermediate domain does
not cause other domains to be shut down. When starting and stopping the intermediate
domain, Android does not send many of the broadcasts that are typically sent when
starting a domain. This makes a significant performance improvement, since it prevents
unnecessary processes and apps from being launched. The intermediate domain can
have a minimum of apps installed in the domain using white-list, disable lists, blacklists,
etc., to reduce the security risks these apps may present.

[00111] The intermediate domain may be preconfigured with a certain selection of
permitted applications, services, etc., or may be provisioned dynamically in a manner
similar to other domains, e.g. by the use of a policy specific to the intermediate domain,
using the same or similar enforcement mechanisms as are used by all domains.

[00112] Domain Message Service Protocol

[00113] A block diagram 500 illustrating a domain messaging method is shown in
FIG. 5. A first process 505 associated with a first domain 142-1 generates an event
message (e.g. a message received notification (wherein the message may be an email),
a cut-and-paste action, a file copy). The first process 505 generating the event sends a
message regarding the event (which may take the form of a broadcast) and is received by
the Domain Manager Service 124 (action 510). In one embodiment, a second process
515 operating in a second domain 142-2 may be a listening process, but it will be

understood that, alternatively, an API could be used. The Domain Message Service 122

-28 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

checks if listening processes in other domains, such as second process 515 in second
domain 142-2, are configured to respond to the received event message.

[00114] Having determined that the second process 515 in second domain 142-2
is so configured, the Domain Manager Service 124 signals the Domain Policy Service
126 regarding the event message type (e.g. notification, clipboard buffer, file) (action
520). The Domain Policy Service 126 implements the relevant policy, which may result in
a number of different actions. For example, the requested event may be allowed (e.g. a
buffer of less than 100 characters may be passed), or disallowed (e.g. policy may allow a
file to be transferred to a domain, but prevent such file transfer from the domain).
Alternatively, the policy may result in the message being filtered (e.g. certain fields can be
made opaque, or only badge notification provided such as notification of receipt of an
email without details, such as sender, subject, etc.). In accordance with the policy, the

event message is passed to the second process 515 in the second domain 142-2 (action

525).

[00115] Cross Domain Execution Protocol

[00116] A block diagram 600 illustrating a cross domain execution method is
shown in FIG. 6.

[00117] In the method, a first process 605 in a first domain 142-1 generates an

action, wherein the action requests some action to be performed in connection with a
second domain 142-2. For example, a notification of a new email may be selected in a
first domain, and a request entered to view the email in a second domain. Alternatively,
using the Domain Settings 144-1 service in a first domain 142-1, a request to delete a
second domain 142-2 may be entered. Or, while operating in a first domain 1421, a
request may be entered to perform a telephone call from a second domain 142-2 to a
specific telephone number.

[00118] Following creation of the action by the first process 505 in the first domain
142-1, the Activity Manager 134 receives a domain switch request (action 610) from the
first process 505. If authentication is required for the switch, then the request is denied if
the authentication fails. The Activity Manager 134 signals the Domain Policy Service 126
to check the respective policies associated with the first domain 142-1 and second
domain 142-2 (action 615), in order to determine that both policies permit the requesting
first domain 142-1 to initiate the requested action with the second domain 142-2.

[00119] If both policies so permit, the Activity Manager 134 launches the requested
second process 620 in association with the second domain 142-2 (action 625). Further to

the examples introduced above, an email service may be launched, or the Domain

-29 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

Settings 144-1 service may be launched and the user prompted to confirm deletion of the
second domain 142-2, or a telephone service may be launched with the desired number
to call displayed.

[00120] Domain Application Installation Protocol

[00121] A block diagram 700 illustrating a domain application installation method is
shown in FIG. 7, wherein an application installed in a first domain is moved or copied to a
second domain.

[00122] As discussed above, an application may be installed in association with a
selected secure domain, in which case the DID of the domain is stored in association with
the application identifier of the installed application.

[00123] Using the Domain Settings 144-1 service, a user may select a move or a
copy of an application to a different domain, e.g. from a first domain 142-1 to a second
domain 142-2. The Domain Settings 144-1 service signals the Package Manager 136 to
install the application in the second domain 142-2 (action 705). The Package Manager
136 signals the Domain Manager 124 to determine a security label for the second domain
142-2 (action 710). The Package Manager 136 then installs the application in the second
domain 142-2 with the correct security label received from the Domain Manager 124. If
the selected action is a move, as opposed to a copy, the Domain Settings 144-1 service
then signals the Package Manager 136 to uninstall the application from the first domain

142-1 (action 715) and transfer the application user data to the new domain as well.

[00124] Update Policy Protocol

[00125] A block diagram 800 illustrating an update policy method is shown in FIG.
8.

[00126] The Domain Message Service 122 receives a policy from a remote

management server 805 (action 810), or alternatively via a settings screen on the device,
or via an API, which then passes to the policy to the Domain Policy Service 126 (action
815) and then the Domain Kernel Module 114 (action 820) as appropriate which may
store the policy in the Secure Store 112 (action 825). The integrity and authenticity of the
origin of the policy is verified by the Domain Kernel Module 116. Anti-rollback
mechanisms may be applied within the Domain Kernel Module 116 or the Secure Store
112 to ensure that older policies cannot be re-used or replayed. The Domain Policy
Service 126 then loads the policy and previous policies in order to apply smartly only
those policies that have changed in the updated policy. The Domain Policy Service 126
may signal to the Enhanced Linux Security Module 116 to load an updated SELinux
portion of the policy (action 830). The Domain Policy Service 126 signals the System

-30 -

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

Settings Module 130 service to update policies that are applied in and enforced by the
System Settings Module 130, such as password strength, wallpaper and launcher (action
835). The Domain Policy Service 126 then updates its own policies that are specific to
domains, such as domain encryption, domain debug access, cross domain policies and

domain name.

[00127] Advantages
[00128] The present solution provides a means to securely establish, maintain and

administer separate protected domains and to define and isolate the applications and
data in such separate protected domains. The present solution is efficient in terms of
memory, space and computing power compared to the state of the art. It maintains the
native operating system features, including backward compatibility for applications. It
maintains the native and intuitive device user interface in some domains, yet enables
many different user interface options and policies in other domains rather than the
tradition “all-or-nothing” device lock and/or user account access. It enables dual persona,
multi-persona, multi-domain usage between multiple personal, multiple work and “open”
domains on one device, with different domain owners. It enable remote administration
and policy updates for such multiple domains. It allows for different access control and
policies for each domain. It allows policy to determine if data can be transferred between
domains or not. It enables new usage models more suitable to mobile devices, including
temporary sharing. It enables more granular control of applications available in each
domain compared to other solutions. The solution can significantly simplify, or even
eliminate, the operating-system level “hard switching” between domains, associated with
hypervisor-based virtualization where each domain operates in association with a
separate set of operating system processes which may be duplicated by each
corresponding hypervisor. It isolates applications and application data between domains,
without the vulnerabilities of current solutions. It isolates applications and data in a
domain from malicious application outside of the domain. Finally, it addresses the privacy
concerns and freedom of choice of mobile device users.

[00129] There are significant benefits and features introduced with the domain
signaling, domain management and domain enforcement, independent of the
implementation details. These are as follows. The solution maintains the original native
operating system features, including backward compatibility for applications. All the native
operating system permission checks and IPC mechanisms will co-exist and still be
effective. The operating system operates unchanged and the solution is backwards

compatible with the previous operating system. The solution is efficient in terms of

-31-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

memory, space and computing power compared to the state of the art. Device
performance and storage and memory usage are very efficient compared to alternative
approaches such as virtualization which duplicates the operating system stack incurring
substantial CPU and RAM overhead. Switching between domains is very fast and
efficient compared to prior art because of the native OS implementation.

[00130] The solution enables dual persona, multi-persona, multi-domain usage
between multiple personal, multiple work and “open” domains on one device, with
different domain owners. Multiple protected domains can easily be added and enforced
with negligible memory and performance impact. There can be multiple protected work
domains on a single device. For example, if the user has multiple customers, there could
be Company X domain, and Company Y domain on the same device. Alternatively a
device can be configured to have a Company Confidential domain and a Company
Classified domain, each with different policies (e.g. the security policy for applications that
reside in the Company Classified domain can be more restrictive such as they may only
be accessible during normal working hours or while the device is connected to a company
WiFi network). A device can be configured to have an open sharing domain for ease of
access and to enable ad-hoc sharing of the device and applications in the open domain
with a family member or colleague. A user can have a protected domain for private
purposes, such as to isolate messaging and contact information pertaining to a
clandestine relationship or for mobile banking and commerce purposes. A service
provider that is not an employer of the device owner, such as a bank, may desire to have
a protected domain on the device which contains a variety of applications for accessing
their services, such as account access, credit or debit card services, equity trading,
quotations for services, such as insurance, loans, etc. The service provider would have
the confidence that their applications and the user’'s personal information associated with
such applications were secure and could be wiped or locked in event of device loss.
[00131] The solution allows for different access control and policies for different
domains, between domains and for in-bound and out-bound communications from
protected domains on a single device. Domain policy can be either locally administered
(e.g. via device settings) or remotely administered (e.g. via a cloud service). Policy can
also be either administered by the device owner or a third party, such as an employer or a
service provider. Cross domain communications and data sharing can be policy defined
and enforced. Data encryption can be domain aware. Phone functionality, caller
notification and emergency calls, etc. can be domain aware and based on policy. For

example, out-going calls could be blocked from certain domains. Network connectivity

-32-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

can be domain aware and policy enforced. The task selector and process display can be
domain aware. For example, processes may only be displayed if the domain is logged in.
Notifications can be domain aware based on policy. For example, work domain
notifications could only be visible from a certain page to avoid data leakage during
sharing. Or, the notification could indicate the application providing the notification but
with reduced information (e.g. not disclose the title of the email received, or the sender of
the SMS received, etc.). Cloud back-up and syncing mechanisms can also be domain
aware. For example, the open domain could be backed-up, even if there is not a specific
account associated to the domain.

[00132] The solution maintains the original native and intuitive user interface, yet
enables many different user interface options and policies between different domains
rather than the tradition “all-or-nothing” device lock and/or traditional multi-user account
access. The user interface and switching between domains can now be customized to the
type of domain transition. A traditional user account style interface can be maintained and
each domain can still be personalized and configured for each domain with all the
standard native OS capabilities, such as with different background and/or different launch
screen per domain. The user authentication mechanisms (e.g. password, biometric,
pattern, no authentication) can be configured per domain. Domain log-in policies can be
used to reduce or eliminate the need to repeatedly authenticate the user when switching
between domains. Access control and authentication techniques can be enforced for
each protected domain in accordance with the policy set for the domain (e.g. automatic
log-out after 15 minutes of device inactivity, or automatic domain log-out after 5 minutes
of domain inactivity, or re-authentication every 10 minute when within a certain domain,
etc.). The solution enables new usage models more suitable to mobile devices, including
ad hoc sharing of applications, such as via an open domain. This is an extension to
recent features in mobile devices where some device capabilities are available from the
device lock screen without requiring authentication (e.g. the user can still take a picture,
or receive an incoming call). Rather than limiting functionality, with the domain signaling
and domain isolation enforcement, the open area can provide full feature access to
applications, although could have other special policy, such as restricted Internet access
(e.g. none, or via WiFi only) and restricted phone access (e.g. incoming only, or local
calls only, etc.). Switching between domains can be eliminated by using other means to
display domains (e.g. overlays on icons). The device owner can keep domains separately
grouped (perhaps for privacy reasons or personal preferences) in folders, tabs or any

other mechanism supported by the operating system. Authentication policy per domain

-33-

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

30

35

would still apply when accessing a tab or a specific application, but the need for switching
and different domain “home screens” and wallpapers, etc, could be eliminated.

[00133] The applications available in each domain can be controlled and displayed
at a more granular level compared to other solutions, while only storing one copy on the
device, thus providing a very efficient use of memory and CPU. The package manager
can manage the installation of applications in each domain — which it does already
between user accounts — but with more elegant, domain-specific mechanisms. The
availability, display and access to applications can be controlled per domain by policy.
Application data can be isolated per domain (in addition to per user account) and can be
easily deleted and managed per domain (e.g. if device is lost, or employment terminated,
etc.). Applications can be moved or swiped between domains in more intuitive and
creative ways, similar to moving Applications between home pages and tabs, rather than
performing application installation per domain such as with Android 4.2.

[00134] The solution can enforces the application and application data isolation as
specified by the domains with a domain aware version of SE Linux. It can ensures that
access by applications on one domain cannot access another domain. It ensures that
cross domain calls are only possible via the Domain Manager Service which enforces
policy. It ensures that malware on one domain cannot impact the applications and data in
another domain. It ensures that the use of domains without authentication does not
impact the security of other domains.

[00135] The present solution does not impact the use of the other security
techniques, such as virtualization and containers because the solution is backward
compatible with those techniques. In particular, type 2 hypervisors with modification could
leverage the domain information as part of the switching between the different operating
systems. Application container solutions may also be deployed in the present solution.
[00136] While the above embodiments have been described particularly in
connection with the Android and Linux operating systems, it will be understood that the
principles disclosed herein are applicable to any operating system possessing the
relevant characteristics addressed by the disclosure.

[00137] While the device operating the operating system has been referenced
above as a mobile device, which may include a smartphone, tablet, personal digital
assistant (PDA), smartwatch, or any similar device, it will be understood that the
principles disclosed herein are applicable to any device possessing the relevant
characteristics addressed by the disclosure, and in some embodiments includes a

general purpose computer.

-34.

PCT/CA2014/050761

WO 2015/021547

10

15

20

25

[00138] In the preceding description, for purposes of explanation, numerous details
are set forth in order to provide a thorough understanding of the embodiments of the
invention. However, it will be apparent to one skilled in the art that these specific details
are not required in order to practice the invention. In other instances, well-known
electrical structures and circuits are shown in block diagram form in order not to obscure
the invention. For example, specific details are not provided as to whether the
embodiments of the invention described herein are implemented as a software routine,
hardware circuit, firmware, or a combination thereof.

[00139] Embodiments of the invention can be represented as a software product
stored in a machine-readable medium (also referred to as a computer-readable medium,
a processor-readable medium, or a computer usable medium having a computer-
readable program code embodied therein). The machine-readable medium can be any
suitable tangible medium, including magnetic, optical, or electrical storage medium
including a diskette, compact disk read only memory (CD-ROM), memory device (volatile
or non-volatile), or similar storage mechanism. The machine-readable medium can
contain various sets of instructions, code sequences, configuration information, or other
data, which, when executed, cause a processor to perform steps in a method according
to an embodiment of the invention. Those of ordinary skill in the art will appreciate that
other instructions and operations necessary to implement the described invention can
also be stored on the machine-readable medium. Software running from the machine-
readable medium can interface with circuitry to perform the described tasks.

[00140] The above-described embodiments of the invention are intended to be
examples only. Alterations, modifications and variations can be effected to the particular
embodiments by those of skill in the art without departing from the scope of the invention,

which is defined solely by the claims appended hereto.

-35.-

PCT/CA2014/050761

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

WHAT IS CLAIMED IS:

1. In a mobile device comprising a processor and a memory storing instructions
executable by the processor to implement an Android operating system, the improvement
comprising:

a user manager for selectively creating a plurality of domains different from any
user accounts implemented in the Android operating system;

a domain manager for selecting one of the domains as a current domain;

a domain policy service for storing and enforcing, for each domain, a policy
comprising a rule set controlling access to files and applications
associated with the domain;

a package manager for, for each domain, selectively allowing or blocking
installation or execution of the applications associated with the domain,
based on the policy of the domain and the policy of the current domain;

a domain message service for providing communication between running
processes associated with different ones of the domains based on the
respective policies of the different ones of the domains; and

an activity manager for selectively switching the current domain,

wherein the user manager, the domain manager, the domain policy service, the

package manager, the domain message service, and the activity manager are
implemented in the Android operating system outside a kernel of the Android operating

system.

2. The mobile device according to claim 1, wherein the improvement further
comprises:
a domain kernel module for enforcing, for each domain, the policy associated with
the domain,
wherein the domain kernel module is implemented in the kernel of the Android

operating system.
3. A method performed by a processor of a computing device to provide a plurality of

secure domains in an operating system of the computing device, the method comprising:

(a) for each secure domain:

-36 -

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

(a1) associating resources of the secure domain with a unique domain
identifier, the resources comprising at least one data file or at least
one application; and

(a2) storing a policy in association with the unique domain identifier, the
policy comprising a rule set for controlling access to the resources;

(b) receiving a selection of one of the plurality of secure domains as a current
domain, wherein the plurality of secure domains comprises a target
domain different from the current domain; and

(c) controlling access to the target domain resources based on the policy
associated with the current domain and/or the policy associated with the

target domain.

4. The method according to claim 3 further comprising executing at least one service
of the operating system at least partly outside of a kernel of the operating system to

perform at least one of (a), (b), and (c).

5. The method according to claim 3, wherein (c) is performed at least in part by a
first service operating within a kernel of the operating system and at least in part by a

second service operating in a middleware of the operating system outside of the kernel.

6. The method according to claim 5, wherein (a) and (b) are performed by further

services operating in the middleware of the operating system outside of the kernel.

7. The method according to claim 3, wherein the operating system implements a
plurality of user accounts, and wherein the current domain and the target domain are

commonly associated with one of the user accounts.

8. The method according to claim 3, wherein (¢) comprises controlling access by a
process to the target domain resources based on the policy associated with the current
domain and the policy associated with the target domain, wherein the process is

associated with the current domain.

9. The method according to claim 8, wherein the process is associated with an

execution context identifier based on the unique domain identifier of the current domain,

- 37 -

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

and wherein (¢) comprises controlling access by the process to the target domain

resources based on the execution context identifier.

10. The method according to claim 9, wherein the resources of the current domain
comprise the at least one application, and wherein the execution context identifier is
based on the unique domain identifier of the current domain and a unique application

identifier associated with the at least one application executed to generate the process.

11. The method according to claim 10, where the operating system is an Android
operating system, the unique application identifier is a Unix-type user identifier (UID)
assigned to the application on installation, the execution context identifier comprises the
UID of the application, and the unique domain identifier is contained in reserved bits of
the UID.

12. The method according to claim 3, wherein the operating system provides a user
interface providing concurrent access to the resources of the current domain resources

and the resources of the target domain.

13. The method according to claim 12, wherein the resources of target domain
comprise the at least one application associated with the target domain, and wherein the

user interface provides means for executing the at least one application.

14. The method according to claim 13, wherein the user interface implements an icon
associated with the at least one application of the target domain, wherein the icon
comprises an overlay signifying the association of the at least one application with the

target domain.
15. The method according to claim 12, wherein the resources of the target domain
further comprise a received message associated with the target domain, and wherein the

user interface provides means for opening the message.

16. The method according to claim 3, wherein (a1) comprises storing metadata

associating the resources with the unique domain identifier of the secure domain.

-38 -

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

35

17. The method according to claim 3, wherein one of the secure domains is an
externally-controlled domain, and wherein the policy associated with the externally-

controlled domain is received from a remote domain management server via a network.

18. The method according to claim 17, wherein the current domain is the externally-
controlled domain, and wherein modification to at least a portion of the policy associated

with the current domain is blocked except by the remote domain management server.

19. The method according to claim 3, wherein the target domain resources comprise
the at least one application comprising a first version of a common application, the policy
associated with the current domain and the policy associated with the target domain block

access to the first version of the common application.

20. The method according to claim 19, wherein the current domain resources
comprise the at least one application comprising a second version of the common

application different from the first version of the common application.

21. A computer-readable medium comprising instructions stored thereon that, when

executed by a computer, perform the method of claim 3.

22. A method of providing a plurality of secure domains in an operating system of a
computing device, the method comprising:
(a) for each secure domain:

(a1) associating resources of the secure domain with a unique domain
identifier associated with the secure domain, the resources
comprising at least one data file or at least one application; and

(a2) storing a policy in association with the unique domain identifier, the
policy comprising a rule set for controlling access to the resources;

(b) generating an event message associated with an originating process
associated with a first one of the secure domains;

(c) determining that a target process associated with a second one of the
secure domains is configured to respond to the event message;

(d) processing the event message based on the policy associated with the first

domain and the policy associated with the second domain, to produce a

processed event message; and

-39-

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

35

(e) passing or blocking the processed event message to the target process
based on the policy associated with the first domain and the policy

associated with the second domain.

23. The method according to claim 22, wherein the event message indicates a copy-
and-paste action generated by the originating process, the policy associated with the first
domain implements a first rule allowing passing of a clipboard buffer out of the first
domain, and the policy associated with the second domain implements a second rule
allowing passing of the clipboard buffer into the second domain, wherein the processed

event message based on the clipboard buffer is passed to the target process.

24. The method according to claim 22, wherein the event message indicates a copy-
and-paste action generated by the originating process, the policy associated with the first
domain implements a first rule preventing passing of a clipboard buffer out of the first
domain, or the policy associated with the second domain implements a second rule
preventing passing of the clipboard buffer into the second domain, wherein the processed

event message based on the clipboard buffer is blocked from the target process.

25. The method according to claim 22, wherein the event message comprises a
message received notification generated by the originating process, the policy associated
with the first domain implements a first rule implementing a filter of the message received
notification, or the policy associated with the second domain implements a second rule
implementing the filter of the message received notification, wherein the processed event
message comprises a filtered message received notification, and wherein the filtered

message received notification is passed to the target process.

26. The method according to claim 22, wherein (a1) comprises storing metadata

associating the resources with the unique domain identifier of the secure domain.

27. The method according to claim 25, wherein the filter removes or obscures at least

a sender identifier or a subject identifier of the message received notification.

28. A computer-readable medium comprising instructions stored thereon that, when

executed by a computer, perform the method of claim 22.

- 40 -

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

29. A method of providing a plurality of secure domains in an operating system of a
computing device, the method comprising:
(a) for each secure domain:

(a1) associating resources of the secure domain with a unique domain
identifier associated with the secure domain, the resources
comprising at least one data file or at least one application; and

(a2) storing a policy in association with the unique domain identifier, the
policy comprising a rule set for controlling access to the resources;

(b) receiving from an originating process associated with a first one of the
secure domains a request to launch a target process associated with a
second one of the secure domains; and

(c) processing the request based on the policy associated with the first

domain and the policy associated with the second domain.

30. The method according to claim 29, wherein the originating process generates a
message received notification associated with a message received in association with the
second domain, the request is to display the message, the policy associated with the
second domain implements a second rule allowing display of the message in the second

domain, and the target process displays the message.

31. The method according to claim 30, wherein the policy associated with the first

domain implements a first rule allowing display of the message in the second domain.

32. A computer-readable medium comprising instructions stored thereon that, when

executed by a computer, perform the method of claim 29.

33. In a data processing system having a processor and a storage mechanism for
storing an operating system that includes a kernel and a middleware outside of the
kernel, a method comprising:
providing a first facility in the middleware for creating domains and associating
with the domains corresponding policies for controlling access to the
domains;
providing a second facility in the middleware for switching between the domains;

and

41 -

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

35

providing a third facility at least partly in the middleware for enforcing the

corresponding policies of the domains.

34. The method according to claim 33, further comprising:
providing a fourth facility in the middleware for managing installation of

applications based on the corresponding policies of the domains.

35. The method according to claim 34, further comprising:
providing a fifth facility in the middleware for providing communication between

running processes in different ones of the domains.

36. The method according to claim 35, wherein the running processes implement a
copy and paste action from a first one of the domains to a second one of the domains,
wherein the fifth facility provides signaling between a first one of the running processes in
the first domain and a second one of the running processes in the second domain, and
wherein the fifth facility allows or blocks the copy and paste action based on the policy

corresponding to the first domain and the policy corresponding to the second domain.

37. The method according to claim 35, wherein the running processes implement a
message client running in a first one of the domains, wherein the fifth facility provides
signaling between a first one of the running processes in the first domain and a second
one of the running processes in a second domain for selectively allowing, filtering, or
blocking a message received notification generated in connection with the second domain
based on the policy corresponding to the first domain and the policy corresponding to the

second domain.

38. The method according to claim 35, further comprising:
providing a sixth facility in the middleware for enabling execution in a first one of
the domains of at least one application associated with a second one of
the domains based on the corresponding policies of the first and second

domains.

39. The method according to claim 38, wherein the sixth facility receives a request
from an originating process associated with the first domain to execute the at least one

application, and allows or blocks the execution of the at least one application based on

42 .

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

35

the policy associated with the first domain and the policy associated with the second

domain.

40. The method according to claim 39, the request is to display a message received in

association with the second domain.

41. The method according to claim 38 further comprising:
providing a seventh facility in the middleware a user interface providing concurrent
access to different ones of the domains based on the corresponding

policies of the domains.

42. The method according to claim 33 further comprising providing the third facility
partly in the kernel.

43. The method according to claim 33, wherein the operating system implements a
plurality of user accounts, and wherein at least one of the user accounts is uniquely

associated with a corresponding plurality of the domains.

44, The method according to claim 33, wherein the third facility controls access by a
process associated with a first one of the domains to resources associated with a second
one of the domains based on a first one of the policies associated with the first domain

and a second one of the policies associated with the second domain.

45, The method according to claim 44, wherein the process is associated with an
execution context identifier based on the unique domain identifier of the first domain, and
wherein the third facility controls access by the process to the resources based on the

execution context identifier.

46. The method according to claim 45, wherein execution context identifier is based
on a unique domain identifier of the first domain and a unique application identifier

associated with an application executed to generate the process.

47. The method according to claim 46, where the operating system is an Android
operating system, the unique application identifier is a Unix-type user identifier (UID)

assigned to the application on installation, the execution context identifier comprises the

- 43 .

WO 2015/021547 PCT/CA2014/050761

10

15

20

25

30

UID of the application, and the unique domain identifier is contained in reserved bits of
the UID.

48. The method according to claim 41, wherein the user interface provides concurrent
access to at least a first application associated with a first one of the domains and at least
a second application associated with a second one of the domains based on the policy

associated with the first domain and the policy associated with the second domain.

49 The method according to claim 48, wherein the user interface implements a first
icon associated with the first application and a second icon associated with the second
application, and the first icon comprises an overlay signifying the association of the first

application with the first domain.

50. The method according to claim 33, wherein one of the domains is an externally-
controlled domain, and wherein the policy associated with the externally-controlled

domain is received from a remote domain management server via a network.

51. The method according to claim 50, wherein modification to at least a portion of the
policy associated with the externally-controlled domain is blocked except by the remote

domain management server.

52. A computer-readable medium comprising instructions stored thereon that, when

executed by a processor, perform the method of claim 33.

53. A computing device comprising a processor and a memory storing instructions
executable by the processor to implement an operating system providing a plurality of
secure domains, the operating system comprising:

a domain manager for selectively creating the plurality of secure domains, and for
selecting one of the secure domains as a current domain;

a domain policy service for storing and enforcing, for each secure domain, a policy
comprising a rule set controlling access to files and applications
associated with the domain;

a package manager for enforcing, for each secure domain, installation of the

applications associated with the domain;

- 44 .

WO 2015/021547 PCT/CA2014/050761

a domain message service for providing communication between running
processes associated with different ones of the secure domains; and

an activity manager for selectively switching the current domain.

-45.

WO 2015/021547

FIGURE 1A
(PRIOR ART)

App Space

Middleware

Kernel

Hardware

FIGURE 1C
(PRIOR ART)

App Space 1

App Space 2
Middleware 2

Kernel 2

Hypervisor

Middleware 1

Kernel 1

Hardware

1/10

PCT/CA2014/050761

FIGURE 1B
(PRIOR ART)

App Space 1

App Space 2

Middleware 1

Middleware 2

Hypervisor

Hardware

FIGURE 1D
(PRIOR ART)

App Space

App 1

Container

App 2

Middleware

Kernel

Hardware

WO 2015/021547 PCT/CA2014/050761
2/10
100~
Application Space 140
I
- = - =
Domain Settings | Domain Settings
S N
App 2 1152 | App 3 (154
Domain Navigator . : Domain Navigator L
146-1 | 146-2
[—
Domain Admin App [148-1 [Domain Admin App |148-2
142-1 _
e ____Z_ 1A=
Operating System Middleware 120
—124 —128 —134

Domain Message
Service

Domain Manager User Manager

Activity Manager

N

122
—~
126

Domain Policy

Service System Settings q\?) 0
Key Guard Package Window
Mediator Manager Manager
132 K1 36 &138
7 lnuxKemel 10

Secure
Store

112

Domain Kernel
Module

Enhanced LSM

C
114

FIGURE 2

C

116

WO 2015/021547 PCT/CA2014/050761

3/10
300~
305~,
Device
MOWP 315!
User A User B
| |
' ————— aglen e . . . o m— 1 r- ——————
320, 325 330~ ¢ 335~ ° 340~ 1
Domain A1 Domain A2 Domain A3 Domain B1 Domain B2
345~ | 350, |
E-Mail Account G -Mail Account
Facebook

FIGURE 3

WO 2015/021547

146-1~

Domain 1: Domain
Navigator

405,

Switch Domain

Request

PCT/CA2014/050761
4/10
400 —
—134 435~ —424
iy Directly s| Domain 2:
Activity Manager [access Domain Launcher

128~ $V‘41o

User Manager Svc

412~

A4

Domain

Manager ’1\24

Check system A, 415

log-in policy

420 -, Check policies

—~
130 | System Settings

Domain Policy
Service

Notify of time-out

Log-in request

Key Guard
Mediator

FIGURE 4

C
132

430

WO 2015/021547

505 —

Domain 1: Process
generates event or
message

510,

Event
message

5/10

500

Domain Manager

(&)

Service

20\A$ Check Policy

Domain Policy
Service

FIGURE 5

PCT/CA2014/050761
525~
Pass 315 ~
message
> Domain 2:
/\ . .
124 Listening Process
126

WO 2015/021547

605 —

Domain 1: Process
generates an
action

610,

—

6/10

600 —~

~134

Domain
Switch
Request

Activity Manager

625,

PCT/CA2014/050761

620 —

$k615

Domain Policy
Service

FIGURE 6

Execute
action

Domain 2: Launch
Process

WO 2015/021547

—144-1

Domain
Settings

7/10
700~
705~
Install (1 36
Application
>| Package Manager
€«

Uninstall Install
application application
(optional)

7152+

FIGURE 7

PCT/CA2014/050761
—124
710~
&> .
. Domain Manager
Determine
security label

WO 2015/021547

PCT/CA2014/050761

8/10
800 —~
Remote
Management
Server
k805
A\
810
815, 126
P Poli Load Secure Spaces
Domain Message ass ro |cy% Domain Policy Domain Policy
Service to Secure Service
Store
~ 835
122 Ty Load SE Linux Policy
Load System Settings C 830
for each domain 820
116
C
_ Domain Enhanced Linux
System Settings /1\30 Kernel Module Security Module
(LSM)
C
114 Verify &
e Secure Policy
825

FIGURE 8

>

WO 2015/021547

900

902/‘Gwitch domairD

is domain

904 running?

912 1o

is domain

914 encrypted?

920 yes

is auth

916

9/10

¥

PCT/CA2014/050761

Gwitch complet9’\91o

906
yes——»

NoO———»

922

requiy

Van

928
yes

show new domain}—_
in Ul 908
start domain [gqg
load keys & L
mount encrypted | 926
filesystem
decrypt filesystem |
keys 932
get authentication |
information 930

FIGURE 9

WO 2015/021547 PCT/CA2014/050761

10/10

decrypt filesystem /\1 012
keys for target

switch domain .
domain
1002/(initiated)

1004 switch to mte_rmedlate load keys & 1014
domain mount encrypted
filesystem

7Y
1006 | start lockscreen process
in intermediate domain — dismiss 016
show authentication lockscreen
challenge for target space
& indicate switch to target
domain

starttarget [1018
domain

receive selection of input
method

P
1008

show n_ew domain /\1 020
in Ul

Gwitch completa/\'] 022

101 0/\ receive authentication
information

FIGURE 10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2014/050761

A. CLASSIFICATION OF SUBJECT MATTER
IPC: HO4W 12/08 (2009.01) ,

GOGF 21/44 (2013.01), GO6F 9/445 (2006.01), HO4W 4/00(2009.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: HO4W 12/00 (2009.01), GOGF 21/00 (2013.01), GO6F 9/00 (2006.01), H04W 4/00 (2009.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Databases: TotalPatent, Canadian Patent Database, [EEE Xplore

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Keywords: domain, policy, policies, access, resource, file, application, switch*, current, target, process

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

* whole document *

* whole document *

* whole document *

* whole document *

A US 20110099605 Al (Cha) 28 April 2011 (28-04-2011)

A CA 2838205 Al (Owen et al.) 26 February 2004 (26-02-2004)

A US 20130138932 Al (Draluk et al.) 30 May 2013 (30-05-2013)

A US 20130151704 Al (Chandolu et al.) 13 June 2013 (13-06-2013)

1-53

1-53

1-53

1-53

M Further documents are listed in the continuation of Box C.

W See patent family annex.

Special categories of cited documents:

“A” |document defining the general state of the art which is not considered
to be of particular relevance

“E” |earlier application or patent but published on or after the international
filing date

“L” |document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason {as specified)
“0” |document referring to an oral disclosure, use, exhibition or other means

“P” |document published prior to the international filing date but later than
the priority date claimed

“T” |later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“x

wy

“&” |document member of the same patent family

Date of the actual completion of the international search
5 November 2014 (05-11-2014)

Date of mailing of the international search report
13 November 2014 (13-11-2014)

Name and mailing address of the [SA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

Imran Siddiqui (819) 953-8984

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/CA2014/050761

Patent Document Publication Patent Family Publication

Cited in Search Report Date Member(s) Date

US2011099605A1 28 April 2011 (28-04-2011) US2011099605A1 28 April 2011 (28-04-2011)
CN102405630A 04 April 2012 (04-04-2012)
EP2422503A1 29 February 2012 (29-02-2012)
JP2012524502A 11 October 2012 (11-10-2012)
KR20120004528A 12 January 2012 (12-01-2012)
KR101378109B1 26 March 2014 (26-03-2014)
TW201129042A 16 August 2011 (16-08-2011)
TWI1435584B 21 April 2014 (21-04-2014)
TW201220794A 16 May 2012 (16-05-2012)
WO2010123890A1 28 October 2010 (28-10-2010)

CA2838205A1 26 February 2004 (26-02-2004) CA2838205A1 26 February 2004 (26-02-2004)
CA2838205C 28 October 2014 (28-10-2014)
AU2003257336A1 03 March 2004 (03-03-2004)
AU2003257336A8 03 March 2004 (03-03-2004)
CA2496165A1 26 February 2004 (26-02-2004)
CA2496165C 15 July 2014 (15-07-2014)
CA2838180A1 26 February 2004 (26-02-2004)
CN1689302A 26 October 2005 (26-10-2005)
CN1689302B 19 January 2011 (19-01-2011)
EP1535444A1 01 June 2005 (01-06-2005)
EP1535444B1 17 April 2013 (17-04-2013)
ES2420758T3 26 August 2013 (26-08-2013)
HK1079361A1 01 November 2013 (01-11-2013)
US2005213763A1 29 September 2005 (29-09-2005)
US8544084B2 24 September 2013 (24-09-2013)
US2012144196A1 07 June 2012 (07-06-2012)
US8661531B2 25 February 2014 (25-02-2014)
US2014171023A1 19 June 2014 (19-06-2014)
WO02004017592A1 26 February 2004 (26-02-2004)
WO2004017592A8 22 April 2004 (22-04-2004)

US2013138932A1 30 May 2013 (30-05-2013) None

US2013151704A1 13 June 2013 (13-06-2013) US2013151704A1 13 June 2013 (13-06-2013)
US8819231B2 26 August 2014 (26-08-2014)

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - wo-search-report
	Page 59 - wo-search-report

