US007665067B2

a2 United States Patent (10) Patent No.: US 7,665,067 B2
Hollander et al. (45) Date of Patent: Feb. 16,2010
(54) METHOD AND SYSTEM FOR 6,625,797 Bl* 9/2003 Edwardsetal. 716/18
AUTOMATICALLY CREATING TESTS 6,675,138 Bl 1/2004 Hollander
6,698,012 B1* 2/2004 Kossatchevetal. 717/126
(75) Inventors: Yoav Hollander, Kiryat Ono (IL); g;ggﬁj Eé: ggggj iolloway etal . ;};;Sj
. ,769, CUNE ..oevnreveenenne
Yaron Kashai, Sunnyvale, CA (US) 6,845,440 B2* 1/2005 Thompson et al. 711/220
. . 6,986,125 B2* 1/2006 A tal 717/124
(73) Assignee: Cadence Design (Tsrael) IT Ltd., Rosh 6,993,747 B1* 1/2006 Friedman 717/124
Ha’ayin (IL) 7117484 B2* 10/2006 Hartman etal. 717/126
7,210,087 B2* 4/2007 Mukaietal. 714/742
(*) Notice: Subject to any disclaimer, the term of this 2002/0040457 AL* 4/2002 Noya.l.fa...?.l T14/724
patent is extended or adjusted under 35 2002/0182579 A1* 12/2002 Driscoll et al. 434/350
U.S.C. 154(b) by 719 days. 2004/0093476 Al* 5/2004 Thompsonetal. 711/220
(21) Appl. No.: 10/661,772 OTHER PUBLICATIONS
(22) Filed: Sep. 15, 2003 Iyer, MA, “A Robust and Scalable Technique for the Constraints
’ (Under "'37 CFR 1.47) Solving Problem in High-Level Verification”, IEEE Transation on
’ Circuits and Systems for Video Technology, pp. 95-100, 2003.
. .. Hollander, Y, “The e-Language: a Fresh Separation of
(65) Prior Publication Data Concents”,Proc. Technol. Of Object-Oriented Languages and Sys-
US 2005/0060132 Al Mar. 17, 2005 tems. Toos, 38 IEEE, pp. 41-50, 2001.
(51) Int.Cl * cited by examiner
GO6F 9/44 (2006.01) Primary Examiner—Philip Wang
(52) US.Cle oot 717/124 (74) Attorney, Agent, or Firm—Rosenberg, Klein & Lee
(58) Field of Classification Search 717/124-131,
717/148-149; 710100 (7) ABSTRACT
See application file for complete search history.
(56) Ref Cited A system and method for generalized scenarios, for automati-
eferences Cite

U.S. PATENT DOCUMENTS

6,073,194 A * 6/2000 Lowecccovnriininnnns 710/100
6,081,864 A * 6/2000 Loweetal.cc..... 710/100
6,154,801 A * 11/2000 Loweetal.ccoc.n. 710/119
6,173,243 B1* 1/2001 Loweetal.coceennne. 703/14
6,182,258 Bl 1/2001 Hollander

6,581,052 B1* 6/2003 SItZ ..ccovvvrviviiniiiinnnnn. 7072

cally generating tests. The tests are generated from some
underlying structure, such as one or more scenarios. The
scenarios preferably include a plurality of constraints for
generating a test program for generating input values to the
test generation process. The scenarios provide a more gener-
alized method for generating tests.

23 Claims, 4 Drawing Sheets

Provide a plurality of scenarios in stage 1

\

One or more scenarios are selected in stage 2

Y

One or more HDL files is generated in stage 3

\

One or more code files is generated in stage 4

Y

Test program is generated in stage 5

U.S. Patent Feb. 16,2010 Sheet 1 of 4 US 7,665,067 B2

-
| Constraints 1/0 data model
(20) (22)
Test engine
(23)
Test generator Run-time system Data collector
(18) ™ (21) ™1 (24)
Design (DUT) Simulator
(14) —> (12) Data analyzer
{ (26)
-
coverage feedback Flg 1

A plurality of scenarios is preferably created in advance in stage 1

l

One or more scenarios are selected in stage 2

l

Test program is generated in stage 3

Fig. 2

U.S. Patent Feb. 16,2010 Sheet 2 of 4 US 7,665,067 B2
300
&enerate s@
]
f 304
302 Create a
SMALL or BIG
b 308
I
!
1 Select next
! ____ | sequence 310
{
| \
| Pick either
I two_good_one_bad or]
306 ! all_good_and_wait
_______________ S -
B, ;
[
1
1 Small packets
|
|
i
|
: Two_good All_good Two_good Two_good
— —| - - - — - -
/y One _bad and_wait One _bad One _bad
312 AN AN N AN
/ \ 7 \ / \ / \
VAL VAN VA VA
/ | \ / | \ / [A / I \
L4 A 4 \ \ r v h) | 4 A
\
G| |G| |B G| |G G| |G| |B G| |G L- B
\
/ (
316
314 Simulation Generated __|
i Input
. engine
-

U.S. Patent Feb. 16,2010 Sheet 3 of 4 US 7,665,067 B2

Provide a plurality of scenarios in stage 1

l

One or more scenarios are selected in stage 2

l

One or more HDL files is generated in stage 3

l

One or more code files is generated in stage 4

l

Test program is generated in stage 5

Fig. 4

U.S. Patent Feb. 16,2010 Sheet 4 of 4 US 7,665,067 B2
500
[Generate sst
|
— 304
302 Create a
SMALL or BIG
env
/\
AN
4 \
/ AN Select next
/ \ sequence 310
/ \ \
7 \ \
i N Pick either
/ N two_good_one_bad or
Y \\ all_good and wait
\ L]
Generated [|) N\ 'l
/
HDL _ \ y I/\312
configuration
: Packet Generator
|
|
|
504 I L _J
| N
I
I)/
! /
\J K
Compilation Pack;at traffic
N !/ \
AN /
Configured] 510
506 design under test I/
\\ /
“&| Simulation ’
508 engine .
- \
Fig. 5 320

US 7,665,067 B2

1

METHOD AND SYSTEM FOR
AUTOMATICALLY CREATING TESTS

FIELD OF THE INVENTION

This invention relates to computer software, more particu-
larly to computer software for analyzing the functionality of
a circuit design and for analyzing the functional correctness
of the circuit design.

BACKGROUND OF THE INVENTION

The field of electronic design automation (EDA) is well
established. A number of software tools are used to describe
a circuit at various levels of granularity or specificity. Such
tools include gate level descriptions, which specify the circuit
in very great detail, to high level descriptions written in hard-
ware description languages such as Verilog or VHDL. The
process of verifying a design through a simulation model of
the device is aided by the availability of Verilog and VHDL..
These languages are designed to describe hardware both at
higher levels of abstraction and as gates or transistors, thus
enabling designers to describe the elements and connections
between elements of a circuit. Modern circuits have many
millions of transistors, so it is essential to use some sort of
design tools just to manage the complexity of the design,
particularly for design verification.

Design verification is the process of determining whether
an integrated circuit, board, or system-level architecture,
exactly implements the requirements defined by the specifi-
cation of the architecture for that device. Design verification
for a device under testing (DUT) may be performed on the
actual device, or on a simulation model of the device. For the
purposes of explanation only and without intending to be
limiting in any way, the following discussion centers upon
testing which is performed on simulation models of the
device.

As designs for different types of devices and device archi-
tectures become more complex, the likelihood of design
errors increases. However, design verification also becomes
more difficult and time consuming, as the simulation models
of the design of the device also become more complex to
prepare and to test.

The problem of design verification is compounded by the
lack of widely generalizable tools which are useful for the
verification and testing of'a wide variety of devices and device
architectures. Typical background art verification methods
have often been restricted to a particular device having a
specific design, such that the steps of preparing and imple-
menting such verification methods for the simulation model
must be performed for each new device.

As previously described, the process of verifying a design
through a simulation model of the device is aided by the
availability of hardware description languages such as Ver-
ilog and VHDL. The resultant simulated model of the device
can receive input stimuli in the form of test vectors, which are
a string of binary digits applied to the input of a circuit. The
simulated model then produces results, which are checked
against the expected results for the particular design of the
device. However, these languages are typically not designed
for actual verification. Therefore, the verification engineer
must write additional programming code in order to interface
with the models described by these hardware description
languages in order to perform design verification of the
device.

Examples of testing environments include static and
dynamic testing environments. A static testing environment

20

25

30

35

40

45

50

55

60

65

2

drives pre-computed test vectors into the simulation model of
the DUT and/or examines the results after operation of the
simulation model. In addition, if the static testing environ-
ment is used to examine the results which are output from the
simulation model, then errors in the test are not detected until
after the test is finished. As a result, the internal state of the
device at the point of error may not be determinable, requiring
the simulation to be operated again in order to determine such
internal states. This procedure consumes simulation cycles,
and can require the expenditure of considerable time, espe-
cially during long tests.

A more useful and efficient type of testing is a dynamic
testing environment. For this type of environment, a set of
programming instructions is written to generate the test vec-
tors in concurrence with the simulation of the model of the
DUT and while potentially being controlled by the state feed-
back of the simulated device. This procedure enables directed
random generation to be performed and to be sensitive to
effects uncovered during the test itself on the state of the
simulation model of the device. Thus, dynamic test genera-
tion clearly has many advantages for design verification.

Within the area of testing environments, both static and
dynamic testing environments can be implemented only with
fixed-vector or pre-generation input. However, a more pow-
erful and more sophisticated implementation uses test gen-
eration to produce the environment, particularly for func-
tional verification in order for the various elements be defined
and connected together correctly in order to have the circuit
perform as specified. Specman Elite™, software developed
by Verisity Ltd. in Israel and available through Verisity
Design, Inc. in Mountain View, Calif., is the market leader in
providing functional verification. Certain attributes of the
software are described in copending, commonly assigned
U.S. patent application Ser. No. 09/327,966, entitled “System
and Method for Measuring Temporal Coverage Detection”,
filed Jun. 8, 1999, and incorporated herein in full by refer-
ence. Useful background information is presented in com-
monly assigned U.S. Pat. No. 6,182,258, filed Feb. 6, 1998
and issued Jan. 30, 2001, entitled “Method and Apparatus for
Test Generation During Circuit Design”, also hereby incor-
porated by reference.

The test generator disclosed in U.S. Pat. No. 6,182,258
interacts with, and sits as a higher level over, such hardware
description languages as Verilog and VHDL.. The test genera-
tion procedure is written in a hardware-oriented verification
specific object-oriented programming language. This lan-
guage is used to write various test programs (which may be
also called tests), which are then used to automatically create
a device verification test by a test generator module. A wide
variety of design environments can be tested and verified with
this language. Thus, the disclosed procedure is generalizable,
yet is also simple to program and to debug by the engineer.

However, the reliance on human intervention is still highly
problematic. In particular, human intervention is costly and
also slows the process of testing. Furthermore, any aspect of
a testing process that requires human intervention represents
a potential bottleneck for the rapid and efficient performance
of'the testing process. As can be seen from the above descrip-
tion, testing processes which minimize human intervention,
while maximizing the value and effect of such intervention,
are clearly more desirable. Although significant progress has

US 7,665,067 B2

3

been made toward these goals, currently available testing
systems still require significant human intervention, at least at
the level of test creation.

SUMMARY OF THE INVENTION

The background art does not teach or suggest a method for
truly automatic test program creation and generation. The
background art also does not teach or suggest a method for
generating a test program from a general description of such
a program and/or of the goals to be achieved by a test gener-
ated through such a test program.

The present invention overcomes these disadvantages of
the background art by providing generalized scenarios for
automatic test program generation, for design verification of
a DUT (device under test). The tests themselves (instances of
tests), which are generated by and/or through the test pro-
gram, are performed on a simulation model of the DUT;
however, it should be noted that the terms “DUT” and “simu-
lation model” are used interchangeably in the context of the
testing and verification process.

The present invention is of a system and method for auto-
matically generating such test programs according to a gen-
eralized mechanism. By “generalized mechanism”, it is
meant that in place of having the user prepare a complete test
program, the user may instead only create guidance for how
the tests are to be generated. In the background art, as for
example in co-assigned U.S. Pat. No. 6,182,258, previously
incorporated by reference, the user creates a test program,
which is loaded into the system and guides the test generator
to generate tests. One such program can generate a multitude
of'tests because of the process of randomization. The present
invention extends and generalizes the process of creating a
test program, by allowing the user to only create guidance for
test generation. As described below, such guidance may
optionally include an at least partially automatic process for
generating the code for the test program, and/or a process of
selecting code for the test program from a plurality of choices,
for example.

One or more scenarios are defined for the operation of the
present invention. These scenarios undergo a generation
phase to create a “program instance” or a test program as
described above. The program instance then undergoes gen-
eration to create a test instance (or test) as in the background
art.

The present invention may optionally be performed in a
two stage (or even multistage) process, or alternatively as one
continuous stage. The former embodiment is implemented
when external files, such as HDL files for example, need to be
generated. These files are generated in a separate stage from
the generation of the scenarios etc, before the test program
can be run.

The first, more general implementation, starts with a plu-
rality of scenarios being input by the user or otherwise pro-
vided. These scenarios are provided with (optionally) one or
more meta data elements and one or more constraints indi-
cating at least which scenarios may be combined together in
a particular test program, and which are in conflict. Prefer-
ably, the constraint(s) are also provided for the test generation
itself, as described in greater detail below. A selection is then
made from these scenarios, including at least one such sce-
nario but preferably including a plurality of (non-conflicting)
scenarios. This selection is done by resolving the constraints
associated. The selected scenario(s) are then combined in a
combination phase, to form a combined scenario instance.
This combination is then used to generate a test program at
run time, in a generation phase, which is actually a continu-

20

25

30

35

40

45

50

55

60

65

4

ation of the combination phase; the two phases are described
separately herein for the purposes of description only and
without any intention of being limiting.

According to an optional but preferred embodiment of the
present invention, a plurality of scenarios is combined
together during the combination phase. These scenarios are
optionally and more preferably selected from a group of
scenarios which may optionally contain potentially conflict-
ing scenarios. The scenarios selected from this group and
combined in the combination phase are a non conflicting
subset of the group. One or more scenarios are more prefer-
ably sequences.

A sequence is a scenario that describes an application of a
stimulus over time. As such a sequence includes at least one
process which comprises a generation operation in which a
data item is created and a driving operation in which said data
item is applied. A sequence preferably comprises multiple
such processes, with synchronization operations interleaved
between the steps.

Sequences are optionally and preferably implemented as
an e language construct which provides a “mini-test”.
Although sequences may optionally be used with code gen-
eration, such code generation is not required for generating a
test program. Sequences preferably define streams of data
items (code instructions for the test program). Sequences are
paired with sequence drivers, which enable the sequence to be
operative for generating a test.

For the present invention, one or more sequences may
optionally be selected for forming the test program. More
preferably, one sequence is able to call the next sequence to be
able to construct the test program from a plurality of
sequences.

According to an optional but preferred embodiment of the
present invention, the constraint(s) preferably also comprise a
description of a type of expected variable and a type of opera-
tion to be performed on the expected variable. For example,
the operation could optionally comprise a sampling process
for avariable of the simulation model for simulating the DUT
(device under test), again as previously described for the test
program which would then generate the test.

According to an optional but preferred embodiment of the
present invention, the test program is generated through a two
stage generation process. The first stage of the generation
process preferably includes the creation of code, such as a
HDL (hardware description language) file and also verifica-
tion language code, such as e code for example. One or more
of the file(s) created in the first stage may optionally require
compilation prior to use during the second stage. The second
stage of the generation process preferably includes reading in
some of the code generated in stage one and the generation of
one or more actual test programs based at least in part on the
code generated during stage one. The second stage may
optionally be performed according to a randomized or semi-
randomized process. It should be noted that the second stage
may optionally include both pre-run time and also run-time
processes, such that there is not necessarily a one-to-one
mapping between “first and second stages” and “pre-run time
and run-time generation processes”.

It should also be noted that the automatic test program
generation according to the present invention should be dis-
tinguished from previously known test generation processes
in that the generation process according to the present inven-

US 7,665,067 B2

5

tion includes at least one process for generating data that is
subsequently used for generating values for the test inputs.

BRIEF DESCRIPTION OF THE DRAWINGS

The attached figures illustrate certain aspects of the inven-
tion but are not meant to be limiting in any way.

FIG. 1 illustrates the traditional Specman™ “e” test envi-
ronment, and a DUT (physical or simulated or both) interact-
ing through Specman Elite™ software to test the DUT for
functional accuracy;

FIG. 2 is a flowchart of an exemplary method according to
the present invention for generating a test program;

FIG. 3 is a schematic block process diagram of an example
of the method according to FIG. 2 for test generation;

FIG. 4 is a flowchart of another exemplary method accord-
ing to the present invention for generating a test program with
two stage generation; and

FIG. 5 is a schematic block process diagram of an example
of the method according to FIG. 4 for test generation.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is of a method for generating test
programs according to generalized guidance, rather than
according to a completely predefined set of rules or instruc-
tions. According to this method, one or more scenarios are
defined for the operation of the present invention. These sce-
narios undergo a generation phase to create a “program
instance” or a test program as described above. The program
instance then undergoes generation to create a test instance
(or test) as in the background art, as described for example in
co-assigned U.S. Pat. No. 6,182,258.

The present invention may optionally be performed in a
two stage (or even multistage) process, or alternatively as one
continuous stage. The former embodiment is implemented
when external files, such as HDL files for example, need to be
generated. These files are generated in a separate stage from
the generation of the scenarios etc, before the test program
can be run.

The first, more general implementation, starts with a plu-
rality of scenarios being input by the user or otherwise pro-
vided. These scenarios are provided with one or more con-
straints, indicating at least which scenarios may be combined
together in a particular test program, and which are in conflict.
Preferably, the constraint(s) are also provided for the test
generation itself, as described in greater detail below. A selec-
tion is then made from these scenarios, including at least one
such scenario but preferably including a plurality of (non-
conflicting) scenarios. This selection is done by resolving the
constraints associated. The selected scenario(s) are then com-
bined in a combination phase, to form a combined scenario
instance. This combination is then used to generate a test
program at run time, in a generation phase, which is actually
a continuation of the combination phase; the two phases are
described separately herein for the purposes of description
only and without any intention of being limiting.

According to an optional but preferred embodiment of the
present invention, a plurality of scenarios is combined
together during the combination phase. These scenarios are
optionally and more preferably selected from a group of
scenarios which may optionally contain potentially conflict-
ing scenarios. The scenarios selected from this group and
combined in the combination phase are a non conflicting
subset of the group. One or more scenarios are more prefer-
ably sequences.

20

25

30

35

40

45

50

55

60

65

6

A sequence is a scenario that describes an application of a
stimulus over time. As such a sequence includes at least one
process which comprises a generation operation in which a
data item is created and a driving operation in which said data
item is applied. A sequence preferably comprises multiple
such processes, with synchronization operations interleaved
between the steps.

Sequences are optionally and preferably implemented as
an e language construct which provides a “mini-test”.
Although sequences may optionally be used with code gen-
eration, such code generation is not required for generating a
test program. Sequences preferably define streams of data
items (code instructions for the test program). Sequences are
paired with sequence drivers, which enable the sequence to be
operative for generating a test.

For the present invention, one or more sequences are
optionally and preferably selected for forming the test pro-
gram. More preferably, one sequence is able to call the next
sequence to be able to construct the test program from a
plurality of sequences.

Sequences may optionally comprise patterns of objects
that are being generated according to a particular order. An
example would be a sequence of CPU instructions, or a
sequence of ATM cells. The pattern may optionally have
some unique attributes such as “start with a load instruction,
then perform some random/pseudo-random operation, and
end with a store to the same address”.

According to an optional but preferred embodiment of the
present invention, the constraint(s) preferably also comprise a
description of a type of expected variable and a type of opera-
tion to be performed on the expected variable. For example,
the operation could optionally comprise a sampling process
for avariable of the simulation model for simulating the DUT
(device under test), again as previously described for the test
program which would then generate the test.

The constraint may optionally include a static constraint on
a value of the type of expected input variable. The constraint
may optionally (alternatively or additionally) include a
dynamic constraint on this value. The previously described
one or more rules preferably controls at least one character-
istic of the constraint, such as whether a plurality of con-
straints are operable together or whether a constraint conflicts
with another such constraint, for example.

The type of operation may also optionally (alternatively or
additionally) include a monitoring operation for monitoring
behavior of the simulation model. The simulation model typi-
cally includes a plurality of variables, such that the monitor-
ing operation preferably includes sampling at least one value
of at least one variable of the simulation model.

The type of expected input variable may optionally and
preferably be at least partially determined according to a
simulation model of the DUT.

According to an optional but preferred embodiment of the
present invention, the test program is generated through a two
stage generation process. The first stage of the generation
process preferably includes the creation of code, such as a
HDL (hardware description language) file and also verifica-
tion language code, such as e code for example. The second
stage of the generation process preferably includes reading in
some of the code generated in stage one and the generation of
one or more actual test programs based at least in part on the
code generated during stage one. The second stage may
optionally be performed according to a randomized or semi-
randomized process. It should be noted that the second stage
may optionally include both pre-run time and also run-time
processes, such that there is not necessarily a one-to-one

US 7,665,067 B2

7

mapping between “first and second stages” and “pre-run time
and run-time generation processes”.

Referring now to the drawings, FIG. 1 is a schematic block
diagram illustrating an exemplary system according to the
present invention for test generation. It should be noted that
the illustrated system only includes those general functions of
the test generation procedure which are required for the
description of the present invention. A more complete
description of the entire test generation procedure may be
found in U.S. Pat. No. 6,182,258, previously incorporated by
reference. It should also be noted that although the present
invention is described in the context of a simulation model,
the present invention is also useful for verification of a physi-
cal device. Both the physical device and the simulation model
can be described as a DUT (device under test), which is in a
test environment.

A test generation system 10 according to the present inven-
tion features a simulator 12, which may accept a design 14 for
the device under test (DUT), written in a hardware descriptive
language such as Verilog or VHDL. In addition, simulator 12
interacts with a test engine 16 for performing the test genera-
tion procedure at run-time. The interaction between simulator
12 and test engine 16 is shown as bi-directional, since test
engine 16 provides input to simulator 12, and in turn receives
the results from simulator 12 as input for further operation.

Test engine 16 features a test generator 18, connected to a
run-time system 21 for testing DUT 14 at run-time. Test
generator 18 receives a set of constraints 20 and an [/O data
model 22, and then performs the testing and verification of
DUT 14. Constraints 20 may optionally include at least one
set of a plurality of dynamic constraints. Run-time system 21
both drives and samples simulator 12 during the run-time
testing procedure.

During the process of testing and verification, a data col-
lector 24 requests the values for one or more variables from
run-time system 21. These requests are optionally performed
according to a triggering event emitted by run-time system
21. For example, for collection of data related to temporal
coverage, such a triggering event is optionally a fixed, pre-
defined sampling time and/or the occurrence of a temporal
pattern of state transitions as defined by a temporal expression
given in a temporal language, for example. Data collector 24
is able to communicate with test generator 18 and to access
the requested data through the API (application programming
interface) for test generator 18. Such an API specifies the
software function calls required in order to collect the desired
data. This collected data is then analyzed by a data analyzer
26. The information obtained from the analysis by data ana-
lyzer 26 is then preferably used to create new tests and/or
adjust one or more constraints at constraints 20.

According to a preferred embodiment of the present inven-
tion, constraints 20 and /O data model 22 are preferably
constructed in e code, which is the code language provided by
the Specman™ functional programming environment
(Verisity Design, Inc., Mountain View, Calif., USA) and dis-
closed in U.S. Pat. No. 6,182,258, previously incorporated by
reference. Such an embodiment is preferred because of the
ease and flexibility of programming in e code.

The e code language is a hardware-oriented verification
specific object-oriented programming language. Objects in
this language are instances of “structs”, which contain a field,
and one or more functions, or methods, which operate on data
stored within the field and which interact with other objects.
Optionally, a constraint can operate on the field, thereby
altering the data stored in the field, for example by restricting

20

25

40

45

50

55

65

8

the range of possible values for the data. The field can also be
used to store more complex structures, including other structs
and lists of scalars or structs.

The process of test generation fills data elements, including
structs and fields, with random values. The possible data
values for each element can optionally be limited by con-
straints, which provide the direction for the directed test gen-
eration. For dynamic constraints, a selected, specific solution
is preferably provided according to the present invention for
each instance of test generation, as described with regard to
PCT Application No. PCT/IL01/01011 (published as WO
02/37340). This solution is then used to provide limitations
on the generated data values.

FIG. 2 is a flowchart of an exemplary method according to
the present invention for generating a test program. As shown,
a plurality of scenarios is preferably created in advance, as
shown in stage 1. Each scenario preferably includes a plural-
ity of constraints which may optionally be used to generate
instructions for the test program.

As an example, currently (without the present invention) an
illustrative test program could optionally be written in the e
language as follows (the example is intended to detect an
overflow of large packets, which are defined in this example
as packets that are larger than a particular given size, as
defined with regard to the “packet” struct):

extend sys {
keep buffer_size == 0;
b

extend packet {
keep len > 100;
b

For the present invention, the instructions are preferably
written in the e language as follows. First, the following type
is preferably predefined for the sys file as follows:

Type scenario_kind: [];
Extend sys {

Scenario: scenario__kind;
i

Next, the following more generalized structure would prefer-
ably be created, for guiding the generation of the test pro-
gram:

extend scenario_kind: [big packets_ overflow];
extend sys {
keep scenario == big_ packets_ overflow =>
buffer_ size ==0;

extend packet {
keep sys. scenario == big_ packets_ overflow =>len > 100;

Next a scenario is preferably selected for generating the
test program in stage 2. The scenario contains the necessary
constraint(s) and instructions for generating the test as
described above. The process of selection is optionally and
preferably performed according to type or configuration of
the DUT.

Optionally and preferably, this stage includes selecting a
plurality of scenarios according to their respective constraint

US 7,665,067 B2

9

(s), to avoid conflicts between the scenarios. Next, these
selected scenarios are preferably combined to form a com-
bined scenario instance.

The test program is then preferably generated from the
scenario and/or combined scenario instance in stage 3.

As previously described, this type of generation process for
a test program may optionally be performed with sequences,
an e language construct. A sequence is preferably created as
follows. First, the sequence is defined by using the sequence
statement. Next, the code is modified to inherit from such a
defined sequence. The sequence driver is then hooked into the
test environment (this “hook” enables the sequence driver to
operate the instructions of the sequence for generating a test
program).

An illustrative non-limiting example for generalized sce-
narios is provided below.

TEST 1—Overflow

<
// Assume there is a packet type
// A test file for creating overflow conditions
extend sys {
// buffer__size is a system parameter defining the size of
// the buffer holding the data of the packets - many packets
// with big data may cause an overflow
keep buffer_size <= 2; // That will force an overflow...

extend packet {
keep len > 100; // Big data will cause overflow ...
b

>

TEST 2—Small Packets, no Overflow

«
// A test file for creating small packets
extend packet {

keep len < 20; // Force data to be small...

SMALL/BIG tests (in which a value for a parameter is
made very small and/or very large as a test of extreme edge
conditions) may be provided through the following general-
ized scenario which is capable of creating either condition.

<
Type scenario_ kind: [];
Extend sys {

Scenario: scenario__kind;
H

// Scenario 1
extend scenario_ kind: [big packets_ overflow];
extend sys {
keep scenario == big packets_ overflow => buffer_ size ==0;

extend packet {
keep sys. scenario == big_ packets__overflow => len > 100;
b

// Scenario 2
extend scenario_ kind: [small_packets];
extend packet {
keep sys. scenario == small_packets => len <= 20;
g

>

20

25

30

35

40

50

55

60

65

10

It should be noted that generating the Scenario field above
will result in the choice of one of the two scenarios defined,
and all subsequently generated packets will be generated
accordingly.

GOOD/BAD tests provide a test for conditions in which
some input data is not correct. For the example below, the
scenarios are enhanced with some sequences that are mixed
in.

extend packet_sequence_ kind: [two__good_ one_ bad, all__good__
and_ wait];
.
// Assume a packet__sequence is defined
extend two__good__one__bad packet_sequence {
body() @driver.clock is {
do packet keeping {.kind == GOOD};
do packet keeping {.kind == GOOD};
do packet keeping {.kind == BAD};
i
i
extend all__good__and_ wait packet_sequence {
num__packets :uint;
body() @driver.clock is {
for i from 1 to num__packets {
do packet keeping {.kind == GOOD};

;
wait cycle;

>

1

>

The following example demonstrates that by loading both
BIG/SMALL and GOOD/BAD scenarios, the following vari-
ability may optionally be generated. For example, first select
a case of either big or small packets (which are selected once
pertest, and are mutually exclusive). Next, throughout the test
keep selecting a sequence from the two sequences defined.
Packets may then be generated according to the sequence.

For example, the following pseudo-instructions may
optionally be performed, in which the items starting with the
symbol “->” are the expected response to the listed com-
mands:

- choose with SMALL packets
choose two__good__one__bad
->small good packet
->small good packet
->small bad packet
choose all__good__and_ wait
->small good packet

wait.

FIG. 3 is a schematic block process diagram of an example
of the method according to FIG. 2 for test generation. As
shown, a system process 300 preferably starts with a generate
sys command 302 for initializing the process. Next, in process
304, one of the mutually exclusive SMALL or BIG scenarios
is selected, for determining packet size in this example. The
constraint in the selected scenario (for this example, the
SMALL scenario) results in the packet size being limited
according to the “SMALL” constraint 306.

The process continues with another, non-conflicting sce-
nario being selected by selecting a sequence 308. The
selected sequence 310 involves producing either two “good”
packets and one “bad” packet, or all “good” packets and then
waiting. It should be noted that the terms “good” and “bad”

US 7,665,067 B2

11

are simply attributes, or enumerated values assigned to a
variable. This classification typically relates to a packet con-
taining valid data which is GOOD, as opposed to a packet
containing corrupt data or bad error correction signature
which is BAD. Of course any other attributes could be used in
place of this particular exemplary classification. This selec-
tion feeds into the process of test generation for “good” or
“bad” packet instructions at packet generator 312; the packet
instructions themselves are shown as packets 314 that are
“good” (G) or “bad” (B); waiting is shown as wait 316. The
process ends by producing generated input 318 for simulation
engine 320.

FIG. 4 is a flowchart of another exemplary method accord-
ing to the present invention for generating a test program from
a scenario program with two stage generation.

In stage 1, optionally a plurality of scenarios is provided as
for the method of FIG. 2. In stage 2, one or more scenarios are
selected. Optionally and preferably, a plurality of scenarios
are selected according to their respective constraints, as
described above, and combined to form a combined scenario
instance.

Next, in stage 3, an HDL (hardware description language)
file for defining the simulation model according to the sce-
nario program is preferably created. Also optionally and pref-
erably, in stage 4, code is generated for executing this plural-
ity of instructions for the scenario program. The code may
optionally and more preferably include e language code, for
example in one or more e language files. Stages 1-4 are
preferably included in the first stage of the test program
generation process.

In the second stage, starting with stage 5, the test program
itself is preferably generated from the scenario program.
Optionally and more preferably, the values for various fields
are preferably generated as part of the test program generation
process. This process is more preferably randomized. Stage 5
may optionally be performed during both the test pre-genera-
tion and run-time stages for test program generation.

A non-limiting, illustrative example of the above two stage
generation process is provided below.

For this example, a multi port device is assumed. The
device is tested with variable configurations, for example 2
ports, 5 ports and so forth. The simulation model for the
device itself needs to be defined in Verilog HDL,; different
configurations require different top level HDL files to be
created.

«
extend sys {
number__of ports :uint;
keep number_ of ports in [1..5];
post__generate() is also {
// write a top level Verilog file with the
// appropriate number of ports
g

>

After generating the test, a new top level Verilog file is
created, which needs to be compiled and loaded into the
simulator before the test can continue. Loading the above
example causes the scenarios to be run with the selected
configuration, e.g. the number of ports picked by the genera-
tion process for the first phase.

FIG. 5 is a schematic block process diagram of an example
of the method according to FIG. 4 for test generation. Com-
ponents or processes with identical or at least similar func-

20

25

30

35

40

45

50

55

60

65

12

tions to those of FIG. 3 have the same reference numbers and
are not further discussed herein. Packet generator 312 is
shown in a simplified manner for clarity only and without any
intention of being limiting in any way.

For the two stage process, unlike for FIGS. 2 and 3, a
process system 500 also includes a generated HDL configu-
ration 504 which determines the configuration of the DUT
itself by generating an HDL file (alternatively, the configura-
tion may optionally be selected first, followed by generating
an HDL file according to the selected configuration). Such an
HDL file is an example of an external file that is generated in
the first stage.

The generated external file is compiled in process 506,
which results in a configured DUT 508. The configured DUT
508 is fed into simulation engine 320, along with the output of
packet generator 312, which is shown as packet traffic 510.
Packet traffic 510 is actually identical to generated input 318
of FIG. 3, but is addressed by a separate term and reference
number to avoid confusion.

What is claimed is:

1. A method stored on a computer readable medium includ-
ing computer executable instructions for automatically gen-
erating at least one test program from a set of scenarios for
testing a simulation model of a device under test (DUT) in a
test environment during a test verification process, the
method comprising:

providing a plurality of scenarios, each scenario containing

at least one operation and at least one constraint indica-
tive of which other scenarios may be compatible there-
with for the test program;
selectively defining a set of scenarios from said plurality of
scenarios according to said constraints thereof by
resolving conflicts among said constraints, said set of
scenarios excluding conflicting scenarios; and

automatically generating the test program by combining
said set of scenarios to provide at least one operation as
input for driving simulated operation of the DUT.

2. The method of claim 1, wherein said selectively defining
a set of scenarios comprises: selecting a number of said plu-
rality of scenarios according to meta-data contained in at least
one scenario; and combining said number of said plurality of
scenarios to form a combined scenario instance.

3. The method of claim 2, wherein at least one selected
scenario comprises a sequence.

4. The method of claim 3, wherein at least one selected
scenario conflicts with at least one non-selected scenario and
wherein said meta-data comprises information about said
conflict.

5. The method of claim 1, wherein said selecting at least
one of said plurality of scenarios is performed at least par-
tially according to a configuration of the DUT.

6. The method of claim 1, wherein said providing said
scenarios is performed during a scenario creation process.

7. The method of claim 6, wherein a user performs said
scenario creation process.

8. The method of claim 1, wherein said providing said
plurality of scenarios is performed by a user.

9. The method of claim 1, further comprising: generating at
least one external file according to said at least one scenario.

10. The method of claim 9, further comprising: using said
at least one external file at run time for running the test.

11. The method of claim 10 further comprising:

compiling said at least one external file before said using

said at least one external file.

12. The method of claim 10, wherein said generating said
at least one external file is performed before or concurrently
with said generating said test.

US 7,665,067 B2

13

13. The method of claim 10, wherein said external file
comprises an HDL (hardware description language) file for
configuring the simulation model.

14. The method of claim 1, wherein said generating the test
is performed according to an at least partially randomized
process.

15. The method of claim 14, wherein said randomized
process is based upon a plurality of constraints, and wherein
said plurality of constraints is provided in said selected sce-
nario.

16. The method of claim 1, wherein said generating the test
is performed according to said at least one constraint.

17. The method of claim 16, wherein each constraint
defines a type of expected input variable and a type of opera-
tion to be performed on said type of expected input variable.

18. The method of claim 17, wherein said constraint com-
prises a static constraint on a value of said type of expected
input variable.

19. The method of claim 17, wherein said constraint com-
prises a dynamic constraint on a value of said type of expected
input variable.

20

14

20. The method of claim 17, wherein said at least one type
of expected input variable is at least partially determined
according to a simulation model of the DUT.

21. The method of claim 1, wherein at least one character-
istic of said constraint determines whether said constraint
conflicts with another constraint.

22. The method of claim 1, wherein the simulation model
comprises a plurality of variables, wherein at least one sce-
nario comprises a monitoring operation for monitoring
behavior of the simulation model and wherein said monitor-
ing operation comprises sampling at least one value of at least
one variable of the simulation model.

23. The method of claim 1, wherein the selectively defining
a set of scenarios from said plurality of scenarios according to
said at least one constraint is accomplished by automatically
selecting a subset of said plurality of scenarios by resolving
said constraints of said plurality of scenarios to include in the
selected subset only non-conflicting scenarios.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,665,067 B2 Page 1 of 1
APPLICATION NO. : 10/661772

DATED . February 16, 2010

INVENTOR(S) : Hollander et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 1387 days.

Signed and Sealed this
Seventh Day of December, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

