

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199910947 B2
(10) Patent No. 756475

(54) Title
Compositions and methods for systemic delivery of oral vaccines
and therapeutic agents

(51)⁶ International Patent Classification(s)
A61K 039/08

(21) Application No: 199910947 (22) Application Date: 1998 . 10 . 16

(87) WIPO No: WO99/20306

(30) Priority Data

(31) Number 08/954302	(32) Date 1997 . 10 . 20	(33) Country US
(43) Publication Date :	1999 . 05 . 10	
(43) Publication Journal Date :	1999 . 07 . 08	
(44) Accepted Journal Date :	2003 . 01 . 16	

(71) Applicant(s)
Thomas Jefferson University

(72) Inventor(s)
Lance Simpson; Nikita Kiyatkin; Andrew Maksymowycz

(74) Agent/Attorney
SPRUSON and FERGUSON, GPO Box 3898, SYDNEY NSW 2001

(56) Related Art
ZHOU ET AL. (1995) BIOCHEMISTRY 34:15175-15181

OP1 DATE 10/05/99 APPLN. ID 10947/99
AOJP DATE 08/07/99 PCT NUMBER PCT/US98/21897

AU9910947

INT

<p>(51) International Patent Classification 6 : A61K 39/08</p>		<p>A1</p>	<p>(11) International Publication Number: WO 99/20306 (43) International Publication Date: 29 April 1999 (29.04.99)</p>
<p>(21) International Application Number: PCT/US98/21897 (22) International Filing Date: 16 October 1998 (16.10.98) (30) Priority Data: 08/954,302 20 October 1997 (20.10.97) US</p>		<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p>	
<p>(71) Applicant (for all designated States except US): THOMAS JEFFERSON UNIVERSITY [US/US]; 11th and Walnut Streets, Philadelphia, PA 19107 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): SIMPSON, Lance [US/US]; 122 Foxwood Drive, Blason Woods, Moorestown, NJ 08057 (US). KIYATKIN, Nikita [RU/US]; 123 Eaton Way, Cherry Hill, NJ 08003 (US). MAKSYMOWYCH, Andrew [US/US]; 1210 Rebel Hill Road, Gulph Mills, PA 19428 (US). (74) Agent: MONACO, Daniel, A.; Seidel, Gonda, Lavorgna & Monaco, P.C., Suite 1800, Two Penn Center Plaza, Philadelphia, PA 19102 (US).</p>		<p>Published <i>With international search report.</i></p>	
<p>(54) Title: COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY OF ORAL VACCINES AND THERAPEUTIC AGENTS (57) Abstract Compositions and methods of oral delivery of an antigen or therapeutic agent to the general circulation using a modified botulinum toxin which is capable of translocating from the gut to the general circulation but which is altered to be nontoxic are provided.</p>			

COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY OF ORAL VACCINES AND THERAPEUTIC AGENTS

Field of the Invention

The present invention relates to compositions and methods for systemic delivery of orally administered vaccines and therapeutic agents via a modified botulinum toxin, wherein said toxin maintains its ability to translocate across the gut wall but has been altered to be non-toxic.

Background of the Invention

Clostridial neurotoxins are the most potent protein toxins known. The neurotoxin produced from *Clostridium tetani* (tetanus toxin) is encountered by humans as a result of open wounds.

However, tetanus poisoning at least in industrial countries is no longer a major public health problem due to the availability and widespread use of a safe, effective and inexpensive vaccine. This vaccine is basically a formalin-inactivated culture supernatant from *C. tetani* grown in fermentors.

Botulinum neurotoxin (BoNT), which is produced by the organisms *Clostridium botulinum*, *Clostridium butyricum* and *Clostridium baratii*, is the potent etiologic agent associated with the disease botulism (Simpson, L. *Annu. Rev. Pharmacol. Toxicol.* 1986 **26**:427-453). Humans are usually exposed to this neurotoxin through food poisoning, although there are rare incidents of wound botulism. A similar vaccine to the tetanus

- 2 -

vaccine has been developed to provide protection from botulinum toxin poisoning. However, since there are seven different serotypes of botulinum toxin, complete protection with this inactivated toxin can be afforded only by making 5 seven distinct vaccines and combining them for administration. Presently, only five of the seven serotypes are represented in the botulinum toxin vaccine. Further, some of the serotypes are composed of strains that do not produce high levels of toxin in culture. Thus, growth, purification and 10 inactivation of the toxins for vaccine purposes is time consuming and expensive, owing to the high hazards associated with handling fully active toxin (Clayton et al. *Infection and Immunity* 1995 63(7):2738-2742). At this time this vaccine is only available through the Center of Disease Control for 15 primarily experimental use.

Typically, botulism results from ingestion of food that is tainted with the toxin, or by the ingestion of food contaminated with organisms that can manufacture the toxin in the gut. Regardless of origin, botulinum toxin is synthesized 20 as a relatively nontoxic single chain polypeptide with a molecular weight of approximately 150 kDa. To become fully toxic, it must undergo posttranslational processing, during which the molecule is cleaved by a protease to yield a dichain structure in which a heavy chain (approximately 100,000 25 daltons) is linked by a disulfide bond to a light chain (approximately 50,000 daltons). The dichain molecule is the holotoxin that accounts for biological activity. BoNT translocates from the gut into the general circulation (lymph and blood) wherein it is then distributed to cholinergic nerve 30 endings which are the target sites of toxin action. The toxin enters these nerves, where it acts as a zinc-dependent endoprotease to cleave polypeptides that are essential for exocytosis (Montecucco, C. and Schiavo, G. *Mol. Microbiol.* 1994 13:1-8). Cleavage of these polypeptides leads to 35 blockade of transmitter release and paralysis.

The heavy chain of the toxin is believed to be essential for binding and translocation of the toxin from the outside to the inside of the cholinergic nerve endings, while the light chain possesses the zinc-dependent endoprotease activity that accounts for the ability of the toxin to poison cholinergic nerve endings (Neimann et al. *Behring Inst. Mitt.* 1991 **89**:153-162). Accordingly, 5 vaccines against botulism comprising a nontoxic 50 kDa carboxyterminal fragment of *Clostridium botulinum* have been described. LaPenotiere et al. *Toxicon* 1995 **33**(10):1383-6 and Clayton et al. *Infection and Immunity* 1995 **63**(7):2738-2742. Further, it has been suggested that this highly 10 selective neurotoxin and tetanus toxin may be converted into nontoxic therapeutic tools that can be applied in delivery of drugs, hormones, enzymes or antiviral substances to the central nervous system.

Summary of the Invention

An object of the present invention is to provide a modified botulinum toxin which maintains its 15 ability to translocate from the gut into the general circulation but which is nontoxic. The modified botulinum toxin can be used as an oral vaccine for antigenic peptides including botulinum toxin and for the oral delivery of other therapeutic agents to the general circulation.

According to a first embodiment of the invention, there is provided a modified botulinum toxin comprising a botulinum toxin capable of translocating from the gut to the general circulation which is, wherein the toxin is altered to be nontoxic by mutating or deleting amino acids in the light chain of the toxin so as to substantially eliminate the zinc-dependent metalloendoprotease activity of the 20 light chain.

According to a second embodiment of the invention, there is provided the modified botulinum toxin in accordance with the first embodiment of the present invention further comprising a therapeutic agent.

According to a third embodiment of the invention, there is provided an oral vaccine against 25 botulism comprising the modified botulinum toxin in accordance with the first embodiment of the present invention and a pharmaceutically acceptable vehicle.

According to a fourth embodiment of the invention, there is provided a method of orally delivering a therapeutic agent to an animal comprising administering to the animal a modified botulinum toxin in accordance with the second embodiment of the present invention.

30 According to a fifth embodiment of the invention, there is provided the modified botulinum toxin in accordance with the second embodiment of the present invention when used to orally deliver a therapeutic agent to an animal.

3a

According to a sixth embodiment of the invention, there is provided the use of the modified botulinum toxin in accordance with the second embodiment of the present invention for the manufacture of a medicament for oral delivery of a therapeutic agent to an animal.

Brief Description of the Drawings

5 Figure 1 is diagram of the native botulinum toxin. This figure illustrates the light chain with the zinc binding motif linked by a disulfide bond to the heavy chain of the native toxin.

Figure 2 is a diagram illustrating an example of a modified botulinum toxin of the present invention. This figure illustrates the light chain with a modified zinc

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819<br

- 4 -

binding motif linked to the intact heavy chain of botulinum toxin.

Detailed Description of the Invention

One of the major challenges of modern medicine is the development of drugs that can be administered by the oral route. The development of oral peptide vaccines that evoke systemic immunity has proven to be especially problematic. Difficulties associated with the development of oral peptide vaccines include: degradation upon exposure to conditions of low pH and proteolytic enzymes found in the human gut; the antigenic domain of the agent which produces the illness being too large to allow for significant non-specific diffusion from the lumen of the gut to the general circulation; and an inability to design peptide vaccines that will bind exploitative to receptors in the gut and undergo active transport to the general circulation. Despite these difficulties, considerable effort is being invested in the search for oral vaccines. For example, the concept of using engineered food such as a potato or a banana as a vector for widescale vaccination has recently been proposed. However, engineering the antigenic peptide into a food which is then ingested does not overcome these difficulties. Accordingly, there is a need for drug delivery vehicles which will reliably and reproducibly translocate an antigenic peptide or other therapeutic agent from the gut to the general circulation.

The present invention provides a modified botulinum toxin which can be used as an oral delivery vehicle for antigenic peptides including, but not limited to, botulinum toxin and other therapeutic agents to the general circulation. It has now been found that botulinum toxin translocates from the gut to the general circulation by binding to serospecific receptors on the mucosal side of polarized gut cells grown in a monolayer. Bound toxin is actively transported across the cells and delivered intact and unmodified on the serosal side

of the monolayers. It has been suggested that auxiliary proteins such as hemagglutinin, which is a component of the non-covalent complex of proteins including the botulinum toxin which is released by *Clostridium*, may mediate binding and 5 transport of the toxin across the gut wall. However, experiments performed with a recombinant form of the holotoxin now demonstrate that the botulinum toxin itself possesses the binding domain that recognizes receptors on the surface of gut cells. Further, it has now been demonstrated that 10 modifications can be made to the light chain of the toxin to render it nontoxic without altering the capability of the protein to translocate from the gut to the general circulation. Accordingly, for the purposes of the present invention, by "modified botulinum toxin" is meant a botulinum 15 toxin which maintains its capability of translocating from the gut to the general circulation but which is nontoxic. Alterations which will render the botulinum toxin nontoxic include mutations to the amino acid sequence of the light chain and deletion of the light chain or portions thereof. 20 In a preferred embodiment, mutations are made to the zinc binding motif or the substrate binding motif of the light chain. For the purposes of this invention, by "nontoxic" it is meant that exposure of the cholinergic nerve endings to the modified botulinum toxin does not result in blockade of 25 transmitter release in the nerve endings and paralysis. The effects of alterations rendering the botulinum toxin nontoxic on the ability of the toxin to translocate from the gut to the general circulation can be routinely performed in accordance with the teachings provided herein so that one of skill may 30 identify modified botulinum toxins of the present invention. Included within this definition of modified botulinum toxins are botulinum toxins which further comprise a selected antigen for a protein other than botulinum toxin or a therapeutic agent.

- 6 -

For example, compositions were prepared comprising a botulinum neurotoxin in which the zinc binding motif of the light chain of the holotoxin was inactivated. The modified toxin is nontoxic because the holotoxin does not retain the ability to cause neuromuscular blockade, but the modification to the light chain does not adversely affect the ability of the remainder of the toxin molecule to escape the lumen of the gut into the general circulation. In this preferred embodiment at least three of the amino acids comprising the 10 zinc binding motif of the light chain were modified. Specifically, the amino acids His (at position 229), Glu (at position 230), and His (at position 233) of the native sequence were substituted with amino acids Gly, Thr and Asn, respectively, resulting in SEQ ID NO: 1. The nucleic acid 15 sequence encoding this modified botulinum toxin is depicted as SEQ ID NO: 2. These amino acid substitutions eliminated the ability of the holotoxin to bind catalytic zinc or other divalent cations.

Experiments have also been performed demonstrating that 20 unnicked or single chain botulinum toxin also binds and is transported across the gut wall. Accordingly, modified botulinum toxins of the present invention also include compositions wherein the nicking site has been eliminated.

The biological activity of a modified botulinum toxin 25 of the present invention was determined via an *in vivo* toxicity test, *in vitro* activity on the mouse phrenic nerve-hemidiaphragm preparation, and enzymatic activity in crude synaptosome preparations. For these experiments, the modified botulinum toxin, referred to herein as modified recombinant 30 or modified rBoNT/C, was generated from botulinum toxin serotype C using site-directed mutagenesis to inactivate the zinc binding motif from the light chain of the holotoxin that is essential for endoprotease activity. However, other methods of peptide synthesis including, but not limited to, 35 biochemical techniques, such as enzymatically cutting a

- 7 -

peptide and cross linking the resulting fragments which are performed routinely by those of skill in the art can also be used. Further, given the structural and functional similarities of the botulism serotypes, one of skill could 5 routinely prepare modified botulinum toxins from serotypes other than botulinum serotype C. For example, all serotypes of botulinum toxins are synthesized as relatively inactive precursors with molecular weights of approximately 150,000. In each case, the precursors must be "nicked" by a protease 10 to generate a dichain molecule having a heavy chain (100,000 kDa) linked by a disulfide bond to a light chain (50,000 kDa). Every serotype of botulinum toxin acts preferentially on cholinergic nerve endings to block transmitter release, with the heavy chain acting principally as a tissue-targeting 15 domain to direct the toxin to cholinergic nerve endings, and the light chain acting inside the nerve ending to block transmitter release. It is the light chain of every serotype that acts as a zinc-dependent metalloendoprotease to cleave one or more members of a family of polypeptides that is 20 essential for transmitter release. In every serotype, there is a zinc binding motif, His-Glu-X-X-His (SEQ ID NO: 3) that is essential for enzymatic activity. Modification of the binding motif invariably causes loss of enzymatic activity. Further, alignment of the nucleic acid and amino acid 25 sequences for a portion of each serotype encompassing the region of the zinc binding motif demonstrates a high degree of sequence identity in the regions adjacent to and comprising the zinc binding motif. Thus, examples using botulinum serotype C are representative of the entire class.

30 *In vivo* toxicity testing of modified rBoNT/C holotoxin demonstrated that the modified botulinum toxin with mutations in the zinc binding motif produced no acute toxicity in mice during a 16 week monitoring period following administration, even at high doses (10 μ g per animal, i.p.). No apparent 35 neurotoxicity or other obvious harmful effects were observed

- 8 -

in any of the animals. In contrast, mice injected with 100 ng i.p. native BoNT/C died within 2 to 2.5 hours of injection.

The *in vitro* toxicity of modified BoNT/C holotoxin was also compared with that of native BoNT/C in mouse phrenic nerve-hemidiaphragm preparations. It was found that the addition of the modified botulinum toxin to phrenic nerve-hemidiaphragm preparations did not produce neuromuscular blockade (1×10^{-10} M; n=4). By contrast, addition of native BoNT/C (1×10^{-12} M; n=8) invariably produced paralysis of transmission (mean \pm S.E.M. = 152 ± 17 min).

The ability of this modified botulinum toxin to evoke an immune response was also tested after oral (p.o.) administration and subcutaneous (s.c.) injection. As determined by immunoblot analysis, both p.o. and s.c. administration of modified rBoNT/C holotoxin evoked systemic antibody production. Accordingly, the modified botulinum toxin of the present invention maintained its ability survive transit through the gut and to undergo active translocation out of the gut. This is further evidenced by the finding that s.c. administration of a non-homogeneous preparation of the modified botulinum toxin, which contained small amounts of unrelated proteins, is able to evoke an immune response against these unrelated proteins, while p.o. administration evoked antibody only against the modified botulinum toxin.

The protective effect of the antibodies elicited by p.o. and s.c. administration of the modified botulinum toxin was then demonstrated in both serum neutralization and *in vivo* toxicity tests. Regardless of the route of administration, serum from animals immunized with modified botulinum toxin inactivated a large dose (~10,000 LD₅₀) of native BoNT/C. Similarly, in *in vivo* toxicity tests, immunization with the modified botulinum toxin by either the p.o. or s.c. route produced a dramatic reduction in the potency of a subsequent injection of native toxin. Animals given the modified botulinum toxin by the oral route of administration had

detectable antibodies in serum for at least three months. Further, animals that received the modified botulinum toxin either p.o. or s.c. were protected against native BoNT/C challenge three months after the third booster.

5 Accordingly, results from these experiments demonstrate that a modified botulinum toxin can be constructed in accordance with the teachings provided herein that is nontoxic but which retains the ability to translocate from the gut to the general circulation and to evoke protective antibodies. 10 Further, compositions comprising a modified botulinum toxin of the present invention are clearly effective as oral vaccines against botulism in animals.

In addition, because the modified botulinum toxins of the present invention retain their ability to translocate from 15 the gut and to be delivered intact to the general circulation, these modified botulinum toxins can be used as delivery vehicles for oral administration of antigens to proteins other than botulinum toxin and therapeutic agents to the general circulation. There are various ways in which the modified 20 botulinum toxin could be used as a carrier for oral vaccines. For example, because the inactivation of the zinc binding motif of the light chain does not adversely affect the toxin's ability to translocate out of the gut, the zinc binding motif of the native botulinum toxin can be replaced with a selected 25 antigen for a different protein, i.e. a protein other than botulism, to produce an oral vaccine against this different protein. Alternatively, well known techniques of protein chemistry and molecular biology can be used to attach the selected antigen or a portion thereof to a modified botulinum 30 toxin. The resulting modified botulinum toxin would not only be nontoxic, but also retain its ability to translocate from the gut to the general circulation so that the selected antigen, when administered orally, would reach the general 35 circulation to evoke a systemic immune response against the protein. Examples of vaccines which could be administered

- 10 -

orally with the modified botulinum toxin include, but are not limited to, vaccines for *Bacille Calmette-Guerin*, cholera, diphtheria, hepatitis B, measles, meningitis, mumps, pertussis, plague, polio, rabies, rubella, tetanus, typhoid, 5 and yellow fever. The oral vaccine can be administered individually or in combination, such as for DTP (diphtheria, tetanus, pertussis). The ability to deliver an oral vaccine is especially important for areas in which medical personnel are not readily available. Moreover, an oral vaccine of the 10 present invention would represent an important economic advantage in addition to diminishing the need for skilled personnel as it would eliminate costs associated with syringes used for injection and/or for the disposal of used syringes.

Formulations of oral vaccines of the present invention 15 preferably comprise the modified botulinum toxin in a pharmacologically acceptable carrier, such as sterile physiological saline, sterile saline with 0.1% gelatin, or sterile saline with 1.0 mg/ml bovine serum albumin. Alternatively, the modified botulinum toxin of the present 20 invention can be genetically engineered into a plant so that food produced by the plant such as a potato or a banana can serve as a vector for widespread vaccination. Methods of genetically engineering plants to express a foreign peptide are well known in the art as exemplified by PCT/US96/09558, 25 filed June 6, 1996.

The modified botulinum toxins of the present invention are also useful in the construction of chimeric oral therapeutics. In this embodiment, a therapeutic agent can be linked to modified botulinum toxin to yield two broad groups 30 of orally administered molecules: (1) new drugs with biologically stable linkages, and (2) conjugate prodrugs having biologically or chemically unstable linkages, which dissociate from the carrier upon reaching the blood. Examples of chimeric therapeutic techniques are described generally by 35 Lautenslager, G.T. and Simpson, L.L., "Chimeric Molecules

Constructed with Endogenous Substances," *Advances in Molecular and Cell Biology*, Vol. 9, pp. 233-262, JAI Press, Inc. (1994). For example, a therapeutic peptide could be attached to a modified botulinum toxin, thus creating an agent which 5 possesses the characteristics of the substituent yet is capable of being administered orally. One example would be the creation of an orally administered thrombolytic agent. A fusion protein constructed by combining P-selectin and tissue plasminogen activator (TPA) is a promising chimera 10 which expresses thrombolytic activity and targets to the thrombi. This chimera must be introduced into the blood stream. However, using either molecular biology or protein chemistry, this 'first order' chimeric molecule could be attached to a modified botulinum toxin of the present 15 invention to create a higher order chimera which possesses the added advantage of being delivered to the general circulation by oral administration. Another example is in the design of an orally administered anti-neoplastic drug. Various antineoplastic drugs which exploit the cytotoxic properties 20 of one molecule, fused to a portion of another which functions to specifically target the toxin have been disclosed. A more recent example employs the amino-terminus of *Pseudomonas* exotoxin (PE) fused to epidermal growth factor (EGF), resulting in chimera EGF-PE which can be used as a cytotoxic 25 agent towards EGF-receptor-bearing cancer cells. Linkage of this chimera to a modified botulinum toxin of the present invention would result in creation of a higher order chimera which can be administered orally.

The general concepts for use of a modified botulinum 30 toxin as a carrier for vaccines or other therapeutic agents are the same for human and for non-human animals, with one exception. All serotypes of botulinum toxin are not likely to be equally efficacious as carriers for drugs in all species. Clinical evidence suggests that humans are 35 especially sensitive to the effects of serotypes A, B, and E.

- 12 -

This may relate to the efficiency with which these three serotypes are absorbed from the gastrointestinal system. Thus, serotypes A, B, and E would be preferred carriers of therapeutic agents for humans.

5 On the contrary, most non-human animals are particularly sensitive to serotype C. This suggests that as to veterinary medicine, the preferred carrier of therapeutic agents for non-human animal use would be serotype C. Examples of animal vaccines which could be administered orally with the modified 10 botulinum toxin include, but are not limited to, ones for adenovirus type 2, *Bordetella bronchispetica*, botulism, calicivirus, *Chlamydia psittaci*, clostridial diseases, such as *Clostridium Perfringens* type C, coronaviruses, distemper, 15 equine encephalomyelitis, *Escherichia coli*, feline infectious peritonitis, feline leukemia virus, feline panleukopenia, hepatitis, leptospirosis, parainfluenza virus, parvoviruses, rabies, rhinotracheitis virus, and tetanus.

The following examples are provided for illustrative purposes only and are not intended to limit the invention.

20 **EXAMPLES**

Restriction endonucleases and DNA modifying enzymes were purchased from New England Biolabs (Beverly, MA). The expression vector pQE-30 and nickel-nitrilotriacetic acid (Ni-NTA) Agarose were purchased from QIAGEN (Chatsworth, CA). 25 Monoclonal antibodies (mAb) specific for the 6xHis affinity tag were purchased from QIAGEN. Anti-syntaxin mAbs (S-0664; anti-HPC-1) were purchased from SIGMA (St. Louis, MO), and horse anti-BoNT/C antibodies was obtained from the Centers for Disease Control (CDC, Atlanta, GA). Plasmids pCL8 and pCH3 30 carrying EcoRI fragments of BoNT/C DNA have been described previously by Kimura et al. *BBRC* 1990 171:1304-1311.

- 13 -

**Example 1: Construction of expression vectors for synthesis
rBoNT/C holotoxin**

A schematic representation of the native botulinum toxin is depicted in Figure 1. A schematic representation of a 5 modified botulinum toxin, rBoNT/C is depicted in Figure 2. The nucleic acid and protein sequences for the modified botulinum toxin, rBoNT/C are depicted in SEQ ID NO: 2 and SEQ ID NO: 1, respectively.

Techniques for DNA fragment isolation, repair of 10 overhanging ends with the Klenow fragment of DNA polymerase I, and ligation with T4 ligase are known to those skilled in the art and have been described, for example, by Sambrook et al., 1989 *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 15 All cloning steps and expression were performed in *Escherichia coli* strain M-15 (QIAGEN) containing the pREP4 repressor plasmid.

The gene encoding a recombinant modified botulinum toxin was assembled from three separate toxin fragments (fragments 20 I, II and III) generated using PCR and ligated into vector pQE-30 resulting in plasmid pQE-TC1. Initially, a DNA fragment coding for the amino-terminal portion of BoNT/C (fragments I and II) was amplified from plasmid pCL8 in two sequential steps to generate pBot C2. DNA fragment I (nt 4- 25 689) was amplified using the following pair of oligonucleotide primers:

(forward) 5'-CCCAATAACAATTAACAACTTTAAT-3' (SEQ ID NO: 4)
KpnI
(reverse) 5'-TTTGGTACCCATTAAAATTAGTATTGGATCCAT-3' (SEQ ID NO:
30 5)

One cytosine was added to the 5'-end of the forward primer to provide for reconstruction of the BamHI restriction site, as well as to clone rBoNT/C DNA in frame with the pQE-30 initiation of translation methionine.

- 14 -

A *Kpn*I restriction site was included in the reverse primer to generate amino acid mutations His²²⁹-Gly and Glu²³⁰-Thr at the 3' end of fragment I. Amplified fragment I was treated with T4 polymerase, cut with *Kpn*I and inserted 5 between the Klenow filled-in *Bam*HI and *Kpn*I sites of the expression vector pQE-30, resulting in plasmid pBot C1. DNA fragment II (nt 689-1633) was then amplified using oligonucleotide primers:

*Kpn*I

10 (forward) 5'-TTTGGTACCCTTAATAATGCAATGCATAATTTATATGGA-3' (SEQ ID NO: 6)

*Eco*RI

(reverse) 5'-GAATTCAAATAATCAACATTTGAG-3' (SEQ ID NO: 7)

In the forward primer nucleotide changes were introduced 15 to create a *Kpn*I site and generate amino acid mutations His²²⁹-Gly, Glu²³⁰-Thr, and His²³³-Asn at the 5' end of fragment II. The reverse primer was complementary to the BoNT/C sequence and contained an internal *Eco*RI site at nucleotide position 1633. Amplified fragment II was treated with T4 20 polymerase, cut with *Kpn*I and inserted between the *Kpn*I and Klenow filled-in *Sal*II sites of pBot C1. The resulting plasmid pBot C2 contained the 5'-terminal fragment of BoNT/C (nt 4-1633) in frame with the ATG codon and 6xHis affinity sequence of pQE-30.

25 DNA fragment III (nt 1633-3873) coding for the carboxy-terminal domain of BoNT/C was amplified from plasmid pCH3 using oligonucleotide primers

*Eco*RI

forward 5'-TTTGAATTCTTATTATTACCTAGAATC-3' (SEQ ID NO: 8)

30 *Sac*I

reverse 5'-TTTGAGCTTTATTCACTTACAGGTACAAAC-3' (SEQ ID NO: 9)

The forward primer was complementary to the BoNT/C sequence and contained an internal *Eco*RI site at position

- 15 -

1632. In the reverse primer, a *SacI* restriction site was introduced immediately downstream of the stop codon. Amplified fragment III was digested with *EcoRI* and *SacI* and cloned separately into *EcoRI* and *SacI* digested plasmid pQE-30 5 generating plasmid pBot C3. Finally, the DNA encoding a full-size, modified botulinum toxin was reconstructed by introducing the *EcoRI*-*EcoRI* fragment (nt -88 to +1632) from plasmid pBot C2 into *EcoRI* digested, calf intestine alkaline phosphatase dephosphorylated plasmid pBot C3 to give plasmid 10 pQE-TC1. All PCR fragments were reanalyzed by DNA sequencing.

The oligonucleotide primers were designed to engineer a *KpnI* restriction site in the segment of DNA encoding the zinc-binding motif. The creation of the *KpnI* restriction site in this DNA segment enabled the mutation of three amino acids 15 (*His*²²⁹-*Gly*; *Glu*²³⁰-*Thr* and *His*²³³-*Asn*) that are essential for zinc binding, and provided for the reconstruction of a DNA encoding a modified botulinum toxin without preliminary cloning of wild type BoNT/C DNA. The recombinant modified botulinum toxin, synthesized from plasmid pQE-TC1, contained 20 eleven additional amino acids, Arg-Gly-Ser-His-His-His-His-His-Gly-Ser (SEQ ID NO: 10), at the amino-terminus.

Example 2 Optimization of neurotoxin expression

PCR was used to modify a sequence of the pQE-30 vector preceding the structural gene encoding modified rBoNT/C. A 25 new forward primer, 5'-CGGTACCATGCCAATAACAATTAACAACTTT-3' (SEQ ID NO: 11), containing ten additional nucleotides on the 5'-end and a new reverse primer,

*Bgl*III

5'-AGCTATAGATCTATAATAATCCAA-3'

30 (SEQ ID NO: 12) covering the *Bgl*III restriction site at position 892 of the BoNT/C sequence (Kimura et al. *Biochem. Biophys. Res. Comm.* 1990 171:1304-1311) were used to reamplify a DNA fragment coding for the amino-terminal portion of the

- 16 -

rBoNT/C. The amplified fragment was treated with T4 polymerase, cut with *Bgl*II and inserted between the Klenow filled in *Bam*HI and *Bgl*II sites of pQE-TC1 to give plasmid pQE-TC2.

5 Example 3 Expression and purification of modified rBoNT/C holotoxin

Cultures were grown in Lennox L broth at 37°C, with shaking, to an A_{600} of 0.6-0.8. Isopropyl- β -D-thiogalactopyranoside was added to 1.0 mM final concentration, 10 and incubation continued for an additional 5 hours. Bacteria from 1 liter of induced culture were harvested by centrifugation at 4°C and resuspended in 20 ml of 50 mM sodium phosphate buffer, pH 7.4, with 300 mM NaCl. The cell suspension was lysed, on ice, by sonication, with 2 pulses of 15 1 minute duration each at 75% power, using a Model 60 Sonic Dismembrator (Fisher Scientific, Malvern, PA). Lysates were centrifuged at 20,000 \times g for 30 minutes at 4°C. The clarified supernatants were mixed with 1 ml of packed Ni-NTA resin, incubated for 1 hour at 4°C on a rotator and finally 20 poured into a 25 ml column. The column was washed with 30 volumes of washing buffer (50 mM sodium phosphate, pH 6.0, 300 mM NaCl, 25 mM imidazole). Bound proteins were eluted with elution buffer (50 mM sodium phosphate, pH 4.5, 300 mM NaCl). Purified proteins were analyzed on sodium dodecylsulfate 25 polyacrylamide gels (SDS-PAGE).

Example 4 Immunoblot Analysis

The ability of *E.coli* to drive expression of a recombinant modified botulinum toxin from plasmid pQE-TC1 was examined by immunoblot analysis of cell extract. Proteins for 30 analysis by Western blotting were separated on 10% polyacrylamide gels according to the method of Laemmli, U.K. *Nature* 1970 22:680-685, transferred to nitrocellulose, and

- 17 -

processed for detection of immunoreactive proteins containing the 6xHis affinity tag. Incubations with primary antibodies were performed for 1 hour at 37°C with a 1:2000 dilution of the anti-6xHis affinity tag mAb, or with anti-BoNT/C 5 antibodies. Membranes were developed using enhanced chemiluminescence according to manufacturers instructions (ECL; Amersham Corp., Arlington Heights, IL). The synthesis of recombinant proteins was induced with IPTG and aliquots of solubilized cells were run on SDS-PAGE.

10 Western blot analysis with anti-6xHis tag or anti-BoNT/C antibodies revealed an extremely low level of expression. Accordingly, a new plasmid was constructed which did not contain the stretch of four cytosine nucleotides which originated from cloning of neurotoxin DNA into the *Bam*HI site 15 of pQE-30 vector and designated pQE-TC2. Western blot analysis with anti-6xHis tag antibody revealed that pQE-TC2 was more efficient at driving the synthesis of modified rBoNT/C holotoxin. Indeed, 1-2 mg of modified rBoNT/C holotoxin could be purified from 1L of Lennox broth.

20 Modified rBoNT/C holotoxin was synthesized in soluble form, without visible degradation, but unlike *Clostridium botulinum* the *E. coli* did not provide for efficient nicking of modified rBoNT/C holotoxin. Only trace amounts of L-chain 25 were detectable in modified rBoNT/C holotoxin by Coomassie staining or Western blotting. However, modified rBoNT/C holotoxin was efficiently nicked with immobilized TPCK-trypsin (Pierce, Rockford, IL) and produced heavy and light chains of the correct molecular weight. Modified rBoNT/C holotoxin synthesized from pQE-TC2 contained fourteen additional amino 30 acids (Arg-Gly-Ser-His-His-His-His-His-Gly-Ser-Gly-Thr (SEQ ID NO: 13)) at the amino terminus. The 6xHis sequence within this fourteen amino acid segment was used for purification and subsequent detection of synthesized protein. The recombinant protein produced in this manner was purified 35 by affinity chromatography on Ni-NTA resin using the 6xHis

affinity tag. Specifically bound protein was eluted with low pH (elution buffer pH 4.5) and analyzed on SDS-PAGE. Analysis of protein eluted from the affinity resin revealed that toxin could be purified to a homogeneity of 80% - 90%. The purified 5 modified recombinant BoNT/C or modified rBoNT/C was used for all studies presented herein.

Example 5 Bioassay of recombinant proteins

As described in the examples that follow, the purified recombinant proteins was assayed for biological activity using 10 an *in vivo* toxicity test, *in vitro* activity on the mouse phrenic nerve-hemidiaphragm preparation, and enzymatic activity in crude synaptosome preparations.

A. In vivo toxicity testing

The toxicity of modified rBoNT/C holotoxin was tested. 15 Modified rBoNT/C holotoxin purified by elution from the histidine affinity resin was diluted in PBS including 1 mg/ml BSA and injected intraperitoneally (i.p.) into mice. The rBoNT/C holotoxin was administered in a 100 μ l aliquot of PBS-BSA at a concentration of 10 μ g per animal having an average 20 weight of 25 g. The animals were monitored for a total of 16 weeks to rule out any non-specific toxicity.

B. In vitro toxicity testing

Toxicity was bioassayed on the mouse phrenic nerve-hemidiaphragm preparations using the method of Simpson et al. 25 *J. Pharmacol. Exp. Ther.* 1990 254:98-103. Tissues were excised and suspended in physiological buffer that was aerated with 95% O₂, 5% CO₂ and maintained at 35°C. The physiological solution had the following composition (millimolar): NaCl, 137; KCl, 5; CaCl₂, 1.8; MgSO₄, 1.0; NaHCO₃, 24; NaH₂PO₄, 1.0; 30 D-glucose, 11; and gelatin, 0.01%. Phrenic nerves were stimulated continuously (1.0 Hz; 0.1-0.3 millisecond duration), and muscle twitch was recorded. Toxin-induced

- 19 -

paralysis was measured as a 50% reduction in muscle twitch response to neurogenic stimulation.

C. Cleavage of substrate

Synaptosomes (1 mg/ml) were prepared according to the 5 method of Rosahl et al. Cell 1993 75:661-670. The synaptosomes were incubated in the presence of modified rBoNT/C holotoxin (100 nM) for 90 minutes at 37°C in Tris-buffered saline (TBS) or in TBS containing 10 mM dithiothreitol. In parallel experiments, synaptosomal 10 membranes were incubated in the presence and absence of native BoNT/C. The proteins were separated on 15% SDS-PAGE, transferred to nitrocellulose, and processed for detection of immunoreactive proteins with anti-syntaxis mAb.

15 **Example 6 Serum antibody response in mice immunized with modified rBoNT/C holotoxin**

Swiss-Webster female mice weighing approximately 25 grams (Ace Animals, Boyertown, PA) were immunized in parallel experiments either, s.c. or p.o., with rBoNT/C holotoxin or 20 TBS, to assess the ability of this peptide to evoke a serum immune response.

A. Immunization and sample collection

For s.c. injection each animal received 2 μ g protein in 0.1 ml of elution buffer. For the oral administration route, 25 each animal was fed 4 μ g of protein in 0.2 ml elution buffer administered through an intragastric feeding needle. Mice were immunized on day zero, and boosters were given on days 14, 28, and 42. Samples of serum from identically immunized mice were collected and pooled on days 21, 35, and 49 after 30 immunization. For collection of serum, mice were bled with heparinized capillary tubes at the retro-orbital plexus while under isoflurane anesthesia.

B. Assay of serum for antibody production

Sera from immunized or control mice were assayed for antibodies using immunoblot analysis for immunoreactivity to unnickled modified botulinum toxin. Recombinant antigen 5 (modified botulinum toxin; 0.1 μ g/lane) was separated by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked with 5% non-fat powdered milk in TBS, cut into strips and processed for detection of immunoreactive proteins using various serum samples. Primary incubations were 10 performed overnight (18 hours) at room temperature with a 1:1000 diluted serum. A secondary horseradish peroxidase-labeled anti-mouse IgG was used at a 1:10,000 dilution for 1 hour at room temperature. After extensive washing, membranes were developed using ECL (Amersham).

15 Example 7 Neutralizing activity of serum from immunized mice

Experiments were performed to assess the ability of various serum samples to neutralize native BoNT/C. Three different sources of serum were tested, as follows: 1) non-immune serum, 2) serum from animals that had received modified 20 rBoNT/C holotoxin p.o., and 3) serum from animals that had received modified rBoNT/C holotoxin s.c. Native BoNT/C (10 μ l, 100 ng) was incubated with 10 μ l of pre-immune or immune serum at 37°C for 1 hour, or with PBS-BSA. Subsequently, the incubation mixture was diluted with 80 μ l PBS including 1 25 mg/ml BSA and injected i.p. The mice were monitored for 48 hours to assess any residual toxicity of the various mixtures.

Example 8 Protection of mice against challenge with native BoNT/C

Three months after administration of the third booster, 30 mice immunized with rBoNT/C were challenged with an i.p. dose of 100 ng native BoNT/C per animal. The survival of challenged animals was monitored for 5 days.

- 21 -

The disclosures of each and every, patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety.

While the invention has been disclosed with reference 5 to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent 10 variations.

EDITORIAL NOTE - NO: 10947/99

Sequence listing pages 1-10 is part of the description.

The claims are to follow.

SEQUENCE LISTING

<110> SIMPSON, LANCE

KIYATKIN, NIKITA

MAKSYMOWYCH, ANDREW

<120> COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY OF ORAL
VACCINES AND THERAPEUTIC AGENTS

<130> JEFF-0256

<140>

<141>

<150> 08/954, 302

<151> 1997-10-20

<160> 13

<170> PatentIn Ver. 2.0

<210> 1

<211> 1291

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Modified
Botulinum Toxin

<400> 1

Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp Pro Val Asp Asn
1 5 10 15Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr Leu Ala Asn Glu
20 25 30Pro Glu Lys Ala Phe Arg Ile Thr Gly Asn Ile Trp Val Ile Pro Asp
35 40 45Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn Lys Pro Pro Arg Val
50 55 60Thr Ser Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr Leu Ser Thr Asp
65 70 75 80Ser Asp Lys Asp Thr Phe Leu Lys Glu Ile Ile Lys Leu Phe Lys Arg
85 90 95

Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr Arg Leu Ser Thr
100 105 110

Asp Ile Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile Asn Thr Phe Asp
115 120 125

Phe Asp Val Asp Phe Asn Ser Val Asp Val Lys Thr Arg Gln Gly Asn
130 135 140

Asn Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val Ile Ile Thr Gly
145 150 155 160

Pro Arg Glu Asn Ile Ile Asp Pro Glu Thr Ser Thr Phe Lys Leu Thr
165 170 175

Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala Leu Ser Ile Ile
180 185 190

Ser Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn Ala Thr Asn Asp
195 200 205

Val Gly Glu Gly Arg Phe Ser Lys Ser Glu Phe Cys Met Asp Pro Ile
210 215 220

Leu Ile Leu Met Gly Thr Leu Asn Asn Ala Met His Asn Leu Tyr Gly
225 230 235 240

Ile Ala Ile Pro Asn Asp Gln Thr Ile Ser Ser Val Thr Ser Asn Ile
245 250 255

Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala Glu Ile Tyr Ala
260 265 270

Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser Ala Arg Lys Tyr
275 280 285

Phe Glu Glu Lys Ala Leu Asp Tyr Tyr Arg Ser Ile Ala Lys Arg Leu
290 295 300

Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn Lys Tyr Ile Gly
305 310 315 320

Glu Tyr Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe Val Val Glu Ser
325 330 335

Ser Gly Glu Val Thr Val Asn Arg Asn Lys Phe Val Glu Leu Tyr Asn
340 345 350

Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala Lys Ile Tyr Asn
355 360 365

Val Gin Asn Arg Lys Ile Tyr Leu Ser Asn Val Tyr Thr Pro Val Thr
370 375 380

Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln Asn Gly Phe Asn
385 390 395 400

Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly Gln Asn Leu Ser
405 410 415

Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn Met Leu Tyr Leu
420 425 430

Phe Thr Lys Phe Cys His Lys Ala Ile Asp Gly Arg Ser Leu Tyr Asn
435 440 445

Lys Thr Leu Asp Cys Arg Glu Leu Leu Val Lys Asn Thr Asp Leu Pro
450 455 460

Phe Ile Gly Asp Ile Ser Asp Val Lys Thr Asp Ile Phe Leu Arg Lys
465 470 475 480

Asp Ile Asn Glu Glu Thr Glu Val Ile Tyr Tyr Pro Asp Asn Val Ser
485 490 495

Val Asp Gln Val Ile Leu Ser Lys Asn Thr Ser Glu His Gly Gin Leu
500 505 510

Asp Leu Leu Tyr Pro Ser Ile Asp Ser Glu Ser Glu Ile Leu Pro Gly
515 520 525

Glu Asn Gln Val Phe Tyr Asp Asn Arg Thr Gln Asn Val Asp Tyr Leu
530 535 540

Asn Ser Tyr Tyr Tyr Leu Glu Ser Gln Lys Leu Ser Asp Asn Val Glu
545 550 555 560

Asp Phe Thr Phe Thr Arg Ser Ile Glu Glu Ala Leu Asp Asn Ser Ala
565 570 575

Lys Val Tyr Thr Tyr Phe Pro Thr Leu Ala Asn Lys Val Asn Ala Gly
580 585 590

Val Gln Gly Gly Leu Phe Leu Met Trp Ala Asn Asp Val Val Glu Asp
595 600 605

Phe Thr Thr Asn Ile Leu Arg Lys Asp Thr Leu Asp Lys Ile Ser Asp
610 615 620

Val Ser Ala Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Ser Asn
625 630 635 640

Ser Val Arg Arg Gly Asn Phe Thr Glu Ala Phe Ala Val Thr Gly Val
645 650 655

Thr Ile Leu Leu Glu Ala Phe Pro Glu Phe Thr Ile Pro Ala Leu Gly
660 665 670

Ala Phe Val Ile Tyr Ser Lys Val Gln Glu Arg Asn Glu Ile Ile Lys
675 680 685

Thr Ile Asp Asn Cys Leu Glu Gln Arg Ile Lys Arg Trp Lys Asp Ser
690 695 700

Tyr Glu Trp Met Met Gly Thr Trp Leu Ser Arg Ile Ile Thr Gln Phe
705 710 715 720

Asn Asn Ile Ser Tyr Gln Met Tyr Asp Ser Leu Asn Tyr Gln Ala Gly
725 730 735

Ala Ile Lys Ala Lys Ile Asp Leu Glu Tyr Lys Tyr Ser Gly Ser
740 745 750

Asp Lys Glu Asn Ile Lys Ser Gln Val Glu Asn Leu Lys Asn Ser Leu
755 760 765

Asp Val Lys Ile Ser Glu Ala Met Asn Ile Asn Lys Phe Ile Arg
770 775 780

Glu Cys Ser Val Thr Tyr Leu Phe Lys Asn Met Leu Pro Lys Val Ile
785 790 795 800

Asp Glu Leu Asn Glu Phe Asp Arg Asn Thr Lys Ala Lys Leu Ile Asn
805 810 815

Leu Ile Asp Ser His Asn Ile Ile Leu Val Gly Glu Val Asp Lys Leu
820 825 830

Lys Ala Lys Val Asn Asn Ser Phe Gln Asn Thr Ile Pro Phe Asn Ile
835 840 845

Phe Ser Tyr Thr Asn Asn Ser Leu Leu Lys Asp Ile Ile Asn Glu Tyr
850 855 860

Phe Asn Asn Ile Asn Asp Ser Lys Ile Leu Ser Leu Gln Asn Arg Lys
865 870 875 880

Asn Thr Leu Val Asp Thr Ser Gly Tyr Asn Ala Glu Val Ser Glu Glu
885 890 895

Gly Asp Val Gln Leu Asn Pro Ile Phe Pro Phe Asp Phe Lys Leu Gly
900 905 910

Ser Ser Gly Glu Asp Arg Gly Lys Val Ile Val Thr Gin Asn Glu Asn
915 920 925

Ile Val Tyr Asn Ser Met Tyr Glu Ser Phe Ser Ile Ser Phe Trp Ile
930 935 940

Arg Ile Asn Lys Trp Val Ser Asn Leu Pro Gly Tyr Thr Ile Ile Asp
945 950 955 960

Ser Val Lys Asn Asn Ser Gly Trp Ser Ile Gly Ile Ile Ser Asn Phe
965 970 975

Leu Val Phe Thr Leu Lys Gln Asn Glu Asp Ser Glu Gln Ser Ile Asn
980 985 990

Phe Ser Tyr Asp Ile Ser Asn Asn Ala Pro Gly Tyr Asn Lys Trp Phe
995 1000 1005

Phe Val Thr Val Thr Asn Asn Met Met Gly Asn Met Lys Ile Tyr Ile
1010 1015 1020

Asn Gly Lys Leu Ile Asp Thr Ile Lys Val Lys Glu Leu Thr Gly Ile
1025 1030 1035 1040

Asn Phe Ser Lys Thr Ile Thr Phe Glu Ile Asn Lys Ile Pro Asp Thr
1045 1050 1055

Gly Leu Ile Thr Ser Asp Ser Asp Asn Ile Asn Met Trp Ile Arg Asp
1060 1065 1070

Phe Tyr Ile Phe Ala Lys Glu Leu Asp Gly Lys Asp Ile Asn Ile Leu
1075 1080 1085

Phe Asn Ser Leu Gln Tyr Thr Asn Val Val Lys Asp Tyr Trp Gly Asn
1090 1095 1100

Asp Leu Arg Tyr Asn Lys Glu Tyr Tyr Met Val Asn Ile Asp Tyr Leu
1105 1110 1115 1120

Asn Arg Tyr Met Tyr Ala Asn Ser Arg Gln Ile Val Phe Asn Thr Arg
1125 1130 1135

Arg Asn Asn Asn Asp Phe Asn Glu Gly Tyr Lys Ile Ile Ile Lys Arg
1140 1145 1150

Ile Arg Gly Asn Thr Asn Asp Thr Arg Val Arg Gly Gly Asp Ile Leu
1155 1160 1165

Tyr Phe Asp Met Thr Ile Asn Asn Lys Ala Tyr Asn Leu Phe Met Lys
1170 1175 1180

Asn Glu Thr Met Tyr Ala Asp Asn His Ser Thr Glu Asp Ile Tyr Ala
1185 1190 1195 1200

Ile Gly Leu Arg Glu Gln Thr Lys Asp Ile Asn Asp Asn Ile Ile Phe
1205 1210 1215

Gln Ile Gln Pro Met Asn Asn Thr Tyr Tyr Tyr Ala Ser Gln Ile Phe
1220 1225 1230

Lys Ser Asn Phe Asn Gly Glu Asn Ile Ser Gly Ile Cys Ser Ile Gly
1235 1240 1245

Thr Tyr Arg Phe Arg Leu Gly Gly Asp Trp Tyr Arg His Asn Tyr Leu
1250 1255 1260

Val Pro Thr Val Lys Gln Gly Asn Tyr Ala Ser Leu Leu Glu Ser Thr
1265 1270 1275 1280

Ser Thr His Trp Gly Phe Val Pro Val Ser Glu
1285 1290

<210> 2

<211> 3950

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Modified
Botulinum Toxin

<400> 2

ggatattaga aagtttaggag atgttagtat tatgccaata acaattaaca actttaatta 60
ttcagatcct gttgataata aaaatatttt atattttagat actcatttaa atacactagc 120
taatgagcct gaaaaagcct ttcgcattac aggaaatata tggtaatac ctgatagatt 180

ttcaagaataat tctaattccaa attttaataaa accttcgtca gttacaagcc ctaaaagtgg 240
tttattatgt cctaattatt tgagtactga ttctgcacaaa gatacatttt taaaagaaaat 300
tataaaagttt tttaaaagaa ttaattctag agaaatagga gaagaattaa tatataact 360
ttcgacagat atacccttc ctgggataaa caatactcca attaataactt ttgatatttg 420
ttagatttt aacagtgtg atgttaaaaac tagacaaggt aacaactggg taaaactgg 480
tagcataat cctagtgtta taataactgg acctagagaa aacattatac atccagaaaac 540
ttctacgtt aaattaacta acaatactt tgccgcacaa gaaggatttg gtgcatttac 600
aataattca atatcaccta gatttatgt aacatatagt aatgcaacta atgtgttagg 660
agagggtaga ttttctaagt ctgaattttg catggatcca atactaattt taatgggtac 720
ccttaataat gcaatgcata atttatatgg aatagctata ccaatgatc aaacatttc 780
atctgttaact agtaatattt ttatctca atataatgtg aaatttaggt atgcagaaaat 840
atatgcattt ggagggtccaa ctatagaccc tattctaaa agtgcagga aatattttga 900
ggaaaaggca ttggattt atagatctt agctaaaaa cttaatagta taactactgc 960
aaatccctca agcttaata aatataatagg ggaatataaa cagaaactta ttagaaagta 1020
tagattcgtt gtagaatctt caggtgaagt tacagtaaat cgttaataagt ttgttgagtt 1080
ataataatgaa ttacacaaa tatttacaga atttaactac gctaaaaatataatgtaca 1140
aaataggaaa atatatctt caaatgtata tactccgtt acggcgaata tattagacga 1200
taatgtttat gatataacaaa atggatttata tatacctaaa agtaattttaa atgtactatt 1260
tatgggtcaaa aatttatctc gaaatccagc attaagaaaa gtcatacttc aaaaatgtct 1320
ttattttattt acaaaaattt gtcataaagc aatagatggt agatcatttataataaaac 1380
attagattgt agagagctt tagttaaaaa tactgactta ccctttatag gtgtatttag 1440
ttagttaaa actgatataat tttaagaaa agatatttaat gaagaaactg aagttatata 1500
ctatccggac aatgtttcag tagatcaagt tattctcagt aagaatactc cagaacatgg 1560
acaactagat ttatttatacc ctgttatgtc cagtgagagt gaaatattac caggggagaa 1620
tcaagtcattt tatgataata gaactcaaa tggttattat ttgatttctt attattaccc 1680
agaatctcaa aaactaagtg ataatgtga agattttact ttacagagat caattggagga 1740
ggctttggat aatagtgc当地 aagtataatac ttactttctt acactagctc ataaagtaaa 1800
tgccgggtgtt caaggtgggtt tatttttaat gtggcaaat gatgtatgg aagattttac 1860
tacaatattt ctaagaaaag atacattaga taaaatataca gatgtatcg ctattattcc 1920
ctatataatggg cccgcattaa atataatggg ttctgttaaga agaggaaattt ttactgaagc 1980
atttgccaggat tctgggtgtt cttatatttata agaagcattt cctgaaatttca atataactgc 2040
acttgggtgca ttgtgtattt atagtaaagg tcaagaaaaga aacgagatta taaaactat 2100
agataattgtt ttagaacaaa ggattaagag atggaaagat tcatatgaat ggatgtggg 2160
aacgtgggtt tccaggattt ttactcaattt taataatata agttatcaaa tggatgttcc 2220
tttaattat caggcagggtt caatcaaagc taaaatagat tttagatata aaaaatattt 2280
aggaagtgtt aaagaaaata taaaatgtca agttggaaaat taaaatataa gtttagatgt 2340
aaaaatttcg gaagcaatgtt atataatataa taaaattataa cgagaatgtt cctgaaatata 2400
tttattttttt aatatgttac taaaatgttac tggatgttca aatgtatggg atcggaaatata 2460
taaagcaaaa ttaattatc ttatagatgtt tcataatattt attctgttgc gttaaatgtt 2520
taaattaaaaa gcaaaaagttt atataatgtt taaaatataa atacccttta atattttttc 2580
atataactat aattctttat taaaatgttac taaaatgttac taaaatataa atataatgtt 2640
ttcaaaaattt ttgagcttac aaaacagaaa aataacttta gttggatcat caggatataa 2700
tgcagaatgtt agtgcaggat gctgttgc gttaaatgttca atattttccat ttgacttttt 2760
atttaggtgtt tcaaggggagg atagaggatgtt agttatgttca acccagaatgtt aaaaatattgt 2820
atataattttt atgtatgttca gtttttagcat tagttttggg atttagatataa ataaatgggt 2880
aagtaatgtt cctggatata ctataattgttca tagtggatataa aataactcg gttggatgtt 2940
aggtattttt agttaatgttca tagtggatataa aatgtatgttca gttggatgtt 3000
tataaaatgtt aqttatgttca tataatgttca tataatgttca tataatgttca gttttttgt 3060

aactgttact aacaatatga tggaaatat gaagatttat ataaatgaa aattaataga 3120
tactataaaa gtaaagaac taactggaat taattttgc aaaactataa catttgaat 3180
aaataaaaattt ccagataccg gtttgcattt ttcagatttc gataacatca atatgtggat 3240
aagagatttt tataatatttgc ctaaagaattt agatggtaaa gatattataa tattatattaa 3300
tagcttgcaatatactaatg ttgtaaaaga ttatggggaa aatgatttaa gatataataa 3360
agaatattat atggtaataa tagattattt aaatagat atgtatgcgaa actcacgaca 3420
aattgtttt aatacacgta gaaataataa tgacttcaat gaaggatataa aaattataat 3480
aaaaagaatc agaggaaata caaatgatac tagatgtacgaa ggaggagata ttttatattt 3540
tgatatgaca attaataaca aagcatataa ttgttttatg aagaatgaaa ctatgtatgc 3600
agataatcat agtactgaaat atatatatgc tataggtttt agagaacaaa caaaggatat 3660
aaatgataat attatatttc aaatacaacc aatgaataat acttattt acgcacatctca 3720
aatatTTAA tcaaattttt atggggaaaa tatttctggaa atatgttcaat taggtactt 3780
tcgtttttaga ctggggggatg atgggtatag acacaattat ttgggtgccta ctgtgaagca 3840
aggaaattat gcttcattat tagaatcaac atcaactcat tggggttttg tacctgttaag 3900
tgaataaataa atgattaataa atataaattt tttatattt 3950

<210> 3
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Modified Zinc
Binding

<400> 3
His Glu Xaa Xaa His
1 5

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 4
cccaataaca attaacaact ttaat 25

<210> 5
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 5	
tttggtaacc attaaaatga tattggatc cat	33
<210> 6	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 6	
tttggtaacc ttaataatgc aatgcataat ttatatgga	39
<210> 7	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 7	
gaattcaaat aatcaacatt ttgag	25
<210> 8	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 8	
tttgaattct tattattacc tagaatc	27
<210> 9	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 9	
tttgagctct tattcactta caggtacaaa ac	32

<210> 10
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Modified
Botulinum Toxin

<400> 10
Arg Gly Ser His His His His His His Gly Ser
1 5 10

<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 11
cggtaccatg ccaataacaa ttaacaacctt t 31

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 12
agcttataat ctataataat ccaa 24

<210> 13
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Modified
Botulinum Toxin

<400> 13
Arg Gly Ser His His His His His His Gly Ser Gly Thr
1 5 10

The claims defining the invention are as follows:

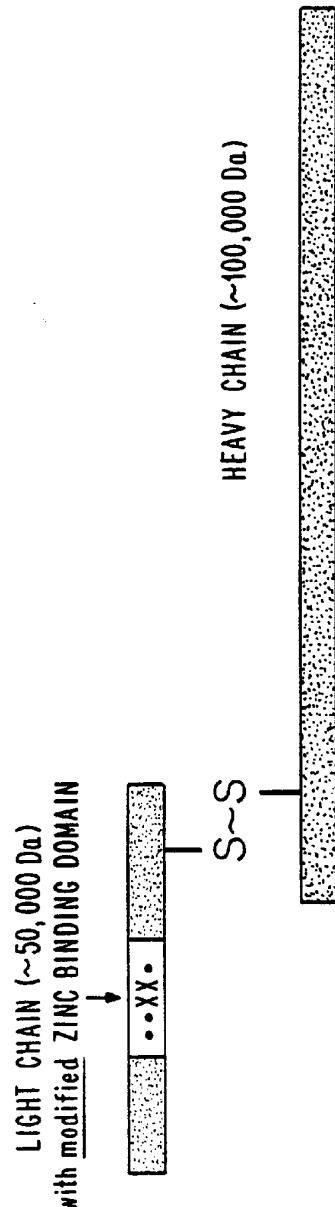
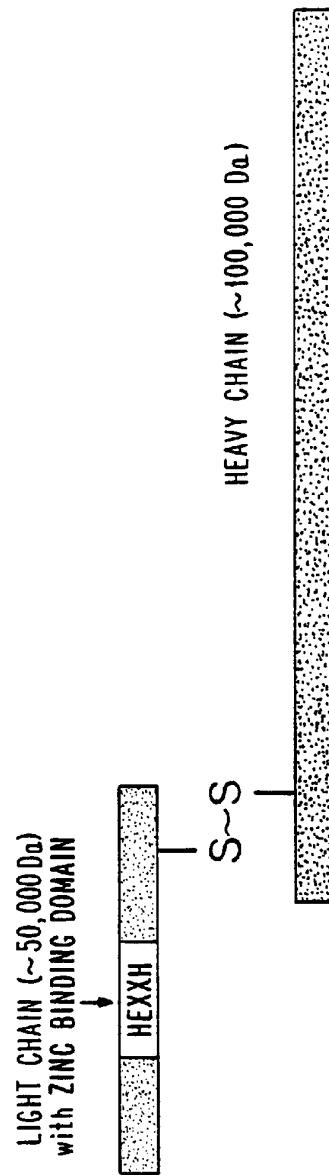
1. A modified botulinum toxin comprising a botulinum toxin capable of translocating from the gut to the general circulation which is, wherein the toxin is altered to be nontoxic by mutating or deleting amino acids in the light chain of the toxin so as to substantially eliminate the zinc-dependent metalloendoprotease activity of the light chain.
2. The modified botulinum toxin of claim 1 further comprising a selected antigen.
3. The modified botulinum toxin of claim 1 further comprising a therapeutic agent.
4. An oral vaccine against botulism comprising the modified botulinum toxin of claim 1 and a pharmaceutically acceptable vehicle.
5. An oral vaccine against a selected antigen comprising the modified botulinum toxin of claim 2 and a pharmaceutically acceptable vehicle.
10. 6. A method of orally delivering a therapeutic agent to an animal comprising administering to the animal a modified botulinum toxin of claim 3.
15. 7. The modified botulinum toxin of claim 3 when used to orally deliver a therapeutic agent to an animal.
8. Use of the modified botulinum toxin of claim 3 for the manufacture of a medicament for oral delivery of a therapeutic agent to an animal.
9. A modified botulinum toxin, substantially as hereinbefore described with reference to any one of the examples.
20. 10. An oral vaccine against botulinum comprising the modified botulinum toxin of claim 9 and a pharmaceutically acceptable vehicle.
11. The modified botulinum toxin of claim 9, further comprising a therapeutic agent.
12. A method of orally delivering a therapeutic agent to an animal comprising administering to the animal a modified botulinum toxin of claim 11.
25. 13. The modified botulinum toxin of claim 11 when used to orally deliver a therapeutic agent to an animal.
14. Use of the modified botulinum toxin of claim 11 for the manufacture of a medicament for oral delivery of a therapeutic agent to an animal.
15. The modified botulinum toxin of claim 1, wherein the metalloendoprotease activity of the light chain is substantially eliminated by altering the zinc binding motif of the light chain.
30. 16. The modified botulinum toxin of claim 7, wherein the zinc binding motif is altered by modifying or deleting one of amino acids His(229), Glu(230), and His(233).
17. The modified botulinum toxin of claim 7, wherein the zinc binding motif is altered by modifying or deleting all three of amino acids His(229), Glu(230), and His(233).

18. The modified botulinum toxin of claim 1, wherein the metalloendoprotease activity of the light chain is substantially eliminated by altering the substrate binding motif of the light chain.

Dated 8 November, 2002
Thomas Jefferson University

Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

6
8
9



33

33

33

[R:\LIBFF]67861spec.doc:gcc

