

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
22 April 2010 (22.04.2010)(10) International Publication Number
WO 2010/044019 A1(51) International Patent Classification:
A61N 1/08 (2006.01) A61N 1/05 (2006.01)

(74) Agents: VAN VELZEN, Maaike, M. et al; High Tech Campus Building 44, NL-5656 AE Eindhoven (NL).

(21) International Application Number:
PCT/IB2009/054401

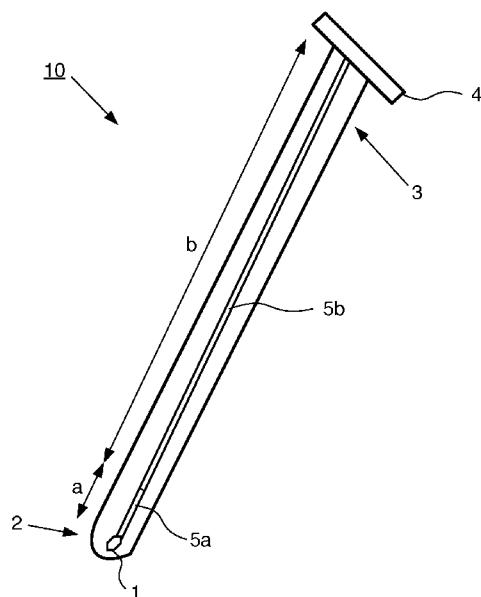
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
8 October 2009 (08.10.2009)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
08166662.0 15 October 2008 (15.10.2008) EP(71) Applicant (for all designated States except US): **KONINKLIJKE PHILIPS ELECTRONICS N.V.** [NIVNL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).


(72) Inventors; and

(75) Inventors/Applicants (for US only): **HARBERTS, Dirk, W.** [NIVNL]; c/o High Tech Campus Building 44, NL-5656 AE Eindhoven (NL). **WANG, Ke** [ITVNL]; c/o High Tech Campus Building 44, NL-5656 AE Eindhoven (NL). **DECREE, Michel, M., J.** [BE/NL]; c/o High Tech Campus Building 44, NL-5656 AE Eindhoven (NL).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:*[Continued on nextpage]*

(54) Title: PROBE FOR AN IMPLANTABLE MEDICAL DEVICE

FIG. 4

(57) Abstract: The invention relates to a probe (10) for an implantable medical device. The probe has a distal end (2) and a proximal end (3), and the probe (10) moreover comprises an electrode (1) at the distal end. The electrode is connected to a wire (5) extending from the electrode to the proximal end of the probe, where the resistivity of the wire is non-uniform along the length of the wire. The wire may have high resistivity at the distal end of the probe and low resistivity wires elsewhere. The high resistivity wires reduce the peak current density in the tissue of an implanted device, and thus prevents destructive heating and/or undesired stimulation of tissue during MRI examination. This highly contributes to MR safety which is a highly desired feature for these implantable electrical stimulation devices.

— *as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(ii))*

Published:

— *with international search report (Art. 21(3))*

Probe for an implantable medical device

FIELD OF THE INVENTION

The present invention relates to a probe for an implantable medical device, in particular a probe for a brain implantable medical device.

5 BACKGROUND OF THE INVENTION

Implantable medical devices are commonly used today to treat patients suffering from various ailments. After implant of an implantable device for electric stimulation, such as pacemakers or Deep Brain Stimulation (DBS) devices, the device and surrounding tissue may be heated during scanning of the patient and device by e.g. Magnetic Resonance Imaging (MRI) scanning. The human tissue, in particular brain tissue, is sensitive to temperature raises; the maximum allowed temperature increase of brain tissue is 1° C in that further temperature increases may have profound, negative effects on single neuron and neuronal network function. Therefore it is of concern to minimize heating effects at and around an implanted medical device due to induced currents near the medical device during MRI scanning.

It might seem natural to choose high resistive materials throughout the implantable device, ideally with the same specific resistance as the human tissue. However, this typically would require much more power to obtain the same tissue stimulating signals at the end of the probe compared to probes using low resistive materials. Consequently, either unacceptable large batteries or unacceptable short battery life time would result.

US 4 353 360 describes an electrode for a body implantable lead having a semiconductor surface for coupling of electrical signals to the body tissue. The electrode comprises several materials of differing conductivities, arranged in layers such that the material having the lowest conductivity is in direct contact with the body tissue.

25 An improved probe for implantable medical devices with minimized heating effect would be advantageous. Moreover, a probe which after implant and during MRI scanning would produce a reduced current density within the human tissue surrounding the probe of the implanted device, compared to known probes for implantable medical devices, would be advantageous.

SUMMARY OF THE INVENTION

It may be seen as an object of the present invention to provide an alternative probe for implantable medical devices that avoids the above mentioned problems with regard 5 to heating and/or large current densities.

This object and several other objects are obtained in a first aspect of the invention by providing a probe for an implantable medical device, said probe having a distal end and a proximal end, said probe moreover comprising an electrode at the distal end, where said electrode is connected to a wire extending from the electrode to the proximal end of the 10 probe, wherein the resistivity of the wire is non-uniform along the length of the wire.

By providing a probe having electrodes connected to wire, where the wire has non-uniform resistivity, it is possible to customize the probe so that the issues of security with relation to preventing unwanted heating during MRI scanning, and battery life time may be balanced against each other.

15 The invention is particularly, but not exclusively, advantageous for reducing high current densities and thus heating of the probe of the implantable medical device and/or the tissue surrounding it when the device is implanted in a patient. In order to prevent destructive heating or undesired stimulation of the human tissue due to induced currents near the ends of electrodes during MR scanning, a high resistivity of the wires in the probe is 20 required. This conflicts with the need for low power consumption to increase battery lifetime, because for this a low resistance of the signal wires is required. The non-uniform resistivity of the wire provides a solution wherein some parts of the wire from an electrode to the proximal end of the probe has a lower resistivity, which is advantageous to the battery lifetime, and other parts of the wire are of a higher resistivity, which reduces the heating and 25 undesired stimulation of human tissue around the probe.

In the case of a plurality of electrodes at the distal end of the probe connected by wires to the proximal end of the probe, the advantageous effect of the non-uniform resistivity of wires connecting each electrode to the distal end of the probe is of course increased, when the fraction of the wires having non-uniform resistivity along the length of 30 the probe is increased; however, the advantageous effect may be achieved even if only one out of a plurality of wires extending along the probe has non-uniform resistivity.

According to an aspect of the implantable medical, the wire comprises a first section having a first resistivity and a second section having a second resistivity, said first and second resistivities being different. The term "section" is meant to denote a part along the

length of the wire; throughout this application the first section is closer to the distal end than the second section.

According to another aspect of the probe, the first section of the wire is contiguous to the electrode and the resistivity of the first section is higher than the resistivity at the second section. When the resistivity of the first section of wire close to or at the electrode is high, the current density around the electrode during an external electric field may be reduced. Thus, the current density at the human tissue, when the probe is implanted, will be reduced.

In the tissue surrounding an implanted medical device, the currents typically concentrate near the distal end of the probe, when the patient and the probe are in an MRI field. This causes heating of both the tissue and the probe. The invention proposes to increase the resistivity of the wire where the current density otherwise would be the largest, so that the current will spread out more. Typically, this will also reduce the total induced current at MRI frequency, but even if the total current would remain the same, the heating would reduce due to the more uniform distribution of current around the implanted probe, since the heating is proportional to the square of the current density.

According to yet another aspect, the first section is made of material of a first resistivity and the second section is made of material of a second resistivity, where the first resistivity is higher than the second resistivity. Alternatively or concurrently, the first section of the wire has a first sectional area and the second section of the wire has a second sectional area, where the first sectional area is smaller than the second sectional area. According to the latter aspect, the sectional area of the wire is non-uniform along the length of the probe. Thus, the variation in resistivity can be achieved by varying the resistivity of the material and/or varying the sectional area or the thickness of the wire.

According to a further aspect, the second section of the wire is longer than the first section of the wire. Thus, the major part of the wire has low resistivity and the remainder of the wire is of higher resistivity. For example, the first section of the wire may constitute between 2% and 40%, preferably between 5% and 20%, more preferably about 10% and 15% of the wire. The term "longer" as used here is meant to denote "larger in the longitudinal direction of the wire". The longitudinal direction of the wire typically corresponds to the longitudinal direction of the probe.

The resistivity of the first section may be 2 to 10 times higher than the resistivity of the second section. Hereby, a more uniform distribution of the current along the

entire probe may be achieved compared to probes having electrodes connected by wires with uniform resistivities.

According to yet a further aspect, the first section of the wire is of polysilicon material and the second section of the wire is of metallic material. Polysilicon material is 5 high-ohmic, resulting in lower current density at the first section of the wire.

According to another aspect of the probe, the wire comprises one or more further sections, each further section having a resistivity different from other sections of the wire. Thus, the wire may comprise a plurality of resistivities. Alternatively, the resistivity of the wire changes continuously along the length of the wire. Adjacent sections of wire having 10 different resistivity may create hotspots of relatively high current density, when the probe is in an external electromagnetic field. By providing a wire with a continuous change in resistivity, such hotspots may be alleviated.

The different aspects of the present invention may each be combined with any of the other aspects. These and other aspects of the invention will be apparent from and 15 elucidated with reference to the embodiments described hereinafter.

BRIEF DESCRIPTION OF THE FIGURES

The present invention will now be explained, by way of example only, with reference to the accompanying Figures, where

20 Figure 1 is a cross section of a probe for implantable electro-stimulation devices;

Figures 2a and 2b are diagrams of equipotential lines around a bar in an external electric field;

25 Figure 3 is a diagrammatic drawing of a medical device with a probe implanted in the skull of a human patient; and

Figure 4 is a cross section of a probe according to the invention for implantable electro-stimulation devices.

DETAILED DESCRIPTION OF AN EMBODIMENT

30 Figure 1 is a cross sectional view of an electro-stimulation probe 10 according to an embodiment of the invention. The probe 10 has a distal end 2 and a proximal end 3. The probe 10 has a plurality of electrodes 1 situated close to the distal 2 end thereof. Alternatively, only one electrode 1 would be conceivable; however in order to provide high resolution stimulation, more than one electrode is advantageous. Figure 1 moreover

illustrates a chamber 4 housing electronics and connected to the proximal end 3 of the probe 10. Moreover, figure 1 discloses wires 5 extending from each of the electrodes 1 to the proximal end 3 of the probe 10 and to the chamber 4.

The probe is arranged for being implanted into the tissue of a patient to be 5 treated, such as in the spinal cord, nerve roots, muscles, or brain tissue, in order to provide electrical stimulation of such a region of interest, the stimulation of which is expected to alleviate a condition of the patient. The electro-stimulation device typically comprises a battery (not shown) and a pulse generator (not shown) connected to the proximal end 3 of the probe 10 via the chamber 4 for generation of patterns of electric pulses that stimulate the 10 tissue, via the electrodes 1 of the probe 10.

Figure 2a is a diagram of equipotential lines around a bar of conductive material 20, such as a metal bar, in an external electric field. The metal bar 20 has two ends 21. The equipotential lines of the external electric field are indicated by the lines 22. Figure 2 15 illustrates how the electric equipotential lines follow the contour of a conductive metal bar 20 in the external electric field. This results in high field strengths near the ends 21 of the wire, shown in figure 2 in that the equipotential lines are close to each other near the ends 21 of the metal bar. If the metal bar 20 is implanted in a weakly conductive medium, such as human tissue, for example the human brain, the distribution of equipotential lines leads to high current densities close to the ends 21 of the bare 20, because the current density is 20 proportional to the electric field according to the law of Ohm.

Figure 2b is a diagram of equipotential lines around a bar in an external electric field. The metal bar has two ends 21'. The bar is divided into three regions 20a, 20b, and 20c with different conductivities. The equipotential lines of the external electric field are indicated by the lines 22 and figure 2b illustrates how the electric equipotential lines 22 25 follow the contour of a bar having three regions of different resistivity in the external electric field.

The region 20a is highly conductive and has low resistivity. The equipotential lines cannot enter such a material and are bent around its shape. Therefore, the density of the equipotential lines at the left-hand side of the region 20a is relatively high. This results in a 30 high electric field strength at the left-hand side of the region 20a since the electric field strength is proportional to the density of the equipotential lines.

The region 20b has higher resistance than the region 20a, and the region 20c has much higher resistance than region 20a and higher resistance than 20b. This allows the equipotential lines to cross the region 20c. Because these equipotential lines are not bent

around the right hand side of the region 20c, the resulting density of equipotential lines is much lower at the right hand side of the region 20c than at the left hand side of the region 20a. This results in a lower electric field strength at the right-hand side of the region 20c with high resistance compared to the left hand side of the bar having low resistance.

5 Figure 3 is a diagrammatic drawing of a medical device with a probe 30 implanted in the skull 100 of a human patient. The probe 30 has a distal end 32 and a proximal end 33, the proximal end 33 being connected to a chamber 34 of the medical device. In the case of figure 4 the patient is subjected to an external electric field, whereof some equipotential lines are indicated. From figure 3 is is clear that the equipotential lines 10 close to the distal end 32 of the probe 30 are quite close, corresponding to a relatively high current density close to the distal end 32. It is noted, that the probe 30 in figure 3 is not a probe according to the invention; such a probe would render an altered configuration of the equipotential lines.

15 Figure 4 shows an embodiment of a probe 10 of an electro-stimulation device according to the invention. The probe 10 has a distal end 2 and a proximal end 3. For the sake of clarity, figure 2 only discloses one electrode 1 in the probe 10, the electrode 1 being situated close to the distal 2 end of the probe. However, more than one electrode 1 would typically be advantageous in order to provide high resolution stimulation, more than one electrode is advantageous. The first section 5a extends from the electrode along the length of 20 the probe to the second section 5b; the second section 5b of the wire extends from the interface with the first section 5a to the proximal end 3 of the probe, whereby the wire 5b may be connected to electronics within the chamber 4. According to the invention, the first section 5a has a first resistivity and the second section 5b has a second resistivity, where the first and second resistivities are different.

25 In an aspect of the invention, the resistivity of the first section 5a is higher than the resistivity at the second section 5b, so that the resistivity of the wire is higher close to the electrode compared to the rest of the wire.

30 In one embodiment of the probe, the first section 5a is made of material of a first resistivity and the second section 5b is made of material of a second resistivity, where the first resistivity is higher than the second resistivity. Hereby, the different resistivities of the wire are obtained by choosing different materials for the different sections of the wire. Alternatively or concurrently, wherein the first section 5a of the wire has a first sectional area and the second section 5b of the wire has a second sectional area, where the first sectional area is smaller than the second sectional area. Different sectional areas of the first and second

sections provide different resistivities of the wire, since the resistivity p of a resistive material is defined as $p = R \cdot l/A$, where R is the static resistivity of the material, A is the cross-sectional area of the piece of material and l is the length of the piece of material.

From figure 4 it is apparent, that the second section 5b of the wire is longer than the first section 5a of the wire. In figure 4, the length of the first section 5a is indicated by a , and the length of the second section 5b is indicated by b . Typically, the first section of wire constitutes between 2% and 40%, preferably between 5% and 20%, more preferably between 10% and 15% of the length of the wire. Thus, a may constitute 2-40%, preferably 5-20%, more preferably 10-15% of the total length $a+b$ of the wire.

Moreover, the resistivity of the first section 5a may advantageously be two to 10 times higher than the resistivity of the second section 5b. For example, the first section 5a of the wire is of polysilicon material and the second section 5b of the wire is of metallic material.

Even though the wire shown in figure 4 has only two sections 5a, 5b, it is conceivable that the wire comprises more than two different sections, where each section has a resistivity different from other sections of the wire. Alternatively, the resistivity of the wire may change continuously along the length of the wire.

Even though only one electrode 1 is shown in figure 4, it is understood that typically the probe 10 comprises a plurality of electrode, such as 64 electrodes, each connected with a wire to the proximal end 3 of the probe 10 and to the chamber 4 of the medical device.

In short, the invention relates to a probe 10 for an implantable medical device. The probe has a distal end 2 and a proximal end 3, and the probe 10 moreover comprises an electrode 1 at the distal end. The electrode is connected to a wire 5 extending from the electrode to the proximal end of the probe, where the resistivity of the wire is non-uniform along the length of the wire. The wire may have high resistivity at the distal end of the probe and low resistivity wires elsewhere. The high resistivity wires reduce the peak current density in the tissue of an implanted device, and thus prevents destructive heating and/or undesired stimulation of tissue during MRI examination. This highly contributes to MR safety which is a highly desired feature for these implantable electrical stimulation devices.

Although the present invention has been described in connection with the specified embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. In the claims, the term "comprising" does not exclude the presence of other elements or steps.

Additionally, although individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. Thus, references to "a", "an", "first", "second" etc. do 5 not preclude a plurality. Furthermore, reference signs in the claims shall not be construed as limiting the scope.

CLAIMS:

1. A probe (10) for an implantable medical device, said probe having a distal end (2) and a proximal end (3), said probe (10) moreover comprising an electrode (1) at the distal end, where said electrode is connected to a wire (5) extending from the electrode to the proximal end of the probe, wherein the resistivity of the wire is non-uniform along the length 5 of the wire.
2. A probe according to claim 1, wherein the wire comprises a first section (5a) having a first resistivity and a second section (5b) having a second resistivity, said first and second resistivities being different.
3. A probe according to claim 2, wherein the first section (5a) of the wire is contiguous to the electrode and wherein the resistivity of the first section is higher than the resistivity at the second section (5b).
4. A probe according to claim 3, wherein the first section (5a) is made of material of a first resistivity and the second section (5b) is made of material of a second resistivity, where the first resistivity is higher than the second resistivity.
5. A probe according to claim 3 or 4, wherein the first section (5a) of the wire has a first sectional area and the second section of the wire has a second sectional area, where the first sectional area is smaller than the second sectional area.
6. A probe according to any of the claims 4 or 5, wherein the second section (5b) of the wire is longer than the first section of the wire.
7. A probe according to any of the claims 4 to 5, wherein the first section (5a) of the wire constitutes between 2% and 40%, preferably between 5% and 20%, more preferably between 10% and 15% of the wire.

8. A probe according to any of the claims 4 to 7, wherein the resistivity of the first section (5a) is 2 to 10 times higher than the resistivity of the second section (5b).

9. A probe according to any of the claims 3 to 8, wherein the first section (5a) of
5 the wire is of polysilicon material and the second section (5b) of the wire is of metallic material.

10. A probe according to any of the claims 1 to 9, wherein the wire comprises one or more further sections, each further section having a resistivity different from other sections
10 of the wire.

11. A probe according to any of the claims 1 to 9, wherein the resistivity of the wire changes continuously along the length of the wire.

15 12. An implantable medical device comprising a probe according to claim 1.
Probe for an implantable medical device

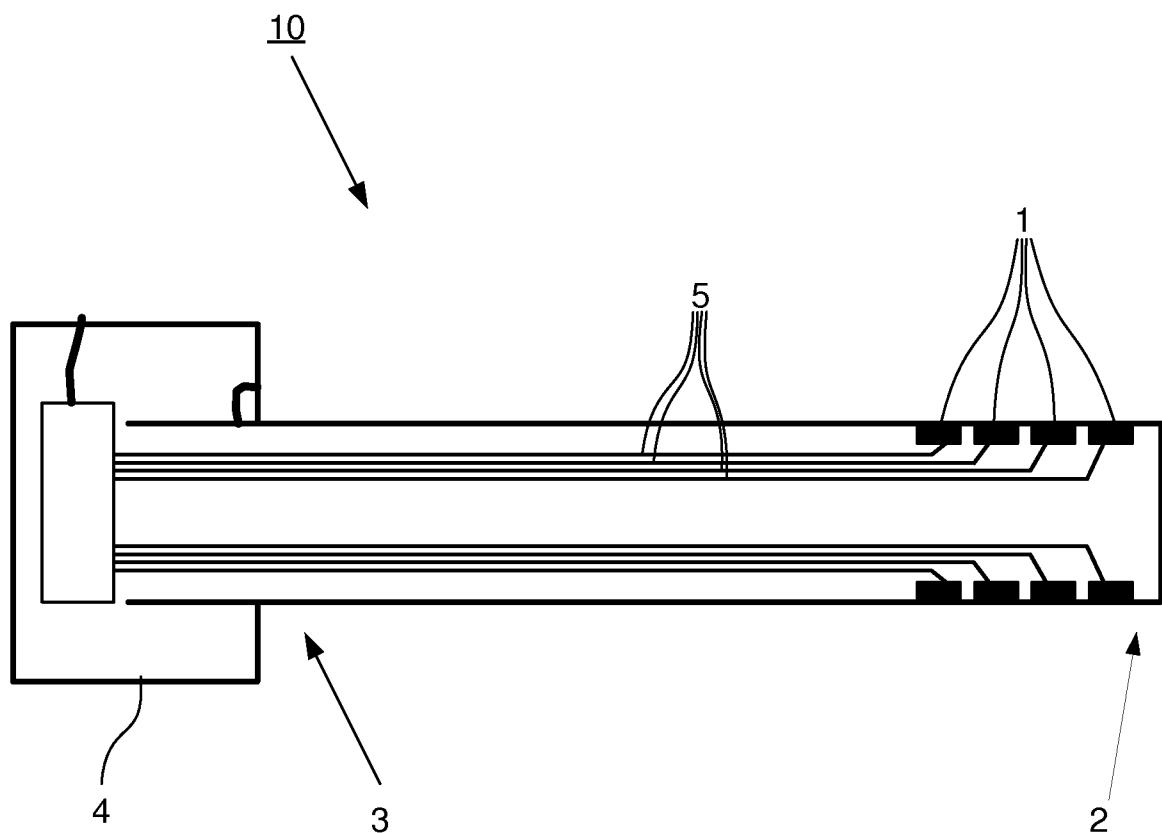


FIG. 1

2/5

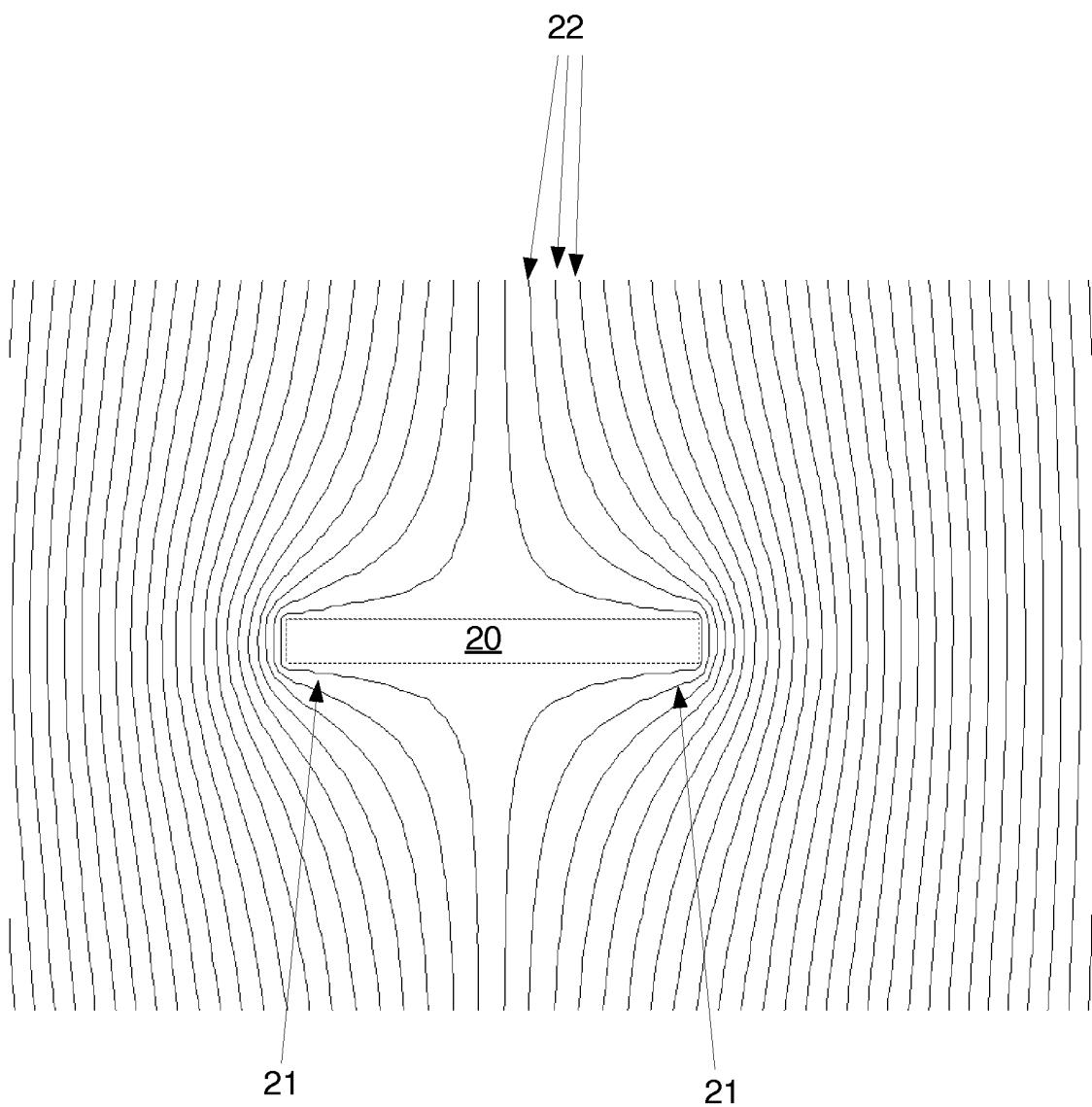


FIG. 2a

3/5

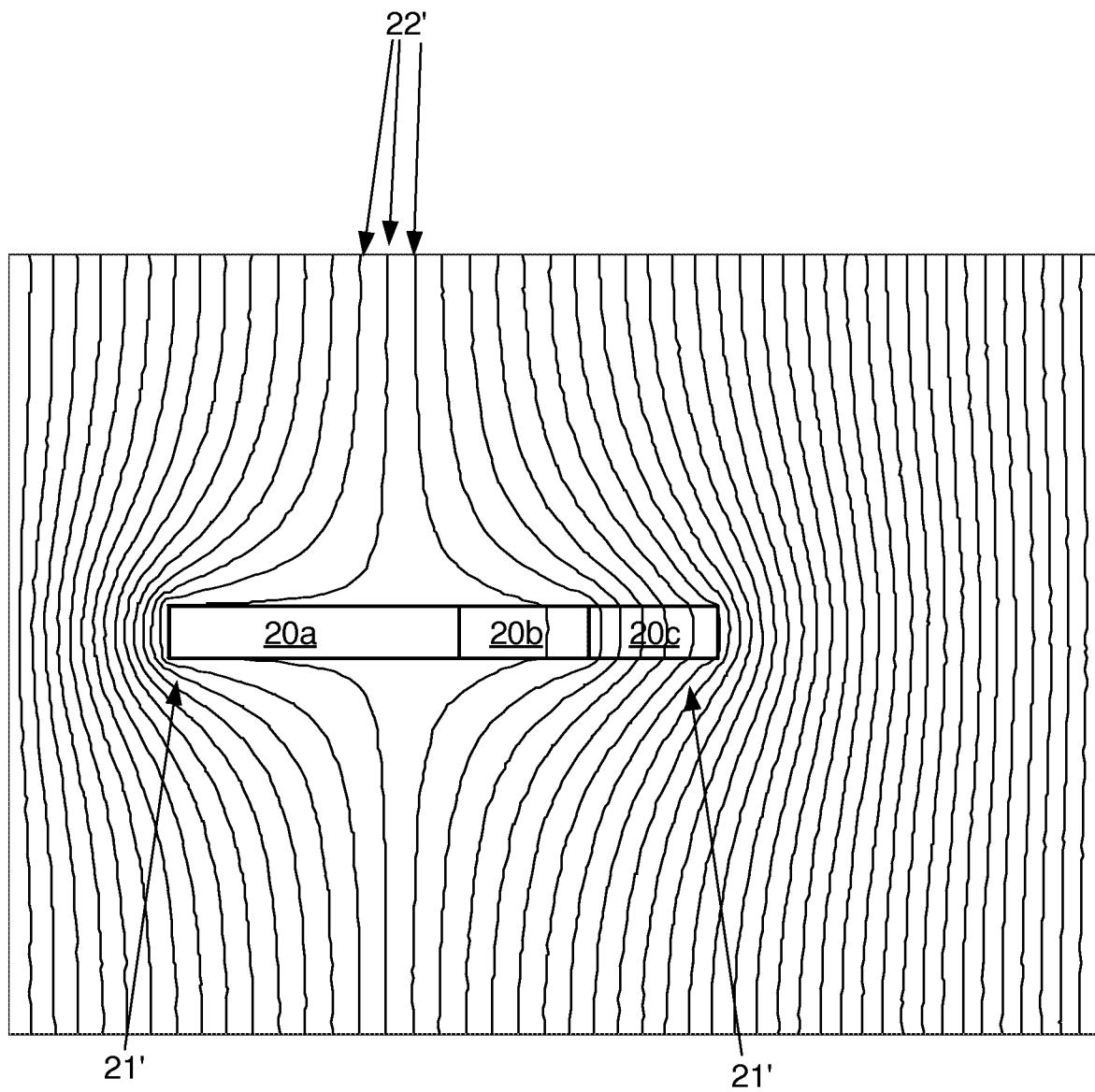


FIG. 2b

4/5

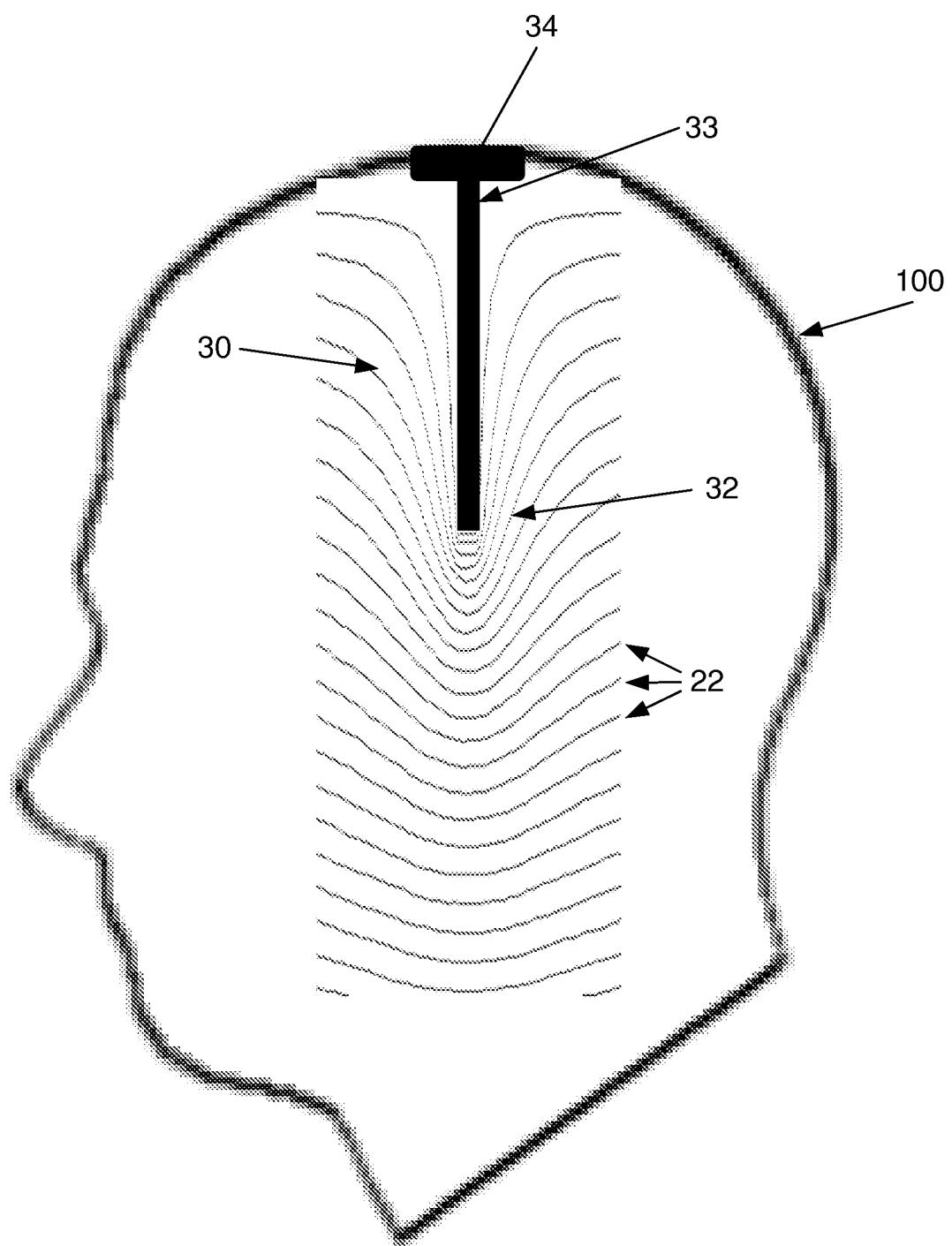


FIG. 3

5/5

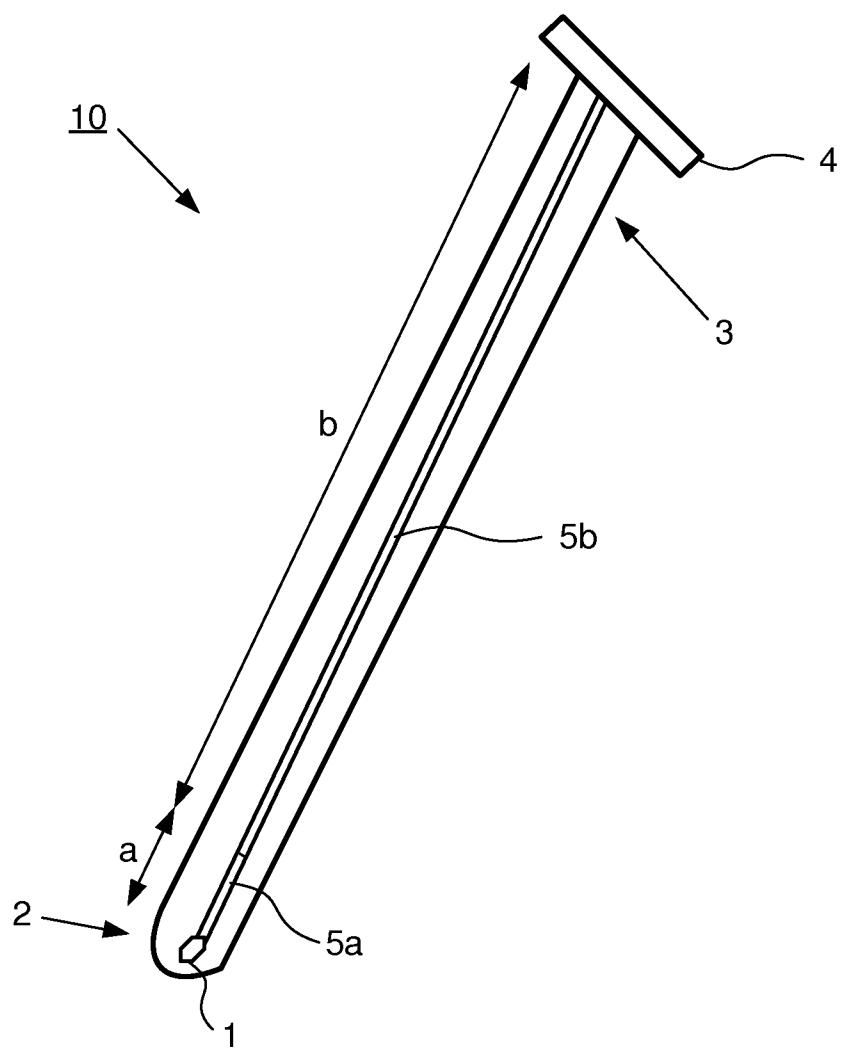


FIG. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2009/054401

A. CLASSIFICATION OF SUBJECT MATTER
INV . A61N1/08 A61N1/05

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61N GOIR

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document with indication, where appropriate, of the relevant passages	Relevant to claim No
X	<p>BONMASSAR G : "Resistive Tapered stripline (RTS) in Electroencephalogram Recordings During MRI" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ 1 US, vol . 52, no. 8 , 1 August 2004 (2004-08-01), pages 1992-1998, XP011115660 ISSN: 0018-9480 the whole document</p> <p>-----</p> <p style="text-align: center;">- / --</p>	1-12

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents

"A¹" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L¹" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 November 2009

Date of mailing of the international search report

07/12/2009

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel (+31-70) 340-2040,
 Fax (+31-70) 340-3016

Authorized officer

Ließmann, Frank

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2009/054401

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	WO 2007/064739 A (SURGI VISION INC [US]; KARMARKAR PARAG V [US]; JENKINS KIMBLE [US]) 7 June 2007 (2007-06-07) figures 1A, 4A, B, 5 page 18, line 27 - page 19, line 12 page 24, line 11 - page 25, line 30 page 26, line 16 - line 34 -----	1, 5, 12
A	EP 1 488 738 A (INSTRUMENTARIUM CORP [FI]) 22 December 2004 (2004-12-22) the whole document -----	1-12
A	LEMIEUX L ET AL: "RECORDING OF EEG DURING FMRI EXPERIMENTS: PATIENT SAFETY" MAGNETIC RESONANCE IN MEDICINE, ACADEMIC PRESS, DULUTH, MN, US, vol. 38, no. 6, 1 December 1997 (1997-12-01), pages 943-952, XP000729808 ISSN: 0740-3194 the whole document -----	1-12
A	WO 2008/032249 A (KONINKL PHILIPS ELECTRONICS NV [NL]; PHILIPS INTELLECTUAL PROPERTY [DE]) 20 March 2008 (2008-03-20) the whole document -----	1-12
A	WO 02/074164 A (KONINKL PHILIPS ELECTRONICS NV [NL]; PHILIPS CORP INTELLECTUAL PTY [DE]) 26 September 2002 (2002-09-26) the whole document -----	1-12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2009/054401

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 2007064739	A 07-06-2007	AU 2006320611 A1	CA 2623616 A1	EP 1956975 A2	07-06-2007
				EP 2062530 A2	20-08-2008
			US 2009118610 A1		27-05-2009
EP 1488738	A 22-12-2004	US 2005027191 A1			07-05-2009
WO 2008032249	A 20-03-2008	CA 2662845 A1	CN 101511265 A	EP 2066234 A2	20-03-2008
					19-08-2009
WO 02074164	A 26-09-2002	DE 10113661 A1	EP 1372476 A1	JP 4004962 B2	07-11-2007
				JP 2004519294 T	02-07-2004
			JP 2006297122 A		02-11-2006
		US 2003135110 A1			17-07-2003