US 20160147996A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0147996 A1

Martinez 43) Pub. Date: May 26, 2016
(54) METHOD FOR GENERATING AND GOG6F 9/44 (2006.01)
EXECUTING ENCRYPTED BIOS FIRMWARE HO04L 9/06 (2006.01)
AND SYSTEM THEREFOR (52) US.CL
— CPC ......cc..... GOG6F 21/572 (2013.01); HO4L 9/065
(71) Applicant: ]ﬁeél Products, LP, Round Rock, TX (2013.01); HO4L 9/3234 (2013.01); GO6F
(US) 9/4401 (2013.01)
(72) Inventor: Ricardo L. Martinez, Leander, TX (US)
(21) Appl. No.: 14/551,745 (57) ABSTRACT
(22) Filed: Nov. 24, 2014
Publication Classification A firmware image is received at an information handling
system. A symmetric key is generated and stored at a trusted
(51) Int.ClL platform module (TPM). The firmware image is encrypted
GOG6F 21/57 (2006.01) using the symmetric key. The encrypted firmware image is
HO4L 9/32 (2006.01) stored in a non-volatile memory.

BIOS update program stores new
firmware in Memaory. Set BIGS -
update flag and reboot system.

[200
201

|

(Generate unique

202
|~

random symmelric kay

Y

Store key in TPM sealed
to initial PE! PCR state

203

EFI Handoff Block
passes key o DXE phase

204
|~

Encrypt new firmware image
using generatad key

205
Ve

Delete HOB and key from memory

206
/'

A 4

Write encrypted firmware
image to NVRAM

207

System
raboot




Patent Application Publication = May 26, 2016 Sheet 1 of 3 US 2016/0147996 A1

102 104

Processor System memaory

Firmware memaory

112

Firmware
image

/_'?()6

S
Bus

/_? 20
TPM

Y
Z

122 124 )

FPOR NVRAM v

FIG. 1



BIOS update program stores new

Patent Application Publication = May 26, 2016 Sheet 2 of 3 US 2016/0147996 A1
firmware in Memory. Set BIOS -
update flag and reboot system.

200
201 [
'

Generate unigue /_202
random symmelric key

:

Store key in TPM sealed |~ 203
to initial PE! PCR state

:

EFI Handoff Block /_2(}4
passes key to DXE phase

|

Encrypt new firmware image /_ 205
using generated key

;

/— 206
Delete HOB and key from memaory

|

207
Write encrypted firmware /_
image to NVRAM

System
rebogt

FIG. 2



Patent Application Publication = May 26, 2016 Sheet 3 of 3 US 2016/0147996 A1

00

System
goot

/— 301
Initialize TPM and system memory

I

302
Retrieve symmetric key from TPM /_

I

303
Decrypt encrypted firmware image -

I

Decompress decrypted 304
firmware image into -
pre-boot system memory

;

. 305
Clear symmetric key v
from system memory

!

306
Measure decompressed /_
firmware image o TPM PCR

|

Continue BIOS execution, clear / 307
pre-boot Systern Memory,
and boot operating systam

FIG. 3



US 2016/0147996 Al

METHOD FOR GENERATING AND
EXECUTING ENCRYPTED BIOS FIRMWARE
AND SYSTEM THEREFOR

FIELD OF THE DISCLOSURE

[0001] This disclosure generally relates to information han-
dling systems, and more particularly relates to generating and
executing encrypted BIOS firmware at an information han-
dling system.

BACKGROUND

[0002] As the value and use of information continues to
increase, individuals and businesses seek additional ways to
process and store information. One option available to users is
information handling systems. An information handling sys-
tem generally processes, compiles, stores, and/or communi-
cates information or data tier business, personal, or other
purposes thereby allowing users to take advantage of the
value of the information. Because technology and informa-
tion handling needs and requirements vary between different
users or applications, information handling systems may also
vary regarding what information is handled, how the infor-
mation is handled, how much information is processed,
stored, or communicated, and how quickly and efficiently the
information may be processed, stored, or communicated. The
variations in information handling systems allow for infor-
mation handling systems to be general or configured for a
specific user or specific use such as financial transaction
processing, airline reservations, enterprise data storage, or
global communications. In addition, information handling
systems may include a variety of hardware and software
components that may be configured to process, store, and
communicate information and may include one or more com-
puter systems, data storage systems, and networking systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Embodiments incorporating teachings of the
present disclosure are shown and described with respect to the
drawings presented herein, in which:

[0004] FIG.1isablock diagram illustrating an information
handling according to a specific embodiment of the present
disclosure;

[0005] FIG. 2 is a flow diagram illustrating a method for
encrypting a firmware image at the information handling
system of FIG. 1 according to a specific embodiment of the
present disclosure; and

[0006] FIG. 3 is a flow diagram illustrating a method for
executing an encrypted firmware image at the information
handling system of FIG. 1 according to another embodiment
of the present disclosure.

[0007] The use of the same reference symbols in different
drawings indicates similar or identical items.

DETAILED DESCRIPTION

[0008] The following description in combination with the
Figures is provided to assist in understanding the teachings
disclosed herein. The following discussion will focus on spe-
cific implementations and embodiments of the teachings.
This focus is provided to assist in describing the teachings and
should not be interpreted as a limitation on the scope or
applicability of the teachings. However, other teachings can
certainly be utilized in this application.

May 26, 2016

[0009] FIG. 1 shows an information handling system 100
including a processor 102, system memory 104, a Serial
Peripheral Interface (SPI) bus 106, a firmware memory 110,
and a trusted platform man module (TPM) 120. Firmware
memory 110 can include a non-volatile random access
memory (NVRAM), and is configured to store a firmware
image 112. Firmware image 112 is historically referred to as
a basic input/output system (BIOS), and the term. BIOS is
herein used interchangeably with the term firmware image.
Firmware image 112 generally includes a collection of firm-
ware routines, device drivers, and other software programs,
and is further described below. TPM 120 includes platform
configuration registers (PCR) 122 and secure storage
NVRAM 124. The information handling system can include
additional hardware components and additional buses oper-
able to transmit information between the various hardware
components. For example, information handling system 100
can include one or more network interface controllers,
peripheral component controllers and interconnects, video
display controllers, and the like. The information handling
system 100 can further include a service processor, such as
the Baseband Management Controller (not shown at FIG. 1)
to enable remote monitoring and management of aspects of
the information handling system 100, SPI bus 106 is a syn-
chronous serial data link that operates in full duplex mode. It
is used for short distance, single master communication, for
example in embedded systems, sensors, and SD cards.
Devices communicate over the SPI bus in master/stave mode
where the master device initiates the data frame. While SPI
bus 106 is illustrated at FIG. 1, another bus technology can be
used to communicate with TPM 120 and/or firmware memory
110.

[0010] In a specific embodiment of the present disclosure,
the firmware image 110 is encrypted before storing the image
in firmware memory 110. The firmware image 112 is
encrypted using a random symmetric encryption key gener-
ated by a software routine included in the firmware image
112. The encryption key can be stored in NVRAM 124 of
TPM 120. The key is sealed to a TPM PCR state correspond-
ing to a boot phase at the time of storing the key, such as
during an early stage of execution of Unified Extensible Firm-
ware Interface (UEFI) compliant boot software. During sub-
sequent booting of information handling system 100, the
encrypted firmware image 112 is retrieved from firmware
memory 110, the symmetric key is unsealed from TPM 120,
and the encrypted firmware image 112 is decrypted using the
symmetric key. The unencrypted firmware image can be cop-
ied to system memory 104 where execution of the boot code
included the image can commence.

[0011] For purposes of this disclosure, an information han-
dling system may include any instrumentality or aggregate of
instrumentalities operable to compute, classify, process,
transmit, receive, retrieve, originate, switch, store, display,
manifest, detect, record, reproduce, handle, or utilize any
form of information, intelligence, or data for business, scien-
tific, control, entertainment, or other purposes. For example,
an information handling system may be a personal computer,
a PDA, a consumer electronic device, a network server or
storage device, a switch router, wireless router, or other net-
work communication device, or any other suitable device and
may vary in size, shape, performance, functionality, and
price. The information handling system may include
memory, one or more processing resources such as a central
processing unit (CPU) or hardware or software control logic.



US 2016/0147996 Al

Additional components of the information handling system
may include one or more storage devices, one or more com-
munications ports for communicating with external devices
as well as various input and output (I/O) devices, such as a
keyboard, a mouse, and a video display. The information
handling system may also include one or more buses operable
to transmit communications between the various hardware
components.

[0012] Firmware image 112 is configured to initialize and
test the system hardware components, and to load a boot
loader or an operating system (OS) from a mass memory
device. Firmware image 112 additionally provides an
abstraction layer for the hardware, i.e. a consistent way for
application programs and operating systems to interact with
the keyboard, display, and other input/output devices. Varia-
tions in the system hardware are hidden by the BIOS from
programs that use BIOS services instead of directly accessing
the hardware. When power is first applied to information
handling system 100, the system begins a sequence of initial-
ization procedures during which components of the system
are configured and enabled for operation. During the initial-
ization sequence, also referred to as a boot sequence, device
drivers associated with devices included at the system 100 can
be installed. Device drivers provide an interface through
which other components of the system 100 can communicate
with a corresponding device.

[0013] In an embodiment, the firmware image 112 at the
information handling system 100 can be substantially com-
pliant with one or more revisions of the UEFI specification.
The UEFI standard replaces the antiquated personal com-
puter BIOS system found in some older information handling
systems. The UEFI specification provides standard interfaces
and interoperability guidelines for devices that together make
up an information handling system. In particular, the UM
specification provides a standardized architecture and data
structures to manage initialization and configuration of
devices, booting of platform resources, and passing of control
to the operating system. The UEFI specification alto for the
extension of platform firmware by loading UEFI driver and
UEFTI application images. For example, an original equip-
ment manufacturer can include customized or proprietary
images to provide enhanced control and management of the
information handling system 100. While the techniques dis-
closed herein are described in the context of a UEFI compli-
ant system, one of skill will appreciate that the disclosed
systems and methods can be implemented at substantially any
information handling system having configurable firmware
and one or more firmware images 112.

[0014] The firmware image 112 can be stored in firmware
memory 110. A particular firmware image is typically
assigned a revision number identifying the collection of firm-
ware routines included in the firmware image. An original
equipment manufacturer (OEM) can provide updates to firm-
ware image 112 that include improvements, corrections to
address errata, and other revisions. These updates typically
constitute a complete firmware image having a new revision
number. A firmware update operation can include replacing
the current instructions stored at firmware memory 110 with
new instructions. The update process can be initiated by
executing a software program provided by the OEM. In one
embodiment, the software program is executed when infor-
mation handling system 100 is under the control of an OS. For
example, a BIOS update program can download a new firm-
ware image and store the image in system memory 104.

May 26, 2016

During a subsequent reboot at the information handling sys-
tem 100, the previously existing firmware image can be
erased and the updated firmware image can be stored at firm-
ware memory 110.

[0015] TPM 120 is compliant with an international stan-
dard for a secure cryptoprocessor. TPM 120 can include a
dedicated microprocessor designed to secure hardware by
integrating cryptographic keys into devices. The TPM tech-
nical specification was written by a computer industry con-
sortium called the Trusted Computing Group (TCG). A TPM,
such as TPM 120, can include a microchip designed to pro-
vide basic security-related functions, primarily involving
encryption keys. The TPM is usually installed on the moth-
erboard of a computer, such as information handling system
100, and communicates with the rest of the system by using a
hardware bus, such as SPI bus 106. TPM 120 can create
cryptographic keys and encrypt them so that they can only be
decrypted by TPM 120. This process, often called “wrap-
ping” or “binding” a key, can help protect the key from
disclosure. TPM 120 can provide a master “wrapping” key,
called the storage root key, which is stored within the TPM
itself. The private portion of akey created at TPM 120 is never
exposed to any other component, software, process, or per-
son. TPM 120 can also create a key that has not only been
wrapped but is also tied to certain platform measurements.
This type of key can only be unwrapped when those platform
measurements have the same values that they had when the
key was created. This process is called “sealing” the key to the
TPM. Decrypting the key is called “unsealing.” TPM 120 can
also seal and unseal data generated outside of the TPM. With
this sealed key and software such as Bitl.ocker Drive Encryp-
tion, data can be locked until specific hardware or software
conditions are met. Private portions of key pairs are kept
separate from the memory controlled by the operating sys-
tem. Keys can be sealed to the TPM, and certain assurances
about the state of a system can be made before the keys are
unsealed and released for use.

[0016] During the boot process, TPM 120 can measure
(hash) all the critical software and firmware components,
including the BIOS, boot loader, and operating system kernel,
before they are loaded. By making these measurements
before the software runs and storing them on TPM 120, the
measurements are isolated and secure from subsequent modi-
fication attempts. Measurements can be of code, data struc-
tures, configuration, information, or anything that can be
loaded into memory. The TCG requires that code not be
executed until after it has been measured. To further protect
the integrity of the measurements, hash measurements are not
directly written to PCRs, but rather a PCR is “extended” with
a measurement. This means that the TPM takes the current
value of the PCR and the measurement to be extended, hashes
them together, and replaces the content of the PCR with that
hash result. The effect is that the only way to arrive at a
particular measurement in a PCR is to extend exactly the
same measurements in exactly the same order. Therefore, if
any module being measured has been modified, the resulting
PCR measurement will be different and thus it is easy to
detect if any code, configuration, data, etc. that has been
measured had been altered or corrupted. A TPM_Extend
command adds a new measurement to a PCR.

[0017] FIG. 2isaflow diagram inns rating a method 200 for
encrypting a firmware image at the information handling
system of FIG. 1 according to a specific embodiment of the
present disclosure. The method 200 begins at block 201



US 2016/0147996 Al

where a BIOS update program stores anew firmware image in
a memory. A BIOS update flag is set, and a re-boot of the
information handling system is initialized. For example,
information handling system 100 can include a software pro-
gram configured to determine whether an updated version of
the system 13108 is available for this particular system. In
one embodiment, the update program can be provided after
the primary operating system as been loaded. A user of sys-
tem 100 can execute the update program, which can check
whether a firmware update applicable to this system exists at
an Internet resource, such as atan OEM website. If an updated
firmware image is available, the image can be downloaded
and stored in a memory device, such as system memory 104.
A BIOS update flag is set, which causes the updated BIOS
image to be processed when system 100 is subsequently
re-booted.

[0018] Method 200 continues at block 202 where a unique
random symmetric key is generated. For example, early in the
boot sequence following initiation of the reboot at block 201,
such as during the early pre-EFI (PEI) phase, intrinsic BIOS
code included the original firmware image can check to see
whether the BIOS update flag is asserted. Since the flag has
been asserted, the intrinsic BIOS code generates a symmetric
key that will be used to encrypt, and later decrypt, the new
firmware image. The method continues at block 203 where
the symmetric key is stored at a TPM, the key sealed to the
current TPM PCR state. For example, early in the PEI phase,
TPM 120 can perform a measurement, and store the measure-
ment at a register of PCR 122 using a TPM_Extend com-
mand. At a future time, the key can only be extracted from
TPM 120 and unsealed if system 100 is at the same PCR state.

[0019] The method continues at block 204 where the EFI
hand-oft block passes the symmetric key to the Driver Execu-
tion Environment (DXE) phase. A hand-off block (HOB) is a
binary data structure that passes system state information
from the HOB producer phase to the HOB consumer phase in
the UEFI Framework architecture. HOBs are used to hand off
system information in the early pre-boot stages. For example,
the UEFI Framework can use an BOB to pass information
from the PEI phase to the DXE phase. The method continues
at block 205 where the new firmware image is encrypted
using the symmetric key generated at block 202. For example,
processor 102 can retrieve the new firmware image from
system memory 104, encrypt the image using the symmetric
key, and store the encrypted image at system memory 104.
One of skill will appreciate that a portion of the new firmware
image is not encrypted. In particular, intrinsic BIOS code
responsible for initializing TPM 120 and system memory
104, decrypting the remaining firmware image, and the like,
is not encrypted and is thereby executable during the early
stages of the PEI phase of the boot sequence. In one embodi-
ment, the portion of the new firmware image that is encrypted
corresponds substantially to instructions executed during the
DXE phase of the boot sequence. The method continues at
block 206 where the BOB and symmetric key are deleted
from memory. The method continues at block 207 where the
encrypted firmware image is stored at firmware memory 110.
When information handling system 100 is once again re-
booted, the updated firmware stored at firmware memory 110
will be decrypted and executed, as described below with
reference to FIG. 3.

[0020] FIG. 3 is a flow diagram illustrating a method 300
for executing an encrypted firmware image at the information
handling system of FIG. 1 according to another embodiment

May 26, 2016

of the present disclosure. Method 300 begins at block 301
where a TPM and system memory is initialized during a
re-boot of an information handling system. For example,
early in the PEI boot stage of information handling system
100, system resources such TPM 120 and system memory
104 are initialized for operation. The method continues at
block 302, where the symmetric key is retrieved from the
TPM 120. As described above, retrieval and unsealing of the
symmetric key from TPM 120 requires that state measure-
ments at the present time match the PCR state at the time that
the key was originally stored at TPM 120. The method con-
tinues at block 303 where the encrypted firmware image is
retrieved from firmware memory and decrypted using the
symmetric key. For example, processor 102 of information
handling system 100 can retrieve the encrypted firmware
image from firmware memory 110 and decrypt the image
using the symmetric key.

[0021] At block 304, the decrypted image can be decom-
pressed and stored at the system memory. The flow continues
at block 305 where the symmetric key is cleared from system
memory. Accordingly, a rogue program or unauthorized indi-
vidual cannot access and decrypt the contents of firmware
memory 110 without access to the symmetric key. The
method continues at block 306 where the decompressed firm-
ware image is measured and appended to a TPM PCR. For
example, during a subsequent boot of information handling
system 100, successful booting of system 100 requires that a
measurement of the current state during the boot process must
match the state recorded at the TPM PCR 122. If the present
PCR state does not match the state at the time the new firm-
ware image was measured, further booting of information
handling system 100 is disabled. If, however, the present PCR
state matches the state at the time the new firmware image was
measured, the method continues at block 307 where BIOS
execution continues, pre-boot system memory is cleared, and
the operating system is initialized.

[0022] Referring back to FIG. 1, the information handling
system 100 can include a set of instructions that can be
executed to cause the information handling system to perform
any one or more of the methods or computer based functions
disclosed herein. The information handling system 100 may
operate as a standalone device or may be connected to other
computer systems or peripheral devices, such as by a net-
work.

[0023] In a networked deployment, the information han-
dling system 100 may operate in the capacity of a server or as
a client user computer in a server-client user network envi-
ronment, or as a peer computer system in a peer-to-peer (or
distributed) network environment. The information handling
system 100 can also be implemented as or incorporated into
various devices, such as a personal computer (PC), a tablet
PC, a set-top box (STB), a personal digital assistant (PDA), a
mobile device, a palmtop computer, a laptop computer, a
desktop computer, a communications device, a wireless tele-
phone, a land-line telephone, a control system, a camera, a
scanner, a facsimile machine, a printer, a pager, a personal
trusted device, a web appliance, a network router, switch or
bridge, or any other machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine. In a particular embodiment, the
computer system 100 can be implemented using electronic
devices that provide voice, video or data communication.
Further, while a single information handling system 100 is
illustrated, the term “system” shall also be taken to include



US 2016/0147996 Al

any collection of systems or sub-systems that individually or
jointly execute a set, or multiple sets, of instructions to per-
form one or more computer functions.

[0024] The information handling system 100 can include a
disk drive unit and may include a computer-readable medium,
not shown in FIG. 1, in which one or more sets of instructions,
such as software, can be embedded. Further, the instructions
may embody one or more of the methods or logic as described
herein. In a particular embodiment, the instructions may
reside completely, or at least partially, within system memory
104 or another memory included at system 100, and/or within
the processor 102 during execution by the information han-
dling system 100. The system memory 104 and the processor
102 also may include computer-readable media. A network
interface device (not shown at FIG. 1) can provide connec-
tivity to a network, e.g., a wide area network (WAN), a local
area network (LLAN), or other network.

[0025] In an alternative embodiment, dedicated hardware
implementations such as application specific integrated cir-
cuits, programmable logic arrays and other hardware devices
can be constructed to implement one or more of the methods
described herein. Applications that may include the apparatus
and systems of various embodiments can broadly include a
variety of electronic and computer systems. One or more
embodiments described herein may implement functions
using two or more specific interconnected hardware modules
or devices with related control and data signals that can be
communicated between and through the modules, or as por-
tions of an application-specific integrated circuit. Accord-
ingly, the present system encompasses software, firmware,
and hardware implementations.

[0026] In accordance with various embodiments of the
present disclosure, the methods described herein may be
implemented by software programs executable by a computer
system. Further, in an exemplary, non-limited embodiment,
implementations can include distributed processing, compo-
nent/object distributed processing, and parallel processing.
Alternatively, virtual computer system processing can be
constructed to implement one or more of the methods or
functionality as described herein.

[0027] The present disclosure contemplates a computer-
readable medium that includes instructions or receives and
executes instructions responsive to a propagated signal; so
that a device connected to a network can communicate voice,
video or data over the network. Further, the instructions may
be transmitted or received over the network via the network
interface device.

[0028] While the computer-readable medium is shown to
be a single medium, the term “computer-readable medium”
includes a single medium or multiple media, such as a cen-
tralized or distributed database, and/or associated caches and
servers that store one or more sets of instructions. The term
“computer-readable medium” shall also include any medium
that is capable of storing, encoding or carrying a set of instruc-
tions for execution by a processor or that cause a computer
system to perform any one or more of the methods or opera-
tions disclosed herein.

[0029] Ina particular non-limiting exemplary embodiment,
the computer-readable medium can include a solid-state
memory such as a memory card or other package that houses
one or more non-volatile read-only memories. Further, the
computer-readable medium can be a random access memory
or other volatile re-writable memory. Additionally, the com-
puter-readable medium can include a magneto-optical or

May 26, 2016

optical medium, such as a disk or tapes or other storage device
to store information received via carrier wave signals such as
a signal communicated over a transmission medium. A digital
file attachment to an e-mail or other self-contained informa-
tion archive or set of archives may be considered a distribu-
tion medium that is equivalent to a tangible storage medium.
Accordingly, the disclosure is considered to include any one
or more of a computer-readable medium or a distribution
medium and other equivalents and successor media, in which
data or instructions may be stored.

[0030] Although only a few exemplary embodiments have
been described in detail above, those skilled in the art will
readily appreciate that many modifications are possible in the
exemplary embodiments without materially departing from
the novel teachings and advantages of the embodiments of the
present disclosure. Accordingly, all such modifications are
intended to be included within the scope of the embodiments
of'the present disclosure as defined in the following claims. In
the claims, means-plus-function clauses are intended to cover
the structures described herein as performing the recited
function and not only structural equivalents, but also equiva-
lent structures.

What is claimed is:

1. A method comprising:

receiving a firmware image at an information handling

system,

generating a symmetric key;

storing the symmetric key at a trusted platform module

(TPM);

encrypting the firmware image using the symmetric key;

and

storing the encrypted firmware image in a non-volatile

memory.

2. The method of claim 1, further comprising storing the
symmetric key sealed to a first TPM platform configuration
register (PCR) state.

3. The method of claim 1, further comprising storing the
symmetric key during a pre extensible firmware interface
(PEI) phase of a platform innovation framework for exten-
sible firmware interface (EFI).

4. The method of claim 1, wherein a portion of the firmware
image that is to be executed during a pre-extensible firmware
interface (PEI) phase of a platform innovation framework for
extensible firmware interface (EFI) is not encrypted.

5. The method of claim 1, further comprising initiating a
system boot at the information handling system after receiv-
ing the firmware image and before generating the symmetric
key.

6. The method of claim 1, wherein receiving the firmware
image further comprises:

storing the firmware image at a memory device;

setting a firmware update flag;

initiating a boot process at the information handling sys-

tem; and

determining the firmware update flag is set;

7. The method of claim 1, further comprising encrypting
the firmware image during a driver execution environment
(DXE) phase of a platform innovation framework for exten-
sible firmware interface (EFI).

8. The method of claim 1, wherein generating the symmet-
ric key further comprises:

storing the symmetric key at a memory device; and

deleting the symmetric key from memory after encrypting

the firmware image.



US 2016/0147996 Al

9. The method of claim 1, further comprising:

retrieving the symmetric key from the TPM;

retrieving the encrypted firmware image from the non-

volatile memory; and

decrypting the encrypted firmware image using the sym-

metric key.

10. The method of claim 9, wherein retrieving the symmet-
ric key further comprises un-sealing the symmetric key at the
TPM based on a current TPM platform configuration register
(PCR) state.

11. A method comprising:

initializing a trusted platform module (TPM) and memory

at an information handling system;

retrieving a symmetric key from the TPM;

retrieving an encrypted firmware image from a non-vola-

tile memory;

decrypting the encrypted firmware image using the sym-

metric key;

decompressing the decrypted firmware image;

measuring the decompressed firmware image to a TPM

platform configuration register (PCR); and

executing the decompressed firmware image to complete

booting of the information handling system.

12. The method of claim 11, wherein retrieving the sym-
metric key further comprises un-sealing the symmetric key
based on a current PCR state.

13. The method of claim 11, wherein retrieving the sym-
metric key further comprises:

storing the symmetric key in a memory device; and

clearing the symmetric key from system the memory

device after the decrypting.

14. An information handling system comprising:

a trusted platform module (TPM);

a non-volatile memory; and

a processor coupled to the TPM and the non-volatile

memory, the processor configured to execute instruc-
tions to:

May 26, 2016

receive a firmware image at the information handling
system,

generate a symmetric key;

store the symmetric key at the TPM;

encrypt the firmware image using the symmetric key;
and

store the encrypted firmware image in the non-volatile
memory.

15. The information handling system of claim 14, wherein
the processor is further to store the symmetric key sealed to a
first TPM platform configuration register (PCR) state.

16. The information handling system of claim 14, wherein
the processor is further to store the symmetric key during a
pre-extensible firmware interface (PEI) phase of a platform
innovation framework for extensible firmware interface
(EFD).

17. The information handling system of claim 14, wherein
the processor is further to initiate a system boot at the infor-
mation handling system after receiving the firmware image
and before generating the symmetric key.

18. The information handling system of claim 14, wherein
the processor is further to encrypt the firmware image during
a driver execution environment (DXE) phase of a platform
innovation framework for extensible firmware interface
(EFD).

19. The information handling system of claim 14, wherein
the processor is further to:

retrieve the symmetric key from the TPM;

retrieve the encrypted firmware image from the non-vola-

tile memory; and

decrypt the encrypted firmware image using the symmetric

key.

20. The information handling system of claim 19, wherein
retrieving the symmetric key further comprises un-sealing the
symmetric key at the TPM based on a current TPM platform
configuration register (PCR) state.

#* #* #* #* #*



