

United States Patent [19]

Shelly

[11] Patent Number: 4,536,733

[45] Date of Patent: Aug. 20, 1985

[54] HIGH FREQUENCY INVERTER
TRANSFORMER FOR POWER SUPPLIES

[75] Inventor: Randolph D. Shelly, Rosemere,
Canada

[73] Assignee: Sperry Corporation, New York, N.Y.

[21] Appl. No.: 430,534

[22] Filed: Sep. 30, 1982

[51] Int. Cl.³ H01F 27/30

[52] U.S. Cl. 336/182; 336/200;
336/223; 336/229

[58] Field of Search 336/229, 223, 200, 65,
336/180, 182; 174/159, 48

[56] References Cited

U.S. PATENT DOCUMENTS

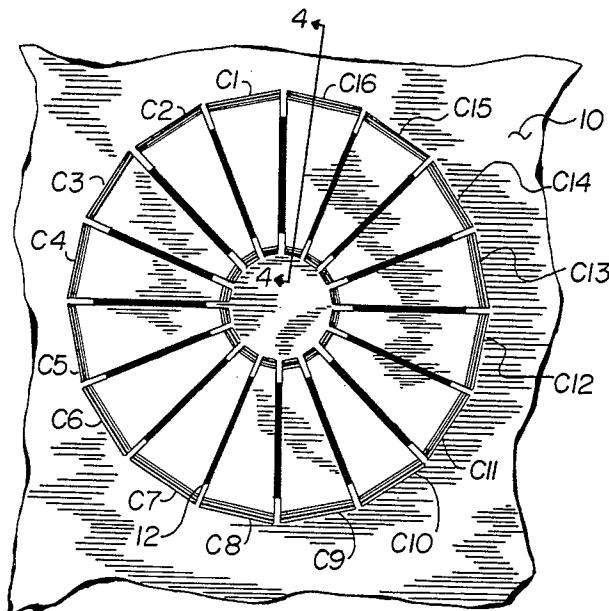
2,709,791 5/1955 Anderson, Jr. 336/229 X
3,281,005 10/1966 Schumacher 174/48 X
3,675,176 7/1972 Brown 336/229 X
4,103,267 7/1978 Olschewski 336/229 X
4,455,545 6/1984 Shelly 336/200

FOREIGN PATENT DOCUMENTS

532743 9/1955 Italy 174/159
128805 10/1980 Japan 336/229
771701 4/1957 United Kingdom 336/200

1085676 10/1967 United Kingdom 336/200
653630 3/1979 U.S.S.R. 336/200

OTHER PUBLICATIONS


IBM Technical Disclosure Bulletin, A. Werner, "Hybrid Toroidal Transformer Winding," vol. 17, No. 7, 12/74, p. 1993.

Primary Examiner—Thomas J. Kozma
Attorney, Agent, or Firm—Howard P. Terry

[57] ABSTRACT

A low leakage inductance inverter transformer utilizing a toroidal ferrite core having a primary winding wound thereon, with the secondary winding constructed from stamped conductive clips ranged to encompass portions of the core and primary winding with clip interconnections formed by printed circuit interconnections is described. The conductive clip described includes integral pins for making connection to printed circuit wiring on a printed circuit board. The turns ratio is selected by the pattern of printed circuit interconnection of the conductive clips such that the transformer structure turns ratio is established by the associated printed circuit interconnection pattern.

12 Claims, 16 Drawing Figures

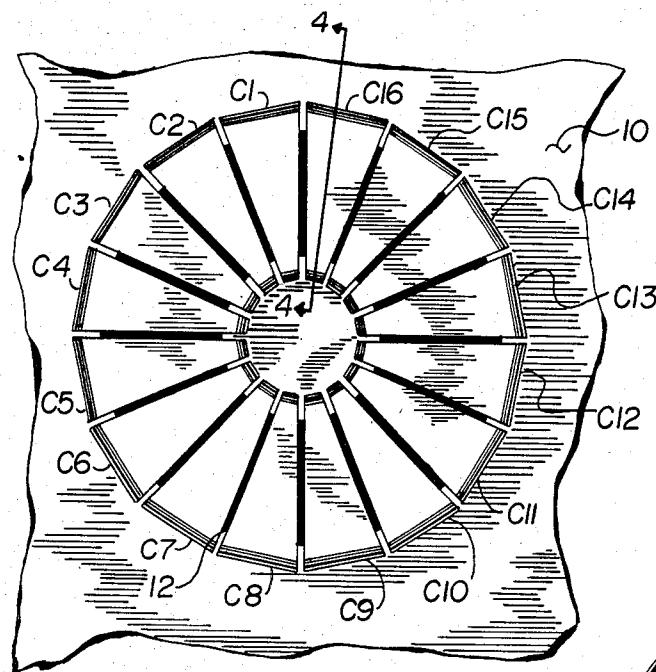


Fig. 1

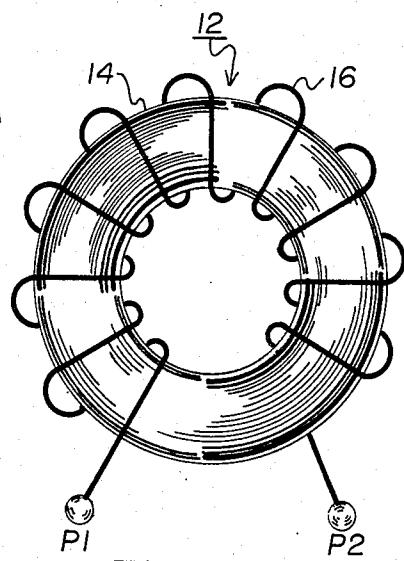


Fig. 2

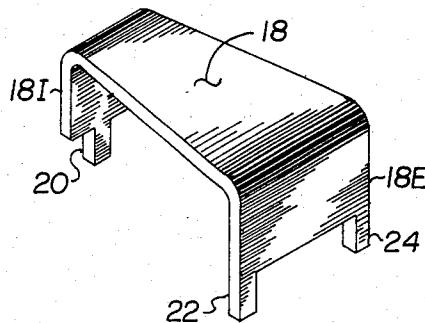
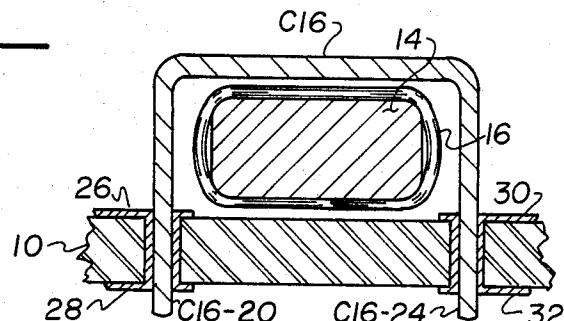
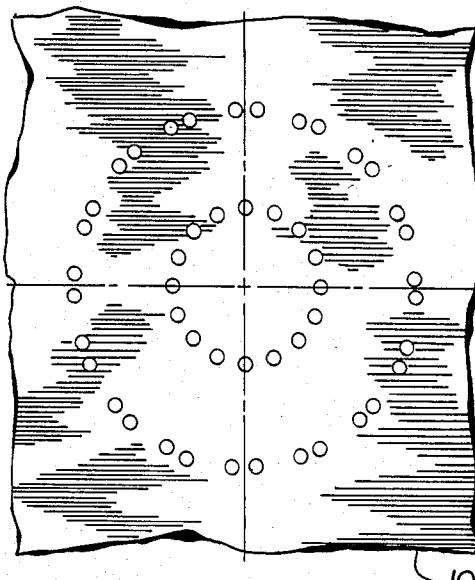
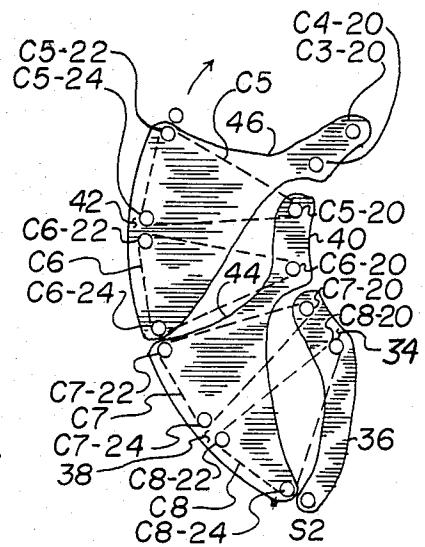
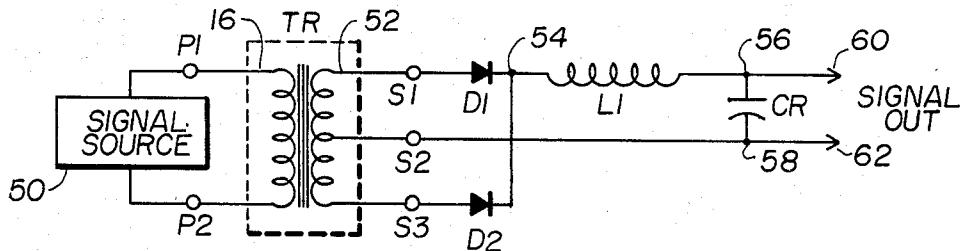
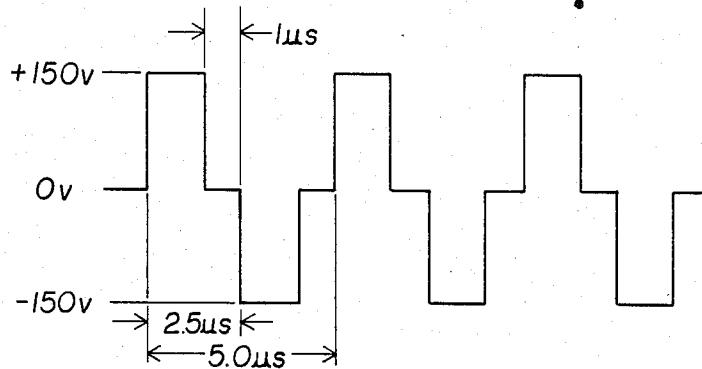
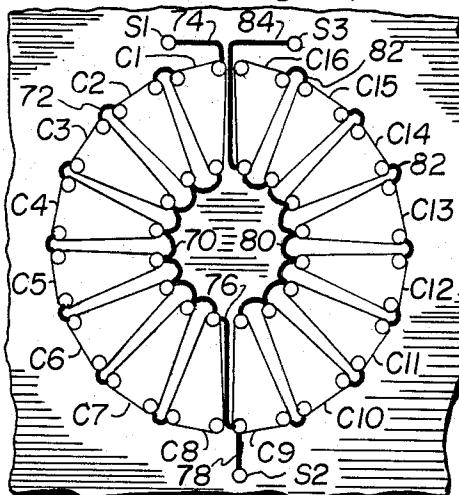


Fig. 3

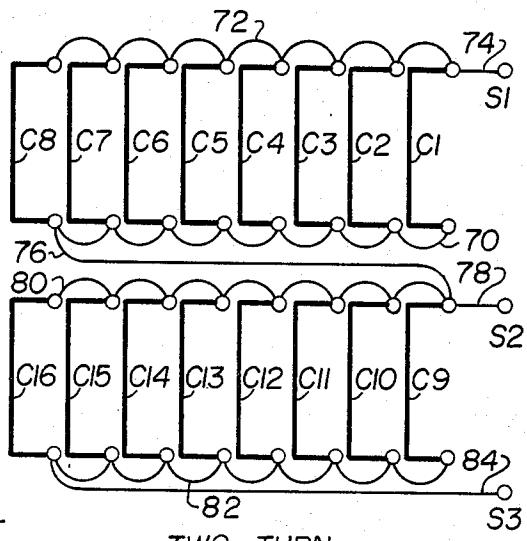
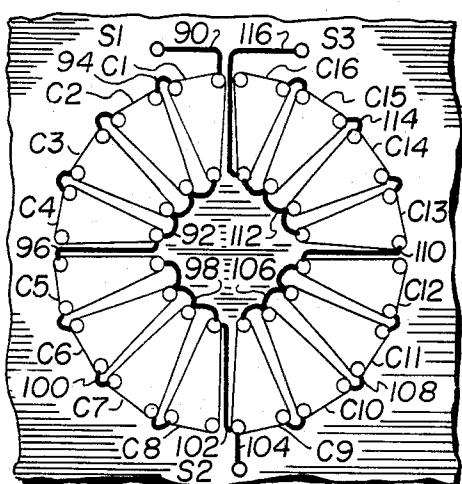
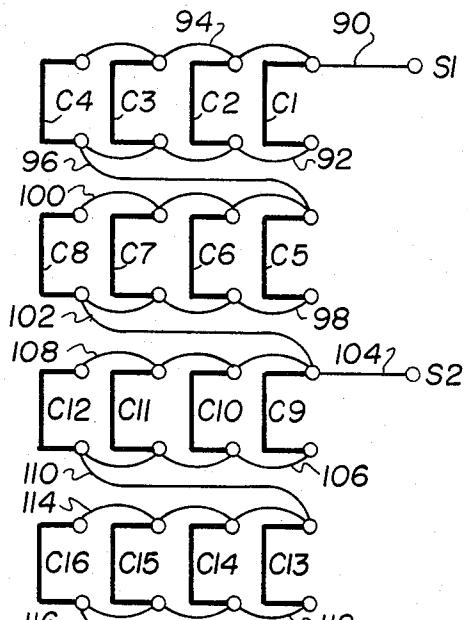

Fig. 4

Fig. 5Fig. 6Fig. 7Fig. 8


EIGHT CLIP-TURNS IN PARALLEL
FORM SINGLE TURN EACH SIDE

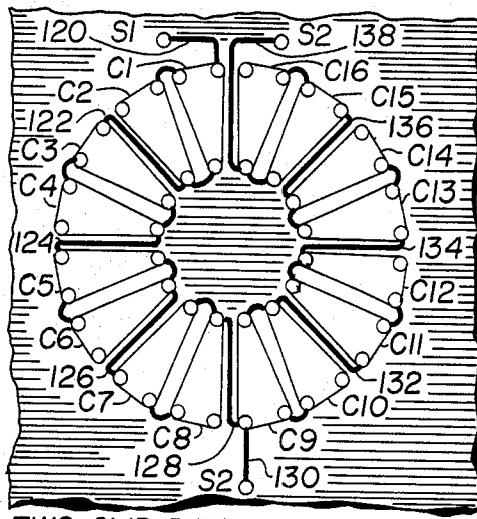
2-VOLT CONNECTION

TWO-TURN
CENTER-TAP SECONDARY


Fig. 9a

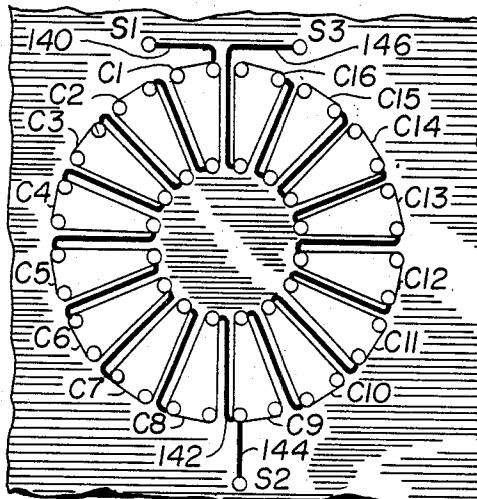
FOUR CLIP-TURNS IN PARALLEL
FORM TWO TURNS EACH SIDE

5-VOLT CONNECTION


Fig. 9b

FOUR-TURN
CENTER-TAP SECONDARY

Fig. 10a


Fig. 10b

TWO CLIP-TURNS IN PARALLEL
FORM FOUR TURNS EACH SIDE

12-VOLT CONNECTION

Fig. 11a

EIGHT TURNS EACH SIDE

24-VOLT CONNECTION

Fig. 12a

EIGHT-TURN
CENTER-TAP SECONDARY

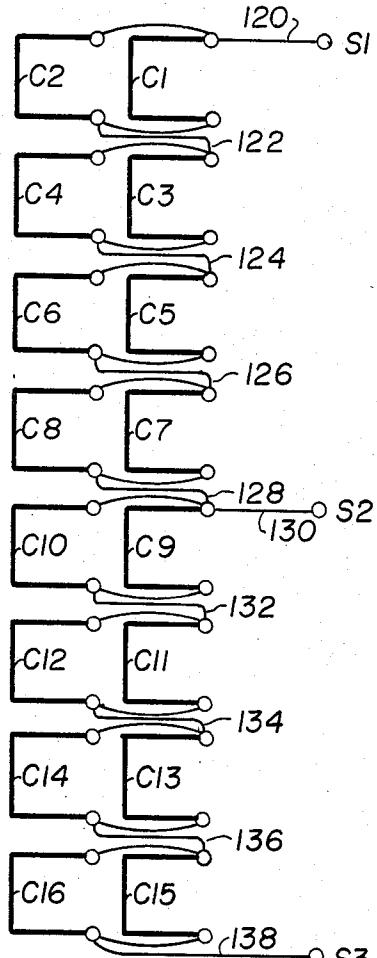


Fig. 11b

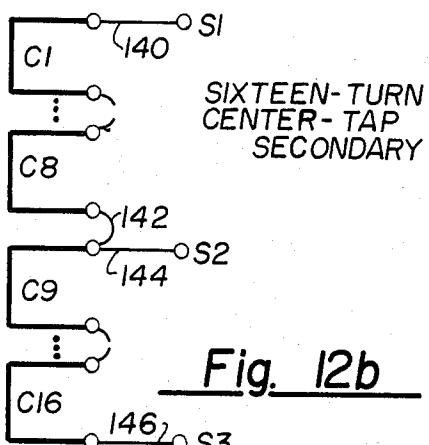


Fig. 12b

HIGH FREQUENCY INVERTER TRANSFORMER FOR POWER SUPPLIES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to an improved structure for a transformer. More particularly, it relates to an improved inverter transformer structure operable at high frequencies in a power supply.

2. State of the Prior Art

In the development of power supplies for use with electronic components, particularly those circuits utilizing integrated circuits, it has been found to be advantageous to utilize a transformer having a ferrite core with a primary winding for coupling to a source of alternating signals, and a secondary winding center-tapped and arranged to operate push-pull to drive a bridge rectifier. It is desirable that transformers for use in such circuitry function with low leakage inductance at rates of 200 kHz or higher. Further, it is desirable that such transformers be adaptable for providing output voltages in a predetermined range, dependent upon the wiring interconnection of the transformer. For example, it is desirable that a transformer structure be available for supplying drive for a rectifier circuit that will ultimately selectively provide through an associated voltage regulator an output of 2 volts, 5 volts, 12 volts or 24 volts.

It is desirable that a transformer structure for use in the type of power supply environment described above be inexpensive and easy to construct. In this regard it is desirable that the transformer structure be compatible with use on printed circuit assemblies, and that the transformer not be complex to manufacture.

Attempts have been made in the prior art to adapt various manufacturing techniques to make transformers that have varying functional characteristics. A system for die casting core windings is described in U.S. Pat. No. 3,477,051 to Clark et al, and a specialized pulse transformer and method of manufacturing is described in U.S. Pat. No. 3,483,495 to Clark et al. Examination of the teaching of these patents makes it abundantly clear that the fabrication process is complex. U.S. Pat. No. 4,311,979 to Graul describes a method and structure for generating a transformer having layered windings. It has been pointed out in the prior art that the so-called layer transforms have developed operational problems, often times apparently traceable to localized heat buildup.

U.S. Pat. No. 3,144,628 to Rabins describes a power transformer having cylindrical independent windings concentrically arranged, and capable of interconnection in selected series/parallel arrangements for adjusting the turns ratio. The arrangement is specified for providing a given output voltage for different input voltages.

U.S. Pat. No. 2,765,448 to Duffing, and U.S. Pat. No. 2,907,968 to Thurk each describe forming coils for switching reactors constructed from interconnected independent segments.

U.S. Pat. No. 4,249,229 to Hester describes a transformer utilizing flexible electrical cable for making auxiliary couplings to the transformer.

In addition to the interconnected independent segments for forming a coil mentioned above, U.S. Pat. No. 3,453,574 to DeParry describes a high frequency transformer wherein the primary and secondary windings are constructed from interconnected independent segments of coaxial cable with the turns ratio determined

by the combination of interconnection of the conductive portion and the shield portion of the coaxial segments. The teaching in U.S. Pat. No. 4,103,267 to Olschewski attends itself to teaching a structure of a transformer for use with integrated circuit assemblies. The transformer described therein is comprised of a toroidal ferrite core affixed to a substrate having printed circuit paths affixed thereto. Primary and secondary windings are formed by interconnected segments of wire arranged to loop the core.

OBJECTS

It is a primary object of this invention to provide a low leakage inductance inverter transform.

Another object is to provide an improved inverter transformer that can be readily adapted to provide a selected one of a plurality of output voltages.

Yet another object of this invention is to provide an approved transformer that is capable of functioning at 200 kHz and above.

Still another object of the invention is to provide an improved inverter transformer that is inexpensive to manufacture.

Another object of the invention is to provide an improved conductive clip for use in forming secondary windings in an improved inverter transformer.

SUMMARY OF THE INVENTION

In view of the foregoing, the present invention provides an improved inverter transformer that utilizes a toroidal ferrite core having a primary winding wound thereon. A predetermined number of conductive clips are arranged to encompass portions of the toroidal core and primary winding. The conductive clips are selectively interconnected by printed circuit paths on a mounting printed circuit board whereby the turns ratio is established by the printed circuit interconnections. This results in the transformer structure being capable of selectively providing one of a predetermined number of output voltages in response to an input signal applied to the primary winding.

When used in a high frequency inverter power supply system driven, for example by power field effect transistors, operating at rates in the range of 100 kHz are common, with rates in the range of 200 kHz or more being available. These relatively high frequencies result in excessive leakage inductance of the transformers of the prior art designs. Excessive leakage inductance is known to inhibit regulation in a power supply system, and results in excessive circuit losses. The design of the conductive clips of the present invention in combination with the toroidal ferrite core and primary windings results in a circuit operation that minimizes leakage inductance when driven at the relatively high frequency rates.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top plan view of the low leakage inductance inverter transformer of the present invention.

FIG. 2 is a plan schematic view of a toroidal ferrite core with a primary winding wound thereon.

FIG. 3 is a perspective view of the conductive clip utilized for forming secondary winding configurations.

FIG. 4 is a sectional view taken along line 4-4 in FIG. 1.

FIG. 5 is a plan view of the mounting holes utilized in a printed circuit assembly for mounting the conductive clips.

FIG. 6 is an illustrative printed circuit interconnection connecting two conductive clips in parallel and connecting paralleled clips in series.

FIG. 7 is an illustrative schematic circuit diagram utilizing the inverter transformer.

FIG. 8 is an idealized waveform drawing of input signals applied to the primary winding.

FIG. 9a is a diagrammatic plan layout of eight clip-turns arranged in parallel to form a single secondary turn winding on each side.

FIG. 9b is a schematic diagram of a two-turn center-tap secondary.

FIG. 10a is a diagrammatic plan layout drawing of four clip-turns in parallel to form two turns on each side of the secondary.

FIG. 10b is a schematic diagram of a four-turn center-tap secondary.

FIG. 11a is a diagrammatic plan representation of two clip-turns in parallel to form four turns on each side of the secondary.

FIG. 11b is a schematic diagram of an eight-turn center-tap secondary.

FIG. 12a is a diagrammatic plan view of serialized connection of sixteen clips providing eight turns on each side.

FIG. 12b is a schematic diagram of a sixteen-turn center-tap secondary.

The foregoing stated objectives and other more detailed and specific objectives will become apparent from a consideration of the drawings when taken together with the description of preferred embodiments.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 is a top plan view of the low leakage inductance inverter transformer of the present invention. A portion of a printed circuit board 10, of a type well-known in the art, is shown supporting a toroidal ferrite core assembly 12. Coupling clips labeled C1 through C16 are positioned around core assembly 12. The clips C1 through C16 form the secondary winding of the improved transformer through interconnections made on the printed circuit board 10. This interconnection system will be described in more detail below. The printed circuit board 10 is the same support assembly that can be utilized to support other electronic components.

FIG. 2 is a plan schematic view of a toroidal ferrite core with a primary winding wound thereon. The toroidal ferrite core assembly 12 is comprised of a toroidal ferrite core 14 and is available commercially from Magnetics, Inc., and is identified as part No. 43806-TC for a preferred embodiment. The core 14 has an outside diameter of 1.5 inches, a hole diameter of 0.75 inch, and a height of 0.25 inch. The core assembly 12 has a primary winding 16 wound thereon. For a preferred embodiment, primary winding 16 utilizes 34 turns of No. 20 wire with input terminals labeled P1 and P2 for receiving input signals. The primary winding 16 is applied in a manner known, with the windings being evenly spaced around core 14. The primary winding wire is coated with an electrically insulating material. The clips C1 through C16 of FIG. 1 are evenly spaced, and couple the evenly distributed windings of primary winding 16.

The section of sixteen clips relates to the number of desired combinations of secondary turns ratios, as will be described in more detail below, for selectively providing output signals for generating 2 volts, 5 volts, 12 5 volts, or 24 volts from the associated power supply (not shown). In the event it would occur that 24 volts would not be needed as a selection, the number of clips could be reduced to eight, with the clips being proportionately wider and evenly displaced, and still yield the 10 interconnection combinations capable of providing the requisite number of turns ratio combinations.

FIG. 3 is a perspective view of the conductive clip utilized for forming secondary winding configurations. The novel clip utilized for forming the secondary winding formation has a body portion 18 that is generally wedge-shaped. The body portion 18 has an interior downwardly extending portion 18I, and an exterior downwardly extending portion 18E. At the lower extremity of the interior downwardly extending member 18I there is formed a pin member 20 that is utilized for making electrical interconnection to plated-through holes in an associated printed circuit board. This interconnection system will be described in more detail below. The exterior downwardly extending member 18E has two pin members 22 and 24 formed at the lower extremity thereof. These pin members are also adapted for making electrical connection via plated-through holes in an associated printed circuit board. The use of the single pin 20 at the interior portion of the clip and 25 the two pins 22 and 24 at the exterior end of the clip provides for stability of mounting and physical strength, and further provides for precise positioning of the clips with relationship to each other, and with relationship to the wound core assembly 12.

30 The clips C1 through C16 can be formed from commercially available flat copper sheets by stamping processes. The characteristic thickness of the copper sheet material is 0.035 inch. For a characteristic embodiment utilizing sixteen clips, a minimum width dimension of 0.075 inch at the interior end, and a maximum width dimension at the exterior end of 0.275 inch, a length of 0.645 inch and a height of 0.6 inch has been found to function with the core assembly 12 described above. The pins 20, 22, and 24 are of sufficient length to pass 35 through an associated printed circuit board 10.

FIG. 4 is a sectional view taken along line 4-4 in FIG. 1. This illustrates that the ferrite core 14 is closely coupled by the evenly spaced windings of the primary 16, and the clip C16 surrounds the core and primary 40 winding assembly for making interconnection with printed circuit board 10. Printed circuit board 10 has plated-through holes for receiving pins C16-20 and C16-24. When finally assembled, these pins will be soldered to the interior surfaces of the associated plated-through holes. The holes are in electrical contact with deposited printed circuit foil on both the upper and the lower surfaces of printed circuit board 10. Conductive foil 26 on the upper layer and foil 28 on the lower surface are electrically connected to pin C16-20. In a similar manner, conductive foil 30 on the upper surface and conductive foil 32 on the lower surface are in electrical contact with pin C16-24. It is the selected patterns of interconnection of the clip pins that forms the selection of the turns ratio of the secondary winding. FIG. 5 is a 45 plan view of the mounting holes utilized in a printed circuit assembly for mounting the conductive clips. The hole pattern is drilled and the holes plated-through, thereby defining the clip positioning on printed circuit 50 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600

board 10. Once drilled and plated, the board 10 is ready for the selection of the clip interconnection patterns, and their formation on the upper and lower surfaces thereof.

FIG. 6 is an illustrative printed circuit interconnection connecting two conductive clips in parallel and connecting paralleled clips in series. This example of interconnection illustrates that clips C7 and C8 are coupled in parallel with each other and clips C5 and C6 are coupled in parallel with each other. These paralleled clip arrangements are coupled in series with each other. When sixteen clips are utilized to generate the secondary windings, this interconnection arrangement will result in the eight-turn center-tap secondary illustrated and described with FIG. 11a and FIG. 11b below. Clips C5, C6, C7 and C8 are shown dashed lined. Interior pins C7-20 and C8-20 are coupled together by conductive foils 34, which in turn is coupled via foil 36 to the S2 output terminal. This comprises the center-tap connection. Exterior pins C7-22, C7-24, C8-22 and C8-24 are coupled together via foil 38. In a similar manner, interior pins C5-20 and C6-20 are coupled together via foil 40. Exterior pins C5-22, C5-24, C6-22 and C6-24 are coupled in common via foil 42. These interconnections of the pairs of internal and external pins effectively results in the associated clips being coupled in parallel. Foil 44 couples interior pins C5-20 and C6-20 in series with exterior pins C7-22, C7-24, C8-22 and C8-24. In a similar manner foil 46 couples the exterior pins of clips C5 and C6 to the interior pins C4-20 and C3-20 of the next successive pair. This arrangement continues around the array of clips and forms the parallel-serial interconnection specified.

FIG. 7 is an illustrative schematic circuit diagram utilizing the inverter transformer. A Signal Source 50 is coupled across the terminals P1-P2 of the primary winding 16 of transformer TR. The Signal Source can be from a power field effect transistor driver circuit or other suitable source of signals. The secondary winding 52, made up of the clips and printed circuit connection pads, has output terminals S1 and S3, with a center-tap terminal S2. Diode D1 is coupled between terminal S1 and circuit junction 54, and diode D2 is coupled between terminal S3 and circuit junction 54. Output inductor L1 is coupled serially between circuit junction 54 and circuit junction 56. Capacitor CR is coupled across circuit junction 56 and circuit junction 58. The output signal is provided at output terminals 60 and 62. The use of the output signals would characteristically be that of input to regulator circuits (not shown) and ultimately distributing the rectified regulated D.C. voltage to associated circuitry.

FIG. 8 is an idealized waveform drawing of input signals supplied to the primary winding. The output signal available across the secondary of the transformer will be a similar waveform attenuated by the turns ratio selected for the particular embodiment.

FIG. 9a is a diagrammatic plan layout of eight clips arranged in parallel to form a single secondary turn winding on each side. For this embodiment, clips C1 through C8 are electrically connected in parallel by wires 70 at the inner pin terminals and by wires 72 at the outer pin terminals. Output terminal S1 is coupled by wire 74 to an outer terminal of clip C1. An inner terminal of clip C8 is connected by wire 76 to an output terminal of clip C9 which in turn is coupled to center-tap output terminal S2, by wire 78. In a similar manner, clips C9 through C16 are coupled in parallel by wires 80

at the inner terminals and by wires 82 at the outer pins. Output terminal S3 is coupled to the inner pin of clip C16 by wire 84. This arrangement results in a center-tap secondary winding of two turns. For the turns ratio specified, this embodiment is utilized in generating a 2 volt ultimate output signal level. It should be understood that the pin interconnection wires illustrated are accomplished by printed circuit interconnections in the preferred embodiment, and are accomplished in the manner previously described. It should be understood that this voltage level is dependent upon the input signal applied to the primary winding, in conjunction with the established turns ratio, and the rectifier and regulation circuitry with which the transformer would be associated.

FIG. 9b is a schematic diagram of a two-turns center-tap secondary. This configuration is a schematic of the diagrammatic representation of FIG. 9a. Elements described with reference thereto are given the same reference numerals. This same procedure will be followed in description of other embodiments.

FIG. 10a is a diagrammatic plan layout drawing of four clip-turns in parallel to form two turns on each side of the secondary. For this embodiment, secondary terminal S1 is coupled by wire 90 to the outer terminal of clip C1. Clips C1 through C4 are coupled in parallel, with the inner pins being coupled together by wires 92 and the outer terminals coupled together by wires 94. Clips C5 through C8 are coupled in parallel. The parallel coupling of clips C1 through C4 are coupled in series to the parallel coupling of clips C5 through C8 by wire 96. The inner terminals of clips C5 through C8 are coupled together by wires 98 and the outer terminals are coupled together by wire 100. The inner terminal of clip C8 is coupled to the outer terminal of clip C9 by wire 102, and the center-tap connection S2 is coupled thereto by wire 104. The other half of the winding arrangement is similarly arranged with clip C9 through C12 coupled in parallel by wires 106 at the inner terminals and wires 108 at the outer terminals. The serial connection to the next set of clips is made by wire 110 coupling the inner terminal of clip C12 to the outer terminal of clip C13. Finally, clips C13 through C16 are coupled in parallel by wires 112 at the inner terminals and wires 114 at the outer terminals thereof. The inner terminal of clip C16 is coupled via wire 116 to output terminal S3. This configuration is utilized to generate a 5 volt output.

FIG. 10b is a schematic diagram of a four-turn center-tap secondary. This schematic illustrates sets of four clips connected in parallel, with the sets coupled in series to form two secondary turns on each side of the secondary.

FIG. 11a is a diagrammatic plan representation of two clip-turns in parallel to form four turns on each side of the secondary. This embodiment provides a turns ratio for yielding a 12 volt output connection from the power supply with which associated. In this embodiment, pairs of clips are coupled in parallel and pairs are connected in series in a manner such that four secondary turns are formed on each half of the secondary winding. The wiring configuration is that described in detail with regard to FIG. 6. Secondary terminal S1 is coupled to the outer pin of clip C1 by wire 120. The clips are coupled in pairs in parallel by wires interconnecting the inner terminals and the outer terminals of the adjacent pairs. The pairs coupled in series with clips C1 and C2 are coupled via wire 122 to clips C3 and C4,

which in turn are coupled via wire 124 to clips C5 and C6, and in turn are coupled to clips C7 and C8 by wire 126. Clips C7 and C8 are coupled by wire 128 to clips C9 and C10, with this junction coupled to the center-tap terminal S2 by wire 130. The second half of the secondary is similarly arranged with clip C9 and C10 coupled via wire 132 to C11 and C12. These clips are coupled via wire 134 to clips C13 and C14, with the final pair connection being coupled via wire 136 to clips C15 and C16. The latter pair of clips are coupled via wire 138 to 10 output terminal S3.

FIG. 11b is a schematic diagram of an eight-turn center-tap secondary. This schematic diagram representation illustrates the schematic interrelationship of the serial interconnection of paralleled pairs of clips to form 15 the secondary winding for this embodiment. Elements previously referenced by reference numerals with regard to FIG. 11a bear the same reference numerals.

FIG. 12a is a diagrammatic plan view of serialized connection of sixteen clips providing eight turns on 20 each side. This embodiment is formed by alternately connecting inner terminals of adjacent clips interleaved with connection of external terminals of adjacent clip pairs. In this regard, terminal S1 is coupled via wire 140 to the external terminal of clip C1, with the internal 25 terminal of clip C1 coupled to the internal terminal of clip C2. The external terminal of clip C2 is coupled to the external terminal of clip C3. This configuration continues around the entire secondary with the internal terminal of clip C8 being coupled via wire 142 to the external terminal of clip C9. The latter terminal is coupled via wire 144 to output terminal S2. The serial interconnection of clips continues for clips C9 through C16 with the internal terminal of clip C16 coupled via wire 146 to output terminal S3. This embodiment is utilized 30 for generating a 24 volt interconnection when utilized in a power supply.

FIG. 12b is a schematic diagram of a sixteen-turn center-tap secondary. This schematic diagram illustrates the serial interconnection of adjacent clips to 40 form the sixteen-turn secondary.

The foregoing description of the different embodiments have referred to a wire interconnection. The preferred wiring interconnection is formed by printed circuit foil deposited on a printed circuit board with 45 which the improved transformer will be utilized. It can be seen, then, that the output voltage for the selected embodiment is determined by the printed circuit pattern of clip interconnection.

In the preferred embodiments, it is recognized that it 50 is desirable to provide an improved transformer that will be utilized with a rectifier circuit utilizing diodes. In such arrangements, it is necessary that the transformer provide sufficient voltage to overcome the forward voltage drop of associated diodes. Characteristically, the forward voltage drop for diodes of this type are in the order of 0.7 volt. For a 2 volt supply then, it is desirable that the turns ratio be such that the output is approximately 2.7 volts. Doubling the secondary turns then results in approximately 5.4 volts output which is 55 an approximation of the 5.7 volts that would be required for a 5 volt supply, when taking into account the forward drop of associated diodes.

Having described embodiments that satisfy the various stated purposes and objectives of the invention, and 60 without departing from the spirit and scope of the invention, what is intended to be protected by Letters Patent is set forth in the appended claims.

What is claimed is:

1. In a low leakage inductance high frequency transformer of the type having a toroidal core about a central axis normal to the plane thereof, with a first winding 5 distributed thereon, the toroidal core supported by a printed circuit board having a pattern of holes drilled therein and predetermined patterns of electrical interconnection between said holes for forming a second winding with a predetermined turns ratio about the toroidal core, the improvement wherein said second winding comprises:

a plurality of independently formed conductive clips for interconnecting predetermined ones of said holes, each of said clips including a substantially planar wedge-shaped electrically conductive body of a length sufficient to span a portion of said toroidal core and a portion of said first winding, each of said clips having first and second ends extending at predetermined angles to said body, said first and second ends having pins extending therefrom for permitting interconnection to said predetermined patterns of electrical interconnection on said supporting printed circuit board, said first ends, second ends, and body of pairs of said clips respectively disposed in abutting relationship; said clips further radially disposed with respect to said central axis.

2. The transformer as set forth as in claim 1 wherein said pins further comprise a single pin at said first end proximal to said central axis and at least two pins at said second end distal to said central axis for providing circuit connection points and mounting stability.

3. The transformer as set forth in claim 2 wherein said conductive body has a first width dimension at said first end and a second width dimension greater than said first width dimension at said second end.

4. An improved low leakage inductance high frequency inverter transformer of the type having a first and second winding on a toroidal core and a central axis normal to the plane therethrough comprising:

a printed circuit board having a predetermined array of clip mounting holes therein, each of said holes comprising electrically conductive means, and predetermined ones of said holes electrically coupled together by printed circuit conductive means for defining one of a plurality of available winding patterns for said second winding;

said first winding distributed on said toroidal core for receiving input signals;

a plurality of independently formed substantially planar wedge-shaped electrically conductive clips for forming said second winding, each of said clips including pins extending therefrom for engaging associated ones of said holes in said printed circuit board and making electrical interconnection therewith, each of said clips adapted for inductive coupling to a predetermined segment of said first winding;

each of said clips radially disposed with respect to said central axis.

5. An improved transformer as in claim 4 wherein predetermined ones of said clips are electrically connected in parallel by ones of said printed circuit conductive means on said printed circuit board and the paralleled groupings of said clips thus formed are electrically connected in series by other ones of said printed circuit conductive means mounted on

said printed circuit board, thereby defining the number of turns of said second winding.

6. An improved transformer as in claim 5 wherein each of said clips comprises:

an electrically conductive body of a length sufficient to span a portion of said toroidal core and a portion of said first winding, said body having first and second ends integrally formed and extending at predetermined angles thereto; ones of said pins integrally formed with said first and second ends respectively.

7. An improved transformer as in claim 6 wherein said body includes a single pin at said first end and at least two pins at said second end for providing circuit connection points and mounting stability.

8. An improved transformer as in claim 7 wherein said conductive body has a first width dimension at said first end and a second width dimension greater than said first width dimension at said second end.

9. An improved transformer as in claim 5 comprising: a first contiguous one-half of said plurality of clips coupled in parallel by first ones of a plurality of said printed circuit conductive means;

5

10

a second contiguous one-half of said plurality of clips coupled in parallel by second ones of said plurality of printed circuit conductive means; and third ones of said printed circuit conductive means for coupling said first and second contiguous one-half paralleled plurality of clips in series to form a two-turn secondary winding.

10. An improved transformer as in claim 5 wherein said clips are divided into four groups of contiguous ones of said clips, and said clips in each of said groups are coupled in parallel by first associated ones of said printed circuit conductive means; and second ones of said printed circuit conductive means are adapted for coupling said four groups of clips in series to form a secondary winding having turns of the number of said clips divided by four.

11. An improved transformer as in claim 5 wherein associated first ones of said printed circuit conductive means couple pairs of said clips in parallel; and second ones of said printed circuit conductive means couple said pairs in series to form a secondary winding having turns of the number of said clips divided by two.

12. An improved transformer as in claim 5 wherein ones of said printed circuit conductive means couple said clips in series to form a secondary winding having turns equal to the number of said clips.

* * * * *

30

35

40

45

50

55

60

65