Office de la Propriete Canadian CA 2259544 C 2004/01/20

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 259 544
g'rn(c)iL%?r?(iesgaenada ﬁrgijgt?;%/aa;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1997/07/01 (51) Cl.Int.%/Int.CI.° GOBF 17/30
(87) Date publication PCT/PCT Publication Date: 1998/01/15| (72) Inventeurs/Inventors:
- _ SRINIVASAN, JAGANNATHAN, US;
(45) Date de delivrance/lssue Date: 2004/01/20 MURTHY. RAVI US:
(85) Entree phase nationale/National Entry: 1999/01/04 HONG, CHIN, US:
(86) N° demande PCT/PCT Application No.: US 1997/011194 B%FRTZA%I LSTJ'\QU =L, US]
(87) N° publication PCT/PCT Publication No.: 19938/001811 | |

e (73) Proprietaire/Owner:
(30) Prioritée/Priority: 1996/0/7/09 (08/677,159) US ORACLE CORPORATION. US

(74) Agent: MOFFAT & CO.

(54) Titre : INDEXAGE EXTENSIBLE
(54) Title: EXTENSIBLE INDEXING

-
l
I
|
|
|
|
|
|
|
|
|
|

DISPLAY

MAIN STORAGE
MEMORY DEVICE 4

12

!

P U SN ST S A Eee—— sl

KEYBOARD BUS

{

PROCESSOR
102

122

CURSOR

CONTROL
123

s Seeslk Seall TEES SN G WIS WY BT S Gy S kil el GRAEED GEEEE - N g MevaRY

P———_'-“-'—_

WY WSS TN S et

(57) Abrége/Abstract:

A method and apparatus for processing a guery In a database system using index types that are not built into the database
system are disclosed. Routines for managing an index structure that is not supported by a database system are generated. Data
that identify the routines are submitted to the database system, thereby "registering” the index types with the database system.
In response to statements issued to the database system by a client, the database system call the routines, causing the routines
to create an index structure using data from a data container in the database, and to generate data that indicates which data In
the data container satisfies a query issued by the client. The routines of the registered index type extend the indexing
capabilities of the database systems and one or more such index types can be registered with the database system. The index
structure managed by the routines may be maintained within segments of the database, and the segments may be accessed as
Index-only tables. Storing a row of data In a database using index-only tables involves storing in a leaf node an index entry that
Includes a key value along with all other values In the row of data. If the row of data exceeds a predetermined size, then a
portion of the row data Is stored in an overflow area. Retrieving a row of data from an index-only table for a user-supplied key

iInvolves Identifying a leaf node for the key, and reading a row of data from the index entry and any remaining portion from the
overflow area when the row exceeds the predetermined size.

,
L
X
e
e T A
e IR\ VNENEN
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02259544 1999-01-04

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :
GO6F 17/30

(11) International Publication Number: WO 98/01811

(43) International Publication Date: 15 January 1998 (15.01.98)

(21) International Application Number: PCT/US97/11194 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
(22) International Filing Date: 1 July 1997 (01.07.97) GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, T™, TR, TT,
(30) Priority Data: UA, UG, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW,

08/677,159 9 July 1996 (09.07.96) UsS SD, SZ, UG, ZW), Eurasian patent (AM, AZ, B KZ,
MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK,

ES, F1, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
(71) Applicant: ORACLE CORPORATION [US/US]); 500 Oracle patent (BF, BJ, CF, CG, C], CM, GA, GN, ML, MR, NE,
Parkway, Box 659507, Redwood Shores, CA 94065 (US). SN, TD, TG).

(72) Inventors: SRINIVASAN, Jagannathan; Apartment F, 1 Hamp-
shire Drive, Nashua, NH 03063 (US). MURTHY, Ravi; | |Published

AD Elm Court, Sunnyvale, CA 94086 (US). HONG, Chin: With international search report.
210 Galewood Circle, Sal} Francisco, CA 94131 (US). DE- Before the expiration of the time limit for amending the claims
FAZIO, Samuel; 6 Cummings Lane, Hollis, NH 03049 (US). and to be republished in the event of the receipt of amendments.
NORI, Anil; 34220 Xanadu Terrace, Fremont, CA 94555 |
US).
(US) (88) Date of publication of the international search report:

(74) Agents: HICKMAN, Brian, D. et al.; Lowe Price LeBlanc & 4 June 1998 (04.06.98)
Becker, Suite 300, 99 Canal Center Plaza, Alexandria, VA
22314 (US).

(54) Title: EXTENSIBLE INDEXING

(87) Abstract

202

A method and apparatus for processing a query in a database DEFINE AND CODE FUNCTIONS TO

system using index types that are not built into the database system are SUPPORT NON-INDEXED IMPLEMENTATION |
disclosed. Routines for managing an index structure that is not OF THE INDEXED OPERATORS |
supported by a database system are generated. Data that identify the
routines are submitted to the database system, thereby "registering”
the index types with the database system. In response to statements
1ssued to the database system by a client, the database system call the
routines, causing the routines to create an index structure using data
from a data container in the database, and to generate data that 204
indicates which data in the data container satisfies a query issued by DEFINE AND CODE IMPLEMENTATIONS FOR
the client. The routines of the registered index type extend the THE INDEX ROUTINES AND ROUTINES THAT
indexmg capabilities of the database systems and one or more such I IMPLEMENT THE INDEXED OPERATORS
Index types can be registered with the database system. The index USING AN INDEX OBJECT
structure managed by the routines may be maintained within segments
of the database, and the segments may be accessed as index-only
tables. Storing a row of data in a database using index-only tables 206
involves storing in a leaf node an index entry that includes a key value CREATE A DATA TYPE THAT ASSOCIATES
along with all other values in the row of data. If the row of data THE IMPLEMENTATIONS CREATED IN STEP !
exceeds a predetermined size, then a portion of the row data is stored 204 WITH THE INDEX ROUTINES TO WHICH

in an overtlow area. Retrieving a row of data from an index-only table THEY CORRESPOND
for a user-supplied key involves identifying a leaf node for the key, l—_——f——_—_
and reading a row of data from the index entry and any remaining

portion from the overflow area when the row exceeds the
l 208

predetermined size.
CREATE AN INDEX TYPE SCHEMA OBJECT
ASSOCIATED WITH THE IMPLEMENTATION |

PROVIDED BY THE DATA TYPE DECLARED |
! IN STEP 206

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

25

EXTENSIBLE INDEXING

FIELD OF THE INVENTION

The present invention relates to database systems, and more specifically,

to a method and apparatus for supporting non-native access methods in a

database server.

BACKGROUND OF THE INVENTION

In typical database systems, users store, update, and retrieve information
by interacting with user applications (“clients”). The clients respond to the
user s interaction by submitting commands to a database application responsible
for maintaining the database (a “ database server”). The database server
responds to the commands by performing the specified actions on the database.
To be correctly processed, the commands must comply with the database
language that is supported by the database server. One popular database
language is known as Structured Query Language (SQL)).

Various access methods may be used to retrieve data from a database.
The access methods used to retrieve data may significantly affect the speed of the
retrieval and the amount of resources consumed during the retrieval process.
Many access methods use indices to increase the speed of the data retrieval
process. I'ypical database management systems have built-in support for a few
standard types of access methods, such as access methods that use B+Trees and
Hash Tables, that may be used when the key values belong to standard sets of
data types, such as numbers, strings, etc. The access methods that are built-in toa
database system are referred to herein as native access methods.

In recent years, databases are being used to store different types of data,
such as text, spatial, image, video, and audio data. For many of these complex

data types, the standard indexing techniques and access methods cannot readily

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

25

.

be applied. To provide efficient data retrieval, many database systems that allow
users to store complex data types attempt to provide access methods suitable for
the complex data types. For example, R-trees are an efficient index mechanism
for indexing spatial data. Therefore, a database system that allows users to store
spatial data may include built-in support for R-tree access methods. However,
attempts to provide native support for all types of access methods are unrealistic
because 1t 1s not possible to foresee all possible types of complex data that clients
may wish to store in a database, much less all types of access methods that one
may wish to use with such data types.

According to one approach, clients may be designed to provide their own
indexing mechanisms for data types that cannot use the native access methods of
the database system. For example, assume that the native access methods of a
database server do not include R-tree access methods. A client that uses spatial
data would use the database server to store the spatial data in the database, but
would maintain an R-tree index structure outside the database. The client would
be responsible for maintaining and using the R-tree index outside of the database
system environment, while the spatial data itself is maintained within the
database environment.

Unfortunately, storing an index outside a database for data that is stored
within a database has several significant disadvantages. Specifically, it is
difficult to maintain consistency between external indices and the related
relational data, support compound queries (involving tabular values and external
indices), and to manage a system (backup, recovery, allocate storage, etc.) with
multiple forms of persistent storage (ﬁles and databases). '

Based on the foregoing, it is clearly desirable to provide a database server
that supports arbitrary, user-defined data types. It is further desirable to provide

a database server that may be extended to support non-native access methods

WO 98/01811

10

15

20

25

CA 02259544 1999-01-04

3-

while maintaining the index structures for the non-native access methods within

the database 1itself.

SUMMARY OF THE INVENTION

A method and apparatus for processing a query in a database system
using index types that are not built into the database system are provided.
According to the method, routines for managing an index structure that is not
supported by a database system are generated. Data that identifies the routines
are submitted to the database system, thereby “registering” the index types with
the database system.

In response to statements issued to the database system by a client, the
database system calls the routines, causing the routines to create an index
structure using data from a data container in the database, and generate data that
indicates which data in the data container satisfies a query issued by the client.
The routines of the registered index type extend the indexing capabilities of the
database system and one or more such index types can be registered with the
database system. According to one embodiment, the index structure managed by
the routines is maintained within segments of the database, and the segments
may be accessed as index-only tables.

According to another aspect of the invention, a method for efficiently
storing and retrieving data in a database using index-only tables is provided. For
storage, the method mnvolves receiving a row of data from a client, identifying a
key value 1n the row of data, and identifying a leaf node in an index based on the
key value. Once the leaf node is identified, an index entry that includes the key
value and all other values in the row of data are stored in the leaf node. The leaf
node resides on a block of a storage device. If the row of data exceeds a
predetermined size, then a portion of the row of data is stored in an overflow

area. For retrieval, the method involves identifying a leaf node in an index based

PCT/US97/11194

10

15

20

25

30

CA 02259544 2003-04-04

_4 -

on a user-supplied key, and reading a row of data from the index entry and any remaining
portion from the overflow area when the row exceeds the predetermined size.

According to the present invention, there 1s provided a method for processing a
query in a database system, the method comprising the steps of generating routines for
managing an index structure that is not supported by a database system; and submtting to
the database system data that identifies the routines to enable said database system to
respond to statements issued to said database system by a client by creating said index
structure using data from a data container in said database, and generating data that
indicates which data in said data container satisfies a query issued by said client.

According to a further aspect of the present invention, there is also provided a
method for registering access methods with a database system, the method comprising the
steps of creating a set of routines that use said access methods, wherein at least one of said
access methods uses one or more indexes not supported by said database system;
transmitting to the database system data that identifies a data type that supports said set of
routines; transmitting to the database system a command that indicates a name to associate
with said access methods, a list of operators supported by the access methods, and the data
type; causing the database system to create a schema object associated with said name; and
causing the database system to call said routines in response to queries that use an operator
from said list of operators.

In accordance with a further aspect of the present invention, there 1s provided a
database system configured to register routines for managing an index structure that 1s not
supported by the database system; and respond to statements 1ssued to said database system
by a client by creating said index structure using data from a data container in said
database; and invoking at least one of said routines to generate data that indicates which
data in said data container satisfies a query issued by said client.

According to yet another aspect of the present invention, there i1s provided a
computer-readable medium carrying one or more sequences of one or more instructions for
processing a query' in a database system, the one or more sequences of one or more
instructions including instructions which, when executed by one or more processors, cause
the one or more processors to perform the steps of generating routines for managing an
index structure that is not supported by a database system; and submitting to the database

system data that identifies the routines to enable said database system to respond to

10

15

20

25

30

CA 02259544 2003-04-04

- 43 -

statements issued to said database system by a client by creating said index structure using
data from a data container in said database, and generating data that indicates which data in
said data container satisfies a query 1ssued by said client.

According to yet another aspect of the present invention, there is provided a
computer-readable medium carrying one or more sequences of one or more 1nstructions for
registering access methods with a database system, the one more sequences of one or more
instructions including instructions which, when executed by one or more processors, cause
the one or more processors to perform the steps of creating a set of routines that use said
access methods, wherein at least one of said access methods uses one or more indexes not
supported by said database system; transmitting to the database system data that 1dentifies a
data type that supports said set of routines; transmitting to the database system a command
that indicates a name to associate with said access methods, a list of operators supported by
the access methods, and the data type; causing the database system to create a schema
object associated with said name; and causing the database system to call said routines in
response to queries that use an operator from said list of operators.

And finally according to yet another aspect of the present invention, there 1s
provided a method for retrieving data from a database for a user-supplied key, the method
comprising the steps of identifying an index entry in a leaf node of an index based on said
user-supplied key; determining whether the index entry has a size that exceeds a row
threshold; if the index entry does not have a size that exceeds the row threshold, then
reading a row of data from the index entry; and if the index entry has a size that exceeds
the row threshold, then reading a first portion of a row of data from the index entry, and a

second portion of the row of data from an associated row overtlow area.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

Figure 1 is a block diagram of a computer system on which an embodiment of the
present invention may be implemented; and

Figure 2 is a flow chart illustrating the steps performed by a domain expert

according to an embodiment of the invention.

10

CA 02259544 2003-04-04

- 4b -

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for supporting user-defined index structures and access
methods within a database server are described. In the following description, for the
purposes of explanation, numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced without these specific details.
In other instances, well-known structures and devices are shown in block diagram form in

order to avoid unnecessarily obscuring the present invention.

HARDWARE OVERVIEW
Referring to Figure 1, it is a block diagram of a computer system 100 upon which
an embodiment of the present invention can be implemented. Computer system 100
comprises a bus 101 or other communication means for communicating information, and a

processor 102 coupled with bus 101 for

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

25

_5.

processing information. Computer system 100 further comprises a random access
memory (RAM) or other dynamic storage device 104 (referred to as main
memory), coupled to bus 101 for storing information and instructions to be
executed by processor 102. Main memory 104 also may be used for storing
temporary variables or other intermediate information during execution of
instructions by processor 102. Computer system 100 also comprises a read only
memory (ROM) and/or other static storage device 106 coupled to bus 101 for
storing static information and instructions for processor 102. Data storage device
107 1s coupled to bus 101 for storing information and instructions.

A data storage device 107 such as a magnetic disk or optical disk and its
corresponding disk drive can be coupled to computer system 100. Computer
system 100 can also be coupled via bus 101 to a display device 121, such as a
cathode ray tube (CRT), for displaying information to a computer user. An
alphanumeric mput device 122, including alphanumeric and other keys, is typically
coupled to bus 101 for communicating information and command selections to
processor 102. Another type of user input device is cursor control 123, such as a
mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 102 and for controlling cursor
movement on display 121. This input device typically has two degrees of freedom
In two axes, a first axis (e.g., x) and a second axis (e.g., y), which allows the device
to specity positions in a plane.

Alternatively, other input devices such as a stylus or pen can be used to
interact with the display. A displayed object on a computer screen can be selected
by using a stylus or pen to touch the displayed object. The computer detects the
selection by implementing a touch sensitive screen. Similarly, a light pen and a
light sensitive screen can be used for selecting a displayed object. Such devices
may thus detect selection position and the selection as a single operation instead of

the "point and click," as in a system incorporating a mouse or trackball. Stylus and

WO 98/01811

10

15

20

25

CA 02259544 1999-01-04

PCT/US97/11194

_6-

pen based input devices as well as touch and light sensitive screens are well known
in the art. Such a system may also lack a keyboard such as 122 wherein all
interface 1s provided via the stylus as a writing instrument (like a pen) and the
written text 1s interpreted using optical character recognition (OCR) techniques.

The present invention is related to the use of computer system 100 to
execute a database server that provides support for non-native access methods.
According to one embodiment, computer system 100 performs the processes that
will be described hereafter in response to processor 102 executing sequences of
instructions contained in memory 104. Such instructions may be read into
memory 104 from another computer-readable medium, such as data storage
device. In alternative embodiments, hard-wired circuitry may be used in place of
or in combination with software instructions to implement the present invention.
Thus, the present invention is not limited to any specific combination of

hardware circuitry and software.

EXTENSIBLE INDEXING

As mentioned above, efficient access to new types of complex data may
require the use of access methods for which the database server does not have
built-in support. According to an embodiment of the invention, a database system
1s provided 1n which the responsibility for building, maintaining and interpreting
non-native indices 1s shared between a domain expert that designs the access
methods for the non-native index type and the database server. The software
provided by the domain expert registers index routines with the database system
to extend the indexing capabilities of the database server beyond those built-in to
the database system. Indices that are managed by routines supplied in this
manner are referred to herein as index objects (since they are instances of the

newly defined index types).

WO 98/01811

10

15

20

25

CA 02259544 1999-01-04

7.

Generally, the domain expert creates routines that control the structure
and semantic content of a non-native index type (“index routines”), while the
database server interacts with the index routines to build, maintain, and employ
index objects of the non-native index type. More specifically, each index key of
the index object has an associated data segment. The data segment for each index
key 1s constructed and maintained by the index routines, and is of variable size.
The 1ndex routines are responsible for interpreting the content of the data
segment.

The index routines may maintain the data segments of an index object
either within the database or external to the database. Embodiments in which the
data segments are stored within the database may take advantage of the
additional functionality provided by the database server. Embodiments in which

the data segments are stored as index-only tables within the database are

described 1n greater detail below.

THE DATABASE SERVER

To build and manage a standard index on a table, the database server
Invokes certain built-in routines. When database server receives queries that
reference a table on which the index has been created, the database server can
invoke built-in routines to use the index to efficiently process the queries. The
operation of the database server is the similar for non-native index types as it is
for standard indices, with the difference that the routines invoked by the database
server are not built-in, but are external routines that are registered with or
"plugged into" the database server.

According to one embodiment of the invention, the database server
assumes that all non-native index types will support a certain set of index
routines. These routines perform the same functions and have a similar interface

as the built-in routines called by the database server for native access methods.

PCT/US97/11194

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

25

-8-

Because the database server knows the names and parameters of the routines that
will manage index objects of the non-native index types, the database server can
invoke the appropriate index routines in response to commands received from a
client.

The index routines include routines that create or delete index objects
(Data Definition Language “DDL” routines), routines that update existing index
objects (Data Manipulation Language “ DML” routines), and routines that
retrieve data from existing index objects (Query Processing “ QP” routines).

According to one embodiment of the invention, the index routines include

the following routines:

PROCEDURE 1_create(iargs largs, parms VARCHAR2(1024));

PROCEDURE i drop(iname VARCHAR(30)); |

PROCEDURE :_truncate(iname VARCHAR(30));

PROCEDURE 1 _1nsert(1args Iargs, rowid ROWID, newval Ivals);

PROCEDURE 1_delete(iargs Iargs, rowid ROWID, oldval Ivals);

PROCEDURE 1 _update(iargs Iargs, rowid ROWID, oldval Ivals, newval
Ivals);

FUNCTION 1_open(iargs largs, opinfo Iops) RETURN Ihdl;

PROCEDURE i start(ihdl Ihdl);

FUNCTION 1_fetch(ihdl Ihdl, ancdata OUT VARRAY(30) OF
TYPEANY) RETURN ROWID;

FUNCTION 1_joinfetch(ihdl Ihdl, ancdata OUT VARRAY(30) OF
TYPEANY) RETURN VARRAY(2) OF ROWID;

PROCEDURE 1 close(ihdl Ihdl);

WO 98/01811

10

15

20

25

CA 02259544 1999-01-04

9.

In the exemplary index routine definitions listed above, parameters of

types largs, Ivals, Iops, and Ihdl are used by some of the methods. Those

parameter types may be defined as follows:

CREATE TYPE largs

(

Iname VARCHAR(30), -- Index object Name

[objnum NUMBER, -- Unique Index Instance Number

Isname VARCHAR(30), -- Schema containing the index

Tabname VARCHAR(30), -- Indexed Table Name

Tabsname VARCHAR(30), -- Schema containing the table

Colname VARRAY(30) OF VARCHAR(30), -- Names of indexed
columns

Coltype VARRAY(30) OF VARCHAR(30) -- Types of indexed columns
);

CREATE TYPE lvals

(

Numval NUMBER, -- Number of values

Val VARRAY(30) OF TYPE ANY -- Array of values

);

CREATE TYPE lops

(

Opname VARCHAR(30), -- Indexed Operator name
Opsname VARCHAR(30), -- Schema containing the operator

Numargs NUMBER, -- Number of arguments to the operator
Opargs VARRAY(30) OF TYPEANY, -- Argument values

PCT/US97/11194

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

25

-10-

Opmode NUMBER -- Operator mode : 1= selection, 2= join

);

CREATE TYPE Ihdl

(

state NUMBER -- user maintained state
);

The exemplary list of routines inciludes three DDL routines: 1 create,

1 drop, and 1 truncate The database server calls the 1_create procedure of an
index object when a CREATE INDEX statement 1s 1ssued that references a non-
native index type. Upon invocation, the database instance passes to the
appropriate routine any physical parameters that are specified in the related
CREATE INDEX ... PARAMETERS (...) statement. The 1args argument
contains the index name, the table name on which the index is defined, and
descriptions of the columns or Abstract Data Type (ADT) attributes over which
the index 1s defined.

The 1 create routine can also be invoked to perform bulk loading of index
objects. If the table with the indexed column(s) is not empty, the 1_create routine
scans the table and builds the index structures for all the existing rows.

The 1 drop procedure of an index object is invoked by the database server
when an index object is destroyed using a DROP INDEX statement. The iname
argument contains the name of the index object to be dropped.

The 1 truncate procedure of an index object 1s called by the database
server when a TRUNCATE statement is issued against a table that contains a
column or ADT attribute indexed using a non-native index type. After this
procedure executes, the index object definition should be empty but remain

intact. The iname argument contains the index object name.

—-paan

WO 98/01811

10

15

20

25

CA 02259544 1999-01-04

PCT/US97/11194

-11-

T'he exemplary routines listed above also define three DML routines that
are invoked to insert, update, and delete entries from an index object.
Specifically, the database server invokes the i insert routine of an index object
when a record is inserted in a table that contains columns or ADT attributes
indexed by the related index object. Upon invocation, the 1args argument
contains the index name, the table name on which the index is defined, and
descriptions of the columns or ADT attributes over which the index is defined.
The newval argument contains an array of values of indexed columns.

The 1_delete procedure of an index object is called by the database server
when a record 1s deleted that contains columns or ADT attributes indexed by the
related index object. The index name, table name, and descriptions of the indexed
columns or ADT attributes are contained in the iargs argument. The oldval
argument contains an array of values of indexed columns.

The 1_update procedure of an index object is called by the database server
when a record is updated that contains columns or ADT attributes indexed by the
related index object. Upon invocation, the iargs argument contains the index
name, the table name on which the index is defined, and descriptions of the
columns or ADT attributes over which the index is defined. The oldval and
newval arguments point to old and new column data.

The routines i_open, i_close, i_start, and i fetch are routines that are
invoked by the database server during query processing. Specifically, 1 open is
called by the database server to begin processing a query on a table that has an
index object. The arguments passed to the i open routine contain information
related to the index and information about the operator specified in the query.
The index related information includes the name of the index and its unique
object number. The operator information provides the name of the indexed

operator and the values of the arguments with which the operator is being

invoked by the system.

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

23

-12-

The 1_open function returns a handle of type Ihdl, which is subsequently
passed in as an argument to the i_fetch, 1 start and i close routines. The handle
can be used to store some state defined by the index object. The handle is not
interpreted by the database server and is for use only by the software that
manages the index object. A typical usage of the handle is to store the memory
address for the per-invocation state object maintained by the index object.

The database server calls the i_close routine at the end of query
processing. To execute the same query multiple times without opening and
closing, the database server calls the i_start routine. The i_start routine resets the
state of the index object to the start of query processing.

The database server calls the i_fetch routine to return rows that satisfy the
indexed operator. The indexed operator can be supported in either the selection
mode or the join mode. The selection mode allows selection of qualifying rows
from one base table. The join mode operator performs the join of two base
tables. According to one embodiment, the i_fetch routine returns unique
identifiers (“rowids™) of all the rows for which the indexed operator evatuates to
TRUE. Each call to 1_{fetch returns a single rowid along with the ancillary data
output values. Thus, the i_fetch routine does not return the rows for which the
indexed operator evaluates to FALSE (or NULL). Thei fetch returns a NULL
rowid to indicate that all the qualifying rows have been returned.

The 1_joinfetch routine does not have to be specified if the index object
does not support the join modes of any of its indexed operators. However, if an
operator 1s supported in the join mode, the i_joinfetch routine returns a pair of
rowlds along with the ancillary data output values. The end of fetch is indicated
by returning NULL rowids.

The fetch routines may be EXACT or INEXACT with respect to each of
the indexed operators. If a fetch routine is EXACT with respect to an indexed

operator, then the set of rows returned are exactly those that satisfy the operator.

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

235

-13-

In an INEXACT implementation of an indexed operator, the returned rows are a
superset of the actual result. In this case, the system applies a "secondary filter"
betore returning the rows to the user. This secondary filter is the non-indexed
implementation of the operator, which is guaranteed to be exact. For example,
the spatial index may support an operator “ Overlaps” that determines if two
geometries overlap one another. The implementation of the indexed operator
may be approximate in that it may sometimes return non-overlapping geometries.
The secondary filter is applied by the system to reject such rows.

The index routines specified above are merely exemplary of the type of
routines that would be supported by non-native index types. The actual routines
that the database server expects a domain expert to implement for an index type
may vary from implementation to implementation. For example, the index
routines may include a fetch routine that returns multiple rows at a time. For
example, the 1_fetch routine may alternatively be defined as:

FUNCTION i_fetch(ihdl Ihdl, ancdata OUT VARRAY(60) OF
TYPEANY, numrows OUT NUMBER) RETURN VARRAY(2) OF ROWID:

where the actual number of rows being returned is specified through the
numrows parameter. If the 1_fetch routine returns more than one result row at a
time, the number of calls the database server will have to make to the 1_fetch
routine will be significantly reduced. The reduction in the number of invocations
can result in considerable performance gains. A similar technique can be used to

improve the performance of the i joinfetch routine.

QUERY PROCESSING EXAMPLE
To 1llustrate how a database server may process a query, assume that a
client has created a table “Emp” that includes a Name column, an Id column,
and a Resume column. Assume also that the table Emp has the following rows :

Name Id Resume

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194
-14-
Jags 100 Works at Oracle
John 101 Knows Unix
Ravi 102 Experience with Oracle
rdbms
5 Assume that the client has created a text index on the Resume column.

The text index is an index object that is accessed through routines supplied by a

domain expert.

To evaluate the query : SELECT * FROM Emp WHERE
Contains(resume, "Oracle'); , the database server may invoke the query

10 processing routines as follows.

hdl =1_open(); /* Passes in contains operator and arguments */

/* gets back a handle */
for (;;) {
1_start(hdl); /* Starting to access rows */
15 for (;;) {
rownum = 1_fetch(hdl); /* returns the rowids */

if (! rownum) break; /* All rows done */

/* Process rownum */
}
20 if (! re execute) break; /* Check 1if the query needs to be

reexecuted ? */

h
1_close(hdl);

In the present example, the calls to 1 fetch will successively return rows

25 1,3, NULL. A query can be executed multiple times before closing the handle.

WO 98/01811

10

15

20

25

CA 02259544 1999-01-04

-15-

THE DOMAIN EXPERT

Before a non-native index type can be used, the index routines for the
non-native index type must be created, and the database server must be made
aware of the non-native index type and the location of its associated routines.
The designer of the index routines is referred to herein as a “domain expert”.

Figure 2 is a flow chart illustrating the steps performed by the domain
expert to design a non-native index type according to one embodiment of the
Invention. As a preliminary step, the domain expert must decide which operators
will be supported by the non-native index type. For example, the text index may
support the operator "Contains", while a spatial index may support the operator
"Overlaps". The operators supported by a non-native index type are referred to
herein as indexed operators.

Referring to Figure 2, at step 202 the domain expert defines and codes
functions to support non-indexed implementations of the indexed operators. The
non-indexed implementation of the indexed operators can be coded as stand
alone functions in the database language supported by the database server (e.g.
PL/SQL), as a packaged functions, or as Abstract Data Type (“ADT”) methods.

According to one embodiment of the invention, the functions that
implement the indexed operators must satisfy certain requirements. Specifically,
all indexed operators must return Boolean values. The only valid return values
are TRUE and FALSE. The parameters to the indexed operator are one or more
IN parameters followed by zero or more OUT parameters. When the indexed
operator returns FALSE, the values of each of the OUT parameters are set to
NULL. The non-indexed implementation of indexed operators is essential
because the system will not be able to use the index to evaluate the operator in all
cases.

For the purposes of explanation, it shall be assumed that a domain expert

1s developing a client that will use a text-based index that supports an operator

PCT/US97/11194

WO 98/01811

10

15

20

23

CA 02259544 1999-01-04

-16-

“Contains” that takes as parameters a text value and a key and returns a Boolean
value indicating whether the text contained the key. Assuming that the database

server supports the PL/SQL database language, the non-indexed implementation

of the Contains operator may be defined as:

CREATE FUNCTION Contains(Text IN VARCHAR?2, Key IN
VARCHAR?)

RETURN Boolean AS
BEGIN

END Contains;

At step 204, the domain expert defines and codes (1) implementations for
the index routines and (2) routines that implement the operator using an index
object of the non-native index type. This coding is typically performed in a third
generation programming language such as Pascal, C, or C++. These routines are
compiled into executable modules that can be statically linked with the database
server code, dynamically linked with the database server code, or executed as
separate processes when invoked by the database server.

For example, the domain expert of the text index may create the DDL
routines to build the text index on a text column (“text create”), remove the
index information when the index is dropped (“text_drop”), and truncate the text
index when the base table is truncated (“text truncate”). These implement the
1_create, 1_drop, and i_truncate index routines for a specific type of non-native
Index.

The DML routines created by the domain expert may include routines to
manage the text index when rows are inserted to the base table (“text insert”),

deleted from the base table (“text delete”) or updated in the base table

PCT/US97/11194

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

10

15

20

25

_17-

(“text_update™). These routines implement the i_insert, i delete, and 1_update
index routines for the non-native index.

The QP routines for the text index may include the routines text open,
text_start, text_fetch, and text _close which implement the index routines used to
access the text index to retrieve rows of the base table that satisfy an operator
predicate passed to the routines from the database server. In the present example,
the Contains(...) predicate of a query received by the database server is passed
from the database server to the query routines which then access the text index
and return the qualifying rows to the system.

According to one embodiment of the invention, the names of all index
routines are fixed, and the domain expert must supply routines which implement
all of the index routines except the i_joinfetch function. An implementation of
the 1_joinfetch function must be supplied only when the index supports a " join"
indexed function.

At step 206, the domain expert creates a data type that associates the
routines created in step 204 with the index routines to which they correspond.
This data type brings together all the routines for managing and accessing the
index object.

For example, a data type named “ OTextIType” which brings together all

of the routines for managing and accessing the text index may be created as

follows:
CREATE TYPE OTextIType
(
-- DDL Routines
PROCEDURE 1_create(iargs largs, parms VARCHAR2(1024)) AS
EXTERNAL NAME ‘/text/text create' WITH CONTEXT:

PROCEDURE 1_drop(iname VARCHAR(30)) AS EXTERNAL NAME
“/text/text_drop’ WITH CONTEXT;

CA 02259544 1999-01-04

WO 98/01811 PCT/US97/11194

-18-

PROCEDURE 1_truncate(iname VARCHAR(30)) AS EXTERNAL
NAME "/text/text truncate' WITH CONTEXT:
-- DML Routines
PROCEDURE i_insert(iargs Iargs, rowid ROWID, newval Ivals) AS
5 EXTERNAL NAME "/text/text_insert' WITH CONTEXT:
PROCEDURE i_delete(iargs Iargs, rowid ROWID, oldval Ivals) AS
EXTERNAL NAME ‘/text/text delete' WITH CONTEXT:
PROCEDURE 1_update(iargs Iargs, rowid ROWID, oldval Ivals, newval
Ivals) AS EXTERNAL NAME ‘/text/text update’' WITH
10 CONTEXT;
- Query Processing Routines - for operators
FUNCTION 1_open(iargs Iargs, opinfo Iops) RETURN Ihdl AS
EXTERNAL NAME “/text/text open' WITH CONTEXT
RETURN Ihdi;
15 PROCEDURE 1_start(ihdl Ihdl) AS EXTERNAL NAME ‘/text/text start’
WITH CONTEXT;
FUNCTION i1_fetch(ihdl Ihdl, ancdata OUT VARRAY(30) OF
TYPEANY) RETURN ROWID AS EXTERNAL NAME
/text/text fetch' WITH CONTEXT RETURN ROWID;
20 PROCEDURE 1 _close(ihdl Ihdl) AS EXTERNAL NAME
‘text/text close' WITH CONTEXT;

The WITH CONTEXT option allows the external routines to rely on
25 execution services provided by the database system that handle errors and
allocate memory.
At step 208, an Indextype schema object is created for the non-native

index type. The Indextype schema object is associated with its implementation

