REVERSIBLE LID STORAGE CONTAINER

Inventors: Christopher Claypool, Huntersville, NC (US); William F. Croft, Mooresville, NC (US); Joseph Lutgen, Huntersville, NC (US)

Assignee: Rubbermaid Incorporated, Huntersville, NC

Correspondence Address:
LEMPIA IP GROUP, LLC
223 WEST JACKSON BLVD.
SUITE 620
CHICAGO, IL 60606 (US)

Publication Classification
Int. Cl.
B65D 51/00 (2006.01)
B65D 21/00 (2006.01)
B65D 41/18 (2006.01)
B65D 43/03 (2006.01)

U.S. Cl. 220/212; 220/780; 220/793; 220/380; 206/503

ABSTRACT
A storage container has a base with a bottom panel and an upstanding side wall extending generally upward from a perimeter of the bottom panel. The side wall has a top end and a top opening is generally circumscribed by the top end. A reversible lid has a lid perimeter and a cover panel generally within the lid perimeter. The cover panel has a first side and a second side. The reversible lid can be installed on the base in two different selectable orientations including a first orientation with the second cover panel side facing the base and a second orientation with the first cover panel side facing the base. A first seal is created between the reversible lid and the base in the first orientation and a second seal is created between the reversible lid and the base in the second orientation. A first sealed storage space is formed between the base and the reversible lid when in the first orientation and a second sealed storage space is formed between the base and the reversible lid when in the second orientation. The first sealed storage space has a larger volume than a volume of the second sealed storage space.
REVERSIBLE LID STORAGE CONTAINER

RELATED APPLICATION DATA

This patent is related to and claims the priority benefit of U.S. provisional patent application Ser. No. 60/681,823 entitled “Reversible Lid Storage Container,” which was filed on May 17, 2006, and the entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Disclosure

The present disclosure is generally directed to storage containers, and more particularly to storage containers with reversible lids that can be secured to the bases of the containers in two different orientations and yet create a seal between lid and base.

2. Description of Related Art

Storage containers are known to include a container base and a lid. Many such storage containers are configured so that the lid can be installed on and secured to the base to create an air tight seal between lid and base. When installed, the lid seals contents within a substantially airtight storage space of the container. A typical storage container of this type has a lid that installs on the container base in only one orientation to create the seal. Most storage containers of this type include a lid with a cover surface that lies in a plane generally parallel to and near a top of the base. Some lids are known to have small surface variations in the lid cover surface or panel for ornamental or structural purposes.

Conventional food storage containers are typically constructed as described above. Many of these types of containers are used to store food. The volume of food to be stored may be in excess of the storage volume of the base of a selected container. If so, the user must select multiple storage containers, which takes up significant storage space and dirty two containers. Alternatively, the user must select a larger storage container. This often results in the user unnecessarily choosing a container that is much larger than needed to store the food. A significant amount of excess air within the storage container may result because the storage space is then only partially filled with the stored food. Also, a container is selected and used to store food, a portion of the stored food is often taken out later and eaten. The remaining amount of the stored food is then typically left in the same storage container instead of being shifted to a smaller container. This again results in the presence of even more excess air within the partially filled storage space of the container. The additional excess air can cause even faster degradation of the stored food.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exploded perspective view of one example of a storage container constructed in accordance with the teachings of the present invention.

FIG. 2 shows a perspective view of the storage container of FIG. 1 with the lid installed on the base in one orientation.

FIG. 3 shows a perspective view of the storage container of FIG. 1 with the lid installed on the container base in an inverted orientation.

FIG. 4 shows a side elevation of the storage container of FIG. 2.

FIG. 5 shows a vertical cross-section taken along line V-V of the storage container of FIG. 2.

FIG. 6 shows an enlarged view of a portion of the lid and base seal structure taken from Circle VI in FIG. 5.

FIG. 7 shows a side elevation of the storage container of FIG. 3.

FIG. 8 shows a vertical cross-section taken along line VIII-VIII of the storage container of FIG. 3.

FIG. 9 shows an enlarged view of a portion of the lid and base seal structure taken from Circle IX in FIG. 8.

FIG. 10 shows one example of a stacking arrangement of two containers configured as shown in FIGS. 4 and 5.

FIG. 11 shows another example of a stacking arrangement of two storage containers configured as shown in FIGS. 7 and 8.

FIGS. 12-14 show three additional examples of stacking arrangements of two storage containers constructed in accordance with the teachings of the present invention.

DETAILED DESCRIPTION OF THE DISCLOSURE

The disclosed storage container includes a base and a lid that can be installed securely on the base in two different orientations. In each of the orientations, the lid and base create a seal to provide an air tight storage space within the storage container. In one example, the lid is also configured so that when it is installed on the base in one orientation, the storage space is effectively larger than the storage space that results when the lid is installed on the base in the other, inverted orientation.

Turning now to the drawings, FIG. 1 shows one example of a storage container 10 constructed in accordance with the teachings of the present invention. The storage container 10 generally has a container base 12 and a removable lid 14. In the disclosed example, the base 12 and the lid 14 generally have round or circular configurations. However, as will be evident to those having ordinary skill in the art, the shape, configuration, size, and various general contours of both the lid and base can vary considerably and yet fall within the spirit and scope of the present invention described herein.

The disclosed container base 12 has a bottom panel 16 and a generally upstanding side wall 18 extending upward from a perimeter of the bottom panel. As noted above, the perimeter of the bottom panel 16 is generally circular in this example. The side wall 18 is a generally circular cylinder in cross section, but has a varying diameter that increases from a lower end 20 to an upper or top end 22 of the wall in this example. The side wall cylinder is thus
tapered, as the base diameter increases nearer the upper end 22 of the side wall. A storage space 23 is defined within the confines of the side wall 18 and above the bottom panel 16 of the container base 12, and beneath the lid 14 when it is installed on the base. A top opening 24 into the base interior is defined generally near the upper end 22 of the side wall and provides access to the base interior.

[0023] Also as generally depicted in FIG. 1, the disclosed container base 12 has a pair of handles or handhold extensions 25. The handles 25 extend radially outward from a portion of the base 12 near the upper end 22. Such handles 25 are well known to permit a user to easily grasp and hold the storage container 10, as well as to assist in removing the lid 14 from the base 12. The number, size, shape, configuration, position, and construction of the handles 25 can vary considerably and yet fall within the spirit and scope of the present invention. Alternatively, the handles 25 can be eliminated entirely.

[0024] Also as shown in FIG. 1, the lid 14 generally has a cover panel 26 that, when installed on the base 12, completely covers or closes off the top opening 24 of the base, partly defines the storage space 23, and seals the storage space. The cover panel 26 of the disclosed lid 14 generally has a first or top side 28a, a second or underside 28b, and a perimeter 30. The perimeter 30 in this example is also circular to accommodate the corresponding shape of the base 12. The terms top side and underside are use herein relative to the lid cover panel to refer generally to the standard lid orientation of FIGS. 2 and 4-6, and are used herein merely for ease of description. These lids sides become reversed in orientation when the lid is inverted, as described herein.

[0025] An annular rim 32 extends radially outward relative to the lid perimeter 30, and in this example, is also circular in configuration. A single tab 34 extends farther radially outward from an outer edge or surface of the rim 32. Use of one or more such tabs 34 is also well known for use in easily grasping and raising one edge of the lid 14 for removal from the base 12. Again, the size, contour, shape, position, construction, and configuration of the tab or tabs 34, cover panel 26, and annular rim 32, if present, can vary considerably and yet fall within the spirit and scope of the present invention, as will be apparent to those having ordinary skill in the art.

[0026] The disclosed cover panel 26 bulges or protrudes, i.e., is distended, significantly upward and out of plane relative to a plane of the rim 32 and with reference to the standard lid orientation. In this example, the cover panel 26 is somewhat cone shaped, but has a plurality of discrete steps 29. Thus, the surfaces of the cover panel 26 are not smooth and gradual, but instead are stepped, creating a plurality of circumferential, progressively smaller diameter, stepped surfaces in the panel. The plane of the annular rim 32 is used as a reference because, as described below, the annular rim 32 is positioned central to first and second seal structure portions on the lid 14 in this example and because the rim seats adjacent the top opening 24 of the base 12 when the lid is installed in either orientation.

[0027] The general nature of the disclosed storage container is that the lid 14 can be installed on the base 12 in two different orientations. A first or standard orientation is depicted in FIG. 2 and has the first or top side 28a facing upward and the second or underside 28b facing down into the base 12. The lid can also be installed in a second, inverted orientation as depicted in FIG. 3 with the second or underside 28b facing upward and the first or top side 28a facing down into the base 12. The lid 14 and a portion of the base 12 are configured to cooperate and form a secure seal between adjacent surfaces of the lid and base in either lid orientation.

[0028] We now describe one example of the seal means or structure; which includes parts on both the lid and the base, and that yields the disclosed reversible lid storage container.

FIG. 4 shows a side elevation of the storage container 10 with the lid 14 installed on the base 12 in the first or standard orientation of FIG. 2. FIG. 5 shows a vertical cross-section through a center of the container 10 in FIGS. 2 and 4. As shown in these drawings, the storage space 23 is defined within the interior of the lid 14 and base 12, above the bottom panel 16, below the cover panel 26, and within boundary of the side wall 18. In this example, the storage space 23 is effectively larger than a space defined only below the top opening 24 within the base 12. This is because the disclosed cover panel 26 bulges in a direction substantially out of plane relative to a plane of the annular rim 32, as noted above.

[0029] As shown in FIGS. 5 and 6, each of the base 12 and the lid 14 include portions or parts of a sealing means or structure for the storage container 10. These portions are configured and arranged to cooperate with one another in order to create a seal between the installed lid 14 and the base 12. The seal in this example is generally formed near the perimeter 30 of the lid 14 and near the upper end 22 of the side wall 18.

[0030] The perimeter 30 of the lid 14 in this example has an annular wall or skirt 40 that extends around and depends from an outer or perimeter edge of the cover panel 26. The vertical height of the skirt 40 is sufficient to carry a number of structural features of the seal means or structure, as described below. Also, the annular rim 32 is positioned in this example at about mid-height on the skirt 40 and extends radially outward from an outer surface of the skirt. A first portion 42a of the skirt outer surface is positioned below the rim 32 with reference to this lid orientation, and is on the opposite side of the rim relative to the bulging cover panel 26. A second portion 42b of the skirt outer surface is positioned above the rim with reference to this lid orientation on the side of the rim opposite the first outer skirt surface portion 42a. The first and second skirt surface portions 42a and 42b each face generally radially outward in this storage container example.

[0031] As shown in FIG. 5 and more clearly in the enlarged view of FIG. 6, first and second lid ribs 44a, 44b extend circumferentially around the skirt 40 and project radially outward from a respective one of the skirt outer surface portions 42a, 42b. Each of the lid ribs 44a and 44b is spaced a distance from the annular rim 32 on its respective skirt outer surface portion 42a and 42b. The position of the lid ribs 44a and 44b effectively creates first and second circumferential lid depressions 46a, 46b on opposite sides and adjacent to the rim 32 and between the rim and a respective one of the lid ribs 44a, 44b. The lid depressions 46a, 46b are thus effectively recessed radially inwardly into the skirt outer surface on opposite sides of the rim 32. In this
lid orientation, the rim 32 has a first rim surface 48a facing downward adjacent the first outer skirt surface portion 42a, and has a second rim surface 48b facing upward adjacent the second skirt outer surface portion 42b. The combination of each lid depression 46a, 46b and each lid rib 44a, 44b defines first and second lid seal structures on the respective first and second skirt outer surface portions 42a, 42b, with one seal structure on each side of the annular rim 32 on the skirt 40. These lid seal structures and, in this example, the lid annular rim 32 and rim surfaces 48a, 48b form part of the sealing means or structure of the disclosed storage container 10.

[0035] The configuration of the step 52, annular wall 50, lip 62, and flange 60 also enhance structural rigidity of the base 12 in this particular example. However, as will be evident to those having ordinary skill in the art, the specific configuration of the generally upper portion of the side wall 18 and the base 12 can vary considerably and yet fall within the spirit and scope of present invention. The discrete annular wall, the step, the lip, and the flange may each be an optional structure. A part of the sealing means or structure can alternatively be provided directly on an interior or exterior surface of the side wall 18 or on some other alternative structure carried on, or formed as part of, the base. That structure need only be configured to mate with another structure on the lid to form a seal with the lid installed on the base.

[0036] As shown in FIGS. 5 and 6, the lid 14 can be installed on the base 12 so that the lid and base seal structures positively engage with one another to create a seal between the base and lid. In one lid orientation shown in FIGS. 2 and 4-6, the lid cover surface 26 bulges or projects upward away from a plane of the lid annular rim 32 and of the top edge 54 of the base. The first lid seal structure portions of the lid skirt 40, beneath the annular rim 32 in this example, interlock and engage with the base seal structure portions of the interior surface 51 of the base annular wall 50. Specifically, the first lid rib 44a has a slightly larger diameter across the lid than a diameter of the base rib 56 across the base. Thus, the first lid rib 44a interferingly fits within and snaps through the base rib 56. The first lid rib 44a then nests in the base depression 58 of the interior surface 51 on the annular wall 50. Similarly and simultaneously, the base rib 56 interferingly fits around and snaps over the first lid rib 44a and nests within the first lid depression 46a of the skirt outer surface just beneath the annular rim 32 of the lid. In this installed lid orientation, the first rim surface 48a bears against the top edge 54 of the base 12.

[0037] The distance between the lower edge of the base rib 56 and the top edge 54 of the base 12, as well as between the first rim surface 48a and the first lid rib 44a, can in this example be sufficient to maintain a slight interference or pressure between portions of the lid and base. Specifically, by designing and controlling these dimensions, a generally vertical, positive pressure component can be created between the first rim surface 48a and base top edge 54 and also between the base rib 56 and first lid rib 44a to create an air tight seal. Similarly, the slight diameter difference between the innermost diameter of the base rib 56 and the outermost diameter of the first lid rib 44a also can be designed to create a generally horizontal, positive pressure component to assist in maintaining the seal. Overall, these structures create what is generally termed herein as a first sealing structure, portions of which are partly provided on the base and partly provided on the lid.

[0038] Turning now to the lid orientation shown in FIGS. 7-9, the lid 14 can also be inverted and then installed on and positively engage the base 12. In this example, the storage space 23 is defined beneath the downwardly depending cover surface 26, above the bottom 16, and within the boundary of the side wall 18 in the base 12. The storage space 23 in this example is a smaller space than in the previous lid orientation example created by the downwardly protruding cover surface 26. FIG. 7 shows a side elevation of the storage container 10 with the lid 14 in the inverted
orientation and FIG. 8 shows a vertical cross-section through the container 10. FIG. 9 shows an enlarged portion of the sealing means or structure in this orientation.

[0039] The lid 14 in this orientation seats or seals in substantially the same manner as in the prior orientation, but with the following differences. First, the previously upward facing second rim surface 48b of the annular rim 32 now faces downward and bears against the top edge 54 of the base 12. The second lid rib 44a positioned on the opposite side of the annular rim 32 in this example interfering fits and snaps within the base rib 56 and nests in the base depression 58 of the annular wall interior surface 51. Similarly and simultaneously, the rib 56 in this example interfering fits and snaps over the second lid rib 44b and nests in the second lid depression 46b adjacent the annular rim 32. Again, the spacing between the surface 48b of the annular rim 32 and the second lid rib 44b, and the spacing between the base rib 56 and the top edge 54 can be such that a slight interference is maintained between the annular rim and base top edge and between the lid and base ribs. This interference again creates a generally vertical surface pressure between the base and lid structures. Also, the diameter difference between the inner most surface of the base rib 56 and the outer most surface of the second lid rib 44b again creates generally horizontal interference to form and retain a seal when the inverted lid is installed as shown in FIGS. 7-9.

[0040] As will be evident to those having ordinary skill in the art, the sealing means or structure between the lid and base can vary and yet fall within the spirit and scope of the present invention. For example, the lid in this example has an exterior facing surface, which seats against an interior surface 50 of an annular wall at the top of the side wall 18 of the base 12. In an alternate example, an interior lid surface could seat against an exterior surface of the base and yet otherwise have the same structure as illustrated and described herein. In another alternative example, the base surface, whether on an interior annular or exterior annular surface can include a single circumferential depression and the lid can include a pair of circumferential projections or ribs whether on an exterior surface or an interior surface of the lid, that nest in the depression, one rib being provided for each lid orientation. In another alternative example, the lid can include a surface, whether on an interior or exterior portion of the lid, that includes a pair of circumferential depressions and the base can include a single circumferential rib, wherein the rib seats in one of the depressions depending upon the lid orientation.

[0041] In the disclosed example, the storage container 10 can be fabricated from a plastic or thermoplastic material such as polypropylene, thermoplastic elastomer, polyethylene, or the like. The container components can be injection molded, blow molded, vacuum formed, thermoformed, or otherwise fabricated as desired. Alternative materials can also be used to fabricate the base and/or the lid, such as glass, metal, ceramic, or the like and yet fall within the spirit and scope of the present invention. Similarly, other alternative processes can be used, depending upon the material utilized for a specific lid or base component.

[0042] The disclosed reversible lid storage container provides at least two beneficial advantages for consumers. First, the storage container may have a base of a particular storage volume. However, the storage space can be increased rather substantially by installing the lid on the base in the first orientation shown in FIGS. 2 and 5-7. This is because the lid 14 has a cover surface 26 that has a non-planar configuration. In the disclosed example, the cover surface 26 has a stepped conical configuration in a direction substantially cut or plane relative to a plane of the annular rim 32 of the lid 14. As will be evident to those having ordinary skill in the art, the cover surface 26 need not be stepped or particularly conical in shape, but rather can include other shapes and contours such as domed, semi-spherical, or the like. If the cover surface has a substantial portion that lies out of plane with the perimeter of the lid that attaches to the container base, the lid can function to effectively increase the storage space of the container when installed in the first orientation.

[0043] A second beneficial advantage for the consumer is that if a small amount of material, such as a food item, is stored in the container, wherein that food volume is less than the volume of the storage space within just the base, the lid can be installed on the base in the second inverted orientation. In this orientation, the cover surface 26 projects downward into the base and effectively reduces the volume of the storage space. By doing so, the volume of air within the storage space is also reduced. As is known to those having ordinary skill in the art, air can negatively affect how long food stored in the container will last. By reducing the amount of excess air in the storage space, food contents stored in the container may simply last longer.

[0044] The disclosed example of a reversible lid and the seal means or structures can create a double seal arrangement. The ribs and depressions create a first seal when the lid is installed on the base in either orientation. The lid rim and the top edge of the base can create a second seal using the geometry of the interlocking structures as noted above. The rim can be drawn down upon and into interference with the top edge of the base when the lid is installed in either orientation to create the second seal.

[0045] FIGS. 10-14 illustrate various different stacking arrangements of which the disclosed containers are capable. FIG. 10 shows two containers 10 with the lid 14 attached to the base 12 of each container in the standard orientation. The lid cover surface 26 and the bottom 16 of the base can be configured to register with one another for stable stacking. FIG. 11 shows two containers 10 with the lid 14 attached to the base 12 of each container in the inverted orientation. Again, the cover surface 26 of the lids 14 and the bottom 16 of the bases 12 can be configured so that the containers can register with one another for stable stacking.

[0046] FIG. 12 shows two container bases 12 nested together, with one lid 14 attached to the upper most base in the standard orientation. The second lid 14 is stacked on top of the first lid. FIG. 13 shows two container bases 12 nested together, with one inverted lid 14 attached to the upper most base. A second inverted lid is nested within the first lid. FIG. 14 shows two container bases 12 nested together with one lid 14 attached in the standard orientation to the upper most base. A second inverted lid is nested under the bottom base of the stack. These and other stacking configurations can be embodied in reversible lid containers constructed in accordance with the teachings of the present invention. The lid surfaces and the base bottoms can be configured to cooperatively register and/or nest with one another for stacking and storage.
Although certain storage containers have been described herein in accordance with the teachings of the present disclosure, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all embodiments of the teachings of the disclosure that fairly fall within the scope of permissible equivalents.

What is claimed is:

1. A storage container comprising:
 a base having a bottom panel, a side wall extending generally upward from a perimeter of the bottom panel and having a top end, a top opening defined within the side wall near the top end, and a base seal structure carried near the top opening on a part of the side wall; and
 a reversible lid having a cover panel and a lid perimeter,
 the cover panel having a first side and a second side, the reversible lid having first and second lid seal structures carried near the lid perimeter,
 wherein the first lid seal structure engages and forms a seal with the base seal structure when the reversible lid is in a first orientation with the cover panel side facing the base, a first storage space being formed above the bottom panel, within the side wall, and beneath the cover panel side when the lid is in the first orientation, and
 wherein the second lid seal structure engages and forms a seal with the base seal structure when the reversible lid is in a second orientation with the cover panel side facing the base, a second storage space of a different volume than the first storage space being formed above the bottom panel, within the side wall, and beneath the cover panel side when the lid is in the second orientation.

2. A storage container according to claim 1, wherein the first storage space has a larger volume than the second storage space.

3. A storage container according to claim 1, wherein at least a portion of the cover panel projects out of plane relative to a reference plane near and parallel to the lid perimeter and in a direction of the cover panel surface such that the first cover panel surface is generally convex and the second cover panel surface is generally concave.

4. A storage container according to claim 1, wherein the reversible lid has a circumferential rim that extends radially outward, wherein a first surface of the rim bears against a top edge of the base with the reversible lid in the first orientation, and wherein a second surface of the rim bears against the top edge of the base with the reversible lid in the second orientation.

5. A storage container according to claim 1, wherein the reversible lid has a circumferential rim that extends radially outward from the lid perimeter, wherein the first lid seal structure is on the reversible lid on one side of the rim, and wherein the second lid seal structure is on the reversible lid on the opposite side of the rim.

6. A storage container according to claim 1, wherein the reversible lid has an annular skirt depending from the lid perimeter, and wherein the first and second lid seal structures are on an outward facing exterior surface of the annular skirt.

7. A storage container according to claim 6, wherein each of the first and second lid seal structures has an annular depression in the exterior surface of the annular skirt, and wherein the lid seal structure includes an annular rib that projects radially inward from a surface of the base and that seats in a first one of the depressions in the first orientation and that seats in a second one of the depressions in the second orientation.

8. A storage container according to claim 7, wherein the reversible lid has a circumferential rim that extends radially outward from the annular skirt and that is positioned between the first and second depressions.

9. A storage container according to claim 8, wherein one side of the circumferential rim is drawn against a top edge of the base in the first orientation and the other side of the rim is drawn against a top edge of the base in the second orientation.

10. A storage container according to claim 1, wherein each of the first and second lid seal structures has an annular depression in a surface of the reversible lid, and wherein the lid seal structure includes an annular rib that projects from a surface of the base and that seats in a first one of the depressions in the first orientation and that seats in a second one of the depressions in the second orientation.

11. A storage container according to claim 1, wherein the first lid seal structure and the base seal structure snap together when engaged in the first orientation, and wherein the second lid seal structure and the base seal structure snap together when engaged in the second orientation.

12. A storage container according to claim 1, wherein the first lid seal structure and the base seal structure create a double seal arrangement between the reversible lid and the base in the first orientation, and wherein the second lid seal structure and the base seal structure create a double seal arrangement between the reversible lid and the base in the second orientation.

13. A storage container according to claim 12, wherein the reversible lid has an annular skirt depending from the lid perimeter, wherein the reversible lid also has a circumferential rim extending radially outward from the annular skirt, and wherein, in each of the first and second orientations, a surface of the rim bears against a top edge of the base to form one part of the double seal structure and a surface of the annular skirt bears a seal surface of the base to form a second part of the double seal structure.

14. A reversible lid storage container comprising:
 a base having a bottom panel, a side wall with a top end, and a top opening;
 a base seal structure carried near the top opening on a part of the side wall;
 a reversible lid having a lid perimeter; and
 first and second lid seal structures carried near the lid perimeter,
 wherein the first lid seal structure and the base seal structure form a snap fit seal in a standard lid orientation creating a first storage space in the storage container of a first volume, and wherein the second lid seal structure and the base seal form a snap fit seal in an inverted lid orientation creating a second storage space in the storage container of a second volume, the first volume being greater than the second volume.
15. A reversible lid storage container according to claim 14, wherein the lid perimeter defines a lid plane and wherein a cover panel of the lid bulges out of plane relative to the lid plane.

16. A reversible lid storage container according to claim 14, wherein the first lid seal structure and the base seal structure create a double seal arrangement between the reversible lid and the base in the standard orientation, and wherein the second lid seal structure and the base seal structure create a double seal arrangement between the reversible lid and the base in the inverted orientation.

17. A reversible lid storage container according to claim 14, wherein the reversible lid has an annular skirt depending from the lid perimeter, and wherein the first and second lid seal structures are on a surface of the annular skirt.

18. A reversible lid storage container according to claim 17, wherein the reversible lid has a circumferential rim that extends radially outward from the annular skirt and that is positioned between parts of the first and second lid seal structures.

19. A reversible lid storage container according to claim 18, wherein the rim bears interferingly against a top edge of the base in each of the standard and the inverted lid orientations.

20. A storage container comprising:
 a base having a bottom panel, an upstanding side wall extending generally upward from a perimeter of the bottom panel and having a top end, and a top opening generally circumscribed by the top end;
 a reversible lid having a lid perimeter and a cover panel generally within the lid perimeter, the cover panel having a first side and a second side, the reversible lid configured to be installed on the base in a selected one of a first orientation with the second cover panel side facing the base and a second orientation with the first cover panel side facing the base;
 a first seal created between the reversible lid and the base in the first orientation and a second seal created between the reversible lid and the base in the second orientation; and
 a first sealed storage space between the base and the reversible lid when in the first orientation and a second sealed storage space between the base and the reversible lid when in the second orientation, the first sealed storage space having a larger volume than a volume of the second sealed storage space.

 * * * * *