
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0314086 A1

Kanigicherla et al.

US 20160314086A1

(43) Pub. Date: Oct. 27, 2016

(54) SECURE DIGITAL HOST CONTROLLER Publication Classification
VIRTUALIZATION

(51) Int. Cl.
(71) Applicant: INEDA SYSTEMS PVT. LTD., G06F 3/28 (2006.01)

Hyderabad (IN) G06F 9/30 (2006.01)
G06F 3/16 (2006.01)

(72) Inventors: Balaji Kanigicherla, Hyderabad (IN); (52) U.S. Cl.
Siva Raghuram Voleti, Hyderabad CPC G06F 13/28 (2013.01); G06F 13/1673
(IN); Dhanumjai Pasumarthy, (2013.01); G06F 9/30.145 (2013.01); G06F
Hyderabad (IN) 9/30047 (2013.01)

(21) Appl. No.: 15/199,769 (57) ABSTRACT
Described herein are methods and system for virtualization

(22) Filed: Jun. 30, 2016 of the secure digital (SD) host controller to enable sharing a
SD device among various multiple host processors in a

O O multi-processor computing system. In one implementation
Related U.S. Application Data the method of sharing a SD device amongst a plurality of

(62) Division of application No. 14/112,393, filed on Oct. hosts of a multi-host computing System comprises detecting
17, 2013, now Pat. No. 9,432,446, filed as application the SD device on occurrence of a reset event, receiving an
No. PCT/IN2012/000284 on Apr. 19, 2012. enumeration request, from at least a first host and a second

host of the plurality of hosts, to enumerate the SD device
(30) Foreign Application Priority Data with respect to the second host, enumerating the SD device

with respect to the second host, and initiating data exchange
Apr. 19, 2011 (IN) 1346/CHFA2011 between the SD device and each of the plurality of hosts.

3O8-2 312-1

17
308 31 2-2

3O8
1

v , , , ,
Register Pre-fetch Buffe S
Set 306 DMA 310 314

5
Command and Data Parser Unit 316

IO card Command N
Memory Card Sharing Data Parser32O g
Command Data Control Function

P 52. Specia sing o
o

O

SDHC Interface 324

304-2-1.

SD HOSt Controller 302

US 2016/031408.6 A1 Oct. 27, 2016 Sheet 1 of 5 Patent Application Publication

N-70|| »JEAIHCI CT-IVO A HOWEIN

(LHV HOI>{d) | eun61
ZI? HOVHHELNI CIMIVO CIS ?TT HETTO HINOO ISOH OGINOO CIS 80 || HEATHC] ILSOH CIS

US 2016/031408.6 A1 Oct. 27, 2016 Sheet 2 of 5 Patent Application Publication

ziz_^

(LHV HOI?+d)
†7 LZ ETTìCIOWz?z TOHLNO O CIWNOLES HELSIÐEYJ

Z ?un61–

? ? HETTO HINOO ISOH CIS

Patent Application Publication Oct. 27, 2016 Sheet 3 of 5

31 2-1

312-2

US 2016/031408.6 A1

y y
Pre-fetch
DMA 310

Buffer
314

Command and Data Parser Unit 316

Sharing
Control
Unit
322

IO Card Command/
Data Parser 32O

Function
Specific Parsing

320-n

SDHC Interface 324

3O8-2

308 17

3O8

1 Ey.
Register
Set 306

Memory Card
Command/Data

Parser
318

304-1 304-2

SD Host Controller 302

Figure 3

Patent Application Publication Oct. 27, 2016 Sheet 4 of 5 US 2016/031408.6 A1

DETECTING ASD DEVICE UPON OCCURRENCE OF A
402

RESET EVENT

404

ENUMERATING THE SD DEVICE WITH A SDHC
VIRTUALIZATION UNIT

406

ENUMERATION
COMPLETE?

Yes

408
ALLOWING A DEFAULT HOST PROCESSOR TO

COMMUNICATE WITH THE SD DEVICE

410
NUMERATION RECQUESTS

FROM ONE OR MORE OTHER
OST PROCESSORS2

Yes
412

SENDING AVIRTUAL RESPONSE TO THE ONE OR
MORE OTHER HOST PROCESSORS

414
COMPLETING ENUMERATION PROCESS WITH THE

ONE OR MORE OTHER HOST PROCESSORS

ALLOWING THE ONE OR MORE OTHER HOST 416
PROCESSOR TO COMMUNICATE WITH THE SD

DEVICE SIMULTANEOUSLY WITH THE DEFAULT HOST
PROCESSOR

Figure 4

US 2016/0314086 A1

SECURE DIGITAL, HOST CONTROLLER
VIRTUALIZATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional of U.S. patent
application Ser. No. 14/112,393, entitled “SECURE DIGI
TAL HOST CONTROLLER VIRTUALIZATION', filed
Oct. 17, 2013, which application claims priority to and the
benefit of PCT Application Serial No. PCT/IN2012/000284,
filed on Apr. 19, 2012, entitled “SECURE DIGITAL HOST
CONTROLLER VIRTUALIZATION, which also claims
priority to and the benefit of Indian Patent Application No.
1346/CHF/2011, entitled “SECURE DIGITALHOST CON
TROLLERVIRTUALIZATION', filed on Apr. 19, 2011. All
of the aforementioned applications are incorporated herein
in their entirety.

TECHNICAL FIELD

0002 The present subject matter, in general, relates to
multi-host computing systems and in particular to secure
digital host controllers for multi-host computing systems.

BACKGROUND

0003 Computing systems, such as laptops, netbooks,
workstations, and desktop computers typically include a
central processing unit (CPU), also known as a host proces
Sor, running an operating system for carrying out various
functionalities of the computing system. The host processor
generally includes a class of Software modules, known as
drivers, which interact with and control various peripheral
devices connected to the computing systems for providing
the functionalities. The peripheral devices include, for
instance, mass storage devices for reading and writing data,
media devices like audio players for providing output of
audio files playing in the computing system, and network
interfaces for connecting to a network environment. One
example of a mass storage device may be a Secure Digital
(SD) memory card. In another example, a network interface
for connecting to the network environment may be a SD
input-output (I/O) card, such as a Bluetooth R. SD I/O card.
0004. The system drivers generally interact with the
peripheral devices through hardware interfaces, known as
host controllers provided in the computing systems for
controlling the peripheral devices. For example, a comput
ing system may include SD host controller for controlling a
SD memory card connected to the computing system.
0005 With the advent of technology, computing systems
with multiple processors Supporting different operating sys
tems have come into existence. In order to reduce system
costs and power consumption, and often times to maintain
compactness of the computing systems, the host processors
are configured to share the same peripheral devices.

SUMMARY

0006. This summary is provided to introduce concepts
related to virtualization of a Secure Digital (SD) host
controller unit to allow sharing of SD devices by more than
one host processors in a computing device having multi-host
processor, which are further described in the detailed
description. This Summary is not intended to identify essen

Oct. 27, 2016

tial features of the present subject matter nor is it intended
for use in determining or limiting the scope of the present
Subject matter.
0007. In one implementation, the method of sharing a SD
device amongst a plurality of hosts of a multi-host comput
ing system comprises detecting the SD device on occurrence
of a reset event, receiving an enumeration request, from at
least a first host and a second host of the plurality of hosts,
to enumerate the SD device with respect to the second host,
enumerating the SD device with respect to the second host,
and initiating data exchange between the SD device and
each of the plurality of hosts.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. The detailed description is described with refer
ence to the accompanying figures. In the figures, the left
most digit(s) of a reference number identifies the figure in
which the reference number first appears. The same numbers
are used throughout the drawings to reference like features
and components. For simplicity and clarity of illustration,
elements in the figures are not necessarily to scale.
0009 FIG. 1 illustrates a typical secure digital (SD)
interface system in a computing system.
(0010 FIG. 2 illustrates a typical SD host controller.
0011 FIG. 3 illustrates an exemplary SD host controller
(SDHC) virtualization unit, in accordance with an embodi
ment of the present Subject matter.
0012 FIG. 4 illustrates an exemplary method of virtual
ization initialization for SD devices according to one
embodiment of the present subject matter.
0013 FIG. 5 illustrates an exemplary method of virtual
ization of SD devices according to one embodiment of the
present Subject matter.

DETAILED DESCRIPTION

0014. The present subject matter describes methods and
systems for sharing of Secure Digital (SD) devices by
multiple host processors in a multi-host computing system.
Such methods and systems may be implemented in various
multi-host computing systems, examples of which include,
but are not restricted to, computing devices, such as main
frame computers, workstations, personal computers, desk
top computers, minicomputers, servers, multiprocessor sys
tems, and laptops; cellular communicating devices, such as
personal digital assistants, Smartphones, and mobile phones.
0015 Conventional computing systems include a single
host processor. In Such a computing system, peripheral
devices, such as a SD card interface, are configured to
interface with only one host processor, while, at the same
time, the host processor is configured to control and com
municate with a dedicated SD card interface.
0016 Recent times have witnessed a rapid convergence
between consumer electronic devices and personal computer
(PC) class devices. Many devices, for example, smart
phones that are compact and yet possess computing capa
bilities like a PC, combine the features of consumer elec
tronic devices and PC class devices and have a huge demand
in the market.
0017. The consumer electronic devices and PC class
devices are characterized by their own distinctive classes of
hardware, operating systems and user interfaces. For
example, cell phones typically incorporate low-power pro
cessors that consume less resources such as memory, pro

US 2016/0314086 A1

cessing power and battery power, while a PC class device
Such as, a laptop may provide better performance or Support
more applications, however, consume more power. To
enable convergence of the consumer electronic devices with
the PC class devices, multi-host computing systems are
implemented.
0018 For example, the multi-host computing systems,
like a handheld device, may comprise two host processors,
host 1 and host 2, where each host processor Supports a
respective operating system to perform different functions
on the same hardware platform. Each operating system may
provide a particular advantage over the other operating
system in the computing system. For example, host 1 and
host 2 may run two different operating systems, OS 1 and OS
2, where the OS 1 may provide better performance or
support more applications than OS 2. however, the OS 2
may consume less resources such as memory, processing
power, battery power compared to OS 1. In Such a scenario,
the multi-host computing system may run OS 1 for appli
cation processing and computational purposes when the
multi-host computing system is running on a power Supply,
whereas may run OS 2 when the handheld device is operated
on battery power.
0019. Thus, the multi-host computing systems allow
more than one host processor to operate on the same
hardware platform, concurrently. Such concurrent operation
of heterogeneous host processors with their respective oper
ating systems within the same hardware platform may
require many peripheral devices, such as SD card interfaces
to be duplicated, resulting in a very high bill of material
(BOM) cost for the multi-host computing systems. In order
to reduce costs, as well as to maintain compactness of the
multi-host computing systems, re-use or sharing of the
peripheral devices, such as SD card interfaces between the
host processors, is required.
0020. However, re-use or sharing of a SD card interface
may be difficult since conventionally available host proces
sors are configured to work with a dedicated SD host
controller and conventional SD card interfaces are config
ured to interact with a single host processor and are inca
pable of interacting with more than one host processors.
0021. As known conventionally, different types of SD
devices, each providing different features/functionalities
exist. One typical use of a SD device is that of a memory
card. SD memory cards, such as Micro SD cards, High
Capacity (HC) SD cards, Extended Capacity (XC) SD cards
are commonly know. Examples of other conventionally
available SD devices are SDI/O cards or SD combo cards
such as Wi-Fi cards, Personal handy Phone System (PHS)
cards, Global Positioning System (GPS) cards, 3G cards and
Bluetooth R cards. A SDI/O card provides a specific I/O
functionality while its interface with the host processor to
which the functionality is attributed is based on the SD
standard. For example, a Wi-Fi Card, also referred to as a
Wi-Fi SDI/O card, enables the functionality of a Wi-Fi
interface to provide Wi-Fi connectivity and operates in
accordance with the SD standard. Similarly, a Bluetooth R.
SDI/O card may be understood as a device that combines SD
format with an I/O device which, in this example, is a
Bluetooth R) modem.

0022. Though both SD memory cards and SDI/O cards
follow the same interface standard, they support different
programming structures. The following are the list of simi
larities and differences between the two types of SD card:

Oct. 27, 2016

0023 1. Both SD memory cards as well as SDI/O cards
Support the same set of interface signals:
0024 a. SDIO card supports interrupt and optional
read-wait signaling on the DAT1 and DAT2.

(0.025 2. Both SD memory cards and SDI/O cards
Support fixed card register set.

0026) 3. SD memory and SDI/O cards support different
command sets:

(0027 a. For example, CMD52 for SDI/O cards is
equivalent to CMDO for SD memory card, i.e. the
reset command.

0028 4. SDI/O cards support upto 8 functions in which
a function area, namely, card information area—(CIA)
is mandatory. The SD memory cards do not have such
function areas:

0029 a. Each of the SDI/O function can be a sepa
rate SDI/O device and hence multi-function devices
may use multiple function sets;

0030 b. The commands to a function controller,
such as a Wi-Fi module inside a SDI/O card, are sent
through the data and command transfers.

0.031 5. SD memory cards being storage elements
require file system support. SDI/O may not require the
file system support.

0032 FIG. 1 illustrates a typical SD interface system 100.
The description of the communication of a SD device (not
shown in Figure) with the computing system is explained
with reference to FIG. 1. Details conventionally known in
the art have been omitted to maintain brevity.
0033. As discussed above, the SD device may be of
various types and based on the type of SD device, a
corresponding card driver is needed which is used to utilize
the functional features provided by the corresponding SD
device. According to the embodiment depicted in FIG. 1, for
a Bluetooth R. SDI/O card (not shown in Figure) enabling a
Bluetooth R) application 102-1, a Bluetooth R driver 104-1
may be installed with the operating system of the host
processor. Likewise, depending on the functionality of con
nected SD devices corresponding applications 102 and driv
ers 104 are installed with the operating system of the host
processor. Depicted in FIG. 1, as examples and not limita
tions, are Wi-Fi application 102-2, GPS application 102-3
and memory card application 102-n and their corresponding
drivers 104: Wi-Fi card driver 104-2, GPS card driver 104-3
and memory card driver 104-n, respectively.
0034. The various drivers 104 are communicatively
coupled to a SD host driver 108 using a driver interface
specified by the operating system of the computing system.
The SD host driver 108 is in turn used to program a SD host
controller 110 through a register interface (not shown in
Figure) which is standardized by the SDHC specification
prescribed by the SD standard. For example, to enable
communication between the Bluetooth R) application 102-1
and the Bluetooth R. SDI/O card, the Bluetooth R) driver
104-1 generates the relevant commands and transfers the
same to the SD host driver 108, where SD host driver 108
is responsible of translating the command in a SD standard
specified format. The SD host controller 110 interfaces with
a SD card interface 112 which is generally an electrical
interface, such as a card connector to which the SD device
is plugged in. Thus, the SD card interface 112 corresponds
with the SD host controller 110 which provides standard

US 2016/0314086 A1

interface between the operating systems of the host proces
sor and the SD device to interface the SD device with the
computing System.
0035. Further, since in a conventional system, the SD
host controller 110 interfaces a single host processor with a
SD device that is dedicated to the single host processor, the
SD host controller 110 is configured accordingly.
0036 FIG. 2 illustrates the SD host controller 110 which

is a conventional SD host controller configured to interface
a SD device with a single host controller. To understand the
operation of the SD host controller 110, an example may be
considered. For instance, consider that the host processor
(not shown in Figure) needs to write some data onto a
connected SD memory card. For the purpose, the host
processor accesses the register set 202 of the SD host
controller 110. To access the register set 202, the SD host
controller 110 supports a register interface 204 that com
municatively couples the register set 202 and the host
processor. The register set 202 is defined in accordance with
the SDHC standard, typically employed by SDHC compli
ant controllers, such as the SD host controller 110. In one
example, if the host processor operates based on the stan
dard, such as Peripheral Component Interconnect (PCI) or
Peripheral Component Interconnect Express (PCIe) stan
dard, the register interface 204 and the register set 202 may
be configured accordingly. The SD host controller 110
places the relevant command, indicative of the location of
the data to be transferred to the SD memory card, in the
register set 202.
0037. Further, the SD host controller 110 includes an
inbuilt direct memory access (DMA) module 206, such as an
Advanced DMA (ADMA) that is configured to fetch data
from the memory of the host processor based on the com
mand placed in the register set 202 by the host processor. In
one embodiment, the DMA module 206 also provides the
capability of interrupt generation for a predefined number of
block transfers. The DMA module 206 uses a system bus
interface 208 for the purposes of fetching the data from the
memory of the host processor. The data to be written onto
the SD memory card, once fetched from the memory of the
host processor, is placed in the local memory of the SD host
controller 110. The local memory of the SD host controller
110 is hereinafter referred to as local buffer 210. The data
from the local buffer 210 is sent to the SD memory card via
the SD card interface 112 by generating relevant commands
followed by data write transaction enabled through a SD bus
interface 212.

0038 A SD bus interface 212 comprising a CMD bus
212-1 and a DAT bus 212-2 that carry, along with the data
to be transferred, protocol related signals such as CMD,
DAT 3:0. SDCK, power and ground signals is provided in
the SD host controller 110. The protocol related signals are
generated by CMD control DAT control modules 214 and
216, respectively, implemented by the SD host controller
110 to handle all the SD protocol related requirements.
Details conventionally known in the art have been omitted
for sake of brevity.
0039. The above mentioned example explains, in brief,
the mechanism of transferring data from the host processor
to the SD memory card. However, it will be apparent to one
skilled in the art, that data transfer from a SD memory card
or communication between SDI/O cards and the host pro
cessor may be carried out in a conventional computing
system in a similar manner.

Oct. 27, 2016

0040. In accordance with the forgoing explanation, the
SD host controller 110 works with a single host processor
and operates on predefined protocols to interface a SD
device to the host processor. The SD host controller 110 is
incapable of interfacing with more than one host processors
to allow them to use the SD device simultaneously. In order
to allow multiple host processors to simultaneously access
the SD device, the SD host controller 110 needs to virtualize
the multiple host processors to the SD card interface 112 in
such a way that from the perspective of each of the host
processors, it appears as if the SD card interface 112 is
dedicated to the host processor, while simultaneously from
a perspective of the SD device, it should appear to the SD
device that all transfers are being initiated by the single host
processor. For these purposes, the virtualization techniques
may be implemented.
0041. In general, the virtualization techniques, such as
I/O virtualization is a methodology, which transforms
accesses between standard I/O devices and the host proces
sors such that the I/O devices can be shared across multiple
system images or host processors in a way which hides the
sharing from both the host processor and the shared I/O
devices. In computing systems supporting I/O virtualization,
address remapping is generally used to enable assignment of
the I/O devices to the host processors.
0042. However, these conventional virtualization tech
niques only allow the SD card interface to be shared among
multiple operating systems running on single host in form of
virtual machines.
0043. According to one embodiment of the present sub
ject matter, systems and methods for simultaneous sharing
of a SD card interface to allow sharing of a SD device by
multiple host processors in a multi-host computing system
are described. The multi-host computing system comprises
more than one host processors, where each host processor
Supports an operating system, to perform different functions
on the same hardware platform.
0044. In one embodiment, the system and method for
sharing of the SD card interface by multiple host processors
is enabled by a SD host controller (SDHC) virtualization
unit. Conventional SD host controllers are not multi-host
aware, or in other words, native SD host controllers are not
configured to deal with more than one host processor.
Accordingly, the SDHC virtualization unit ensures that these
SD host controllers are imparted with the capability to
interact with the multiple host processors. To reiterate, the
SDHC virtualization unit is needed in multi-host computing
systems since the conventionally available host processors
are configured to work with dedicated SD host controllers
and similarly conventional SD host controllers are config
ured to interact with a single host processor.
0045. In one implementation, the SDHC virtualization
unit may be a standalone unit or independent unit associated
with a SD host controller while in another embodiment the
SDHC virtualization unit may be implemented as a logical/
function module within the SD host controller. While the
latter embodiment may be preferred for more compact
computing devices, the former embodiment may be useful in
adopting legacy or native SD host controllers to the multi
host processor environment. It will be appreciated that in the
two aforementioned embodiments, as well as those that will
be explained later, the SD virtualization unit may have a
hardware implementation, a software implementation or a
combination thereof.

US 2016/0314086 A1

0046 According to one embodiment of the present sub
ject matter, the SDHC virtualization unit allows simultane
ous access to a SD card interface to multiple host processors
of a multi-host computing system without bringing about
any change in the pre-existing configuration of the host
processors or the SD host controller. The SDHC virtualiza
tion unit appears as the host controller when viewed from a
host processor's side, whereas it emulates a host processor
to the SD host controller. Thus, the SDHC virtualization unit
communicatively couples a conventional host processor,
configured to work with a dedicated SDHC host controller,
and a conventional SDHC host controller, which is capable
of being controlled by a single host processor, in Such a
manner that the SD device may be shared by the multiple
host processors in the multi-host computing system.
0047. The systems and methods can be implemented in a
variety of multi-host computing systems. The multi-host
computing system may include, but are not limited to,
desktop computers, handheld devices, laptops or other por
table computers, mobile phones, personal digital assistants
(PDAs), tablet PCs, netbooks, workstations, etc., which
implement multiple processors on the same hardware plat
form. In one implementation, the methods and systems for
sharing of the SD card interface can be implemented for
multi-host computing systems running any operating system
such as Linux, Unix, Microsoft(R) Windows.(R), Mac OS X(R),
Android, and the like. Although the description herein is
with reference to certain multi-host computing systems
running particular operating systems, the systems and meth
ods may be implemented in other operating systems and
computing systems, albeit with a few variations, as will be
understood by a person skilled in the art.
0048. The methods and systems for sharing of the SD
devices in the multi-host computing systems are hereinafter
explained in a detailed manner with reference to FIGS. 3 to
5. While aspects of the described systems and methods can
be implemented in any number of different computing
systems, environments, and/or configurations, the embodi
ments are described in the context of the above exemplary
system architecture(s). For the ease of understanding, the
explanation herein is in context of a multi-host computing
system having two host processors. However, it will be
appreciated by one skilled in the art, that although the
methods and systems have been described with respect to
two host processors, the concept explained in context thereto
may be extend to any number of host processors.
0049 FIG. 3 illustrates an exemplary SDHC virtualiza
tion unit 300, in accordance with an embodiment of the
present subject matter. In one embodiment, the SDHC
virtualization unit 300 is implemented in a multi-host com
puting system (not shown in figure). For example, the
multi-host computing system may include two host proces
sors, host 1 and host 2 (not shown in figure), where each host
processor Supports an operation system, to perform different
functions on the same hardware platform.
0050. The SDHC virtualization unit 300 interfaces the
host 1 and host 2 to a SD host controller 302 of the
computing system. For this purpose, register and data inter
faces (not shown in figure) are provided between the host 1
and host 2, respectively, and SDHC virtualization unit 300.
Similarly, register and system bus interfaces 304-1 and
304-2 are also provided between the SDHC virtualization
unit 300 and the SD host controller 302. In one embodiment,
the SD host controller 302 may be a conventional SD host

Oct. 27, 2016

controller, such as SD host controller 110, as explained in
context of FIG. 1 and FIG. 2 and the SDHC virtualization
unit 300 may be an external module interfaced with the SD
host controller 302. However, in another embodiment, the
SD host controller 302 may be configured such that the
SDHC virtualization unit 300 is integrated therein.
0051. The SDHC virtualization unit 300 includes register
sets 306. The register sets 306 are as many in number as the
number of host processors in the computing system. Each of
the register set 306 includes a host register interface 308 to
interface the SDHC virtualization unit 300 with their respec
tive host processor. Depicted in the Figure are host register
interfaces 308-1 and 308-2, provided between the host 1 and
host 2, respectively, and SDHC virtualization unit 300. It
may be noted that since the SDHC virtualization unit 300 is
configured to appear as a typical SD host controller to each
of the host processors, the configuration of registers in each
of the register set 306 is similar to that in a typical SD host
controller.
0.052 For example, consider a scenario where host 1 and
host 2 need to transfer data to a SD device (not shown in
Figure) connected to a SD card interface (not shown in
Figure) of the computing system. The host 1 and the host 2
accordingly generate appropriate commands and place the
same in the register set 306. The commands are indicative of
the respective local memories of the host 1 and host 2 where
the data to be transferred is placed. The data to be transferred
is fetched from the local memories of the host 1 and the host
2 by a pre-fetch direct memory access (PDMA) 310 of the
SDHC virtualization unit 300 through host system bus 312-1
and 312-2 that interface the host 1 and the host 2, respec
tively, to the PDMA 310.
0053. The data in the local memory of the host 1 and the
host 2 is fetched and placed in a local memory component,
i.e., buffer 314, of the SDHC virtualization unit 300. The
buffer 314 is accessed by a command and data parser unit
316, hereinafter referred to as the parsing logic 316, to parse
the commands and data packets and transfer the same to the
SD card interface.
0054 The parsing logic 316 contains two parsing units,
namely memory card command/data parser 318, referred to
as MC parser 318 and I/O card command/data parser 320,
referred to as IOC parser 320. The MC parser 318 is called
upon to enable transfers to and from SD memory cards while
the IOC parser 320 is utilized during transfers to and from
SDI/O cards. The IOC parser 320 internally contains func
tion specific parsing units 320-in specific to each of the
various types of SDI/O cards, such as Wi-Fi cards, Personal
handy Phone System (PHS) cards, Global Positioning Sys
tem (GPS) cards, 3G cards and Bluetooth R cards.
0055 Depending on the SD device connected to the SD
card interface, one of the MC parser 318 and IOC parser320
parses commands from host processors from the register set
306 while the data packets are parsed from the buffer 314.
A sharing control unit 322 in the parsing logic 316 is
communicatively coupled to the host processors host 1 and
host 2 as well as the MC parser 318 and the IOC parser320
to handle any arbitration required between the host proces
sors host 1 and host 2.
0056. The SDHC virtualization unit 300 further includes
a SDHC interface unit 324 to enable programming for the
SD host controller 302 taking the requirements from the host
1 and host 2 into account. The SDHC interface unit 324
creates commands for the transfer of the data placed in the

US 2016/0314086 A1

buffer 314 and provides it to the SD host controller 302 after
arbitrating and interleaving the requests between the host 1
and host 2.
0057. It will be apparent to one skilled in the art that,
since the SDHC virtualization unit 300 emulates a host
processor to the SD host controller 302, the fetching of data
from the local memory of the SDHC virtualization unit 300,
i.e. buffer 314, by the SD host controller 302 and transfer
ring the same to the SD device connected SD card interface
is accomplished in the conventional manner as described in
relation to FIG. 1 and FIG. 2.
0058 FIG. 4 illustrates an exemplary method of virtual
ization initialization 400 for SD devices according to one
embodiment of the present subject matter while FIG. 5
illustrates an exemplary virtualization method 500 for shar
ing of SD devices by multiple host processors in a multi-host
computing system, according to one embodiment of the
present Subject matter.
0059. The methods 400 and 500 may be implemented in
a variety of computing systems, however for the ease of
understanding, the methods 400 and 500 have been
explained to be implemented in the computing system
incorporating the aforementioned SDHC virtualization unit
300 for sharing a SD card interface as described in FIG. 3.
0060. The methods 400 and 500, completely or partially,
may be described in the general context of computer execut
able instructions. Generally, computer executable instruc
tions can include routines, programs, objects, components,
data structures, procedures, modules, functions, etc., that
perform particular functions or implement particular
abstract data types. A person skilled in the art will readily
recognize that steps of the methods can be performed by
programmed computers. Herein, some embodiments are
also intended to cover program storage devices, e.g., digital
data storage media, which are machine or computer readable
and encode machine-executable or computer-executable
programs of instructions, wherein said instructions perform
some or all of the steps of the described method.
0061. The order in which the methods 400 and 500 are
described is not intended to be construed as a limitation, and
any number of the described method blocks can be com
bined in any order to implement the methods, or an alter
native methods. Additionally, individual blocks may be
deleted from the methods without departing from the spirit
and scope of the subject matter described herein. Further
more, the methods can be implemented in any Suitable
hardware, software, firmware, or combination thereof
0062. The method of virtualization initialization 400 is a
method of enumeration of the SD devices connected to a
multi-host computing system by the multiple host proces
SOS.

0063 Enumeration is a conventionally known process
carried out in typical single host processor computing
devices as well. By enumerating a SD device a host pro
cessor is enabled to obtain all information relevant for the
communication with the SD device from the SD devices.
The host processor can obtain information, such as what all
capabilities are supported by the SD device and the types of
SD device. During enumeration the SD host driver sends a
sequence of commands to determine the type of the SD
device card coupled to the SD card interface. An SDI/O card
does not respond to SD memory card related commands and
a SD memory card does not respond to SDI/O card related
commands. Thus, depending on the response received from

Oct. 27, 2016

the SD device, a SD host driver of the computing device is
enabled to determine the type of the SD device. Upon
enumeration of the SD device in a conventional computing
system the single host processor has ownership of the SD
device.
0064. In a multi-host computing system, the case specific
to method 400, instead of each of the multiple host proces
sors enumerating the SD device, in one embodiment, the
SDHC virtualization unit 300 performs the enumeration. In
another embodiment, any one of the multiple host proces
sors may be selects as a default host processor and the
enumeration is performed by the default host processor.
Details of the enumeration process are explained in details
with reference to the method of virtualization initialization
400 illustrated in FIG. 4.

0065. The method of virtualization initialization 400 is
initiated at block 402, where, upon occurrence of a reset
event, a SD device is detected. For example, events like
power on, refresh, insertion of a SD device into the SD card
interface may be considered as reset events based on which
the SDHC virtualization unit 300 may determine a SD
device. At block 404, in one embodiment, the SDHC virtu
alization unit 300 enumerates the SD device. However, as
mentioned above, in another embodiment, the default host
processor performs the enumeration. Further, at block 406,
if it is determined that the enumeration is complete (YES
branch of block 406), the default host processor is allowed
to communicate with the SD device at block 408. However,
if at block 406 it is determined that the enumeration is
ongoing, the method 400 pauses at block 404 (NO branch of
block 406), for the enumeration to complete.
0066. The SD device is allowed to be used by the default
host processor until, at block 410, enumeration requests
from one or more other processors are received. If enumera
tion requests from one or more other host processors are
received (YES branch of block 410), the method 400 pro
ceeds to block 412 where virtual responses are sent to the
one or more other host processors, else the default host
processor may continue to use the SD device in the manner
a single host processor uses a dedicated SD device (NO
branch of block 410). Virtual responses are signals generated
by the SDHC virtualization unit 300 for the one or more
other host processors in response to their enumeration
requests. A virtual response is similar to an acknowledge
ment send by a dedicated SD host controller to the single
host controller in a conventional computing system.
0067. At block 414, completion of the enumeration of the
SD device with each of the one or more other host proces
sors is determined. At block 416, the other host processors
too begin to communicate with the SD device. In one
implementation, the SDHC virtualization unit 300 withholds
all ongoing communications between the default host pro
cessor and the SD device to give preference to the enumera
tion process over other transfers between the default host
processor and the SD device.
0068 An exemplary method of sharing of SD devices by
multiple host processors in a multi-host computing system,
in according to one embodiment of the present Subject
matter, is illustrated by virtualization method 500.
0069. The virtualization method 500 begins at block 502
where SDHC virtualization unit 300 determines the types of
the SD device connected to the computing system. In one
embodiment the type of the SD device may be determined
by enumerating the device.

US 2016/0314086 A1

0070. To allow simultaneous access of a SD device to
multiple host processors, requests from all the host proces
sors are accepted by the SDHC virtualization unit 300 and
the parsing logic 316 arbitrates between the host processors
to cater to the requests originating from the multiple host
processors. For the purpose, as explained before, the parsing
logic 316 includes the MC parser 318 and IOC parser320 to
parse the commands and requests from different host pro
cessors. According, based on the type of the SD device, at
block 504 the MC parser 318 may be activated if the SD
device is a SD memory card. Likewise, at block 506, the
IOC parser320 may be activated if the SD device is a SDI/O
card. If SD device is a SDI/O card, the IOC parser 320 in
turn activates the relevant function specific parsing unit
320-n based on the functionality of the SDI/O card.
0071. If a SD memory card is connected to the multi-host
computing device, at block 508, it is determined whether
one host processor or multiple host processors have
requested to access the SD memory card. In case only one
host processor is active, i.e., only one host processor
requests to access the SD memory card (NO branch of block
508), at block 510, the host processor is served. For the
purpose, the SDHC virtualization unit 300 instructs the MC
parser 318 to parse the command in the register set 306 of
the active host processor. The active host processor may be
allowed to access the SD memory card and communication
between the active host processor and the SD memory card
is enabled accordingly. For example, data from the active
host processor to the SD memory card may be transferred by
the SDHC virtualization unit 300. Upon completion of a
command from the active host processor, the method 500
may move to any other pending requests, at block 512. For
the purpose, a stateless transition point is awaited. The
stateless transition point may be understood as a point at
which a command has been accomplished and accordingly
upon occurrence of a stateless transition point Switching
from one command to the other may occur.
0072. However, at block 508, multiple host processors
may be active, i.e., more than one host processor may
request to access the SD memory card (YES branch of block
508). When multiple host processors request for transfers
with the SD memory card, the SDHC virtualization unit 300
selects any one host processor to be served and accordingly
instructs the MC parser 318 to parse the commands in the
register set 306 of the selected host processor. More spe
cifically, in a situation where multiple host processors are
active, the method 500 proceeds to block 514 where an
arbitration takes place to selectively serve one of the host
processors. The arbitration may be in accordance with a
predetermined arbitration logic based on any generally
known arbitration mechanism(s) to prioritize any of the
multiple host processors. At block 516, a stateless transition
point is determined before moving ahead to address other
pending requests, at block 512. It may be mentioned, that
pending requests may be from the selected host processor
that was currently served or a different host processor In one
embodiment, in context of arbitrating and Switching
between multiple host processors, the Stateless transition
point may be understood as a point at which occurrence of
a transition from the one host processor to the other does not
corrupt an ongoing communication, Such as a data transfer,
between an active host processor and the SD memory card.
For example, while different host processors are accessing
different files from a SD memory card, interleaving of

Oct. 27, 2016

commands by arbitration should not result in corrupting a
file opened by one host processor due to accesses from
another host processor. Such a situation is avoided when the
transition from one host processor to another occurs at a
stateless transition point.
(0073. While the MC parser 318 parsers the commands
and data packets, the sharing control unit 322 programs
commands for the SD host controller 302 and prepares data
packets in the buffer 314 to be fetched by the SD host
controller 302. It will be understood by one skilled in the art
that the commands are programmed for a DMA module,
such as DMA module 206 of the SD host controller 302, to
view data in the buffer 314 as data in local memory of a host
controller and fetch it accordingly. Thus, until a stateless
transition point occurs while a host processor currently
being served, the process of programming commands for the
SD host controller 302 and preparation of data packet in the
buffer 314 may continue.
0074. In cases where a SDI/O card is connected to the
multi-host computing device, at block 518, it is determined
whether one host processor or multiple host processors have
requested to access the SDI/O card. If a single host processor
sends requests, it is served at block 520, whereas, in case
multiple host processors send requests arbitration and
switching take place at block 522 and 524 in a manner
similar to block 514 and 516 to serve the multiple host
processors. The method 500 continues until at block 526, it
is ascertained that no requests are pending.
0075. In one embodiment, if the SD device is a SD
combo card, the MC parser 318 as well as the IOC parser
320 may be activated. The MC parser 318 and the IOC
parser 320 may be operated in parallel and the sharing
control unit 322 may be configured to co-ordination between
the MC parser 318 and the IOC parser 320 to allow the
multiple host processors to access the SD combo card.
0076. In one implementation, the SDHC virtualization
unit 300 is configured to handle power state change requests
from the host processors. Further, the SDHC virtualization
unit 300 may also handle interrupt routing and status updat
ing through register sets 306. Also, the SDHC virtualization
unit 300 may be responsible for masking actions from a host
processor which affects the other host processors, for
example, if one host processor tries to eject the SD device
while the other host processors are still accessing the SD
device, the SDHC virtualization unit 300 can emulate a
virtual removal for that particular host processor, while in
reality the SD device may still be in use from the other host
processors.

0077 Although implementations of a SDHC virtualiza
tion unit and a virtualization method have been described in
language specific to structural features and/or methods, it is
to be understood that the invention is not necessarily limited
to the specific features or methods described. Rather, the
specific features and methods are disclosed as exemplary
implementations for the SDHC virtualization unit and vir
tualization.

We claim:

1. A secure digital host controller virtualization unit
(SDHCVU) for sharing a secure digital (SD) device amongst
a plurality of hosts of a multi-host computing system, the
SDHCVU comprising:

US 2016/0314086 A1

a pre-fetch direct memory access (DMA) configured to
fetch instructions from at least one of the plurality of
hosts, wherein the instructions are addressed to the SD
device;

a buffer configured to store the instructions fetched from
at least one of the plurality of hosts;

a command and data parser configured to,
parse the instructions received from at least one of the

plurality of hosts, based in part on a type of the SD
device;

transmit the parsed instructions to a secure digital host
controller for execution.

2. The SDHCVU as claimed in claim 1, further compris
ing a register set configured to implement data exchange
between the SDHCVU and at least one of the plurality of
hosts.

3. The SDHCVU as claimed in claim 2, further compris
ing a host register interface communicatively coupled to the
register set, wherein the host register interface is configured
to interface the SDHCVU with at least one of the plurality
of hosts.

4. The SDHCVU as claimed in claim 1, wherein the
command and data parser further comprises a sharing con

Oct. 27, 2016

trol unit configured to arbitrate the instructions fetched from
at least one of the plurality of hosts.

5. The SDHCVU as claimed in claim 4, wherein the
command and data parser further comprises at least one of
a memory card and data parser (MCDP) configured to parse
the instructions received from at least one of the plurality of
hosts, and wherein the SD device is a memory card and an
input/output command and data parser configured to parse
the instructions received from at least one of the plurality of
hosts, and wherein the SD device is a input/output (I/O)
device.

6. The SDHCVU as claimed in claim 1, wherein the
SDHCVU is further configured to initialize the SD device.

7. The SDHCVU as claimed in claim 1, wherein the
SDHCVU is implemented as at least one of a logical module
and a functional module within the SD host controller.

8. The SDHCVU as claimed in claim 5, wherein the
sharing control unit is further configured to provide access
of at least of the MCDP and input/output command and data
parser to the plurality of host; wherein the MCDP and
input/output command and data parser are configured to
operate in parallel.

