ABSTRACT

A method of automatically adjusting the ride height of a vehicle each time the vehicle is in a particular location is provided, where the automatic ride height adjustment is based on location and ride height information previously gathered from a user.
User Inputs Coordinates for Ride Height Adjustment

User Inputs End Coordinates for Ride Height Adjustment

User Inputs Ride Height Setting Applicable to User Input Coordinates

Coordinates and Ride Height Recorded in Memory

GPS System Monitors Vehicle Location and Vehicle Speed

Controller Adjusts Ride Height as Vehicle Approaches User Input Coordinates

Controller Resets Ride Height as Vehicle Departs from User Input Coordinates

FIG. 3
User Inputs Coordinates for Ride Height Adjustment

Geo-Fence Set for Ride Height Adjustment

User Inputs Ride Height Setting Applicable to User Input Coordinates

Coordinates and Ride Height Recorded in Memory

GPS System Monitors Vehicle Location and Vehicle Speed

Controller Adjusts Ride Height as Vehicle Approaches User Input Coordinates

Controller Resets Ride Height as Vehicle Departs from User Input Coordinates

FIG. 4
User Adjusts Ride Height
System Requests Confirmation to Repeat Height Adjustment at This Location
Confirmed?

If Confirmed, Coordinates and Ride Height Recorded in Memory
User Re-Adjusts Ride Height
System Requests Confirmation
Confirmed?

If Confirmed, Coordinates Recorded in Memory
GPS System Monitors Vehicle Location and Vehicle Speed
Controller Adjusts Ride Height as Vehicle Approaches Coordinates
Controller Resets Ride Height as Vehicle Departs from Coordinates

FIG. 5
501 User Adjusts Ride Height

503 System Requests Confirmation to Repeat Height Adjustment At This Location

505 Confirmed? Yes

507 If Confirmed, Coordinates and Ride Height Recorded in Memory

601 User Re-Adjusts Ride Height

603 End Location Coordinates Recorded

309 GPS System Monitors Vehicle Location and Vehicle Speed

311 Controller Adjusts Ride Height as Vehicle Approaches Coordinates

313 Controller Resets Ride Height as Vehicle Departs from Coordinates

FIG. 6
User Adjusts Ride Height

System Requests Confirmation to Repeat Height Adjustment At This Location

Confirmed?

Yes

If Confirmed, Coordinates and Ride Height Recorded in Memory

System Requests Geo-Fence Size

Geo-Fence Size Input

Geo-Fence Data Recorded in Memory

GPS System Monitors Vehicle Location and Vehicle Speed

Controller Adjusts Ride Height as Vehicle Approaches Coordinates

Controller Resets Ride Height as Vehicle Departs from Coordinates

No

FIG. 7
FIG. 8
Ride Height

- Low
- Normal
- High
- Extra High

Repeat in Future?
- Yes
- No

FIG. 9
FIG. 10

Ride Height
Low
Normal
High
Extra High

Repeat in Future?
Yes
No
User Activates Voice Recognition System

User Asks to Make a Ride Height Adjustment

User Inputs New Ride Height

System Requests Confirmation to Repeat Height Adjustment At This Location

User Orally Confirms Whether to Repeat in the Future

If Confirmed, Coordinates and Ride Height Recorded in Memory

GPS System Monitors Vehicle Location and Vehicle Speed

Controller Adjusts Ride Height as Vehicle Approaches Coordinates

Controller Resets Ride Height as Vehicle Departs from Coordinates

FIG. 11
FIG. 14
VEHICLE AIR SUSPENSION CONTROL SYSTEM

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/706,915, filed 28 Sep. 2012, the disclosure of which is incorporated herein by reference for any and all purposes.

FIELD OF THE INVENTION

[0002] The present invention relates generally to a vehicle air suspension system and, more particularly, to a system for controlling vehicle ride height using an active air suspension system.

BACKGROUND OF THE INVENTION

[0003] The suspension system of a conventional vehicle uses a combination of springs, shock absorbers and various linkage members to provide the desired level of handling and control while isolating the vehicle’s occupants from unwanted road noise, vibrations and road bumps. Although most vehicles use mechanical springs, for example coil springs or leaf springs, some performance and luxury vehicles use air springs. Air springs not only provide ride leveling and an exceptionally smooth ride but, when properly configured, also allow ride height to be easily and quickly adjusted. Ride height adjustments may be made to improve vehicle aerodynamics at high speeds, vehicle access, and/or road clearance.

[0004] There are a variety of techniques that may be used to adjust and control an air suspension system. For example, an air suspension system used for road leveling will typically monitor load weight and distribution and then use this information to make minor adjustments to the air springs. Alternately, an automatic adjustment system may monitor vehicle speed, lowering the vehicle at high speeds in order to improve vehicle aerodynamics. In a user controlled system, the driver is typically provided with an interface that allows the user to select between various suspension levels, e.g., comfort versus sport suspension or low, medium, and high ride height.

[0005] While there are a variety of automatic and user-controlled systems that are used to adjust the air springs in a conventional air suspension system, it would be beneficial to provide an automatic system that allows the air springs to be easily adjusted in accordance with changing conditions and driver preferences. The present invention provides such a control system.

SUMMARY OF THE INVENTION

[0006] A method for automatically adjusting the ride height of a vehicle, for example using an air suspension system, is provided, the method including the steps of (i) accepting a first user selection corresponding to a first selected location; (ii) recording the first selected location in memory; (iii) accepting a second user selection corresponding to a preferred ride height; (iv) recording the preferred ride height in memory; (v) monitoring vehicle location using an on-board GPS system; and (vi) automatically adjusting the vehicle ride height from a normal ride height to the preferred normal ride height every time the vehicle’s location corresponds to the first selected location recorded in memory. The method may include the steps of monitoring and compensating for vehicle speed, thus insuring that the vehicle’s ride height is adjusted to the preferred ride height when the vehicle’s location corresponds to the first selected location. The method may include the steps of automatically adjusting the ride height from the normal ride height to the preferred ride height when the vehicle’s location is a preset distance away from the first selected location, where the preset distance may be input by the user. The method may include the steps of maintaining the preferred ride height for a preset distance after the vehicle’s location corresponds to the first selected location, where the preset distance may be input by the user. The method may include the steps of accepting a third user selection corresponding to a second selected location, recording the third user selection in memory, maintaining the preferred ride height when the vehicle’s location is between the first and second selected locations, and then adjusting the ride height back to the normal ride height after the vehicle has traversed the first and second selected locations. The method may include the steps of accepting a third user selection corresponding to a size of a geo-fence centered at said first selected location, recording the size of the geo-fence in memory, maintaining the preferred ride height when the vehicle’s location is within the geo-fence, and then adjusting the ride height back to the normal ride height after the vehicle has traversed the geo-fence.

[0007] The method may further include the steps of (i) adjusting the vehicle’s ride height from a normal ride height to a temporary ride height in response to a manually input ride height adjustment input via an on-board user interface coupled to a system controller; and (ii) issuing a confirmation query, where a positive response to the query results in the system controller determining a current vehicle location using the on-board GPS and setting the current vehicle location as the first selected location and setting the temporary ride height as the preferred ride height. After receiving a positive response to the query, the method may further include the steps of (i) adjusting the vehicle’s ride height from the preferred ride height back to the normal ride height in response to a manually input ride height adjustment input via the on-board user interface; and (ii) issuing a second confirmation query, where a positive response to the second query results in the system controller determining a new current vehicle location using the on-board GPS and setting the new current vehicle location as a second selected location and maintaining the preferred ride height when the vehicle’s location is between the first and second selected locations. Alternately, after receiving a positive response to the query, the method may further include the steps of (i) adjusting the vehicle’s ride height from the preferred ride height back to the normal ride height in response to a manually input ride height adjustment input via the on-board user interface; and (ii) determining a new current vehicle location using the on-board GPS, recording the second selected location in memory, and maintaining the preferred ride height when the vehicle’s location is between the first and second selected locations. The manually input ride height adjustments may include the step of selecting the temporary ride height from a plurality of available ride heights, where the step of selecting the temporary ride height may (i) use a touch-screen where the plurality of available ride heights are displayed on the touch-screen; and (ii) use a display screen where the plurality of available ride heights are displayed on the
display screen and the temporary ride height is accepted by the system in response to a user activating a switch adjacent to the display screen and corresponding to the temporary ride height, (iii) use a voice activated system where the method includes accepting an audible request from a user to adjust ride height, accepting a selected ride height from the plurality of available ride heights, issuing an audible confirmation query, and accepting the selected ride height as the temporary ride height after receiving an audible positive response to the query.

[0008] The step of accepting a first user selection corresponding to the first selected location may include the step of accepting a set of GPS coordinates corresponding to the first selected location, for example where the set of GPS coordinates are input via a touch-screen.

[0009] The step of accepting a first user selection corresponding to the first selected location may include the steps of displaying a map on a touch-screen and accepting a user touch on the map which corresponds to the first selected location.

[0010] The step of accepting a first user selection corresponding to the first selected location may include the steps of displaying a map on a display screen and accepting a user selection of the first selected location on the map, where the user selection is made using a cursor and input device.

[0011] A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 provides a block diagram of an exemplary air suspension system that may be used with the present invention;

[0013] FIG. 2 provides a block diagram of an exemplary air suspension control system in accordance with the present invention;

[0014] FIG. 3 illustrates the basic methodology of the invention in accordance with a preferred embodiment;

[0015] FIG. 4 illustrates a minor modification of the basic methodology shown in FIG. 3;

[0016] FIG. 5 illustrates the basic methodology of the invention in accordance with an alternate preferred embodiment;

[0017] FIG. 6 illustrates a minor modification of the methodology shown in FIG. 5;

[0018] FIG. 7 illustrates a minor modification of the methodology shown in FIG. 5 utilizing a geo-fence;

[0019] FIG. 8 illustrates an exemplary interface screen that allows user selection of ride height;

[0020] FIG. 9 illustrates an exemplary interface screen requesting input confirmation;

[0021] FIG. 10 illustrates a non-touch-screen interface for use with the invention;

[0022] FIG. 11 illustrates the basic methodology associated with a voice recognition interface;

[0023] FIG. 12 illustrates a user interface screen requesting location coordinates;

[0024] FIG. 13 illustrates the user interface screen of FIG. 12 after the user has input a starting location;

[0025] FIG. 14 illustrates the user interface screen of FIG. 12 requesting end location coordinates;

[0026] FIG. 15 illustrates the user interface screen of FIG. 12 after the user has input an ending location;

[0027] FIG. 16 illustrates the user interface screen of FIG. 12 requesting a ride height selection; and

[0028] FIG. 17 illustrates the user interface screen of FIG. 12 after the user has selected the ride height.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0029] FIG. 1 provides a block diagram of an exemplary air suspension system 100 that may be used with the present invention. It should be understood that air suspension system 100 is used for illustration purposes only and that the present invention is not limited to a specific suspension configuration. For example, the type of air spring as well as the compressor/air tank configuration may be varied based on the specific requirements of the vehicle as well as the intended use of the vehicle, e.g., performance vehicle, luxury vehicle, ambulance, bus, delivery truck, etc.

[0030] Associated with each wheel in system 100 is an air spring 101. One or more compressed air supply tanks 103, along with air compressor(s) 105 and various valves (not shown), are used to regulate the air pressure within each air spring 101. Controller 107 sets the pressure for each air spring 101 as well as controlling other aspects of the air suspension system such as operation of compressor(s) 105. Although operation of controller 107 may be automated and preset by the vehicle manufacturer or a service company, preferably the system includes a user interface 109 that allows the end user, e.g., the driver, to adjust the vehicle’s air suspension system. As vehicle air suspension systems are well known, and as the present invention is not limited to a particular implementation of the air suspension system, further details regarding the specifics of air suspension system 100 are not provided herein.

[0031] FIG. 2 provides a block diagram of an exemplary control system 200 suitable for use with the invention. In system 200, system controller 207 includes a central processing unit (CPU) 201 and memory 203. Since user interface 109 is comprised of a touch-screen in the preferred embodiment, preferably system controller 207 also includes a graphical processing unit (GPU) 205. CPU 201 and GPU 205 may be separate or contained on a single chip set. Memory 203 may be comprised of flash memory, a solid state disk drive, a hard disk drive, or any other memory type or combination of memory types. As previously noted, controller 207 is coupled to a variety of air suspension components including the control valves 207 that determine the air pressure within each air spring 101, and the air compressors 105 that regulate the air pressure in the air supply tanks 103 or directly in the air springs. Valves 207 include bleed valves that allow the air pressure within the air springs 101 to be decreased, and valves that admit air from air supply tanks 103 or air compressors 105, thereby increasing the air pressure within the air springs. Controller 207 is also coupled to a variety of air pressure sensors 209 that allow the air pressure within the various components (e.g., air springs 101, air supply tank(s) 103, etc.) to be monitored. In at least one embodiment in which the air suspension system is used to provide ride leveling, controller 207 is also coupled to vehicle level sensors 211. In at least one embodiment in which the air suspension system adjusts ride height based on vehicle speed, controller 207 is also coupled to a vehicle speed sensor 213. In addition, and in accordance with the invention, controller 207 is coupled to a global positioning system (GPS) 215. Although GPS 215 may be a stand-alone system, preferably it is integrated into, and used by, the vehicle’s navigation system.
In at least one embodiment of the invention, in addition to controlling the vehicle’s air suspension system, controller 107 is also used to control and monitor a variety of other vehicle subsystems. Exemplary subsystems that may be controlled and monitored by controller 107 include audio subsystem 217, climate control subsystem 219, drive train monitoring subsystem 221, charging subsystem 223, mobile phone subsystem 225, vehicle camera subsystem 227, vehicle set-up subsystem 229 and web browser subsystem 231. Vehicle set-up subsystem 229 allows general vehicle operating conditions to be set such as seat positions, moon roof or sun roof operation, internal lighting, external lighting, windshield wiper operation, etc. Preferably a mobile telecommunications link 233 is also coupled to controller 107, thereby allowing the controller to obtain updates, interface configuration profiles, and other data from an external data source (e.g., manufacturer, dealer, service center, web-based application, remote home-based system, etc.). Mobile telecommunications link 233 may be based on any of a variety of different standards including, but not limited to, GSM EDGE, UMTS, CDMA2000, DECT, and WiMAX.

In the preferred embodiment, user interface 109 is a touch-screen display that provides both a visual aid, for example for use with the navigation screen, and the means to input data and control the various subsystems coupled to controller 107. It should be understood, however, that other types of user interfaces may also be used with the invention.

In accordance with the invention, controller 107 uses preset location data and vehicle location data gathered using GPS 215 to automatically adjust the height of the vehicle using air springs 101. As a result, the risk of undercarriage damage and/or damage to front fascia, rear fascia, or side body panels/moldings is dramatically reduced.

FIG. 3 illustrates the basic methodology of the invention in accordance with one embodiment. This embodiment is configured to automatically adjust the vehicle ride height each time the vehicle is in a particular location, the automatic adjustment being based on previously input user data. For example, the user may have a very steep driveway with a sharp change in incline at the driveway entrance or at the garage entrance. Alternatively, the user may have to drive over a series of speed bumps every day near their home, work or other location. By inputting the coordinates for each of these locations into controller 107 and memory 203, the vehicle can be configured to automatically adjust ride height as the car approaches each preset location, thus avoiding potential vehicle damage that might otherwise occur if the driver forgot to adequately adjust ride height in a timely manner. Controller 107 can be configured to monitor vehicle speed using sensors 213, thus ensuring that regardless of vehicle speed, the ride height will be adjusted prior to reaching each preset location. Controller 107 can also be configured to begin adjusting ride height a preset distance before reaching a preset location, thus ensuring that the desired ride height is achieved before the vehicle reaches the preset location.

It should be understood that there are a variety of techniques that can be used to input the coordinates of each location in which the ride height is to be automatically adjusted, as well as the corresponding ride height for each location. Exemplary techniques for inputting coordinates, described in detail below, include selecting coordinates based on the vehicle’s current location and inputting coordinates on a map, for example a map displayed on a vehicle display interface using the car’s navigation/GPS system.

Regardless of the input technique used, the first step of the process is for the user to input the coordinates into controller 107 for each location in which automatic ride height adjustment is desired (step 301 of FIG. 3). In the embodiment illustrated in FIG. 3, the user also inputs the end location coordinates (step 303) that correspond to the location where the ride height of the vehicle can be re-adjusted back to its previous normal height setting.

In addition to inputting location coordinates, the user also inputs the desired ride height for each particular location (step 305). Depending upon the system configuration, this ride height can be input in a variety of ways. For example, the user may set the desired height as a distance above ground level (e.g., 20 centimeters). Alternatively, the user may set the desired height by selecting from a number of possible presets (e.g., low, normal, high, extra-high). The coordinates and ride height data input in steps 301, 303 and 305 are recorded in memory 203 (step 307).

After one or more sets of location/ride height data are input into the system as described above, then during normal operation of the vehicle the GPS system 215 continuously monitors the vehicle location and the vehicle speed sensor 211 continuously monitors the vehicle speed (step 309), thus allowing controller 107 to automatically adjust the ride height of the vehicle as the vehicle approaches each preset location (step 311). In step 311, the ride height of the vehicle is adjusted in accordance with the preset height input in step 305. After the preset location, or region, has been passed, controller 107 automatically re-adjusts the ride height of the vehicle (step 313) to either its pre-adjusted height or in accordance with preset suspension configuration instructions, for example setting the ride height to a “standard” ride height. Note that the standard height setting may be preset by the user, preset by the vehicle manufacturer, preset by a third party (e.g., service technician), or based upon vehicle speed.

In at least one embodiment, rather than requiring the user to input the end location coordinates, the system is configured to allow the user to input a distance over which the ride height is to be adjusted. Preferably and as illustrated in FIG. 4, in this embodiment after the user sets the initial coordinates (step 301), they also set the size of a geo-fence (step 401). The geo-fence is simply a region bounded by an imaginary fence over which the controller will adjust the ride height (step 311) in accordance with the preset height input in step 305. In a preferred embodiment, the geo-fence is in the form of a circle with the circle’s center defined by the coordinates input in step 301. The system can be configured to allow the user to set the size of the geo-fence, e.g., a circle with a 10 meter radius. Alternately, the system can be configured to allow the user to select from several pre-defined radii, e.g., a circle with a radius of 10 meters, 50 meters, 100 meters, etc. Alternately, the system can be configured to automatically apply a standard size for the geo-fence, where the standard geo-fence radius is preset by the user, preset by the vehicle manufacturer, or preset by a third party (e.g., service technician).

The embodiment shown in FIG. 5 illustrates an alternate approach that allows the system to learn driver patterns while still distinguishing between abnormal height adjustments, for example due to a temporary road hazard, and a routine height adjustment, for example due to a speed bump or a sharp incline change in the user’s driveway. In this
embodiment, whenever the user adjusts the ride height (step 501) the system controller asks the user for confirmation as to whether or not to make the same adjustment every time the vehicle is at that same location (step 503). If confirmed (step 505), the system records the location and ride height data in memory (step 507). Then when the rider re-adjusts the ride height (step 509), for example back to the normal or standard setting, then the controller asks the user to confirm that this is the end location for the adjusted ride height (step 511). If confirmed (step 513), the system records the end location in memory (step 515). Once ride height and ride height adjustment locations are input, then the system operates as previously described, specifically monitoring vehicle location (step 309) and making ride height adjustments as preset by the user (steps 311/313).

[0042] FIG. 6 illustrates a minor modification of the method shown in FIG. 5. In the method illustrated in FIG. 6, once the user adjusts the ride height (step 501) and confirms (step 505) that this location and ride height should be recorded (step 507), the system automatically uses the location that corresponds to the next height adjustment (step 601) as the end location. As a result, this end location is recorded in memory (step 603) and the second confirmation step is eliminated.

[0043] FIG. 7 illustrates a method based on the methodology of FIG. 5, but utilizing the previously described geo-fence. In the method illustrated in FIG. 7, once the user adjusts the ride height (step 501) and confirms (step 505) that this location and ride height should be recorded (step 507), the system asks for the size of the geo-fence to be applied (step 701). After the user inputs the geo-fence size (step 703), either by inputting a specific geo-fence size or selecting from a set of pre-selected geo-fence sizes, the system records the geo-fence coordinates in memory (step 705). Once geo-fence coordinates and ride height data are input and recorded, the system operates as previously described, specifically monitoring vehicle location (step 309) and making ride height adjustments as preset by the user (steps 311/313). As previously noted, the system can also be configured to automatically apply a standard size for the geo-fence, where the standard geo-fence radius is preset by the user, vehicle manufacturer, or a third party, thereby eliminating steps 701 and 703.

[0044] As previously noted, the invention is not limited to a single method for the user to adjust ride height. In a preferred method, the user adjusts the ride height (e.g., step 501) via a data display screen presented on interface 109. An exemplary interface screen 800 is shown in FIG. 8. Preferably the user accesses various interface screens that provide the user with means for setting a variety of vehicle functions, including ride height, by selecting button 801. In the illustrated interface screen, the upper window 803 allows the user to adjust ride height, specifically selecting between low (805), normal (807), high (809) and extra high (811). If the user alters the air suspension from the current setting to a new setting, for example changing from “normal” to the “extra high” setting 811, then preferably a new screen 900 is displayed as illustrated in FIG. 9. In screen 900 the user is asked whether or not to make the same height adjustment each time that the vehicle is at this location (901). The user is able to select either “yes” (903) or “no” (905). If the user selects “yes”, then when the driver re-adjusts the air suspension, for example back to the previous setting or back to the “normal” setting (setting 807), then as described above the system either automatically records this location as the end location or asks for confirmation that this location is the end location using a screen similar to screen 900. Note that this same approach can be used with other types of user interfaces. For example and as illustrated in FIG. 10, the user-selectable settings and the confirmation messages can be displayed on a non-touch-screen 1001, and the user can make selection using switches, for example a scroll wheel or a set of hard buttons 1003 located adjacent to the screen as shown in FIG. 10. Alternately, the system can use a voice activated system in which the user auditory makes the height adjustment, for example by activating the voice recognition system (step 1101), requesting to make a ride height adjustment (step 1103) and inputting the desired ride height (step 1105). At this point the system can be programmed to ask for confirmation as to whether or not to make this height adjustment each time the vehicle is at this location (step 1107), to which the user can respond, for example by saying either “yes” or “no” (step 1109). If confirmed, the system records the location and ride height data in memory (step 507). As in the prior embodiments, the end location can either be automatically determined based on the user re-adjusting the air suspension (e.g., back to normal) or when the driver re-adjusts the air suspension and the system confirms that this event corresponds to the end location. Once the location and height information is recorded, the system will operate as previously described, specifically monitoring vehicle location (step 309) and making ride height adjustments as preset by the user (steps 311/313).

[0045] FIGS. 12-17 illustrate another technique for inputting the coordinates for use with the automatic ride height adjustment system of the present invention. In this embodiment the user inputs the starting location and the ending location on a map supplied by the vehicle’s navigation system 215. Preferably once the user initiates this process, the controller queries the user as to the starting location, the ending location and the ride height. Preferably the queries are (i) overlain on the map as illustrated in FIGS. 12, 14 and 16; (ii) presented in a different window on the interface (e.g., the upper window 1203 shown in FIG. 12); or (iii) using audible cues (e.g., “enter starting location”, “enter ending location”, etc.). Using the overlay approach, in FIG. 12 the controller queries the user for the starting location (query 1201). FIG. 13 illustrates the user selecting a location 1301, for example by inputting their selection directly on the screen if a touch-screen is used, or inputting their selecting using a mouse or similar input device if the screen is a non-touch-screen. In FIG. 14 the controller queries the user for the ending location (query 1401). FIG. 15 illustrates the user selecting an ending location 1501. In FIG. 16 the controller queries the user for the ride height (query 1601) to be applied at the selected location. FIG. 17 illustrates the user selecting an “extra high” ride height.

[0046] It should be understood that identical element symbols used on multiple figures refer to the same component, or components of equal functionality. Additionally, the accompanying figures are only meant to illustrate, not limit, the scope of the invention and should not be considered to be to scale.

[0047] Systems and methods have been described in general terms as an aid to understanding details of the invention. In some instances, well-known structures, materials, and/or operations have not been specifically shown or described in detail to avoid obscuring aspects of the invention. In other instances, specific details have been given in order to provide
a thorough understanding of the invention. One skilled in the
relevant art will recognize that the invention may be embod-
ied in other specific forms, for example to adapt to a particular
system or apparatus or situation or material or component,
without departing from the spirit or essential characteristics
thereof. Therefore the disclosures and descriptions herein are
intended to be illustrative, but not limiting, of the scope of the
invention.

What is claimed is:

1. A method of adjusting a ride height of a vehicle, the
method comprising the steps of:
accepting a first user selection, wherein said first user
selection corresponds to a first selected location;
recording said first selected location in a memory;
accepting a second user selection, wherein said second user
selection corresponds to a preferred ride height to be
associated with said first selected location;
recording said preferred ride height in said memory;
monitoring a vehicle location, wherein said monitoring
step is performed by an on-board global positioning
system (GPS); and
automatically adjusting the ride height of the vehicle from
a normal ride height to said preferred ride height every
time said vehicle location corresponds to said first
selected location.

2. The method of claim 1, further comprising the steps of:
monitoring a vehicle speed corresponding to said vehicle and
compensating for said vehicle speed when performing said
method of automatically adjusting the ride height of the vehicle
such that ride height is adjusted to said preferred ride height
when said vehicle location corresponds to said first
selected location.

3. The method of claim 1, wherein said step of automatic-
ly adjusting the ride height of the vehicle from sainormal
ride height to said preferred ride height is performed when
said vehicle location is a preset distance away from said first
selected location.

4. The method of claim 3, further comprising the step of
accepting a third user selection corresponding to said preset
distance.

5. The method of claim 1, further comprising the step of
maintaining said preferred ride height for a preset distance
after said vehicle location corresponds to said first selected
location.

6. The method of claim 5, further comprising the step of
accepting a third user selection corresponding to said preset
distance.

7. The method of claim 1, further comprising the steps of:
accepting a third user selection corresponding to a second
selected location;
recording said second selected location in said memory; and
maintaining said preferred ride height when said vehicle
location is between said first and second selected loca-
tions.

8. The method of claim 7, further comprising the step of
automatically adjusting the ride height of the vehicle from
said preferred ride height back to said normal ride height after
said vehicle has traversed said first and second selected loca-
tions.

9. The method of claim 1, further comprising the steps of:
accepting a third user selection corresponding to a size of a
geo-fence, wherein said geo-fence is in the form of a
circle, and wherein a center of said circle corresponds to
said first selected location;
recording said size of said geo-fence in memory; and
maintaining said preferred ride height when said vehicle
location is within said geo-fence.

10. The method of claim 9, further comprising the step of
automatically adjusting the ride height of the vehicle from
said preferred ride height back to said normal ride height after
said vehicle has traversed said geo-fence.

11. The method of claim 1, wherein said step of automati-
ically adjusting the ride height further comprises the step of
altering air pressure within a plurality of vehicle air springs.

12. The method of claim 1, further comprising the steps of:
adjusting said ride height from said normal ride height to a
temporary ride height in response to a manually input
ride height adjustment, wherein said manually input ride
height adjustment is input via an on-board user interface
coupled to a system controller; and
issuing a confirmation query, wherein a positive response
to said confirmation query results in said system con-
troller determining a current vehicle location using said
on-board GPS and setting said current vehicle location
as said first selected location and results in said system
controller setting said temporary ride height as said pre-
ferred ride height, and wherein a negative response to
said confirmation query results in said system controller
not setting said current vehicle location as said first
selected location and not setting said temporary ride
height as said preferred ride height.

13. The method of claim 12, wherein after receiving said
positive response to said confirmation query said method
further comprises the steps of:
adjusting said ride height from said preferred ride height
back to said normal ride height in response to a second
manually input ride height adjustment, wherein said sec-
ond manually input ride height adjustment is input via
said on-board user interface coupled to said system con-
troller; and
issuing a second confirmation query, wherein a positive
response to said second confirmation query results in
said system controller determining a new current vehicle
location using said on-board GPS and setting said new
current vehicle location as a second selected location and
recording said said second selected location in said
memory and maintaining said preferred ride height
when said vehicle location is between said first and
second selected locations.

14. The method of claim 12, wherein after receiving said
positive response to said confirmation query said method
further comprises the steps of:
adjusting said ride height from said preferred ride height
back to said normal ride height in response to a second
manually input ride height adjustment, wherein said sec-
ond manually input ride height adjustment is input via
said on-board user interface coupled to said system con-
troller;
determining a new current vehicle location using said on-
board GPS and setting said new current vehicle location
as a second selected location;
and
maintaining said preferred ride height when said vehicle location is between said first and second selected locations.

15. The method of claim 12, wherein said manually input ride height adjustment is comprised of the step of selecting said temporary ride height from said plurality of available ride heights.

16. The method of claim 15, wherein said on-board user interface is comprised of a touch-screen, and wherein said step of selecting said temporary ride height further comprises the steps of:
 - displaying said plurality of available ride heights on said touch-screen;
 - accepting said temporary ride height as said manually input ride height adjustment in response to a user touching an icon representative of said temporary ride height, said icon displayed on said touch-screen.

17. The method of claim 15, wherein said on-board user interface is comprised of a display screen, and wherein said step of selecting said temporary ride height from said plurality of available ride heights further comprises the steps of:
 - displaying said plurality of available ride heights on said display screen;
 - accepting said temporary ride height as said manually input ride height adjustment in response to a user activating a switch corresponding to said temporary ride height, said switch mounted in a location adjacent to said display screen.

18. The method of claim 15, wherein said on-board user interface is comprised of a voice activated system, and wherein said step of selecting said temporary ride height from said plurality of available ride heights further comprises the steps of:
 - accepting a request to adjust said ride height, wherein said request is an audible request input by a user of said on-board user interface;
 - accepting a selected ride height from said plurality of available ride heights in response to an audible ride height selection input by said user of said on-board user interface;
 - issuing an audible confirmation query requesting confirmation of said selected ride height; and
 - accepting said selected ride height as said temporary ride height after receiving an audible positive response to said audible confirmation query.

19. The method of claim 12, wherein after receiving said positive response to said confirmation query said method further comprises the steps of:
 - accepting a third user selection corresponding to a size of a geo-fence, wherein said geo-fence is in the form of a circle, and wherein a center of said circle corresponds to said first selected location;
 - recording said size of said geo-fence in said memory; and
 - maintaining said preferred ride height when said vehicle location is within said geo-fence.

20. The method of claim 12, wherein after receiving said positive response to said confirmation query said method further comprises the steps of:
 - setting a size of a geo-fence, wherein said geo-fence is in the form of a circle, wherein a center of said circle corresponds to said first selected location, and wherein said size is based on a preset size;
 - maintaining said preferred ride height when said vehicle location is within said geo-fence.

21. The method of claim 1, wherein said step of accepting said first user selection further comprises the step of accepting a set of GPS coordinates corresponding to said first selected location.

22. The method of claim 21, wherein said on-board user interface is comprised of a touch-screen and wherein said set of GPS coordinates are input via said touch-screen.

23. The method of claim 1, wherein said on-board user interface is comprised of a touch-screen, said method further comprising the steps of displaying a map on said touch-screen and accepting a user touch on said map displayed on said touch-screen, wherein said user touch corresponds to said first selected location.

24. The method of claim 1, wherein said on-board user interface is comprised of a display screen, said method further comprising the steps of displaying a map on said display screen and accepting a user selection of said first selected location on said map displayed on said display screen, wherein said user selection is made using a cursor and an input device.

* * * * *