Title
CR1g polypeptide for prevention and treatment of complement-associated disorders

International Patent Classification(s)
A61K 38/17 (2006.01) A61P
A61P 11/06 (2006.01) 17/06
A61P 17/06 (2006.01) 20060101ALI20070800
A61P 19/02 (2006.01) A61P
A61P 27/02 (2006.01) 19/02
A61K 38/17 20060101ALI20070800
A61P 20060101ALI20070800
A61P 27/02 A61P
11/06 20060101ALI20070800
PCT/US2005/037114

Application No.: 2005295131
Application Date: 2005.10.12

Priority Data

Number (32) Date (33) Country
11/159,919 2005.06.22 US
10/964,263 2004.10.12 US

Publication Data:
2006.04.20

Applicant(s)
GeneTech, Inc.

Inventor(s)
Fong, Sherman, Helmy, Karim Yussef, Lookeres, Mesos Van, Katschke, Jr., Kenneth James, Wood, William I., Goddard, Audrey, Ashkenazi, Avi, Gurney, Austin L.

Agent/Attorney
Griffith Hock, Level 3 509 St Kilda Road, Melbourne, VIC, 3004

Related Art
WO 1994/16719 A2
WO 2000/53758 A2
WO 2004/022594 A2
WO 2004/028635 A1
WO 2001/36432 A2
STIgMA inhibits alternative pathway hemolysis of SRBC

E-3gM

+Classical pathway converstases C4b2a

+Alternative pathway converstases C3bBb

+serum EDTA

STIgMA-Fc

Protection

Alternative pathway

120 100 80 60 40 20 0

% hemolysis

100 80 60 40 20 0

% hemolysis

Classical pathway

120 100 80 60 40 20 0

% hemolysis

(Continued on next page)

Abstract: The present invention concerns a recently discovered macroglobulin specific receptor, Olig, and its use in the prevention and treatment of complement-associated disorders, including complement-associated eye conditions, such as age-related macular degeneration (AMD) and choroidal neovascularization (CNV).
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codex and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

(880) Date of publication of the international search report:
8 March 2007
PREVENTION AND TREATMENT OF COMPLEMENT-ASSOCIATED DISORDERS

Field of the Invention

The present invention concerns a recently discovered macrophage-specific receptor, CR1g (earlier referred to as STIMMA), and its use in the prevention and/or treatment of complement-associated disorders, including complement-associated eye conditions, such as age-related macular degeneration (AMD) and choroidal neovascularization (CNV).

Background of the Invention

The complement system is a complex enzyme cascade made up of a series of serum glycoproteins, that normally exist in inactive, pro-enzyme form. There are three pathways: the classical and the alternative pathway, which activate complement, which merge at the level of C3, where two similar C3 convertases cleave C3 into C3a and C3b. An additional pathway, the mannose-binding lectin (MBL) pathway has also been described.

Classical pathway components are labeled with a C and a number (e.g., C1, C3). Because of the sequence in which they were identified, the first four components are numbered C1, C4, C2, and C3. Alternative pathway components are lettered (e.g., B, P, D). Cleavage fragments are designated with a small letter following the designation of the component (e.g., C3a and C3b are fragments of C3). Inactiv C3b is designated iC3b. Polypeptide chains of complement proteins are designated with a Greek letter after the component (e.g., C3α and C3β are the α- and β-chains of C3). Cell membrane receptors for C3 are abbreviated CR1, CR2, CR3, and CR4.

The classical pathway of the complement system is a major effector of the humoral branch of the human immune response. The trigger activating the classical and MBL pathways is either IgG or IgM antibody bound to antigens or lectins on the target cells. Binding of antibody to antigen exposes a site on the antibody which is a binding site for the first complement component, C1. C1 binds to the exposed regions of at least two antigen-bound antibodies, and as a result, its Clr and Cls subunits are activated. Activated Cls is responsible for the cleavage of the next two involved complement components, C4 and C2. C4 is cleaved into two fragments, of which the larger C4a molecule attaches to the target membrane nearby while the smaller C4b molecule leaves. An exposed site on deposited C4b is available to interact with the next complement component, C2. Just as in the previous step, activated Cls cleaves the C2 molecule into two pieces, of which the fragment C2a remains, while the smaller C2b fragment leaves. C4b2a, also known as the C3 convertase, remains bound to the membrane. This C3 convertase converts the next complement component, C3 into its active form.

Activation of the alternative complement pathway begins when C3b binds to the cell wall and other cell components of the pathogens and/or to IgG antibodies. Factor B then combines with cell-bound C3b and forms C3Bb. C3BbBb is then split into Bb and Bb by factor D, to form the alternative pathway C3 convertase, C3bBbP. Properdin, a serum protein, then binds C3bBbP and forms C3BbP, which functions as a C3 convertase, which enzymatically splits C3 molecules into C3a and C3b. At this point, the alternative complement pathway is activated.

Some of C3b binds to C3bBbP to form C3bBb3b, which is capable of splitting C5 molecules into C5a and C5b.

The alternative pathway is a self-amplifying pathway and is important in the clearance and recognition of bacteria and other pathogens in the absence of antibodies. The alternative pathway can also amplify complement activation after initial complement activation by either the lectin and/or classical pathway. The rate-limiting step of
activation of the alternative pathway in humans is the enzymatic action of factor D on the cleavage of factor B to form the alternative pathway C3 convertase, C3bBb. (Stahl et al., *American Journal of Pathology* 162:449-455 (2003)). There is strong evidence for the role of complement activation and deposition in adjuvant-induced arthritis (AIA), and collagen-induced arthritis (CIA) and in a variety of other diseases and conditions.

Recently, defective alternative pathway control has been implicated in the development of kidney and eye diseases, including hemolytic uremic syndrome (HUS) and AMD (Zippel et al., *Mol. Immunol.* 43:97-106 (2006), available online at www.sciencedirect.com). C3 has been found to be essential for the development of CNV in mice (Bora et al., *J. Immunol.* 174(1):491-7 (2005)).

The role of the complement system in inflammatory conditions and associated tissue damage, autoimmune diseases, and complement-associated diseases is also well known.

It has been suggested that the alternative pathway plays an important role in inflammation (Mollare et al., *Trends in Immunology* 23:61-64 (2002)), local and remote tissue injury after ischemia and reperfusion (Stahl et al., supra), adult respiratory distress syndrome (ARDS, Schein et al., *Chest* 91:850-854 (1987)); complement activation during cardiopulmonary bypass surgery (Fung et al., *J Thorac Cardiovasc Surg* 122:113-122 (2001)); dermatomyositis (Kiesel et al., *NEJM* 314:329-334 (1986)); and pemphigus (H俄ngochi et al., *J Invest Dermatol* 92:588-592 (1989)). The alternative complement pathway has also been implicated in autoimmune diseases, such as, for example, lupus nephritis and resultant glomerulonephritis and vasculitis (see, e.g., Watanabe et al., *J. Immunol.* 164:186-192 (2000)), and rheumatoid arthritis, such as juvenile rheumatoid arthritis (Aggarwal et al., *Rheumatology* 29:189-192 (2000)); and Neumann et al., *Arthritis Rheum.* 4:934-935 (2002)).

Local increase in complement deposition and activation correlate with disease severity (Atkinson, *J Clin Invest* 112:1639-1641 (2003)). C5a receptor antagonists, such as peptides and small organic molecules, have been tested for the treatment of arthritis (Woodrow et al., *Arthritis & Rheumatism* 46(9):247b-2485 (2002)), and various other immunoinflammatory diseases (Short et al., *Br J Pharmacol* 126:551-554 (1999); Finch et al., *J Med Chem* 42:1063-1074 (1999)); and companies, such as Promics (Australia) have been conducting human clinical trials to test the efficacy of C5a antagonists in similar indications. C5a has also been implicated in dermatomyositis, and pemphigus (Kiesel et al., *NEJM* 314:329-334 (1986)). Anti-C5a monoclonal antibodies have been shown to reduce cardiopulmonary bypass and cardioplegia-induced coronary endothelial dysfunction (Todakiz et al., *J Thorac Cardiovasc Surg* 116:1060-1069 (1998)), prevent collagen-induced arthritis and ameliorate established disease (Wang et al., *Proc. Natl. Acad. Sci. USA* 92(19):8955-8959 (1995)).

Opsonophagocytosis, the process of deposition of complement fragments on the surface of particles and the subsequent uptake by phagocytic cells, is crucial for the clearance of circulating particles including immune complexes, apoptotic cells or cell debris and pathogens (Gisque, P., *Mol Immunol.* 41:1089-1098 (2004)). Tissue resident macrophages are known to play an important role in the complement mediated clearance of particles from the circulation. Kupffer cells, constituting over 90% of the tissue resident macrophages, are continuously exposed to blood from the hepatic portal vein and are strategically positioned in liver sinusoids to efficiently clear opsonized viruses, tumor cells, bacteria, fungi, parasites and noxious substances from the gastrointestinal tract. This clearance process is in a large part dependent on the presence of complement C3 as an opssomin (Fujita et al., *Immunol. Rev.* 196:185-202 (2004)). Upon binding to bacterial surfaces via a thioester, C3 is cleaved and amplifies the alternative pathway of complement. This reaction leads to further deposition of C3 fragments that can serve as ligands for
complement receptors on macrophages. The importance of this pathway is shown by the high susceptibility of humans lacking C3 to bacterial and viral infections.

The complement receptors characterized so far, CR1, 3 and 4 internalize C3b and phagocytize C3
optimized particles only after PKC activation or Fc receptor stimulation (Gepstein et al., Cell Regul 2:41-55
Moreover, CR1 is not expressed on the surface of murine Kupffer cells (Fang et al., J Immunol 160:5273-5279
(1998). Complement receptors that aid KCs in the constitutive clearance of circulating particles have not been
described so far.

An anti-C3b(i) antibody has been reported to enhance complement activation, C3b(i) deposition, and
killing of CD20+ cells by rituximab (Kennedy et al., Blood 101(3):1071-1079 (2003)).

In view of the known involvement of the complement cascade in a variety of diseases, there is a need
for identification and development of new pharmacicals for the prevention and/or treatment of complement-
associated diseases.

It is to be understood that, if any prior art publication is referred to herein, such reference does not
constitute an admission that the publication forms a part of the common general knowledge in the art, in
Australia or any other country.

Summary of the Invention

A first aspect provides a method for prevention or treatment of a complement-associated eye condition,
comprising administering to a subject in need a prophylactically or therapeutically effective amount of a CR1g
peptide selected from the group consisting of CR1g polypeptides of SEQ ID NO: 2, 4, 6, 8, and extracellular
domains (ECDs) of said polypeptides.

A second aspect provides a method for treatment of dry age-related macular degeneration (AMD),
comprising administering to a subject in need a prophylactically or therapeutically effective amount of a CR1g
peptide or an agonist thereof.

A third aspect provides a method for inhibition of production of C3b complement fragment in a
mammal comprising administering to said mammal an effective amount of a CR1g polypeptide or an agonist
thereof.

A fourth aspect provides a method for prevention of development or progression of age-related macular
degeneration (AMD), comprising administering to a subject at risk of developing or diagnosed with AMD in at
least one eye, an effective amount of a CR1g polypeptide or an agonist thereof.

A fifth aspect provides a method for selective inhibition of the alternative complement pathway in a
mammal, comprising administering to said mammal an effective amount of CR1g polypeptide or an agonist
thereof.

A sixth aspect provides use of a CR1g polypeptide selected from the group consisting of CR1g
polypeptides of SEQ ID NO: 2, 4, 6, 8, and the extracellular domains (ECDs) of said polypeptides, in the
manufacture of a medicament for prevention or treatment of a complement-associated eye condition.

A seventh aspect provides use of a CR1g polypeptide or an agonist thereof in the manufacture of a
medicament for preventing development or progression of age-related macular degeneration (AMD); treating
dry AMD, inhibiting production of C3b complement fragment in a mammal; or selectively inhibiting the alternative complement pathway in a mammal.

The present invention is based on the identification of a novel member of the complement receptor family and the first immunoglobulin (Ig) superfamily member that interacts with the complement system.

Disclosed herein is a method for the prevention or treatment of a complement-associated eye condition, comprising administering to a subject in need prophylactically or therapeutically an effective amount of a complement inhibitor, such as an inhibitor of the alternative complement pathway, e.g., a CR1g polypeptide or an agonist thereof.

The complement-associated eye condition may, for example, be age-related macular degeneration (AMD), choroidal neovascularization (CNV), uveitis, diabetic and other ischemia-related retinopathy, endophthalmitis, diabetic macular edema, pathological myopia, von Hippel-Lindau disease, osteopetrosis of the eye, Central Retinal Vein Occlusion (CRVO), corneal neovascularization, and retinal neovascularization. Preferably, the complement associated eye condition is AMD or CNV, including all stages of these conditions.

Also disclosed is a method for the prevention or treatment of AMD, comprising administering to a subject at risk of developing or diagnosed with AMD in at least one eye, an effective amount of a complement inhibitor, such as an inhibitor of the alternative complement pathway, e.g. a CR1g polypeptide or an agonist thereof.

Also disclosed is a method for the treatment of dry AMD, comprising administering to a subject in need a therapeutically effective amount of a complement inhibitor, such as an inhibitor of the alternative pathway, e.g. a CR1g polypeptide or an agonist thereof.

In embodiments, the CR1g polypeptide may, for example, be selected from CR1g polypeptides of SEQ ID Nos: 2, 4, 6, and 8, and the extracellular domains (ECDs) of such polypeptides. The CR1g polypeptide, including the full-length polypeptides and their ECDs, can be fused to an immunoglobulin sequence, such as an immunoglobulin heavy chain constant region sequences, e.g. Fc region, and the resultant immunoreagents can be used, as a CR1g agonist, in the preventative and treatment methods of the present invention. The immunoglobulin preferably is an IgG, such as IgG1 or IgG2, or IgG3, or IgG4, more preferably, IgG1 or IgG3. The IgG1 heavy chain constant region sequence may comprise at least the CH1, hinge, CH2 and CH3 regions, or the hinge, CH2 and CH3 regions, for example.

Also disclosed is a method for the prevention or treatment of a complement-associated diseases or condition, comprising treating a subject in need with a prophylactically or therapeutically effective amount of a complement inhibitor, such as an inhibitor of the alternative pathway, e.g. a CR1g polypeptide or an agonist thereof.

Also disclosed is a method for inhibition of the production of C3b complement fragment in a mammal comprising administering to said mammal an effective amount of a complement inhibitor, such as an inhibitor of the alternative pathway, e.g. a CR1g polypeptide or an agonist thereof.

In yet another aspect, the invention concerns method for selective inhibition of the alternative complement pathway in a mammal, comprising administering to said mammal an effective amount of a CR1g polypeptide or an agonist thereof.

In all aspects, the CR1g polypeptide may, for example, be selected from the group consisting of CR1g polypeptides of SEQ ID Nos: 2, 4, 6, 8, and the extracellular regions of such polypeptides. The agonist
preferably is a CR1g-1g fusion protein (immunoadhesin) as hereinabove described. The immunoglobulin sequence may, for example, be an immunoglobulin constant region sequence, such as a constant region sequence of an immunoglobulin heavy chain. In another embodiment, the immunoglobulin heavy chain constant region sequence is fused to an extracellular region of a CR1g polypeptide of SEQ ID NO: 2, 4, 6, or 8.

In a further embodiment, the immunoglobulin heavy chain constant region sequence is that of an IgG, such as an IgG-1 or IgG-3, where the IgG-1 heavy chain constant region sequence may, for example, comprise at least a hinge, CH2 and CH3 region, or the hinge, CH1, CH2 and CH3 regions.

The complement-associated disease may, for example, be an inflammatory disease or an autoimmune disease.

In one specific embodiment, the complement-associated disease is selected from the group consisting of rheumatoid arthritis (RA), adult respiratory distress syndrome (ARDS), remote tissue injury after ischemia and reperfusion, complement activation during cardiopulmonary bypass surgery, dermatomyositis, pemphigus, lupus nephritis and resultant glomerulonephritis and vasculitis, cardiopulmonary bypass, cardiopulgia-induced coronary endothelial dysfunction, type II membranoproliferative glomerulonephritis, IgA nephropathy, acute renal failure, cryoglobulinemia, antiphospholipid syndrome, age-related macular degeneration, uveitis, diabetic retinopathy, allo-transplantation, hyperacute rejection, hemodialysis, chronic obstructive pulmonary disease syndrome (COPD), asthma, Alzheimer’s disease, atherosclerosis, hereditary angioedema, paroxysmal nocturnal hemoglobinuria and aspiration pneumonia.

In another specific embodiment, the complement-associated disease is selected from the group consisting of inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sperm’s syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune hemolytic anemia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave’s disease, Hashimoto’s thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis, inflammatory and fibrotic lung diseases (e.g., cystic fibrosis), gluten-sensitive enteropathy, Whipple’s disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatis, psoriasis, allergic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation-associated diseases including graft rejection and graft-versus-host disease.

In yet another specific embodiment, the complement-associated disease is rheumatoid arthritis (RA), psoriasis or asthma.

In all embodiments, the subject may be a mammal, such as a human patient.

Also disclosed is a method for the prevention or treatment of age-related macular degeneration (AMD) or choroidal neovascularization (CNV) in a subject, comprising administering to the subject an effective amount.
of a complement inhibitor, such as an inhibitor of the alternative pathway, e.g., a CR1g polypeptide or an antagonist thereof.

Brief Description of the Drawings

Figures 1A-1B show the nucleotide and amino acid sequences of a 321-amino acid human CR1g polypeptide (SEQ ID NO: 1 and 2, respectively).

Figures 2A-2B show the nucleotide and amino acid sequences of the 399-amino acid full-length long form of native human CR1g (huCR1g or huCR1g-long; SEQ ID NO: 3 and 4, respectively).

Figures 3A-3B show the nucleotide and amino acid sequences of the 305-amino acid short form of native human CR1g (huCR1g-short, SEQ ID NO: 5 and 6, respectively).

Figures 4A-4C show the nucleotide and amino acid sequence of the 280-amino acid native marine CR1g (muCR1g, SEQ ID NO: 7 and 8, respectively).

Figure 5 shows the amino acid sequence of full-length huCR1g (SEQ ID NO: 4) and huCR1g-short (SEQ ID NO: 6) in alignment with muCR1g (SEQ ID NO: 8). The hydrophobic signal sequence, IgV, IgC and transmembrane regions are shown. muCR1g has a predicted single N-linked glycosylation site at position 170 (NGTG). The Ig domain boundaries, deduced from the exon-intron boundaries of the human CR1g gene, are indicated.

Figure 6 shows in situ hybridization of CR1g in mouse liver frozen sections.

Figure 7 shows in situ hybridization of CR1g in human liver frozen sections.

Figure 8 shows in situ hybridization of CR1g in activated colon and adrenal macrophages, Kupffer cells, and placental Hofbauer cells.

Figure 9 shows in situ hybridization of CR1g mRNA in RA synovial cells.

Figure 10 shows in situ hybridization of CR1g mRNA in brain microglia cells.

Figure 11 shows in situ hybridization of CR1g mRNA in cells from human asthmatic tissue.

Figure 12 shows in situ hybridization of CR1g mRNA in cells from human chronic hepatitis tissue.

Figure 13 shows immunohistochemical analysis of CR1g in adrenal gland macrophages.

Figure 14 shows immunohistochemical analysis of CR1g in liver Kupffer cells.

Figure 15 shows immunohistochemical analysis of CR1g in brain microglial cells.
Figure 16 shows immunohistochemical analysis of CRlg in placental Hofbauer cells.

Figure 17. Northern blot analysis showing expression of hucRlg in a variety of tissues. Two transcripts of 1.5 and 1.8 kb were present in the human tissues expressing CRlg.

Figure 18. (A) TAUQMAMPF PCR analysis showing increased expression of hucRlg in myelomonocytic cell lines HL60 and THP-1 and in differentiated macrophages. Low levels of expression were found in Jurkat T cells, MOLT3, MOLT4 and RAMOS B-cell lines. (B) Increased expression of hucRlg mRNA during in vitro monocyte differentiation. Monocytes isolated from human peripheral blood were differentiated by adhering to plastic over 7 day period. Total RNA was extracted at different time points during differentiation. (C) Increased expression of hucRlg protein during monocyte to macrophage differentiation. Monocytes were treated as indicated in (B), whole cell lysates were run on a gel and transferred to nitrocellulose membrane that was incubated with a polyclonal antibody (4F7) to hucRlg. The polyclonal antibody recognized a 48 and 38 kDa band, possibly representing the long and the short form of hucRlg.

Figure 19. Molecular characterization of hucRlg protein in cell lines. (A) hucRlg-gd was transiently expressed in 293E cells, immunoprecipitated with anti-gd and blots incubated with anti-gd or a polyclonal antibody to the extracellular domain of CRlg. (B) hucRlg expressed in 293 cells in a monomeric N-glycosylated protein. CRlg is tyrosine phosphorylated upon treatment of HEK293 cells with sodium pervanadate but does not recruit Syk kinase. Phosphotyrosylated CRlg migrated at a slightly higher molecular mass compared to non-phosphorylated CRlg.

Figure 20. Selective expression of hucRlg on human monocyte-derived macrophages. Peripheral blood mononuclear cells were stained with antibodies specific for B, T, NK cells, monocytes and with a ALEXA594 A488 conjugated monoclonal antibody (CD1) to CRlg. Expression was absent in all peripheral blood leukocytes as well as in monocyte derived dendritic cells, but was expressed in in vitro differentiated macrophages.

Figure 21. CRlg mRNA and protein expression was increased by IL-10 and dexamethasone. (A) Real-time PCR shows increased expression of CRlg mRNA following treatment with IL-10, TGFβ and was highly induced by dexamethasone but was down-regulated by treatment with LPS, IFNγ, and TNFα. (B) FACS-separated peripheral blood mononuclear cells were treated with various cytokines and dexamethasone for 5 days and double-stained with anti-CD14 and anti-CRlg. Flow analysis showed a dramatic increase in CRlg expression on the surface of monocytes treated with dexamethasone and later treatment with IL-10 and IFNγ.

Figure 22. Subcellular localization of CRlg in monocyte-derived macrophages. Monocytes were cultured for 7 days in macrophage differentiation medium, fixed in acetone and stained with polyclonal anti-CRlg antibody 691 or CD63 and secondary goat anti-rabbit FITC. Cells were studied in a confocal microscope. CRlg is found in the cytoplasm and co-localizes with the lysosomal membrane protein CD63. CRlg was also expressed at the trailing and leading edges of macrophages in a pattern similar to that of F-actin. Scale bar: 10 μm.

Figure 23. Localization of CRlg mRNA in chronic inflammatory diseases. In situ hybridization showed the presence of CRlg mRNA in atherosclerotic lesions obtained from tissue of patients with atherosclerosis (A, B) and a patient with chronic arthritis (C, D). CRlg mRNA was also expressed in liver Kupffer cells in tissue obtained from a liver biopsy of a patient with chronic hepatitis (E, F).

Figure 24. CRlg mRNA expression was increased in inflamed synovium. CRlg mRNA was low or absent in synovial membranes of a joint obtained from a knee replacement of a patient with no joint inflammation (A, C) but was highly expressed in cells, potentially synoviocytes or synovial macrophages, in the pannus of a patient with osteoarthritis (B, D).
Figure 25. Detection of CR1g protein with polyclonal antibody 6F1 in cells lining the synovium of a patient with degenerative joint disease (A, B, C). No immunohistochemical detection of CR1g was found in a control synovium (D).

Figure 26. CR1g protein was expressed in a subset of tissue resident macrophages and its expression was increased in chronic inflammatory diseases. (A) CR1g was expressed on the membrane of CHO cells stably expressing CR1g. High expression of CR1g protein was found in alveolar macrophages (B) in tissues obtained from a patient with chronic asthma. (C) Expression of CR1g in histiocytes of the human small intestine. The section was obtained from surgically removed tissue and could have contained a neoplasm. (D) Expression of CR1g protein in Hofbauer cells in human pre-term placenta. High expression of CR1g protein in macrophages was present in the adrenal gland (B) and in Kupffer cells of human liver (I). Staining was performed on 5 µm thick acetone-fixed sections using DAB as the chromogen. Images were photographed at a 20X and 40X magnification.

Figure 27. Immunohistochemical staining of CD68 and CR1g on a vascular plaque obtained from a patient with atherosclerosis. Consecutive sections were fixed and stained with a monoclonal antibody to human CD68 (A, B) and a polyclonal antibody 6F1 raised against human CR1g (C, D). CR1g appeared in a population of macrophages and plasm cells present in the atherosclerotic plaque, and overlapped with CD68-positive macrophages, as judged from staining on consecutive sections. Magnification: 10X (A, C) and 20X (B, D).

Figure 28. Co-staining of CR1g and CD68 on heart interstitial macrophages. 5 µm sections were obtained from a human heart (autopsy) and stained with a monoclonal antibody to CR1g (3C9) and a secondary anti-mouse FITC-labeled antibody. CD68 was detected by staining with a PE-labeled monoclonal antibody to CD68. Magnification: 20X.

Figure 29. CR1g mRNA levels are significantly elevated in colon tissue obtained from patients with ulcerative colitis, Crohn’s disease, chronic obstructive pulmonary disease (COPD) and asthma. Real-time PCR was performed on total RNA extracted from the various tissues. mRNA for CR1g was significantly increased in tissues obtained from patients with ulcerative colitis, Crohn’s disease and COPD. Statistical analysis was performed using the Mann-Whitney U-test.

Figure 30. Cells expressing human CR1g showed increased adherence to human endothelial cells. (A) CR1g was stably expressed in human Jurkat T-cell line. (B) Cells were preloaded with the fluorescent dye BCECF (Molecular Probes, Oregon) and added to a 96 well plate coated with a monolayer of human umbilical vein endothelial cells (HUVECs) coated with or without 10 ng/ml TNFα. After 3 washes, fluorescence was counted in a spectro-fluorometer which indicated the number of cells that remained adherent to the HUVEC cells. The graph was representative of 4 independent experiments.

Figure 31. Inhibition of progression of collagen-induced arthritis (CIA) mouse model by mcr1g IgG-Fc fusion protein. A group of CIA mice (n=7) was given 100 µg of mcr1g IgG-Fc fusion protein (squares), whereas a CIA mouse control group (n=8) received 100 µg of murine IgG1 (circles), 3 times per week for 5 weeks.

Figure 32 is the nucleotide sequence of DNAa2257 (continuous sequence) (SEQ ID NO: 9).

Figure 33 shows reduction in joint swelling in CR1g-Fc treated mice.
Figure 34 shows that mCRlg inhibits joint inflammation.
Figure 35 shows preservation of cortical bone volume in joints of mice treated with mCRlg-Fc.
Figure 36 shows that CRlg-Fc treatment does not alter the number nor the morphology of tissue resident macrophages.
Figure 37 shows that mCRlg treatment does not affect serum anti-collagen antibody titers.
Figure 38 shows that mCRlg does not alter T-independent B cell responses in vivo.
Figure 39 shows macrophage infiltration in joints following antibody-induced arthritis (AIA), generated with F4/80 staining in undecalcified frozen joints.
Figure 40 shows that mCRlg-Fc prevents joint swelling following antibody-induced arthritis in baltic mice.
Figure 41 shows that mCRlg inhibits joint inflammation in antibody-induced arthritis.
Figure 42 shows generation of mCRlg knock-out mice.
Figure 43 shows that murine CRlg-Fc fusion protein binds to C3-opsonized sheep red blood cells (E-IgG).
Figure 44 shows that binding of human CRlg-Fc to E-IgG is C3 dependent.
Figure 45 shows the binding of serum-opsonized particles to CRlg-expressing CHO cells.
Figure 46 shows that murine CRlg-Fc binds complement C3b and C4b but does not bind C2, C4, C3c, and C3d.
Figure 47 shows that murine and human CRlg-Fc bind complement C3b, C4b, and C3c but do not bind C1, C1, C4, C3a, and C3d.

Figure 48A shows that murine and human CRlg-Fc inhibit C3 deposition on zymosan.
Figure 48B shows that murine CRlg-Fc inhibits C3 activation in serum.

Figure 49 shows that murine CRlg inhibits alternative pathway-induced hemolysis but does not affect classical pathway hemolysis.

Figure 50 CRlg is selectively expressed on a subpopulation of tissue resident macrophages.

(A) CRlg is a single transmembrane immunoglobulin superfamily member consisting of one (human CRlg short (hCRlgS)) and murine CRlg (mCRlg) or two (hCRlgL) immunoglobulin domains. The scale at the top of the left panel indicates size in amino acids. The panel on the right shows that hu and mCRlg are distantly related to functional adhesion molecule A (JAM-A) and A33 antigen. The scale on the top of the right panel indicates % amino acid identity.

(B) CRlg is expressed in macrophages but not in monocytes. Human CD14+ monocytes and CD14+ monocytes cultured for 7 days in 10% autologous serum and 20% fetal bovine serum were analyzed for huCRlg staining by flow cytometry using anti-human CRlg MAb (3C9). Mouse CD11b+ and F4/80+ liver Kupffer cells were analyzed for mCRlg staining using an anti-mcCRlg MAb (14G6).
Western blot analysis of human and mouse macrophages. Lysates from human CD14+ monocytes cultured for the indicated periods of time or mouse peritoneal macrophages were boiled in reducing SDS buffer, loaded on a 4-10% Tris-glycine gel and incubated with a polyclonal anti-CRIg antibody (6F1, left panel) or an anti-muCR1g monoclonal antibody (14G6, right panel). Pre-immune IgG (left panel) and rat IgG2b (right panel) were used as isotype controls. Arrows in the left panel indicate the position of a 57 and 50 kDa band possibly representing huCRIg(L) and -S).

Co-localization of CR1g with CD68 on liver Kupffer cells. Immunostaining was performed on sections obtained from human and mouse liver using monoclonal anti-CRIg (3C9 human and 14G6 mouse), and monoclonal anti-CD68 antibodies.

Figure 51. Flow cytometry analysis of CR1g expression on peripheral blood leukocytes and analysis of binding of C3 fragments or C3 opsonized particles to CR1g expressing CHO cells.

(A) Flow cytometry analysis of CR1g expression on human and mouse peripheral blood leukocytes.

(B) Binding of soluble C3 fragments or complement opsonized pathogens to CHO cells expressing murine CR1g, but not to JAM-2 expressing CHO cells. Cells in suspension were incubated with A488-labeled complement opsonized particles under continuous rotation for 30 minutes at room temperature. Cells were washed three times and the binding of the particles was monitored by flow cytometric analysis. Results are representative of 3 independent experiments.

Figure 52. Soluble and cell surface-expressed CR1g binds to C3 fragments in solution or deposited on the cell surface.

(A) CR1g(L)-transfected Jurkat cells (Jurkat-CR1g), but not empty vector-transfected Jurkat cells (Jurkat-control), form resorcylic with C3 and IgM-opsonized sheep erythrocytes (E-IgM). Histogram (left panel) shows CRIg expression on Jurkat cells stably transfected with human CR1gL(L). E-IgM opsonized with C3 deficient (C3-) or C3 sufficient (C3+) serum were mixed with CR1g or control vector transfected Jurkat for 1 hour. The experiment was representative of three independent experiments.

(B) CR1g(L)-Fc binding to IgM-opsonized sheep red blood cells (E-IgM) is dependent on the presence of C3 in serum. E-IgM were opsonized with C3 depleted human serum to which increasing concentrations of purified human C3 were added. E-IgM were subsequently incubated with a huCR1gL(L)-Fc fusion protein which was in turn detected with an anti-human Fe polyclonal antibody detected by flow cytometry. The experiment was representative of three independent experiments.

(C) ELISA showing binding of CR1gL(L)- and CR1gL(S)-Fc to C1b and C2b. Increasing concentrations of huCR1gL(L)- and huCR1gL(S)-Fc fusion proteins were added to microtiter plates coated with purified C1b and C2b. Binding was detected using an HRP-conjugated anti-human antibody. The results shown are representative of 4 independent experiments using different batches of fusion protein and purified complement components.

(D) Kinetic binding data showing soluble C1b dimers binding to huCR1gL(L)-Fc. The affinity for C1b to the CR1g fusion proteins was determined using surface plasmon resonance. CR1g proteins were captured on a CM5 sensor chip via amine coupling of an antibody directed to the Fc fusion tag. Dimeric C1b was then injected for sufficient time to reach saturation. The Kd was calculated from a binding curve showing response at
equilibrium plotted against the concentration. C3b dimers bound to IncCR1g(S) with a calculated affinity of 44 nM and to IncCR1g(L) with 131 nM affinity.

(B) CR1g expressed on the cell surface binds to A488-labeled C3b dimer (C3b12) but not to native C3. Left panel shows expression levels of IncCR1g(L) on transfected THP-1 cells by flow-cytometry analysis. CR1g expression was competed off with (C3b2) C3b and the extracellular domain of CR1g (CR1g-EC1), but not by C3. The results shown are representative of 3 independent experiments.

Figure 53. Generation and characterization of CR1g ko mice

(A) Generation of a targeting vector used for homologous recombination in ES cells.
(B) Southern blot confirmation of homologous recombination of the SREJ allele in heterozygous female offspring from chimeric mice bred to wt mice.
(C) Comparison of leukocyte numbers in the peripheral blood of wt and ko male and female mice.
(D) FACS analysis showing the absence of CR1, CR2 and CD11c expression in KcA.
(E) FACS analysis of C3-A488 and C3e-A488 binding to wt and ko KcA.

Figure 54. Expression of CR1g on Kupffer cells is necessary for binding of C3b and iC3b. (A) CR1g protein is absent on macrophages obtained from CR1g KO mice. Peritoneal macrophages obtained from CR1g wt, but not ko mice were incubated with an anti-mCR1g mAb (14G6, left panel). Kupffer cells (KcA) obtained from CR1g wt and ko mice were incubated with antibody 14G6 and analyzed by flow cytometry.

(B) Expression levels of CD11b and CD18, the alpha and beta chains of complement receptor 3 and Cery are similar on Kupffer cells obtained from CR1g wt and CR1g ko mice. Kupffer cells isolated from CR1g wt or ko mice were incubated with antibodies to CD11b, CD18 and Cery and analyzed by flow cytometry.

(C) Kupffer cells isolated from CR1g wt or ko mice were incubated with activated mouse serum (activated through incubation for 30 minutes at 37°C), C3b, C3b2 and iC3b. Binding to the purified complement components to the cell surface was detected with a polyclonal antibody recognizing the various C3-decorated fragments. Results shown are representative of 4 experiments.

(D) KcA isolated from CR1g ko mice show decreased reactivity with IgM-coated sheep red blood cells (IgM) opsonized in C3 sufficient mouse serum. KcA isolated from viable CR1g wt and ko mice were incubated with complement C3-opsonized E-IgM for 30 minutes in the presence of control IgG or anti-CR1g blocking antibody (M1/70). Cells were fixed and the number of KcA that formed rosettes with E-IgM were counted and expressed as a percentage of the total number of KcA. * = p<0.05. Results shown are representative of 2 independent experiments.

Figure 55. CR1g on Kupffer cells recycles

(A) Kupffer cells (KcA) from CR1g wt (panels 1, 3, 4 and 6) or CR1g ko mice (panels 2, 5) were incubated with A488-labeled anti-CR1g antibody (14G6) and C3b2 for one hour at 4°C (panel 1-3) or for 10 minutes at 37°C (panel 4-6). Cells were subsequently transferred to 4°C and incubated with anti-A488 antibody (red histogram) or without antibody (black histogram) to distinguish cytoplasmic from cell surface expressed anti-CR1g or C3b.

(B) Internalization and co-localization of CR1g and C3b in CR1g wt, but not CR1g ko, KcA.

KcA isolated from the livers of CR1g wt and ko mice were cultured in chamber slides for 2 days and incubated with
A55-conjugated anti-CRlg antibodies and A488-conjugated C3b for 20 minutes at 37 °C, mounted and photographed.

(C) CRlg, but not LAMP1, antibodies recycle to the cell surface. Karpf/1 cells were loaded with A488-conjugated anti-mCRlg or anti-endLAMP1 antibodies for 10 minutes at 37 °C, washed and subsequently incubated for indicated time periods at 37 °C in the presence of anti-A488 quenching antibody. Results shown are representative of 3 independent experiments.

Figure 56. CRlg is expressed on recycling endosomes that are recruited to sites of particle ingestion.

(A) Cell surface-expressed CRlg is localized to Factin-positive membrane ruffles. Monocyte-derived macrophages cultures for 7 days were incubated at 4°C with A488-conjugated anti-CRlg A488 mAb-3C9 (A1 and green channel in A3) and Alexa 546-phalloidin (A2 and red channel in A2). Arrowheads indicate membrane ruffles where both CRlg and actin staining are more intense than over the rest of the cell surface (yellow in merged images in A3). Scale bar is 20 μm.

(B) CRlg and C3b co-localize with transferrin in recycling endosomes. Macrophages were incubated for 1 hour on ice with CRlg-A488 (B1, green channel in B4) or C3b-A488 (B2, red channel in B4) then chased for 10 minutes at 37 °C in the presence of A647-transferrin (B3, blue channel in B4). Scale bar = 20 μm.

(C) CRlg is recruited to the phagocytic cup and the phagosome membrane. Macrophages were incubated with IgM-coated erythrocytes opsonized with C2 sufficient serum for 10 minutes (C1-4) or 2 hours (C5-8) at 37 °C in the presence of A647-labeled transferrin (C2, 6 and blue channel C4, 8). Cells were subsequently fixed, permeabilized and stained with anti-CRlg polyclonal antibodies (C1, 2 and green channel in C4, 5) and A555-conjugated antibody to LAMP-1 (C3, 7 and red channel in C4, 8).

Figure 57. Trafficking of CRlg in human monocyte-derived macrophages

(A) FACS plot showing saturable binding of C3b-A488 to CRlg on day 7 MDMs.

(B) MDMs were pulsed for 10 minutes at 37 °C with anti-CRlg antibody and C3b-A488 in the presence of a 10-fold molar excess of hCRLg(L)-ECD. Binding and uptake of anti-CRlg antibody was specific for CRlg since it could be abolished by co-incubation of the antibody with a 100-fold molar excess of CRlg ECD (panel 1) while leaving the uptake of transferrin intact (panel 2).

(C) MDMs 20h at 37 °C in the presence of lysosomal protease inhibitors, then the cells were washed, fixed with 1% PFA and the uptaken antibody detected with Cy3 labeled anti-rabbit IgG (C panel 1, and red channel in panel 3). The cells were co-stained in 10 ng/ml rabbit anti-CRlg GFI followed by FITC-anti-rabbit to detect the total CRlg distribution (C panel 2 and green channel in C panel 3). The uptaken antibody almost completely overlapped with the endogenous CRlg signal (yellow in the merged image in C panel 3), indicating that the antibody uptake does not influence CRlg trafficking. Scale bar is 20 μm and 5 μm in the 4x magnified inset of the boxed regions shown in the lower right of each channel. C panel 4 Human macrophages were incubated in CD3-depleted serum for 13 h, then fixed and labeled with rabbit anti-CRlg F1 and FITC anti-rabbit. The CRlg distribution was essentially identical to that in C3 deficient serum, both overlapping almost entirely with the recycling endosomal marker transferrin (data not shown). Scale bar is 20 μm.

(D) MDMs were incubated with 1 μg/ml anti-CRlg-A488 (panel 1) transferrin-A647 (panel 2) for 10 minutes at 37 °C, fixed in 4% PFA, permeabilized with saponin buffer and incubated with mouse anti-
human Lamp-1-A555 (panel 3). Arrows indicate co-localization of CR1g and transferrin in the recycling compartment.

(E) MDMs were incubated with 1 μg/ml anti-CR1g-A488 (panel 1), green channel in panel 4), transferrin-A647 (panel 2, blue channel in panel 4) for 30 minutes at 37 °C, washed and incubated with PKH-1 stained, complement C3-opsonized sheep red blood cells (SRBCs, panel 3, red channel in panel 4) at a 1:10 macrophages:SRBC ratio.

Figure 58. Mice lacking CR1g are susceptible to Listeria Monocytoxogenes (LM) infection.

(A) Survival curves of female CR1g wt and CR1g ko mice infected with the indicated doses of LM following injection into the lateral tail vein, n = 5-7 per group. Statistical analysis (Wilcoxon): wt vs ko p<0.005 for 2 x 10^6 colony forming units (CFUs), p<0.0001 for 5 x 10^4 and 2 x 10^5 CFUs.

(B) Analysis of bacterial counts in heart, liver, blood, and spleens 10 min following LM infection (2 x 10^7 CFUs, n = 5 per groups). Statistical analysis (paired t-test): *p<0.01, *p<0.05.

(C) Increased concentrations of cytokines and chemokines in the serum of CR1g ko mice one day following LM infections. Statistical analysis (unpaired t-test). ***p<0.001.

(D) Reduced uptake of LM-A488 in KCs in CR1g ko mice. Mice were infected with 2 x 10^6 LM-A488. One hour later, livers were perfused, incubated with antibodies to F4/80 and analyzed by flow cytometry. F4/80 positive KCs were subsequently sorted by FACS and collected on poly-l-lysine coated slides for observation by fluorescent microscopy. The number of internalized LM-A488 was counted in a confocal microscope and the phagocytic index calculated. Results are representative of at least two experiments.

(E) CR1g mice have a reduced clearance of LM from the circulation. CR1g and C3 double or single ko mice were infected i.v. with 2 x 10^7 CFUs LM. CFUs in blood were counted 10 minutes post infection. In the presence of C3, CR1g ko mice had a significantly reduced clearance of LM from the circulation (p<0.001). In the absence of C3, there was no significant difference in clearance of LM in CR1g wt or ko mice.

Figure 59 shows the nucleotide sequence of a human CR1g(short)-IgG fusion. (SEQ ID NO: 20).

Figure 60 shows the nucleotide sequence of a human CR1g(long)-IgG fusion (SEQ ID NO: 21).

Figure 61 illustrates the CR1g (STIGMA)-Fc junction in two different constructs, both of which are inserted into a pMK5 vector at a CdiI/XbaI site.

Figure 62 shows that mCR1g-Fc fusion protein (but not control Fc fusion protein) inhibits clearance of LM from the circulation in wt but not CR1g ko cells. CR1g wt and ko mice were treated with 2 injections of 12 mg/kg mCR1g-Fc or control-Fc fusion proteins 24 hrs and 16 hrs prior to injection i.v. with 2 x 10^7 CFUs LM. CFUs in blood were counted 10 minutes post infection. CR1g wt mice treated with mCR1g-Fc had a significantly reduced clearance of LM from the circulation as compared to control-Fc treated wt mice (p<0.001, unpaired Student's t-test). In CR1g ko mice, treatment with mCR1g-Fc had no effect on LM clearance.

Figure 63. Inhibition of complement-mediated immune hemolysis with hCR1g molecules. A. Inhibition of Cyto serum RBC hemolysis using hCR1g(short) and -long fusion proteins. B. Inhibition of cyto serum RBC hemolysis using hCR1g(long)-ECD.

Figure 64. Inhibition of human serum hemolysis with hCR1g long in two different experiments.

Figure 65. Inhibition of human serum hemolysis with hCR1g-short-Fc and CR1g-long-Fc fusion proteins.

Figure 66. Inhibition of human serum hemolysis with hCR1g-long-ECD and hCR1g-short-ECD,
Figure 67 shows the nucleic acid sequence encoding huCR1g-long-Fc ("stalkless" construct) (SEQ ID NO: 25).

Figure 68 shows the nucleic acid sequence encoding huCR1g-long-Fc having a "stalk" inserted between the transmembrane domain of CR1g and the Fc portion (SEQ ID NO: 26).

Figure 69 shows the nucleic acid sequence encoding huCR1g-short-Fc ("stalkless" construct) (SEQ ID NO: 27).

Figure 70 shows the nucleic acid sequence encoding huCR1g-short-Fc having a "stalk" inserted between the transmembrane domain of CR1g and the Fc portion (SEQ ID NO: 28).

Figures 71 A and B show the results of murine CNV studies described in Example 23.

Detailed Description of the Preferred Embodiments

1. **Definitions**

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising," is used in an inclusive sense, i.e., to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

The terms "PR0352," "JAM1," "STIgMA," and "CR1g" are used interchangeably, and refer to native sequence and variant CR1g polypeptides.

A "native sequence" CR1g, is a polypeptide having the same amino acid sequence as a CR1g polypeptide derived from nature, regardless of its mode of preparation. Thus, native sequence CR1g can be isolated from nature or can be produced by recombinant and/or synthetic means. The term "native sequence CR1g," specifically encompasses naturally-occurring truncated or secreted forms of CR1g (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of CR1g. Native sequence CR1g polypeptides specifically include the 321 amino acids long human CR1g polypeptide of SEQ ID NO: 2 (shown in Figure 1), with or without the N-terminal signal sequence, with or without the initiating methionine at position 1, and with or without any or all of the transmembrane domain at about amino acid positions 277 to 307 of SEQ ID NO: 2. Native sequence CR1g polypeptides further include the full-length 399 amino acids long human CR1g polypeptide of SEQ ID NO: 4 (huCR1g, or huCR1g-long, shown in Figures 2 and 5), with or without an N-terminal signal sequence, with or without the initiating methionine at position 1, and with or without any or all of the transmembrane domain at about amino acid positions 277 to 307 of SEQ ID NO: 4. In a still further embodiment, the native sequence CR1g polypeptide is the 305-amino acid, short form of human CR1g (huCR1g-short, SEQ ID NO: 6, shown in Figure 3), with or without an N-terminal signal sequence, with or without the initiating methionine at position 1, and with or without any or all of the transmembrane domain at about positions 183 to 213 of SEQ ID NO: 6.

In a different embodiment, the native sequence CR1g polypeptide is a 280 amino acids long, full-length mature CR1g polypeptide of SEQ ID NO: 8 (muCR1g, shown in Figures 4 and 5), with or without an N-terminal signal sequence, with or without the initiating methionine at position 1, and with or without any or all of the transmembrane domain at about amino acid positions 181 to 211 of SEQ ID NO: 8. CR1g polypeptides of other non-human animals, including higher primates and mammals, are specifically included within this definition.
"CR1g variant" means an active CR1g polypeptide as defined below having at least about 80% amino acid sequence identity to a native sequence CR1g polypeptide, including, without limitation, the C-terminally truncated 311-amino acid haCR1g (SEQ ID NO: 2), the full-length haCR1g (SEQ ID NO: 4), haCR1g-short (SEQ ID NO: 6), and murCR1g (SEQ ID NO: 8), each with or without the N-terminal initiating methionine, with or without the N-terminal signal sequence, with or without all or part of the transmembrane domain and with or without the
intracellular domain. In a particular embodiment, the CRlg variant has at least about 80% amino acid sequence homology with the mature, full-length polypeptide from within the sequence of the sequence of SEQ ID NO: 2. In another embodiment, the CRlg variant has at least about 80% amino acid sequence homology with the mature, full-length polypeptide from within the sequence of SEQ ID NO: 4. In yet another embodiment, the CRlg variant has at least about 80% amino acid sequence homology with the mature, full-length polypeptide from within the sequence of SEQ ID NO: 6. In a still further embodiment, the CRlg variant has at least about 80% amino acid sequence homology with the mature, full-length polypeptide from within the sequence of SEQ ID NO: 8. Such CRlg polypeptide variants include, for instance, CRlg polypeptides wherein one or more amino acid residues are inserted, substituted and/or deleted, at the N- or C-terminus of the sequence of SEQ ID NO: 2, 4, 6, or 8. Other variants have one or more amino acids inserted, substituted and/or deleted within the transmembrane regions of the indicated polypeptide sequences.

Ordinarily, a CRlg variant will have at least about 80% amino acid sequence identity, or at least about 85% amino acid sequence identity, or at least about 90% amino acid sequence identity, or at least about 95% amino acid sequence identity, or at least about 98% amino acid sequence identity, or at least about 99% amino acid sequence identity with the mature amino acid sequence from within SEQ ID NO: 2, 4, 6, or 8. Preferably, the highest degree of sequence identity occurs within the extracellular domains (ECDs) (amino acids 1 or about 21 to X of SEQ ID NO: 2 or 4, where X is any amino acid residue from position 271 to 281; or amino acids 1 or about 21 to X of SEQ ID NO: 6, where X is any amino acid residue from position 178 to 186; or amino acids 1 or about 21 to X of SEQ ID NO: 8, where X is any amino acid residue from position 176 to 184).

The CRlg (P00362) "extracellular domain" or "ECD" refers to a form of the CRlg polypeptide, which is essentially free of the transmembrane and cytoplasmic domains of the respective full length molecules. Ordinarily, the CRlg ECD will have less than 1% of such transmembrane and/or cytoplasmic domain and preferably, will have less than 0.5% of such domain. As discussed above, optionally, CRlg ECD will comprise amino acid residues 1 or about 21 to X of SEQ ID NO: 2, 4, 6, or 8, where X is any amino acid from about 271 to 281 in SEQ ID NO: 2 or 4, any amino acid from about 178 to 186 in SEQ ID NO: 6, and any amino acid from about 176 to 184 in SEQ ID NO: 8.

"Percent (%) amino acid sequence identity" with respect to the CRlg (P00362) sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the CRlg sequence, respectively, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill of the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALGEN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithm needed to achieve maximal alignment over the full length of the sequences being compared. Sequence identity is then calculated relative to the longer sequence, i.e., even if a shorter sequence shows 100% sequence identity with a portion of a longer sequence, the overall sequence identity will be less than 100%.

"Percent (%) nucleotide sequence identity" with respect to the CRlg (P00362)-encoding sequences identified herein (e.g., DNA45446) is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the CRlg-encoding sequence, respectively, after aligning the sequences and
introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill of the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for maximizing alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. Sequence identity is then calculated relative to the longer sequence, i.e., even if a shorter sequence shows 100% sequence identity with a portion of a longer sequence, the overall sequence identity will be less than 100%.

An “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the nucleic acid. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes nucleic acid molecules contained in cells that ordinarily express an encoded polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

An “isolated” CRIg polypeptide-encoding nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the CRIg-encoding nucleic acid. An isolated CRIg polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated CRIg polypeptide-encoding nucleic acid molecules therefore are distinguished from the encoding nucleic acid molecule(s) as they exist in natural cells.

However, an isolated CRIg-encoding nucleic acid molecule includes CRIg-encoding nucleic acid molecules contained in cells that ordinarily express CRIg where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The term “complement-associated disease” is used herein in the broadest sense and includes all diseases and pathological conditions the pathogenesis of which involves abnormalities of the activation of the complement system, such as, for example, complement deficiencies. The term specifically include diseases and pathological conditions that benefit from the inhibition of C3 convertase. The term additionally includes diseases and pathological conditions that benefit from inhibition, including selective inhibition, of the alternative complement pathway. Complement-associated diseases include, without limitation, inflammatory diseases and autoimmune diseases, such as, for example, rheumatoid arthritis (RA), acute respiratory distress syndrome (ARDS), remote tissue injury after ischemia and reperfusion, complement activation during cardiopulmonary bypass surgery, dermatomyositis, pemphigus, lupus nephritis and resultant glomerulonephritis and vasculitis, cardiopulmonary bypass, cardiopulgia-induced coronary endothelial dysfunction, type II membranoproliferative glomerulonephritis, IgA nephropathy, acute renal failure, cryoglobulinemia, antiphospholipid syndrome, macular degenerative diseases and other complement-associated eye conditions, such as age-related macular degeneration (AMD), choroidal neovascularization (CNV), uveitis, diabetics and other ischemia-related retinopathies, endophthalmitis, and other intraocular neovascular diseases, such as diabetic macular edema, pathological myopia, von Hippel-Lindau disease, histoplasmosis of the eye, Central Retinal Vein Occlusion (CRVO), corneal neovascularization, retinal neovascularization, as well as allo-transplantation, hypersensate rejection, hemodialysis, chronic occlusive pulmonary distress syndrome (COPD), asthma, and aspiration pneumonia.
The term "complement-associated eye condition" is used herein in the broadest sense and includes all eye conditions and diseases the pathology of which involves complement, including the classical and the alternative pathways, and in particular the alternative pathway of complement. Specifically included within this group are all eye conditions and diseases associated with the alternative pathway, the occurrence, development, or progression of which can be controlled by the inhibition of the alternative pathway. Complement-associated eye conditions include, without limitation, macular degenerative diseases, such as all stages of age-related macular degeneration (AMD), including dry and wet (non-exudative and exudative) forms, choroidal neovascularization (CNV), uveitis, diabetic and other ischemia-related retinopathies, endophthalmitis, and other intraocular neovascular diseases, such as diabetic macular edema, pathological myopia, von Hippel-Lindau disease, histoplasmosis of the eye, Central Retinal Vein Occlusion (CRVO), central neovascularization, and retinal neovascularization. A preferred group of complement-associated eye conditions includes age-related macular degeneration (AMD), including non-exudative (wet) and exudative (dry or atrophic) AMD, choroidal neovascularization (CNV), diabetic retinopathy (DR), and endophthalmitis.

The term "inflammatory disease" and "inflammatory disorder" are used interchangeably and mean a disease or disorder in which a component of the immune system of a mammal causes, mediates or otherwise contributes to an inflammatory response contributing to morbidity in the mammal. Also included are diseases in which reduction of the inflammatory response has an ameliorative effect on progression of the disease. Included within this term are immune-mediated inflammatory diseases, including autoimmune diseases.

The term "T-cell mediated" disease means a disease in which T cells directly or indirectly mediate or otherwise contribute to morbidity in a mammal. The T-cell mediated disease may be associated with cell mediated effects, lymphokine mediated effects, etc. and even effects associated with B cells if the B cells are stimulated, for example, by the lymphoblasts secreted by T cells.

Examples of immune-related and inflammatory diseases, some of which are T cell mediated, include, without limitation, inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sjögren’s syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura), immune mediated thrombocytopenia, thyroiditis (Graves' disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis), diabetes mellitus, immune mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other nonhepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis, inflammatory and fibrotic lung diseases (e.g., cystic fibrosis), glutamatergic encephalopathy, Whipple’s disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis, allergic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation associated diseases including graft rejection, graft versus host disease, Alzheimer’s disease, and scleroderma.

"Tumor", as used herein, refers to all neoplastic cell growth and proliferation whether malignant or benign, and all pre-cancerous cells and tissues.
The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastomas, sarcoma, and leukemia. More particular examples of such cancers include breast cancer, prostate cancer, colon cancer, squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, renal cancer, thyroid cancer, hepatic carcinomas and various types of head and neck cancer.

"Treatment" is an intervention performed with the intention of preventing the development or altering the pathology of a disorder. Accordingly, "treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented. In treatment of an immune related disease, a therapeutic agent may directly alter the magnitude of response of a component of the immune response, or render the disease more susceptible to treatment by other therapeutic agents, e.g., antibiotics, antifungals, anti-inflammatory agents, chemotherapeutics, etc. In treatment of complement-associated diseases, treatment might, for example, prevent or slow down the progression of a disease. Thus, treatment of a complement-associated eye condition specifically includes the prevention, inhibition, or slowing down of the development of the condition, or of the progression from one stage of the condition to another, more advanced stage, or into a more severe, related condition.

The "pathology" of a disease, such as a complement-associated disease, includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth (neutrophilic, eosinophilic, monocyte, lymphocytic cells), antibody production, auto-antibody production, complement production, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of any inflammatory or immunological response, infiltration of inflammatory cells (neutrophilic, eosinophilic, monocytic, lymphocytic) into cellular spaces, tissue formation, loss of vision, etc.

The term "mammal" as used herein refers to any animal classified as a mammal, including, without limitation, humans, non-human primates, domestic and farm animals, and zoo, sports or pet animals such as horses, pigs, cattle, dogs, cats and ferrets, etc. In a preferred embodiment of the invention, the mammal is a human, or a non-human primate, most preferably human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

The term "cytokines" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methylamino human growth hormone, and bovine growth hormone, parathyroid hormone, rh trout, insulin, prolactin, relaxin, proctolin, glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and lutropinizing hormone (LH), hepatic growth factor, fibroblast growth factor, prostate, placental lactogen, tumor necrosis factor-α and -β, multian-inhibiting substance, mouse granulocyte-associated peptide, inhibin, atrial, vascular endothelial growth factor, integrin, thrombopoietin (TPO), nerve growth factors such as NGF-β, platelet-growth factor, transforming growth factors (TGFs) such as TGF-α and TGF-β, insulin-like growth factors I and -II, erythropoietin (EPO), osteoinductive factors, interferons such as interferon-α, -β, and -γ; colony stimulating factors
(CSFs) such as macrophage-CSF (M-CSF), granulocyte-macrophage-CSF (GM-CSF), and granulocyte-CSF (G-CSF), interleukins (ILs) such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12, a tumor necrosis factor such as TNF-α or TNF-β, and other polypeptide factors including LIF and kit ligand (KIT). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

"Therapeutically effective amount" is the amount of active CR4g, CR4g agonists and antagonists which is required to achieve a measureable improvement in the state, e.g. pathology, of the target disease or condition, such as, for example, a complement-associated (c) disease or condition, or cancer.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally in an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate (SSC) or 0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 500 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sheared salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.
“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and NaCl) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37 °C in a solution comprising: 20%

- 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt’s solution, 1% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50 °C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc., as necessary to accommodate factors such as probe length and the like.

The term “epitope tagged” when used herein refers to a chimeric polypeptide comprising a polypeptide of the invention fused to a “tag polypeptide”. The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

“Active” or “activity” in the context of variants of the CR1g polypeptides of the invention refers to form(s) of such polypeptides which retain the biological and/or immunological activities of a native or naturally-occurring polypeptide of the invention. A preferred biological activity is the ability to bind C3b, and/or to affect complement or complement activation, in particular to inhibit the alternative complement pathway and/or C3 convertase.

Inhibition of C3 convertase can, for example, be measured by measuring the inhibition of C3 convertase in normal serum during collagen- or antibody-induced arthritis, or inhibition of C3 deposition is arthritic joints.

“Biological activity” in the context of an antibody, polypeptide or another molecule that mimics CR1g biological activity, and can be identified by the screening assays disclosed herein (e.g., an organic or inorganic small molecule, peptide, etc.) refers, in part, to the ability of such molecules to bind C3b and/or to affect complement or complement activation, in particular, to inhibit the alternative complement pathway and/or C3 convertase.

The term CR1g “agonist” is used in the broadest sense, and includes any molecule that mimics a qualitative biological activity (as hereinabove defined) of a native sequence CR1g polypeptide. This CR1g agonists specifically include CR1g-Ig, e.g. CR1g-Fc fusion polypeptides (immunoglobulins), but also small molecules mimicking at least one CR1g biological activity. Preferably, the biological activity is the blocking of a complement pathway, especially of the alternative pathway of complement.

The term “antagonist” is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a qualitative biological activity of a native polypeptide, such as a native sequence CR1g polypeptide.

Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fusions or amino acid sequence variants of native polypeptides of the invention, peptides, small molecules, including small organic molecules, etc.

A “small molecule” is defined herein to have a molecular weight below about 600, preferably below about 1000 daltons.

The term “antibody” is used in the broadest sense and specifically covers, without limitation, single anti-CR1g monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies) and anti-CR1g antibody compositions with polyclonal specificity. The term “monoclonal antibody” as used herein refers to an antibody
obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts.

"Antibodies" (Ab) and "immunoglobulins" (Ig) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myeloma. The term "antibody" is used in the broadest sense and specifically covers, without limitation, intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments as long as they exhibit the desired biological activity.

"Native antibodies" and "native immunoglobulins" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains.

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., NIH Pub. No. 81-3242, Vol. I, pages 647-669 (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8:1057-1062 (1995)); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. In particular, examples of antibody fragments encompassed by the present definition include: (i) the Fab fragment, having VL, CL, VH and CH1 domains; (ii) the Fab' fragment, which is a Fab fragment having one or more cysteine residues at the C-terminus of the CH1 domain; (iii) the Fd fragment having VH and CH1 domains; (iv) the F(ab')2 fragment having VH and CH1 domains and one or more cysteine residues at the C-terminus of the CH1 domain; (v) the Fv fragment having the VL and VH domains of a single arm of an antibody; (vi) the dAb fragment (Ward et al., Nature 341, 544-546 (1989)) which consists of a VH domain; (vii) isolated CDR regions; (viii) F(ab')2 fragments, a bivalent fragment including two Fab' fragments.
linked by a disulfide bridge at the hinge region; (ix) single chain antibody molecules (e.g. single chain Fv; scFv) (Bird et al., Science 242:423-426 (1988); and Huston et al., PNAS (USA) 85:5879-5883 (1988)); (x) "diabodies" with two antigen binding sites, comprising a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (see, e.g., EP 404,097, WO 92/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993)); (xi) "linear antibodies" comprising a pair of tandem Fc segments (VH-CH1-VL-CH1) which, together with complementarity light chain polypeptides, form a pair of antigen binding regions (Zapata et al.; Protein Eng. 8(10):1057-1062 (1995); and US Patent No. 5,641,870).

Pepsin digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment. The designation "Fc" reflects the ability to crystallize readily. Pepsin treatment yields an Fab′ fragment that has two antigen-combining sites and is still capable of cross-linking antigen.

"Fab" is the minimum antibody fragment which contains a complete antigen-recognizing and binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V_{H}-V_{L} dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH1 is the designation herein for Fab′ in which the cysteine residue(s) of the constant domain bears a free thiol group. Fab′γ2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (\(\kappa\)) and lambda (\(\lambda\)), based on the amino acid sequences of their constant domains.

Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgG, IgM, and IgE, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called \(\gamma\), \(\mu\), \(\delta\), \(\alpha\), and \(\epsilon\), respectively. The solvent structures and three-dimensional configurations of different classes of immunoglobulins are well known.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a
substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256:495 [1975], or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 [1991] and Marks et al., J. Mol. Biol., 222: 581-597 (1991), for example. See also U.S. Patent Nos. 5,750,373, 5,571,698, 5,603,484 and 5,222,409 which describe the preparation of antibodies using phagemid and phage vectors.

The monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).

“Humanized” forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′2) or other antigen-binding subsequences of antibodies which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which several or all residues from a complementarity-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, certain Fv framework regions (FR) residues of the human immunoglobulin can also be replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and maximize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321: 522-525 (1986); Reichmann et al., Nature, 322: 323-329 (1986); and Presta, Curr. Op. Struct. Biol., 2: 593-596 (1992). The humanized antibody includes a “primatized” antibody where the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest. Antibodies containing retinyls from Old World monkeys are also possible within the invention. See, for example, U.S. Patent Nos. 5,658,570; 5,693,780; 5,681,722; 5,750,105; and 5,756,696.

“Single-chain Fv” or “scFv” antibody fragments comprise the variable domains of an antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the V\textsubscript{H} and V\textsubscript{L} domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, ed. 113, Rosenberg and Moore, eds., Springer-Verlag, New York, pp. 295-315 (1994).
The term “diabodies” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH - VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097, WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993).

The “CH2 domain” of a human IgG Fc region (also referred to as “Cg2” domain) usually extends from an amino acid residue at about position 231 to an amino acid residue at about position 340. The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It has been speculated that the carbohydrate may provide a substitute for the domain-domain pairing and help stabilize the CH2 domain. Burton, Moloc. Immunol., 22:161-206 (1985). The CH2 domain herein may be a native sequence CH2 domain or variant CH2 domain.

The “CH3 domain” comprises the stretch of residues C-terminal to a CH2 domain in an Fc region (i.e. from an amino acid residue at about position 341 to an amino acid residue at about position 447 of an IgG). The CH3 region herein may be a native sequence CH3 domain or a variant CH2 domain (e.g. a CH3 domain with an introduced “proline” at one or more residues and a corresponding introduced “cysteine” at the other chain thereof; see US Patent Nos. 5,823,333, expressly incorporated herein by reference). Such variant CH3 domains may be used to make multispecific (e.g. bispecific) antibodies as herein described.

A “functional Fc region” possesses at least one “effector function” of a native sequence Fc region. Exemplary “effector functions” include C1q binding, complement-dependent cytotoxicity (CDC); Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays known in the art for evaluating such antibody effector functions.

A “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. A “variant Fc region” comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one amino acid modification. Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g. from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide. The variant Fc region herein will
typically possess, e.g., at least about 80% sequence identity with a native sequence Fc region and/or with an Fc region of a parent polypeptide, or at least about 90% sequence identity therewith, or at least about 95% sequence or more identity therewith.

A "flexible linker" herein refers to a peptide comprising two or more amino acid residues joined by peptide bond(s), and provides more rotational freedom for two polypeptides (such as two Fd regions) linked thereby. Such rotational freedom allows two or more antigen binding sites joined by the flexible linker to each access target antigen(s) more efficiently. Examples of suitable flexible linker peptide sequences include gly-ser, gly-ser-gly-ser, ala-ser, and gln-gly-gly-ser.

"Single-chain Fv" or "sFv" antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFvs see Pinkett in "The Pharmacology of Monoclonal Antibodies", vol. 113, Rosenberg and Moore eds. Springer-Verlag, New York, pp. 269-313 (1994).

An "isolated" polypeptide, such as an antibody, is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the polypeptide, including antibodies, will be purified (1) to greater than 95% by weight of the antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequencer, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated compound, e.g. antibody or other polypeptide, includes the compound in situ within recombinant cells since at least one component of the compound's natural environment will not be present. Ordinarily, however, isolated compound will be prepared by at least one purification step.

The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to a compound, e.g. antibody or polypeptide, so as to generate a "labeled" compound. The label may be detectable by itself (e.g. radionuclide labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

By "solid phase" is meant a non-aqueous matrix to which the compound of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polystyrene, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay
plate; in other it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactants which is useful for delivery of a drug (such as the anti-HER2 antibodies disclosed herein and, optionally, a chemotherapeutic agent) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

As used herein, the term “immunoadhesin” designates antibody-like molecules which combine the binding specificity of a heterogeneous (an “antibody”) with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesin comprises a fusion of an amino acid sequence with the desired binding specificities which is other than the antigen recognition and binding site of an antibody (i.e., “heterologous”), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

An “angiogenic factor or agent” is a growth factor which stimulates the development of blood vessels, e.g., promotes angiogenesis, endothelial cell growth, stability of blood vessels, and/or vasculogenesis, etc. For example, angiogenic factors include, but are not limited to, e.g., VEGF and members of the VEGF family, PIGF, PDGF family, fibroblast growth factor family (FGF’s), TIE ligands (Angiopoietins), epoxins, ANGPTL3, ANGPTL4, etc. It would also include factors that accelerate wound healing, such as growth hormone, insulin-like growth factor-1 (IGF-1), VEGF, epidermal growth factor (EGF), CTGF and members of its family, and TGF-α and TGF-β. See, e.g., Kiakhour and D’Amore, *Annu. Rev. Physiol.*, 53:217-39 (1991); Streit and Detmar, *Oncogene*, 22:5172-5179 (2003); Perera & Altalho, *Nature Medicine* 5(12):1339-1344 (1999); Tonini et al., *Oncogene*, 22:6549-6556 (2003) (e.g., Table 1 listing angiogenic factors); and, *Sato Int. J. Clin. Oncol.* 8:200-206 (2003).

An “anti-angiogenesis agent” or “angiogenesis inhibitor” refers to a small molecular weight substance, a polynucleotide, a polypeptide, an isolated protein, a recombinant protein, an antibody, or conjugates or fusion proteins thereof, that inhibits angiogenesis, vasoclogenesis, or undesirable vascular permeability, either directly or indirectly. For example, an anti-angiogenesis agent is an antibody or other antagonist to an angiogenic agent as defined above, e.g., antibodies to VEGF, antibodies to VEGF receptors, small molecules that block VEGF receptor signaling (e.g., PTK787/2K2824, SU6668). Anti-angiogenesis agents also include native angiogenesis inhibitors, e.g., angiostatin, endostatin, etc. See, e.g., Klagesbom and D’Amore, *Annu. Rev. Physiol.*, 53:217-39 (1991); Streit and Detmar, *Oncogene*, 22:5172-5179 (2003).

The term “effective amount” refers to an amount of a drug effective to treat (including prevention) a disease or disorder in a mammal. Thus, in the case of age-related macular degeneration (AMD) or choroidal neovascularization (CNV), the effective amount of the drug can reduce or prevent vision loss. For AMD therapy, efficacy in vivo can, for example, be measured by one or more of the following: assessing the mean change in the best corrected visual acuity (BCVA) from baseline to a desired time, assessing the proportion of subjects who lose fewer than 15 letters in visual acuity at a desired time compared with baseline, assessing the proportion of subjects who gain greater than or equal to 15 letters in visual acuity at a desired time compared with baseline, assessing the proportion of subjects with a visual-accuracy Stellen equivalent of 20/200 or worse at desired time, assessing the NFL Visual Functioning Questionnaire, assessing the size of CNV and amount of leakage of CNV at a desired time, as
assessed by fluorescein angiography, etc. If the indication is the prevention of the progression of dry to wet AMD, or from AMD to CMV, the effective amount of the drug can inhibit, slow down, or partially or fully block such progression. In this case, determination of the effective amount involves grading the disease, monitoring the time course of disease progression, and adjusting the dosage as necessary in order to achieve the desired result.

II. Detailed Description

The present invention concerns the use of a novel macrophage-associated receptor with homology to the A33 antigen and IAMA1, which was cloned from a fetal lung library and identified as a single transmembrane Ig superfamily member gene encodes an associated (STIgMA) or a Complement Receptor of the Immunoglobulin family (CR1g) polypeptide. Native human CR1g is expressed in two spliced variants, one containing an N-terminal IgV-like domain and a C-terminal IgCl-like domain and a spliced form lacking the C-terminal domain (SEQ ID NO: 4 and 6, respectively). Both receptors have a single transmembrane domain and a cytoplasmic domain, containing tyrosine residues which are constitutively phosphorylated in macrophages in vivo. A mouse homologue was found with 67% sequence homology to human CR1g (SEQ ID NO: 8). The full-length human CR1g polypeptide also has a shorter version, with an N-terminal segment missing (SEQ ID NO: 2).

As shown in the Examples below, CR1g binds complement C3b and inhibits C2 convertase. CR1g is selectively expressed on tissue resident macrophages, and its expression is upregulated by dexamethasone and IL-10, and down-regulated by LPS and IFN-γ, and inhibits collagen- and antibody-induced arthritis independent of B or T cell responses.

In addition it has been found that CR1g is highly expressed on Kupffer cells, binds to the C3b and iC3b opsonins and is required for the rapid clearance of pathogens in the circulation. Structurally, CR1g differs from the known complement receptors in that it lacks combined C3b- and C4b-binding short consensus repeat sequences in CR1 and CR2, as well as the integrin-like domain present in C3 and C4A. Whereas complement receptors CR1-4 are expressed on a wide variety of cell types, CR1g expression is confined to tissue resident macrophages including liver Kupffer cells.

Depletion studies have established a role for Kupffer cells in the rapid C3-dependent clearance of Listeria early during an infection (Kaufmann, Annu Rev. Immunol. 11:129-163 (1993); Gregory et al., J. Immunol. 168:3038-315 (2002)) but the receptors involved in this process have not been identified. The studies presented in the Examples below demonstrate that macrophage-expressed CR1g binds C3b and iC3b deposited on the surface of pathogens. Due to this dual binding activity to C3b and iC3b, CR1g is required for efficient clearance of Listeria Monocytogenes (LM) opsonized with both C3 and C3a-degradation products.

The importance of CR1g in the rapid hepatic clearance of C3 opsonized particles is further supported by the failure of CR1g knockout (ko) mice to efficiently clear C3-opsonized LM from the circulation, leading to elevated loads of pathogens in various organs and increased mortality. In the absence of C3, CR1g ko wild-type (wt) mice cleared Listeria equally well, indicating dependence of CR1g function on the presence of C3.

The role of complement receptors CR1-4 in clearance of LM by liver Kupffer cells has not been well established. CR1 and CR2 are absent on tissue resident macrophages and are predominantly expressed on follicular dendritic cells and B-cells when they serve as role in regulating T- and B-cell responses (Kuch-Musette and Ackrell, Int. Rev. Immunol. 18:113-122 (2001); Molina et al., J. Exp. Med. 175:121-129 (1992)), and Examples).

CR1 is expressed at low levels on KCs, but ko mice lacking the CD18 common beta chain of both CR3 and CR4
resulting in non-functional receptors showed reduced, rather than enhanced, susceptibility to infection (Wu et al., Infect. Immun. 71:5986-5993 (2003)). Thus CR1g represents a major component of the reticulo-endothelial phagocytic system in rapid clearance of C3-opsonized particles.

In addition to its expression on liver Kupffer cells, CR1g is present on subpopulations of macrophages in various tissues including peritoneum, heart, lung, adrenal gland and intestine. These macrophages are known to serve a central role in phagocytosis of dead cells and cell debris (Almeida et al., Ann. N.Y. Acad. Sci. 1019:125-140 (2004); Castelluccia and Zaccceo, Prog. Clin. Biol. Res. 296:443-451 (1989); Taylor et al., Annu. Rev. Immunol. 23:901-944 (2005)). CR1g expression on these resident macrophages may mediate complement-dependent opsonophagocytosis of various particles. This is supported by the finding that CR1g-knockout mice exhibit decreased LM in their heart and liver tissues despite increased circulatory LM load. Hence, CR1g represents a novel receptor expressed in tissue macrophages and serves as a portal for rapid clearance of complement opsonized pathogens.

The results presented in the Examples below further demonstrate that CR1g is expressed on an intracellular pool of recycling vesicles, thereby ensuring a continuous supply of CR1g on the cell surface for binding to C3-opsonized particles. In addition, CR1g-expressing endosomes are rapidly recruited to sites of particle contact where they may aid in delivering membrane to the forming phagosome. The importance of CR1g in phagocytosis of C3-opsonized particles is shown by the inability of KGs lacking CR1g to bind C3b and iC3b resulting in reduced phagocytosis of C3 opsonized Listeria Monocytogenes (see Examples).

The subcellular localization and intracellular trafficking of CR1g differ from the known complement C3 receptors. Whereas CR1g is localized on constitutively recycling endosomes, CR1, CR3, and CR4 are located on secretory vesicles that fuse with the plasma membrane upon cytokine stimulation of the cells (Segelev et al., J. Immunol. 155:804-810 (1995); and Segelev et al., Crit. Rev. Immunol. 15:107-131 (1995)) and internalize ligand through a macropinocytic process only after cross-linking of the receptor (Carpentier et al., Cell Regul. 2:41-53 (1991); Brown et al., Curr. Opin. Immunol. 3:70-82 (1991)). As a consequence, CR1g expression on the surface of cells is downregulated following stimulation of the cells, whereas CR1 and CR3 cell surface expression increases following stimulation. This increase serves as an important step in binding and phagocytosis and, like CR1g, CR3 concentrates in the phagocytic cup and the phagosome containing C3-opsonized particles (Aderem and Underhill, Annu. Rev. Immunol. 17:593-623 (1999)). The constitutive recycling and endocytosis of ligand by CR1g in resting macrophages is consistent with a role in binding of complement-opsonized particles during the initial phase of a bacterial infection prior to an inflammatory response (e.g., the recruitment of activated macrophages), as well as during removal of particles from the circulation under non-inflammatory conditions.

Complement plays a crucial role in the body's defense, and, together with other components of the immune system, protect the individual from pathogens invading the body. However, if not properly activated or controlled, complement can also cause injury to host tissues. Inappropriate activation of complement is involved in the pathogenesis of a variety of diseases, referred to as complement associated diseases or disorders, such as immune complex and autoimmune diseases, and various inflammatory conditions, including complement-mediated inflammatory tissue damage. The pathology of complement-associated diseases varies, and might involve complement activation for a long or short period of time, activation of the whole cascade, only one of the cascades (e.g. classical or alternative pathway), only some components of the cascade, etc. In some diseases complement biological activities of complement fragments result in tissue injury and disease. Accordingly, inhibitors of complement have high therapeutic potential. Selective inhibitors of the alternative pathway would be particularly
useful, because clearance of pathogens and other organisms from the blood through the classical pathway will remain intact.

CR1g is known to covalently epitope surfaces of microorganisms invading the body, and act as a ligand for complement receptors present on phagocytic cells, which ultimately leads to phagocytosis of the pathogens. In many pathological situations, such as those listed above, complement will be activated on cell surfaces, including the vascular wall, cartilage in the joints, glomeruli in the liver or cells which lack intrinsic complement inhibitors. Complement activation leads to inflammation caused by the chemotactorial properties of the anaphylatoxins C3a and C5a and can cause damage to self cells by generating a membrane attack complex. Without being bound by any particular theory, by binding CR1g, CR1g is believed to inhibit C3 convertase, thereby preventing or reducing complement-mediated diseases, examples of which have been listed hereinabove.

Compounds of the Invention

1. Native sequence and variant CR1g polypeptides

The preparation of native CR1g molecules, along with their nucleic acid and polypeptide sequences, have been discussed above. Example 1 shows the cloning of full-length hacCR1g of SEQ ID NO: 4. CR1g polypeptides can be produced by culturing cells transformed or transfected with a vector containing CR1g nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare CR1g. For instance, the CR1g sequence, or portion thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1989); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of CR1g may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length CR1g.

CR1g variants can be prepared by introducing appropriate nucleotide changes into the DNA encoding a native sequence CR1g polypeptide, or by synthesis of the desired CR1g polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of CR1g, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics. Variations in the native sequence CR1g polypeptides described herein can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding a native sequence or variant CR1g that results in a change in its amino acid sequence as compared with a corresponding native sequence or variant CR1g. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of a native sequence CR1g polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the CR1g with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology.

Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of 1 to 5 amino acids. The variation
allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity in the in vitro assay described in the examples below.

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4311 (1985); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 14:253 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London Ser B, 212:415 (1980)] or other known techniques can be performed on the cloned DNA to produce the CRlg variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids that may be varied along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids.

Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it elutes faster the side-chain beyond the beta-carbons and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, W.H. Freeman & Co., N.Y. (1984)], J. Mol. Biol., 126:1 (1976). If alanine substitution does not yield adequate amounts of variant, an isosteric amino acid can be used.

It has been found that removal or deactivation of all or part of the transmembrane region and/or cytoplasmic region does not compromise CRlg biological activity. Therefore, transmembrane region and/or cytoplasmic region deleted/deactivated CRlg variants are specifically within the scope herein. Similarly, the IgC2 region can be removed without compromising biological activity, as demonstrated by the existence of a biologically active native short form of CRlg and a murine homologue.

Covalent modifications of native sequence and variant CRlg polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of CRlg with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the CRlg polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking CRlg to a water-insoluble support matrix or surface, for example, for use in the method for purifying anti-CRlg antibodies. Commonly used crosslinking agents include, e.g., 1,1-bis(2-hydroxyethyl)-2-phenylethene, glutaraldehyde, N-hydroxy-succinimide esters, for example, esters with 4-azidoalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionato), bifunctional malimidates such as bis-N-maleimidio-1,8-octane and agents such as methyl-3-[(p-aminophenyl)diazenecarbonyldiimide].

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serine or threonyl residues, methylation of the ε-amino groups of lysine, arginine, and histidine side chains [J.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], as well as the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the CRlg polypeptides included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptides. “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence CRlg, and/or adding one or more glycosylation sites that are not present in the native sequence CRlg, and/or alteration of the ratio and/or composition of the sugar residues attached to the glycosylation site(s). A predicted native glycosylation site on murine CRlg is found at position 176 in the sequence NGTYG.
Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked glycosylation refers to the attachment of the carbohydrate moiety to the side-chain of an asparagine residue. The tripeptide sequences, asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxyserin may also be involved in O-linked glycosylation. Native sequence CR1g has insignificant N-glycosylation. Addition of glycosylation sites to the CR1g polypeptide may be accomplished by altering the amino acid sequence. The alterations may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence CR1g (or O-linked glycosylation sites), or the addition of a recognition sequence for N-linked glycosylation. The CR1g amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the CR1g polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the CR1g polypeptide is by chemical or enzymatic coupling of glycodies to the polypeptide. Such methods are described in the art, e.g., in WO 87/01530 published 11 September 1987, and in Apinl and Winton, CRC Crit. Rev. Biomol. Sci., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the a CR1g polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakim and Al, Arch. Biochem. Biophys., 229:92 (1983) and by Ediger et al., Anal. Biochem., 118:131 (1981).

Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Med. Enzymol., 135:350 (1987).

Another type of covalent modification of CR1g comprises linking the CR1g polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polysyaloxynes, for example, in the manner set forth in U.S. Patent Nos. 4,660,835; 4,496,089; 4,301,144; 4,070,471; 4,791,192 or 4,179,337.

The native sequence and variant CR1g of the present invention may also be modified in a way to form a chimeric molecule comprising CR1g, including fragments of CR1g, fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of CR1g with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl-terminal of the CR1g polypeptide. The presence of such epitope-tagged forms of the CR1g polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the CR1g polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include polyl-histidine (polyl-his) or polyl-histidine-glycin (polyl-his-gly) tags; the fil HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the 5-36 tag and the 5P, 3CG, 6130, 6G, R7 and 9E10 antibodies thereto [Yuan et al., Molecular and Cellular Biology, 5:3610-3618 (1985)]; and the herpes simplex virus glycoprotein D (gD) tag and its antibody [Pober et al., Protein Engineering, 2:657-553 (1990)]. Other tag polypeptides include the Flag peptide [Hepp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martina et al., Science, 265:192-194 (1992)]; and 13-

In another embodiment, the chimeric molecule may comprise a fusion of the CRIg polypeptide or a fragment thereof with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion can be to the Fc region of an IgG molecule. These fusion polypeptides are antibody-like molecules which combine the binding specificity of a heterologous protein (an “adhesive”) with the effector functions of immunoglobulin constant domains, and are often referred to as immunoadhesins. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., in “heterologous”), and an immunoglobulin constant domain sequence. The adhesion part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgM or IgD.

The simplest and most straightforward immunoadhesin design combines the binding region(s) of the “adhesive” protein with the hinge and Fc regions of an immunoglobulin heavy chain. Ordinarily, when preparing the CRIg-immunoglobulin chimeras of the present invention, nucleic acid encoding the CRIg polypeptide, or the extracellular domain of a CRIg polypeptide, will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible.

Typically, in such fusions the encoded chimeric polypeptide will retain at least functionally active hinge and CH2 and CH3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain.

The precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion or binding characteristics of the CRIg-immunoglobulin chimeras.

In some embodiments, the CRIg-immunoglobulin chimeras are assembled as monomers, or hetero- or homo-multimers, and particularly as dimers or tetramers, essentially as illustrated in WO 91/0289.

In a preferred embodiment, like the sequence of a native sequence human CRIg polypeptide, such as, for example, huCRIg(long) (SEQ ID NO: 4) or huCRIg(short) (SEQ ID NO: 6), or a CRIg extracellular domain.
sequence (including the ECD of huCRG{long} and huCRG{short}) is fused to the N-terminus of the C-terminal portion of an antibody (in particular the Fe domain), containing the effector functions of an immunoglobulin, e.g., immunoglobulin G, (IgG 1). It is possible to fuse the entire heavy chain constant region to the CR1g or CR1g extracellular domain sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fe chemically; residue 216, taking the first residue of heavy chain constant region to be 114, or analogous sites of other immunoglobulins) is used in the fusion. In a particularly preferred embodiment, the CR1g amino acid sequence is fused to the hinge region and CH2 and CH3, or to the CH1, hinge, CH2 and CH3 domains of an IgG1, gG2, or IgG3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation. Specific CR1g-Ig immunoadhesin structures are illustrated in Figures 59-61.

In some embodiments, the CR1g-immunoglobulin chimeras are assembled as multimer, and particularly as homo-dimers or -trimers. Generally, these assembled immunoglobulins will have known unit structures. A basic four chain structural unit is the form in which IgG1, IgG2, and IgG3 exist. A four-chain unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four-chain units held together by disulfide bonds. IgG, globulin, and occasionally IgM globulin, may also exist in tetrameric form in serum. In the case of multimer, each four-chain unit may be the same or different.

Alternatively, the CR1g or CR1g extracellular domain sequence can be inserted between immunoglobulin heavy chain and light chain sequences such that an immunoglobulin comprising a chimeric heavy chain is obtained. In this embodiment, the CR1g sequence is fused to the 3' end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the CH2 domain, or between the CH2 and CH3 domains. Similar constructs have been reported by Hoogenboom et al., Mol. Immunol., 28:1027-1037 (1991).

Although the presence of an immunoglobulin light chain is not required in the immunoadhesin of the present invention, an immunoglobulin light chain might be present either covalently associated to a CR1g-immunoglobulin heavy chain fusion polypeptide, or directly fused to the CR1g extracellular domain. In the former case, DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the CR1g-immunoglobulin heavy chain fusion protein. Upon secretion, the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs. Methods suitable for the preparation of such structures are, for example, disclosed in U.S. Pat. No. 4,816,567 issued Mar. 28, 1989.

The nucleotide sequences encoding certain CR1g-Ig fusion proteins of the invention are shown in Figures 59, 60, and 67-70. As shown in Figures 67-70, for example, the fusion proteins may contain a linker between the CR1g and immunoglobulin sequences, such as, for example, a short peptide sequence, e.g., DKTHT. In addition, in some constructs, the sequence between the CR1g transmembrane (TM) region and the immunoglobulin (Fc) region (referred to herein as the "stall" sequence) can be deleted. The amino acid position where the linker starts in the various CR1g constructs shown in Figures 67-70 is as follows: huCR1g-long-Fc + stall: position 267; huCR1g-long-Fc + stall: position 233; huCR1g-short-Fc + stall: position 173; huCR1g-short-Fc - stall: position 140.

2. Preparation of native sequence and variant CR1g polypeptides

DNA encoding native sequence CR1g polypeptides may be obtained from a cDNA library prepared from tissue believed to possess the CR1g mRNA and to express it at a detectable level. Accordingly, human CR1g DNA
can be conveniently obtained from a cDNA library prepared from human tissue, as described in Example 1. The CRKl encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.

Libraries can be screened with probes (such as antibodies to CRKl or oligonucleotides of at least about 20-30 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual* (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding CRKl in vivo PCR methodology (Sambrook et al., supra; Dittfuschi et al., *PCR Primer: A Laboratory Manual* (Cold Spring Harbor Laboratory Press, 1995).

Example 1 describes techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like 35S-labeled ATP, biotinylated or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., *supra*.

Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined through sequence alignment using computer software programs such as BLAST, BLAST-2, ALIGN, DNAstat, and INHERIT which employ various algorithms to measure homology.

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., *supra*, to detect precursors and processing intermediates of RNA that may not have been reverse-transcribed into cDNA.

Host cells are transfected or transformed with expression or cloning vectors described herein for CRKl production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in *Mammalian Cell Biotechnology: A Practical Approach*, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., *supra*.

Methods of transformation are known to the ordinarily skilled artisan, for example, CaPO4 and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to each cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., *supra*, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw et al., *Genes*, 2(3):15 (1993) and WO 89/05659 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, *Virology*, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Sellioge et al., *J. Bacter.*, 136:946 (1977) and Elion et al., *Proc. Natl. Acad. Sci. (USA)*, 76:3829 (1979). However, other methods for introducing
DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polyethylene, polyethylene or polyethylene may also be used. For various techniques for transforming mammalian cells, see Kronman et al., Methods in Enzymology, 185:527-537 (1990) and Maresse et al., Nature, 336:348-352 (1988).

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryotic cells. Suitable prokaryotes include but are not limited to eucaryotes, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31461); E. coli X1776 (ATCC 31537); E. coli strain W3110 (ATCC 27325) and RS 772 (ATCC 53,635).

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for CR1g encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.

Suitable host cells for the expression of glycosylated CR1g are derived from multicellular organisms.

Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 cells transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney cells (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 26:59 (1977)); Chinese hamster ovary cells-DHFR (CHO, Dhahb and Chasis, Proc. Natl. Acad. Sci. USA, 77:6216 (1980)); mouse serum cells (2934, Mather, Biol. Reprod., 22:283-286 (1980)); human fibroblasts (W158, ATCC CCL 75); human liver cells (Hep G2, HB 865); and mouse mammary tumor cells (3160 (660582, ATCC CC1351).

The selection of the appropriate host cell is deemed to be within the skill of the art.

The nucleic acid (e.g., cDNA or genomic DNA) encoding CR1g may be inserted into a replicatable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of those components employs standard ligation techniques which are known to the skilled artisan.

The CR1g polypeptides may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the CR1g DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces -delta leader, the latter described in U.S. Patent No. 5,101,812), or acid phosphatase leader, the C. albicans glucosamine leader (EP 362,178 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2· plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacillus.

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the CRig nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Ueda et al., Proc. Nat. Acad. Sci. USA, 77:4316 (1980). A suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid 2µm7 [Sternberg et al., Nature, 282:39 (1979); Krogan et al., Gene, 7:141 (1979); Tschesche et al., Gene, 50:157 (1985)]. The trpl gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].

Expression and cloning vectors usually contain a promoter operably linked to the CRig nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known.

Examples of suitable promotoing sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hignite et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Res., 2:149 (1968); Holland, Biochemistry, 12:4900 (1973)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphoglucomutase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucomutase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocitrate dehydrogenase, acid phosphatase, degenerative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.Selectable vectors and promoters for use in yeast expression are further described in EP 73,657.

CRig transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, poxvirus virus (UK, 221,504, published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or...
an immunoglobulin promoter, and from heat-shock promoters, such promoters are compatible with the host cell systems.

Transcription of a DNA encoding the CRlg polypeptides by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV-40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the CRlg coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding CRlg.

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantify the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. U.S.A., 77:5201-5205 (1980)), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conventionally, the antibodies may be prepared against a native sequence CRlg polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to CRlg DNA and encoding a specific antibody epitope.

Forms of CRlg may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton X-100) or by enzymatic cleavage.

Cells employed in expression of CRlg can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysis agents.

It may be desired to purify CRlg from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ionexchange or precipitation; gel filtration using, for example, Sephadex G-75;
protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the CR1g polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular CR1g produced.

3. Agonists of CR1g polypeptides

Agonists of the CR1g polypeptides will mimic a qualitative biological activity of a native sequence CR1g polypeptide. Preferably, the biological activity is the ability to bind C3b, and/or to affect complement or complement activation, in particular to inhibit the alternative complement pathway and/or C3 convertase. Agonists include, for example, the immunochemical, peptide mimetics, and non-peptide small organic molecules mimicking a qualitative biological activity of a native CR1g.

CR1g- Ig immunoadhesins have been discussed above.

Another group of CR1g agonists are peptide mimetics of native sequence CR1g polypeptides. Peptide mimetics include, for example, peptides containing non-naturally occurring amino acids provided the compound retains CR1g biological activity as described herein. Similarly, peptide mimetics and analogs may include non-amino acid chemical structures that mimics the structure of important structural elements of the CR1g polypeptides of the present invention and retain CR1g biological activity. The term "peptide" is used herein to refer to constrained (that is, having some element of structure so, for example, the presence of amino acids which initiate a beta turn or beta-phased sheet, or for example, cyclized by the presence of disulfide bonded Cys residues) or unconstrained (e.g., linear) amino acid sequences of less than about 50 amino acid residues, and preferably less than about 40 amino acid residues, including analogs, such as di-esters thereof or thereof. Of the peptides of less than about 40 amino acid residues, preferred are the peptides of between about 10 and about 30 amino acid residues and especially the peptides of about 20 amino acid residues. However, upon reading the instant disclosure, the skilled artisan will recognize that it is not the length of a particular peptide but its ability to bind C3b and inhibit C3 convertase, in particular C3 convertase of the alternative complement pathway, that distinguishes the peptide.

Peptides can be conveniently prepared using solid phase peptide synthesis (Merrifield, J. Am. Chem. Soc. 85:2149 (1964); Khorana, Proc. Natl. Acad. Sci. USA 82:5132 (1985)). Solid phase synthesis begins at the carboxyl terminus of the putative peptide by coupling a protected amino acid to an inert solid support. The inert solid support can be any macromolecule capable of serving as an anchor for the C-terminus of the initial amino acid. Typically, the macromolecular support is a cross-linked polymeric resin (e.g., a polystyrene resin), as shown in Figs. 1-1 and 1-2, on pages 2 and 4 of Stewart and Young, supra. In one embodiment, the C-terminal amino acid is coupled to a polyethylene resin to form a benzyl ester. A macromolecular support is selected such that the peptide anchor link is stable under the conditions used to deprotect the alpha-amino group of the blocked amino acids in peptide synthesis. If a base-labile alpha-protecting group is used, then it is desirable to use an acid-labile link between the peptide and the solid support. For example, an acid-labile ether resin is effective for base-labile Fmoc-aminoc acid peptide synthesis, as described on page 16 of Stewart and Young, supra. Alternatively, a peptide anchor link and alpha-protecting group that are differentially labile to acidolysis can be used. For example, an astromethyl resin such as the phenylacetamidomethyl (Pam) resin works well in conjunction with Fmoc-aminoc acid peptide synthesis, as described on pages 11-12 of Stewart and Young, supra.
After the initial amino acid is coupled to an inert solid support, the alpha-amino protecting group of the initial amino acid is removed, for example, trifluoroacetic acid (TFA) in methylene chloride and neutralizing in, for example, triethylamine (TEA). Following deprotection of the initial amino acid’s alpha-amino group, the next alpha-amino and side chain protected amino acid in the synthesis is added. The remaining alpha-amino and, if necessary, side chain protected amino acids are then coupled sequentially in the desired order by condensation to obtain an intermediate compound connected to the solid support. Alternatively, some amino acids may be coupled to one another to form a fragment of the desired peptide followed by addition of the peptide fragment to the growing solid phase peptide chain.

The condensation reactions between two amino acids, or an amino acid and a peptide, or a peptide and a peptide can be carried out according to the usual condensation methods such as the acid method, mixed acid anhydride method, DCC (N,N-dicyclohexylcarbodiimide) or DIC (N,N-diisopropylcarbodiimide) methods, active ester method, p-nitrophenyl ester method, BOP (benzotriazole-1-yloxy-tris(dimethylamino) phosphonium hexafluorophosphate) method, N-hydroxysuccinic acid imide ester method, etc., and Woodward reagent K method.

It is common in the chemical syntheses of peptides to protect any reactive side-chain groups of the amino acids with suitable protecting groups. Ultimately, these protecting groups are removed after the desired polypeptide chain has been sequentially assembled. Also common is the protection of the alpha-amino group on an amino acid or peptide fragment while the C-terminal carboxyl group of the amino acid or peptide fragment reacts with the free N-terminal amino group of the growing solid phase polypeptide chain, followed by the selective deprotection of the alpha-amino group to permit the addition of the next amino acid or peptide fragment to the solid phase polypeptide chain. Accordingly, it is common in polypeptide synthesis that an intermediate compound is produced which contains each of the amino acid residues located in the desired sequence in the polypeptide chain wherein individual residues still carry side-chain protecting groups. These protecting groups can be removed substantially at the same time to produce the desired polypeptide product following removal from the solid phase.

alpha- and epsilon side chains can be protected with benzyloxycarbonyl (abbreviated Z), isocyanatocarbonyl (Cbz), 9-chlorobenzyloxycarbonyl (ZiCl), p-nitrobenzylxycarbonyl (Z(NO2)), p-methoxybenzylxycarbonyl (ZMoc), t-butoxycarbonyl (Boc), t-amylxycarbonyl (Acm), isobenzylxycarbonyl, adamantylxycarbonyl, 2-(4-hiphenyl)-2-propyloxycarbonyl (Bpoc), 9-fluorenylmethylxycarbonyl (Fmoc), methylthiophenoxycarbonyl (Msc), trifluoroacetyl, phthalyl, formyl, 2-nitrophenoxyphenyl (Nps), diphenylphosphinomethyl (Ppm) and dimethylphosphinomethyl (Mppm) groups, and the like.

Protective groups for the carboxyl functional group are exemplified by benzyl ester (Obz), cyclohexyl ester (Chx), 4-nitrobenzyl ester (Obn), 4-benzylmethoxycarbonyl ester (Opmc), and the like. It is often desirable that specific amino acids such as arginine, cysteine, and serine possessing a functional group other than amino and carboxyl groups are protected by a suitable protective group. For example, the guanidino group of arginine may be protected with nitro, p-toluenesulfonfyl, benzylxycarbonyl, adamantylxycarbonyl, p-methoxybenzylxycarbonyl, 4-methoxy-2,6-dimethylbenzenesulfonyl (Ms), 1,3,5-trimethylphenylsulfonyl (Ms), and the like. The third group of cysteine can be protected with p-methoxybenzyl, triethyl, and the like.

Many of the blocked amino acids described above can be obtained from commercial sources such as Novabiochem (San Diego, Calif.), Bachem CA (Torrance, Calif.) or Peninsula Labs (Belmont, Calif.).
Stewart and Young, supra, provides detailed information regarding procedures for preparing peptides.

Protection of α-amino groups is described on pages 14-18, and side chain blockage is described on pages 18-28. A table of protecting groups for amine, hydroxyl and thiol groups is provided on pages 149-151.

After the desired amino acid sequence has been completed, the peptide can be cleaved away from the solid support, recovered and purified. The peptide is removed from the solid support by a reagent capable of disrupting the peptide-solid phase link, and optionally deprotects blocked side chain functional groups on the peptide. In one embodiment, the peptide is cleaved away from the solid phase by acidolysis with liquid hydrochloric acid (HF), which also removes any remaining side chain protective groups. Preferably, in order to avoid alkalization of residues in the peptide (for example, alkylation of methionine, cysteine, and tyrosine residues), the acidolysis reaction mixture contains thioglycol and cresol scavengers. Following HF cleavage, the resin is washed with ether, and the free peptide is extracted from the solid phase with sequential washes of acetic acid solutions. The combined washes are lyophilized, and the peptide is purified.

4. Antagonist of CR1g polypeptides

Antagonists of native sequence CR1g polypeptides find utility in the treatment of conditions benefiting from excessive complement activation, including the treatment of tumors.

A preferred group of antagonists includes antibodies specifically binding a native CR1g. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific and heteroconjugate antibodies.

Methods of preparing polyclonal antibodies are known to skilled artisans. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent, and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the CR1g polypeptide of the invention or a fragment or fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.

Examples of adjuvants which may be employed include Freund’s complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trichole dicocymycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

Antibodies which recognize and bind to the polypeptide of the invention or which act as antagonists thereto may, alternatively be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, as described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.

The immunizing agent will typically include the CR1g polypeptide of the invention, an antigenic fragment or a fusion protein thereof. Generally, either peripheral blood lymphocytes (“PBLs”) are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent,
bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium: that preferably contains one or more substances that inhibit the growth or survival of the uninfected, nontransformed cells. For example, if the parental cells lack the enzyme hypoxanthine
6 guanine phosphoribosyl transferase (HGPR or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPR-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Rockville, Maryland. Human myeloma and mouse-human hybridoma cell lines also have been described for the production of human monoclonal antibodies [Krober, J Immunol., 132:3001 (1984); Brouwer et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the polypeptide of the invention or having similar activity to the polypeptide of the invention. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollack, Anal. Biochem., 107:220 (1980).

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxyapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of mouse antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA may also be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Patent No. 4,816,567; Morrison et al., supra] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody,
The antibodies are preferably monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fabfragments, can be accomplished using routine techniques known in the art.

The antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab')2) or other antigen-binding subsequences of antibodies which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 221:525-535 (1986); Riechmann et al., Nature, 322:352-359 (1986); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and coworkers [Jones et al., Nature, 221:525-535 (1986); Riechmann et al., Nature, 322:352-359 (1986); Verhoeyen et al., Science, 229:1534-1536 (1988)], by substituting redundant CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,667), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 222:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boen et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boen et al., J. Immunol., 147(1):46-55 (1991); U. S. 5,759,372). Similarly, human antibodies can be made by introducing or introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire.
This approach is described, for example, in U.S. Patent Nos. 5,543,807; 5,545,806; 5,560,825; 5,625,126; 5,635,425; 5,661,016, and in the following scientific publications: Marks et al., BioTechnology 10, 779-783 (1992); Lubber et al., Nature 368, 856-859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuhauser, Nature Biotechnology 14, 826 (1996); Ludberg and Huster, Intern. Rev. Immunol. 12, 65-93 (1995).

Bi specific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities may be for the polypeptide of the invention, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the coexpression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Millstein and Cuello, Nature, 265, 537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/00829, published 13 May 1993, and in Trauner et al., EMBO J. 10, 3655-3669 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121, 210 (1986).

Heterocytolytic antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwound cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00569; WO 92/00375; EP 0380). It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving covalently linking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and mercapto-4-

This approach is described, for example, in U.S. Patent No. 4,676,980.

It may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance the effectiveness of the antibody in treating an immune related disease, for example. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The immunodominant antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Carew et al., J. Exp Med. 172, 1191-1195 (1990) and Sheehy, B. J. Immunol. 149, 2918-2922 (1992). Homodramatic antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53, 2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3, 219-230 (1989).
The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g. an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), or a radioactive isotope (i.e. a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragment of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, shiga A chain, neocarzinostatin, *Alcaligenes faecalis* protein, diastatic protein, *Phytolacca americana* protein (PAP, PAPI, and PAP-S), mammalian charan toxin, curcin, cotrin, saponaria officinalis isothionin, geomin, mitogillin, restrictocin, phenomenin, enomycin and the triociclates. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ¹¹¹In, ¹²⁵I, ¹³¹I, ¹⁹⁵Ir and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridylthiophen) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as diethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azide compounds (such as bis (p-azidobenzoyl) hexamethylenimine), bis-cyanuric derivatives (such as bis(p-cyanomethoxycarbonyl)-ethylendiamine), disiocyanates (such as telocyanate 2,5-diisocyanate), and bioactive fluorine compounds (such as 1,1-difluoro-2,4-dinitrostyrene). For example, a ricin immunotoxin can be prepared as described in Vittu et al., *Science* **236**: 1099 (1987). Carbon-14-labeled 1-iodocholesteryl-3-methylxylidene triisothiocyanato acid (MX-TTPA) is an exemplary chelating agent for conjugation of radionuclide to the antibody. See WO96/11026.

In another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tissue pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g. avidin) which is conjugated to a cytotoxic agent (e.g. a radionuclide).

5. Target diseases

5.1 Complement-associated diseases and conditions

The CR1g polypeptides of the present invention and their agonists, especially CR1g-Ig immunoadhesins, find utility in the prevention and/or treatment of complement-associated diseases and pathological conditions. Such diseases and conditions include, without limitation, inflammatory and autoimmune diseases.

Specific examples of complement-associated diseases include, without limitation, rheumatoid arthritis (RA), acute respiratory distress syndrome (ARDS), remote tissue injury after ischemia and reperfusion, complement activation during cardiopulmonary bypass surgery, dermatomyositis, polyangiitis, lupus nephritis and resultant glomerulonephritis and vasculitis, cardiopulmonary bypass, cardioplegia-induced coronary endothelial dysfunction, type II membranoproliferative glomerulonephritis, IgA nephropathy, acute renal failure, cryoglobulinemia, antiphospholipid syndrome, vascular degenerative diseases and other complement-associated disease conditions, such as age-related macular degeneration (AMD), choroidal neovascularization (CNV), uveitis, diabetic and other ischemia-related retinopathies, endophthalmitis, and other intraocular neovascular diseases, such as diabetic tractional retinopathy, pathological myopia, von Hippel-Lindau disease, histoplasmosis of the eye, Central Retinal Vein Occlusion (CRVO), central neovascularization, retinal neovascularization, as well as allo-transplantation, hypertensive rejection, hemodialysis, chronic occlusive pulmonary distress syndrome (COPD), asthma, and aspiration pneumonia.

5.2 Complement-associated eye conditions
The CR1g polyepitopes and their agonists, especially CR1g-lg immunomodulators, are particularly useful for the prevention and treatment of complement-associated eye conditions (all eye conditions and diseases the pathology of which involves complement, including the classical and the alternative pathways, and in particular the alternative pathway of complement), such as, for example, macular degenerative diseases, such as all stages of age-related macular degeneration (AMD), including dry and wet (non-exudative and exudative) forms, choroidal neovascularization (CNV), uveitis, diabetic and other ischemia-related retinopathies, endophthalmitis, and other intraocular neovascular diseases, such as diabetic macular edema, pathological myopia, von Hippel-Lindau disease, histoplasmosis of the eye, Central Retinal Vein Occlusion (CRVO), central neovascularization, and retinal neovascularization. A preferred group of complement-associated eye conditions includes age-related macular degeneration (AMD), including non-exudative (dry) and exudative (dry or atrophic) AMD, choroidal neovascularization (CNV), diabetic retinopathy (DR), and endophthalmitis.

AMD is age-related degeneration of the macula, which is the leading cause of irreversible visual dysfunction in individuals over the age of 50. Two types of AMD exist, non-exudative (dry) and exudative (wet) AMD. The dry, or non-exudative, form involves atrophic and hypertrophic changes in the retinal pigment epithelium (RPE) underlying the central retina (macula) as well as deposits (drusen) on the RPE. Patients with non-exudative AMD can progress to the wet, or exudative, form of AMD, in which abnormal blood vessels called choroidal neovascular membranes (CNVMs) develop under the retina, leak fluid into blood, and ultimately cause a blinding disfigurement scotoma and end up the retina. Non-exudative AMD, which is usually a precursor to exudative AMD, is more common. The presentation of non-exudative AMD varies; hard drusen, soft drusen, RPE geographic atrophy, and pigment clumping can be present. Complement components are deposited on the RPE early in AMD and are major constituents of drusen.

The present invention specifically concerns the treatment of high risk AMD, including category 3 and category 4 AMD. Category 3 AMD is characterized by the absence of advanced AMD in both eyes, at least one eye having a visual acuity of 20/32 or better with at least one large druse (e.g., 125 μm), extensive (as measured by drusen area) intermediate drusen, or geographic atrophy (GA) that does not involve the center of the macula, or any combination of these. Category 3 AMD (which is still considered "dry" AMD) has a high risk of conversion to choroidal neovascularization (CNV). Category 4 high-risk AMD (classified as "wet AMD") is characterized by a visual acuity of 20/32 or better and no advanced AMD (GA involving the center of the macula or features of choroidal neovascularization) in index eye. The fellow eye is characterized by advanced AMD, or visual acuity less than 20/32 attributable to AMD maculopathy. Typically, high-risk AMD, if untreated, rapidly progresses into choroidal neovascularization (CNV), at a rate about 10-30-times higher than the rate of progression for category 1 or 2 (not high risk) AMD.

CR1g and its agonists, such as CR1g-lg immunomodulators, find particular utility in the prevention of the progression of AMD (in particular, category 3 or category 4 AMD) into CNV, and for the prevention of the development/progression of AMD or CNV in the non- or less affected fellow eye. In this context, the term "prevention" is used in the broadest sense to include, complete or partial blocking and slowing down of the progression of the disease as well as the delay of the onset of the more serious form of the disease. Patients who are at high risk of developing or progressing into high risk (category 4) AMD or CNV especially benefit from this aspect of the invention.
It is known that complement factor H (CFH) polymorphism is associated with the risk of an individual to develop AMD and/or CNV. Variations in CFH can activate complement, which in turn may lead to AMD/CNV. It has been recently reported that complement factor H (CFH) polymorphism accounts for 50% of the attributable risk of AMD (Klein et al., Science 308:385-9 (2005)). A common haplotype in CFH (H1/H1) has been found to predispose individuals to age-related macular degeneration (Hageman et al., Proc. Natl. Acad. Sci. USA, 102(2):7227-7232 (2005)). AMD has been segregated as an autosomal-dominant trait, with the disease locus mapping to chromosome 1q25-4q31 between markers D1S466 and D1S413, with a maximum lod score of about 3.20 (Klein et al., Arch Ophthalmol. 111(8):1082-9 (1998); Majewski et al., Am. J. Hum. Genet. 73(3):540-50 (2003); Sculden et al., Am. J. Hum. Genet. 73(4):780-90 (2003); Werks et al., Am. J. Ophthalmol. 132(5):612-92 (2001)); Iyengar et al., Am. J. Hum. Genet. 74(1):20-39 (2004)); chromosomes 2q32-2q32 between markers D2S1591 and D2S1384, with a maximum lod score of 2.32/2.03 (Sculden et al., supra); 3p13, between markers D12S1200 and D12S1763, with a maximum lod score of 7.19 (Majewski et al., supra); Schick et al., Am. J. Hum. Genet. 73(5):1412-24 (2003); 6q14 between markers D6S1565 and D6S249 with a maximum lod score of 3.95/3.17 (Knaireva et al., Am. J. Ophthalmol. 132(2):197-202 (2001)); 9q33, at marker D9S954, with a maximum lod score of 2.06 (Majewski et al., supra); 10q26 at marker D10S1230, with a maximum lod score of 3.06 (Majewski et al., supra); Iyengar et al., supra; Kennedy et al., Mol. Vis. 10:57-61 (2004); 17q25 at marker D17S925, maximum lod score of 3.16 (Werks et al., supra); and 22q12 at marker D22S1045, maximum lod score of 2.0 (Sculden et al., supra). Accordingly, genetic screening is an important part of identifying patients who are particularly good candidates for preventive treatment, including prevention of the progression of the disease into a more severe form, such as from AMD to CNV.

In addition, in view of strong evidence for a link of complement activation and age-related macular degeneration (AMD), the present invention provides a new method for the prevention and treatment of CNV and AMD by complement inhibition, in particular, by inhibiting the alternative pathway. Inhibitors of the alternative pathway, other than CR1g, include fusion proteins (e.g., immunomodulators), agent anti-CR1g antibodies and peptide

and non-peptide small molecules.

5.3 Inflammatory conditions and autoimmune diseases

A more extensive list of inflammatory conditions as examples of complement-associated diseases includes, for example, inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis, juvenile chronic arthritis, spondylarthropathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathy

(dermatomyositis, polymyositis), Sjögren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune hemolytic anemia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroïditis (Choi's disease, Hashimoto's thyroïditis, juvenile lymphocytic thyroïditis, strophic thyroïditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demyelinating diseases of the central and peripheral nervous

systems such as multiple sclerosis, idiopathic polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other nonhepatotropic virus), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and relapsing cholangitis, inflammatory and fibrotic lung diseases (e.g., crypt fibrosis), glomerulosensitive nephropathy, Whipple's disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema nodosum and contact dermatitis, psoriasis, allergic diseases of the lung such as
eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation-associated diseases including graft rejection and graft-versus-host disease.

In systemic lupus erythematosus, the central mediator of disease is the production of auto-reactive antibodies to self-proteins/tissues and the subsequent generation of immune-mediated inflammation. Antibodies either directly or indirectly mediate tissue injury. Though T lymphocytes have not been shown to be directly involved in tissue damage, T lymphocytes are required for the development of auto-reactive antibodies. The genesis of the disease is thus T lymphocyte dependent. Multiple organs and systems are affected clinically including kidney, lung, muscular/skeletal system, mucocutaneous, eye, central nervous system, cardiovascular system, gastrointestinal tract, bone marrow and blood.

Rheumatoid arthritis (RA) is a chronic systemic autoimmune inflammatory disease that mainly involves the synovial membrane of multiple joints with resultant injury to the articular cartilage. The pathogenesis is T lymphocyte dependent and is associated with the production of rheumatoid factors, auto-antibodies directed against self-IgG, with the resultant formation of immune complexes that attain high levels in joint fluid and blood. These complexes in the joint may induce the marked infiltrate of lymphocytes and monocytes into the synovium and subsequent marked synovial changes; the joint space/fluid is infiltrated by similar cells with the addition of numerous neutrophils. Tissues affected are primarily the joints, often in symmetrical pattern. However, extra-articular disease also occurs in two major forms. One form is the development of extra-articular lesions with ongoing progressive joint disease and typical lesions of pulmonary fibrosis, vasculitis, and cutaneous ulcers. The second form of extra-articular disease is the so called Felty's syndrome which occurs late in the RA disease course, sometimes after joint disease has become quiescent, and involves the presence of neutropenia, thrombocytopenia and splenomegaly. This can be accompanied by vasculitis in multiple organs with formations of infarcts, skin ulcers and gangrene. Patients often also develop rheumatoid nodules in the subcutaneous tissue overlying affected joints; the nodules late stages have necrotic centers surrounded by a mixed inflammatory cell infiltrate. Other manifestations which can occur in RA include: pericarditis, pleuritis, coronary arteritis, intestinal pseudo-obstruction with pulmonary fibrosis, keratoconjunctivitis sicca, and rheumatoid nodules.

Juvenile chronic arthritis is a chronic idiopathic inflammatory disease which begins often at less than 16 years of age. Its phenotype has some similarities to RA; some patients which are rheumatoid factor positive are classified as juvenile rheumatoid arthritis. The disease is sub-classified into three major categories: pauciarticular, polyarticular, and systemic. The arthritis can be severe and is typically destructive and leads to joint ankylosis and retarded growth. Other manifestations can include chronic uveitis and systemic amyloidosis.

Spontaneous osteopathies are a group of disorders with some common clinical features and the common association with the expression of HLA-B27 gene product. The disorders include: ankylosing spondylitis, Reiter's syndrome (reactive arthritis), arthritis associated with inflammatory bowel disease, spondylitis associated with psoriasis, juvenile onset spondylarthropathy and undifferentiated spondyloarthropathy. Distinguishing features include sacroiliitis with or without spondylitis; inflammatory asymmetric arthritis; association with HLA-B27 (a serologically defined allele of the HLA-B locus of class I HMC); ocular inflammation, and absence of autoantibodies associated with other rheumatoid disease. The cell most implicated as key to induction of the disease is the CD8+ T lymphocyte, a cell which targets antigen presented by class I MHC molecules. CD8+ T cells may react against the class 1 MHC allele HLA-B27 as if it were a foreign peptide expressed by MHC class 1 molecules.
It has been hypothesized that an epitope of HLA-B27 may mimic a bacterial or other microbial antigenic epitope and thus induce a CD8+ T cells response.

Systemic sclerosis (scleroderma) has an unknown etiology. A hallmark of the disease is induction of the skin; likely this is induced by an active inflammatory process. Scleroderma can be localized or systemic; vascular lesions are common and endothelial cell injury in the microvasculature is an early and important event in the development of systemic sclerosis; the vascular injury may be immune mediated. An immunologic basis is implied by the presence of mononuclear cell infiltrates in the cutaneous lesions and the presence of anti-nuclear antibodies in many patients. ICAM-1 is often upregulated on the cell surface of fibroblasts in skin lesions suggesting that T cell interaction with these cells may have a role in the pathogenesis of the disease. Other organs involved include: the gastrointestinal tract (smooth muscle atrophy and fibrosis resulting in abnormal peristalsis/motility); kidney; concentric subendothelial intimal proliferation affecting small arcuate and interlobular arteries with resultant reduced renal cortical blood flow, results in proteinuria, anemia and hypertension; skeletal muscle: atrophy, interstitial fibrosis; inflammation; lung: interstitial pneumonitis and interstitial fibrosis; and heart: contraction band necrosis, scarring/fibrosis.

Idiopathic inflammatory myopathies including dermatomyositis, polymyositis and others are disorders of chronic muscle inflammation of unknown etiology resulting in muscle weakness. Muscle injury/inflammation is often symmetric and progressive. Autoantibodies are associated with most forms. These myositis-specific autoantibodies are directed against and inhibit the function of components, proteins and RNAs, involved in protein synthesis.

Sjögren's syndrome is due to immune-mediated inflammation and subsequent functional destruction of the tear glands and salivary glands. The disease can be associated with or accompanied by inflammatory connective tissue diseases. The disease is associated with antinuclear body production against Ro and La antigens, both of which are small RNA-protein complexes. Lesions result in keratoconjunctivitis sicca, xerostomia, with other manifestations or associations including bilateral rhinitis, peripheral or sensory neuropathy, and palpable purpura.

Systemic vasculitis includes diseases in which the primary lesion is inflammation and subsequent damage to blood vessels which results in ischemia/necrosis/degeneration to tissues supplied by the affected vessels and eventual end-organ dysfunction in some cases. Vasculitides can also occur as a secondary lesion or sequelae to other immune-inflammatory mediated diseases such as rheumatoid arthritis, systemic sclerosis, etc. particularly in diseases also associated with the formation of immune complexes. Diseases in the primary systemic vasculitis group include: systemic necrotizing vasculitis: polyarteritis nodosa, allergic angiitis and granulomatosis, polyangiitis; Wegener's granulomatosis; lymphomatoid granulomatosis; and giant cell arteritis. Miscellaneous vasculitides include: monoclonal gammopathy of undetermined significance (MUGS), isolated CNS vasculitis, Behçet's disease, thrombocytopenia purpura (Puerto's disease) and cutaneous necrotizing vasculitis. The pathogenic mechanism of most of the types of vasculitis listed is believed to be primarily due to the deposition of immunoglobulin complexes in the vessel wall and subsequent induction of an inflammatory response either via ADCC, complement activation, or both.

Sarcoidosis is a condition of unknown etiology which is characterized by the presence of epithelioid granulomas in nearly any tissue in the body; involvement of the lung is most common. The pathogenesis involves the persistence of activated macrophages and lymphoid cells at sites of the disease with subsequent chronic sequelae resultant from the release of locally and systemically active products released by these cell types.
Autoimmune hemolytic anemia including autoimmune hemolytic anemia, immune-pancytopenia, and proroximal nocturnal hemoglobinuria is a result of production of antibodies that react with antigens expressed on the surface of red blood cells (and in some cases other blood cells including platelets as well) and is a reflection of the removal of those antibody coated cells via complement mediated lysis and/or ADCC/Fc-receptor mediated mechanisms.

In autoimmune thrombocytopenia including thrombotic thrombocytopenic purpura, and immune-mediated thrombocytopenia in other clinical settings, platelet destruction/removal occurs as a result of either antibody or complement attaching to platelets and subsequent removal by complement lysis, ADCC or Fc-receptor mediated mechanisms.

Thrombocytopenia including Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, and atrophic thyroiditis, are the result of an autoimmune response against thyroid antigens with production of antibodies that react with proteins present in and often specific for the thyroid gland. Experimental models exist including spontaneous models: rats (BUT and BB rats) and chickens (obese chicken strain); inducible models: immunization of animals with either thyroglobulin, thyroid microsomal antigen (thyroid peroxidase).

Type 1 diabetes mellitus or insulin-dependent diabetes is the autoimmune destruction of pancreatic islet β cells; this destruction is mediated by auto-antibodies and auto-reactive T cells. Antibodies to insulin or the insulin receptor can also produce the phenotype of insulin-non-responsiveness.

Immune mediated renal diseases, including glomerulonephritis and tubulointerstitial nephritis, are the result of antibody or T lymphocyte mediated injury to renal tissue either directly as a result of the production of autoreactive antibodies or T cells against renal antigens or indirectly as a result of the deposition of antibodies and/or immune complexes in the kidney that are reactive against other, non-renal antigens. Other immune-mediated diseases that result in the formation of immune-complexes can also induce immune mediated renal disease as an indirect sequence. Both direct and indirect immune mechanisms result in inflammatory responses that produce/induce lesion development in renal tissues with resultant organ function impairment and in some cases progression to renal failure. Both humoral and cellular immune mechanisms can be involved in the pathogenesis of lesions.

Demyelinating diseases of the central and peripheral nervous systems, including Multiple Sclerosis; idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome; and Chronic Inflammatory Demyelinating Polyneuropathy, are believed to have an autoimmune basis and result in nerve demyelination as a result of damage caused to oligodendrocytes or to myelin directly. In MS there is evidence to suggest that disease induction and progression is dependent on T lymphocytes. Multiple Sclerosis is a demyelinating disease that in T lymphocyte dependent and has either a relapsing-remitting course or a chronic progressive course. The etiology is unknown; however, viral infections, genetic predisposition, environment, and autoimmunity all contribute. Lesions contain infiltrates of predominately T lymphocyte mediated, microglial cells and infiltrating macrophages; CD4+T lymphocytes are the predominant cell type at lesions. The mechanisms of oligodendrocyte cell death and subsequent demyelination is not known but is likely T lymphocyte driven.

Inflammatory and Fibrotic Lung Disease, including eosinophilic pneumonia; idiopathic pulmonary fibrosis and hypersensitivity pneumonitis may involve a disregulated immune-inflammatory response. Inhibition of that response would be of therapeutic benefit.
Autoimmune or immune-mediated Skin Diseases including Bullous Skin Diseases, Erythema Multiforme, and Contact Dermatitis are mediated by auto-antibodies, the genesis of which is T lymphocyte-dependent.

Psoriasis is a T lymphocyte-mediated inflammatory disease. Lesions contain infiltrates of T lymphocytes, macrophages and antigen processing cells, and some neutrophils. Allergic diseases, including asthma, allergic rhinitis; atopic dermatitis; food hypersensitivity; and urticaria are T lymphocyte dependent. These diseases are predominantly mediated by T lymphocyte induced inflammation, IgE mediated-inflammation or a combination of both.

Transplantation associated diseases, including Graft rejection and Graft-Versus-Host-Disease (GVHD) are T lymphocyte-dependent; inhibition of T lymphocyte function is ameliorative.

6. Treatment Methods

For the prevention, treatment or reduction in the severity of complement-associated (immune related) disease, the appropriate dosage of a compound of the invention will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the agent is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the compound, and the discretion of the attending physician. The compound is usually administered to the patient at one time or over a series of treatments. Preferably, it is desirable to determine the dose-response curve and the pharmacological composition of the invention first in vivo, and then in useful animal models prior to testing in human.

For example, depending on the type and severity of the disease, about 1 µg/kg to 15 mg/kg (e.g. 0.1-2 mg/kg) of polypeptide is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 µg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.

The compounds of the invention for prevention or treatment of an ocular disease or condition are typically administered by ocular, intramuscular, and/or intravitreal injection. Other methods administration by also be used, which includes but is not limited to topical, parenteral, subcutaneous, intraperitoneal, intrapulmonary, intramuscular, and intravenous administration. Parenteral infusions include intramuscular, intravenous, intratunical, intraperitoneal, or subcutaneous administration.

Formulations for ocular, intramuscular or intravitreal administration can be prepared by methods and using ingredients known in the art. A main requirement for efficient treatment is proper penetration through the eye. Unlike diseases of the front of the eye, where drugs can be delivered topically, retinal diseases require a more site-specific approach. Eye drops and emulsions rarely penetrate the back of the eye, and the blood-ocular barrier hinders penetration of systemically administered drugs into ocular tissue. Accordingly, usually the method of choice for drug delivery to treat retinal disease, such as AMD and CNV, is direct intravitreal injection. Intravitreal injections are usually repeated at intervals which depend on the patient's condition, and the properties and half-life of the drug delivered. For intramuscular (e.g. intratunical) penetration, usually molecules of smaller size are preferred. In the case of CRAg, all forms, including the BCD of huCRAg short and long forms, their Ig (Fc) fusions, the full-length huCRAg long and short forms, and their Ig (Fc) fusions are all suitable for intramuscular (including intratunical) delivery.
The efficacy of the treatment of complement-associated eye conditions, such as AMD or CNV, can be measured by various endpoints commonly used in evaluating intracellular diseases. For example, vision loss can be assessed. Vision loss can be evaluated by, but not limited to, e.g., measuring the mean change in best correction visual acuity (BCVA) from baseline to a desired time point (e.g., where the BCVA is based on Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity chart and assessment at a test distance of 4 meters), measuring the proportion of subjects who lose fewer than 15 letters in visual acuity at a desired time point compared to baseline, measuring the proportion of subjects who gain greater than or equal to 15 letters in visual acuity at a desired time point compared to baseline, measuring the proportion of subjects with a visual acuity Snellen equivalent of 20/2000 or worse at a desired time point, measuring the NEI Visual Functioning Questionnaire, measuring the size of CNV and amount of leakage of CNV at a desired time point, e.g., by fluorescein angiography, etc. Ocular assessments can be done, e.g., which include, but are not limited to, e.g., performing eye exam, measuring intraocular pressure, assessing visual acuity, measuring slitlamp pressure, assessing intracocular inflammation, etc.

CR1g antagonists, such as antibodies to CR1g, can be used in immunosuppression therapy for the treatment of tumors (cancer). It is now well established that T cells recognize human tumor specific antigens. One group of tumor antigen, encoded by the MAGE, BAGE and GAGE families of genes, are silent in all adult normal tissues, but are expressed in significant amounts in tumors, such as melanomas, lung tumors, head and neck tumors, and bladder carcinomas. Dellini, C. et al. (1996) Proc. Natl. Acad. Sci. USA, 93:7449. It has been shown that containment of T cells induces tumor regression and an antitumor response both in vitro and in vivo. Melero, I. et al. Nature Medicine (1997) 3:683; Kwon, E. D. et al. Proc. Natl. Acad. Sci. USA (1997) 94:8099; Lynch, D. H. et al., Nature Medicine (1997) 3:625; Fina, G. J. and Lotze, M. T., J. Immunol. (1998) 161:114. The CR1g antagonists of the invention can be administered as adjuvants, alone or together with a growth regulating agent, cytotoxic agent or chemotherapeutic agent, to stimulate T cell proliferation/activation and an antitumor response to tumor antigens. The growth regulating, cytotoxic, or chemotherapeutic agent may be administered in conventional amounts using known administration regimes. Immunosuppressing activity by the CR1g antagonists of the invention allows reduced amounts of the growth regulating, cytotoxic, or chemotherapeutic agent thereby potentially lowering the toxicity to the patient.

Although some macrophages are involved in tumor eradication, many solid tumors are known to contain macrophages that support tumor growth (Singleton et al, J Pathol 196:254-265 (2002); Mastromarci et al, Trends Immunol 23:549-555 (2002)). These macrophages may contain CR1g on their surface. Antibodies that block the capacity of CR1g to inhibit complement activation could be used to activate complement on tumor cells and help eradicate the tumor through complement-mediated lysis. This approach would be particularly useful in tumors that contain CR1g positive macrophages.

In the treatment methods of the present invention, the compositions herein can be combined with one more further treatment modalities for the prevention or treatment of the target disease or condition. Thus, for example, if the target is prevention or treatment of complement-associated eye conditions, the administration of CR1g (including all forms and their i2C regions and/or Ig fusion) can be combined with or supplement the administration of the anti-VEGF-A antibody ranibizumab (Lucentis™, Genentech, Inc.), which is in clinical development for the treatment of AMD. In a recently concluded Phase III clinical trial, in addition to meeting the study's primary efficacy endpoint of maintaining vision in patients with wet AMD, 25 percent (59/238) of patients treated with 0.5 mg of Lucentis and
34 percent (81/240) treated with 0.5 mg of Lucentis™ improved vision by a gain of 15 letters or more compared to approximately 5 percent (11/238) of patients in the control group as measured by the Early Treatment of Diabetic Retinopathy (ETDRS) eye chart. Nearly 40 percent (18/478) of Lucentis™-treated patients achieved a visual acuity score of 20/40 or better at 12 months compared to 11 percent (26/238) in the control group. At 12 months, patients treated with Lucentis™ gained an average of seven letters in visual acuity compared to study entry, while those in the control group lost an average of 10.5 letters.

If the target is the treatment of a complement-associated inflammatory or autoimmune disease, the administration of CR1g (including all forms) can be combined with other therapies for such indications. Thus, for example, if the target is rheumatoid arthritis (RA), other arthritis medications, such as salicylates (e.g., aspirin), traditional non-steroid anti-inflammatory molecules (NSAIDs), such as, e.g., Aceid, Anthisc, Carfasan, Ibuprofen, Naproxen, etc., COX-2 inhibitors, e.g., Celebrex, Vioxx may be used. In this context, “combination” means concurrent or consecutive administration in any order, and in any dose form, in the same or different routes of delivery.

7. Screening assays and animal models

CR1g and CR1g agonists, including Ig fusions of CR1g and CR1g ECD, can be evaluated in a variety of cell-based assays and animal models of complement-associated diseases or disorders.

Thus, for example, efficacy in the prevention and/or treatment of arthritis can be evaluated in a collagen-induced arthritis model (Terato et al. Brit. J. Rheum. 35:828-838 (1966)), as shown in Example 7 below. Potential arthritis prophylactics/therapeutics can also be screened in a model of antibody-mediated arthritis induced by the intravenous injection of a cocktail of four monoclonal antibodies, as described by Terato et al., J. Immunol. 148:2103-8 (1992); Terato et al., Autoimmunity 22:137-47 (1995), and in Example 8 below. Candidates for the prevention and/or treatment of arthritis can also be studied in transgenic animal models, such as, for example, TNF-α transgenic mice (Taconic). These animals express human tumor necrosis factor (TNF-α), a cytokine which has been implicated in the pathogenesis of human rheumatoid arthritis. The expression of TNF-α in these mice results in severe chronic arthritis of the forepaws and hind paws, and provides a simple mouse model of inflammatory arthritis.

In recent years, animal models of psoriasis have also been developed. Thus, Anebri (obi), flaky skin (spu), and chronic proliferative dermatitis (qao) are spontaneous mouse mutations with psoriasis-like skin alterations. Transgenic mice with cutaneous overexpression of cytokines, such as interferon-γ, interleukin-1α, keratinocyte growth factor, transforming growth factor-β, interferon-6, vascular endothelial growth factor, or bone morphogenic protein-6, can also be used to study in vivo psoriasis and to identify therapeutics for the treatment of psoriasis. Psoriasis-like lesions were also described in B6-imgr mutant mice backcrossed to the F1-L1 strain and in B6-imgr transgenic mice, scid/scid mice reconstituted with CD4+CD45R0+ T lymphocytes as well as in HLA-B27/human transgenic rats. Xenotransplantation models using human skin grafts on to immunodeficient mouse are also known. Thus, the compounds of the invention can be tested in the scid/scid mouse model described by Schon, M. P. et al. Nat. Med. (1997) 3:183, in which the mice demonstrate histopathologic skin lesions resembling psoriasis. Another suitable model is the human skin/scid mouse chimera prepared as described by Nickoloff, B. J. et al., Am. J. Path. (1995) 146:810. For further details see, e.g., Schon, M.P., J Invest Dermatology 112:405-410 (1999).

-56-
Recombinant (transgenic) animal models can be engineered by introducing the coding portion of the genes of interest into the genome of animals of interest, using standard techniques for producing transgenic animals. Animals that can serve as a target for transgenic manipulation include, without limitation, mice, rats, rabbits, guinea pigs, sheep, goats, pigs, and non-human primates, e.g. baboons, chimpanzees and other monkeys. Techniques known in the art to introduce a transgene into such animals include pronuclear microinjection (Hoppe and Wagner, U.S. Patent No. 4,873,191); retrovirus-mediated gene transfer into germ lines (e.g., Van der Putten et al., Proc. Natl. Acad. Sci. USA 82, 6148-615 (1985)); gene targeting in embryonic stem cells (Thompson et al., Cell 56, 313-321 (1989)); electroporation of embryos (Le, Mol. Cell. Biol. 3, 1803-1814 (1982)); sperm-mediated gene transfer (Lavitrano et al., Cell 57, 717-73 (1989)). For review, see, for example, U.S. Patent No. 4,736,906.

For the purpose of the present invention, transgenic animals include those that carry the transgene only in part of their cells ("mosaic animals"). The transgene can be integrated either as a single transgene, or in concatamers, e.g., head-to-head or head-to-tail tandem. Selective introduction of a transgene into a particular cell type is also possible by following, for example, the technique of Lasko et al., Proc. Natl. Acad. Sci. USA 89, 623-626 (1992).

The expression of the transgene in transgenic animals can be monitored by standard techniques. For example, Southern blot analysis or PCR amplification can be used to verify the integration of the transgene. The level of cDNA expression can then be analyzed using techniques such as in situ hybridization, Northern blot analysis, PCR, or immunocytochemistry.

The animals may be further examined for signs of immune disease pathology, for example by histological examination to determine infiltration of immune cells into specific tissues. Blocking experiments can also be performed in which the transgenic animals are treated with CRlg or a control agent to determine the extent of effects on complement and complement activation, including the classical and alternative pathways, or T cell proliferation. In those experiments, blocking antibody which bind to the polypeptide of the invention, are administered to the animal and the biological effect of interest is monitored.

Alternatively, "knock out" animals can be constructed which have a defective or altered gene encoding CRlg, as a result of homologous recombination between the endogenous gene encoding the CRlg polypeptide and altered genomic DNA encoding the same polypeptide introduced into an embryonic cell of the animal. For example, cDNA encoding CRlg can be used to clone genomic DNA encoding CRlg in accordance with established techniques. A portion of the genomic DNA encoding CRlg can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas and Capecchi, Cell, 21:103 (1985) for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see e.g., Li et al., Cell, 69:915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see e.g., Bradley, in Transgenic Vertebrates and Embryonic Stem Cells: A Practical Approach, L. J. Robertson, ed. (IRL Oxford, 1987), pp. 113-122). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contains the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend
against certain pathological conditions and for their development of pathological conditions due to absence of the CR1g polypeptide.

Thus, the biological activity of CR1g or its potential agonists can be further studied in murine CR1g knock-out mice, as described in Example 7 below.

A model of asthma has been described in which antigen-induced airway hyper-reactivity, pulmonary eosinophilia and inflammation are induced by sensitizing an animal with ovalbumin and then challenging the animal with the same protein delivered by aerosol. Several animal models (guinea pig, rat, non-human primates) show symptoms similar to atopic asthma in humans upon challenge with aerosol antigens. Murine models have many of the features of human asthma. Suitable procedures to test CR1g and CR1g agonists for activity and effectiveness in the treatment of asthma are described by Wolyntsew, W. W. et al, *Am. J. Respitr. Cell Mol. Biol.* (1998) 18:777 and the references cited therein.

Contact hypersensitivity is a simple in vivo assay of cell mediated immune function. In this procedure, epidermal cells are exposed to exogenous hapten which give rise to a delayed type hypersensitivity reaction which is measured and quantified. Contact sensitivity involves an initial sensitizing phase followed by an elicitation phase. The elicitation phase occurs when the epidermal cells encounter an antigen to which they have had previous contact. Swelling and inflammation occur, making this an excellent model of human allergic contact dermatitis. A suitable procedure is described in detail in *Current Protocols in Immunology*, Eds. J. E. Coligan, A. M. Krambeck, D. H. Margulies, E. M. Shevach and W. Strober, John Wiley & Sons, Inc., 1994, unit 4.2. See also Grabbe, S. and Schwarz, T., *Immune Today* 19(1):137-44 (1998).

Graft-versus-host disease occurs when immunocompetent cells are transplanted into immunosuppressed or tolerant patients. The donor cells recognize and respond to host antigens. The response can vary from life threatening severe inflammation to mild cases of diarrhea and weight loss. Graft-versus-host disease models provide a means of assessing T cell reactivity against MHC antigens and minor transplant antigens. A suitable procedure is described in detail in *Current Protocols in Immunology*, supra, unit 4.3.

An animal model for skin allograft rejection is a means of testing the ability of T cells to mediate in vivo tissue destruction which is indicative of and a measure of their role in anti-viral and tumor immunity. The most common and accepted models use murine tail-skin grafts. Repeated experiments have shown that skin allograft rejection is mediated by T cells, helper T cells and killer-effector T cells, and not antibodies. Achihoakio, H. Jr. and Sachs, D. H., *Fundamental Immunology*, 2nd ed., W. B. Paul ed., Raven Press, NY, 1989, 880-892. A suitable procedure is described in detail in *Current Protocols in Immunology*, supra, unit 4.4. Other transplant rejection models which can be used to test CR1g and CR1g agonists are the allogeneic heart transplant models described by Tazahir, M. et al, *Transplantation* (1994) 58:33 and Tazahir, S. A. et al, *J. Immunol.* (1996) 4330-4338.

Animal models for delayed type hypersensitivity provides an assay of cell mediated immune function as well. Delayed type hypersensitivity reactions are a T cell mediated in vivo immune response characterized by inflammation which does not reach a peak until after a period of time has elapsed after challenge with its antigen. These reactions also occur in tissue specific autoimmune diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE, a model for MS). A suitable procedure is described in detail in *Current Protocols in Immunology*, above, unit 4.5.

EAE is a T cell mediated autoimmune disease characterized by T cell and mononuclear cell infiltration and subsequent demyelination of axons in the central nervous system. EAE is generally considered to be a relevant
animal model for MS in humans. Bolton, C., Multiple Sclerosis (1995) L:143. Both acute and relapsing-remitting, models have been developed. CR1g and its agonists and antagonists can be tested for T cell stimulatory or inhibitory activity against immune mediated demyelinating disease using the protocol described in Current Protocols in Immunology, above, units 15.1 and 15.2. See also the models for myelin disease in which oligodendrocytes or Schwann cells are grafted into the central nervous system as described in Duncan, J. D. et al. Mol. Med. Today (1997) 554-561.

An animal model of age-related macular degeneration (AMD) consists of mice with a null mutation in Ccl-2 or Ccr-2 genes. These mice develop cardinal features of AMD, including accumulation of Lipofuscin in and chiasma beneath the retinal pigmented epithelium (RPE), photoreceptor atrophy and choroidal neovascularization (CNV). These features develop beyond 6 months of age. CR1g and CR1g agonists can be tested for the formation of chiasma, photoreceptor atrophy and choroidal neovascularization.

CNV can be tested in various models of laser-induced choroidal neovascularization. Thus, for example, CNV can be induced in rats and cynomolgus monkeys by intense laser photocoagulation, which results in choroidal neovascularization. Progress and treatment of this condition can be evaluated, e.g. by fluorescein angiography, histopathologic and immunohistochemical evaluation, and by pharmacokinetics, biodistribution, antibody screening and complement activation assays of serum collected from the animals before and after treatment, in different time intervals. Efficacy of preventative administration can be monitored by similar methods, including monitoring of vascular leakage by fluorescein angiography, inhibition of complement deposition at the site of laser burn, ocular exam, ophthalmography, harvest of vitreous and retinal tissues, and the like. Further details are provided in the examples below.

Models of myocardial ischemia-reperfusion can be performed in mice or rats. Animals are tracheostomized and ventilated with a small animal ventilator. Polyethylene catheters are placed in the internal carotid artery and the external jugular vein for measurement of mean arterial blood pressure. Myocardial ischemia-reperfusion is initiated by ligating the left anterior descending artery (LAD) with a 6-0 suture. Ischemia is produced by tightening the reversible ligature around the LAD to completely occlude the vessel. The ligature is removed after 30 min and the heart perfused for 4 hours. CR1g and CR1g agonists can be tested for their efficacy by measuring heart infarct size, heart creatine kinase activity, myeloperoxidase activity and immunohistochemistry using anti-C3 antibodies.

A model of diabetic retinopathy involves treatment of mice or rats with streptozotocin. CR1g and CR1g agonists can be tested on their effect on venule dilatation, intraretinal microvascular abnormalities, and neovascularization of the retina and vitreous cavity.

A model for membranoproliferative glomerulonephritis can be established as follows: Female mice are immunized i.p. with 0.5 mg control rabbit IgG in CFA (day 0). Seven days later (day 7), 1 mg of the rabbit anti-mouse glomerular basement membrane (GBM) antibody is injected i.v. via the tail vein. Elevation of anti-rabbit IgG antibody in the serum is measured by ELISA. 24-h urine samples are collected from the mice in metabolic cages, and mouse renal function is assessed by the measurement of urinary proteins in addition to blood urea nitrogen.

7. Pharmaceutical Compositions

The active molecules of the invention, including polypeptides and their agonists, as well as other molecules identified by the screening assays disclosed above, can be administered for the treatment of inflammatory diseases, in the form of pharmaceutical compositions.
Therapeutic formulations of the active molecule, preferably a C88g polypeptide or C88g agonist of the invention, are prepared for storage by mixing the active molecule having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 15th edition, Osol, A. Ed. [1983]), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyl/dimethyl/phenyl ammonium chloride; hexamethylenemetamethine; chlorhydrate borax; benzalkonium chloride; benzethonium chloride; phenol; butyl or benzyl alcohol; alkyl parasenes such as methyl or propyl parasene; ceteaxol; resorcinol; cyclogluconeol; l-ascorbate; and N-nitrosol, low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamic, aspartic, histidine, arginine, or lysine; mannosecarbohydrates; disaccharides, and other carbohydrates including glucose, mannose, or dextrose; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; metal-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as Tween™, Fluronic 50 or polyethylene glycol (PEG).

Compounds identified by the screening assays of the present invention can be formulated in an analogous manner, using standard techniques well known in the art.

Liposomia or liposomes can also be used to deliver the polypeptide, antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest fragment which specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable region sequences of an antibody, peptide molecules can be designed which retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology (see, e.g. Marasco et al., Proc. Natl. Acad. Sci. USA 82, 7885-7889 [1985]).

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.

Alternatively, or in addition, the composition may comprise a cytotoxic agent, cytokine or growth inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active molecules may also be entrapped in microcapsules prepared, for example, by colloidation techniques or by interfacial polymerization, for example, hydroxyethyl cellulose or gelatin-microcapsules and poly(methacrylic esters) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in micelles. Such techniques are disclosed in Remington's Pharmaceutical Sciences 15th edition, Osol, A. Ed. [1983].

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include coatabsorbable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacyrlyc), or poly(vinylalcohol)), polyelectrodes (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and C-ethyl-L-glutamic, non-degradable ethylene-vinyl acetate, degradable lactide acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymers and leuprolide acetate), and poly-D-(+)-3-hydroxybutyric acid.
While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanisms involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, hypothesizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

For intracocular administration, typically injection formulations are used, usually given about six weeks apart. The eye is numbed before each injection.

However, it is also possible to use implants with sustained release formulations of CR1g or an agonist, such as a CR1g-3g or CR1g ECD-3g fusion, for intravitreal release.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All patent and literature references cited in the present specification are hereby expressly incorporated by reference in their entirety.

Examples

Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cell identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2299.

Example 1

Isolation of cDNA Clones Encoding Human CR1g (PR0362)

The extracellular domain (ECD) sequences (including the secretion signal, if any) of about 950 known secreted proteins from the Swiss-Prot public protein database were used to search expressed sequences tag (EST) databases. The EST databases included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST-2 (e.g., Altschul et al., Methods in Enzymology 266: 460-480 (1995)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequence. Those comparisons resulting in a BLAST score 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phump" (Phil Green, University of Washington, Seattle, Washington).

A consensus DNA sequence was assembled relative to other EST sequences using phump. This consensus sequence is herein designated DNA42257 (SEQ ID NO: 9) (see Figure 22). Based on the DNA42257 (SEQ ID NO: 9) consensus sequence shown in Figure 22, oligonucleotides were synthesized:

1) to identify by PCR a cDNA library that contained the sequence of interest, and 2) for use as probes to isolate a clone of the full-length coding sequence for CR1g. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional oligonucleotides are synthesized when the consensus sequence is greater than...
about 1-1.5 kbp. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., *Current Protocols in Molecular Biology*, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.

PCR primers (forward and reverse) were synthesized:

- forward PCR primer 1 (42257-f1) 5'-TAACCTCAATGGGACCCCTGTGG-3' (SEQ ID NO: 10)
- forward PCR primer 2 (42257-f2) 5'-GTGGGAAGGACATCCCAACAGG-3' (SEQ ID NO: 11)
- reverse PCR primer 1 (42257-r1) 5'-CTTCACATTGTCGCTGTCGTC-3' (SEQ ID NO: 12)
- reverse PCR primer 2 (42257-r2) 5'-GGCCAAATTCCAGCTGTCGTTAC-3' (SEQ ID NO: 13)

Additionally, a synthetic oligonucleotide hybridization probe was constructed from the consensus DNA42257 sequence which had the following nucleotide sequence:

Hybridization probe (42257-p1)

5'-TGGATGACGGAGCCCTACGCTGTGGAAGTCCCTGGGACAGCTCTGATG-3' (SEQ ID NO: 14).

In order to screen several libraries for a source of a full-length clone, DNA from the libraries was screened by PCR amplification with the PCR primer pairs identified above. A positive library was then used to isolate clones encoding the CR1g gene using the probe oligonucleotide and one of the PCR primers.

RNA for construction of the cDNA libraries was isolated from human fetal brain tissue (L12153). The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, CA. The cDNA was primed with oligo dT containing a NcoI site linked with blunt to SalI hminimized adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRcRc or pRK5; pRK5B is a precursor of pRcRc that does not contain the Smal site; see Holmes et al., *Science* 253: 1278-1280 (1991)) in the unique XhoI and NotI sites.

DNA sequencing of the clones isolated as described gave the DNA sequence for an isolated CR1g polypeptide (herein designated as UNQ317 (DNA45416-1251) (SEQ ID NO: 1). The entire nucleotide sequence of UNQ317 (DNA45416-1251) is shown in Figure 1 (SEQ ID NO: 1). Clone UNQ367 (DNA45416-1251) (SEQ ID NO: 1) contains a single open reading frame with an apparent translational initiation site at nucleotide positions 1082-1084 (Figure 1, SEQ ID NO: 1). The predicted polypeptide precursor is 321 amino acids long (Figure 1, SEQ ID NO: 2). The CR1g protein shown in Figure 1 has an estimated molecular weight of about 35,544 daltons and a pl of about 8.51. Analysis of the 321-amino acid CR1g polypeptide as shown in Figure 1 (SEQ ID NO: 2) evidences the presence of a glycosylating site at about amino acid 149 to about amino acid 152 and a transmembrane domain from about amino acid 276 to about amino acid 366. Clone UNQ317 (DNA45416-1251) has been deposited with ATCC deposit no: 309620.

Similar to JAM family members, CR1g (PRO362), more recently referred to as CR1g, is a type I transmembrane molecule and a member of the immunoglobulin superfamily. The extracellular domain of the long form of human CR1g (hCR1gL) encodes both V and C2 type terminal Ig domains (Smith and Xue, J. Mol. Biol. 274:530-545 (1997)). While the short form (hCR1gLs) encodes only a single V-type Ig, resembling marine CR1g (mCR1g) (Figure 50A). The C terminal cytoplasmic domain of human and marine CR1g contain consensus AxF2 internalization motifs (YARL and DSGQLL, respectively Bonafacic & Traub Ann Rev Biochem 72 p395 (2003)).
HuCR1g and mUCR1g share 67% overall sequence homology with 83% homology residing in the IgV domain. Among the JAM family members, huCR1g is most closely related to JAM-A. Sequence similarity is confined to a conserved stretch of residues forming the Ig domain fold (Figure 50A). Both human and murine CR1g are located on chromosome X position Xq12 and have a systemic position on the chromosome flanked by hexaestin and moesin.

Example 2
Protein Production and Purification

The extracellular domains of hu and mECR1g were cloned into a modified pRRLS expression vector encoding the human or murine IgG1 Fc region downstream of the CR1g sequence. The Fc portion of mouse IgG1 contains a double mutation (D265A, N297A) preventing Fc receptor binding (Gong et al., ImmunoL 141:817-826 (2005)) was used to control for Fc receptor regulation. Human IREM-1 and murine CLM-1 Fc fusion proteins or a murine anti-goat IgG antibody were used as controls. LFH tagged CR1g was made by fusing the ECD of CR1g to a yeast leucine zipper, a Flag and an C-terminal (6) histidine. Proteins were overexpressed in CHO cells by transient transfections. Cells were grown in fully automated bioreactors using F-12/Dulbecco’s modified Eagle’s medium-based media supplemented with Ultra-Low IgG serum (Invitrogen) and Primatone HS (Sigma). The culture was maintained for 7-12 days until harvest. Fc fusion proteins were purified by protein A affinity chromatography and subsequent Sephacryl S-300 gel filtration. LFH fusion protein was purified over a nickel column. Human CR1g-ECD protein was affinity-purified over a Millipore Glycerol-CPG (133706404) column to which monoclonal antibody 3C9 was absorbed. Protein was eluted at pH 3.0. hu and mECR1g-HIS were generated by cloning the CR1g ECD into an baculovirus expression vector containing C-terminal (6) histidines. Plasmid DNA was transfected into S9 cells, the supernatant was used to infect S9 cells and proteins were purified over a nickel column. The identities of all purified proteins were verified by N-terminal sequence analysis and the lipopolysaccharide concentration was <5 EU/ml for all human or murine CR1g preparations.

Example 3
Preparation of Antibodies

Polyclonal antibodies were generated by immunizing New Zealand rabbits with 200 μg huCR1g (L)-His in complete Freunds adjuvant followed by a boost 6 weeks following first immunization. Monoclonal antibodies to mUCR1g and huCR1g were generated by immunizing Wistar rats and Balb/c mice with 50 μg of his-tagged CR1g fusion protein via footpad injection. Clones were selected based on reactivity with human and murine CR1g-ECD by ELISA, FACS, Western blotting and immunohistochemistry. Unless otherwise indicated, the antibodies obtained were used in subsequent tests.

Example 4
Inflammatory Cell infiltrates into Guinea pig Skin

The following example shows that huCR1g (PRO562) is proinflammatory in that it stimulates inflammatory cell infiltrates (i.e., neutrophilic, eosinophilic, mononuclear or lymphocytic) into guinea pig skin. The assay described herein monitors the capacity of this protein to induce an inflammatory cell infiltrate into the skin of a guinea pig. Compounds which stimulate inflammatory infiltration are useful therapeutically where enhancement of an
inflammatory response is beneficial. Compounds which inhibit proliferation of lymphocytes are useful therapeutically where suppression of an inflammatory response is beneficial. A therapeutic agent may take the form, for example, of murine-human chimera, humanized or human antibodies against CR1g, small molecules, peptides, etc. that mimic CR1g biological activity, CR1g-Ig fusion proteins, CR1g extracellular region, and the like.

Hairless guinea pigs (Charles River Labs) weighing 350 grams or more were anesthetized with ketamine (75-80 mg/kg body weight) and xylazine (2 mg/kg body weight) intramuscularly. The protein samples of luxCR1g and control proteins were injected intradermally into the backs of each animal at a volume of 100 µl per injection site. There were approximately 16-24 injection sites per animal. One mL of Evans blue dye (1% in physiological buffered saline) was injected intracutaneously. The animals were euthanized after 6 hours and each skin injection site was biopsied and fixed in formalin. The skins were prepared for histopathological evaluation. Each site was evaluated for inflammatory cell infiltration into the skin. Sites with visible inflammatory cells were scored as positive. Samples including an inflammatory cell infiltrate were scored as proinflammatory substances. CR1g tested positive in this assay, which indicates antiinflammatory activity.

Example 5
CR1g (PRO362) mRNA and polypeptide expression
A. In situ Hybridization and Immunohistochemistry
Expression of CR1g mRNA was evaluated by in situ hybridization, immunohistochemistry and RT-PCR in various types of tissues.

For in situ hybridization, tissues were fixed (4% formalin), paraffin-embedded, sectioned (3-5 µm thick), deparaffinized, dehydrated (20 minutes) with xylene and rehydrated in graded alcohols, and processed for in situ hybridization. Probes to the polypeptides of the invention were produced by PCR. Primers included 17 or 13 RNA polymerase initiation sites to allow for in vitro transcription of sense or antisense probes from the amplified products. 32P-UTP labeled sense and antisense probes were hybridized overnight (35°C), washed (0.1 X SSC for 2 hours at 65°C), dipped in NTB2 nuclear track emulsion (Eastman Kodak, Rochester, NY), exposed (4-6 weeks at 4°C), and developed and counterstained with hematoxylin and eosin. Representative paired bright and darkfield images are typically shown.

Immunohistochemical staining was performed on 5 µm thick frozen sections using a DAKO Autostainer.

Endogenous peroxidase activity was blocked with Kikugard and Paul Blocking Solution (1:10, 4 minutes at 20°C). 10% NGS in TBS/0.05% Tween-20 (DAKO) was used for dilution and blocking. MAb 4F722.2 anti-CR1g (anti-PRO362) or mouse IgG was used at 0.13 µg/ml. Biotinylated goat anti-mouse IgG (Vector Labs). Burlingame, CA) was used at 1:200 and detected with Vector Labs Standard ABC Elite Kit (Vector Labs, Burlingame, CA). Slides were developed using Pierce metal-enhanced diaminobenzidine (Pierce Chemicals, Rockford, IL). Dual immunohistochemistry for CR1g (PRO362) and CD68 expression was performed on frozen sections to demonstrate localization of CR1g expression to macrophages. mAb 4F7.22.2 anti-CR1g and anti-CD68 mAb K1.1 mouse (DAKO) were utilized and detected by fluorescein and FITC markers, respectively.

Depression was examined in a wide variety of tissues and cell types from humans and other mammals.

a. Normal Tissue

Normal human adult tissues that were examined included tonsil, lymph node, spleen, kidney, urinary bladder, lung, heart, skin, coronary artery, liver, gall bladder, prostate, stomach, small intestine, colon, pancreas,
thyroid gland, skin, adrenal gland, placenta, uterus, ovary, testis, retina, and brain (cerebellum, brainstem, cerebral cortex). Normal human fetal tissues including E12-E16 week-old brain, spleen, bowel and thyroid were also tested. In addition, expression was investigated in mouse liver.

b. Inflamed Tissue

Inflamed tissues examined by in situ hybridization included tissues with chronic inflammatory disease such as lungs with chronic asthma, chronic bronchopneumonia, chronic bronchiectasis, chronic obstructive pulmonary disease, kidneys with chronic lymphocytic interstitial nephritis, and livers with chronic inflammation and cirrhosis due to chronic hepatitis C infection, autoimmune hepatitis or alcoholic cirrhosis.

c. Primary Neoplasms

Primary human neoplasms that were examined by in situ hybridization for PRO362 expression included breast carcinoma, pulmonary squamous cell carcinoma, pulmonary adenocarcinoma, prostatic adenocarcinoma, and colonic adenocarcinoma.

2. Results

CRlg (PRO362) was found to be expressed in mouse liver frozen sections (Figure 6), human liver frozen sections (Figure 7) and a number of tissue macrophage-like cells, including colon macrophages (Figure 8A), Kupffer cells (Figure 8B), adrenal macrophages (Figure 8C), Hofbauer cells (Figure 8D), synovial cells (Figure 9), alveolar macrophages, resident macrophages in the intestinal lamina propria and interstitial macrophages in many tissues. CRlg was also significantly expressed in brain microglia (Figure 10). The expression of CRlg was significantly increased in these tissues when activated by the presence of neoplasia or inflammatory disease, including rheumatoid arthritis (Figure 9), inflammatory bowel disease, chronic hepatitis (Figure 12), pneumonia, chronic asthma (Figure 11), glomerulonephritis, and bronchitis.

To further examine expression of CRlg, immunohistochemical staining was performed on various tissue types. Dual immunohistochemical staining for CRlg and CD68 was performed on tissue macrophages, including adrenal gland macrophages, liver Kupffer cells, brain macrophages, and placental Hofbauer cells was performed to determine whether CRlg and CD68 are expressed in the same tissues. CRlg was found to be coexpressed with CD68 on adrenal gland macrophages (Figure 13), liver Kupffer cells (Figure 14), brain microglial cells (Figure 15), and placental Hofbauer cells (Figure 16).

Example 6

Involvement of CRlg (PRO362) in Chronic Inflammation

The novel macrophage-associated receptor with homology to A53 antigen and JAM1 was cloned as described in Example 1 and below, and was identified as a single transmembrane Ig superfamily member macrophage-associated polypeptide (CRlg or PRO362).

CRlg is expressed as two splice variants. One variant is a 399-amino acid polypeptide containing an N-terminal Ig-like domain and a C-terminal IgC2-like domain, referred to as hucRtg or hucCRlg-long (SEQ ID NO: 4). The spliced form, which is 355 amino acids long, lacking the C-terminal domain, is referred to as hucCRlg-short (SEQ ID NO: 6). Both receptors have a single transmembrane domain and a cytoplasmic domain containing tyrosine residues which are conservedly phosphorylated in macrophages in vitro.
The present study demonstrates that CR1g is selectively expressed on a subset of tissue resident macrophages, and is associated with chronic inflammation.

Materials and Methods

Cells

Blood was obtained from healthy adult volunteers after informed consent by venous puncture and separated using Picoll-Paque PLUS (Amersham Pharmacia Biotech) per manufacturer's instruction. PBMCs were obtained from the interface, washed in cold PBS, lysed with 0.2% NaCl for 70 s and neutralized with 1.6% NaCl. Cells were counted and kept on ice until use. To isolate peripheral blood monocytes, unattached MACS kit (Miltenyi Biotech, Auburn, CA) were used following the manufacturer's instructions. Differentiation to a macrophage phenotype was induced by culturing CD14 monocytes for up to 2 weeks in HG-DMEM medium containing 10% (v/v) autologous human serum, 20% fetal bovine serum and 10 mM L-glutamine, penicillin and streptomycin. Medium was replaced at day 5. For flow cytometric analysis, cells were dissociated from the culture dish using ice-cold cell dissociation solution (Sigma). Lysates for Western blot analysis were prepared by adding 0.5 ml lysis buffer directly to the wells. Lysates were mixed with sample buffer containing SDS and beta-mercaptoethanol, run on a Tris-Glycine gel and transferred to a nitrocellulose membrane. Cell viability was assessed by trypan blue exclusion.

Flow cytometry

Cells for use in flow cytometric analysis were blocked for 30 min at 4°C with PBS containing 2% fetal bovine serum and 5 µg/ml human IgG (Caltag, San Diego, CA). Next, cells were incubated with 200 ng/ml of anti-CR1g (anti-FR3562G) monoclonal antibody. After washing in PBS, cells were stained with phycoerythrin (PE)-conjugated antibodies to CD11b, CD14, CD16, CD15, CD68 were obtained from Pharmingen.

Cell-cell adhesion model

A pOEC expression vector containing full length CR1g was stably expressed in a human Jurkat T-cell line using neomycin selection and autocrine sorting as described elsewhere. Cells were preloaded with the fluorescent dye DCECF (Molecular Probes, Oregon) and added to a 96 well Maxisorp plate (CORNING™) coated with a monolayer of human umbilical vein endothelial cells (HUVEC) treated with or without 10 ng/ml TNFα. Cells were gently washed by loading the wells with incubation buffer (HBSS contained 10 mM CaCl₂, 15 mM magnesium and 1.5 mM NaCl) followed by inverting the plate on a piece of blotting paper. After 3 washes, fluorescence was counted in a fluorometer. The fluorescent readout is representative of the number of cells that remain adherent to the HUVEC cells.

Northern blot analysis

Multiple tissue Northern blots (CLONTECH) were probed with a 32P labeled probe of random-prime-digested full-length CR1g cDNA using Ambion kit according to manufacturer's recommendation. Blots were exposed to a phosphorimaging screen for 4 hours at 22°C. Blots were stripped and re-probed with a commercially available probe to human or mouse ß-actin (Clontech) to assess the loading and quantity of RNA in each lane, and analyzed with a Storm™ phosphorimager (Molecular Dynamics, Sunnyvale, CA).
Real Time RT-PCR analysis
For quantitative PCR analysis (TaqMan™), total mRNA from human tissues or primary cells (100 ng) was recommended (PerkinElmer Life Sciences) with primers based on the coding sequence of CRlg.

Fc and His-fusion protein production
Human CRlg was cloned into the baculovirus expression vector pHIF (Pharmingen). The HIS-tagged CRlg fusion protein consisted of the extracellular domain of CRlg fused to 8 histidines. His-tagged fusion protein was purified from the supernatant of baculovirus-infected insect cells grown in suspension using nickel affinity resin.

Monoclonal and polyclonal antibody production
For the present experiments, BALBc females were immunized and boosted with 10 μg CRlg-His6 via footpad injections, as previously described. Ghirardi et al, J Biol Chem. 277: 16831–16836 (2002). Single clones were screened against CRlg-His6 by ELISA. Selected clones selected clones were tested against JAB family members and human IgG Fe. Clones were titrated out to single cell densities and screened. Clone 3C9 (IgG1) was found to be selectively reactive to CRlg. Clones were used for ascites generation and purified over protein G (American Pharmacia Biotech); protein concentration was determined using the Pierce BCA reagent (Pierce, Rockford, IL).

Polyclonal antibodies were generated by injecting 150 μg CRlg-His in New Zealand Rabbits. Serum titers were determined by ELISA. Serum was collected at the peak of circulating IgG levels and purified over a protein A column.

In situ hybridization
PCR primers (upper 5'-TCTCTCTCTCTCCAAGCACCAG (SEQ ID NO. 18), and lower, 5'-CTTGGCAAGCTCTTGGAC (SEQ ID NO. 19) were designed to amplify a 700 bp fragment of InaAM4. Primers included 17 or 13 RNA polymerase initiation sites to allow for in vitro transcription of sense or antisense probes, respectively, from the amplified products. Normal human tissues included tumor, lymph nodes, spleen, kidney, lung and heart. Tissues with chronic inflammatory disease included lung with chronic asthma, chronic bronchitis, livers with chronic inflammation and cirrhosis due to chronic hepatitis C infection. Tissues were fixed in 4% formalin, paraffin embedded, sectioned (3-5 μm thick) deparaffinized, deproteinized with 0.05% Tween-20 was used for digestion and blocking. MAb 3C9 was used at 1 μg/ml. Slides were developed using metal-enhanced diaminobenzidine (Pierce Chemicals).

For immunofluorescence staining of sections, sections were blocked with PBS/0.1%BSA and incubated with mAb 3C9 for 1 hr at 20°C. A rabbit-anti mouse FITC-labeled secondary antibody conjugated to FITC was used as
detection agent. For double staining procedure, sections were subsequently stained with a PE-conjugated monoclonal antibody to human CD68.

Results

As described in Example 1, hucCRG was cloned from a human fetal cDNA library using degenerate primers recognizing conserved Ig domains of human JAM1. Sequencing of several clones revealed an open reading frame of 231 amino acids (Figure 1, SEQ ID NO: 2). BLAST searches confirmed similarity to ZS9lg, a type 1 transmembrane protein (Lanquaese et al., Biochim Biophys Acta 1492:522-525 (2000)). It was later found that this 231-amino acid protein missed some C-terminal amino acid residues. The full-length huSflgMA protein has been determined to have 399 amino acid residues, as shown in Figure 2 (SEQ ID NO: 4). The extracellular region of CRG consisted of 2 Ig-like domains, comprising an N-terminal V-set domain and a C-terminal C2-set domain. Using 3' and 5' primers, a splice variant of CRG, CRG-short (305 amino acids, Figure 3, SEQ ID NO: 6), which lacks the membrane proximal IgC domain, was cloned.

Cloning of murine CRlg and sequence comparison with human CRG

The murine expressed sequence tags (EST) database was searched using the full open reading frame of hucCRG and the BLAST algorithm. DNA sequencing of 3 clones gave rise to identical complete open reading frames of 260 amino acids. Primes to the 3' region primers were used to clone a full-length transcript from a mouse spleen library. The murine clone resembled the spliced form of huCRG in that, it lacked the C-terminal Ig-like domain.

The extracellular IgV-domain was well conserved between the human and murine receptor with 93% identity. The murine cytoplasmic domain was poorly conserved being 20 amino acids shorter than its human counterpart and was 40% identical. The nucleic acid encoding murine CRG (mucCRG) and the deduced amino acid sequence are shown in Figure 4 and as SEQ ID NOS: 7 and 8, respectively.

CRG is expressed on a subset of resident macrophages in diverse tissues and its expression is increased in inflammation

Northern blot analysis of hucCRG showed two transcripts of 1.5 and 1.8 kb (Figure 17), with highest expression in the adrenal gland, lung, heart and placenta, and lower expression in other organs, such as, spinal cord, thyroid gland, mammary gland, and lymph node. In all tissues, the 1.8 kb transcript was the most abundantly expressed transcript and presumably encodes the long form of CRG. A single transcript of about 1.4 kb was detected in mouse liver and heart.

TAQMAN® real-time PCR analysis

To identify specific cell lines expressing CRG, real-time quantitative PCR and primers/probes specific for the N-terminal Ig domain were used. Low but detectable mRNA expression was found in the myeloid cell line HL60 treated with PMA and the monocytic cell line THP-1. Expression was absent in B- and T-cell lines (Figure 18A).

CRG expression on differentiated macrophages

In order to establish details of when CRG was expressed in differentiating macrophages/microphages, we determined CRG mRNA levels in non-adherent monocytes and in adherent macrophages, induced to differentiate in
the presence of human amnion serum. CR1g mRNA levels gradually increased over time and reached maximum levels at 7 days following plating (Figure 19A). At this differentiation stage, mRNA levels were 100 fold higher as compared to those in undifferentiated monocytes.

Western blotting of monocyte/macrophage lysates showed an increase in CR1g protein expression (Figure 18C) in parallel with the increase in CR1g mRNA expression, indicating that CR1g was expressed when monocytes differentiated to form macrophages. A band of 48 kDa and a band of 49 kDa appeared on the blot, presumably representing the long and the short forms of human CR1g.

Molecular Characterization of CR1g

CR1g migrated similarly under reduced and non-reduced conditions indicating that it was expressed as a monomer (Figure 19A). Only slight changes in migration patterns were observed when CR1g was deglycosylated using PNGase F, indicating insignificant N-glycosylation. CR1g was phosphorylated when CR1g overexpressing cells were treated with pervanadate (Figure 19B). Phosphorylated CR1g migrated as a slightly higher Mr protein (55 kDa). In human HEL 293 cells, tyrosine-phosphorylated CR1g cytoplasmic domain does not recruit Syk kinase (results not shown).

Flow Cytometry Analysis of CR1g expression on peripheral blood mononuclear cells

In order to determine the expression pattern of CR1g in circulating leukocytes, flow cytometric analysis was performed on lymphocytes isolated from blood from a healthy donor using monoclonal anti-human CR1g antibody 3C9. Antibodies were made by immunizing Balb/C mice with octa-His-tagged human CR1g extracellular domain. The antibody is a non-blocking antibody that can be used to detect native protein in acetone-fixed frozen sections directly conjugated with ALEXA™ 488. Co-staining was performed with PE conjugate antibodies to several leukocyte surface antigens. CR1g was absent on the surface of all leukocytes, including B-, T-, NK cells, monocytes and granulocytes (Figure 20). CR1g was however expressed on monocytes cultured for 7 days in macrophage differentiation medium.

Regulation of CR1g expression by monocytes

In order to study the regulation of expression of CR1g, 7 day macrophages were cultured in the presence of various pro- and anti-inflammatory cytokines and CR1g expression levels were determined by real-time PCR or flow analysis. Expression of CR1g mRNA was increased after treatment of macrophages for 2 days with IL-10 and TGF-β and down regulated by IL-4, IL-13 and LPS (Figure 21A). Treatment with dexamethasone increased expression to 5 fold compared to control non-treated macrophages. In order to determine the regulation of cell-surface expressed CR1g, flow cytometry was performed on peripheral blood monocytes treated with various cytokines and dexamethasone for 5 days. CR1g was detected using monoclonal antibody clone 3C9 conjugated to ALEXA™ 488. Cells were co-stained with anti CD-14 antibody. Increased surface expression of CR1g was found following treatment of monocytes with IL-10 and LPS for 5 days (Figure 21B). A dramatic increase in surface CR1g expression was found after treatment with dexamethasone.

Subcellular distribution of CR1g
in order to study the subcellular distribution of CR1g, monocye-derived macrophages (MDMs) were kept in culture for 15 days after which they were fixed and stained with a monoclonal antibody (clone 3C9) or polyclonal rabbit antibody 4F7 followed by FITC conjugated secondary antibody and a PE-labeled anti CD63 antibody. Confocal microscopy showed high expression of CR1g in the perinuclear cytoplasm, overlapping with the expression of the lysosomal membrane protein CD63 (Figure 22). CR1g was also expressed in the leading and trailing edges of the macrophages where its staining pattern did not overlap that of CD63.

Expression of CR1g in normal and disease tissues

CR1g expression in tissue resident macrophages and changes in its expression in tissues with chronic inflammatory diseases was studied. Using in situ hybridization, CR1g mRNA expression was determined on panels of paraformaldehyde-fixed human tissues. High expression levels were found in alveolar macrophages obtained from a lung autopsy of a patient with pneumonia or chronic asthma (Figure 23 A, B, C, and D). High mRNA expression was found in Kupffer cells in the liver of a patient with chronic hepatitis (Figure 23 E and F).

In a previous study (Walker, Biochemica et Biophysica Acta 1574:387-390(2002)), and in electronic screening of libraries, high expression of CR1g mRNA was found in the synovium of patients with rheumatoid arthritis. Therefore, the expression pattern of CR1g in synovium obtained from patients with rheumatoid arthritis, osteoarthritis and degenerative bone disease was studied. High expression of CR1g mRNA was found in synovial cells obtained from a patient with osteoarthritis (Figure 24 B). Synovial cells in the superficial layers had the highest expression of CR1g (Figure 24 D). In addition, polyclonal antibody 6F1 was used to study CR1g expression in frozen sections of human synovium obtained from a patient with rheumatoid arthritis. CR1g was expressed in a subset of synovial cells (20-40%) and in tissue macrophages in the synovium (Figure 25 A, B, C). These cells were, most likely, type A macrophage-like synovial cells. Staining was absent in control synovium (Figure 25 D).

Expression of CR1g protein was found on macrophages in a number of different tissues. Frozen sections prepared from CH0 cells stably expressing CR1g show membrane localization of CR1g (Figure 26 A). CR1g protein was found in alveolar macrophages (Figure 26 B), histiocytes in the lamina propria of the small intestine (Figure 26 C), Hofbauer cells in the placenta (Figure 26 D), macrophages in the adrenal gland (Figure 26 E) and Kupffer cells in the liver (Figure 26 F).

Atheroeclastic plaques contained a high number of macrophages or macrophage-foam cells that adhered tightly to the luminal wall of the aorta. Considering a role for CR1g in macrophage-endothelium adhesion, the expression of CR1g in atherosclerotic plaques was studied. Alternate sections of plaques were stained with anti-CD63 (Figure 27 A and B) or anti-CR1g (Figure 27 C and D). Overlapping staining patterns of anti-CD63 and CR1g was found on foam cells aligning the vessel wall indicating a role for CR1g in atherosclerosis.

In order to determine whether CR1g was selectively expressed on macrophages, double staining immuno fluorescence was performed on human interstitial macrophages (Figure 28). As shown in the overlay (Figure 28, third panel) most of the interstitial macrophages positive for CR1g were also positive for CD68. Not all CD68 positive macrophages were positive for CR1g, indicating that the latter was specific for a subtype of tissue resident macrophages.

In order to quantitatively determine mRNA expression levels in inflammatory bowel disease (IBD)

syndrome, mRNA was extracted from colon tissue obtained from patients with ulcerative colitis, Crohn's disease or
from patients with no manifestation of IBD. Real time PCR was performed using primers specific for CR1g to measure relative expression levels. Expression levels were 16 fold higher in a patient with ulcerative colitis and 5 fold higher in a patient with Crohn’s disease, as compared to control tissue (Figure 29, A). Similarly, relative RNA equivalents were determined in lung tissue and was found to be highest in tissue from a patient with chronic obstructive pulmonary disease (COPD; 14 fold over normal) and was not significantly different from normal in a patient with asthma (Figure 29, B).

Molecules of the Ig superfamily are well known to mediate cell surface recognition and cell-cell adhesion. Since CR1g expression was high in intestinal macrophages aligning blood vessels, CR1g involvement in macrophage-endothelial cell adhesion was studied. A Jurkat cell line, stably transfected with full length CR1g-long (Figure 30A) was loaded with the fluorescent dye BCECF and added to the wells of a 96 well microtiter plate on which a monolayer of HEU/V C cells had been cultured. Adhesion was measured by the amount of fluorescence retained after 3 gentle washes. Jurkat cells expressing CR1g were more adherent to both control and TNFα stimulated endothelium, as compared to Jurkat cells stably transfected with a control plasmid (Figure 30B).

Discussion

This study, for the first time, described the tissue distribution, regulation of expression and molecular characterization of a novel Ig superfamily member CR1g/339g and confirmed its selective expression in tissue resident macrophages.

CR1g expression was found on resident macrophages which had a fully differentiated phenotype. Its expression was increased in tissues with chronic inflammation like rheumatoid arthritis and inflammatory bowel disease. The increase of CR1g expression in these diseases, which was often characterized as Th2 type diseases, may be in line with the regulation of its expression by Th2 cytokines in vitro. Whether this increased expression is due to an increased presence of CR1g positive macrophages or an increased expression on the inflammatory macrophages has yet to be determined.

CR1g may mediate one of the effector functions of human macrophages, which include bacterial recognition, phagocytosis, antigen presentation and cytokine release. These results indicated a role for CR1g in adhesion, and possibly motility, of macrophages to the endothelial cell wall of vessels.

CR1g expression was increased in non-microbial inflammatory diseases like ulcerative colitis and chronic obstructive pulmonary disease (COPD) but was downregulated in isolated macrophages upon treatment with LPS or other bacterial cell wall components like lipopolysaccharide and bacterial lipoprotein. Long term treatment over 2 days, with LPS caused an increase in the expression of CR1g. This could be due to an autocrine effect of IL-10 secreted by LPS-stimulated macrophages. A striking up-regulation of CR1g, both at the mRNA and protein levels, was observed upon treatment of monocytes or macrophages with dexamethasone. Few monocyte/macrophage surface receptors have been found to increase in expression upon dexamethasone treatment. One example is CD163, but its induction by dexamethasone is far less dramatic. The up-regulation of CR1g by anti-inflammatory cytokines IL10 and TGFβ was of considerable interest and indicates that CR1g may modulate the anti-inflammatory role of glucocorticosteroids.

As described here, CR1g was expressed on a subset of CD68 positive macrophages which may represent activated macrophages. Using blocking and activating antibodies to CR1g and CR1g-Fe fusion protein, its role in
microphage effector function, adhesion and migration and its role in chronic inflammatory diseases has been investigated, and is described in Example 7.

Only few cell surface markers were specifically expressed on differentiated macrophages, such as CD68 and CD163. Although CD68 was apparently expressed on all human macrophage populations, the antigen could also be detected on other myeloid cells and on certain non-myeloid cells. Therefore, CR1g represents the first cell surface antigen selectively expressed on a subset of interstitial mature macrophages.

Example 7
CR1g fusion proteins in collagen-induced arthritis (CIA) in DBA-1J mice

This experiment aimed to compare CR1g fusion proteins to control mouse IgG1 in the development of disease and progression of CIA (collagen-induced arthritis, an experimental animal model of rheumatoid arthritis).

As discussed in Example 4, CR1g is highly and specifically expressed on a subset of macrophages and is elevated in tissues with chronic inflammation. Murine CR1g is highly expressed in macrophages and synoviocytes in inflamed joints of mice with collagen-induced arthritis. In vitro studies have shown that CR1g is involved in adhesion of macrophages to endothelium. CR1g-Fc fusion protein influences the course of an autoimmune disease, in this case collagen-induced arthritis in mice, either by influencing the properties of tissue macrophages or by influencing immune response of other cells (e.g., T cells, B cell, epithelial cells, endothelial cells). This may result in alleviation of inflammation, swelling and long-term bone erosion in joints.

A murCR1g-Fc fusion protein was generated by fusing the hinge, CH2 and CH3 domains of murine IgG1 to the extracellular domain (aa 1-299) of murine CR1g. A fusion containing a double mutation preventing Fc receptor binding was used to control for Fc receptor regulation. The nucleotide sequence of the murCR1g-Fc fusion protein is shown as SEQ ID NO. 17. (The coding sequences of similar huCR1g-Ig and huCR1g-short-Ig are shown as SEQ ID NOs. 15 and 16, respectively.) Protein was produced in CHO cells by transient transfections of plasmid DNA. The fusion protein was purified by running the cell supernatant over a protein A column followed by ion-exchange chromatography to eliminate aggregates. Serum half life was estimated by injecting a single dose of 4 mg/kg CR1g-Fc in a C57B6 mouse followed by obtaining serum from the mouse at specified time intervals. The serum levels of murine CR1g-Fc was determined by a sandwich ELISA using an anti CR1g mAb recognizing different epitopes on the extracellular domain of CR1g.

Animal Model Species: Mouse
Strain(s): DBA-1J
Supplier(s): JACKSON
Age Range: 7 to 8 week old

The mouse was chosen as the species to study collagen-induced arthritis (CIA) because CIA is an inflammatory polyarthritis with clinical and pathological features similar to human rheumatoid arthritis (RA). This animal model has been used by many laboratories and the histopathology of CIA resembles those seen in RA with synovial proliferation that progresses to pannus formation, cartilage degeneration/destruction and integrative bone erosion with subsequent joint deformities. Also, mouse is phylogenetically the lowest mammal. In addition, there is no in vitro model available to mimic the complex, multifactorial pathogenesis of RA.
Experimental Design

Treatment groups:
1) mIgG1 isotype from rabbits in 200μl saline subcutaneous (SC) 3 times/wk for 7 weeks (n=8).
2) mCRlg-Fc of IgG1 in 100μl saline SC 3 times/wk for 7 weeks (n=8).

Mice were immunized intradermally with bovine CII (100 μg, Sigma, St Louis) emulsified in CFA (Difco).

Mice were rechallenged with CII in IFA (Difco) 21 days later. Starting on day 24, one group of mice (n = 7) was given 100 μg mCRlg (PRO362) Fc three times per week for 6 weeks, and the second group (n = 8) received 100 μg of murine IgG1, as a control. Mice were examined daily for signs of joint inflammation and scored as follows: 0, normal; 1, erythema and mild swelling confined to the ankle joint; 2, erythema and mild swelling extending from the ankle to metatarsal and metacarpal joints; 3, erythema and moderate swelling extending from the ankle to metatarsal or metacarpal joints; 4, erythema and severe swelling extending from the ankle to the digits. The maximum arthritis score per paw was 4, and the maximal score per mouse was 16 (Figure 31).

All mice were immunized with 100μg bovine collagen type II in 100 μl complete Freund's Adjuvant (CFA) on day 0. Collagen type II in CFA was injected intradermally at the base of the tail on the right side. On day 21, a 2nd immunization with 100μg bovine collagen type II in 100μl of incomplete Freund's adjuvant was given i.d. on the left side of the tail. Animals were checked daily (M-F) by the investigative staff. Nectaria were used as an enrichment device, and to provide extra padding for the animals. If necessary, monitored food was provided at the bottom of the cages. Debilitated animals were sacrificed after consultation with the veterinary staff. Terminal Faxitron X-rays (Faxitron X-Ray, Inc., Wheeling, II) and microCT were taken at the end of study and joint lesions were evaluated. In addition, animals were weighed before treatment and at termination.

On day 35 and at the termination of the study, mice in Groups 1 to 8 were bled for serum pκ and to determine anti-collagen type II antibody titer (100 μl orbital bleed).

On day 70 all mice were terminally bled intracardially under 3% isoflurane for a terminal hemogram, for a differential leukocyte count and for serum pκ (G3) evaluation.

The mice were euthanized at day 70, post induction of arthritis. All four limbs were collected for radiographs, SPECT and histopathology.

Results

Systemic injection of the CRlg fusion protein, mCRlg-Fc, into a collagen-induced arthritic mouse (animal model for rheumatoid arthritis) showed significant (see Figure 31; p-value=0.0004) reduction in the progression of CIA in the test group of mice that received the CRlg fusion protein (squares) versus the control group of mice that received IgG1 (circles). Collagen-induced arthritis was induced by injection of bovine collagen type II emulsified in complete Freund’s adjuvant. A booster immunization was given 21 days after the first immunization. Animals were treated 3 x per week with either murine CRlg-Fc fusion protein or with anti gp120 IgG1. Dos was 4 mg/kg in 100 μl PBS subcutaneous. Treatment started on day 21 and continued until day 70. Mice were observed daily for swelling of the hind paw as a sign of arthritis. The severity of arthritis was graded on a 1-16 scale as follows: 0 = No evidence of erythema and swelling, 1 = Erythema and mild swelling confined to the mid-foot (tarsal) or ankle, 2 = Erythema and mild swelling extending from the ankle to the mid-foot, 3 = Erythema and moderate swelling extending from the ankle to the metatarsal joints, 4 = Erythema and severe swelling encompass the ankle, foot and digits.
Repeat Experiment

The protocol described above was modified to repeat and confirm the results of the previous experiment in the collagen-induced arthritis (CIA) model. The modified protocol included investigation of the potential effect of radiation exposure as a result of an in vivo microCT imaging on development and progression of disease.

70 DBA/1J 7 to mice (7 to 8 weeks old, Jackson Laboratories) were divided into 5 treatment groups, two groups (G1 and G3) with 15 mice per group, two groups (G4 and G5) with 10 mice per group, and one group (G2) with 20 mice.

Treatment groups:

G1: Ml6G1 isotype 4 mg/kg in 100 μl saline, s.c., 3-times per week for 7 weeks (n=15).
G2: M&CRll-lgG1 4 mg/kg in 100 μl saline, s.c., 3-times per week for 7 weeks (n=20).
G3: M&TNFRll-lgG1 isotype 4 mg/kg in 100 μl saline, s.c., 3-times per week for 7 weeks (n=15).
G4: Ml6G1 isotype 4 mg/kg in 100 μl saline, s.c., 3-times per week for 7 weeks, anesthesia with in vivo microCT (n=10).
G5: M&TNFRll-lgG1 1.0 mg/kg in 100 μl saline, s.c., 3-times per week for 7 weeks, anesthesia with in vivo microCT (n=10).

TNF is a cytokine secreted by mononuclear phagocytes, Ag-stimulated T cells, NK cells and mast cells. It is involved in normal inflammatory and immune responses. TNF-a plays an important role in the pathogenesis of rheumatoid arthritis (RA). Elevated levels of TNF were found in synovial fluid of RA patients. In this protocol, mTNFRII-Fc was used as a positive control, to block the interaction between TNF and its cell surface receptors.

All mice from G1 to G5 were immunized with 100 μg bovine collagen type II in 100 μl Compleud’s Adjuvant (CFA) on day 0. The collagen type II in CFA was injected intradermally at the base of the tail on the right side. At day 21, a second immunization with 100 μg bovine collagen type II in 100 μl of incomplete Freund’s Adjuvant was given intradermally at the left side of the tail.

Animals were checked daily. Mice in the G4-5 groups were anesthetized with isoflurane and in vivo microCT was performed weekly. Terminal faxitron X-Rays and microCT were taken at the end of study, ad joint lesion/erosion was evaluated.

On day 35 and at the termination of the study, mice in groups G1-5 were bled for serum pIk and anti-collagen type II antibody index (100 μl orbital bleed). On day 70 all mice were terminally bled intracardiac under 3% isoflurane for terminal hemogram and differential leukocyte count and serum for pIk (G3).

The mice were euthanized at day 70 post induction of arthritis. All four limbs were collected for radiographs, microCT and histopathology.

Figure 33 shows significant reduction in joint swelling in CRll-lgF treated mice.

Immunohistochemistry performed on formalin-fixed, paraffin-embedded tissue (H&E staining), obtained from miceCRll-lgF treated animals at day 70, shows inhibition of joint inflammation as a result of treatment. Figure 34 shows H&E stained sections of a meta-tarsal joint of a DBA/1J mouse 70 days after immunization with collagen type II. A. Massive inflammatory cell infiltrate is found in the areas surrounding tendon sheaths and the area surrounding the joint cavity. B. Detail of A: C. Low degree of inflammatory infiltrate in the joint of a mouse treated
with CR1g-Fc. Few inflammatory cells were found in the areas surrounding the tendon sheaths and the joint cavity. D. Detail of B.

Figure 35 shows that cortical bone volume was preserved in joints of mice treated with muCR1g-Fc. Mice in control IgG- and CR1g-Fc-treated groups were sacrificed 70 days after collagen injection, and joints were scanned by μCT. Bone erosion and loss of bone density in joints of mice representative of CR1g-Fc and control IgG groups are shown in the left figure as compared to muIgG treated animals. Preservation of cortical bone volume was significantly greater in muCR1g-Fc treated animals. The images are a three-dimensional surface rendering created from the μCT data using Analyze image analysis software.

Figure 35 shows that CR1g-Fc treatment does not alter the number nor the morphology of tissue resident macrophages. Livers and lungs from mice treated with either anti-gp120 IgG1 (left figures) or CR1g-Fc (right figures) were dissected, fixed in formalin and embedded in paraffin wax. Seven micron sections were stained using an antibody to F4/80. Careful examination of the sections shows equal numbers of F4/80 positive macrophages in both treatment groups. In addition, there were no differences observed in the morphology of the macrophages.

Figure 37 shows that muCR1g-Fc treatment does not affect serum anti-collagen antibody titers. Serum titers of anti-collagen antibodies were determined 70 days following immunization. No differences were found in the serum titers of IgG1, IgG2a and IgM subclasses of antibodies in CR1g-Fc treated versus anti-gp120 treated animals. This means that CR1g-Fc does not affect antibody responses in mice immunized with collagen type II. Figure 38 shows that muCR1g-Fc decreases the number of circulating inflammatory macrophages. Peripheral blood was obtained from CR1g-Fc and anti-gp120 treated animals 70 days after immunization and analyzed by flow cytometry using markers for inflammatory and non-inflammatory monocytes. CR1g-Fc treated animals showed a significant increase in the number of inflammatory monocytes and a decrease in the number of non-inflammatory monocytes as compared to the anti-gp120 treated group.

In conclusion, the results of the experiments described in the present Example demonstrate that the muCR1g-Fc fusion protein inhibits collagen-induced arthritis. In particular, the results show that CR1g-Fc inhibits joint swelling, inhibits inflammation, preserves cortical joint bone volume, and decreases the number of circulating inflammatory macrophages.

Other experiments have shown that CR1g-Fc does not affect in vivo B- or T-cell responses.

Example 5

CR1g fusion proteins in antibody-mediated CIA in mice

Antibody-mediated arthritis differs from collagen-induced arthritis in that instead of injecting the antigen (bovine collagen type II), antibodies recognizing type II collagen are injected. In this way, adaptive B and T cell responses are circumvented to directly induce effector functions on macrophages and neutrophils through Fc receptor and complement-mediated activation.

Antibody-mediated CIA can be induced by i.v. injection of a combination of four different monoclonal antibodies generated by the Arthrogen-CIA® mouse B-lymphoma cell lines (Terado et al., J. Immunol. 148:2193-S (1992)). Three of the monoclonal antibodies recognize autoantigenic epitopes clustered within an 84 amino acid residue fragment, Ly2C (the smallest arthritogenic fragment of type II collagen) of CB11 and the fourth monoclonal antibody reacts with Ly2C. All four antibodies recognize the conserved epitopes shared by various species of type II collagen and cross-react with homologous and heterologous type II collagen (Terado et al., supra; Terado et al.,)

Protocol

10 BALB/c mice (CRI/Rollinster) of 4-5 weeks, were divided into two groups, with 5 mice in each group.

Animals were treated daily with 100 µg mABCR1g-Fc or 100 µg control-Fc (anti-γg120 IgG1), starting the day prior to the injection of the antibody cocktail (day -1), and continuing until day 14. At day 14. Animals were checked at least two-times per day, and written records of observations were kept. The extent of disease was scored by visual observation.

Visual scoring system:

0 = No evidence of erythema and swelling
1 = Erythema and mild swelling confined to the mid-foot
2 = Erythema and mild swelling extending from the ankle to the mid-foot
3 = Erythema and moderate swelling extending from the ankle to the metatarsal joints
4 = Erythema and severe swelling encompass the ankle, foot and digits

Needles were used as an enrichment device and to provide extra padding for the animals.

All animals were sacrificed on day 14, and joints were harvested for immunohistochemical staining or hematoxylin-eosin staining. Blood was sampled for hematological analysis.

Results

Figure 39 shows macrophage infiltration in joints following antibody-induced arthritis (AIA), generated with P4/80 staining in undecalcified femur joints. Female Balb/C mice were injected with 2 mg of anti collagen antibody (antigen) I V, followed 3 days later by injection with 25 µg LPS i.p. 14 days following antibody injection, mice were euthanized and the paws were collected, and embedded in polyvinyl alcohol. 7 µm thick sections were cut from the frozen joints and stained with antibodies to murine CR1g and to P4/80, a macrophage specific marker.

Figure 40 demonstrates that mABCR1g prevents joint swelling following antibody-induced arthritis in Balb/c mice. Arthritis was induced by the method of Tenato and colleagues (Tenato et al., 1992); subcutaneous P4/80 antibody injection was followed 3 days after by an I P injection of 25 µg LPS. Animals were treated daily with murine CR1g-Fc fusion protein or with a control-Fc fusion protein. Dosing was 4 mg/kg in 100 µl PBS subcutaneously. Treatment started the day prior to anti collagen antibody injection and continued until then ice were euthanized at day 14. Mice were observed daily post LPS injection for swelling of the hind paw as a sign of arthritis. The severity of arthritis was graded on a 1-16 scale as follows: 0 = No evidence of erythema and swelling, 1 = Erythema and mild swelling confined to the mid-foot (tarsal) or ankle, 2 = Erythema and mild swelling extending from the ankle to the mid-foot, 3 = Erythema and moderate swelling extending from the ankle to the metatarsal joints, 4 = Erythema and severe swelling encompass the ankle, foot and digits. Therapeutic treatment was performed similar to prophylactic treatment apart from the treatment start which was at day 4 rather than day -1. mABCR1g-Fc treatment reduced levels of inflammatory cytokines in paws of AIA mice. Measurement of cytokines, CSa and Csa concentration in arthritic hindpaw performed according to the method
of Kagami et al. J. Immunol. 169:1459-66 (2002). In short, at the indicated time points following the induction of antibody-induced arthritis, paws were collected and frozen in liquid nitrogen. Subsequently, paws were pulverized on a liquid nitrogen-cooled metal plate and dispersed in ice-cold PBS containing 0.1% PMSF (Sigma). The samples were homogenized with a Vortex (N.L.) homogenizer on ice, insoluble parts were removed by spinning at 14,000 g for 10 min and collection of supernatant. Cytokines in the supernatant were measured using cytokine ELISA's from BD Pharmingen.

muCR1g-Fc treatment inhibits deposition of complement C3 but not of IgG2a on cartilage in AIA. Female Balb/C mice were injected with 2 μg of anti collagen antibodies (antigen) i.v. followed 3 days later by injection with 25 μg LPS i.p. 14 days following antibody injection, mice were euthanized and the paws were collected, embedded in polyvinyl alcohol and frozen in isopentane cooled on dry ice. 7 μm thick sections were cut from the frozen joints and stained with a FITC-coupled polyclonal antibody to murine C3 (Caltortem) and a polyclonal A594-coupled antibody to murine IgG2a (Jackson Immunoresearch). Sections were photographed in a Leitz fluorescent microscope.

The results of immunohistochemistry performed with H&E staining are shown in Figure 41. Control-treated mice (muIgG1) had moderate to severe arthritis (left panel); muCR1g-treated mice has minimal to no arthritis (right panel). The results show that muCR1g inhibits joint inflammation in antibody-induced arthritis.

In conclusion, animals treated with murine CR1g-Fc had significantly reduced clinical scores as compared to animals treated with anti-IgG1 IgG1. CR1g demonstrated both prophylactic and therapeutic efficacy in this animal model. The decrease in severity of arthritis was also reflected by a decrease in inflammatory cells, especially neutrophils, in the joints. There was an increased number of neutrophils in the circulation possibly reflecting a decrease in neutrophil migration into the joint. muCR1g-Fc inhibited local IL-1β and IL-6 production in parallel with clinical manifestation of RA. muCR1g treatment did not affect immune complex deposition, but inhibited complement C3 deposition on cartilage. The effector function was found to be independent of Fc receptor binding. muCR1g-Fc has also demonstrated significant prophylactic activity.

Example 9
Murine CR1g-Fc binds to C3-primed sheep red blood cells (E-IgM)
SRBC (MP Biomedicals, ICN/Cappel) were coated with rat IgM (E-IgM) (Foresman Ag, Pharmingen). E-IgM were opsonized with normal mouse serum or serum from a C3 knockout mouse. Opsonized E-IgM were incubated with different concentrations of murine CR1g-Fc. Binding of the fusion protein to E-IgM was monitored by flow cytometry using a FITC-labeled antibody to the Fc portion of the fusion protein.

As shown in Figure 43, murine CR1g bound dose-dependently to E-IgM opsonized with normal mouse serum but not to E-IgM opsonized with C3 deficient serum, indicating selective binding of CR1g to murine C3 or a fragment of C3.

Example 10
Binding of human CR1g-Fc to E-IgM is C3 dependent
SRBC (MP Biomedicals, ICN/Cappel) were coated with rat IgM (E-IgM) (Foresman Ag, Pharmingen). E-IgM was opsonized with human serum deficient in C3 or C5. Opsonized E-IgM were incubated with different
concentrations of human CR1g-Fc. Binding of the fusion protein to E-IgM was monitored by flow cytometry using a FITC-labeled antibody to the Fc portion of the fusion protein.

As shown in Figure 44, human CR1g bound dose-dependently to E-IgM opsonized with C5 deficient serum but not to E-IgM opsonized with C3 deficient serum, indicating selective binding of CR1g to human C3 or a fragment of C3. Similar results were obtained with human CR1g ECD.

Example 11
Binding of serum-opsonized particles to CR1g-expressing CHO cells

50 µl fresh C5B6 female serum + 20 µg/ml mCR1g-mFc (PUR3270-B) or mC1R-mFc (4699) were mixed together. A488 particles, turo港澳, S. aureus or E. coli from Molecular Probes were added for 60 min at 37 °C in PBS/0.2% gelatin/0.18% glucose/1 mM MgCl2 (PBSg+). Opsonized particles were washed twice in PBS and added to CHO cells expressing murine CR1g (clone 5C10) or human JAM2 in the presence or absence of CR1g-Fc or control-Fc protein for 30 min at 37 °C. Cells washed 2x in PBS and analysed for binding of particles to the cell surface in a FACSA Caliber.

As shown in Figure 45, particles opsonized with C3 sufficient serum bound to CR1g expressing CHO cells but not to JAM2 expressing CHO cells. Binding was abrogated in the presence of a CR1g-Fc fusion protein but not in the presence of a control-Fc fusion protein indicating that the binding site for CR1g to C3b resides in the extracellular domain.

Example 12
McCR1g-Fc binds C3b

Real-time monitored surface plasmon resonance assays were performed using a Biacore® 2000 instrument, and the data were analyzed using the BioEvaluation 3.0 software (Biacore AB, Uppsala, Sweden). Carboxylated dextran chips (sensor chip CM5, research grade from Biacore AB) were used in all the assays. Flow cells of the CM5 chips were used either for a standard amine coupling procedure or prepared for the direct enzymatic coupling of C3b by using a standard activation-deactivation procedure without adding any protein between the steps. The activation step was performed with fresh solution containing N-hydroxysuccinimide and N-ethyl-N-(dimethylaminopropyl)-carbodiimide (Biacore AB, 7-15 min injection at a flow rate of 5 µl/min) and was followed by deactivation with ethanolamine-HCl (1.0 M at pH 8.5) (Biacore AB, 7-15 min injection). Hepes-buffered saline (Biacore, Biacore AB) or VBS was used as the flow buffer throughout. After these initial steps VBS or VBS was used as the continuous flow buffer at 5 µl/min; only degassed buffers were used.

Amine Coupling of Proteins onto the Biacore® Chip — C3b, Ic3b, C3c, and C5d were coupled onto the CM5 chip using the standard amine coupling procedure as recommended by the manufacturer. The proteins to be coupled were dialyzed against 10 mM acetic acid buffer (pH 5.0-5.7) to achieve a negative net charge for the amine coupling. Briefly, the chip surface was activated with N-ethyl-N-(dimethylaminopropyl)-carbodiimide (7-15 min injection, 5 µl/min), and either purified C3b (50 µg/ml 20 µl), C3c (70 µg/ml 30 µl), or C5d (150 µg/ml 20 µl) was injected to reach an appropriate level of coupling for the binding experiments, i.e., 1,000 - 5,000 resonance units (RU). Afterward, the flow cells were deactivated as described above. Before the experiments, the flow cells were washed thoroughly with VBS and 3 M NaCl in 10 mM acetic acid buffer, pH 4.6.
Binding Assays Using Diacore® — We tested the binding of CR1g-Fc to amine-coupled C3b, C3c, and C3d. For Diacore® injections the reagents were dialyzed against PBS, diluted with PBS, and filtered (0.20 μm Minisart®; Sartorius Corp., Edgewood, NY) or centrifuged (10 min at 14,000 × g). The protein concentrations of the dialyzed reagents were measured using the BCA Protein Assay (Pierce). The fusion proteins were injected separately through a control flow cell (activated and deactivated flow cell without any coupled proteins, “blank channel”) and through the flow cell with the coupled protein using a flow rate of 5 μl/min at 22 °C. All the binding assays were performed at least in duplicate using independently prepared sensor chips.

As shown in Figure 46, marine CR1g-Fc shows specific binding of C3b to the sensor chip with a calculated Kd of 250 nM.

Example 13
Mouse and human CR1g-Fc bind complement C3b

Maxisorb plates were coated with 3 μg/ml C1, C3a,b,c,d, C4, C6 in PBS. Plates were blocked for 2 hrs in PBS + 4% BSA and incubated with various concentrations of mouse or human CR1g-Fc fusion protein for 1 hr at RT in PBS+4% BSA+0.1% Tween. Plates were washed and incubated with a goat-anti mouse or goat-anti human Fc antibody conjugated to peroxidase. Following washes, the plates were incubated with TMB substrate and OD read on a plate reader.

Results shown in Figure 47 represent a concentration dependent increase in murine and human CR1g binding to C3b, C3c and C2b and absence of binding to C1, C2, C4, C3a, and C3d.

Example 14

Mouse and human CR1g-Fc inhibit C3 deposition on zymosan

Inhibition of the alternative pathway was studied using a method that utilizes flow cytometric analysis of C3 deposition on zymosan A particles (Sigma) (Quigg et al., J. Immunol. 160:4553-4560 (1998)). Briefly, 50 μg of zymosan particles in 10 ml of 0.15 M NaCl were first activated by boiling for 60 min, followed by washing twice in PBS. In each alternative pathway assay condition, 2 x 10⁷ particles were added to reaction tubes containing a final concentration of 10 mM EGTA and 5 mM MgCl₂. Samples as described in the text were then added containing either 10 mM EDTA (negative control) or increasing amounts of murine CR1g-Fc. Ten microliters of BALB/c serum as a source of complement were added, and all samples were brought to 100 μl with PBS. Samples were incubated at 37°C for 20 min, and the reaction was stopped by adding 10 mM EDTA. The particles were centrifuged, and supernatants were removed and frozen for later analysis. The particles were then washed twice with cold PBS, 1% BSA, and then incubated with FITC-conjugated goat anti-mouse C3 (Cappel, Durham, NC) for 1 hr on ice. The samples were then washed twice in cold PBS, 1% BSA, resuspended in PBS, and then analyzed by flow cytometry using an EPICS cytomter (Coulter, Hialeah, FL). Percentage inhibition was calculated using the formula [1 - [sample mean channel fluorescence - background (10 mM EDTA condition)/positive control mean channel fluorescence (no Cry1g - background)] x 100.

Supernatants from the reaction were also analyzed by Western blotting to determine the extent of C3 cleavage. In this analysis, 5 μl of the supernatant was mixed with an equal amount of SDS-PAGE loading buffer with 10% 2-ME. The samples were subjected to SDS-PAGE on a 7.5% acrylamide gel, transferred to Hybond enhanced chemoluminescence (ECL) paper (Amersham, Arlington Heights, IL) overnight in 0.19 M Tris, 0.025 M
glycerin, 20% methanol buffer. Following this, membranes were blocked in PBS, 0.1% Tween with 10% milk for 1 h. Anti-C3 mAb RmCH1H9 (Qiang et al., supra) that had been preincubated was then added to the blot in the same buffer with 1% BSA. Following washing, horseradish peroxidase-conjugated goat anti-rat IgG (Southern Biotechnology, Birmingham, AL) (preadsorbed against mouse IgG) was added for 1 h, and then the blot was washed and developed using the enhanced chemiluminescence (ECL) system (Amersham).

The inhibition of complement activation by CR1g-Fc on zymosan particles was analyzed following flow cytometry to detect surface-bound C3 (Figure 48A), or when an aliquot of the zymosan reaction supernatant was analyzed by Western blotting and detection using anti-C3 mAb (Figure 48B). Positions of the intact C3 and C3’ chains in α are shown by arrows at right. The 10 nM EDTA lane represents the negative control, and increasing doses of CR1g-Fc are shown at the top in lanes 2 to 7.

Example 15
CR1g inhibits alternative pathway hemolysis of SRBC
For alternative pathway: Rabbit-red blood cells (RRBC) were washed in vernal buffer (Bio Whittacker) containing 0.1% gelatin and resuspended to 1x10⁹ cells/ml in GVB. 10 µl of the cell suspension was added to 10 µl of C1q depleted serum containing the inhibitors. The mixture was incubated for 35 min at 37°C in a warm room while shaking. 200 µl of GVB containing 10 mM EDTA was added, cells were centrifuged at 2500 rpm for 5 min and 100 µl aliquots were read at 412 nm wavelength.

For classical pathway, sheep erythrocytes opsonized with IgM (E-IgM) were incubated in fβ deficient serum. Methodology was similar to alternative pathway measurements.

The results set forth in Figure 49 show that murine CR1g inhibits alternative pathway-induced hemolysis but does not affect classical pathway hemolysis. Similar results were obtained with human CR1g.

Example 16
CR1g selectively inhibits alternative pathway of complement

Hemolytic assay using whole serum
Alternative pathway of complement was assessed with rabbit erythrocytes (Eri) as described by Kostavasil et al. (J Immunol. 158:1763-71 (1997)). Briefly, Eri (Colorado Serum, Denver, CO) were washed 3x in GVB and resuspended to 1x10⁹/ml. 10 µl Eri were added to 10 µl GVB/EGTA (0.1 M EGTA/0.1 M MgCl2), inhibitors, 10 µl C1q depleted human serum and volume adjusted to 100 µl with GVB then incubated at 37°C for 30 minutes. 250 µl GVB/10 mM EDTA was added to stop the reaction, and centrifuged for 5 min at 500 x g. Hemolysis was determined by absorption of 200 µg supernatant at 412 nm. The percentage of lysis was normalized by considering 100% lysis equal to the lysis occurring in the absence of the inhibitor.

To determine the effect of CR1g on the classical pathway of complement, a similar procedure was followed, except that Eri were replaced with E-IgM and the assay was performed in fβ deficient human serum in GVB++.

Measurement of C3 convertase-mediated cleavage of C3
The effect of CR1g on fluid phase C3 cleavage by C3 convertase (C3b:B) (from Kostavasil et al., supra) was examined by incubating 0.4 µM purified C3 with hCR1g-long, hCR1g-short, muCR1g or factor H in GVB (20 µl volume) at 37°C for 15 minutes. Thereafter, 0.4 µM factor B and 0.04 µM factor D were added in the presence of
of 50 mM MgCl₂, in a total volume of 30 μl to activate the pathway. After 30 minutes at 37 °C, the reaction mixtures were stopped with 30 μl Lactamide's sample buffer (BioRad) containing 2-ME, boiled for 3 minutes, and electrophoresed on an 8% SDS-PAGE gel (Invitrogen). Proteins were visualized by staining the gel with SimplyBlue stain (Invitrogen, Carlsbad, CA). The gel was scanned for densitometric analysis, and the percentage of C3 cleaved was calculated. Controls were incubated in GVB (GVB with 10 mM EDTA) to inhibit cleavage.

The microtitre plate assay for the alternative pathway DAA was performed as described previously (Krych-Goldberg et al. J. Biol. Chem. 274:31160-8 (1999)). Microtitre plates were coated overnight with 5 μg/ml C3b (Advanced Research Technologies) in phosphate-buffered saline. Plates were blocked for 2 hours at 37 °C with phosphate-buffered saline containing 3% bovine serum albumin and 0.1% Tween 20 and incubated for 15 minutes at 37°C with 10 μg of factor B, 1 μg of factor D, and 0.8 mM NiCl₂ in 2.5 mM veronal buffer, pH 7.4, containing 71 mM NaCl and 0.5% Tween 20. Using the same buffer, sequential 1-hour incubations were performed with 0.01-1 μg of CR1p-Fc, 0.129 μg of goat anti-human factor B antibody, and 100 μg of a 1:15,000 dilution of anti-goat antibody conjugated to horseradish peroxidase (Jackson Immunoresearch Laboratories, West Grove, PA). Color was developed with 0-phenoxylenediamine. In this assay, DAF and factor H behave as expected, as mediators of decay accelerating activity, and C3a release was detected using the Amersham Pharmacia Biotech des-Arg RIA kit.

C5 convertase assay
C3b was deposited on zymosan by resuspending 1 x 10⁶ zymosan particles in 0.2 ml of 10 mg/ml C3 and adding 5 μg of trypsin, followed by a 10-minute incubation at 22°C. The deposition of C3b by trypsin was repeated and the cells washed six times with 5 ml GVB. The zymosan particles were resuspended in 100 μl GVB and mixed with 50 μl GVB containing factors B (35 μg) and D (0.5 μg) and 50 μl of 10 mM NiCl₂. After 5 minutes of incubation at 22°C, 5 μl of 0.2 M EDTA was added. The bound C3b was amplified by adding 50 μl C3 (500 μg) and incubating the cells for 30 minutes at 22°C. The zymosan particles bearing C3b were washed and the amplification procedure was repeated until the desired numbers of C5b/zymosan were obtained.

Because formation of C5 convertase took less than one minute, enzyme was formed in the same reaction mixture in which the assays were performed. Enzyme velocities were determined under saturating concentrations of factors B and D, and C5b in 0.5 ml microfuge tubes as described previously. Assay mixtures contained varying concentrations of C5 (preincubated for 20 minutes at 37 °C to eliminate freeze/thaw-generated background C5b,6-like activity), factor B (1.2 μg, 316 nM), factor D (0.1 μg, 167 nM), C6 (2.5 μg, 833 nM), and 0.5 mM NiCl₂. The reaction was started by the addition of ZymC5b, E5C5b, or ERC5b. Depending on the density of C5b per cell, the concentration of cells was adjusted so as to have 9-35 ng of bound C5b in a final volume of 25 μl GVB resulting in 2-8 nM enzyme concentration. After 15 minutes of incubation at 37°C, further cleavage of C5 was prevented by transferring the assay tubes to an ice bath and adding ice-cold GVB. Appropriately diluted assay mixtures were immediately diluted for C5b,6 formation by hemolytic assays using EC. C5b,6 was quantitated using standard curves generated with purified C5b,6. Controls established that the cold temperature and the dilution were sufficient to reduce the cleavage of C5 during subsequent steps to undetectable levels. Lysis of rabbit erythrocytes (ER) or sheep erythrocytes (ES) was shown to contribute <2% to C5b,6 lysis using lysis of EC as the endpoint.

C5b,6 was measured hemolytically using the sensitivity of EC to hemolytic lysis by human C5b-9. To an aliquot (25 μl) of the diluted sample from C5 convertase assays was added a mixture of 1.2 x 10⁷ EC and 5 μl of pooled normal human serum (NHS) as a source of complement proteins C7-C9 in a final volume of 225 μl GVB.
The reaction mixtures were incubated for 10 minutes at 37°C after which the lysed cells were removed by centrifugation for 1 minute at 10,000 x g. The amount of hemoglobin released was quantitated spectrophotometrically at 414 nm. One-hundred percent lysis was measured as EC lysed in 2% Nonidet P-40. Controls containing C5 and C6, but no C3 convertase, were subtracted as the background. Controls containing C5 convertase but no purified C5 or C6 demonstrated that a significant amount of C5b,6 was formed from NHa used as a source of C7-9 during the lysis of EC.

Results

The results are shown in Figures 49A-E. Figure 49A shows that CR1g inhibits hemolysis of rabbit erythrocytes in C1q deficient serum (alternative pathway) but not of IgM-opsonized sheep erythrocytes in Fc deficient serum (classical pathway) indicating that CR1g selectively inhibits the alternative pathway of complement.

As shown in Figure 49B, CR1g inhibits fluid phase C3 convertase activity. The gel shows inhibition of the cleavage of the 115 kDa alpha chain of C3 with increasing concentration of human CR1g-Fc (10-100 nM).

Figures 49(C) and (D) show that CR1g does not function as a cofactor of factor I mediated cleavage of C3 not as an accelerator of decay of the C3 convertase.

The data set forth in Figure 49(E) show that CR1g inhibits alternative pathway C5 convertase formed on eosinophil particles.

Example 17

CR1g is expressed on a subset of tissue macrophages

Monoclonal antibodies specific for human and mouse CR1g were generated and utilized to define the expression of CR1g, as described in Example 3. While CR1g was absent on peripheral blood CD4+ monocytes, it was readily detected on monocyte-derived macrophages by flow cytometry (Figure 50B). In CR1g was absent on peripheral blood CD4+ and CD8+ T cells, CD19+ B cells, CD56+ NK cells, CD11c+ granulocytes (Figure 51A).

Similar to InuCR1g, macCR1g was absent on peripheral blood and splenic leukocytes, including CD11b+ myeloid cells, but detected on liver Kupffer cells (KCs, Figure 50B). Expression of InuCR1g(L) and (S) protein was confirmed at 55 and 48 Kd proteins as monocytes differentiated into macrophages (Figure 50C). Similarly mouse CR1g was detected as a 48 Kd glycoprotein in peritoneal macrophages (PM). MacCR1g has a predicted N-linked glycosylation site and is glycosylated, accounting for a ~15 kDa mobility shift on a gel (results not shown).

As CR1g mRNA was only detected in the liver, CR1g expression in the liver was further analyzed by immunohistochemistry. CR1g was expressed in expressed on CD68+ KCs in human and mouse liver but was also detected on macrophages of the adrenal gland, placenta, synovium, intestine and peritoneum (data not shown).

CR1g was absent from human splenic macrophages, Langerin cells, microglial cells and bone-marrow derived macrophages, as well as a variety of human and mouse macrophage cell lines (THP-1, RAW264.7, Pu1.1, J774; results not shown). Together, these results indicate that CR1g is highly expressed on a population of resident macrophages in diverse tissues.

Example 18

CR1g binds C5b and C7b

Materials and Methods
Complement proteins

Human and mouse C3 was isolated according to the method of Hammer et al. (J. Biol. Chem. 256(8):3995-4006 (1981)) with an additional Protein A column to remove contaminating IgGs. To obtain hC3b, hC3 was incubated with CVF, hIg, hIgM in 10:10:1 molar ratio at 37 °C for one hour in the presence of 10 mM MgCl2. The hC3b fragment was subsequently isolated by a strong anion exchanger monoQ 5/50 (Amersham Biosciences, Piscataway, NJ) and Superdex S-200 10/300 GL gel filtration column (Amersham Biosciences, Piscataway, NJ) for a purity of >95% by Coomassie Blue-stained gel. To generate C3b dimers, C3b prepared as above was reacted for 3 days at 4°C in PBS pH 7.0 with bisulfide/hexane (Pierce) in methanol in a 2:2:1 molar ratio. Cross-linking was generated through the free thiol group by breaking the thioester bond. With this procedure, the yield was over 50%. The dimers were purified by a Superdex S-200 10/300 GL gel filtration column (Amersham Biosciences, Piscataway, NJ). The dimers were 95% pure based on a Coomassie Blue-stained gel. Hydrolyzed C3 was produced with an addition of 2M ethylamine pH 7.0 to C3 in PBS with 10 mM EDTA for a final concentration of 50 mM in the reaction volume. The reaction was run for 4 hours at 37 °C, after which time it was purified over a Superdex S-200 10/300 GL gel filtration column (Amersham Biosciences, Piscataway, NJ). hC3b and C3c (Advanced Research Technologies) were purified over an Superdex S-200 10/300 GL gel filtration column to separate monomers from dimers. C3d, Fc(α)R II, D, and P, complement components C1-9, antibody-sensitizers sheep erythrocytes and cobra venom factor were obtained from Advanced Research Technologies (San Diego, CA).

Results

The expression of CR1g on a population of highly phagocytic cells, prompted us to explore whether CR1g was involved in binding of opsonized particles. Complement and Fe receptors have been demonstrated to mediate phagocytosis (reviewed by Adavem and Underhill, Annu. Rev. Immunol. 17:593-623 (1999), Underhill and Ozinsky, Annu. Rev. Immunol. 29:825-852 (2002)). In order to determine whether CR1g binds to complement C3, sheep erythrocytes coated with either rabbit IgG (E-IgG) or mouse IgM (E-IgM) were analyzed for their ability to rosette with a Jurkat T-cell line expressing CR1g, in the presence of C3 or C5-deficient human serum. CR1g(L) expressing but not control Jurkat cells, formed rosettes with E-IgM in the presence (C3+),but not absence (C3-), of C3 (Figure 5A). CR1g(L) did not appear to be involved in Fc-receptor mediated binding since Es opsonized with IgG did not rosette with Jurkat CR1g cells (results not shown).

To test whether CR1g can directly bind to complement components on cell surfaces, a soluble form of human CR1g was generated in which the ECD of CR1g was fused to the Fc portion of human IgG1. The huCR1g:Fc long-Fc, but not control Fc, fusion protein bound to E-IgM opsonized in the presence, but not in the absence, of C3 (Figure 5B). Binding was restored when C3 deficient serum was reconstituted with purified human C3. The V-type Ig domain was sufficient for binding since both huCR1g(S)-Fc and muCR1g-Fc were capable of binding to E-IgM (results not shown).

As a result of complement activation inducing a cascade of enzymatic reactions, C3 is cleaved into its multipurpose breakdown products C3b, iC3b, C3c, C3d and C3dg, each of which could serve as a binding partner for CR1g. Using a plate bound ELISA, huCR1g(L) and huCR1g(S)-Fc, but not control Fe demonstrated saturable binding to C3b and C3b (Figure 5C), but not to C1, C4, C5c or C3d (results not shown). Similar binding was observed for huCR1g(L)-ECD, lacking the Fc portion, and muCR1g-Fc, and binding to iC3b was greater than to C3b (results not shown). Conversely, soluble C3b also bound to plate-coated huCR1g(L)-Fc and was competed for by huCR1g(L)-ECD (results not shown). Hence, CR1g can bind C3b and iC3b in solution or when C3b and iC3b are
bound to a substrate. Since C3b is present as a multimeric form when deposited on cell surfaces, the binding of CR1g was further assessed to artificially assembled C3b dimers (C3D2). C3b2 bound to hucR1g(1) with a KD of 131 nM (Figure 5E1) and to hucR1g(s) with a KD of 44 nM, as measured by surface plasmon resonance (Figure 5E2).

To complement these biochemical studies, we evaluated the binding specificity of cell surface CR1g for C3-derived products. A485-labeled dimeric form of C3b2 bound to the surface of CR1g+, but not CR1g-, THP-1 cells (Figure 5E2). Binding was specific since it was competed for by the addition of soluble unlabeled C3b, C3b monomer, and hucR1g(s)-FCD but not by native C3. In addition to binding to soluble complement fragments, mcR1g expressed on the surface of a CHO cell line also bound to various particles opsonized in C3 sufficient, but not in C3 deficient, serum (Figure 5E3). Together, these studies demonstrate that CR1g expressed on the cell surface as well as soluble CR1g (CR1g-FC) is a receptor for C3b and C3b.

Example 19

CR1g expression on Kupffer cells is necessary for binding of soluble or particle-bound C3 fragments

Materials and Methods

1. Generation of CR1g knock out (ko) mice

All animals were held under specific pathogen free conditions and animal experiments were approved by the institutional animal care and use committee of Genetech. CR1g ko embryonic stem cells were generated by electroporation of a linearized targeting vector replacing exon 1 with a neomycin-resistance gene (Figure 53A) into C2B6 embryonic stem (ES) cells. Clones resistant to neomycin were selected, and homologous recombination was confirmed by Southern blotting. Seven out of 100 clones screened were positive for homologous recombination. Two targeted clones were injected into C57BL/6 blastocysts and transferred to pseudopregnant foster mothers, and the resultant male chimera mice were bred to C57BL/6 females to obtain +/- mice. Germ line transmission was verified for the ES clone by Southern blot analysis or tail DNA from F1 offspring (Figure 42B). Interspecific of +/- mice was performed to generate +/- CR1g mice. The phenotypes of the two clones were identical. For routine genotyping, a PCR method, a common sense primer 5'-CCACTGTTCCACAGAAGATG-3' (SEQ ID NO: 22), and a wild-type specific 5'-CATATAAGTGGCAGAGAAGATG-3' (SEQ ID NO: 23) and knock out specific 5'-GGGAGGCCATGGCAGAGAAGATG-3' (SEQ ID NO: 24) antisense primer were used, amplifying a 306 bp fragment for the wild-type allele and a 406 bp fragment for the mutant allele. The generation of C3 ko mice has been described previously (Nagahori et al., Immuno1. 156:2051-2056 [1996]). To generate CR1g/C3 double knock out mice, C3 ko mice on a mixed 129/Sv background (12) were crossed with CR1g ko mice. The F1 females heterozygous for both alleles were subsequently crossed with C3 heterozygous males, hemizygous for the CR1g allele. The offspring from this mating was used in the studies. C57B6 mice used for analysis of CR1g expression by flow cytometry were purchased from Jackson Laboratories (Bar Harbor).

2. Western blotting and densitometry

Humans and murines macrophages were lysed in PBS containing 1% SDS, 0.1% Triton X-100 and a protease inhibitor cocktail (Boehringer). Following centrifugation at 10,000 g, the soluble fraction was run on SDS gel and transferred to nitrocellulose membranes. CR1g protein was visualized using anti-CR1g antibodies and HRP-conjugated secondary antibody followed by chemiluminescence detection of bound antibody by ECL. (Amersham).

For determination of the glycosylation state of CR1g, CR1g-g0 expressing cells were immunoprecipitated with an
anti-γδ antibody, treated with PNGase, O-glycosidase and neuraminidase according to the manufacturer’s instructions (Biacore, NE), and subjected to Western blot analysis using biotinylated anti-γδ antibodies.

Result

To study the biological function of CR1γ, mice with a null mutation in the CR1γ gene were generated by homologous recombination as described above and shown in Figure 42A. Deletion was confirmed by Southern blotting (Figure 53B), Western blotting of peritoneal exudate cell lysates (Figure 54A) and flow cytometry (Figure 54B). Mice were born at the expected Mendelian ratios and exhibited no gross phenotypic or histopathological abnormalities. Absolute numbers of immune cells in different lymphoid compartments were similar in blood, spleen and lymph nodes from wt and ko animals (Figure 53C). In addition, no differences were observed in the number of F4/80+ KCs and heart macrophages when analyzed by flow cytometry and immunohistochemistry, respectively (results not shown). Expression levels of other compartment binding proteins, including the α and β chains of CR3 and complement-receptor related gene γ (Cryy) on KCs were not altered (Figure 54C). Similarly, the low or undetectable expression CR1, CR2 or CD11c, the beta chain of CR4, were comparable between wt or ko KCs (Figure 53D).

Next, the binding capacity of CR1γ wt and CR1γ ko KCs for C3 degradation products was tested. The C3 fragments (C3b, C3b2 and iC3b) were readily deposited on the surface of CR1γ wt KCs (Figure 54B). In contrast, no binding of C3b, C3b2, iC3b or iC3b2 were detected in CR1γ ko KCs. Little or no binding of C3 or C3c to either wt or ko KCs was detected (Figure 53E).

To extend the analysis from the binding of soluble C3 fragments to the binding of C3 fragments bound to cell surfaces, the role for CR1γ on KCs in binding C3-opsonized IgG-coated erythrocytes was examined. CR1γ ko KCs demonstrated an ~60% reduction in IgGmediated rosetting when compared to CR1γ wt KCs (Figure 54D). CR3 had a minor contribution to the total binding activity as a further reduction (~20%) in rosette formation was observed with the addition of CR3 blocking antibody. Hence, CR1γ expression is necessary for binding of C3 degradation products and C3-opsonized particles to Kupffer cells.

Example 20

CR1γ internalizes and is expressed on recycling endosomes

As binding of C3 opsonized particles to its receptors may trigger their subsequent endocytosis (Feasey et al., J. Exp. Med. 153:1615-1628 (1981); Sengelov, Crit Rev. Immunol. 15:107-131 (1995)), polymyelocytes that quench the Alexa488 fluorochrome (Austin et al., Mol. Biol. Cell 15:5268-5282 (2004)) were used to analyze whether CR1γ and C3b internalize in KCs. A488-conjugated anti-CR1γ mAbs were pre-incubated with KCs at 4°C. Addition of anti-A488 antibody at 4°C suppressed fluorescence of surface-bound anti-CR1γ antibodies as shown in Figure 47A, panel 1. When A488-conjugated anti-CR1γ mAbs were incubated with KCs at 37°C for 30 minutes followed by incubation with anti-A488 antibodies, fluorescence was no suppressed (Figure 55A, panel 4) indicating that the anti-CR1γ antibodies internalized upon transfer of cells from 4°C to 37°C and therefore were not accessible to the quenching anti-A488 antibodies. A similar result was found for C3b (Figure 55A, panels 3 and 6). Internalization of anti-CR1γ antibodies was not dependent on the presence of C3 since uptake of the antibody occurred in KCs isolated from C3 ko mice (Figure 55A, panels 2 and 5) and in the absence of serum (results not shown). Immunohistochemistry further confirmed the presence of anti-CR1γ antibodies and C3b in the cytoplasm of
KCs from CR1g wt, but not ko, mice (Figure 55B). Over time, the KCs coated with A488-conjugated anti-CR1g antibodies were incubated in the presence of extracellular anti-A488 antibodies, a decrease in fluorescence over time was observed and suggests that anti-CR1g antibodies recycle back to the cell surface (Figure 55C). The time course of recycling was again independent of C3 since the kinetics of quenching was similar in the presence and absence of C3 (results not shown). In contrast, antibodies to the lysosomal protein Lamp1 remained intracellular and did not diminish with time. These results indicate that CR1g functions as a receptor for C3b located on a pool of constitutively recycling membranes.

To further determine the subcellular compartments in which CR1g recycles, human monocyte-derived macrophages (MDMs) were visualized using deconvolution microscopy using transferring as a marker for recycling endosomes and Lamp1 as a marker for lysosomes. MDMs cultured for 7 days express CR1g on 60% of the cells that show saturable binding of C3b (Figure 55A) that can be competed off with the extracellular domain of lmCR1g (L) (results not shown). Macrophages co-localized with anti-CR1g antibody at 4 °C demonstrate focal CR1g expression in F-actin rich filopodial extensions (arrowheads, Figure 56A, panels 1-3). In addition, the CR1g antibody co-localized with C3b to the cell surface (results not shown). Transfer of cells from 4 °C to 37 °C followed by a 10 minute incubation at 37 °C (Figure 56B) resulted in rapid internalization of CR1g antibody and C3b into a transferrin-like endocytic compartment located in the periphery of the cell (Figure 56B, panels 1-4, arrows) and bordering the LAMP-1 compartment (arrow Figure 57D, panel 1-4). CR1g remained localized within the endosomal compartment and was not degraded in the lysosome with prolonged chase times up to 24 hours (results not shown). Incubation of macrophages with anti-CR1g antibodies did not influence CR1g distribution since internalized CR1g antibody completely overlapped with the total pool of CR1g detected post fixation with a polyclonal antibody (Figure 57C, panels 1-3) and was independent of the presence of C3 in the medium (Figure 57C, panel 4). Together, these results indicate that CR1g is present on recycling and early endosomes and that internalization of CR1g takes place in the absence of ligand or cross-linking antibody.

Since the majority of C3b and C3b is deposited on particles exposed to serum (Brown, Curr. Opin.), we next explored the localization of CR1g positive endosomes in macrophages during phagocytosis of C3-opsonized particles. Upon encounter with C3b-opsonized sheep red blood cells (E-E4M), CR1g rapidly (10 minutes) redistributed from transferrin positive vesicles to the forming phagosome visible as a ring around the engulfed erythrocytes (Figure 55A, panels 1 and 4, arrow). After 2 hours following incubation of macrophages with C3 opsonized particles, phagosomes had matured as shown by their translocation into the lysosomal compartment (Figure 55C, panels 5-8). CR1g was highly expressed on the phagosomal membranes surrounding the C3-opsonized particles (Figure 56C, panels 5 and 8, arrows) and in most macrophages were no longer present within the transferrin-like endosomal compartment. While CR1g remained present on a subset of phagosomes in the lysosomal compartment, its expression did not overlap with that of Lamp-1 (Figure 56C, panels 7 of 8, arrowheads). The absence of CR1g in the Lamp-1+ membranes was unlikely the result of lysosomal degradation of CR1g since protease inhibitors were continuously present during incubation. In some of the macrophages that had ingested E-IgM but lack CR1g, phagosomes, CR1g was co-localized with the transferrin-like compartment (thick arrow, Figure 56C5, panels 5 and 8, thick arrow) suggesting CR1g returns to the recycling compartment following transfer of the E-IgM to the lysosomal compartment.
Taken together, these results indicate that CRlg is recruited from endosomes to sites of particle ingestion and participates in the initial stages of phagosome formation, but escapes from the phagosome upon phagosome-lysosome fusion to return to the endosome compartment.

Example 21

Mice lacking CRlg are susceptible to infection with Listeria Monocytogenes

Materials and Methods

1. Microorganisms, Infection of Mice and Evaluation of Listerial Growth by Determination of CFU Counts

Virulent *L. monocytogenes* (LM) (ATCC strain 43351) was used in all experiments. Bacterial virulence was maintained by serial passage in BALB/c mice. Fresh isolates were obtained from infected spleens, grown in brain heart infusion (BHI) medium. Bacteria were washed repeatedly, resuspended in sterile phosphate-buffered saline (PBS), and then stored at -80°C in small aliquots in PBS containing 40% glycerol. Mice were inoculated intravenously in the tail vein with *L. monocytogenes* at various doses. For the observation of bacterial growth in the various organs, we injected intravenously 1 x 10⁶ colony-forming units (CFUs) of *L. monocytogenes*, a dose not lethal to either CRlg ko or CRlg wt mice. The number of viable bacteria in the inoculum, homogenates of the liver and spleen, and infected cells was determined by plating 10-fold serial dilutions on brain heart infusion agar (Difco Laboratories) plates. The numbers of CFUs were counted after incubation for 24 hours at 37°C.

2. Determination of Listeria-A488 uptake by Kupffer cells

Live *L. monocytogenes* was labeled with A-488 labeling kit according to the manufacturer's instructions (Molecular Probes, Oregon). The number of live *Listeria* after the labeling procedure was assessed by colony counts. CRlg wt or CRlg ko mice were injected intravenously with 10 million CFU/mL. One hour later, livers were perfused and Kupffer cells were isolated according to the methods described above. Cells were stained with a PE-labeled antibody to F4/80, and positive cells were isolated using anti-PE beads (Miltenyi) followed by sorting with a MoFlo flow cytometer (DakoCytomation, Ft. Collins, CO). F4/80 positive cells were collected on coverslips and the number of internalized labeled bacteria was estimated using confocal and light microscopy. Number of bacteria per cell was counted in 200 cells from 4 different fields per slide. Phagocytic index was calculated by multiplying average number of bacteria per cell with percentage of Kupffer cells containing at least one bacteria. The results show average and standard deviations of phagocytic index obtained from four different animals.

Results

Based on the binding of CRlg to C3b/C3b-opsonized particles, to explore a role for CRlg in phagocytosis of complement-opsonized particles in vivo, CRlg wt and KO mice were infected with various doses of *Listeria Monocytogenes* (LM), a gram-positive facultative bacterium that, when exposed to serum, activates the alternative pathway of complement which predominantly depletes C3b and C3b on the bacterial surface (Croix et al., Infec Immunol. 61:5134-5139 (1993)). CRlg KO mice were significantly more susceptible to LM infection as shown by an increased lethality (Figure 5A). Conversely, pretreatment with CRlg-g fusion protein increased susceptibility of CRlg wt, but not CRlg ko mice (Figure 6).

In line with a role of CRlg in binding and phagocytosis of complement C3-opsonized particles, CRlg ko mice had a reduced clearance of LM from the blood that resulted in an increased LM burden in the spleen and lung.
There was also a decreased LA burden in the liver and heart of infected mice which likely reflects the presence of CR1g expressing macrophages in these tissues (Figure S8B). Inflammatory responses were elevated in CR1g ko mice reflected by increased serum levels of IFN-γ, TNF-α and IL-6 (Figure S8C). Consistent with the requirement of CR1g in the clearance of C3-opsonized particles, CR1g ko KCs demonstrated significantly reduced binding and phagocytosis of LA as compared to CR1g wt KCs (Figure S8D). Finally, the increased Listeria load detected in the blood of CR1g ko mice was dependent on C3 as infection of C3 ko mice abrogated the difference in bacterial titers in CR1g ko vs. wt mice (Figure S8E). Interestingly, the circulating levels of bacteria were significantly lower in C3 ko mice as compared to C3 sufficient mice, and likely reflect the increased involvement of C3-independent mechanisms responsible for Listeria clearance in C3 ko mice. The rapid clearance in the absence of C3, however, does not result in efficient pathogen elimination in the long term since C3 deficient mice die within 2 days following gram-positive bacterial infection (Cannion et al., *J. Lab. Clin. Med.*, 143:238-345 (2004)). These results strongly indicate that CR1g expressed on liver Kupffer cells plays a critical role in the rapid clearance of complement C3 opsonized pathogens from the circulation.

Example 22

Inhibition of complement-mediated immune hemolysis with laCR1g molecules

It is well established that rabbit erythrocytes specifically activate the complement alternative pathway, with a resulting lysis of the cells by the C3b-9 complex (Pollard et al., *J. Immunol.* 121(1), 363-370 (1978)). In particular, rabbit erythrocytes initiate the alternative complement cascade, and the resulting formation of MAC causes lysis of these cells. If a test compound is capable of inhibition of the alternative pathway, then addition of the reagent to rabbit erythrocytes bathed in serum (in the present case serum of cynomolgus monkeys or in human C1q depleted serum) should prevent cellular lysis. This can be assayed by monitoring changes in absorbance of light at 412 nm wavelength caused by the release of hemoglobin from lyzed erythrocytes. In the cyno serum experiments, blood was collected from a femoral vein of cynomolgus monkeys. No anticoagulant was used. Samples were allowed to clot at room temperature. The samples were centrifuged, and serum was harvested and stored in a freezer set to maintain -80 to -80°C. Rabbit red blood cells (RBCs) were washed three-times in GVB (1x vesicle buffer (Biowhittaker), 0.1% gelatin), and re-suspended to 1x10⁷/ml in GVB. GVB, laCR1g (short, long, or long ECD) were added, followed by the addition of 10 μl GVB/10 mM EDTA (GVB, 0.1 M EDTA, 0.1 M MgCl₂). 10 μl cyno or C1q depleted serum (Quidel) was added, followed by the addition of 10 μl RBCs, and the mixture was mixed by finger flick. Following incubation for 45 min at 37°C, in warm room with shaking, 250 μl GVB/10 mM EDTA were added, and the mixture was centrifuged at 2500 rpm for 5 minutes. 250 μl aliquots were used and read at 412 nm. The results shown in Figures 63 A and B (cyno serum) and Figures 64-66 (human serum) demonstrate that the treated CR1g compounds inhibit complement:

- LaST-H: human CR1g-long
- LaST-L: human CR1g-short
- LaST-L BCD: human CR1g-long BCD
- P9GR: human polymeric immunoglobulin receptor
- fH: complement factor H

Example 23
Testing ex vivo CR1g-Fc Fusion Proteins in a Mouse Model of choroidal neovascularization

Choroidal neovascularization (CNV) can be induced experimentally by laser burns in the retina. In the present study, 40 C57BL-6 mice (Charles River Laboratory) were divided into two treatment arms.

- Group 1 (control): i.p. injection of 12 mg/kg gpl20 mlgG1 on days -1, 1, 3 and 5.
- Group 2: i.p. injection of 12 mg/kg murine CR1g (mCR1g) on days -1, 1, 3 and 5.

In each arm, the animals were anesthetized by subcutaneous (s.c.) injection of a mixture of ketamine (25 mg/kg) and xylazine (1.28 mg/kg). Pupils were dilated using a single drop of 1% tropicamide. The animals were then fixed in a plastic mold. A diode laser (100-μm spot size) was used to generate three laser spots in the eye surrounding the optic nerve, using OcuLight GL Diode Laser (532 nm), a Zeiss 30 W slit lamp and a micro-manipulator. The right eye was lasered with 120 mW, 0.1 seconds, and 100 μm slit size. A bubble formed at the laser spot indicates rupture of the Bruch's membrane.

Laser spots were evaluated on day 7 after laser treatment, using confocal microscopy. At this time, animals are anesthetized with isoflurane, and perfused through the heart with 0.5 ml PBS containing 50 mg/ml fluorescein-labeled dextran (Sigma). The eyes were removed and fixed in 10% phosphate-buffered formalin, then mounted on a slide. Histopathological examination includes immunohistochemical staining of choroidal flatmounts for complement fragments and elastin and analysis of the size of the CNV complex by monitoring FITC-dextran stained vasculature in the eyes by confocal microscopy.

The results are shown in Figures 71 A and B, where the burn holes in the right eye are scored on a scale of 0-3 and 0-5, respectively.

Example 24

Testing CR1g, FCDs and CR1g-Fc Fusion Proteins in Cynomolgus Monkeys undergoing Laser-Induced Retinal Injury

24 cynomolgus monkeys, either male or female, or 12 males and 12 females are used in this study. The animals are 2 to 7 years old, and weigh 2 to 5 kg.

Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Animals</th>
<th>Number of Animals Necropsied a</th>
<th>Number of Animals Necropsied b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Control)</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2 (Treated)</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Dosing Phase 1: Day 12

- Day 17: 0 mg/kg/dose
- Day 22: 10 mg/kg/dose

Administration is via intravenous injection through the cephalic vein. Animals are dosed at least once prior to laser treatment, and three-times weekly during the remainder of the study. Doses are based on the most recently recorded body weight, and are in the range of 10-15 mg/kg.

On Day 4, the macula of each eye of all animals undergoes laser treatment by CORL with 532 nm diode green laser burns (OcuLight GL, IRIDEX Corp Inc, Mountain View, California) using a slit lamp delivery system.

Note: a, b, c refer to the specific conditions described in the text.
and a Karlsson-Walkow (Ocular Instruments Inc, Bellevue, Wash) plano flintus contact lens. The laser and supporting equipment are supplied by CORL. The animals are anesthetized with ketamine and xylazine. Nine areas are symmetrically placed in the maculas of each eye. The laser parameters include a 72 micron spot size and a 0.1 second duration. The power used is assessed by the ability to produce a blister and a small hemorrhage. Unless hemorrhage is observed with the first laser treatment, a second laser spot is placed adjacent to the first following the same laser procedure (except wattage is adjusted). For areas not adjacent to the fovea the initial power setting is 590 mW; if a second spot is placed, the power is set to 650 mW. For the area adjacent to the fovea the power settings are 400 mW (initial) and 550 mW (second). At the discretion of the retinal surgeon, power settings may be adjusted based on observations at the time of laser.

Clinical Ophthalmic Examinations

Clinical ophthalmic examinations take place for each animal once before initiation of treatment, and on days 8, 15, 22, and 29. The animals are anesthetized with ketamine, and the eyes are dilated with a mydriatic agent. The anterior and posterior portion of the both eyes is examined using a slitlamp biomicroscope. The ocular fundus of both eyes is examined using an indirect ophthalmoscope. At the discretion of the ophthalmologist, the eyes may be examined using other appropriate instrumentation and photographs may be taken.

Ocular Photography

Ocular photographs (OP) are taken once on the day of laser treatment (post-laser), on Dosing Phase 1 Days 10, 17, 24, and 31, and on Dosing Phase 2 Day 6 (on the day of necropsy). When done concurrently with fluorescein angiography during Dosing Phase 1, OP is done first.

The animals are anesthetized with ketamine and maintained on isoflurane anesthesia when done concomitantly with fluorescein angiography and anesthetized with ketamine and xylazine when done alone (i.e., following laser treatment). The eyes are dilated with a mydriatic agent. Color photographs are taken of each eye and include the retina and pertinent ocular abnormalities, stereoscopic photographs of the posterior pole, and nonsteroscopic photographs of two mid-peripheral fields (temporal and nasal).

Fluorescein Angiography

Fluorescein angiography is performed once before initiation of treatment for all animals and on Dosing Phase 1 Days 10, 17, 24, and 31 (6, 12, 20, and 27 days post-laser).

Animals are fasted before fluorescein angiography. Animals are anesthetized with ketamine and maintained on isoflurane, and the eyes are dilated with a mydriatic agent. Animals are intubated due to the possibility of emesis following the fluorescein injection. Animals are given an intravenous injection of fluorescein. Photographs are taken at the start and end of the fluorescein injection. Following the fluorescein injection, a rapid series of stereo photographs of the posterior pole is taken of the right eye followed by stereo pairs of the posterior pole of the left eye before 1 minute, and then at each eye at approximately 1 to 2, and 5 minutes. Between approximately 2 and 5 minutes, nonstereoscopic photographs are taken of two mid-peripheral fields (temporal and nasal) of each eye. If fluorescein leakage is observed at the 5-minute time point, a stereo pair of photographs is taken at approximately 16 minutes.

Evaluation of fluorescein angiograms is performed according to the following grading system for evidence of excessive permeability (fluorescein leakage) or any other abnormalities.

85
<table>
<thead>
<tr>
<th>Level Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No hyperfluorescence</td>
</tr>
<tr>
<td>II</td>
<td>Hyperfluorescence without leakage</td>
</tr>
<tr>
<td>III</td>
<td>Hyperfluorescence early or mid-transit and late leakage</td>
</tr>
<tr>
<td>IV</td>
<td>Bright hyperfluorescence early or mid-transit and late leakage beyond borders of treated area</td>
</tr>
</tbody>
</table>

Deposit of Material

The following material has been deposited with the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2509, USA (ATCC):

<table>
<thead>
<tr>
<th>Designation</th>
<th>ATCC Dep. No.</th>
<th>Deposit Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA45416-1251</td>
<td>209620</td>
<td>February 5, 1998</td>
</tr>
</tbody>
</table>

This deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 386 OG 658).

The assignee of the present application has agreed that if a culture of the material on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the invention deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents.

Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.
WHAT IS CLAIMED IS:

1. A method for prevention or treatment of a complement-associated eye condition, comprising administering to a subject in need a prophylactically or therapeutically effective amount of a CR1g polypeptide selected from the group consisting of CR1g polypeptides of SEQ ID NO. 2, 4, 6, 8, and extracellular domains (ECDs) of said polypeptides.

2. A method for treatment of dry age-related macular degeneration (AMD), comprising administering to a subject in need a prophylactically or therapeutically effective amount of a CR1g polypeptide or an agonist thereof.

3. A method for inhibition of production of C3b complement fragment in a mammal comprising administering to said mammal an effective amount of a CR1g polypeptide or an agonist thereof.

4. The method of claim 2 or claim 3 wherein the CR1g polypeptide is selected from the group consisting of CR1g polypeptides of SEQ ID NO. 2, 4, 6, 8, and the ECDs of said polypeptides.

5. The method of claim 1 or claim 4 wherein said CR1g polypeptide is the ECD of a CR1g polypeptide of SEQ ID NO. 2, 4, 6, or 8.

6. The method of claim 5 wherein said CR1g polypeptide is the ECD of a CR1g polypeptide of SEQ ID NO. 4 or 6.

7. The method of claim 1 or claim 4 wherein the CR1g polypeptide is fused to an immunoglobulin sequence.

8. The method of claim 7 wherein the immunoglobulin sequence is an immunoglobulin constant region sequence.

9. The method of claim 8 wherein the immunoglobulin constant region sequence is that of an immunoglobulin heavy chain.

10. The method of claim 9 wherein the immunoglobulin heavy chain constant region sequence is fused to an ECD of a CR1g polypeptide of SEQ ID NO. 2, 4, 6, or 8 to produce a CR1g-Ig fusion protein.

11. The method of claim 10 wherein said immunoglobulin constant region sequence is that of an IgG.

12. The method of claim 11 wherein said IgG is IgG-1 or IgG-3.

13. The method of claim 12 wherein the IgG-1 heavy chain constant region sequence comprises at least a hinge, CH2 and CH3 region.

14. The method of claim 12 wherein the IgG-1 heavy chain constant region sequence comprises a hinge, CH1, CH2 and CH3 region.

15. The method of claim 10 wherein the CR1g-Ig fusion protein comprises a linker between the CR1g and the Ig sequences.

16. The method of claim 10 wherein the CR1g-Ig fusion protein is encoded by a nucleic acid selected from the group consisting of SEQ ID NOs. 20, 21, 25, 26, 27, and 28.

17. The method of claim 1 wherein the complement-associated eye condition is selected from the group consisting of age-related macular degeneration (AMD), choroidal neovascularization (CNV), uveitis, diabetic and other ischemia-related retinopathies, endophthalmitis, diabetic macular edema, pathological
18. The method of claim 17 wherein the complement-associated eye disease is age-related macular degeneration (AMD) or choroidal neovascularization (CNV).
19. The method of claim 18 wherein said method comprises prevention of CNV.
20. The method of claim 18 wherein said method comprises prevention of progression of AMD.
21. The method of claim 20 wherein said method comprises prevention of progression of AMD into CNV.
22. A method for prevention of development or progression of age-related macular degeneration (AMD), comprising administering to a subject at risk of developing or diagnosed with AMD in at least one eye, an effective amount of a CRIg polypeptide or an agonist thereof.
23. The method of claim 22 wherein the CRIg polypeptide is the extracellular domain of a polypeptide of SEQ ID NO: 2, 4, 6, or 8.
24. The method of claim 23 wherein the CRIg polypeptide is the extracellular domain of a polypeptide of SEQ ID NO: 4 or 6.
25. The method of claim 22 wherein the agonist is a fusion polypeptide comprising a CRIg polypeptide sequence fused to an immunoglobulin sequence.
26. The method of claim 25 wherein the fusion polypeptide comprises the extracellular domain of a polypeptide of SEQ ID NO: 4 or 6 fused to an immunoglobulin heavy chain constant region sequence.
27. The method of claim 26 wherein the fusion polypeptide is selected from the group consisting of fusion polypeptides encoded by the nucleotide sequence of SEQ ID NO: 20, 21, 25, 26, 27, and 28.
28. The method of any one of claims 22-27, wherein the subject is a human.
29. The method of claim 28 wherein the human subject has been diagnosed with AMD in at least one eye.
30. The method of claim 29 wherein said AMD is category 3 or category 4 dry AMD.
31. The method of claim 30 wherein said subject has been identified to be at risk to develop CNV.
32. The method of claim 31 wherein said subject is genetically at risk of developing CNV.
33. The method of claim 30 wherein said human subject has been diagnosed with AMD in both eyes.
34. The method of claim 33 wherein said human subject has category 3 or category 4 AMD in both eyes.
35. The method of claim 28 wherein said administration slows progression of AMD.
36. The method of claim 28 wherein said administration delays progression of AMD into CNV.
37. The method of claim 28 wherein said administration prevents progression of AMD into CNV.
38. The method of claim 29 wherein the human subject has been diagnosed with AMD in one eye only.
39. The method of claim 38 wherein said administration delays development of AMD in the other eye.
40. The method of claim 38 wherein said administration prevents development of AMD in the other eye.

20/05/2011 17 May 2011

-93-
41. The method of claim 28 wherein said administration is performed by intravitreal injection.
42. The method of claim 28 further comprising administration of an additional agent for the prevention or treatment of AMD or CNV.
43. The method of claim 42 wherein said additional agent is an anti-VEGF-A antibody.
44. A method for selective inhibition of the alternative complement pathway in a mammal, comprising administering to said mammal an effective amount of CR1g polypeptide or an agonist thereof.
45. Use of a CR1g polypeptide selected from the group consisting of CR1g polypeptides of SEQ ID NO: 2, 4, 6, 8, and the extracellular domains (ECDs) of said polypeptides, in the manufacture of a medicament for prevention or treatment of a complement-associated eye condition.
46. Use of a CR1g polypeptide or an agonist thereof in the manufacture of a medicament for: preventing development or progression of age-related macular degeneration (AMD); treating dry AMD; inhibiting production of C3b complement fragment in a mammal; or selectively inhibiting the alternative complement pathway in a mammal.
47. A method according to any one of claims 1, 2, 3, 22 or 44, or use according to claim 45 or claim 46, substantially as hereinbefore described with reference to any one of the examples or figures.
Figure 1A (SEQ ID: 1,2)
Figure 2A
Figure 3A
Figure 4A
Figure 4B
Figure 4C
Figure 6

IgG Control

6F.1 (anti-Pro362 STgMA)

20x

10x

6F.1 (anti-Pro362)
Aveolar Macs

Figure 11
Liver Kupffer cells

Figure 12
Liver Kupffer cells

Liver-STIgMA Liver-CD68

Figure 14
Figure 16

Placental Hofbauer cells

Placenta-STIgMA/CD68

Placenta-CD68

Placenta-STIgMA
Figure 18
Figure 22
Figure 23
Figure 28
Figure 30
Effect of Systemic Injection of muSTlgMA-Fc on the Progression of CIA

![Graph showing the effect of systemic injection of muSTlgMA-Fc on the progression of CIA. The graph plots days following immunization on the x-axis and some metric on the y-axis, with data points indicating murine IgG and STlgMA IgG-Fc.](image)

t-test

p-value = .0004 for IgG1 vs. muSTlgMA

This p-value has been (very) conservatively adjusted for multiple comparisons (Bonferroni adjustment: 2*p-value since there are two comparisons being performed)

Plots indicate mean ± SD

Figure 31
Figure 32

consen02 (SEQ ID NO:9)
GCAGGCAAAAG TACACCAGCC GCCGTGATCTT GAAGCCACGAAG GTTCCAGAAC 50
ATGTTACCCT CCAATGGAGC ACCCTGAGA TGATGACTGG GAGCCACTAC 100
AAGTGCTGAG TACCCATGCA GACCTCTGAT GGAACCAACAG TCGTGAAGGA 150
TAGATTTAAG TACGTCTGCT TCCAGAAACT CTTGACTCCC AAGGCCACAG 200
TGACAACCTG CAGCCGGTTAT GCTTCACTGG TCCCGCAAGG AATGAGGTAT 250
AGCTCTCAAT GCGAGGAGTC GGGTCTGCTC TCCCATCTAG TATATTGT 300
ATAAGCAACA GACTAATACC AGGAGAACCC ATCAGATCAG CACACCCTAG 350
TACCTTACTC TCACAAGCCCTG CAGTGTATAGC GCACTCAAGGC TCTCATTTCT 400
GCACGCAGCA GGGCCAGGTT GGGCTGAGAC AGCAGAGGGA CATTGGAAG 450
TTTAGGATCA AAGAATCCCTC AAAGTACTCTG AAAGCAAGAG CTGGCCACAG 500
TACACACCTGT ACATACCCCT TGAAAGAAAG ATCTACAGTTG AACGAGTCTC 550
GGGAGCTGAC CACTGACATG GATGCTACCC TGGGAGAGAC CAGTGCTTAGG 600
CCCGAAGAGA GCTGTCCTGT CTTGGCCACT ATCCTCTACATA CTCTCTCTGTG 650
CTGTATGCTG GTTTTATGCC TGGCCTATAT CATGCCTGTG CCGAAGACAT 700
CCCAACAAGA GGTACGTCTCG GAACAGGCAC GGGACATGCG CAGAGAACGC 750
AACGACTCTG AGAAACACCT GAGGTTGGCC ATCTTCGCCAA TGGCCCTGCTC 800
CGAATGCTAG CAACTCTCCC AGAATCTGCG GCAAACATACT CTTGGAAGAG 850
CCCTGCTGAG AACAGGAGTA CCAGATGTAC CCACCATCGA ATGGCCACCTA 900
CGCCGCGCTG CTGGACACAG TTCTTCTGGA TTATGAGTAC CCTGGACACTG 950
AGGGCAAAAG TGTCTGTTAA AATAGCCCCCA GAGCACAAGA ATCTGCTGAC 1000
ATAATTGCTG AGTACAGCTC TGGCCTCTGC ATGTCTCCTCT TTCCATCTAC 1050
CTCTCTTCTC GGATAGCCCA AAGTGCTGCC ATCACCACAG TTGGGCGGCT 1100
GGGGTCACGT GGCCTTGGCC TGAATTGGAC CAGATGGCACT TCAAGATGAC 1150
GACCTCTGCTG ATTTGCGCTG GGGCCTTCTG AGTATCTCTG CCGGGGCTTT 1200
CTGTATCTGC TCCCTAATA CCAAGGCGAA GATGCCCATG GCACCTAGGAC 1250
TGGCTCATCA TGCCCTAGCA CACTATCAA CTTGGCAGTCT TGGCCACCGA 1300
AAAGCCCGGG GGGGATCTCA GCTGCTGAGA TCTGACAGAG CAGCTATCTC 1350
TATTTTACAC TCTCTTCTT TGGGAGCCAG CACCTTTTAA TTGAATATTT 1400
TATTTTACAG CCACGGGCTGC AGTTCTGCTC TCCACTATA AGTCTGAATGT 1450
TCTGACTCTC TCGTGGTCTC CAATAAAATG CTAATCAAA CAGCAAAAA 1500
AAA 1503
muSTIgMA-Fc Inhibits Joint Inflammation

mulgG1 muSTIgMA-Fc

H&E staining on paraffin-embedded tissue
Collagen-induced arthritis day 70

Figure 34
Preservation of Cortical Bone Volume in joints of mice treated with muSTigMA-Fc

CT-Scan of Hind Paws
STIgMA-Fc treatment does not alter the number nor morphology of tissue resident macrophages

Collagen-induced arthritis day 70

Figure 36
muSTIgMA-Fc treatment does not affect serum anti-collagen antibody titers

Anova test shows no difference between groups
Collagen-induced arthritis day 70

Figure 37
muSTIgMA-Fc does not alter T-Independent B cell responses in vivo

Figure 38
Macrophage infiltration in joints following antibody-induced arthritis (AIA)

Normal

AIA (day 14)

F4/80 staining in undecalcified frozen joints

Figure 39
MuSTIgMA-Fc prevents joint swelling following antibody-induced arthritis in balb/c mice

![Graph showing clinical scores over time](image)

- mSTIgMA-Fc treatment start

Figure 40
MuST IgMA-Fc inhibits joint inflammation in antibody-induced arthritis

- Control treated mice (mulgG1) have moderate to severe arthritis (left)
- MuST IgMA-Fc treated mice have minimal to no arthritis (right)

H&E staining

Figure 41
Generation of mSTlgMA knock-out mice

STlgMA knock-out construct

Targeting construct

STlgMA locus

BglII

3' probe

3.1 kb

3.9 kb

4.1 kb

4.5 kb

Targeted STlgMA locus

BglII

Pak

Pmel

ClaI

3' probe

12.3 kb

Southern F1, BglII digest

kb

25 26 27 28 29 30 WT

25 26 27 28 29 30 WT

3' probe

5' probe

Figure 42
Murine ST IgMA-Fc binds to C3-opsonized sheep red blood cells (E-IgM)
Binding of human STIgMA-Fc to E-IgM is C3 dependent

Similar results found with human STIgMA-ECD

Figure 44
Binding of serum-opsonized particles to STIgMA-expressing CHO cells

Figure 45
Figure 46

- binds C3b, C3bi
- does not bind C2, C4, C3d

Blotcom: 1720 RU coated C3b; increasing concentrations 4-2000 nM mSTlgMA-mFc flowed over cell
Mouse and human STlgMA-Fc bind complement C3b

Plate-bound ELISA
- binds C3b, C3bi and C3c
- does not bind C1, C2, C4, C3a, C3d

Figure 47
Mouse and human STlgMA-Fc inhibit C3 deposition on zymosan

Inhibits deposition of C3 on:
- Staph. Aureus
- Listeria M.
- Immune complexes
- Collagen
- Charged surfaces (tissue culture plastic)
- All in the presence of EGTA
- (Alternative pathway-mediated deposition)

Figure 48A
muSTIgMA-Fc inhibits C3 activation in serum

\[\text{zymosan} \]

\[\text{C3} \]

\[115 \text{ kDa} \alpha \]

\[75 \text{ kDa} \beta \]

\[\text{zymosan} \]

\[\text{C3b} \]

\[9 \text{ kDa} \]

\[106 \text{ kDa} \alpha' \]

\[75 \text{ kDa} \beta \]

\[\text{zymosan} \]

\[\text{iC3b} \]

\[64 \text{ kDa} \]

\[40 \text{ kDa} \]

\[75 \text{ kDa} \beta \]

EDTA 0 1 10 50 mSTIgMA-Fc mPIGR-1h-Fc 1 10 50 ug/ml

Polyclonal goat anti-mouse C3

Uncleaved C3α chain

Figure 48B
STIgMA inhibits alternative pathway hemolysis of SRBC

E-IgM →

+ Classical pathway convertase C4b2a
+ Alternative pathway convertase C3bBb

+ serum EDTA
+ STIgMA-Fc

hemolysis → protection

Figure 49
Figure 50
Figure 51
Figure 52
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Different aa sequences in junction

New Fc construct (in pRK5L)

ST1gMA ECD Extra huFc portion huIG Fc

LKATSTVQSWDVWDTMDKTHTCPCPAELLLGGPSVFLFPPK

Start Fc

Old Fc construct (in pRK5)

LKATSTVQSWDVWDTMDGGRAQVTDKAAHYTLCPPCPAELLLGGPSVFLFPPK

Start linker Start Fc Genenase site
Figure 62
Figure 63A

Figure 63B
Figure 66
Figure 67
Figure 69
Prevention and Treatment of Complement-Associated Disorders
Accession Number:

180 185 180
Leu Ser Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser
195 200 205
Tyr Phe Cys Thr Ala Lys Gly Gin Val Gin Gly Ser Glu Gin His Ser Asp
210 215 220
Ile Val Lys Phe Val Val Gin Gin Ser Ser Ser Gin Ser Ser Leu Leu Lys Thr Lys
225 230 235 240
Thr Glu Ala Pro Thr Thr Thr Thr Tyr Pro Leu Lys Ala Thr Ser Thr Ser Thr
245 250 255 260 265
Val Lys Gin Ser Trp Asp Thr Thr Thr Asp Met Asp Gin Tyr Leu Gly
270 275 280 285
Glu Thr Ser Ala Gly Pro Gin Gin Leu Ser Leu Gin Val Val Leu Phe Ala Ile Ile
290 295 300
Leu Ile Ile Ser Lys Leu Lys Ser Gin Val Gin Gin Gin Gin Ser Leu Gin Gly Gin
305 310 315 320
Arg

DNA:

180
(ccaacg)gc (tgctgtgctc) (tgataggac) (gctgaagaga) (agcacagaaag) (tagctctgc)
190 195 200 205 210 215
(tgtgatggttg) (accccctctg) (gcctgctgct) (tctgggagcc) (ctgaccccgag)
220 225 230 235 240
(gccctccacg) (tcggccgttc) (tccgctgttc) (tcgcttctgc) (tgctctctgc)
250 255 260 265 270
(tgctctcttg) (tgctctcttg) (tgctctcttg) (tgctctcttg) (tgctctcttg)
280 285 290 295 300
(tgctctcttg) (tgctctcttg) (tgctctcttg) (tgctctcttg) (tgctctcttg)
305 310 315 320

Comments:

180
DNA Homo sapiens

Note: The sequence includes various amino acids and nucleotide sequences, highlighting the genetic information encoded in DNA. The presence of specific codons and amino acids suggests the sequence's role in protein synthesis.
Ser Leu Gin Leu Ser Thr Leu Gin Met Asp Arg Ser His Tyr Thr 100 105 110
Cys Glu Val Thr Trp Gin Thr Pro Asp Gly Asn Gin Val Val Arg Asp 115 120 125
Lys Ile Thr Gin Leu Arg Val Gin Lys Leu Ser Val Ser Lys Pro Thr 130 135 140
Val Thr Thr Gin Ser Gin Tyr Gly Phe Thr Val Pro Gin Gly Met Arg 145 150 155 160
Ile Ser Leu Gin Cys Gin Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile 165 170 175
Trp Tyr Lys Gin Gin Thr Asn Asn Gin Gin Glu Pro Ile Lys Val Ala Thr 180 185 190
Leu Ser Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser 195 200 205
Tyr Phe Cys Thr Ala Lys Gin Gin Val Gin Ser Glu Gin His Ser Asp 210 215 220
Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys 225 230 235 240
Thr Gin Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser Thr 245 250 255
Val Lys Gin Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Thr Leu Gly 260 265 270
Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe Ala Ile Ile 275 280 285
Leu Ile Ile Ser Leu Cys Gin Met Val Val Phe Thr Met Ala Tyr Ile 290 295 300
Met Leu Cys Arg Lys Thr Ser Gin Gin Gin His Val Tyr Glu Ala Ala 305 310 315 320
Arg Ala His Ala Arg Gin Ala Asp Ser Gly Gin Thr Met Arg Val 325 330 335
Ala Ile Phe Ala Ser Gin Gly Ser Ser Asp Gin Pro Thr Ser Gin Asn 340 345 350
Leu Gin Asn Gin Tyr Ser Asp Gin Pro Cys Ile Gin Gin Gin Tyr Gin 355 360
Ile Ile Ala Gin Gin Gin Gin Gin Gin Ser Ala Arg Leu Leu Asp Thr Val 365 370 375
Pro Gin Asp Tyr Glu Phe Leu Ala Thr Glu Gly Lys Ser Val Cys 380 385 390 395

<210> 5
<211> 1090
<212> DNA
<213> Homo sapiens

<400> 5
gtccacatgc acgcgtgtcc tatcgataag aggcggagag aagaccaaga aagtgctctg 60
gctgtgtgg caccaatctg gtcgggtgcc acccagcagt gcacaaagt cctggaaga 120
gcgctgctgt ccgctgcttg ctcgctgctg ctcgctgctg ctgcgctgctg ctgcgctgctg 180
gtgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 240
gcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 300
cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 360
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 420
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 480
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 540
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 600
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 660
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 720
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 780
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 840
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 900
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 960
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 1020
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 1080
tcgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg cgctgctgctg 1140

<210> 6
<211> 305

Page 4
WO 2006/012329

PCT/US2005/037114

39766-0100CP4 PCT saved oct 10 2005.txt

<210> Artificial Sequence

<212> Synthetic oligonucleotide probe

<400> 14
tggtactgcg gacgcaatc acgttgaaag tcacctgagc gacagtctgt

<210> 15
<211> 7496
<212> DNA

<213> Homo sapiens

<400> 15
ttcgtcgtctct cccgcacattg atttggact atgtattat cagttatcaat aagtactaat tacggaggctca

Page 8

-180-
cgcacagcttt cccgactcttg atattactctt atgatatta ctaatcact taccggttca 60
ttgatctat cgcctatat tagtctcttg gctgacactt 120
ggcggcgcc ccaacgacgc cgcctcattg 180
gcacccttag ggcacccttg 240
ttcggctac gttgactcttg 300
ggctgaccc cctgcctttt gcctcttttc 360
tacattcagg cattcaatcg tgggtctg 420
ggctggttag apcgcctggta ctacccgtag 480
ggctggttag gtcgctggct 540
tacattcagg atatcgcgct gcgctggctt 600
ttcggctac gttgactcttg 660
gtcgctcaag ctcctatacg gcgatcgcct tgggacctcgc 720
ggcggcgcc ggcctcattg 840
ttcggctac gttgactcttg 900
ttcggctac gttgactcttg 960
ttcggctac gttgactcttg 1020
ttcggctac gttgactcttg 1080
ttcggctac gttgactcttg 1140
ttcggctac gttgactcttg 1200
ttcggctac gttgactcttg 1260
ttcggctac gttgactcttg 1320
ttcggctac gttgactcttg 1380
ttcggctac gttgactcttg 1440
ttcggctac gttgactcttg 1500
ttcggctac gttgactcttg 1560
ttcggctac gttgactcttg 1620
ttcggctac gttgactcttg 1680
ttcggctac gttgactcttg 1740
ttcggctac gttgactcttg 1800
ttcggctac gttgactcttg 1860
ttcggctac gttgactcttg 1920
ttcggctac gttgactcttg 1980
ttcggctac gttgactcttg 2040
ttcggctac gttgactcttg 2100
ttcggctac gttgactcttg 2160
ttcggctac gttgactcttg 2220
ttcggctac gttgactcttg 2280
ttcggctac gttgactcttg 2340
ttcggctac gttgactcttg 2400
ttcggctac gttgactcttg 2460
ttcggctac gttgactcttg 2520
ttcggctac gttgactcttg 2580
ttcggctac gttgactcttg 2640
ttcggctac gttgactcttg 2700
ttcggctac gttgactcttg 2760
ttcggctac gttgactcttg 2820
ttcggctac gttgactcttg 2880
ttcggctac gttgactcttg 2940
ttcggctac gttgactcttg 3000
ttcggctac gttgactcttg 3060
ttcggctac gttgactcttg 3120
ttcggctac gttgactcttg 3180
ttcggctac gttgactcttg 3240
ttcggctac gttgactcttg 3300
ttcggctac gttgactcttg 3360
ttcggctac gttgactcttg 3420
39766-010DCP4 PCT saved Oct 10 2005.txt

cacaatccctttacggccgtcct caaattccctttt tttttgactt cttctctttt ccagggctcct 4020
taccagcagaa caaggtgagtt ctgatgactgc agttgggtgc acggagtggt 4080
tactacagcg tgagttctcaaa cagcggcagaa acatcctgaaat aatcttgagcgcct 4140
tttccagtaa tgtgcacgctt caaagttccgctc cctgttcggc cctgttggcc 4200
gccgacagcc agaagcgtcag ccaataccttt toctcactgt gtaagttcagcc ggataagttggc 4260
ttcacaacttt cagaggagaa caggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4320
gcataaagct ttgagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4380
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4440
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4500
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4560
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4620
cacggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc agagaagttgtta ccaggtgagtt ctgattttggc 4680
cacaagttccgctc cctgttcggc cctgttggcc 4740
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4800
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4860
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4920
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 4980
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5040
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5100
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5160
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5220
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5280
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5340
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5400
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5460
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5520
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5580
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5640
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5700
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5760
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5820
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5880
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5940
ggataagttggc agagaagttgtta ccaggtgagtt ctgattttggct gtaagttcagcc ttttataagttggc 5998

19

21

21

21

19

19

21

21

19

19

19

20

20

20

Page 2
<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> Synthetic oligonucleotide Primer

<400> 23
<401> cactatttcg tggcgcagga

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> Synthetic oligonucleotide Primer

<400> 24
<401> gggpapgatt ggaagacaaat

<210> 25
<211> 1454
<212> DNA
<213> Artificial Sequence

<220>
<223> huCRISp-long-Fc Fusion

<400> 25
<401> atcgattaa ccaactaggg gattccactg ggctctgctac tccggggaat cccaatcagt 60
<402> gcacacttag gcctgctacct cctggagatgc ccaagagtga taacagaggtct tctgggagag 120
<403> gatggtgccatt tccccctgaca cgtgacagct tctcgaggtac acctgagatgt cctggagag 180
<404> tgcggctgtc aacgctggttt ctgcaacttt accttatgcat tctgggagag 240
<405> cttgtccctc acgaacggcta cccagggggc tccttcagttc aacaggggct ttctgggagag 300
<406> gatggccgtgctg ctcctttgtaac ccaacgcagtt ggtggagatgc acctgagatgt cctgggagag 360
<407> acctgaggtgcttctgtctgg ggtgagagtct cctgttgctgt cctgggagag 420
<408> cctgggagag ctctgggagag ctcgctgtcag gttgctttgg tctgggagag 480
<409> cccagggaaata cggaggggtt taagagcgtc tctgggagag 540
<410> attacgtctca aagcagccatg ctaagctcaag aagcagccatg tctgggagag 600
<411> ttctcctctc aagcagccatg ctaagctcaag aagcagccatg tctgggagag 660
<412> cagcgtcgt tctcagggagc ctcacgacat gttgcttttt tctgggagag 720
<413> acctggacat gcctgggtttg cccagcccatc cctgcttcg gggaggtgtat agtcgcttcctc 780
<414> tccacgcttttc cccccacactt atcctttctc cccagccagtt cctgcttcg 840
<415> tggctctcgcag tggctctcgcag cccagccctag cctgcttcg gggaggtgtat agtcgcttcctc 900
<416> gatggcgtcgc cccaggctctg gggaggtgtat gcctggagatgc cctgcttcg 960
<417> gcaggggtgt ggtggagatgc acctgagatgt cctgggagag 1020
<418> gttgcttttt ctgctttttt ccctggggat cctgcttcg 1080
<419> cccccgccagc cccaggctctg ggtggagatgc acctgagatgt cctgggagag 1140
<420> tggctctcgcag tggctctcgcag cccaggctctg gggaggtgtat gcctggagatgc 1200
<421> agtgccttcg cccaggctctg ggtggagatgc acctgagatgt cctgggagag 1260
<422> tctgggagag ggtggagatgc acctgagatgt cctgggagag 1320
<423> ttctgggagag ggtggagatgc acctgagatgt cctgggagag 1380
<424> ctgctttttt cccaggctctg gggaggtgtat gcctggagatgc cctgcttcg 1440
<425> ggtggagatgc acctgagatgt cctgggagag 1504

<210> 26
<211> 1556
<212> DNA
<213> Artificial Sequence

<220>
<223> huCRISp-long-Fc Fusion

<400> 26
<401> atcgattaa ccaactaggg gattccactg ggctctgctac tccggggaat cccaatcagt 60
<402> gcacacttag gcctgctacct cctggagatgc ccaagagtga taacagaggtct tctgggagag 120

Page 15
acgctgactct tctggagacc atatcctagca ggcaaatgtc caaggttgtct tcgttgtgcc 300
cacctacagg ccaaggaagg tgtttcatca tctgct TGACgtg aaccaagtct gcagaagata 420
gtatgcaggg ccctcgtgag gggaaactcg ttccaaaaa cttcaaaagg ggagctaggg 480
acctacacac atgccttacct ccttgaagga gtcacactca agoagagcct cctgggaactg 540
gctacttgac tctggaaata ccctctacag ccctctcgag ccagcacctg acctcttgtg 600
gggtctcttc gcccttctct tctcctccaa gcccttctct tctcctctct 660
ccctgcagtc acattgcttt ggttgcacgt gaggctgttt gaacctggag tccagttctt 720
ctctgcttct ccacgctttg cttctttctc cttcagttct cccagcagt cctcttgcctg 840
cacgatgtac agttgcaag tttctgcaat agctctctca gccccctcttg gaaacacagt 900
ccttcaaggg cccagccgag cccccaggg gttccgtgtg gcctctggg cttctttttt 1020
ctctctgctg ggtggtggtg gtcgggcgtc gcggaggtgc aactcaagga gccctttctc 1080
gtgcccttt caatacttct ctcaagaat cttcagctct acagctgctg 1140
gttgctgatt gggagcttt cttcagttct cttcagttct gaggctctgc acacaaacat 1200
cacgatgtacc agcacctttt tccccctctgcc gttctttctg gttctttttc cttcagctct 1260
tgacaagct ccataaggttg acctcgtgaa gct 1283