(54) 发明名称
微生物发酵饲料及其制备方法

(57) 摘要
本发明涉及一种微生物发酵饲料及其制备方法。所述发酵饲料包括下述组份：玉米400-600g,麸皮50-200g,豆粕150-250g,棉粕20-40g,菜粕20-40g,膨化大豆粉50-100g,鱼粉20-40g,电气石粉5g,纯净过滤水300-500g及乳酸菌发酵液；该发酵饲料不但能促进动物生长、调节胃肠道正常菌群、维持微生态平衡，而且可以提高食物消化率和生物效价，降低血清胆固醇、控制内毒素、抑制肠道内腐败菌生长、提高机体免疫力等，同时对于致病菌如痢疾杆菌、伤寒杆菌、副伤寒杆菌、弯曲杆菌、葡萄球菌等有拮抗作用，降低养殖成本，有效的杜绝了抗生素滥用。

<table>
<thead>
<tr>
<th></th>
<th>实验组</th>
<th>对照组</th>
</tr>
</thead>
<tbody>
<tr>
<td>存活数量</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>用药次数</td>
<td>无</td>
<td>10</td>
</tr>
<tr>
<td>用药费用</td>
<td>无</td>
<td>350元</td>
</tr>
<tr>
<td>平均体重</td>
<td>86.4kg</td>
<td>78.9kg</td>
</tr>
<tr>
<td>体态</td>
<td>健壮</td>
<td>良差</td>
</tr>
</tbody>
</table>
1. 一种微生物发酵饲料及其制备方法，其特征是：(1)、主料：玉米 400-600g、麸皮 50-200g、豆粕 150-250g、棉粕 20-40g、菜粕 20-40g、膨化大豆粉 50-100g、鱼粉 20-40g、电气石粉 5g；
 菌种：短乳杆菌 Lactobacillus brevis
 德氏乳杆菌 delbrueckii subsp. Lactis
 干酪乳杆菌 paracasei
 乳酸乳球菌 Lactobacillus brevis
 戊糖乳杆菌 (Lactobacilluspentosaceus)
 布氏乳杆菌 (Lactobacillus)
 植物乳杆菌 (Lactobacillusplantarum)
 耐酸乳杆菌 (Lactobacillus acetotolerans)
 以上各个菌种是通过分离猪粪、猪肠道内、发酵饲料中的乳酸菌，选取其中优质的短乳杆菌、德氏乳杆菌、干酪乳杆菌、乳酸乳球菌、戊糖乳杆菌、布氏乳杆菌、植物乳杆菌、耐酸乳杆菌菌株挑取各个菌株的一个单菌落进行斜面纯化培养而得到的；
 (2)、制备一次活化培养的培养基：大豆蛋白胨 10g，牛肉粉 6g，酵母粉 6g，葡萄糖 40g，乳糖 40g，蒸馏水 200ml，称量以上各组份溶解于 200ml 蒸馏水中，将配置好的一次活化培养的培养基装入 400ml 的三角瓶中，在 121 摄氏度条件下，高压蒸气灭菌 20min 后，放入 4 摄氏度的冰箱中待用。
 —次活化培养：分别挑取短乳杆菌、德氏乳杆菌、干酪乳杆菌、乳酸乳球菌、戊糖乳杆菌、布什乳杆菌、植物乳杆菌、耐酸乳杆菌菌种等斜面上的一个单菌落，将其分别接种到 20ml 一次活化培养基中，在温度 40℃条件下，厌氧静止培养 12-18h，当一次活化培养的 ph 达到 3.8～4.5 之间并且发酵产物有酸香时，即为达到发酵效果；
 (3)、配制二次扩大培养基：大豆蛋白胨 1kg，去离子水 10kg，氯化钠 200g，称量各组分将其溶解在 10kg 去离子水中，在 118 摄氏度条件下，高压蒸汽灭菌 20min，放入 4 摄氏度的冰箱中待用；二次扩大培养：将每个菌株的一次活化培养的菌液（各 20ml）共同接种到 10kg 的二次扩大培养基中，在 40℃条件下，厌氧静止培养 24h，当二扩大培养的 ph 达到 3.8～4.5 之间并且发酵产物有酸香时，即为达到发酵效果；
 (4)、配制三次扩大培养基：红糖 350g 氯化钠 10g，去离子水 350kg，称量各组分将其溶解在 350kg 的去离子水中，在 121 摄氏度条件下高压蒸汽灭菌 20min，三次扩大培养：将二次扩大培养的培养液 10kg 接种到 350kg 三次培养基中，在温度为 40 摄氏度条件下，厌氧静止培养 24h；
 (5)、发酵饲料：三次扩大培养的菌液 10kg，红糖 250g，去离子水 100kg，主料 1000kg 用小型搅拌将以上各组分机搅拌均匀，将搅拌好的待发酵的饲料装入密闭 100kg 桶中，将桶密封好，室温保持在 25℃左右，密封发酵 8 小时即得产品，当发酵饲料带有饼干香味。
微生物发酵饲料及其制备方法

发明内容：本发明涉及一种微生物发酵饲料及其制备方法。

技术背景

进入 21 世纪人民对肉产品的质量有要求越来越高，其对营养品质的要求也越来越高，提高肉质产品的质量其源头在于饲料的质量。因此提高饲料的营养质量和营养成分对于养殖业极为重要。目前，一些禽畜饲料已经实现产品化标准化含有木质成分，含维生素饲料含有抗生素饲料含中草药饲料，这些添加剂对禽畜的利用是高，含有副作用，有霉残留进入生物链直接进入人体，即会危害人类健康又会破坏环境造成危害。

发明内容：本发明的目的是提供一种减少对环境的污染及处理费用，无抗素无农药残留的有机饲料，在在这些发酵过程中操作简单，成本低廉的微生物发酵饲料及其制备方法。本发明采用的技术方案如下：一种微生物发酵饲料及其制备方法：

（1）主料：玉米 400~600g，麸皮 50~200g，豆粕 150~250g，棉粕 20~40g，菜粕 20~40g，膨化大豆粉 50~100g，鱼粉 20~40g，电气石粉 5g；

（2）菌种：短乳杆菌 Lactobacillus brevis

德氏乳杆菌 delbrueckii subsp. Lactis

干酪乳杆菌 paracasei

乳酸乳球菌 Lactobacillus brevis

戊糖乳杆菌 Lactobacillus pentosaceus

布氏乳杆菌 Lactobacillus

植物乳杆菌 Lactobacillus plantarum

耐酸乳杆菌 Lactobacillus acetotolerans

以上各个菌种是通过分离猪粪、猪肠道内、发酵饲料中的乳酸菌，选取其中优质的短乳杆菌、德氏乳杆菌、干酪乳杆菌、乳酸乳球菌、戊糖乳杆菌、布氏乳杆菌、植物乳杆菌、耐酸乳杆菌菌株挑选各个环节的一个菌株进行斜面纯化培养而得到的。

（2）制备一次活化培养的培养基：大豆蛋白胨 10g，牛肉粉 6g，酵母粉 6g，葡萄糖 40g，乳糖 40g，蒸馏水 200ml，称量以上各组份并溶解于 200ml 蒸馏水中，将配置好的一次活化培养的培养基装入 400ml 的三角瓶中，在 121 摄氏度条件下，高压蒸气灭菌 20min 后，放入-4 摄氏度的冰箱中待用；

一次活化培养：分别取短乳杆菌、德氏乳杆菌、干酪乳杆菌、乳酸乳球菌、戊糖乳杆菌、布氏乳杆菌、植物乳杆菌耐酸乳杆菌菌种等斜面上的一个菌落，将其分别接种到 20ml 一次活化培养基，在温度 40℃条件下，厌氧静止培养 12~18h，当一次活化培养的 ph 达到 3.8 ~ 4.5 之间并且发酵产物有酸香时，即为达到发酵效果；

一次活化培养：分别取短乳杆菌、德氏乳杆菌、干酪乳杆菌、乳酸乳球菌、戊糖乳杆菌、布氏乳杆菌、植物乳杆菌耐酸乳杆菌菌种等斜面上的一个菌落，将其分别接种到 20ml 一次活化培养基，在温度 40℃条件下，厌氧静止培养 12~18h，当一次活化培养的 ph 达到 3.8 ~ 4.5 之间并且发酵产物有酸香时，即为达到发酵效果；

配制二次扩大培养基：大豆蛋白胨 1kg，去离子水 10kg，氯化钠 200g，称量各个组分将其溶解在 10kg 去离子水中，在 118 摄氏度条件下，高压蒸气灭菌 20min，放入-4 摄氏度的冰箱中待用；二次扩大培养：将每个菌株的一次活化培养的菌液（各 20ml）共同接种到 10kg 的二次扩大培养基，在 40℃条件下，厌氧静止培养 24h，当二次扩大培养的 ph 达
到 3.8 ～ 4.5 之间并且发酵产物有酸香时，即为达到发酵效果；

[0017] (4) 配制三次扩大培养基；红糖 350g 氯化钠 10g，去离子水 350kg，称量各组分将其溶解在 350kg 的去离子水中，在 121 摄氏度条件下高压蒸汽灭菌 20min，三次扩大培养；

将二次扩大培养的培养液 10kg 接种到 350kg 三次培养基中，温度为 40 摄氏度条件下，厌氧静止培养 24h；

[0018] (5) 发酵饲料：将二次扩大培养的菌液 10kg，红糖 250g，去离子水 100kg，主料 1000kg 用小型搅拌器混合均匀，将搅拌好的待发酵的饲料装入密闭 100kg 桶中，将桶密封好，室温保持在 25℃左右，密封发酵 8 小时即得产品，当发酵饲料带有饼干香味。

[0019] 本发明的技术效果在于发酵过程中不会排放废水及废物。减少对环境的污染及处理费用。培养基的一次活化培养、二次扩大培养、三次扩大培养及无抗生素无农药残留的有机饲料在无氧条件下发酵而得到微生物发酵饲料，在这些发酵过程中操作简单，成本低廉，适合养殖企业应用。而连续发酵的过程中，二次扩大培养的发酵液中含有很多营养成分及生长因子，将其加入到二次扩大培养基中可以在较低的营养条件下继续维持细常生长，这是本发明的一个突出特点，这样既降低大规模发酵的生产成本又可以得到具有一定活性的发酵液。

[0020] 禽畜肠道的微生物与饲料的消化吸收有着密切的关系。利用该乳酸菌发酵饲料饲喂及发酵液饮喂动物时可以使肠道内益生菌群正常，而且乳酸菌即可以提高食物消化率和生物效价；控制内毒素；抑制肠道内腐败菌生长。同时乳酸菌代谢产生的生物素对于致病菌如痢疾杆菌、伤寒杆菌、副伤寒杆菌、弯曲杆菌、葡萄球菌等有拮抗作用，提高机体免疫力等。

附图说明：

[0021] 图 1 为三次培养液 1m1 中所含有的活菌数表
[0022] 图 2 为发酵饲料 1g 中所含有的活菌数表
[0023] 图 3 为发酵饲料中主要营养成分蛋白质、脂肪与未经发酵的饲料主要营养成分的对照表
[0024] 图 4 为用本发明发酵饲料饲喂对比试验表

具体实施方式：

[0025] 实施例 1

[0026] 1. (1) 主料：玉米 400-600g，麸皮 50-200g，豆粕 150-250g，棉籽 20-40g，菜籽 20-40g，膨化大豆粉 50-100g，鱼粉 20-40g，电气石粉 5g；
[0027] 菌种：短乳杆菌 Lactobacillus brevis
[0028] 德氏乳杆菌 delbrueckii subsp. Lactis
[0029] 干酪乳杆菌 paracasei
[0030] 乳酸乳球菌 Lactobacillus brevis
[0031] 戊糖乳杆菌 (Lactobacilluspentosaceus)
[0032] 布氏乳杆菌 (Lactobacillus)
植物乳杆菌 (Lactobacillus plantarum)
耐酸乳杆菌 (Lactobacillus acidotolerans)

分离猪粪、猪肠道内、发酵饲料中的乳酸菌，选取优质菌株短乳杆菌、德氏乳杆菌、
干酪乳杆菌、乳酸乳球菌、戊糖乳杆菌、布氏乳杆菌、植物乳杆菌、耐酸乳杆菌挑取各个菌株
的一个单菌菌落进行斜面纯化培养。

制备一次活化培养的培养基：大豆蛋白胨 10g、牛肉粉 6g、酵母粉 6g、葡萄糖 40g、
乳糖 40g、蒸馏水 200ml，将各组分混合均匀，后装入 500ml 装入三角瓶中，在 121 摄氏度条件下
高压蒸汽灭菌 15min，放入 -4 摄氏度的冰箱中备用。

1. 一次活化培养：分别用 1ml 生理盐水洗脱短乳杆菌、德氏乳杆菌、干酪乳杆菌、
乳酸乳球菌、戊糖乳杆菌、布氏乳杆菌、植物乳杆菌耐酸乳杆菌等斜面上的菌落，将各个洗
脱下来的洗脱液分别接种到 20ml 一次活化培养基中，在温度 40℃条件下，厌氧静止培养
12-18h；

2. 配制二次扩大培养基：大豆蛋白胨 1kg 去离子水 10kg 氯化钠 200g 将以上个组
分混合均匀，加入到 20kg 容量的小型发酵罐内，在 118 摄氏度条件下高压蒸汽灭菌 15min
待用。

3. 二次扩大培养：将一次活化培养得到的各个菌株的菌液同时加入到二次扩大
培养的培养基中在 40℃条件下，厌氧静止培养 24h。

4. 配制三次扩大培养基：红糖 350g 氯化钠 10g 去离子水 350kg 溶解个组份后加
入到 3501 的大型发酵罐中，在 121 摄氏度条件下，高压蒸汽灭菌 15min，待用。

5. 三次扩大培养：接种二次扩大培养液 20kg 接种到 350kg 的三次扩大培养基中，
在 40 摄氏度条件下，静止厌氧培养 24h。

8. 三次培养菌种活性鉴定用 ATJ 培养基进行菌落计数（试验方法参照食品中乳酸
菌总数测定方法的国家标准进行）测定结果如附图 1 所示。

6. 全价饲料发酵：三扩大培养的发酵剂 10kg 红糖 100g 去离子水 100kg 主料
1000kg 利用小型搅拌机搅拌均匀将搅拌好的发酵饲料装入 100kg 的密闭发酵桶内，保持室
内 25℃左右的条件下，密封发酵 8 小时即得饼干香味略带酸味产品。

7. 发酵饲料益生菌活性鉴定用 ATJ 培养基进行菌落计数（试验方法参照食品中乳
酸菌总数测定方法的国家标准进行）测定结果附图 2 所示。

8. 测定发酵饲料中主要营养成分蛋白质、脂肪与未经发酵的饲料主要营养成分的
对照，测定结果如图 3 所示。

实施例 2

发酵液饮喂试验

用本发明的三次扩大培养的菌液进行了饮喂试验

1. 三次扩大培养的菌液活性测定：用 ATJ 培养基进行菌落计数（试验方法参照食
品中乳酸菌总数测定方法的国家标准进行）测定结果如附图 1 所示。

2. 稀释三次扩大培养的菌液，根据三次扩大培养的菌液中的菌活性，用去离子水
稀释三次扩大培养的菌液，稀释比例为 1:5。

3. 饮喂方法：饮喂每日按 4 次饮喂，时间段分别为早 4:00；中午 10:00 下午 5:00
晚 6:00；每头猪每次饮喂 500ml 左右；
实施例 3

发酵饲料饲喂试验

用本发明发酵饲料饲喂对比试验，对 100 头育肥猪猪活体进行了饲喂试验。其中 50 头为试验组饲喂该乳酸菌发酵饲料，50 头为对照组饲喂未经乳酸菌发酵的饲料。饲喂方法为每日四次饲喂，时间为早 3:00、中午 9:00、下午 4:00、晚 22:00 每次饲喂 500g 左右。经过 150 天饲喂，统计实验结果，测定结果如附图 4 所示。
三次培养液 1ml 中所含有的活菌数

<table>
<thead>
<tr>
<th></th>
<th>十酪菌</th>
<th>短杆菌</th>
<th>德氏乳杆菌</th>
<th>乳酸乳球菌</th>
<th>戊糖乳杆菌</th>
<th>布氏乳杆菌</th>
<th>植物乳杆菌</th>
<th>耐酸乳杆菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>数量</td>
<td>10^8</td>
<td>10^6</td>
<td>10^6</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
</tr>
</tbody>
</table>

图 1

发酵饲料 1g 中所含有的活菌数

<table>
<thead>
<tr>
<th></th>
<th>十酪菌</th>
<th>短杆菌</th>
<th>德氏乳杆菌</th>
<th>乳酸乳球菌</th>
<th>戊糖乳杆菌</th>
<th>布氏乳杆菌</th>
<th>植物乳杆菌</th>
<th>耐酸乳杆菌</th>
<th>酵母菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>数量</td>
<td>10^7</td>
<td>10^5</td>
<td>10^7</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
</tr>
</tbody>
</table>

图 2

<table>
<thead>
<tr>
<th>日期</th>
<th>实验组（益生菌发酵饲料）</th>
<th>对照组（未经发酵饲料）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1月12日</td>
<td>蛋白质</td>
<td>蛋白质+脂肪</td>
</tr>
<tr>
<td></td>
<td>9.16%</td>
<td>11.11%</td>
</tr>
</tbody>
</table>

| | 脂肪 | 蛋白质 |
| | 1.95% | 7.33% |

| | 蛋白质+脂肪 |
| | 9.19% |

图 3
<table>
<thead>
<tr>
<th></th>
<th>实验组</th>
<th>对照组</th>
</tr>
</thead>
<tbody>
<tr>
<td>存活数量</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>得病次数</td>
<td>无</td>
<td>10</td>
</tr>
<tr>
<td>用药费用</td>
<td>无</td>
<td>350 元</td>
</tr>
<tr>
<td>平均体重</td>
<td>86.4kg</td>
<td>78.9kg</td>
</tr>
<tr>
<td>体态</td>
<td>健壮</td>
<td>良莠不齐</td>
</tr>
</tbody>
</table>

图 4