Title: QUINOLINE AND QUINOXALINE COMPOUNDS WHICH INHIBIT PLATELET-DERIVED GROWTH FACTOR AND/OR p56\(^{ck}\) TYROSINE KINASES

Abstract

This invention is directed to quinoline/quinoxaline compounds which inhibit platelet-derived growth factor or p56\(^{ck}\) tyrosine kinase activity, to pharmaceutical compositions comprising these compounds, and to the use of these compounds for treating a patient suffering from or subject to disorders/conditions involving cellular differentiation, proliferation, extracellular matrix production or mediator release and/or T cell activation and proliferation.
For the purposes of information only

Codes used to identify states party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GE</td>
<td>Georgia</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GH</td>
<td>Ghana</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IL</td>
<td>Israel</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IS</td>
<td>Iceland</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IT</td>
<td>Italy</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KE</td>
<td>Kenya</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>SI</td>
<td>Slovenia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR</td>
<td>Turkey</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QUINOLINE AND QUINOXALINE COMPOUNDS WHICH INHIBIT
PLATELET-DERIVED GROWTH FACTOR AND/OR p56^۷۶ TYROSINE KINASES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention is directed to the inhibition of cell proliferation and/or cell matrix production and/or cell movement (chemotaxis) and/or T cell activation and proliferation using of quinoline/quinoxaline compounds which are useful protein tyrosine kinase inhibitors (TKIs).

Cellular signaling is mediated through a system of interactions which include cell-cell contact or cell-matrix contact or extracellular receptor-substrate contact. The extracellular signal is often communicated to other parts of the cell via a tyrosine kinase mediated phosphorylation event which affects substrate proteins downstream of the cell membrane bound signaling complex. A specific set of receptor-enzymes such as the insulin receptor, epidermal growth factor receptor (EGF-R) or platelet-derived growth factor receptor (PDGF-R) are examples of tyrosine kinase enzymes which are involved in cellular signaling. Autophosphorylation of the enzyme is required for efficient enzyme-mediated phosphorylation of substrate proteins containing tyrosine residues. These substrates are known to be responsible for a variety of cellular events including cellular proliferation, cellular matrix production, cellular migration and apoptosis to name a few.

It is understood that a large number of disease states are caused by either uncontrolled reproduction of cells or overproduction of matrix or poorly regulated programmed cell death (apoptosis). These disease states involve a variety of cell types and include disorders such as leukemia, cancer, glioblastoma, psoriasis, inflammatory diseases, bone diseases, fibrotic diseases, atherosclerosis and restenosis occurring subsequent to angioplasty of the coronary, femoral or kidney arteries or fibroproliferative disease such as in arthritis, fibrosis of the lung, kidney and liver. In addition, deregulated cellular proliferative conditions follow from coronary bypass surgery. The inhibition of tyrosine kinase activity is believed to have utility in the control of uncontrolled reproduction of cells or overproduction of matrix or poorly regulated programmed cell death (apoptosis).

It is also known that certain tyrosine kinase inhibitors can interact with more than one type of tyrosine kinase enzyme. Several tyrosine kinase enzymes are critical for the normal function of the body. For instance, it would be undesirable to inhibit insulin action in most normal circumstances. Therefore, compounds which inhibit PDGF-R tyrosine kinase activity at concentrations less than the concentrations effective in inhibiting the insulin receptor kinase could provide valuable agents for the selective treatment of diseases characterized by cell proliferation and/or cell movement (chemotaxis) such as restenosis.

This invention relates to the modulation and/or inhibition of cell signaling, cell proliferation, extracellular matrix production, chemotaxis, the control of abnormal cell growth and cell inflammatory
response. More specifically, this invention relates to the use of substituted quinoxaline compounds which exhibit selective inhibition of differentiation, proliferation or mediator release by effectively inhibiting platelet-derived growth factor-receptor (PDGF-R) tyrosine kinase activity and/or Lck tyrosine kinase activity.

2. **Reported Developments**

A number of literature reports describe tyrosine kinase inhibitors which are selective for tyrosine kinase receptor enzymes such as EGF-R or PDGF-R or non-receptor cytosolic tyrosine kinase enzymes such as v-abl, p56lck or c-src. Recent reviews by Spada and Myers (Exp. Opin. Ther. Patents 1995, 5(8), 805) and Bridges (Exp. Opin. Ther. Patents 1995, 5(12), 1245) summarize the literature for tyrosine kinase inhibitors and EGF-R selective inhibitors respectively. Additionally Law and Lydon have summarized the anticancer potential of tyrosine kinase inhibitors (Emerging Drugs: The Prospect For Improved Medicines 1996, 241-260).

Known inhibitors of PDGF-R tyrosine kinase activity includes quinoline-based inhibitors reported by Maguire et al. (J. Med. Chem. 1994, 37, 2129), and by Dolle et al. (J. Med. Chem. 1994, 37, 2627). A class of phenylamino-pyrimidine-based inhibitors was recently reported by Traxler et al. in EP 564409 and by Zimmerman, J.; and Traxler, P. et al. (Biorg. & Med. Chem. Lett. 1996, 6(11), 1221-1226) and by Buchdunger, E. et al. (Proc. Natl. Acad. Sci. 1995, 92, 2558). Despite the progress in the field there are no agents from these classes of compounds that have been approved for use in humans for treating proliferative disease.

The correlation between the multifactorial disease of restenosis with PDGF and PDGF-R is well-documented throughout the scientific literature. However, recent developments into the understanding of fibrotic diseases of the lung (Antoniades, H. N.; et al. J. Clin. Invest. 1990, 86, 1055), kidney and liver (Peterson, T. C. Hepatology, 1993, 17, 486) have also implicated PDGF and PDGF-R as playing a role. For instance glomerulonephritis is a major cause of renal failure and PDGF has been identified to be a potent mitogen for mesangial cells in vitro as demonstrated by Shultz et al. (Am. J. Physiol. 1988, 255, F674) and by Floege, et al. (Clin. Exp. Immun. 1991, 86, 334). It has been reported by Thornton, S. C.; et al. (Clin. Exp. Immun. 1991, 86, 79) that TNF-alpha and PDGF (obtained from human rheumatoid arthritis patients) are the major cytokines involved in proliferation of synovial cells. Furthermore, specific tumor cell types have been identified (see Silver, B. J., BioFactors, 1992, 3, 217) such as glioblastoma and Kaposi's sarcoma which overexpress either the PDGF protein or receptor thus leading to the uncontrolled growth of cancer cells via an autocrine or paracrine mechanism. Therefore, it is anticipated that a PDGF tyrosine kinase inhibitor would be useful in treating a variety of seemingly unrelated human disease conditions that can be characterized by the involvement of PDGF and or PDGF-R in their etiology.

The role of various non-receptor tyrosine kinases such as p56^Lck^ (hereinafter “Lck”) in inflammation-related conditions involving T cell activation and proliferation has been reviewed by Hanke, et al (Inflamm. Res. 1995, 44, 357) and by Bolen and Brugge (Ann. Rev. Immunol., 1997, 15, 371). These inflammatory conditions include allergy, autoimmune disease, rheumatoid arthritis and transplant rejection. Another recent review summarizes various classes of tyrosine kinase inhibitors including compounds having Lck inhibitory activity (Groundwater, et. al Progress in Medicinal Chemistry, 1996, 33, 233). Inhibitors of Lck tyrosine kinase activity include several natural products which are generally non-selective tyrosine kinase inhibitors such as staurosporine, genistein, certain
flavones and erbstatin. Damnocanhol was recently reported to be a low nM inhibitor of Lck
(Faltynek, et. al, Biochemistry, 1995, 34, 12404). Examples of synthetic Lck inhibitors include:
a series of dihydroxy-isoquinoline inhibitors reported as having low micromolar to submicromolar
activity (Burke, et. al J. Med. Chem. 1993, 36, 425); and a quinoline derivative found to be much less
active having an Lck IC\text{50} of 610 micromolar. Researchers have also disclosed a series of 4-
substituted quinazolines that inhibit Lck in the low micromolar to submicromolar range (Myers et al,
et. al J. Biol. Chem. 1996, 271, 695) have disclosed two specific pyrazolopyrimidine inhibitors known
as PP1 and PP2 which have low nanomolar potency against Lck and Fyn. (another Src-family kinase).

No Lck inhibitory has been reported regarding quinoline or quinoxaline based compounds. Therefore,
it is anticipated that a quinoline or quinoxaline based inhibitor of Lck tyrosine kinase activity could be
useful in treating a variety of seemingly unrelated human disease conditions that can be characterized
by the involvement of Lck tyrosine kinase signaling in their etiology.

SUMMARY OF THE INVENTION

This invention is directed to a compound of formula 1:

![Chemical Structure](image)

wherein

- X is \(L_1 \) or \(L_2 Z_2 \);
- \(L_1 = (CR_3 R_3) \), or \((CR_3 R_3 R_3) \) or \((CR_3 R_3 R_3) \) or \((CR_3 R_3) \);
- \(L_2 = (CR_3 R_3 R_3) \) or \((CR_3 R_3 R_3) \) or \((CR_3 R_3) \) or ethenyl;
- \(Z_1 \) is CH or N;
- \(Z_2 \) is optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted
 heterocyclyl or optionally substituted heterocyclyl;
- \(Z_3 \) is O, NR\text{t}, S, SO or SO\text{t};
- \(Z_4 \) is O, NR\text{t}, S, SO, SO\text{t} or a bond;
- \(m \) is 0 or 1;
- \(n \) is 2 or 3, and \(n + m = 2 \) or 3;
- \(p \) and \(q \) are independently 0, 1, 2, 3 or 4, and \(p + q = 0, 1, 2, 3 \) or 4 when \(Z_4 \) is a bond, and \(p + q = 0, 1, 2 \) or 3 when \(Z_4 \) is other than a bond;
- \(r \) is 2, 3 or 4;
- \(R_{1a} \) and \(R_{1b} \) are independently optionally substituted alkyl, optionally substituted aryl, optionally
 substituted heteroaryl, hydroxy, acyloxy, optionally substituted alkoxy, optionally substituted
cycloalkyloxy, optionally substituted heterocyclyloxy, optionally substituted heterocyclylcarbonyloxy,
 optionally substituted aryloxy, optionally substituted heteroaryloxy, cyano, \(R_3 R_3 N- \) or acyl\(R_3 N- \), or one
 of \(R_{1a} \) and \(R_{1b} \) is hydrogen or halo and the other is optionally substituted alkyl, optionally substituted aryl,
 optionally substituted heteroaryl, hydroxy, acyloxy, optionally substituted alkoxy, optionally substituted
cycloalkoxyloxy, optionally substituted heterocyclyloxy, optionally substituted heterocyclycarbonyloxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, cyano. R_{15}R_{16}N- or acylR_{16}N-;

R_{16} is hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxy, acyloxy, optionally substituted alkoxy, optionally substituted cycloalkoxyloxy, optionally substituted heteroaryloxy, halo, cyano. R_{13}R_{14}N- or acylR_{14}N-;

R_{3a}, R_{3b}, R_{15} and R_{16} are independently hydrogen or alkyl;
R_{4} is hydrogen, alkyl or acyl; and
R_{5} and R_{6} are independently hydrogen or alkyl, or R_{5} and R_{6} taken together with the nitrogen atom to which R_{5} and R_{6} are attached form aza heterocyclyl, or
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or a pharmaceutically acceptable salt thereof.

Another aspect of the invention is directed to a pharmaceutical composition comprising a pharmaceutically effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier. The invention is also directed to intermediates useful in preparing compounds of formula I, methods for the preparation of the intermediates and compounds of formula I, and the use of a compound of formula I for treating a patient suffering from or subject to disorders/conditions involving cellular differentiation, proliferation, extracellular matrix production or mediator release and/or T cell activation and proliferation.

DETAILED DESCRIPTION OF THE INVENTION

As used above, and throughout the description of the invention, the following terms, unless otherwise indicated, shall be understood to have the following meanings:

Definitions

"Patient" includes both human and other mammals.

"Effective amount" means an amount of compound of the present invention effective in inhibiting PDGF-R tyrosine kinase activity and or Lck tyrosine kinase activity, and thus producing the desired therapeutic effect.

"Alkyl" means aliphatic hydrocarbon group which may be branched or straight-chained having about 1 to about 10 carbon atoms. Preferred alkyl is "loweralkyl" having about 1 to about 6 carbon atoms; more preferred having about 1 to about 4 carbon atoms. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkyl chain. The alkyl group is also optionally substituted by alkoxy, halo, carboxy, hydroxy or R_{13}R_{14}N-. Examples of alkyl include methyl, fluoromethyl, difluoromethyl, trifluoromethyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, tert-butyl, amyl and hexyl.

"Alkenyl" means an aliphatic hydrocarbon group containing a carbon-carbon double bond and which may be straight or branched having about 2 to about 10 carbon atoms in the chain. Preferred alkenyl groups have 2 to about 6 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkenyl chain. "Lower alkenyl" means about 2 to about 4 carbon atoms in the chain which may be straight or branched. The alkenyl group may be substituted by carbalkoxy.
Exemplary alkenyl groups include ethenyl, propenyl, n-butene, i-butene, 3-methylbut-2-enyl, n-pentenyl, heptenyl, octenyl, cyclohexylbutenyl and decenyl.

"Ethynyl" means a -CH=CH- group.

"Cycloalkyl" means a non-aromatic mono- or multicyclic ring system of about 3 to about 10 carbon atoms. The cycloalkyl group as a portion of variables R₁₈, R₁₉ or R₂₀ is optionally substituted by one or more, preferably one to three, more preferably one to two, of the following "cycloalkyl substituents", alkyl, hydroxy, acyloxy, alkoxy, halo, R₃R₄N, acyI₃N, carboxy or R₃R₄NCO-substituents, or a bivalent oxygen (-O-) on two adjacent carbon atoms to form an epoxide. More preferred substituents are alkyl, hydroxy, acyloxy, alkoxy, bivalent oxygen and R₃R₄NCO-. The cycloalkyl group as a portion of variables Z₂ is optionally substituted by one or more, preferably one to three, more preferably one to two, of the following "cycloalkyl substituents", alkyl, alkoxy, halo, R₃R₄N, acyI₃N, carboxy or R₃R₄NCO-substituents, or a bivalent oxygen (-O-) on two adjacent carbon atoms to form an epoxide. More preferred substituents are alkyl, hydroxy, acyloxy, alkoxy, bivalent oxygen and R₃R₄NCO-. Furthermore, when the cycloalkyl group is substituted with at least two hydroxy substituents, then at least two of the hydroxy substituents may be ketlated or acetalated with an aldehyde or ketone of one to six carbon atoms to form the corresponding ketal or acetal. Ketalization of a gem-diol results in formation of a spiro fused ring system. A preferred spiro cycloalkyl ring is 1,4-dioxaspiro[4,5]deca-8-yl. Preferred unsubstituted or substituted monocylic cycloalkyl rings include cyclopentyl, fluorocyclopentyl, cyclohexyl, and cycloheptyl; more preferred are cyclohexyl and cyclopentyl.

Exemplary multicyclic cycloalkyl rings include 1-decalin, adamant-(1- or 2-)yl, [2.2.1]bicycloheptanyl (norbornyl) and [2.2.2]bicyclooctanyl; more preferred are [2.2.1]bicycloheptanyl, and [2.2.2]bicyclooctanyl.

"Cycloalkenyl" means a non-aromatic monocyclic or multicyclic ring system containing a carbon-carbon double bond and having about 3 to about 10 carbon atoms. The cycloalkenyl group as a portion of variables R₁₈, R₁₉ or R₂₀ is optionally substituted by one or more, preferably one to three, more preferably one to two cycloalkyl substituents as described above. The cycloalkenyl group as a portion of variables Z₂ is optionally substituted by one or more, preferably one to three, more preferably one to two cycloalkyl substituents as described above. Preferred unsubstituted or substituted monocylic cycloalkenyl rings include cyclopentenyl, cyclohexenyl and cycloheptenyl; more preferred is cyclopentenyl and cyclohexenyl. Preferred multicyclic cycloalkenyl rings include [2.2.1]bicycloheptenyl (norbornyl) and [2.2.2]bicyclooctenyl.

"Aryl" means aromatic carbocyclic radical containing about 6 to about 10 carbon atoms. Exemplary aryl include phenyl or naphthyl, or phenyl or naphthyl substituted with one or more aryl group substituents which may be the same or different, where "aryl group substituent" includes hydrogen, hydroxy, halo, alkyl, alkoxy, carboxy, alkoxy carbonyl or Y₁Y₂NCO-, wherein Y₁ and Y₂ are independently hydrogen or alkyl. Preferred aryl group substituents include hydrogen, halo and alkoxy.

"Heteroaryl" means about a 5- to about a 10- membered aromatic monocyclic or multicyclic hydrocarbon ring system in which one or more of the carbon atoms in the ring system is/are element(s) other than carbon. For example nitrogen, oxygen or sulfur. The designation of the aza, oxa or thia as a prefix before heteroaryl define that at least a nitrogen, oxygen or sulfur atom is present respectively as a ring atom. The "heteroaryl" may also be substituted by one or more of the above-mentioned "aryl group substituents". Exemplary heteroaryl groups include substituted pyrazinyl, furanyl, thienyl, pyridyl,
pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothenyl, quinoliny1, imidazolyl and isoquinolinyl.

"Heterocyclic" means an about 4 to about 10 member monocyclic or multicyclic ring system wherein one or more of the atoms in the ring system is an element other than carbon amongst nitrogen, oxygen or sulfur. The heterocyclic group as a portion of variables R_{ia}, R_{ib} or R_{ic} is optionally substituted by one or more, preferably one to three, more preferably one to two cycloalkyl substituents as described above. The heterocyclic group as a portion of variables Z_{2} is optionally substituted by one or more, preferably one to three, more preferably one to two cycloalkyl substituents as described above. The designation of the aza, oxa or thia as a prefix before heterocyclic define that at least a nitrogen, oxygen or sulfur atom is present respectively as a ring atom. Exemplary monocyclic heterocyclic groups include piperidyl, pyrrolidinyl, pyrazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,3-dioxolanyl, 1,4-dioxany1, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like. Exemplary heterocyclic moieties include quinuclidyl, pentamethylenesulfide, tetrahydropyranyl, tetrahydrothiophenyl, pyrrolidinyl, tetrahydrofuranyl, 7-oxabicyclo[2.2.1]heptanyl or 4-piperidinopiperidine.

"Heterocycliccarboxyloxy" means a heterocyclic-C(O)O- group wherein the heterocyclic is as defined herein. An exemplary heterocycliccarboxyloxy group is [1,4']-bipiperidinyl-1'-carboxyloxy (4-piperidinopiperid-1'-ylcarboxyloxy).

"Heterocyclyl" means an about 4 to about 10 member monocyclic or multicyclic ring system which is partially unsaturated and wherein one or more of the atoms in the ring system is an element other than carbon amongst nitrogen, oxygen or sulfur. The heterocyclyl group as a portion of variables R_{ia}, R_{ib} or R_{ic} is optionally substituted by one or more, preferably one to three, more preferably one to two cycloalkyl substituents as described above. The heterocyclyl group as a portion of variables Z_{2} is optionally substituted by one or more, preferably one to three, more preferably one to two cycloalkyl substituents as described above. The designation of the aza, oxa or thia as a prefix before heterocyclyl define that at least a nitrogen, oxygen or sulfur atom is present respectively as a ring atom. Exemplary monocyclic azaheterocyclyl groups include 1,2,3,4-tetrahydro-2H-pyrindyl, 1,2-dihydropyrindyl, 1,4-dihydropyrindyl, 1,2,3,6-tetrahydropyrindyl, 1,4,5,6-tetrahydropyrimidyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 2-pyrazolyl, and the like. Exemplary oxaheterocyclyl groups include 3,4-dihydro-2H-pyran, dihydrofuranyl, and fluorodihydrofuranyl. An exemplary multicyclic oxaheterocyclyl group is 7-oxabicyclo[2.2.1]heptenyl. Exemplary monocyclic thiaheterocyclyl groups include dihydrothiophenyl and dihydrothiopyryl.

"Acyl" means an H-CO- or alkyl-CO- group in which the alkyl group is as previously described. Preferred acyls contain a lower alkyl. Exemplary acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and caproyl.

"Aroyl" means an aryl-CO- group in which the alkyl group is as previously described. Exemplary groups include benzoyl and 1- and 2-naphthoyl.

"Alkoxy" means an alkyl-O- group in which the alkyl group is as previously described. Preferred alkoxy is "lower alkoxy" having about 1 to about 6 carbon atoms. The alkoxy may be optionally substituted by one or more amino, alkoxy, carboxy, alkoxyacarbonyl, carboxyaryl, carbamoyl or heterocyclyl groups. Exemplary alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-
bu(oxy, heptoxy, 2-(morpholin-4-yl)ethoxy, 2-(ethoxy)ethoxy, 2-(4-methylpiperazin-1-yl)ethoxy, car bamoyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, carboxymethoxy and methoxycarbonylmethoxy.

"Cycloalkyloxy" means a cycloalkyl-O- group in which the cycloalkyl group is as previously described. Exemplary cycloalkyloxy groups include cyclopentyloxy and cyclohexyloxy.

"Heterocyclyloxy" means a heterocyclyl-O- group in which the heterocyclyl group is as previously described. Exemplary heterocyclyloxy groups include quinuclidylloxy, pentamethylenesulfoxideoxy, tetrahydropranylxyloxy, tetrahydrothiophenylxyloxy, pyrrolidinloxy, tetrahydrofuranyloxy and 7-oxabicyclo[2.2.1]heptanyloxy.

"Aryloxy" means aryl-O- group in which the aryl group is as previously described.

"Heteroaaryloxy" means heteroaryl-O- group in which the heteroaryl group is as previously described.

"Acyloxy" means an acyl-O- group in which the acyl group is as previously described.

"Carboxy" means a HO(O)C- (carboxylic acid) group.

"R₁R₂N⁻" means a substituted or unsubstituted amino group, wherein R₁ and R₂ are as previously described. Exemplary groups include amino (H₂N⁻), methylamino, ethylmethylamino, dimethylamino and diethylamino.

"R₁R₂NCO⁻" means a substituted or unsubstituted carbamoyl group, wherein R₁ and R₂ are as previously described. Exemplary groups are carbamoyl (H₂NCO⁻), N-methylcarbamoyl (MeNHCO⁻)

and N,N-dimethylaminocarbamoyl (Me₂NCO⁻).

"AcylR₂ N⁻" means an acylamino group wherein R₁ and acyl are as defined herein.

"Halo" means fluoro, chloro, bromo, or iodo. Preferred are fluoro, chloro or bromo, and more preferred are fluoro or chloro.

"Prodrug" means a form of the compound of formula I suitable for administration to a patient without undue toxicity, irritation, allergic response, and the like, and effective for their intended use, including ketal, ester and zwitterionic forms. A prodrug is transformed in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A. C. S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference.

"Solvate" means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Exemplary solvates include ethanolates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent molecule(s) is/are H₂O.

Preferred Embodiments

A preferred compound aspect of the invention is a compound of formula I wherein

L₁ is (CR₃R₄R₅)ₒZ₁(CR₃R₄R₅)ₒ;
L₂ is (CR₃R₄R₅)ₒZ₁(CR₃R₄R₅)ₒ;
Z₁ is optionally substituted cycloalkyl, optionally substituted cycloalkenyl or optionally
substituted heterocyclyl;
Z₄ is O and NR₄;
m is 0;
n is 2 or 3;
p + q = 0 or 1;
R₄ₘ and R₄ₙ are independently optionally substituted alkyl, optionally substituted alkoxy,
only substituted cycloalkyloxy, optionally substituted heterocyclyloxy or R₄R₄N⁻, or one of R₄ₘ and
R₄ₙ is hydrogen or halo and the other is optionally substituted alkyl, optionally substituted alkoxy,
only substituted cycloalkyloxy, optionally substituted heterocyclyloxy or R₄R₄N⁻;
R₄ₖ is hydrogen, optionally substituted alkyl or optionally substituted alkoxy;
R₅ₐ, R₅ₙ, R₅ₚ and R₅ₚ are independently hydrogen or lower alkyl;
R₆ is hydrogen; and
R₄ and R₅, taken together with the nitrogen atom to which R₄ and R₅ are attached form
azaheterocyclyl or
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically
acceptable salt thereof.

Another preferred compound aspect of the invention is a compound of formula I wherein
X is L₂Z₂;
L₂ is (CR₅ₖR₅ₚ)ₚ₋Z₄(CR₅ₖR₅ₚ)ₜ₊;
Z₄ is optionally substituted cycloalkyl or optionally substituted cycloalkenyl;
Z₅ is O and NR₄;
p is 0;
q is 0 or 1;
R₄ₘ and R₄ₙ are independently optionally substituted alkyl, optionally substituted alkoxy,
only substituted cycloalkyloxy or optionally substituted heterocyclyloxy, or one of R₄ₘ and R₄ₙ is
hydrogen or halo;
R₄ₖ is hydrogen;
R₅ₚ and R₅ₚ are independently hydrogen; and
R₆ is hydrogen, or
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically
acceptable salt thereof.

Another preferred compound aspect of the invention is a compound of formula I wherein L₂ is
lower alkyl

Another preferred compound aspect of the invention is a compound of formula I wherein Z₄ is
CH.

Another preferred compound aspect of the invention is a compound of formula I wherein Z₄ is N.
Another preferred compound aspect of the invention is a compound of formula I wherein Z₅ is
optionally substituted cycloalkyl.

Another preferred compound aspect of the invention is a compound of formula I wherein Z₅ is
alkyl substituted monocyclic cycloalkyl; more preferred methylcyclopentyl or methylcyclohexyl.
Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_2 \) is multicyclic cycloalkyl; more preferred \([2.2.1]bicycloheptyl\) (norbornyl) and \([2.2.2]bicyclooctanyl\).

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_2 \) is optionally substituted cycloalkenyl; more preferred cyclopentenyl and cyclohexenyl. Preferred multicyclic cycloalkenyl rings include \([2.2.1]bicycloheptenyl\) (norbornenyl) and \([2.2.2]bicyclooctenyl\).

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_2 \) is cyclopentenyl or cyclohexenyl.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_3 \) is multicyclic cycloalkenyl; more preferred \([2.2.1]bicycloheptenyl\) (norbornenyl) or \([2.2.2]bicyclooctenyl\).

Another preferred compound aspect of the invention is a compound of formula I wherein \(p \) and \(q \) are 0.

Another preferred compound aspect of the invention is a compound of formula I wherein \(p + q = 1 \).

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is O.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is O, and \(p \) and \(q \) are 0.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is O, and \(p + q = 1 \).

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is \(NR_4 \).

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is \(NR_4 \), and \(p \) and \(q \) are 0.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is \(NR_4 \), and \(m + n = 1 \).

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is S.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is S, and \(p \) and \(q \) are 0.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_4 \) is S, and \(p + q = 1 \).

Another preferred compound aspect of the invention is a compound of formula I wherein \(R_{1a} \) and \(R_{1b} \) are independently optionally hydroxy substituted lower alkyl, hydroxy, lower alkoxy, cycloalkyloxy, heterocyclyloxy, or one of \(R_{1a} \) and \(R_{1b} \) is hydrogen or halo.

Another preferred compound aspect of the invention is a compound of formula I wherein \(R_{1a} \) and \(R_{1b} \) are independently heterocyclycarbonyloxy or optionally substituted lower alkoxy; more preferably, the lower alkoxy is methoxy or ethoxy.

Another preferred compound aspect of the invention is a compound of formula I wherein \(R_{1a} \) and \(R_{1b} \) are lower alkyl; more preferably the lower alkyl is methyl or ethyl.

Another preferred compound aspect of the invention is a compound of formula I wherein one of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy, and the other of \(R_{1a} \) and \(R_{1b} \) is halo; more preferably the lower alkoxy is methoxy or ethoxy, and the halo is chloro or bromo.
Another preferred compound aspect of the invention is a compound of formula I wherein one of \(R_{1a} \) and \(R_{1b} \) is lower alkyl, and the other of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy; more preferably the lower alkoxy is methoxy or ethoxy, and the lower alkyl is methyl or ethyl.

Another preferred compound aspect of the invention is a compound of formula I wherein one of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy, and the other of \(R_{1a} \) and \(R_{1b} \) is cycloalkyloxy; more preferably the lower alkoxy is methoxy or ethoxy, and the cycloalkyloxy is cyclopentyloxy or cyclohexyloxy.

Another preferred compound aspect of the invention is a compound of formula I wherein one of \(R_{1a} \) and \(R_{1b} \) is hydrogen, and the other of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy, cycloalkyloxy or heterocycloxy; more preferably the lower alkoxy is methoxy or ethoxy, and the cycloalkyloxy is cyclopentyloxy or cyclohexyloxy, and the heterocycloxy is furanyloxy.

Another preferred compound aspect of the invention is a compound of formula I wherein \(R_{1c} \) is hydrogen, lower alkyl or lower alkoxy; more preferably the lower alkoxy is methoxy or ethoxy.

Another preferred compound aspect of the invention is a compound of formula I wherein \(Z_5 \) is (hydroxy or alkyl) substituted hydroxycycloalkyl, more preferably is (lower alkyl)hydroxycycloalkyl.

Another preferred compound aspect of the invention is a compound of formula I wherein \(R_{1a} \) and \(R_{1b} \) are lower alkoxy wherein the lower alkoxy is optionally substituted with alkoxy, heterocyclyl, carboxy, alkoxy carbonyl or carbamoyl.

Another preferred compound aspect of the invention is a compound of formula I wherein one of \(R_{1a} \) and \(R_{1b} \) is unsubstituted lower alkoxy and the other of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy substituted with alkoxy, heterocyclyl, carboxy, alkoxy carbonyl or carbamoyl.

Another preferred compound aspect of the invention is a compound of formula I wherein one of \(R_{1a} \) and \(R_{1b} \) is methoxy and the other of \(R_{1a} \) and \(R_{1b} \) is \([1,4']\)-bipiperadim-1'-ylcarbonyloxy, 2-(ethoxy)ethoxy, 2-(4-morpholinyl)ethoxy, 2-(4-methylpiperazin-1-yl)ethoxy, carboxymethoxy, methoxycarbonylmethoxy, amino carbonylmethoxy, N-methylaminocarbonylmethoxy or N,N-dimethylaminocarbonylmethoxy.

Preferred compounds according to the invention are selected from the following species:

- 3-Cyclohexyloxy-6,7-dimethoxyquinoline;
- 2-cyclohexylamino-6,7-dimethoxyquinoxaline;
- \(\text{exo-bicyclo}[2.2.1] \)hept-2-yl-(6-chloro-7-methoxyquinoxalin-2-yl)amine;
- \(\text{exo-bicyclo}[2.2.1] \)hept-2-yl-(7-chloro-6-methoxyquinoxalin-2-yl)amine;
- Bicyclo[2.2.1]hept-2-yl-(6,7-dimethyl-quinoxalin-2-yl)-amine;
- 2-cyclohexylamino-6,7-dimethoxyquinoxaline;
- 2-cyclopentylamino-6,7-dimethoxyquinoxaline;
- 2-cyclohexylamino-6-methoxyquinoline;
- 3-Aminocyclohexyl-6,7-dimethoxy-quinoline;
- (6,7-dimethoxyquinolin-3-yl)cis-(3-(R)-methyl-cyclohexyl) amine;
- 2-Cyclohexylamino-6-methoxy-7-bromo-quinoxaline hydrochloride;
- (6,7-Dimethoxyquinolin-3-yl)-cis/trans-(3-(R)-methyl-cyclohexyl)-amine
- (6,7-Dimethoxyquinolin-3-yl)-trans-(3-(R)-methyl-cyclohexyl)-amine
- (6,7-Dimethoxyquinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl)-amine;
- (6,7-dimethoxy-quinolin-3-yl)- (3-methyl-cyclopentyl) amine;
Cyclohex-3-enyl-(6,7-dimethoxyquinoloxalin-2-yl)-amine;
2,7-Bis-cyclohexyloxy-6-methoxy-quinoloxaline;
Cyclohexyl-(6,7-dimethoxyquinoloxalin-2-ylmethyl)-amine;
(6,7-Dimethoxyquinolin-3-yl)-isobutyl amine;

5
Cyclohexyl-(6-methoxy-7-morpholin-4-yl-quinoloxalin-2-yl)-amine;
(+)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoloxalin-2-yl)-amine;
exo-bicyclo[2.2.1]hept-5-en-2-yl-(6,7-dimethoxyquinoloxalin-2-yl)-amine;
Cyclohexyl-(6,8-dimethyl-quinoloxalin-2-yl)-amine;
Endo-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoloxalin-2-yl)-amine;

10
(6,7-Dimethoxyquinoloxalin-2-yl)-(4-methoxy-cyclohexyl)-amine;;
Exo-bicyclo[2.2.1]hept-2-yl-(6-methoxyquinoloxalin-2-yl)-amine;
exo-2-(Bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxyquinoloxaline;
2-(Bicyclo[2.2.2]oct-2-yloxy)-6,7-dimethoxy-quinoloxaline;
Endo-2-(bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxy-quinoloxaline;

15
exo-2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoloxaline;
2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoloxaline;
Cyclohexyloxy-6,7-dimethoxyquinoloxaline;
2-cyclopentylthio-6,7-dimethoxy-quinoloxaline;
6,7-dimethoxy-2-cyclopentylxyloxy-quinoloxaline;

20
2-cyclopentylmethoxy-6,7-dimethoxy-quinoloxaline;
6,7-dimethoxy-2-tetrahydroprop-4-oxy-quinoloxaline;
exo,exo-6,7-dimethoxy-2-(5,6-epoxy-bicyclo[2.2.1]heptan-2-yloxy)-quinoloxaline;
cis/trans-4-(6,7-Dimethoxyquinoloxalin-2-yloxy)-cyclohexanecarboxylic acid;
6,7-Dimethoxy-2-(4-methoxy-cyclohexyloxy)-quinoloxaline;

25
3-Cyclohexyloxy-6,7-dimethoxyquinoloxaline 1-oxide;
(1R,2R,4S)-(+)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoloxalin-2-yl)-amine;
(1S,2S,4R)-(−)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoloxalin-2-yl)-amine;
2-(6,7-Dimethoxyquinoloxalin-2-yl)-2-aza-bicyclo[2.2.2]octan-3-one;
Cis/trans-4-(6,7-Dimethoxy-quinoloxalin-2-ylamino)-cyclohexanecarboxylic acid
methyl ester;

30
Cis/trans-4-(6,7-dimethoxy-quinoloxalin-2-ylamino)-cyclohexanecarboxylic acid;
Cis-4-(6,7-dimethoxy-quinoloxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
Trans-4-(6,7-dimethoxy-quinoloxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
(6,7-dimethoxy-quinoloxaline-2-yl)-cis/trans-(3-(R)-methylcyclohexyl) amine;

35
(6,7-dimethoxy-quinoloxaline-2-yl) -trans-(3-(R)-methylcyclohexyl) amine;
(6,7-dimethoxy-quinoloxaline-2-yl)-cis-(3-(R)-methylcyclohexyl) amine; and
methyl cis/trans-4-(6,7-Dimethoxyquinoloxalin-2-yloxy)-cyclohexanecarboxylate, or
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt
thereof..

40

More preferred compounds are the following:
2-cyclohexylamino-6,7-dimethoxyquinoloxaline;
exo-bicyclo[2.2.1]hept-2-yl-(6-chloro-7-methoxyquinoxalin-2-yl)amine;
exo-bicyclo[2.2.1]hept-2-yl-(7-chloro-6-methoxyquinoxalin-2-yl)amine;
Bicyclo[2.2.1]hept-2-yl-(6,7-dimethyl-quinoxalin-2-yl)-amine;
2-cycloheptylaminio-6,7-dimethoxyquinoxaline;
2-cyclopentylamino-6,7-dimethoxyquinoxaline;
3-Aminocyclohexyl-6,7-dimethoxyquinoline;
(6,7-dimethoxy-quinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl) amine;
(6,7-Dimethoxyquinolin-3-yl)-cis/trans-(3-(R)-methyl-cyclohexyl)-amine
(6,7-Dimethoxyquinolin-3-yl)-trans-(3-(R)-methyl-cyclohexyl)-amine
10
(6,7-Dimethoxyquinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl)-amine;
Cyclohex-3-enyl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
2,7-Bis-cyclohexyloxy-6-methoxy-quinoxaline;
(6,7-Dimethoxyquinolin-3-yl)-isobutyl amine;
(+)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
15
exo-bicyclo[2.2.1]hept-5-en-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
Endo-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
Exo-bicyclo[2.2.1]hept-2-yl-(6-methoxyquinoxalin-2-yl)-amine;
exo-2-(Bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxyquinoxaline;
2-(Bicyclo[2.2.1]oct-2-yloxy)-6,7-dimethoxy-quinoxaline;
20
Endo-2-(bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxy-quinoxaline;
exo-2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoxaline;
2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoxaline;
2-Cyclohexyloxy-6,7-dimethoxyquinoxaline;
2-cyclopentylthio-6,7-dimethoxy-quinoxaline;
25
6,7-dimethoxy-2-cyclopentyl oxy-quinoxaline;
2-cyclopentylmethoxy-6,7-dimethoxy-quinoxaline;
6,7-dimethoxy-2-tetrahydropyran-4-oxy-quinoxaline;
exo,exo-6,7-dimethoxy-2-(5,6-epoxy-bicyclo[2.2.1]heptan-2-yloxy)-quinoxaline;
6,7-Dimethoxy-2-(4-methoxy-cyclohexyloxy)-quinoxaline;
30
(1R,2R,4S)-(+)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
(1S,2S,4R)-(-)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
Cis/trans-4-(6,7-Dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid
methyl ester;
Cis-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
35
Trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
(6,7-dimethoxy-quinoxaline-2-yl)-cis/trans-(3-(R)-methylcyclohexyl) amine;
(6,7-dimethoxy-quinoxaline-2-yl)-trans-(3-(R)-methylcyclohexyl) amine;
c (6,7-dimethoxy-quinoxaline-2-yl)-cis-(3-(R)-methylcyclohexyl) amine; and
methyl cis/trans-4-(6,7-Dimethoxyquinoxalin-2-yloxy)-cyclohexanecarboxylate, or
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt
thereof.
It is to be understood that this invention covers all appropriate combinations of the particular and preferred groupings referred to herein.

The compounds of this invention may be prepared by employing procedures known in the literature starting from known compounds or readily prepared intermediates. Exemplary general procedures follow.

In addition, compounds of formula I are prepared according to the following Schemes I-VIII, wherein the variables are as described above, excepting those variables which one skilled in the art would appreciate would be incongruent with the method described.

Scheme I

\[
\begin{align*}
R_{1b} & \quad \text{Cl} \\
\text{H}_2\text{N} & \quad \text{Z}_2 \\
\text{H} & \quad \text{Z}_2 \\
R_{1a} & \quad \text{N} \\
R_{1c} & \quad \text{N} \\
\end{align*}
\]

Scheme II

\[
\begin{align*}
R_{1b} & \quad \text{Cl} \\
\text{HX} & \quad \text{Z}_2 \\
\text{NaH, THF} & \quad X' = O \ or \ S \\
R_{1a} & \quad \text{N} \\
R_{1c} & \quad \text{N} \\
\end{align*}
\]

Scheme III

\[
\begin{align*}
\text{HO} & \quad \text{Z}_2 \\
\text{excess} & \quad \text{NaH, THF} \\
\end{align*}
\]
Scheme IV

Scheme V

Scheme VI

wherein at least one of R_{1a}, R_{1b} and R_{1c} is lower alkoxy and X'' is L_1OP' or L_2Z_2 wherein P' is a protecting group suitable for protecting a hydroxyl moiety in the presence of base and an alkylating agent.

wherein at least one of R_{1a}, R_{1b} and R_{1c} are defined herein and where X is L_1OP', the protecting group P' is then removed to provide the corresponding OH moiety.

In Schemes VI, VII and VIII, R represents a precursor group to R_{1a}, R_{1b} or R_{1c} as defined herein, such that reaction of RBr, ROH, or ROCl with the aromatic hydroxy group under the conditions described in Schemes VI, VII and VIII results in formation of R_{1a}, R_{1b} or R_{1c}.

Representative RBr include bromoacetic acid and methyl and ethyl bromoacetate.

Representative ROH include 2-ethoxyethanol, 2-(4-morpholinyl)ethanol and 3-(4-methylpiperazinyl)propanol.

A representative ROCl is [1,4']-bipiperidin-1'-ylcarbonyl chloride.
Scheme VII

\[\text{HO-} \text{MeO-} \text{NO}_2 \text{MeO-} \text{NO}_2 \]

1) \(\text{H}_2, \text{Pd/C} \)
2) \(\text{NaOH}, \text{sodium glyoxalate} \)
3) \(\text{POCl}_3 \)

\[\text{HO-} \text{MeO-} \text{N} \text{Cl} \]

\[\text{MeO-} \text{N} \text{Cl} \]

\[\text{MeO-} \text{N} \text{Cl} \]

\[\text{base, RBr or ROH, Ph}_3\text{P, DEAD or RCOCl} \]

\[\text{as described in Schemes I, II, III or IX} \]

wherein \(X'' \) is \(\text{L}_1\text{OP}'' \) or \(\text{L}_2\text{Z}_2 \)
wherein \(P'' \) is a group suitable for protecting a hydroxyl moiety under the reaction conditions described in Schemes I, II, III and IX
Scheme VIII

1) H₂, Pd/C
2) NaOH, sodium glyoxalate
3) POCl₃
4) Protection

as described in Schemes I, II, III or IX

wherein X'' is L₁OP'' or L₂Z₂
wherein P'' and P''' are groups suitable for protecting a hydroxyl moiety under the reaction conditions described in Schemes I, II, III and IX

Scheme IX

Ni Catalyst

X''MgX'''

where X'' is L₁OP''
then OP' moiety may be converted to the corresponding OH moiety using an appropriate deprotection agent
I. General Procedures:

1. Coupling of 2-chloro substituted quinoxaline and amines or anilines

 A mixture of 2-chloro-6,7-dimethoxyquinoxaline (1 eq.) and an amine (about 1 to about 5 eq.) is heated at about 160 to about 180 °C from about three hours to overnight. The dark-brown residue is dissolved in methanol/ methylene chloride (0%-10%) and chromatographed on silica gel eluted with hexane/ethyl acetate or methanol/methylene chloride (0%-100%) to yield the desired product. The desired product may be purified further through recrystallization in methanol, methylene chloride or methanol/water.

2. Coupling of 2-chloro substituted quinoxaline and alcohols or phenols

 A suspension of an alcohol or mercaptan (1 eq.) and sodium hydride (about 1 to about 3 eq.) in anhydrous DMF/THF (0%-50%) is refluxed for 1 hour before addition of 2-chloro-6,7-dimethoxyquinoxaline (1 eq.). The resulting mixture is refluxed for about one to about four hours. The suspension is neutralized to about pH 5-8 and partitioned between methylene chloride and brine. The residue after concentration of methylene chloride is chromatographed on silica gel eluted with hexane/ethyl acetate or methanol/methylene chloride (0%-100%) to give the desired product.

3. Reductive amination reaction with amino-quinolines and aldehydes or ketones.
An appropriately substituted 3-amino quinoline (1 eq.) is stirred with 1 eq. of the appropriate aldehyde or ketone in methanol (or another suitable solvent mixture) until TLC indicates imine formation is complete. Excess NaCNBH₄ or NaBH₄ or another suitable reducing agent is added and the mixture is stirred until TLC shows consumption of the intermediate imine. The mixture is concentrated and the residue is chromatographed on silica gel with hexane/ethyl acetate (0-100 %) or chloroform/methanol (0-20%) to give the desired product.

4. Coupling reaction of 3-amino substituted quinolines and bromophenyl compounds.

An appropriately substituted 3-amino quinoline (1 eq.) is stirred with ~1.4 eq. of a strong base such as sodium tert-butoxide, 1 eq. of the appropriate bromophenyl compound, and catalytic amounts of 2,2'-bis(diphenylphosphino)-1-1'-binaphthyl (S-BINAP) and bis(dibenzylideneacetone)-Palladium (Pd(dba)₂) are mixed in an inert organic solvent such as toluene under an inert atmosphere such as argon and heated to about 80°C overnight. The mixture is cooled, diluted with a solvent such as ether, filtered, concentrated and chromatographed with 50% EtOAc/hexane to give the desired product.

5. Ether formation from 3-hydroxy substituted quinolines via Mitsunobu conditions.

A THF solution of an appropriately substituted hydroxyquinoxaline (at about 0 to about 25 °C) is treated with 1 eq. each of the desired alcohol, triphenylphosphine and finally diethylazodicarboxylate (DEAD) or a suitable equivalent. The reaction progress is monitored via TLC and upon completion of the reaction (about 1 to about 24 hours) the mixture is concentrated and the residue is chromatographed on silica gel to yield the desired product.

6. Dealkylation of a lower alkoxy substituted quinoline or quinoxaline, and subsequent alkylation.

An appropriate lower alkoxy substituted quinoline or quinoxaline (1 eq.) in DMF is treated with excess sodium ethanethiolate (usually about 2 or more eq.) and the reaction mixture is stirred with heating from about 1 to about 24 hours. The mixture is partitioned between water and ethyl acetate. Extractive workup followed by chromatography, if necessary, provides the corresponding desired hydroxy substituted quinoline or quinoxaline product.

The hydroxy substituted quinoline or quinoxaline product can be alkylated using the conditions for the Mitsunobu reaction as detailed above. Alternatively, simple alkylation using methods well-known in the art with a reactive alkyl- or benzyl- halide using NaH or another appropriate base in a suitable solvent provides the desired alkylated product.

7. Oxidation of a nitrogen in a quinoline or quinoxaline to the corresponding N-oxide.

An imine (=N-) moiety in a quinoline or quinoxaline compound of formula (I), may be converted to the corresponding compound wherein the imine moiety is oxidized to an N-oxide, preferably by reacting with a peracid, for example peracetic acid in acetic acid or m-chloroperoxybenzoic acid in an inert solvent such as dichloromethane, at a temperature from about room temperature to reflux, preferably at elevated temperature.

The compounds of the present invention are useful in the form of the free base or acid or in the form of a pharmaceutically acceptable salt thereof. All forms are within the scope of the invention.

Where the compound of the present invention is substituted with a basic moiety, acid addition salts are formed and are simply a more convenient form for use; and in practice, use of the salt form inherently amounts to use of the free base form. The acids which can be used to prepare the acid addition salts include preferably those which produce, when combined with the free base,
pharmacologically acceptable salts, that is, salts whose anions are non-toxic to the patient in
pharmaceutical doses of the salts, so that the beneficial inhibitory effects on PDGF inherent in the free
base are not vitiated by side effects ascribable to the anions. Although pharmaceutically acceptable salts
of said basic compounds are preferred, all acid addition salts are useful as sources of the free base form
even if the particular salt, per se, is desired only as an intermediate product as, for example, when the salt
is formed only for purposes of purification, and identification, or when it is used as intermediate in
preparing a pharmaceutically acceptable salt by ion exchange procedures. Pharmaceutically acceptable
salts within the scope of the invention are those derived from the following acids: mineral acids such as
hydrochloric acid, sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid,
citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid,
benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like. The
corresponding acid addition salts comprise the following: hydrohalides, e.g. hydrochloride and
hydrobromide, sulfate, phosphate, nitrate, sulfamate, acetate, citrate, lactate, tartrate, malonate, oxalate,
saliclylate, propionate, succinate, fumarate, maleate, methylene-bis-β-hydroxynaphthoates, gentisates,
mesylates, isethionates and di-p-toluoyl tartrates methanesulfonate, ethanesulfonate, benzenesulfonate, p-
toluenesulfonate, cyclohexylsulfamate and quinate, respectively.

According to a further feature of the invention, acid addition salts of the compounds of this
invention are prepared by reaction of the free base with the appropriate acid, by the application or
adaptation of known methods. For example, the acid addition salts of the compounds of this invention
are prepared either by dissolving the free base in aqueous or aqueous-alcohol solution or other suitable
solvents containing the appropriate acid and isolating the salt by evaporating the solution, or by reacting
the free base and acid in an organic solvent, in which case the salt separates directly or can be obtained
by concentration of the solution.

The compounds of this invention can be regenerated from the acid addition salts by the
application or adaptation of known methods. For example, parent compounds of the invention can be
regenerated from their acid addition salts by treatment with an alkali, e.g. aqueous sodium bicarbonate
solution or aqueous ammonia solution.

Where the compound of the invention is substituted with an acidic moiety, base addition salts
may be formed and are simply a more convenient form for use; and in practice, use of the salt form
inherently amounts to use of the free acid form. The bases which can be used to prepare the base
addition salts include preferably those which produce, when combined with the free acid,
pharmacologically acceptable salts, that is, salts whose cations are non-toxic to the animal organism in
pharmaceutical doses of the salts, so that the beneficial inhibitory effects on PDGF inherent in the free
acid are not vitiated by side effects ascribable to the cations. Pharmaceutically acceptable salts,
including for example alkali and alkaline earth metal salts, within the scope of the invention are those
derived from the following bases: sodium hydride, sodium hydroxide, potassium hydroxide, calcium
hydroxide, aluminum hydroxide, lithium hydroxide, magnesium hydroxide, zinc hydroxide, ammonia,
trimethylammonia, triethylammonia, ethylenediamine, n-methyl-glucamine, lysine, arginine, ornithine,
choline, N,N'-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, n-
benzylphenethylamine, diethylamine, piperazine, tris(hydroxymethyl)-aminomethane,
tetramethylammonium hydroxide, and the like.
Metal salts of compounds of the present invention may be obtained by contacting a hydride, hydroxide, carbonate or similar reactive compound of the chosen metal in an aqueous or organic solvent with the free acid form of the compound. The aqueous solvent employed may be water or it may be a mixture of water with an organic solvent, preferably an alcohol such as methanol or ethanol, a ketone such as acetone, an aliphatic ether such as tetrahydrofuran, or an ester such as ethyl acetate. Such reactions are normally conducted at ambient temperature but they may, if desired, be conducted with heating.

Amine salts of compounds of the present invention may be obtained by contacting an amine in an aqueous or organic solvent with the free acid form of the compound. Suitable aqueous solvents include water and mixtures of water with alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, nitriles such as acetonitrile, or ketones such as acetone. Amino acid salts may be similarly prepared.

The compounds of this invention can be regenerated from the base addition salts by the application or adaptation of known methods. For example, parent compounds of the invention can be regenerated from their base addition salts by treatment with an acid, e.g., hydrochloric acid.

As well as being useful in themselves as active compounds, salts of compounds of the invention are useful for the purposes of purification of the compounds, for example by exploitation of the solubility differences between the salts and the parent compounds, side products and/or starting materials by techniques well known to those skilled in the art.

Compounds of the present invention may contain asymmetric centers. These asymmetric centers may independently be in either the R or S configuration. It will also be apparent to those skilled in the art that certain compounds of formula I may exhibit geometrical isomerism. Geometrical isomers include the cis and trans forms of compounds of the invention, i.e., compounds having alkenyl moieties or substituents on the ring systems. In addition, bicyclo ring systems include endo and exo isomers. The present invention comprises the individual geometrical isomers, stereoisomers, enantiomers and mixtures thereof.

Such isomers can be separated from their mixtures, by the application or adaptation of known methods, for example chromatographic techniques and recrystallization techniques, or they are separately prepared from the appropriate isomers of their intermediates, for example by the application or adaptation of methods described herein.

The starting materials and intermediates are prepared by the application or adaptation of known methods, for example methods as described in the Reference Examples or their obvious chemical equivalents, or by methods described according to the invention herein.

The present invention is further exemplified but not limited by the following illustrative examples which describe the preparation of the compounds according to the invention.

Further, the following examples are representative of the processes used to synthesize the compounds of this invention.

EXAMPLE 1

3-Cyclohexyloxy-6,7-dimethoxyquinoline

To a THF solution (30 mL) at 0°C is added 3-hydroxy-6,7-dimethoxyquinoline (0.237 g, 1.15 mmol), cyclohexanol (0.347 g, 3.46 mmol), Ph,P (0.908 g, 3.46 mmol). Diethylazodicarboxylate is added portionwise until the solution retained a deep red color (0.663 g, 3.81 mmol). After 4 hours the
solution is concentrated and the residue chromatographed (50% EtOAc in hexanes). The product is recrystallized from isopropanol/hexanes as the HCl salt as a white solid (m.p. 229-232°C, dec.).

EXAMPLE 2

2-Anilino-6-isopropoxy-quinoxaline hydrochloride

To NaH (0.033 g, 0.84 mmol) under argon is added 1 mL DMF. 2-Anilino-6-quinoxalinol (0.1 g, 0.42 mmol) in 1.5 mL DMF is added portionwise. After 30 minutes, 2-bromopropane is added dropwise and the solution is heated to 50°C for 1.5 hours. The cooled reaction mixture is quenched with water and partitioned between EtOAc and H2O, washed with H2O (3X), brine, dried (MgSO4), and concentrated. The resulting residue is chromatographed (30% EtOAc/hexanes) to provide 0.05 g dialkylated product and 0.1 g of the title compound. An analytical sample of the HCl salt is obtained by addition of IPA (isopropanol)/HCl to an Et2O/IPA solution of the free base to provide HCl salt (m.p. 205-210°C dec.). Anal. Calcd. for C17H17N2O •HCl: C, 64.65; H, 5.74; N, 13.31; Found: C, 64.51; H, 5.90; N, 13.09.

EXAMPLE 3

2-cyclohexylamino-6,7-dimethoxyquinoxaline

To 0.3 g (1.34 mmol) of 2-chloro-6,7-dimethoxyquinoxaline is added approx. 1 mL of cyclohexylamine. The mixture is heated overnight at 105°C and a further 10 hours at 135°C. The mix is partitioned between CH2Cl2 and saturated NaHCO3. The organic layer is dried (MgSO4) and concentrated. The resulting syrup is chromatographed (1:1 EtOAc : CH2Cl2) to provide 0.265 g of the product as a lt. brown solid in 69% yield (m.p. 188-189.5). Anal. calcd for C16H15N2O: C, 66.88; H, 7.37; N, 14.62. Found: C, 66.82; H, 7.28; N, 14.45.

Using the standard coupling protocol above using the appropriate starting materials the following are prepared:

exo-bicyclo [2.2.1]hept-2-yl-(6-chloro-7-methoxyquinoxalin-2-yl)amine

exo-bicyclo [2.2.1]hept-2-yl-(7-chloro-6-methoxyquinoxalin-2-yl)amine

(m.p. 146-147.5°C). Anal. calcd for C16H18N2OCl: C, 63.26; H, 5.97; N, 13.83. Found: C, 63.34; H, 5.93; N, 13.77.

Bicyclo[2.2.1]hept-2-yl-(6,7-dimethyl-quinoxalin-2-yl)-amine

2-cycloheptylamino-6,7-dimethoxyquinoxaline

2-cyclopentylamino-6,7-dimethoxyquinoxaline

2-cyclohexylamino-6-methoxyquinoxaline
5
(m.p. 242-248°C).

EXAMPLE 4 3-Aminocyclohexyl-6,7-dimethoxy-quinoline

To a MeOH (3 mL) solution of 4Å powdered molecular sieves (0.11 g) under argon is added 3-amino-6,7-dimethoxy-quinoline hydrochloride (0.17 g, 0.68 mmol) and NaOMe (0.039 g, 0.71 mmol). The reaction mixture is stirred at room temperature for 30 min., and cyclohexanone (0.074 mL, 0.71 mmol), then pyrdidine•borane (0.072 mL, 0.071 mmol) are added portionwise. The mixture is stirred for 4.5 h, then 5N HCl (1.4 mL, 6.8 mmol) is added portionwise. The reaction mixture is stirred 45 min., then made strongly basic with 5N NaOH. The mix is partitioned between EtOAc and H₂O, and the aqueous layer is washed with EtOAc (2X). The combined organic layers are washed with brine, (1X), dried (MgSO₄), chromatographed (50% EtOAc/hexanes), and recrystallized from EtOAc/hexanes to obtain 0.112 g light-yellow solid in 57% yield (m.p. 164-165). Anal. caled for C₁₇H₂₁N₂O₂: C, 71.30; H, 7.74; N, 9.78. Found: C, 71.45; H, 7.49; N, 9.80.

EXAMPLE 5 2-Cyclohexylamino-6-methoxy-7-bromo-quinoxaline hydrochloride

To 0.75 g (2.7 mmol) 7:1 7-bromo-6-methoxy-quinoxalin-2-ol : 6-bromo-7-methoxyquinoxalin-2-ol in a sealed tube is added 5 mL cyclohexylamine. The reaction mixture is heated to 120°C for 2 h. Cyclohexylamine is removed under reduced pressure, and the residue is partitioned between EtOAc/H₂O. The organic layer is washed with H₂O (2X), brine (1X), and dried (MgSO₄). The resulting material is chromatographed (20% then 30% EtOAc/hexanes) to provide 0.81 g major product in 88% yield. An analytical sample is obtained by converting approximately 0.13 g of the free base into its hydrochloride salt (m.p. 280 dec.). Anal. caled for C₁₅H₁₄N₂OBr•HCl: C, 48.34; H, 5.14; N, 11.27. Found: C, 48.51; H, 4.98; N, 11.09.

EXAMPLE 6 (6,7-dimethoxy-quinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl) amine dihydrochloride and (6,7-dimethoxy-quinolin-3-yl)-trans-(3-(R)-methyl-cyclohexyl) amine dihydrochloride

A cis/trans mixture of (6,7-Dimethoxy-quinolin-3-yl)-(3-(R)-methyl-cyclohexyl)-amine prepared by reductive amination of 3-amino-6,7-dimethoxyquinoline and 3-(R)-methyl cyclohexanone is separated by RP-HPLC. Both samples are re-chromatographed (70% EtOAc/hexanes) to obtain pure free base. An analytical sample of each isomer is obtained by converting separately the free bases into the amorphous and somewhat hygroscopic dihydrochloride salts. 500 MHz ¹H NMR is consistent for the product and LC/MS and FAB confirmed M+H = 301 for each isomer.

EXAMPLE 7 Cyclohex-3-enyl-(6,7-dimethoxyquinoxalin-2-yl)-amine

To a solution of trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanol (303 mg, 1 mmol) in 10 mL of THF at -78°C are added triphenylphosphine (524 mg, 2 mmol) and diethyl azodicarboxylate (1 mL). The mixture is stirred at -78°C for one hour before addition of 4-nitrobenzoic acid (334 mg,
2 mmol). After being stirred at -78°C for one hour, the mixture is continued to stir at ROOM TEMPERATURE for additional hour and then concentrated. The residue is chromatographed on silica gel (ether) to give 250 mg (87.7%) of cyclohex-3-enyl-(6,7-dimethoxyquinazolin-2-yl)-amine.

EXAMPLE 8

2-Anilino-6-quinoxalinol

By the method of Feutrill, G. I.; Murrington, R. N. *Tet. Lett.* 1970, 1327; the aryl methyl ether is converted to the phenol derivative. To 2-anilino-6-methoxy-quinoxalinol (0.27 g, 1.07 mmol) under argon in DMF is added the sodium salt of ethanethiol (0.19 g, 2 mmol). The reaction mixture is heated to 110°C overnight. The mixture is concentrated and partitioned between EtOAc and H₂O/5% tartaric acid such that the pH of the aqueous layer is approximately 4. The organic layer is washed with H₂O (4X), then with 2.5% NaOH (4X). The basic layers combined, washed with EtOAc (2X), re-acidified with 5% tartaric acid, and washed with multiple portions of EtOAc. The organic layers are combined, washed with brine, dried (Na₂SO₄), and concentrated. The resulting solid is chromatographed (50% EtOAc/hexanes). An analytical sample is obtained by triturating the product with Et₂O to provide a yellow powder (m.p. 211-213°C). Anal. Calcd. for C₁₉H₁₇N₂O₂: C, 70.88; H, 4.67; N, 17.71; Found: C, 70.64; H, 4.85; N, 17.58.

EXAMPLE 9

Phenyl-[6-(tetrahydrofuran-3-(R)-yl-oxy)quinazolin-2-yl]amine

To a THF solution at 0°C under argon is added 2-anilino-6-quinoxalinol (0.23 g, 0.97 mmol), (S)-(+)3-hydroxytetrahydrofuran (0.086 mL, 1.3 mmol), and triphenylphosphine (0.31 g, 1.2 mmol). DEAD (0.18 mL, 1.2 mmol) is added portionwise. The reaction is allowed to warm to room temperature and stirred for 1.5 hours. The mixture is concentrated and partitioned between EtOAc and H₂O. The organic layer is washed with H₂O, brine, dried (MgSO₄), and concentrated. The resulting yellow oil is chromatographed (50% EtOAc/hexanes) and taken up in Et₂O/IPA. HCl/Et₂O solution is added dropwise and the resulting red-orange powder is dried in vacuo. The powder is free-based by stirring in MeOH with washed (3X H₂O, 5X MeOH) basic ion exchange resin. The mixture is stirred 30 minutes, filtered, concentrated, and recrystallized from EtOAc/hexanes to provide, in two crops, the product (m.p. 173-175°C). Anal. Calcd. for C₁₈H₁₅N₂O₃: C, 70.35; H, 5.57; N, 13.67; Found: C, 70.19; H, 5.60; N, 13.66.

EXAMPLE 10 2,7-Bis-cyclohexyloxy-6-methoxy-quinoxaline

To a DMF solution (5 mL) of NaH (0.32 g, 8 mmol) under argon, cyclohexanol (0.7 mL, 6.7 mmol) is added dropwise. The mixture is stirred at room temperature for 25 minutes, then 2-chloro-6,7-dimethoxyquinazaline is added portionwise. The reaction is stirred for 15 minutes at room temperature, at 90°C for 2 hours, and at 110°C for 1 hour. The mixture is cooled, quenched with H₂O, and partitioned between EtOAc/ H₂O. The organic layer is washed with H₂O and brine, dried (MgSO₄), and chromatographed (10% EtOAc/hexanes) to provide a waxy white solid (m.p. 75-78°C). Anal. Calcd. for C₂₅H₂₆N₂O₃: C, 70.76; H, 7.92; N, 7.86; Found: C, 70.81; H, 7.79; N, 7.70.

EXAMPLE 11 Cyclohexyl-(6,7-dimethoxyquinazolin-2-ylmethyl)-amine

To a 0.067 M solution of 6,7-dimethoxy-2-quinoxaline carboxaldehyde in 2:1 MeOH/1,2-dichloroethane (7.5 mL, 0.5 mmol) is added cyclohexylamine (0.11 mL, 0.9 mmol). The reaction is
allowed to stir at room temperature overnight, then NaBH₄ (0.038 g, 1 mmol) is added and the reaction mixture is stirred overnight. The mixture is then concentrated and chromatographed (50% EtOAc/hexanes—approximately 5% MeOH in 50% EtOAc/hexanes). The oil is dissolved in EtOAc/hexanes and treated with HCl in EtOH. The resulting solution is concentrated and the solids are triturated with isopropanol to provide a white solid after drying in vacuo at 60 °C (m.p. 185-190°C, dec.).

Anal. Calcd. for C₁₇H₁₅N₂O₂·HCl: C, 60.44; H, 7.16; N, 12.44; Found: C, 60.48; H, 6.88; N, 12.07.

EXAMPLE 12 (6,7-Dimethoxyquinolin-3-yl)-trans-(3-(R)-methyl-cyclohexyl)-amine and (6,7-Dimethoxyquinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl)-amine

The reaction is performed similarly to the above preparation using the free base of 3-amino-6,7-dimethoxyquinoline (0.32 g, 1.6 mmol) and (R)-(+)3-methylcyclohexanone (0.23 mL, 1.9 mmol). The product mixture obtained is chromatographed (70% EtOAc/hexanes), and recrystallized from EtOAc/hexanes to obtain a white solid (1:1 mixture of cis and trans isomers) (m.p. 153-160°C). Anal. Calcd. for C₁₉H₂₂N₂O₂: C, 71.97; H, 8.05; N, 9.33; Found: C, 72.12; H, 7.85; N, 9.29.

Using the standard coupling protocol above using the appropriate starting material the following is prepared:

(6,7-dimethoxy-quinolin-3-yl)- (3-methyl-cyclopentyl) amine

EXAMPLE 13 3-(6,7-Dimethoxyquinolin-3-yl-amino)-2,2-dimethyl-propan-1-ol

The reaction is run similar to the preparation in Example 11. To a MeOH solution of 4Å powdered molecular sieves (0.35 g) under argon is added 3-amino-6,7-dimethoxyquinoline (0.32 g, 1.6 mmol) and 2,2-dimethyl-3-hydroxypropionaldehyde (0.19 g, 1.9 mmol). The product mixture is chromatographed (3% MeOH/CHCl₃) to afford 0.10 g of material which is partitioned between CH₂Cl₂/10% NaOH. The organic layer is washed with 10% NaOH, H₂O, and brine, then dried (MgSO₄), and recrystallized from EtOAc/hexanes to provide a light-orange solid (m.p. 170-173.5°C). Anal. Calcd. for C₁₉H₂₂N₂O₃: C, 66.18; H, 7.64; N, 9.65; Found: C, 66.11; H, 7.49; N, 9.33.

Using the standard coupling protocol above using the appropriate starting material the following is prepared:

(6,7-Dimethoxyquinolin-3-yl)-isobutyl amine

EXAMPLE 14 Cyclohexyl-(6-methoxy-7-morpholin-4-yl-quinoxalin-2-yl)-amine

This preparation is based on an adaptation of the method described by Buchwald, et al, J. Am. Chem. Soc., 1996, 118, 7215. To a toluene solution of 2-cyclohexylamino-6-methoxy-7-bromo-
quinoxaline (0.1 g, 0.3 mmol) under argon is added morpholine (0.1 g, 0.3 mmol), sodium tert-butoxide (0.04 g, 0.42 mmol), S(-)-BINAP (cat., 0.001 g), and bis(dibenzylideneacetone)-palladium (cat., 0.001 g). The reaction mixture is heated to 80°C overnight. The mixture is cooled, diluted with EtOAc, filtered, concentrated, and chromatographed (50% EtOAc/hexanes). The product is recrystallized from EtOAc/hexanes to provide, in two crops, to provide a yellow solid (m.p. 194-196°C). Anal. Calcd. for C_{16}H_{18}N_{2}O_{2}: C, 66.64; H, 7.65; N, 16.36; Found: C, 66.60; H, 7.60; N, 16.51.

EXAMPLE 15
trans-4-(7-Chloro-6-methoxy-quinoxalin-2-aminoc)-cyclohexanol and trans-4-(6-Chloro-7-methoxy-quinoxalin-2-yl-amino)-cyclohexanol

To a reaction flask under argon fitted with a Dean-Stark trap and a condenser is added 6:1 2,7-dichloro-6-methoxy-quinoxaline : 2,6-dichloro-7-methoxy-quinoxaline (0.30 g, 1.3 mmol) and trans-4-amino-cyclohexanol (0.35 g, 3 mmol). The reaction mixture is heated to 170°C for approximately 10 hours, then concentrated and chromatographed twice, (7% MeOH/CHCl₃, then 5% MeOH/CHCl₃). The product is recrystallized from EtOAc/hexanes to provide a light-yellow solid (m.p. 144-147°C). Anal. Calcd. for C_{19}H_{24}N_{2}O_{4}: C, 57.20; H, 6.02; N, 13.34; Found: C, 57.21; H, 5.97; N, 13.08.1H NMR analysis revealed that the product is a 2:1 mixture of trans-4-(7-chloro-6-methoxy-quinoxalin-2-aminoc)-cyclohexanol : trans-4-(6-chloro-7-methoxy-quinoxalin-2-yl-amino)-cyclohexanol.

EXAMPLE 16
trans-4-(6,7-Dimethoxyquinoxalin-2-ylamino)-cyclohexanol

trans-4-aminocyclohexanol (0.11 g, 2 eq.) and 2-chloro-6,7-dimethoxyquinoxaline (0.1 g, 1 eq.) are combined and heated to 160-180°C for a period of 4-8 hours. The dark-brown suspension is filtered and concentrated. The residue is purified on a flash column eluted with 3% methanol/methylene chloride to provide the product as a yellow powder with m.p. of 119-123°C. Anal. Calcd. for C_{16}H_{17}N_{2}O_{2}: C, 62.33; H, 7.05; N, 13.63; Found: C, 62.35; H, 7.09; N, 13.18.

The compound could be recrystallized by the following method. Starting with 0.2 g of yellow powder in a mixture of 2.5 mL of water and 1.25 mL of methanol a clear orange-colored solution is obtained upon reflux. The hot solution is left standing and cooled gradually. Orange-colored needle-like crystals are collected by filtration and dried under high vacuum to give a yellow solid (m.p. 119-120°C).

Alternatively, the HCl salt of the title compound is prepared as follows: To a solution of trans-4-(6,7-dimethoxyquinoxalin-2-ylamino)-cyclohexanol in isopropanol is added a solution of HCl at 0°C. The mixture is stirred for 15 minutes before filtration. The solid collected is dried under a high vacuum to provide the trans-4-(6,7-dimethoxyquinoxalin-2-ylamino)-cyclohexanol hydrochloric acid salt. Anal. Calcd. for C_{16}H_{12}ClN_{2}O_{4} •1.2 H₂O: C, 53.19; H, 6.80; N, 11.63; Cl, 9.81; Found: C, 53.14; H, 6.85; N, 11.24; Cl, 10.28.

Alternatively, the sulfate salt of the title compound is prepared as follows: In a typical procedure, trans-4-(6,7-dimethoxyquinoxalin-2-ylamino)-cyclohexanol is dissolved in acetone or another suitable organic solvent with warming up to 45°C as necessary. To the resultant solution is carefully added aqueous H₂SO₄ (1 equiv., 1 M solution) with rapid stirring. The salt thus formed is collected and dried to provide the sulfate in >80% yield.

EXAMPLE 17
(±)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine
Procedure A: A mixture of 2-chloro-6,7-dimethoxyquinoxaline (5 g, 22.3 mmol) and (+)-exo-norbornyl-2-amine (10 g, 90 mmol) is heated at 160-180°C overnight. The dark-brown residue is dissolved in 200 mL of methylene chloride and washed with 1N NaOH (50 mL). The organic layer is dried over magnesium sulfate and then filtered. The residue after concentration is chromatographed on silica gel eluted with hexane/ethyl acetate (80%) to provide the desired product as a yellow solid which can be recrystallized in methanol.

Procedure B: A mixture of 2-chloro-6,7-dimethoxyquinoxaline (9 g, 40.1 mmol) and (+)-exo-norbornyl-2-amine (5.77 g, 52 mmol), Sodium t-butoxide (4.22 g, 44 mmol), 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP, 120 mg) and bis(dibenzylideneacetone)-palladium Pd(dba)$_2$ 40 mg in 80 mL of toluene is heated at 80°C for eight hours. Another portion of BINAP (60 mg) and Pd(dba)$_2$ (20 mg) is added and the mixture is heated at 100°C overnight. After being diluted with 200 mL of methylene chloride, the reaction mixture is washed with 1N NaOH (100 mL). The organic layer is dried over magnesium sulfate and filtered. The residue after concentration is chromatographed on silica gel eluted with hexane/ethyl acetate (80%) to provide the desired product as a light-yellow solid (m.p. 188-189°C). Anal. Calcd. for C$_{19}$H$_{17}$N$_2$O$_5$: C, 68.20; H, 7.07; N, 14.04; Found: C, 68.18; H, 7.03; N, 14.03.

The following compounds are prepared similarly beginning with the appropriate starting material (procedure A).

exo-bicyclo[2.2.1]hept-5-en-2-yl-(6,7-dimethoxyquinoxaline-2-yl)-amine (m.p. 175-177°C). Anal. Calcd. for C$_{17}$H$_{19}$N$_2$O$_5$ • 0.4 H$_2$O: C, 60.94; H, 6.56; N, 13.78; Found: C, 66.98; H, 6.62; N, 12.73.

Cyclohexyl-(6,8-dimethyl-quinoxaline-2-yl)-amine [MS m/z: 255 (M+)]. Anal. Calcd. for C$_{16}$H$_{23}$N$_3$: C, 75.26; H, 8.29; N, 16.46; Found: C, 75.08; H, 8.28; N, 15.86.

Endo-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxaline-2-yl)-amine (m.p. 79-82°C).

(6,7-Dimethoxyquinoxaline-2-yl)-(4-methoxy-cyclohexyl)-amine (m.p. 58-68°C). Anal. Calcd. for C$_{17}$H$_{22}$N$_2$O$_5$ • 0.5 H$_2$O: C, 62.56; H, 7.41; N, 12.87; Found: C, 62.53; H, 7.22; N, 12.22.

Exo-bicyclo[2.2.1]hept-2-yl-(6-methoxyquinoxaline-2-yl)-amine (m.p. 98-100°C). Anal. Calcd for C$_{16}$H$_{22}$N$_2$O$_5$: C, 71.35; H, 7.11; N, 15.60. Found: C, 70.38; H, 7.03; N, 15.05.

EXAMPLE 18

exo-2-(Bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxyquinoxaline

A mixture of exo-2-norbornenol (223 mg, 2 mmol) and NaH (60%, 100 mg, 2.5 mmol) in 10 mL of anhydrous THF is refluxed for 0.5 hour before addition of 2-chloro-6,7-dimethoxyquinoxaline (336 mg, 1.5 mmol). The resulting mixture is continued to refluxed for two hours. The residue after filtration and concentration is chromatographed on silica gel (50% ether/hexane) to provide the desired product as a white solid (m.p. 135-137°C). Anal. Calcd. for C$_{17}$H$_{30}$N$_2$O$_5$: C, 67.98; H, 6.71; N, 9.33; Found: C, 67.96; H, 6.762; N, 9.19.

Using the standard coupling protocol above using the appropriate starting materials the following are prepared:
2-(Bicyclo[2.2.2]oct-2-yloxy)-6,7-dimethoxy-quinoxaline (m.p. 147-148°C).

Endo-2-(bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxy-quinoxaline (m.p. 110-111°C).

exo-2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoxaline (m.p. 108-110°C). Anal. Calcd. for C_{17}H_{18}N_{2}O_{5}: C, 68.44; H, 6.08; N, 9.39; Found: C, 68.54; H, 6.23; N, 9.27.

2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoxaline (m.p. 93-95°C). Anal. Calcd. for C_{17}H_{18}N_{2}O_{5}: C, 68.44; H, 6.08; N, 9.39; Found: C, 68.32; H, 5.98; N, 9.25.

2-Cyclohexyloxy-6,7-dimethoxyquinoxaline (m.p. 104-106°C).

2-cyclopentylthio-6,7-dimethoxy-quinoxaline (m.p. 123-124°C).

Anal. Calcd for C_{15}H_{16}N_{2}O_{5}S: C, 62.04; H, 6.25; N, 9.65. Found: C, 61.90; H, 6.02; N, 9.48.

6,7-dimethoxy-2-cyclopentyl oxy-quinoxaline (m.p. 87-89°C).

Anal. Calcd for C_{15}H_{16}N_{2}O_{5}: C, 65.68; H, 6.61; N, 10.21. Found: C, 65.63; H, 6.52; N, 10.13.

2-cyclopentylmethyl oxy-6,7-dimethoxy-quinoxaline (m.p. 99-102°C).

Anal. Calcd for C_{16}H_{20}N_{2}O_{5}: C, 66.65; H, 6.99; N, 9.72. Found: C, 66.66; H, 7.03; N, 9.70.

6,7-dimethoxy-2-tetrahydropyran-4-oxy-quinoxaline (m.p. 155-158°C).

Anal. Calcd for C_{16}H_{18}N_{2}O_{4}: C, 62.06; H, 6.25; N, 9.65. Found: C, 62.26; H, 6.27; N, 9.67.

exo,exo-6,7-dimethoxy-2-(5,6-epoxy-bicyclo[2.2.1]heptan-2-yloxy)-quinoxaline (m.p. 173-175°C).

EXAMPLE 19 cis/trans-4-(6,7-Dimethoxyquinolin-2-yloxy)-cyclohexanecarboxylic acid.

A mixture of cis/trans-4-hydroxy-cyclohexanecarboxylic acid (144 mg, 1 mmol) and NaH (60%, 160 mg, 4 mmol) in anhydrous THF/DMF (10 mL/2 mL) is refluxed for one hour before addition of 2-chloro-6,7-dimethoxyquinoline (225 mg, 1 mmol). The resulting mixture is continued to refluxed for four hours. The reaction mixture is neutralized to pH 5 and extracted with ethyl acetate (2x50 mL). The combined organic solutions are dried over magnesium sulfate and filtered. The residue after concentration is chromatographed on silica gel (ethyl acetate, followed by methanol) to provide the desired product as a white solid (m.p. 90-93°C). Anal. Calcd. for C_{17}H_{20}N_{2}O_{4}•0.5 H_{2}O: C, 59.89; H, 6.19; N, 8.22; Found: C, 59.91; H, 6.62; N, 7.90.

EXAMPLE 20 6,7-Dimethoxy-2-(4-methoxy-cyclohexyloxy)-quinoxaline

A mixture of cis/trans-4-(6,7-dimethoxyquinolin-2-yloxy)-cyclohexanol (170 mg, 0.56 mmole) and NaH (60%, 22.4 mg, 0.56 mmole) in anhydrous THF/DMF (10 mL/2 mL) is stirred at 0°C for 10 min. before addition of methyl iodide (50 μL, 0.56 mmole). After being stirred at ROOM TEMPERATURE for four hours, the reaction is quenched with water (0.5 mL) and concentrated. The
aqueous layer is extracted with methylene chloride (2x20 mL) and the combined organic solutions are washed with brine (5 mL). The residue after concentration is chromatographed on silica gel (30% ethyl acetate/hexane) to give 80 mg (45%) of the desired product (m.p. 85-90 °C).

EXAMPLE 21 3-Cyclohexyloxy-6,7-dimethoxyquinoxaline 1-oxide.

A mixture of 2-cyclohexyloxy-6,7-dimethoxyquinoxaline (110 mg, 0.38 mmol) and meta-chlorobenzoic peracid (70%, 113 mg, 0.46 mmol) in 10 mL of methylene chloride is stirred at room temperature for one day. The solution after filtration is concentrated and the residue is chromatographed on silica gel (20% ethyl acetate/hexane) to provide the desired product (m.p. 167-169 °C).

EXAMPLE 22 (1R,2R,4S)-(+)−Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine

The (−)-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine of Example 17 is resolved on a chiral HPLC column (Chiralpak AD, 25x2 cm, 60% heptane/40% ethanol with 10 mM (1S)-(−)-camphorsulfonic acid, 12 mL/minute) and the above titled product is obtained as the first eluent. The fractions collected are combined and washed with 50 mL of 1 N NaOH before drying (MgSO₄). The solution after filtration is concentrated on a rotovap and then dried under a high vacuum. A yellow solid is obtained. [α] D 20 +19.5° (c=0.20, CH₂Cl₂) m.p. 184-186 °C. Anal. Calcd for C₁₇H₁₄N₂O₂ x 0.3 H₂O: C, 69.90; H, 7.15; N, 13.77. Found: C, 66.86; H, 7.01; N, 13.86.

EXAMPLE 23 (1S,2S,4R)-(−)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine

(i) The (−)-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine of Example 17 is resolved on a chiral HPLC (Chiralpak AD, 25x2 cm, 60% heptane/40% ethanol with 10 mM (1S)-(−)-camphorsulfonic acid, 12 mL/min) as the second elute. The fractions collected are combined and washed with 50 mL of 1 N NaOH before dried over magnesium sulfate. The solution after filtration is concentrated on a rotovap and then dried under a high vacuum. A yellow solid is obtained. [α] D 20 −19.5° (c=0.22, CH₂Cl₂) m.p. 185-187 °C

(ii) A mixture of 2-chloro-6,7-dimethoxyquinoxaline (462 mg, 2.06 mmole) and (1S, 2S, 4R)-norbornyl-2-amine (300 mg, 2.7 mmole), Sodium t-butoxide (220 mg, 2.3 mmole), BINAP (9 mg) and Pd(dba)₃ (3 mg) in 10 mL of toluene is heated at 80°-100° C overnight. The suspension is chromatographed on silica gel eluted with hexane/ethyl acetate (60%) to give 370 mg (60%) of the desired product as a yellow solid which had the same retention time as the first elute under the above chiral HPLC condition. [α] D 20 −19° (c=0.19, CH₂Cl₂)

EXAMPLE 24 2-(6,7-Dimethoxy-quinoxalin-2-yl)-2-aza-bicyclo[2.2.2]octan-3-one

2-Azabicyclo[2.2.2]octan-3-one (228 mg, 2.3 mmole) is dissolved in a mixture of THF/DMF (5 mL/3 mL) and treated with NaH (60%, 184 mg, 4.6 mmole). The resulting mixture is heated at 60° C for 0.5 hour before addition of 2-chloro-6,7-dimethoxyquinoxaline (344 mg, 1.5 mmole). After being heated at 80° C overnight, the reaction mixture is concentrated. The residue is chromatographed on silica gel (50% ethyl acetate/hexane) to give 164 mg (23%) of a yellow solid (m.p. 158-159° C):
EXAMPLE 25 Cis/trans-4-(6,7-Dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester

To a solution of 2-(6,7-dimethoxy-quinoxalin-2-yl)-2-aza-bicyclo[2.2.2]octan-3-one (100 mg, 0.32 mmole) in 10 mL of methanol is added a freshly prepared NaOMe/methanol solution (54 mg, 1 mmole) and the mixture is stirred at ROOM TEMPERATURE for 0.5 hour before concentrated. Methylene chloride is used to extract and then dried with magnesium sulfate. The residue after filtration and concentration is chromatographed on silica gel (40% ethyl acetate) to give 85 mg (77%) of cis/trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester as a light yellow solid (m.p. 68-80°C).

EXAMPLE 26 Cis/trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid

When NaOMe in above procedure is replaced with NaOH, 2-(6,7-dimethoxy-quinoxalin-2-yl)-2-aza-bicyclo[2.2.2]octan-3-one is converted into cis/trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid.

EXAMPLE 27 Cis-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester and trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester

Cis-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester [MS m/z: 345 (M+)] and trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester [MS m/z: 345 (M+)] are separated on preparative TLC from cis/trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid ester with 65% ethyl acetate/hexane as first and second elutes respectively.

EXAMPLE 28 trans-4-[7-methoxy-6-(2-morpholin-4-yl-ethoxy)-quinoxalin-2-ylamino]-cyclohexanol and trans-4-[6-methoxy-7-(2-morpholin-4-yl-ethoxy)-quinoxalin-2-ylamino]-cyclohexanol

The title compound is prepared by Mitsunobu coupling of 6-hydroxy-7-methoxy-2-chloroquinoline: 7-(2-morpholin-4-ylethoxy)-6-methoxy-2-chloroquinoline and 2-(morpholin-4-yl)ethanol using the procedure of Example 1 and reaction of the resulting 6-(2-morpholin-4-ylethoxy)-7-methoxy-2-chloroquinoline: 7-(2-morpholin-4-ylethoxy)-6-methoxy-2-chloroquinoline and trans-4-amino-cyclohexanol using the procedure of Example 11.

EXAMPLE 29 2-[2-(trans-4-Hydroxy-cyclohexylamino)-7-methoxy-quinoxalin-6-yloxy]-1-acetic acid and 2-[2-(trans-4-Hydroxy-cyclohexylamino)-6-methoxy-quinoxalin-7-yloxy]-1-acetic acid

The title compound is prepared by dealkylation of 4-(6,7-dimethoxyquinoline-2-ylamino)cyclohexanol using the sodium salt of ethanethiol in DMF as described in Example 8, followed by alkylation with bromoacetic acid in the presence of base as described in general procedure 6.
EXAMPLE 30
2-[(trans-4-Hydroxy-cyclohexylamino)-7-methoxy-quinoxalin-6-yloxy]-N,N-
dimethyl-acetamide and 2-[(trans-4-Hydroxy-cyclohexylamino)-6-methoxy-
quinoxalin-7-yloxy]-N,N-dimethyl-acetamide

The title compound is prepared by aminolysis of the compound of Example 29 using
dimethylamine.

EXAMPLE 31
(6,7-dimethoxy-quinoxaline-2-yl)-(3-(R)-methylcyclohexyl) amine and its
cis and trans isomers

The compounds are initially prepared as a mixture of cis and trans isomers. They are prepared
from the cyclohexyl amine derived from reduction of the oxime of 3-(R)-methylcyclohexanone followed
by coupling of the amine with 2-chloro-6,7-dimethoxyquinoxaline using the standard conditions. An
analytical sample of each isomer is obtained via preparative RP-HPLC. The 300 MHz 'H NMR and MS
are consistent for both structures although the relative stereochemistry could not be assigned definitively
for the cyclohexyl -carbon bearing the nitrogen.

EXAMPLE 32
methyl cis/trans-4-(6,7-Dimethoxyquinoxalin-2-yloxy)-cyclohexanecarboxylate.

The title compound is prepared by esterifying the product of Example 19 using standard
techniques to afford the title compound. M.p. 130-132°C. Anal. Calcd for C_{16}H_{22}N_{2}O_{5}: C, 62.42; H,
6.40; N, 8.09. Found: C, 62.60; H, 6.55; N, 7.89.

INTERMEDIATE EXAMPLE 1
4-Bromo-5-methoxy-benzene-1,2-diamine dihydrochloride
To a solution of EtOAc (50 mL) and 5-bromo-4-methoxy-2-nitro-phenylamine (2.5 g, 10 mmol)
under argon is added 5% Pd/C (0.5 g). The reaction mixture is hydrogenated at 50 psi for 1 hour. The
mixture is filtered through Celite into a solution of HCl/IPA/EtOAc, and the pad is washed with
additional EtOAc. The resulting precipitate is filtered off to provide white solid.

INTERMEDIATE EXAMPLE 2
7-Bromo-6-methoxy-quinoxalin-2-ol and 6-Bromo-7-methoxy-
quinoxalin-2-ol
To a solution of MeOH (15 mL) under argon is added pulverized NaOH pellets (0.86 g, 21
mmol) and 4-bromo-5-methoxy-benzene-1,2-diamine dihydrochloride (2.7 g, 9.3 mmol). The mixture is
stirred for 10 minutes, then a solution of 45% ethyl glyoxylate in toluene (2.7 g, 12 mmol) is added
portionwise. The reaction mixture is refluxed for 1 hour, then cooled. Water is added, then the
suspension is filtered. The resulting solid is washed successively with H_{2}O, MeOH, IPA, and Et_{2}O to
provide a yellow powder.

INTERMEDIATE EXAMPLE 3
7-Bromo-2-chloro-6-methoxy-quinoxaline and 6-Bromo-2-
chloro-7-methoxy-quinoxaline
To a mixture of 7-bromo-6-methoxy-quinoxalin-2-ol and 6-bromo-7-methoxy-quinoxalin-2-ol (1
g, 3.9 mmol is added POCl_{3} (5 mL). The reaction mixture is refluxed 1 hour, poured into ice water,
filtered, then washed with water to provide a light-tan solid. Ratio of 7-bromo-2-chloro-6-methoxy-
quinoxaline : 6-bromo-2-chloro-7-methoxy-quinoxaline is approximately 7:1 by 'H NMR.
INTERMEDIATE EXAMPLE 4
5-Chloro-4-methoxy-2-nitroaniline
To a solution of N-(5-chloro-4-methoxy-2-nitrophenyl)-acetamide (2 g, 8.2 mmol) in 5N HCl (20 mL) is added 1,4-dioxane (10 mL), and the mixture is stirred at 60°C for 1.5 hours. The reaction mixture is concentrated and partitioned between EtOAc/2 N NaOH. The aqueous layers are washed with EtOAc (3X), brine, dried (MgSO4), adsorbed onto silica gel, and chromatographed (70% EtOAc/hexanes) to provide an orange powder.

INTERMEDIATE EXAMPLE 5
4-Chloro-5-methoxy-benzene-1,2-diamine dihydrochloride
To a solution of EtOAc (25 mL) and 5-chloro-4-methoxy-2-nitro-phenylamine (1.6 g, 7.9 mmol) under argon is added 5% Pd/C (0.5 g). The reaction mixture is hydrogenated at 50 psi for 1 hour. The mixture is filtered under N2 through Celite into a solution of 1 N HCl/EtOH in EtOAc, and the pad is washed with additional EtOAc. The resulting precipitate is filtered off to provide a white solid.

INTERMEDIATE EXAMPLE 6
7-Chloro-6-methoxy-quinoxalin-2-ol and
6-Chloro-7-methoxy-quinoxalin-2-ol
To a solution of 4-chloro-5-methoxy-benzene-1,2-diamine dihydrochloride (1.8 g, 7.2 mmol) in EtOH (15 mL) under argon is added TEA (2.5 mL, 18 mmol) at 0°C. The mixture is stirred for 20 minutes, then a solution of 45% ethyl glycolate in toluene (2.1 g, 9.3 mmol) is added portionwise. The reaction mixture is warmed to room temperature, refluxed for 1.5 hour, then cooled. Water is added, then the suspension is filtered and washed successively with H2O, IPA, and Et2O to provide a light-yellow powder. The product is azeotroped several times with toluene and dried in vacuo before use.

INTERMEDIATE EXAMPLE 7
2,7-Dichloro-6-methoxy-quinoxaline and 2,6-
Dichloro-7-methoxy-quinoxaline
To a mixture of 7-chloro-6-methoxy-quinoxalin-2-ol and 6-chloro-7-methoxy-quinoxalin-2-ol (1 g, 4.7 mmol) under a CaCl2 drying tube is added POCl3 (5 mL). The reaction mixture is refluxed 30 minutes, poured into cold saturated NaHCO3 solution, filtered, then washed with water to provide a solid. The ratio of 2,7-dichloro-6-methoxy-quinoxaline : 2,6-dichloro-7-methoxy-quinoxaline is approximately 6:1 by 1H NMR.

INTERMEDIATE EXAMPLE 8
(1S, 2S, 4R)-norbornyl-2-amine
(3a): To a solution of R-(+)-Endo-norbomeol (2.24 g, 20 mmole) in 20 mL of THF at -78°C are added triphenylphosgene (6.55 g, 25 mmole), phthalimide (3.68 g, 25 mmole) and diethyl azodicarboxylate (4.4 mL, 28 mmole). The mixture is stirred at ROOM TEMPERATURE overnight and then concentrated. The residue is chromatographed on silica gel (20% ethyl acetate/hexane) to give 4.6 g (95%) of (1S, 2S, 4R)-2-bicyclo[2.2.1]hept-2-yl isoxindole-1,3-dione.

(3b): A mixture of (1S, 2S, 4R)-2-bicyclo[2.2.1]hept-2-yl isoxindole-1,3-dione (1.2 g, 5 mmole) and monohydrated H3NNH2 (300 mg, 6 mmole) in 10 mL of methanol is refluxed for four hours before concentrated to dryness. Methylen chloride (2 x 100 mL) is used to extract and the solid is removed by filtration. Evaporation of methylene chloride affords 300 mg (54%) of (1S, 2S, 4R)-norbornyl-2-amine.
INTERMEDIATE EXAMPLE 9
exo-Bicyclo[2.2.1]hept-5-en-2-amine

exo-bicyclo[2.2.1]hept-5-en-2-amine is prepared with the same procedures as in

INTERMEDIATE EXAMPLE 12 from 5-norbornen-2-ol via a versatile intermediate *exo*-2-bicyclo[2.2.1]hept-5-en-2-yl isocinole-1,3-dione

INTERMEDIATE EXAMPLE 10
2-Methyl-6,7-dimethoxyquinazoline

The title compound is prepared using an adaptation of the published method of Tamao, et al. *Tetrahedron*, 1982, 38, 3347-3354. To a THF solution under argon is added 2-Chloro-6,7-dimethoxyquinazoline (5 g, 26 mmol) and NiCl₂(dppp) (0.14 g, 0.26 mmol). The reaction mixture is cooled to 0°C, and a 3 M solution of MeMgBr in Et₂O (13 mL, 39 mmol) is added portionwise. The reaction mixture is allowed to warm to room temperature, stirred for 1 hour, then refluxed for 1.5 hours. The mixture is cooled, quenched with 10% HCl, stirred 10 minutes, then made basic with 5% NaOH. CH₃Cl and H₂O are added to the reaction, and the mixture stirred overnight. Additional CH₃Cl, H₂O, and NaCl are then added and the mixture is filtered. The resulting solution is poured into a separatory funnel, and the aqueous layers are washed 3X with CH₃Cl₂. The organic layers are combined, washed with brine, dried (MgSO₄), concentrated onto silica gel, and chromatographed (50%-80% EtOAc/hexanes) to provide an orange solid (49% yield).

INTERMEDIATE EXAMPLE 11
6,7-Dimethoxy-2-quinazoline carboxaldehyde

To a reaction flask under argon is added 1.4-dioxane (20 mL), 2-methyl-6,7-dimethoxyquinazoline (1.09 g, 5.3 mmol) and SeO₂ (1.8 g, 16 mmol). The mixture is heated to 100°C for 2 hours 45 minutes, cooled, and filtered through Celite. The pad is washed with portions of EtOAc and CH₃Cl₂. The resulting solution is concentrated, taken up in MeOH/CH₃Cl₂, loaded onto a silica gel column, and chromatographed (30% EtOAc/CH₃Cl₂) to provide an off-white solid (73% yield).

INTERMEDIATE EXAMPLE 12
(2exo, 5exo)-5-Aminobicyclo[2.2.1]heptan-2-acetate

To a solution of *exo*-5-acetoxybicyclo[2.2.1]heptan-2-one (350 mg, 2.08 mmol) in 10 mL of THF at room temperature is added a 1M borane/THF solution (1.2 mL, 1.2 mmol). The mixture is stirred for 0.5 hour before quenched at 0°C with methanol (3 mL) and 1N HCl (1.5 mL). Ethyl acetate (3x 30 mL) is used to extract and dried over magnesium sulfate. The residue after filtration and concentration is chromatographed on silica gel to provide (2endo,5exo)-5-acetoxybicyclo [2.2.1] heptan-2-ol.

To a solution of (2endo,5exo)-5-acetoxybicyclo [2.2.1] heptan-2-ol (350 mg, 2.06 mmol) in THF (10 mL) is added phthalimide (454 mg, 3.09 mmol), triphenylphosphine (810 mg, 3.09 mmol) and diethyl azodicarboxylate (0.49 mL, 3.09 mmol) at 0°C. The reaction is left to stir overnight and then is condensed on the rotovap and the residue is purified by column chromatography (20% ethyl acetate/hexane) to provide the desired product as a yellow solid.

A mixture of the above solid (300 mg, 1 mmol) and hydrazine (0.126 mL, 2.2 mmol) in 5 mL of methanol is heated to reflux for six hours. After removal of methanol, dichloromethane (3x 30 mL) is...
used to extract the residue. Concentration of the solvent affords (exo,exo)-5-aminobicyclo[2.2.1]heptan-2-acetate (127 mg, 75%) which is used in the coupling reaction without further purification.

Similarly, (endo,5exo)-5-aminobicyclo[2.2.1]heptan-2-acetate, (endo,6exo)-6-aminobicyclo[2.2.1]heptan-2-acetate and (2exo,6exo)-6-aminobicyclo[2.2.1]heptan-2-acetate are prepared from proper starting material.

INTERMEDIATE EXAMPLE 13
2-methoxy-4,5-diaminophenol dihydrochloride

The title compound is prepared by hydrogenation of 2-methoxy-4,5-dinitrophenol according to the procedure of Ehrlich et al., *J. Org. Chem.*, 1947, 12, 522.

INTERMEDIATE EXAMPLE 14
7-hydroxy-6-methoxy-quinoxaline-2-ol and 6-hydroxy-7-methoxy-quinoxaline-2-ol.

The title compounds are prepared from 4-methoxy-5-hydroxybenzene-1,2-diamine dihydrochloride by reaction with NaOH and ethyl glyoxalate using the procedure of Intermediate Example 2.

INTERMEDIATE EXAMPLE 15
7-hydroxy-6-methoxy-2-chloroquinoxaline and 6-hydroxy-7-methoxy-2-chloroquinoxaline.

The title compounds are prepared from 7-hydroxy-6-methoxy-quinoxaline-2-ol and 6-hydroxy-7-methoxy-quinoxaline-2-ol by reaction with POCl₃, using the procedure of Intermediate Example 3.

The compounds of formula I as described herein inhibit inhibition of cell proliferation and/or cell matrix production and/or cell movement (chemotaxis) via inhibition of PDGF-R tyrosine kinase activity. A large number of disease states are caused by either uncontrolled reproduction of cells or overproduction of matrix or poorly regulated programmed cell death (apoptosis). These disease states involve a variety of cell types and include disorders such as leukemia, cancer, glioblastoma, psoriasis, inflammatory diseases, bone diseases, fibrotic diseases, atherosclerosis and occurring subsequent to angioplasty of the coronary, femoral or kidney arteries or, fibroproliferative disease such as in arthritis, fibrosis of the lung, kidney and liver. In particular, PDGF and PDGF-R have been reported to be implicated in specific types of cancers and tumors such as brain cancer, ovarian cancer, colon cancer, prostate cancer lung cancer, Kaposi’s sarcoma and malignant melanoma. In addition, deregulated cellular proliferative conditions follow from coronary bypass surgery. The inhibition of tyrosine kinase activity is believed to have utility in the control of uncontrolled reproduction of cells or overproduction of matrix or poorly regulated programmed cell death (apoptosis).

This invention relates to the modulation and/or inhibition of cell signaling, cell proliferation and/or cell matrix production and/or cell movement (chemotaxis), the control of abnormal cell growth and cell inflammatory response. More specifically, this invention relates to the use of substituted quinoline and quinoxaline compounds which exhibit selective inhibition of differentiation, proliferation, matrix production, chemotaxis or mediator release by effectively inhibiting platelet-derived growth factor-receptor (PDGF-R) tyrosine kinase activity.
Initiation of autophosphorylation, i.e., phosphorylation of the growth factor receptor itself, and of the phosphorylation of a host of intracellular substrates are some of the biochemical events which are involved in cell signaling, cell proliferation, matrix production, chemotaxis and mediator release.

By effectively inhibiting Lck tyrosine kinase activity, the compounds of this invention are also useful in the treatment of resistance to transplantation and autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus, in transplant rejection, in graft vs. host disease, in hyperproliferative disorders such as tumors and psoriasis, and in diseases in which cells receive pro-inflammatory signals such as asthma, inflammatory bowel disease and pancreatitis. In the treatment of resistance to transplantation, a compound of this invention may be used either prophylactically or in response to an adverse reaction by the human subject to a transplanted organ or tissue. When used prophylactically, a compound of this invention is administered to the patient or to the tissue or organ to be transplanted in advance of the transplantation operation. Prophylactic treatment may also include administration of the medication after the transplantation operation but before any signs of adverse reaction to transplantation are observed. When administered in response to an adverse reaction, a compound of this invention is administered directly to the patient in order to treat resistance to transplantation after outward signs of the resistance have been manifested.

According to a further feature of the invention there is provided a method for the treatment of a patient suffering from, or subject to, conditions which may be ameliorated or prevented by the administration of an inhibitor of PDGF-R tyrosine kinase activity and/or Lck tyrosine kinase activity, for example conditions as hereinbefore described, which comprises the administration to the patient of an effective amount of compound of formula I or a composition containing a compound of formula I, or a pharmaceutically acceptable salt thereof.

Reference herein to treatment should be understood to include prophylactic therapy as well as treatment of established conditions.

The present invention also includes within its scope pharmaceutical compositions which comprise pharmaceutically acceptable amount of at least one of the compounds of formula I in association with a pharmaceutically acceptable carrier, for example, an adjuvant, diluent, coating and excipient.

In practice compounds or compositions for treating according to the present invention may administered in any variety of suitable forms, for example, by inhalation, topically, parenterally, rectally or orally; more preferably orally. More specific routes of administration include intravenous, intramuscular, subcutaneous, intraocular, intrasynovial, colonial, peritoneal, transepithelial including transdermal, ophthalmic, sublingual, buccal, dermal, ocular, nasal inhalation via insufflation, and aerosol.

The compounds of formula I may be presented in forms permitting administration by the most suitable route and the invention also relates to pharmaceutical compositions containing at least one compound according to the invention which are suitable for use as a medicament in a patient. These compositions may be prepared according to the customary methods, using one or more pharmaceutically acceptable adjuvants or excipients. The adjuvants comprise, inter alia, diluents, sterile aqueous media and the various non-toxic organic solvents. The compositions may be presented in the form of tablets, pills, granules, powders, aqueous solutions or suspensions, injectable solutions, elixirs or syrups, and may contain one or more agents chosen from the group comprising sweeteners such as sucrose, lactose.
fructose, saccharin or Nutrasweet®, flavorings such as peppermint oil, oil of wintergreen, or cherry or orange flavorings, colorings, or stabilizers such as methyl- or propyl-paraben in order to obtain pharmaceutically acceptable preparations.

The choice of vehicle and the content of active substance in the vehicle are generally determined in accordance with the solubility and chemical properties of the product, the particular mode of administration and the provisions to be observed in pharmaceutical practice. For example, excipients such as lactose, sodium citrate, calcium carbonate, dicalcium phosphate and disintegrating agents such as starch, alginic acids and certain complex silica gels combined with lubricants such as magnesium stearate, sodium lauryl sulfate and talc may be used for preparing tablets, troches, pills, capsules and the like. To prepare a capsule, it is advantageous to use lactose and liquid carrier, such as high molecular weight polyethylene glycols. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. When aqueous suspensions are used they may contain emulsifying agents or agents which facilitate suspension. Diluents such as sucrose, ethanol, polyols such as polyethylene glycol, propylene glycol and glycerol, and chloroform or mixtures thereof may also be used. In addition, the active compound may be incorporated into sustained-release preparations and formulations.

For oral administration, the active compound may be administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet, or may be incorporated with excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.

For parenteral administration, emulsions, suspensions or solutions of the compounds according to the invention in vegetable oil, for example sesame oil, groundnut oil or olive oil, or aqueous-organic solutions such as water and propylene glycol, injectable organic esters such as ethyl oleate, as well as sterile aqueous solutions of the pharmaceutically acceptable salts, are used. The injectable forms must be fluid to the extent that it can be easily syringed, and proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of the injectable compositions can be brought about by use of agents delaying absorption, for example, aluminum monostearate and gelatin.

The solutions of the salts of the products according to the invention are especially useful for administration by intramuscular or subcutaneous injection. Solutions of the active compound as a free base or pharmaceutically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropyl-cellulose. Dispersion can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. The aqueous solutions, also comprising solutions of the salts in pure distilled water, may be used for intravenous administration with the proviso that their pH is suitably adjusted, that they are judiciously buffered and rendered isotonic with a sufficient quantity of glucose or sodium chloride and that they are sterilized by heating, irradiation, microfiltration, and/or by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.

Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various
sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

Topical administration, gels (water or alcohol based), creams or ointments containing compounds of the invention may be used. Compounds of the invention may be also incorporated in a gel or matrix base for application in a patch, which would allow a controlled release of compound through transdermal barrier.

For administration by inhalation, compounds of the invention may be dissolved or suspended in a suitable carrier for use in a nebulizer or a suspension or solution aerosol, or may be absorbed or adsorbed onto a suitable solid carrier for use in a dry powder inhaler.

Solid compositions for rectal administration include suppositories formulated in accordance with known methods and containing at least one compound of formula I.

Compositions according to the invention may also be formulated in a manner which resists rapid clearance from the vascular (arterial or venous) wall by convection and/or diffusion, thereby increasing the residence time of the viral particles at the desired site of action. A periadventitial depot comprising a compound according to the invention may be used for sustained release. One such useful depot for administering a compound according to the invention may be a copolymer matrix, such as ethylene-vinyl acetate, or a polyvinyl alcohol gel surrounded by a Silastic shell. Alternatively, a compound according to the invention may be delivered locally from a silicone polymer implanted in the adventitia.

An alternative approach for minimizing washout of a compound according to the invention during percutaneous, transvascular delivery comprises the use of nondiffusible, drug-eluting microparticles. The microparticles may be comprised of a variety of synthetic polymers, such as polylactide for example, or natural substances, including proteins or polysaccharides. Such microparticles enable strategic manipulation of variables including total dose of drug and kinetics of its release. Microparticles can be injected efficiently into the arterial or venous wall through a porous balloon catheter or a balloon over stent, and are retained in the vascular wall and the periadventitial tissue for at least about two weeks. Formulations and methodologies for local, intravascular site-specific delivery of therapeutic agents are discussed in Reissen et al. (J. Am. Coll. Cardiol. 1994; 23: 1234-1244), the entire contents of which are hereby incorporated by reference.

A composition according to the invention may also comprise a hydrogel which is prepared from any biocompatible or non-cytotoxic (homo or hetero) polymer, such as a hydrophilic polyacrylic acid polymer that can act as a drug absorbing sponge. Such polymers have been described, for example, in application WO93/08845, the entire contents of which are hereby incorporated by reference. Certain of them, such as, in particular, those obtained from ethylene and/or propylene oxide are commercially available.

In the use of compounds according to the invention for treating pathologies which are linked to hyperproliferative disorders, the compounds according to the invention can be administered in different ways. For the treatment of restenosis, the compounds of the invention are administered directly to the blood vessel wall by means of an angioplasty balloon which is coated with a hydrophilic film (for example a hydrogel) which is saturated with the compound, or by means of any other catheter containing
an infusion chamber for the compound, which can thus be applied in a precise manner to the site to be treated and allow the compound to be liberated locally and efficiently at the location of the cells to be treated. This method of administration advantageously makes it possible for the compound to contact quickly the cells in need of treatment.

The treatment method of the invention preferably consists in introducing a compound according to the invention at the site to be treated. For example, a hydrogel containing composition can be deposited directly onto the surface of the tissue to be treated, for example during a surgical intervention. Advantageously, the hydrogel is introduced at the desired intravascular site by coating a catheter, for example a balloon catheter, and delivery to the vascular wall, preferably at the time of angioplasty. In a particularly advantageous manner, the saturated hydrogel is introduced at the site to be treated by means of a balloon catheter. The balloon may be chaperoned by a protective sheath as the catheter is advanced toward the target vessel, in order to minimize drug washoff after the catheter is introduced into the bloodstream.

Another embodiment of the invention provides for a compound according to the invention to be administered by means of perfusion balloons. These perfusion balloons, which make it possible to maintain a blood flow and thus to decrease the risks of ischaemia of the myocardium, on inflation of the balloon, also enable the compound to be delivered locally at normal pressure for a relatively long time, more than twenty minutes, which may be necessary for its optimal action. Alternatively, a channelled balloon catheter ("channelled balloon angioplasty catheter", Mansfield Medical, Boston Scientific Corp., Watertown, MA) may be used. The latter consists of a conventional balloon covered with a layer of 24 perforated channels which are perfused via an independent lumen through an additional infusion orifice. Various types of balloon catheters, such as double balloon, porous balloon, microporous balloon, channel balloon, balloon over stent and hydrogel catheter, all of which may be used to practice the invention, are disclosed in Reissen et al. (1994), the entire contents of which are hereby incorporated by reference.

The use of a perfusion balloon catheter is especially advantageous, as it has the advantages of both keeping the balloon inflated for a longer period of time by retaining the properties of facilitated sliding and of site-specificity of the hydrogel, are gained simultaneously.

Another aspect of the present invention relates to a pharmaceutical composition comprising a compound according to the invention and poloxamer, such as Poloxamer 407 is a non-toxic, biocompatible polyol, commercially available (BASF, Parsippany, NJ).

A poloxamer impregnated with a compound according to the invention may be deposited directly on the surface of the tissue to be treated, for example during a surgical intervention. Poloxamer possesses essentially the same advantages as hydrogel while having a lower viscosity.

The use of a channel balloon catheter with a poloxamer impregnated with a compound according to the invention is especially advantageous. In this case, the advantages of both keeping the balloon inflated for a longer period of time, while retaining the properties of facilitated sliding, and of site-specificity of the poloxamer, are gained simultaneously.

The percentage of active ingredient in the compositions of the invention may be varied, it being necessary that it should constitute a proportion such that a suitable dosage shall be obtained. Obviously, several unit dosage forms may be administered at about the same time. A dose employed may be determined by a physician or qualified medical professional, and depends upon the desired therapeutic effect, the route of administration and the duration of the treatment, and the condition of the patient. In
the adult, the doses are generally from about 0.001 to about 50, preferably about 0.001 to about 5, mg/kg body weight per day by inhalation, from about 0.01 to about 100, preferably 0.1 to 70, more especially 0.5 to 10, mg/kg body weight per day by oral administration, and from about 0.001 to about 10, preferably 0.01 to 10, mg/kg body weight per day by intravenous administration. In each particular case, the doses are determined in accordance with the factors distinctive to the patient to be treated, such as age, weight, general state of health and other characteristics which can influence the efficacy of the compound according to the invention.

The compounds/compositions according to the invention may be administered as frequently as necessary in order to obtain the desired therapeutic effect. Some patients may respond rapidly to a higher or lower dose and may find much weaker maintenance doses adequate. For other patients, it may be necessary to have long-term treatments at the rate of 1 to 4 doses per day, in accordance with the physiological requirements of each particular patient. Generally, the active product may be administered orally 1 to 4 times per day. Of course, for other patients, it will be necessary to prescribe not more than one or two doses per day.

The compounds of the present invention may also be formulated for use in conjunction with other therapeutic agents such as agents or in connection with the application of therapeutic techniques to address pharmacological conditions which may be ameliorated through the application of a compound of formula I, such as in the following:

The compounds of the present invention may be used in the treatment of restenosis post angioplasty using any device such as balloon, ablation or laser techniques. The compounds of the present invention may be used in the treatment of restenosis following stent placement in the vasculature either as 1) primary treatment for vascular blockage, or 2) in the instance where angioplasty using any device fails to give a patent artery. The compounds of the present invention may be used either orally, by parenteral administration or the compound could be applied topically through the intervention of a specific device or as a properly formulated coating on a stent device.

The compounds of the present invention may be used in the treatment of restenosis in combination with any anticoagulant, antiplatelet, antithrombotic or profibrinolytic agent. Often patients are concurrently treated prior, during and after interventional procedures with agents of these classes either in order to safely perform the interventional procedure or to prevent deleterious effects of thrombus formation. Some examples of classes of agents known to be anticoagulant, antiplatelet, antithrombotic or profibrinolytic agents include any formulation of heparin, low molecular weight heparins, pentasaccharides, fibrinogen receptor antagonists, thrombin inhibitors, Factor Xa inhibitors, or Factor VIIa inhibitors.

The compounds of the present invention may be used in combination with any antihypertensive agent or cholesterol or lipid regulating agent in the treatment of restenosis or atherosclerosis concurrently with the treatment of high blood pressure or atherosclerosis. Some examples of agents that are useful in the treatment of high blood pressure include compounds of the following classes: beta-blockers, ACE inhibitors, calcium channel antagonists and alpha-receptor antagonists. Some examples of agents that are useful in the treatment of elevated cholesterol levels or disregulated lipid levels include compounds known to be HMGCoA reductase inhibitors, compounds of the fibrate class.

The compounds of the present invention may be used in the treatment of various forms of cancer either alone or in combination with compounds known to be useful in the treatment of cancer.
It is understood that the present invention includes combinations of compounds of the present invention with one or more of the aforementioned therapeutic class agents. Compounds within the scope of the present invention exhibit marked pharmacological activities according to tests described in the literature which tests results are believed to correlate to pharmacological activity in humans and other mammals. The following pharmacological in vitro and in vivo test results are typical for characterizing compounds of the present invention.

Preparation of Pharmaceutical Compositions and Pharmacological Test Section

Compounds within the scope of this invention exhibit significant activity as protein tyrosine kinase inhibitors and possess therapeutic value as cellular antiproliferative agents for the treatment of certain conditions including psoriasis, atherosclerosis and restenosis injuries. Compounds within the scope of the present invention exhibit the modulation and/or inhibition of cell signaling and/or cell proliferation and/or matrix production and/or chemotaxis and/or cell inflammatory response, and can be used in preventing or delaying the occurrence or reoccurrence of such conditions or otherwise treating the condition.

To determine the effectiveness of compounds of this invention, the pharmacological tests described below, which are accepted in the art and recognized to correlate with pharmacological activity in mammals, are utilized. Compounds within the scope of this invention have been subjected to these various tests, and the results obtained are believed to correlate to useful cellular differentiation mediator activity. The results of these tests are believed to provide sufficient information to persons skilled in the pharmacological and medicinal chemistry arts to determine the parameters for using the studied compounds in one or more of the therapies described herein.

1. PDGF-R Tyrosine Kinase Autophosphorylation ELISA assay
 The titled assay is performed as described by Dolle et al. (J. Med. Chem. 1994, 37, 2627), which is incorporated herein by reference, with the exception of using the cell lysates derived from Human aortic smooth muscle cells (HAMSC) as described below.

2. Mitogenesis Assay General Procedure
 a. Cell Culture
 Human aortic smooth muscle cells (passage 4-9) are plated in 96 well plates in a growth supporting medium at 6000 cells/well and allowed to grow 2-3 days. At approximately 85% confluence, cells are growth arrested with serum free media (SFM).
 b. Mitogenesis Assay
 After 24 hour serum deprivation, medium is removed and replaced with test compound/vehicle in SFM (200 µL/well). Compounds are solubilized in cell culture DMSO at a concentration of 10 mM and further dilutions are made in SFM.
 After 30 min preincubation with compound, cells are stimulated with PDGF at 10 ng/mL.
 Determinations are performed in duplicate with stimulated and unstimulated wells at each compound concentration.
 Four hours later, 1 µCi ³H thymidine/well is added.
Cultures are terminated 24 hours after addition of growth factor. Cells are lifted with trypsin and harvested onto a filter mat using an automated cell harvester (Wallac MachII96). The filter mat is counted in a scintillation counter (Wallac Betaplate) to determine DNA-incorporated label.

3. **Chemotaxis Assay**

Human aortic smooth muscle cells (HASMC) at earlier passages are obtained from ATCC. Cells are grown in Clonetics SmGM 2 SingleQuots (media and cells at passages 4-10 are used). When cells are 80% confluent, a fluorescent probe, calcein AM (5 mM, Molecular Probe), is added to the media and cells are incubated for 30 minutes. After washing with HEPES buffered saline, cells are lifted with trypsin and neutralized with MCDB 131 buffer (Gibco) with 0.1% BSA, 10 mM glutamine and 10% fetal bovine serum. After centrifugation, cells are washed one more time and resuspended in the same buffer without fetal bovine serum at 30000 cells/50 mL. Cells are incubated with different concentrations of a compound of formula I (final DMSO concentration = 1 %) for 30 min at 37°C. For chemotaxis studies, 96 well modified Boyden chambers (Neuroprobe, Inc.) and a polycarbonate membrane with 8 mm pore size (Poretics, CA) are used. The membrane is coated with collagen (Sigma C3657, 0.1 mg/mL). PDGF-β (3 ng/mL) in buffer with and without a compound of formula I are placed in the lower chamber. Cells (30,000), with and without inhibitor, are placed in the upper chamber. Cells are incubated for 4 hours. The filter membrane is removed and cells on the upper membrane side are removed. After drying, fluoresce on the membrane is determined using Cytofluor II (Millipore) at excitation/emission wavelengths of 485/530 nm. In each experiment, an average cell migration is obtained from six replicates. Percent inhibition is determined from DMSO treated control values. From five points concentration-dependent inhibitions, IC₅₀ value is calculated. Results are presented as a mean ±SEM from five such experiments.

4. **EGF-Receptor Purification**

EGF-receptor purification is based on the procedure of Yarden and Schlessinger. A431 cells are grown in 80 cm² bottles to confluency (2 x 10⁷ cells per bottle). The cells are washed twice with PBS and harvested with PBS containing 11.0 mmol EDTA (1 hour at 37°C, and centrifuged at 600g for 10 minutes. The cells are solubilized in 1 mL per 2 x 10⁷ cells of cold solubilization buffer (50 mmol Hepes buffer, pH 7.6, 1% Triton X-100, 150 mmol NaCl, 5 mmol EGTA, 1 mmol PMSF, 50 mg/mL aprotinin, 25 mmol benzamidine, 5 mg/mL leupeptin, and 10 mg/mL soybean trypsin inhibitor) for 20 minutes at 4°C. After centrifugation at 100,000g for 30 minutes, the supernatant is loaded onto a WGA-agarose column (100 mL of packed resin per 2 x 10⁷ cells) and shaken for 2 hours at 4°C. The unabsorbed material is removed and the resin washed twice with HTN buffer (50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl), twice with HTN buffer containing 1 M NaCl, and twice with HTNG buffer (50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl, and 10% glycerol). The EGF receptor is eluted batchwise with HTNG buffer containing 0.5 M N-acetyl-D-glucosamine (200 mL per 2 x 10⁷ cells). The eluted material is stored in aliquots at -70°C and diluted before use with TMTNG buffer (50 mmol Tris-Mes buffer, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl, 10% glycerol).

5. **Inhibition of EGF-R Autophosphorylation**
A431 cells are grown to confluence on human fibronectin coated tissue culture dishes. After washing 2 times with ice-cold PBS, cells are lysed by the addition of 500 mL/dish of lysis buffer (50 mmol Heps, pH 7.5, 150 mmol NaCl, 1.5 mmol MgCl₂, 1 mmol EGTA, 10% glycerol, 1% triton X-100, 1 mmol PMSF, 1 mg/mL aprotinin, 1 mg/mL leupeptin) and incubating 5 minutes at 4°C. After EGF stimulation (500 mg/mL 10 minutes at 37°C) immunoprecipitation is performed with anti EGF-R (Ab 108) and the autophosphorylation reaction (50 mL aliquots, 3 mCi [γ-³²P]ATP) sample is carried out in the presence of 2 or 10 mM of compound of the present invention, for 2 minutes at 4°C. The reaction is stopped by adding hot electrophoresis sample buffer. SDA-PAGE analysis (7.5% gels) is followed by autoradiography and the reaction is quantitated by densitometry scanning of the x-ray films.

a. Cell Culture

Cells termed HER 14 and K721A are prepared by transfecting NIH3T3 cells (clone 2.2) (From C. Fryling, NCI, NIH), which lack endogenous EGF-receptors, with cDNA constructs of wild-type EGF-receptor or mutant EGF-receptor lacking tyrosine kinase activity (in which Lys 721 at the ATP-binding site is replace by an Ala residue, respectively). All cells are grown in DMEM with 10% calf serum (Hyclone, Logan, Utah).
6. **Selectivity vs. PKA and PKC is determined using commercial kits:**
 a. Pierce Colorimetric PKA Assay Kit, Spinzyme Format

 Brief Protocol:

 PKA enzyme (bovine heart) 1U/assay tube
 Kemptide peptide (dye labeled) substrate
 45 minutes @ 30°C
 Absorbance at 570 nm

 b. Pierce Colorimetric PKC Assay kit, Spinzyme Format

 Brief Protocol:

 PKC enzyme (rat brain) 0.025U/assay tube
 Neurogranin peptide (dye labeled) substrate
 30 minutes @ 30°C
 Absorbance at 570 nm

7. **p56^{κκ}-Tyrosine Kinase Inhibition Activity Measurements**

 p56^{κκ}-Tyrosine kinase inhibition activity is determined according to a procedure disclosed in United States Patent No. 5,714,493, incorporated herein by reference.

 In the alternative, the tyrosine kinase inhibition activity is determined according to the following method. A substrate (tyrosine-containing substrate, Biot-(β Ala)₃-Lys-Val-Glu-Lys-Ile-Gly-Glu-Gly-Thr-Tyr-Glu-Val-Val-Tyr-Lys-(NH₂) recognized by P56^{κκ}, 1 μM) is first phosphorylated in presence or absence of a given concentration of the test compound, by a given amount of enzyme (enzyme is produced by expression of P56^{κκ} gene in a yeast construct) purified from a cloned yeast (purification of the enzyme is done by following classical methods) in the presence of ATP (10μM) MgCl₂ (2.5mM), MnCl₂ (2.5mM), NaCl (25mM), DTT (0.4mM) in Hepes 50mM, pH 7.5, over 10 min at ambient temperature. The total reaction volume is 50μl, and the reactions are performed in a black 96-well fluoroplate. The reaction is stopped by addition of 150μl of stopping buffer (100mM Hepes pH 7.5, KF 400mM, EDTA 133 mM, BSA 1g/l) containing a selected anti tyrosine antibody labeled with the Europium cryptate (PY20-K) at 0.8μg/ml and allophycocyanine-labelled streptavidin (XL665) at 4μg/ml.

 The labeling of Streptavidin and anti-tyrosine antibodies were performed by Cis-Bio International (France). The mixture is counted using a Packard Discovery counter which is able to measure time-resolved homogeneous fluorescence transfer (excitation at 337 nm, readout at 620 nm and 665 nm). The ratio of the 665 nm signal / 620nm signal is a measure of the phosphorylated tyrosine concentration. The blank is obtained by replacing enzyme by buffer. The specific signal is the difference between the ratio obtained without inhibitor and the ratio with the blank. The percentage of specific signal is calculated. The IC₅₀ is calculated with 10 concentrations of inhibitor in duplicate using Xlfit soft. The reference compound is staurosporine (Sigma) and it exhibits an IC₅₀ of 30± 6 nM (n=20).

 The results obtained by the above experimental methods evidence that the compounds within the scope of the present invention possess useful PDGF receptor protein tyrosine kinase inhibition properties or p56^{κκ} tyrosine kinase inhibition properties, and thus possess therapeutic value. The above pharmacological test results may be used to determine the dosage and mode of administration for the particular therapy sought.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof.
We Claim:

1. A compound of formula I

\[
\begin{array}{c}
\text{R}_{1a} \quad \text{Z} \quad \text{N} \\
\text{R}_{1b} \quad \text{R}_{1c} \\
\end{array}
\]

wherein

- \(X\) is \(L_1\) or \(L_2Z_2\);
- \(L_1\) is \((CR_3R_3)_{2m}\) or \((CR_3R_3)_m\);
- \(L_2\) is \((CR_3R_3)_m\);
- \(Z_2\) is optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted heterocyclyl or optionally substituted heterocyclylidencyl;
- \(Z_4\) is \(O\), \(NR_4\), \(S\), \(SO\) or \(SO_2\);
- \(m\) is 0 or 1;
- \(n\) is 2 or 3, and \(n + m = 2\) or 3;

\(p\) and \(q\) are independently 0, 1, 2, 3 or 4, and \(p + q = 0\), 1, 2, 3 or 4 when \(Z_4\) is a bond, and \(p + q = 0\), 1, 2 or 3 when \(Z_4\) is other than a bond;
- \(r\) is 2, 3 or 4;
- \(R_{1a}\) and \(R_{1b}\) are independently optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxy, acyloxy, optionally substituted alkoxo, optionally substituted cycloalkyloxy, optionally substituted heterocyclyloxy, optionally substituted heterocyclylcarbonyloxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, cyano, \(R_3R_3\) or acylR_3N- or acylR_3N-;
- \(R_5\) is hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxy, acyloxy, optionally substituted alkoxo, optionally substituted cycloalkyloxy, optionally substituted heterocyclyloxy, optionally substituted heterocyclylcarbonyloxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, cyano, \(R_3R_3\) or acylR_3N-;
- \(R_5\) is hydrogen, optionally substituted alkyl or acyl; and

\(R_5\) and \(R_6\) are independently hydrogen or alkyl, or \(R_5\) and \(R_6\) taken together with the nitrogen atom to which \(R_5\) and \(R_6\) are attached form aza heterocyclyl, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1 wherein
\[L_1 = (CR_{3\alpha} R_{3\beta})_m Z_2 (CR_{3\alpha} R_{3\beta})_n; \]
\[L_2 = (CR_{3\alpha} R_{3\beta})_p Z_4 (CR_{3\beta} R_{3\gamma})_q; \]
\[Z_2 \text{ is optionally substituted cycloalkyl, optionally substituted cycloalkenyl or optionally substituted heterocyclil;} \]
\[Z_4 \text{ is O and } NR_4; \]
\[m \text{ is } 0; \]
\[n \text{ is } 2 \text{ or } 3; \]
\[p + q = 0 \text{ or } 1; \]
\[R_{1\alpha} \text{ and } R_{1\beta} \text{ are independently optionally substituted alkyl, optionally substituted alkoxy, optionally substituted cycloalkyloxy, optionally substituted heterocycliloxo or } R_{1\alpha} R_{1\beta} N; \]
\[\text{ or one of } R_{1\alpha} \text{ and } R_{1\beta} \text{ is hydrogen or halo and the other is optionally substituted alkyl, optionally substituted alkoxy, optionally substituted cycloalkyloxy, optionally substituted heterocycliloxo or } R_{1\alpha} R_{1\beta} N; \]
\[R_{1\epsilon} \text{ is hydrogen, optionally substituted alkyl or optionally substituted alkoxy;} \]
\[R_{1\theta}, R_{3\theta}, R_{1\gamma} \text{ and } R_{1\gamma} \text{ are independently hydrogen or lower alkyl;} \]
\[R_4 \text{ is hydrogen; and } \]
\[R_4 \text{ and } R_6 \text{ taken together with the nitrogen atom to which } R_5 \text{ and } R_6 \text{ are attached form aza heterocyclil, or } \]
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

3. The compound of claim 1 wherein
\[X = L_2 Z_2; \]
\[L_2 = (CR_{3\alpha} R_{3\beta})_p Z_4 (CR_{3\alpha} R_{3\beta})_q; \]
\[Z_2 \text{ is optionally substituted cycloalkyl or optionally substituted cycloalkenyl;} \]
\[Z_4 \text{ is O and } NR_4; \]
\[p \text{ is } 0; \]
\[q \text{ is } 0 \text{ or } 1; \]
\[R_{1\alpha} \text{ and } R_{1\beta} \text{ are independently optionally substituted alkyl, optionally substituted alkoxy, optionally substituted cycloalkyloxy or optionally substituted heterocycliloxo, or one of } R_{1\alpha} \text{ and } R_{1\beta} \text{ is hydrogen or halo;} \]
\[R_{1\epsilon} \text{ is hydrogen; } \]
\[R_{1\gamma} \text{ and } R_{1\gamma} \text{ are independently hydrogen; and } \]
\[R_4 \text{ is hydrogen, or } \]
an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

4. The compound of claim 1 wherein \(L_1 \) is lower alkyl
5. The compound of claim 1 wherein \(Z_2 \) is CH.

6. The compound of claim 1 wherein \(Z_2 \) is N.
7. The compound of claim 1 wherein \(Z_2 \) is optionally substituted cycloalkyl.
8. The compound of claim 1 wherein \(Z_2 \) is alkyl substituted monocyclic cycloalkyl.
9. The compound of claim 1 wherein \(Z_2 \) is methylcyclopentyl or methylcyclohexyl.
10. The compound of claim 1 wherein \(Z_2 \) is multicyclic cycloalkyl.
11. The compound of claim 1 wherein \(Z_2 \) is \([2.2.1]\)bicycloheptanyl (norbomyl) or \([2.2.2]\)bicyclooctanyl.
12. The compound of claim 1 wherein \(Z_2 \) is optionally substituted cycloalkenyl.
13. The compound of claim 1 wherein \(Z_2 \) is cyclopentenyl and cyclohexenyl.
14. The compound of claim 1 wherein \(Z_2 \) is \([2.2.1]\)bicycloheptenyl (norbomynyl) or \([2.2.2]\)bicyclocotenyl.
15. The compound of claim 1 wherein \(p \) and \(q \) are 0.
16. The compound of claim 1 wherein \(p + q = 1 \).
17. The compound of claim 1 wherein \(Z_4 \) is O.
18. The compound of claim 1 wherein \(Z_4 \) is O, and \(p \) and \(q \) are 0.
19. The compound of claim 1 wherein \(Z_4 \) is O, and \(p + q = 1 \).
20. The compound of claim 1 wherein \(Z_4 \) is \(NR_4 \).
21. The compound of claim 1 wherein \(Z_4 \) is \(NR_4 \), and \(p \) and \(q \) are 0.
22. The compound of claim 1 wherein \(Z_4 \) is \(NR_4 \), and \(m + n = 1 \).
23. The compound of claim 1 wherein \(Z_4 \) is S.
24. The compound of claim 1 wherein \(Z_4 \) is S, and \(p \) and \(q \) are 0.
25. The compound of claim 1 wherein \(Z_4 \) is S, and \(p + q = 1 \).
26. The compound of claim 1 wherein \(R_{1a} \) and \(R_{1b} \) are independently optionally hydroxy substituted lower alkyl, hydroxy, lower alkoxy, cycloalkyloxy, heterocyclyloxy, or one of \(R_{1a} \) and \(R_{1b} \) is hydrogen or halo.
27. The compound of claim 1 wherein \(R_{1a} \) and \(R_{1b} \) are independently heterocyclycarbonyloxy or optionally substituted lower alkoxy.
28. The compound of claim 1 wherein the lower alkoxy is methoxy or ethoxy.
29. The compound of claim 1 wherein \(R_{1a} \) and \(R_{1b} \) are lower alkyl.
30. The compound of claim 1 wherein the lower alkyl is methyl or ethyl.
31. The compound of claim 1 wherein one of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy, and the other of \(R_{1a} \) and \(R_{1b} \) is halo.
32. The compound of claim 1 wherein the lower alkoxy is methoxy or ethoxy, and the halo is chloro or bromo.
33. The compound of claim 1 wherein one of \(R_{1a} \) and \(R_{1b} \) is lower alkyl, and the other of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy.
34. The compound of claim 1 wherein the lower alkoxy is methoxy or ethoxy, and the lower alkyl is methyl or ethyl.
35. The compound of claim 1 wherein one of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy, and the other of \(R_{1a} \) and \(R_{1b} \) is cycloalkyloxy.
36. The compound of claim 1 wherein the lower alkoxy is methoxy or ethoxy, and the cycloalkyloxy is cyclopentlyloxy or cyclohexylxyloxy.
37. The compound of claim 1 wherein one of \(R_{1a} \) and \(R_{1b} \) is hydrogen, and the other of \(R_{1a} \) and \(R_{1b} \) is lower alkoxy, cycloalkyloxy or heterocyclyloxy.
38. The compound of claim 37 wherein the lower alkoxy is methoxy or ethoxy.
39. The compound of claim 37 wherein the cycloalkyloxy is cyclopentlyloxy or cyclohexylxyloxy.
40. The compound of claim 37 wherein the heterocycltyloxy is furanyloxy.

41. The compound of claim 1 wherein R1 is hydrogen, lower alkyl or lower alkoxy.

42. The compound of claim 41 wherein the lower alkoxy is methoxy or ethoxy.

43. The compound of claim 1 wherein R1a and R1b are lower alkoxy optionally substituted with alkoxy, heterocycl, carboxy, alkoxy carbonyl or carbamoyl.

44. The compound of claim 1 wherein one of R1a and R1b is unsubstituted lower alkoxy and the other of R1a and R1b is lower alkoxy substituted with alkoxy, heterocycl, carboxy, alkoxy carbonyl or carbamoyl.

45. The compound of claim 1 wherein one of R1a and R1b is methoxy and the other of R1a and R1b is

[1,4’]-bipiperad-1’-ylcarboxyloxy, 2-(ethoxy)ethoxy, 2-(4-morpholinyl)ethoxy, 2-(4-methylpiperazin-1-yl)ethoxy, carboxymethoxy, methoxy carbonylmethoxy, aminocarbonylmethoxy, N-methylaminocarbonylmethoxy or N,N-dimethylaminocarbonylmethoxy.

46. A compound according to claim 1 which is:

3-Cyclohexyloxy-6,7-dimethoxyquinoline;

15 2-cyclohexylamino-6,7-dimethoxyquinazoline;

exo-bicyclo [2.2.1]hept-2-yl- (6-chloro-7-methoxy quinazolin-2-yl) amine;

exo-bicyclo [2.2.1]hept-2-yl- (7-chloro-6-methoxy quinazolin-2-yl) amine;

Bicyclo[2.2.1]hept-2-yl(6,7-dimethyl quinazolin-2-yl)-amine;

2-cyclohexylamino-6,7-dimethoxyquinazoline;

20 2-cyclopentylamino-6,7-dimethoxyquinazoline;

2-cyclohexylamino-6-methoxyquinazoline;

3-Aminocyclohexyl-6,7-dimethoxyquinoline;

(6,7-dimethoxy quinolin-3-yl)-cis-(3-(R)-methyl cyclohexyl) amine;

2-Cyclohexylamino-6-methoxy-7-bromo quinazoline hydrochloride;

25 (6,7-Dimethoxyquinolin-3-yl)-cis/trans-(3-(R)-methyl cyclohexyl)-amine

(6,7-Dimethoxyquinolin-3-yl)-trans-(3-(R)-methyl cyclohexyl)-amine

(6,7-Dimethoxyquinolin-3-yl)-cis-(3-(R)-methyl cyclohexyl)-amine

(6,7-dimethoxy-quinolin-3-yl)- (3-methyl-cyclopentyl) amine;

Cyclohex-3-eny1-(6,7-dimethoxyquinazolin-2-yl)-amine;

30 2,7-Bis-cyclohexyloxy-6-methoxy-quinazoline;

Cyclohexyl-(6,7-dimethoxyquinazolin-2-ylmethyl)-amine;

(6,7-Dimethoxyquinolin-3-yl)-isobutyl amine;

Cyclohexyl-(6-methoxy-7-morpholin-4-yl-quinazolin-2-yl)-amine;

(±)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinazolin-2-yl)-amine;

exo-bicyclo[2.2.1]hept-5-en-2-yl-(6,7-dimethoxyquinazolin-2-yl)-amine;

Cyclohexyl-(6,8-dimethyl-quinazolin-2-yl)-amine;

Endo-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinazolin-2-yl)-amine;

(6,7-Dimethoxyquinazolin-2-yl)-(4-methoxy-cyclohexyl)-amine;

Exo-bicyclo[2.2.1]hept-2-yl-(6-methoxyquinazolin-2-yl)-amine;

exo-2-(Bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxyquinazoline;

(Bicyclo[2.2.2]oct-2-yloxy)-6,7-dimethoxy-quinazoline;

Endo-2-(bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxy-quinazoline;
exo-2-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoxaline;
(Bicyclo[2.2.1]hept-5-en-2-yloxy)-6,7-dimethoxyquinoxaline;
2-Cyclohexyloxy-6,7-dimethoxyquinoxaline;
2-cyclopentylthio-6,7-dimethoxy-quinoxaline;
6,7-dimethoxy-2-cyclopentylloxy-quinoxaline;
2-cyclopentylmethylxy-6,7-dimethoxy-quinoxaline;
6,7-dimethoxy-2-tetrahydropyran-4-oxy-quinoxaline;
exo,exo-6,7-dimethoxy-2-(5,6-epoxy-bicyclo[2.2.1]heptan-2-yloxy)-quinoxaline;
cis/trans-4-(6,7-Dimethoxyquinoxalin-2-yloxy)-cyclohexanecarboxylic acid;
6,7-Dimethoxy-2-(4-methoxy-cyclohexyloxy)-quinoxaline;
(1R,2R,4S)-(+)Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
(1S,2S,4R)-(−)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine;
(6,7-Dimethoxy-quinoxalin-2-yl)-2-aza-bicyclo[2.2.2]octan-3-one;
Cis/trans-4-(6,7-Dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
Cis/trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
Cis-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
Trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-cyclohexanecarboxylic acid methyl ester;
(6,7-dimethoxy-quinoxalin-2-yl)-cis/trans-(3-(R)-methylcyclohexyl) amine;
(6,7-dimethoxy-quinoxalin-2-yl)-trans-(3-(R)-methylcyclohexyl) amine;
(6,7-dimethoxy-quinoxalin-2-yl)-cis-(3-(R)-methylcyclohexyl) amine;
or methyl cis/trans-4-(6,7-Dimethoxyquinoxalin-2-yloxy)-cyclohexanecarboxylate, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

47. A compound according to claim 1 which is 2-cyclohexylamino-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

48. A compound according to claim 1 which is exo-bicyclo[2.2.1]hept-2-yl-(6-chloro-7-methoxyquinoxalin-2-yl)amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

49. A compound according to claim 1 which is exo-bicyclo[2.2.1]hept-2-yl-(7-chloro-6-methoxyquinoxalin-2-yl)amine;

50. A compound according to claim 1 which is Bicyclo[2.2.1]hept-2-yl-(6,7-dimethyl-quinoxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

51. A compound according to claim 1 which is 2-cycloheptylamino-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

52. A compound according to claim 1 which is 2-cyclopentylamino-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.
53. A compound according to claim 1 which is 3-Aminocyclohexyl-6,7-dimethoxy-quinoline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

54. A compound according to claim 1 which is (6,7-dimethoxy-quinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl) amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

55. A compound according to claim 1 which is (6,7-Dimethoxyquinolin-3-yl)-cis/trans-(3-(R)-methyl-cyclohexyl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

56. A compound according to claim 1 which is (6,7-Dimethoxyquinolin-3-yl)-trans-(3-(R)-methyl-cyclohexyl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

57. A compound according to claim 1 which is (6,7-Dimethoxyquinolin-3-yl)-cis-(3-(R)-methyl-cyclohexyl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

58. A compound according to claim 1 which is Cyclohex-3-enyl-(6,7-dimethoxyquinaxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

59. A compound according to claim 1 which is 2,7-Bis-cyclohexyloxy-6-methoxy-quinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

60. A compound according to claim 1 which is (6,7-Dimethoxyquinolin-3-yl)-isobutyl amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

61. A compound according to claim 1 which is (+)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinaxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

62. A compound according to claim 1 which is exo-bicyclo[2.2.1]hept-5-en-2-yl-(6,7-dimethoxyquinaxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

63. A compound according to claim 1 which is Endo-bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinaxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

64. A compound according to claim 1 which is Exo-bicyclo[2.2.1]hept-2-yl-(6-methoxyquinaxolin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

65. A compound according to claim 1 which is exo-2-(Bicyclo[2.2.1]hept-2-yloxy)-6,7-dimethoxyquinaxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

66. A compound according to claim 1 which is 2-(Bicyclo[2.2.2]oct-2-yloxy)-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.
67. A compound according to claim 1 which is Endo-2-(bicyclo[2.2.1]hept-2-yl oxy)-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

68. A compound according to claim 1 which is exo-2-(Bicyclo[2.2.1]hept-5-en-2-yl oxy)-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

69. A compound according to claim 1 which is 2-(Bicyclo[2.2.1]hept-5-en-2-yl oxy)-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

70. A compound according to claim 1 which is 2-Cyclohexyloxy-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

71. A compound according to claim 1 which is 2-cyclopentylthio-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

72. A compound according to claim 1 which is 6,7-dimethoxy-2-cyclopentylxyloxy-quinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

73. A compound according to claim 1 which is 2-cyclopentylmethylxyloxy-6,7-dimethoxyquinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

74. A compound according to claim 1 which is 6,7-dimethoxy-2-tetrahydropyran-4-oxy-quinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

75. A compound according to claim 1 which is exo,exo-6,7-dimethoxy-2-(5,6-epoxybicyclo[2.2.1]heptan-2-yl oxy)-quinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

76. A compound according to claim 1 which is 6,7-Dimethoxy-2-(4-methoxy-cyclohexyloxy)-quinoxaline, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

77. A compound according to claim 1 which is (1R,2R,4S)-(+)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

78. A compound according to claim 1 which is (1S,2S,4R)(-)-Bicyclo[2.2.1]hept-2-yl-(6,7-dimethoxyquinoxalin-2-yl)-amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

79. A compound according to claim 1 which is Cis/trans-4-(6,7-Dimethoxy-quinoxalin-2-ylamino)cyclohexanecarboxylic acid methyl ester, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.

80. A compound according to claim 1 which is Cis-4-(6,7-dimethoxy-quinoxalin-2-ylamino)cyclohexanecarboxylic acid methyl ester, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or pharmaceutically acceptable salt thereof.
81. A compound according to claim 1 which is Trans-4-(6,7-dimethoxy-quinoxalin-2-ylamino)-
cyclohexanecarboxylic acid methyl ester, or an N-oxide thereof, hydrate thereof, solvate thereof,
prodrug thereof, or pharmaceutically acceptable salt thereof.

82. A compound according to claim 1 which is (6,7-dimethoxy-quinoxaline-2-yl)-cis/trans-(3-(R)-
methylecyclohexyl) amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or
pharmaceutically acceptable salt thereof.

83. A compound according to claim 1 which is (6,7-dimethoxy-quinoxaline-2-yl) -trans-(3-(R)-
methylecyclohexyl) amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or
pharmaceutically acceptable salt thereof.

84. A compound according to claim 1 which is (6,7-dimethoxy-quinoxaline-2-yl)-cis-(3-(R)-
methylecyclohexyl) amine, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or
pharmaceutically acceptable salt thereof.

85. A compound according to claim 1 which is methyl cis/trans-4-(6,7-Dimethoxyquinoxalin-2-yloxy)-
cyclohexanecarboxylate, or an N-oxide thereof, hydrate thereof, solvate thereof, prodrug thereof, or
pharmaceutically acceptable salt thereof.

86. A pharmaceutical composition comprising the compound of claim 1, or pharmaceutically acceptable
salt thereof and a pharmaceutically acceptable carrier.

87. A method of inhibiting PDGF tyrosine kinase activity comprising contacting a compound according
to claim 1 with a composition containing a PDGF tyrosine kinase.

88. A method of inhibiting Lck tyrosine kinase activity comprising contacting a compound according to
claim 1 with a composition containing a Lck tyrosine kinase.

89. A method of inhibiting cell proliferation, differentiation, or mediator release in a patient suffering
from a disorder characterized by such proliferation and/or differentiation and/or mediator release
comprising administering to a patient a pharmaceutically effective amount of the compound
according to claim 1.

90. A method for treating a pathology linked to a hyperproliferative disorder, said method comprising
administering to a patient in need of such treatment a pharmaceutically effective amount of the
compound according to claim 1.

91. The method according to claim 90, wherein said pathology is restenosis.

92. A method of treating restenosis in a patient comprising administering to said patient in need of such
treatment a pharmaceutically effective amount of the compound according to claim 1. that is capable
of inhibiting vascular smooth muscle cell proliferation and migration at a predetermined site.

93. The method according to claim 90, wherein said hyperproliferative disorder is at a site of mechanical
injury to an arterial wall produced by treatment of an atherosclerotic lesion by angioplasty.
94. The method according to claim 90, wherein the compound according to claim 1 is administered by means of an angioplasty balloon coated with a hydrophilic film saturated with the compound according to claim 1.

95. A method according to claim 90, wherein the compound according to claim 1 is administered by means of a catheter comprising an infusion chamber containing a solution of the compound according to claim 1.

96. A method for treating inflammation in a patient suffering from such disorder comprising administering to said patient an effective amount of a compound according to claim 1.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(6) : C07D 241/44, 405/10, 215/20, 215/38; A61K 31/47, 31/495
 US CL : Please See Extra Sheet.
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 APS, CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 293 071 A1 (UNIVERSITY OF FLORIDA) 30 November 1988, page 43.</td>
<td>1, 4, 5, 26, 28, 37, 38, 41, 86</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,480,883 A (SPADA et al) 02 January 1996, see entire document.</td>
<td>1-34, 37, 38, 41-93, 95, 96</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 AUGUST 1998</td>
<td>20 OCT 1998</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
Ann M. Kessinger
Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,409,930 A (SPADA et al) 25 April 1995, see entire document.</td>
<td>1-34, 37, 38, 41-93, 95, 96</td>
</tr>
<tr>
<td>X</td>
<td>Chemical Abstracts, Vol. 125, No. 15, 07 October 1996 (Columbus, OH., USA), page 1213 column 2, the abstract No. 195667C, WO 9620191 (SANKYO CO., LTD., JAPAN). See derivative highlighted and indexed in Formula Index. (part 3 of 4 parts), 31 December 1996, Vol. 125.</td>
<td>1, 5, 20, 26, 86</td>
</tr>
</tbody>
</table>
A. CLASSIFICATION OF SUBJECT MATTER:
US CL :