

(19) 대한민국특허청(KR)

(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

#01L 23/525 (2006.01) #01L 23/00 (2006.01)

H01L 23/31 (2006.01) H01L 23/498 (2006.01)

(52) CPC특허분류 *H01L 23/525* (2013.01) *H01L 23/31* (2013.01)

(21) 출원번호 **10-2019-0084554**

(22) 출원일자 **2019년07월12일**

심사청구일자 **없음**

(11) 공개번호 10-2021-0007692

(43) 공개일자 2021년01월20일

(71) 출원인

삼성전자주식회사

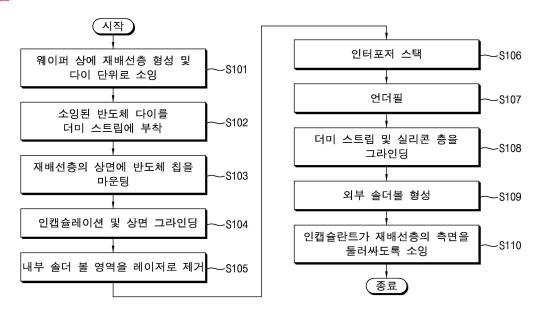
경기도 수원시 영통구 삼성로 129 (매탄동)

(72) 발명자

김동호

경기도 화성시 삼성전자로 1 삼성전자(주)화성사 업장

(74) 대리인 **하영욱**


전체 청구항 수 : 총 20 항

(54) 발명의 명칭 재배선 충을 포함하는 반도체 패키지 및 이를 제조하기 위한 방법

(57) 요 약

본 개시의 일 실시예는 반도체 패키지를 개시한다. 상기 반도체 패키지는, 재배선 충(redistributed layer; RDL); 상기 재배선 충과 전기적으로 연결되고, 상기 재배선 충의 상면에 배치되는 반도체 칩; 상기 재배선 충과 전기적으로 연결되고, 상기 재배선 충의 상면에서 상기 반도체 칩의 주변에 배치되는 복수의 솔더 볼(solder ball)들; 상기 복수의 솔더 볼들과 전기적으로 연결되고, 상기 복수의 솔더 볼들의 상면에 배치되는 인터포저 (interposer); 상기 인터포저의 하단에서 상기 반도체 칩, 상기 재배선 충의 상면 및 측면을 인캡슐레이션 (encapsulation)하는 인캡슐란트(encapsulant) 충; 및 상기 인터포저의 하면 및 상기 인캡슐란트 충의 상면 사이의 빈 공간을 메우는 언더필(underfill) 충;을 포함하고, 상기 인캡슐란트 충은 상기 재배선 충의 측면을 둘러 싸는 측면 인캡슐란트 영역을 포함한다.

대표도

(52) CPC특허분류

H01L 23/49816 (2013.01)

H01L 23/49838 (2013.01)

H01L 24/06 (2013.01)

H01L 24/97 (2013.01)

명 세 서

청구범위

청구항 1

재배선 층(redistributed layer; RDL);

상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에 배치되는 반도체 칩;

상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에서 상기 반도체 칩의 주변에 배치되는 복수의 솔더 볼(solder ball)들;

상기 복수의 솔더 볼들과 전기적으로 연결되고, 상기 복수의 솔더 볼들의 상면에 배치되는 인터포저 (interposer);

상기 인터포저의 하단에서 상기 반도체 칩 및 상기 재배선 층의 측면을 인캡슐레이션(encapsulation)하는 인캡슐란트(encapsulant) 층; 및

상기 인터포저의 하면 및 상기 인캡슐란트 층의 상면 사이를 메우는 언더필(underfill) 층;을 포함하고,

상기 인캡슐란트 층은 상기 재배선 층의 측면을 둘러싸는 측면 인캡슐란트 영역을 포함하는, 반도체 패키지.

청구항 2

청구항 1에 있어서,

상기 측면 인캡슐란트 영역의 수직 단면의 일측의 폭의 길이는 140μm(micrometer)인, 반도체 패키지.

청구항 3

청구항 1에 있어서,

상기 재배선 층의 수직 단면의 높이는 60 µm인, 반도체 패키지.

청구항 4

청구항 1에 있어서,

상기 재배선 층은 코어(core) 층을 제외한 복수의 유전(dielectric)층들을 포함하는, 반도체 패키지.

청구항 5

청구항 4에 있어서,

상기 복수의 유전층들은 제1 내지 제4 재배선 층을 포함하고,

상기 제1 내지 제4 재배선 층의 각각의 수직 단면의 높이는 15 µm인, 반도체 패키지.

청구항 6

청구항 1에 있어서,

상기 반도체 칩은 상기 반도체 칩의 하면에 배치되는 연결부를 통해 상기 재배선 충과 전기적으로 연결되는, 반도체 패키지.

청구항 7

청구항 6에 있어서,

상기 연결부는, 상기 재배선 층과 전기적으로 연결되는 솔더 범프(b μ mp) 또는 금속 패드(metal pad)를 포함하는, 반도체 패키지.

청구항 8

청구항 1에 있어서,

상기 재배선 층의 상면의 가로 길이는 10mm(millimeter) 내지 14mm이고, 세로 길이는 10mm 내지 14mm인, 반도체패키지.

청구항 9

청구항 1에 있어서,

상기 인캡슐란트 층의 수직 단면의 높이는 180 µm인, 반도체 패키지.

청구항 10

청구항 1에 있어서,

상기 인터포저의 상면부터 상기 반도체 칩의 상면까지의 높이는 140μm인, 반도체 패키지.

청구항 11

청구항 1에 있어서,

상기 반도체 칩의 상면의 가로 길이는 7mm 내지 11mm이고, 세로 길이는 7mm 내지 11mm인, 반도체 패키지.

청구항 12

재배선 층(redistributed layer; RDL);

상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에 배치되는 반도체 칩;

상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에 배치되는 복수의 내부 솔더 볼(solder ball)들;

상기 복수의 내부 솔더 볼들과 전기적으로 연결되고, 상기 복수의 내부 솔더 볼들의 상면에 배치되는 인터포저 (interposer);

상기 인터포저의 하단에서 상기 반도체 칩, 상기 재배선 층의 측면 및 하면을 인캡슐레이션(encapsulation)하는 인캡슐란트(encapsulant) 층; 및

상기 인터포저의 하면 및 상기 인캡슐란트 층의 상면 사이를 메우는 언더필(underfill) 층;을 포함하고,

상기 인캡슐란트 층은, 상기 재배선 층의 측면을 둘러싸는 측면 인캡슐란트 영역, 및 상기 재배선 층의 하면을 덮는 하면 인캡슐란트 영역을 포함하는, 반도체 패키지.

청구항 13

청구항 12에 있어서,

상기 하면 인캡슐란트 영역의 수직 단면의 높이는 50 µm인, 반도체 패키지.

청구항 14

청구항 12에 있어서,

상기 하면 인캡슐란트 영역은 복수의 외부 솔더 볼들을 배치하기 위한 외부 솔더 볼 영역을 포함하는, 반도체패키지.

청구항 15

청구항 14에 있어서,

상기 외부 솔더 볼 영역은 복수의 원형 구멍들을 포함하는, 반도체 패키지.

청구항 16

청구항 15에 있어서,

상기 복수의 원형 구멍들의 각각은 상기 하면 인캡슐란트 영역의 상면에 형성되는 상측 원, 및 상기 하면 인캡슐란트 영역의 하면에 형성되는 하측 원을 포함하는, 반도체 패키지.

청구항 17

청구항 16에 있어서,

상기 하측 원의 지름의 길이는 상기 상측 원의 지름의 길이 보다 큰, 반도체 패키지.

청구항 18

청구항 16에 있어서,

상기 상측 원의 지름의 길이는 300 µm인, 반도체 패키지.

청구항 19

청구항 16에 있어서,

상기 하측 원의 지름의 길이는 360 µm인, 반도체 패키지.

청구항 20

실리콘(silicon) 웨이퍼(wafer) 층(layer), 상기 실리콘 웨이퍼 층의 상면(upper side)에 형성되는 재배선 층, 및 복수의 내부(inner) 솔더 볼(solder ball)들을 포함하는 반도체(semiconductor) 다이(die)를 캐리어 (carrier) 스트립(strip) 기판(substrate)에 부착(attaching)하고;

상기 캐리어 스트립 기판의 상면, 상기 실리콘 웨이퍼 층의 측면(side), 상기 재배선 층의 측면 및 상면, 및 상기 반도체 다이의 측면을 인캡슐레이션하여 인캡슐란트 층을 형성하고;

상기 복수의 내부 솔더 볼들의 상면에 인터포저 충을 배치하고; 상기 인캡슐란트 충의 상부 및 상기 인터포저 충의 하부를 언더필 수지를 이용하여 메우고;

상기 캐리어 스트립 기판 및 상기 실리콘 웨이퍼 층을 그라인딩하고;

상기 캐리어 스트립 기판 및 상기 실리콘 웨이퍼 층을 그라인당하여 노출된 상기 재배선 층의 하면에 복수의 외부 솔더 볼들을 배치하고,

상기 인캡슐란트 층이 상기 재배선 층의 측면을 둘러싸도록 절단(sawing)하는, 반도체 패키지를 제조하는 방법.

발명의 설명

기 술 분 야

[0001] 본 개시는 재배선 층을 포함하는 반도체 패키지 및 이를 제조하기 위한 방법에 관한 것이다.

배경기술

[0002] 반도체 디바이스를 생성하기 위한 웨이퍼 레벨(wafer level)의 공정은 재배선 층을 형성하는 공정을 포함할 수 있다. 상기 재배선 층은 전도성의 금속 배전라인을 포함할 수 있다. 예를 들어, 재배선 층은 미리 정해진 배열을 갖는 금속 배전라인을 포함할 수 있다. 재배선 층은 도금을 패터닝(patterning)하는 방법을 통해 실리콘 웨이퍼 상에 형성될 수 있다. 재배선 층은 외부로부터의 기계적 충격, 수분, 각종 이물질에 의해 손상될 수 있다. 재배선 층은 강도를 강화하기 위한 코어(core) 층을 포함할 수 있다. 코어 층으로 인해 재배선 층의 두께 (thickness)는 증가될 수 있다.

발명의 내용

해결하려는 과제

[0003] 본 개시는 코어 층을 제외한 복수의 유전층들을 포함하는 재배선 층을 포함하는 반도체 패키지 및 이를 제조하

기 위한 방법을 제공하고자 한다.

과제의 해결 수단

- [0004] 본 개시의 일 실시예는 반도체 패키지를 개시한다. 상기 반도체 패키지는, 재배선 층(redistributed layer; RDL); 상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에 배치되는 반도체 칩; 상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에서 상기 반도체 칩의 주변에 배치되는 복수의 솔더 볼(solder ball)들; 상기 복수의 솔더 볼들과 전기적으로 연결되고, 상기 복수의 솔더 볼들의 상면에 배치되는 인터포저 (interposer); 상기 인터포저의 하단에서 상기 반도체 칩, 상기 재배선 층의 상면 및 측면을 인캡슐레이션 (encapsulation)하는 인캡슐란트(encapsulant) 층; 및 상기 인터포저의 하면 및 상기 인캡슐란트의 상면 사이의 빈 공간을 메우는 언더필(underfill) 층;을 포함한다. 상기 인캡슐란트는 상기 재배선 층의 측면을 둘러싸는 측면 인캡슐란트 영역을 포함한다.
- [0005] 본 개시의 일 실시예는 반도체 패키지를 개시한다. 상기 반도체 패키지는, 재배선 층; 상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에 배치되는 반도체 칩; 상기 재배선 층과 전기적으로 연결되고, 상기 재배선 층의 상면에서 상기 반도체 칩의 주변에 배치되는 복수의 내부 솔더 볼들; 상기 복수의 내부 솔더 볼들과 전기적으로 연결되고, 상기 복수의 내부 솔더 볼들의 상면에 배치되는 인터포저; 상기 인터포저의 하단에서 상기 반도체 칩, 상기 재배선 층의 측면 및 하면을 인캡슐레이션하는 인캡슐란트 층; 및 상기 인터포저의 하면 및 상기 인캡슐란트의 상면 사이의 빈 공간을 메우는 언더필 층;을 포함한다. 상기 인캡슐란트 층은, 상기 재배선 층의 측면을 둘러싸는 측면 인캡슐란트 영역, 및 상기 재배선 층의 하면을 덮는 하면 인캡슐란트 영역을 포함한다.
- [0006] 본 개시의 일 실시예는 반도체 패키지를 제조하기 위한 방법을 개시한다. 상기 반도체 패키지의 제조 방법은, 실리콘(silicon) 웨이퍼(wafer) 충(layer), 상기 실리콘 웨이퍼 충의 상면(upper side)에 형성되는 재배선 충, 및 복수의 내부(inner) 솔더 볼(solder ball)들을 포함하는 반도체(semiconductor) 다이(die)를 캐리어 (carrier) 스트립(strip) 기판(substrate)에 부착(attaching)하고; 상기 캐리어 스트립 기판의 상면, 상기 실리콘 웨이퍼 층의 측면(side), 상기 재배선 충의 측면 및 상면, 및 상기 반도체 다이의 측면을 인캡슐레이션하여 인캡슐란트 충을 형성하고; 상기 복수의 내부 솔더 볼들의 상면에 인터포저 충을 배치하고; 상기 인캡슐란트 충의 상부 및 상기 인터포저 충의 하부를 언더필 수지를 이용하여 메우고; 상기 캐리어 스트립 기판 및 상기 실리콘 웨이퍼 충을 그라인딩하고; 상기 캐리어 스트립 기판 및 상기 실리콘 웨이퍼 충을 그라인딩하여 노출된 상기 재배선 충의 하면에 복수의 외부 솔더 볼들을 배치하고, 상기 인캡슐란트 층이 상기 재배선 층의 측면을 둘러싸도록 절단(sawing)한다.

발명의 효과

- [0007] 본 개시에 따르면, 반도체 패키지 및 이를 제조하기 위한 방법을 통해, 반도체 패키지의 전체 두께를 감소시킬 수 있다.
- [0008] 본 개시에 따르면, 반도체 패키지 및 이를 제조하기 위한 방법을 통해, 반도체 패키지의 재배선 충 중 외부로 노출되는 부분을 보호함으로써, 반도체 패키지의 안정성 및 신뢰도를 증가시킬 수 있다.
- [0009] 본 개시에 따르면, 반도체 패키지 및 이를 제조하기 위한 방법을 통해, 반도체 패키지의 강도 및 내구성을 증가 시킬 수 있다.

도면의 간단한 설명

- [0010] 도 1은 본 개시의 일 실시예에 따른 반도체 패키지를 제조하기 위한 방법을 도시한 흐름도이다.
 - 도 2는 본 개시의 일 실시예에 따른 실리콘 웨이퍼, 상기 실리콘 웨이퍼 상에 형성된 재배선 층, 및 상기 재배선 층 상에 형성된 솔더 볼의 단면도이다.
 - 도 3은 본 개시의 일 실시예에 따른 더미(d μ mmy) 스트립(strip), 및 상기 더미 스트립에 부착된 반도체 다이 (die)의 단면도이다.
 - 도 4는 본 개시의 일 실시예에 따른 더미 스트립, 및 상기 더미 스트립에 부착된 반도체 다이의 개념도이다.
 - 도 5는 본 개시의 일 실시예에 따른 더미 스트립, 상기 더미 스트립 상에 부착된 반도체 다이, 및 상기 다이 상에 실장(mounting)된 반도체 칩의 단면도이다.

도 6은 본 개시의 일 실시에에 따른 더미 스트립 상에 부착된 반도체 다이, 및 상기 반도체 다이 상에 실장된 반도체 칩을 인캡슐레이션한 반도체 패키지의 단면도이다.

도 7은 본 개시의 일 실시예에 따른 내부 솔더 볼 영역이 제거된 인캡슐란트 층을 포함하는 반도체 패키지의 단면도이다.

도 8은 본 개시의 일 실시예에 따른 인터포저를 포함하는 반도체 패키지의 단면도이다.

도 9는 본 개시의 일 실시예에 따른 언더 필(under fill) 층을 포함하는 반도체 패키지의 단면도이다.

도 10은 본 개시의 일 실시예에 따른 실리콘 웨이퍼 및 더미 스트립이 제거된 반도체 패키지의 단면도이다.

도 11은 본 개시의 일 실시예에 따른 복수의 외부 솔더 볼들을 포함하는 반도체 패키지의 단면도이다.

도 12는 본 개시의 일 실시예에 따른 반도체 칩의 상면도이다.

도 13은 본 개시의 일 실시예에 따른 재배선 층의 단면도이다.

도 14는 본 개시의 일 실시예에 따른 반도체 패키지의 하면도이다.

도 15는 본 개시의 일 실시예에 따른 반도체 패키지를 제조하기 위한 방법을 도시한 흐름도이다.

도 16은 본 개시의 일 실시예에 따른 하면 인캡슐란트 층을 포함하는 반도체 패키지의 단면도이다.

도 17은 본 개시의 일 실시예에 따른 외부 솔더 볼 영역을 포함하는 하면 인캡슐란트 층을 포함하는 반도체 패키지의 단면도이다.

도 18는 본 개시의 일 실시예에 따른 하면 인캡슐란트 층 및 복수의 외부 솔더 볼들을 포함하는 반도체 패키지의 단면도이다.

도 19는 본 개시의 일 실시예에 따른 반도체 패키지의 하면도이다.

발명을 실시하기 위한 구체적인 내용

- [0011] 도 1은 본 개시의 일 실시예에 따른 반도체 패키지를 제조하기 위한 방법을 도시한 흐름도이다.
- [0012] 도 1을 참고하면, 실리콘 웨이퍼 상에는 재배선 층이 형성될 수 있다. 재배선 층이 형성된 실리콘 웨이퍼는 다이(die) 단위로 소잉(sawing)될 수 있다(S101).
- [0013] 예를 들어, 도 2를 참고하면, 실리콘 웨이퍼(100) 상에는 재배선 층(200)이 형성될 수 있다.
- [0014] 재배선 층(200)은 유전(dielectric)층을 포함할 수 있다. 재배선 층(200)의 내부에는 전도성의 금속 배전 라인 (210)이 형성될 수 있다. 예를 들어, 금속 배전 라인(210)은 미리 정해진 패턴(pattern)을 가질 수 있다. 재배선 층(200)은 패터닝(patterning) 방식으로 형성된 금속 배전 라인(210)을 포함할 수 있다. 재배선 층(200)의 상면에는 인터포저(interposer)와 재배선 층(200)을 전기적으로 연결하기 위한 복수의 솔더 볼(solder ball)들 (300)이 배치될 수 있다. 복수의 솔더 볼들(300)은 복수의 내부 솔더 볼들이라 지칭될 수 있다. 복수의 내부 솔더 볼들(300)은 재배선 층(200)의 금속 배전 라인(210)과 전기적으로 연결될 수 있다. 재배선 층(200)이 형성된 실리콘 웨이퍼(100)는 다이(10) 단위로 소잉될 수 있다. 소잉된 실리콘 웨이퍼(100)는 실리콘 층이라 지칭될 수 있다.
- [0016] 다시 도 1을 참고하면, 소잉된 다이들은 더미 스트립 기판에 부착(attaching)될 수 있다(S102).
- [0017] 예를 들어, 도 3을 참고하면, 소잉된 반도체 다이(10)는 더미 스트립 기판(400) 상에 부착될 수 있다. 더미 스트립 기판(400)은 캐리어(carrier) 스트립 기판이라 지칭될 수 있다.
- [0018] 예를 들어, 도 4를 참고하면, 더미 스트립 기판(400)의 가로 길이(D1)는 210 밀리미터(millimeter; mm)일 수 있다. 더미 스트립(400)의 세로 길이(D2)는 77.5mm일 수 있다. 소잉된 복수의 반도체 다이들(10)은 미리 정해진 간격에 따라 더미 스트립 기판에 부착될 수 있다.
- [0020] 다시 도 1을 참고하면, 재배선 층의 상면에는 반도체 칩이 마운팅(mounting)될 수 있다(S103).

- [0021] 예를 들어, 도 5를 참고하면, 재배선 충(200)의 상면에는 반도체 칩(500)이 마운팅될 수 있다. 반도체 칩(500)의 하면에는 연결부(connection unit)(510)가 배치될 수 있다. 예를 들어, 연결부(510)는 복수의 솔더 범프(bμmp)들을 포함할 수 있다.
- [0022] 연결부(510)는 복수의 구리 필러(copper pillar)들과 복수의 솔더 범프들이 적충된 구조를 가질 수 있다. 예를 들어, 반도체 칩(500)의 하면에는 복수의 구리 필러들이 배치될 수 있다. 복수의 구리 필러들의 하면에는 복수의 솔더 범프들이 배치될 수 있다. 복수의 구리 필러들 및 복수의 솔더 범프들은 전기적으로 연결될 수 있다. 복수의 솔더 범프들은 재배선 충과 전기적으로 연결될 수 있다.
- [0023] 연결부(510)는 복수의 금속 패드들을 포함할 수 있다. 예를 들어, 복수의 금속 패드들은 재배선 충과 전기적으로 연결될 수 있다.
- [0024] 반도체 칩(500)은 메모리 칩 또는 로직(logic) 칩일 수 있다.
- [0026] 다시 도 1을 참고하면, 더미 스트립 기판에 부착된 다이들은 인캡슐레이션(encapsulation)될 수 있다(S104).
- [0027] 예를 들어, 도 6을 참고하면, 더미 스트립 기판(400) 상에 배치된 실리콘 층(100), 상기 실리콘 층(100) 상에 배치된 재배선 층(200), 상기 재배선 층(200)의 상면에 배치된 솔더 볼(300) 및 반도체 칩(500)의 노출된 부분은 인캡슐란트(encapsulant)(600)에 의해 인캡슐레이션될 수 있다. 인캡슐란트(600)는 에폭시 수지(epoxy resin) 및 그 등가물 중 하나일 수 있으나 이에 한정되지 않는다. 인캡슐란트(600)는 인캡슐레이션 층 또는 몰딩 층 또는 패시베이션(passivation) 층이라 지칭될 수 있다.
- [0028] 인캡슐란트 층(600)은 실리콘 층(100)의 측면, 재배선 층(200)의 측면 및 상면, 그리고 반도체 칩(500)의 측면 및 하면을 둘러쌀 수 있다. 설명의 편의를 위해, 인캡슐란트 층(600) 중 재배선 층(200)의 측면을 둘러싸는 영역은 측면 인캡슐란트 영역(610)이라 지칭될 수 있다.
- [0030] 다시 도 1을 참고하면, 인캡슐레이션된 반도체 다이의 상면 중 재배선 층의 상면에 배치된 복수의 내부 솔더 볼들의 위치에 대응하는 영역은 레이저 드릴링(drilling) 방식을 통해 제거될 수 있다(S105).
- [0031] 예를 들어, 도 7을 참고하면, 인캡슐레이션된 반도체 다이(10)의 상면 중 재배선 층(200)의 상면에 배치된 복수의 내부 솔더 볼들(300)의 위치에 대응하는 영역들(620)은 레이저에 의해 제거될 수 있다. 복수의 내부 솔더 볼들(300)은 레이저에 의해 제거된 영역들(620)을 통해 외부로 노출될 수 있다.
- [0033] 다시 도 1을 참고하면, 인캠슐레이션된 반도체 다이의 상면에는 인터포저가 스택(stack)될 수 있다(S106).
- [0034] 예를 들어, 도 8을 참고하면, 복수의 내부 솔더 볼들(300)은 인터포저(700)의 하면에 배치되는 솔더 볼들과 전기적으로 연결될 수 있다. 설명의 편의상, 인터포저(700)의 하면에 배치되는 솔더 볼들은 복수의 내부 솔더 볼들이라 지칭될 수 있다. 예를 들어, 인터포저(700)의 하면에 배치되는 솔더 볼들은 복수의 내부 솔더 볼들(300)에 포함될 수 있다.
- [0035] 인터포저(700)는 반도체 칩(500)의 상면 보다 더 높이 위치하도록 배치될 수 있다. 예를 들어, 복수의 내부 솔더 볼들(300)의 수직 단면의 높이는 연결부(510)를 포함하는 반도체 칩(500)의 수직 단면의 높이를 초과할 수 있다. 인터포저(700)는 복수의 내부 솔더 볼들(300)을 통해 재배선 층(200)과 전기적으로 연결될 수 있다.
- [0037] 다시 도 1을 참고하면, 인캡슐레이션된 반도체 다이의 상면과 인터포저의 하면 사이의 빈 공간은 언더필 (underfill)될 수 있다(S107).
- [0038] 예를 들어, 도 9를 참고하면, 인캡슐레이션된 반도체 다이(10)의 상면과 인터포저(700)의 하면 사이의 빈 공간은 언더필 수지(800)에 의해 메워질 수 있다. 언더필 수지(800)에 의해 메워지는 영역은 언더필 층이라 지칭될수 있다. 반도체 다이(10)는 반도체 패키지라 지칭될수 있다.

- [0040] 다시 도 1을 참고하면, 더미 스트립 및 실리콘 웨이퍼는 그라인딩(grinding)될 수 있다(S108).
- [0041] 예를 들어, 도 10을 참고하면, 반도체 패키지(10)의 하부를 구성하는 더미 스트립(400) 및 실리콘 층(100)은 그라인딩될 수 있다. 더미 스트립(400) 및 실리콘 층(100)의 그라인딩으로 인해 재배선 층(200)의 하면은 노출될수 있다.
- [0043] 다시 도 1을 참고하면, 재배선 층의 하면에는 복수의 솔더 볼들이 형성될 수 있다(S109). 반도체 패키지는 인캡 슐란트 층이 재배선 층의 측면을 둘러싸도록 소잉될 수 있다(S110).
- [0044] 예를 들어, 도 11을 참고하면, 재배선 층(200)의 하면에는 복수의 솔더 볼들(900)이 형성될 수 있다. 복수의 솔더 볼들(900)은 복수의 외부 솔더 볼들이라 지칭될 수 있다. 복수의 외부 솔더 볼들(900)은 재배선 층(200)의 금속 배전 라인(210)과 전기적으로 연결될 수 있다. 복수의 외부 솔더 볼들(900)은 재배선 층(200)을 통해 반도체 칩(500)과 전기적으로 연결될 수 있다. 복수의 외부 솔더 볼들(900)은 재배선 층(200) 및 복수의 내부 솔더볼들(300)을 통해 인터포저(700)와 전기적으로 연결될 수 있다.
- [0045] 반도체 패키지(10)는 재배선 층(200)의 측면이 인캡슐란트 층(600)에 의해 둘러싸이도록 소잉될 수 있다. 예를 들어, 재배선 층(200)의 측면을 둘러싸는 측면 인캡슐란트 영역(610)의 수직 단면의 일측의 폭(width)의 길이 (W1)는 140 마이크로미터(micromiter; µm) 이하일 수 있다.
- [0046] 반도체 칩(500)의 상면으로부터 인터포저(700)의 상면까지의 수직 거리의 길이(H1)는 140 μm일 수 있다. 반도체 칩(500)의 상면으로부터 재배선 층(200)의 상면까지의 수직 거리의 길이(H2)는 120 μm일 수 있다. 재배선 층 (200)의 상면으로부터 하면까지의 수직 거리의 길이(H3)는 60 μm일 수 있다. 재배선 층(200)의 하면으로부터 솔 더 범프(510)의 하단까지의 수직 거리의 길이(H4)는 100 μm일 수 있다.
- [0047] 도 12를 참고하면, 재배선 충 (200)의 상면에 배치되는 반도체 칩(500)의 상면 또는 하면의 가로 길이(D1)는 7mm 내지 11mm일 수 있다. 반도체 칩(500)의 상면 또는 하면의 세로 길이(D2)는 7mm 내지 11mm일 수 있다.
- [0049] 도 13을 참고하면, 재배선 층(200)은 제1 배선 층(201) 내지 제4 배선 층(204)을 포함할 수 있다.
- [0050] 제1 배선 층(201)은 제1 도전 라인(211), 복수의 내부 솔더 볼 패드들(211a), 및 복수의 반도체 칩 패드들 (211b)을 포함할 수 있다. 제1 도전 라인(211)은 복수의 내부 솔더 볼 패드들(211a) 및 복수의 반도체 칩 패드 들(211b)과 전기적으로 연결될 수 있다.
- [0051] 제1 도전 라인(211)은 제1 배선 층(201) 내에서 미리 정해진 패턴에 따라 배치될 수 있다.
- [0052] 복수의 내부 솔더 볼 패드들(211a)은 복수의 내부 솔더 볼들(900)을 제1 도전 라인(211)과 전기적으로 연결시키기 위한 도전 패드일 수 있다. 예를 들어, 복수의 내부 솔더 볼 패드들(211a)은 복수의 내부 솔더 볼들(900)과 전기적으로 연결될 수 있다.
- [0053] 복수의 반도체 칩 패드들(211b)은 반도체 칩(500)을 제1 배선 층(201)과 전기적으로 연결시키기 위한 도전 패드일 수 있다. 예를 들어, 반도체 칩(500)의 연결부(510)는 복수의 반도체 칩 패드들(211b)과 전기적으로 연결될수 있다. 예를 들어, 반도체 칩(500)의 연결부(510)가 복수의 솔더 범프들은 포함하는 경우, 상기 복수의 솔더 범프들은 복수의 반도체 칩 패드들(211b)과 전기적으로 연결될수 있다. 예를 들어, 반도체 칩(500)의 연결부(510)가 복수의 금속 패드들을 포함하는 경우, 상기 복수의 금속 패드들은 복수의 반도체 칩 패드들(211b)과 전기적으로 연결될수 있다.
- [0054] 제1 배선 층(201)의 수직 단면의 높이(Hd1)는 15 μ m일 수 있다.
- [0055] 제2 배선 충(202)은 제2 도전 라인(212)을 포함할 수 있다. 예를 들어, 제2 도전 라인(212)은 제2 배선 충(202) 내에서 미리 정해진 패턴에 따라 배치될 수 있다. 제2 도전 라인(212)은 제1 도전 라인(211)과 전기적으로 연결 될 수 있다.
- [0056] 제2 배선 층(202)의 수직 단면의 높이(Hd2)는 15 μ m일 수 있다.
- [0057] 제3 배선 충(203)은 제3 도전 라인(213)을 포함할 수 있다. 예를 들어, 제3 도전 라인(213)은 제3 배선 충(203) 내에서 미리 정해진 패턴에 따라 배치될 수 있다. 제3 도전 라인(213)은 제2 도전 라인(212)과 전기적으로 연결

될 수 있다.

- [0058] 제3 배선 충(203)의 수직 단면의 높이(Hd3)는 15 μm일 수 있다.
- [0059] 제4 배선 충(204)은 제4 도전 라인(214) 및 외부 솔더 볼 패드(214a)를 포함할 수 있다. 제4 도전 라인(214) 및 외부 솔더 볼 패드(214a)는 전기적으로 연결될 수 있다. 제4 도전 라인(214)은 제4 배선 충(204) 내에서 미리 정해진 패턴에 따라 배치될 수 있다. 제4 도전 라인(214)은 제3 도전 라인(213)과 전기적으로 연결될 수 있다.
- [0060] 복수의 외부 솔더 볼 패드들(213a)은 복수의 외부 솔더 볼들(900)을 제4 도전 라인(214)과 전기적으로 연결시키기 위한 도전 패드일 수 있다. 예를 들어, 복수의 외부 솔더 볼 패드들(213a)은 복수의 외부 솔더 볼들(900)과 전기적으로 연결될 수 있다.
- [0061] 제4 배선 층(204)의 수직 단면의 높이(Hd4)는 15 μ m일 수 있다.
- [0063] 도 14를 참고하면, 일 실시예에 따른 반도체 패키지(10)는 재배선 층(200)의 측면을 둘러싸는 측면 인캡슐란트 영역(610)을 통해 재배선 층(200)의 측면을 외부로부터 보호할 수 있다. 예를 들어, 재배선 층(200)의 측면 중 일부분에는 도전 라인(210)이 노출될 수 있다. 도전 라인(210) 중 노출된 일부의 도전 라인에 의해 재배선 층(200)의 안정성 및 신뢰도는 낮아질 수 있다. 측면 인캡슐란트 영역(610)은 재배선 층(200)의 측면을 둘러쌈으로써, 도전 라인(210) 중 노출된 일부의 도전 라인을 보호할 수 있다. 측면 인캡슐란트 영역(610)을 통해 재배선 층(200)의 안정성 및 신뢰도는 향상될 수 있다.
- [0064] 재배선 충(200)의 하면의 가로 길이(D5)는 10mm 내지 14mm일 수 있다. 재배선 충(200)의 하면의 세로 길이(D6)는 10mm 내지 14mm일 수 있다.
- [0066] 도 15는 본 개시의 일 실시예에 따른 반도체 패키지를 제조하기 위한 방법을 도시한 흐름도이다.
- [0067] 도 15를 참고하면, 일 실시예에 따른 패키징 순서는 도 1의 S108 단계에서 S209 단계로 진행될 수 있다.
- [0068] 예를 들어, 도 16을 참고하면, 더미 스트립 및 실리콘 층이 그라인딩(S108)된 이후, 반도체 패키지(10)의 하면은 추가적인 인캡슐란트(630)에 의해 인캡슐레이션될 수 있다(S209). 반도체 패키지(10)의 하면을 인캡슐레이션하는 인캡슐란트(630)는 하면 인캡슐란트 영역이라 지칭될 수 있다. 예를 들어, 인캡슐란트 층(600)은 측면 인캡슐란트 영역(610) 및 하면 인캡슐란트 영역(630)을 포함할 수 있다.
- [0070] 다시 도 15를 참고하면, 반도체 패키지(10)의 하면 인캡슐란트 영역(630) 중 복수의 외부 솔더 볼들이 배치되는 영역은 레이저를 통해 제거될 수 있다(S210).
- [0071] 예를 들어, 도 17을 참고하면, 하면 인캡슐란트 영역(630) 중 복수의 외부 솔더 볼들(900)이 배치되는 외부 솔더 볼 영역(640)은 레이저 드릴링 방식을 통해 제거될 수 있다. 외부 솔더 볼 영역(640)을 통해 재배선 층(200)의 하면 중 복수의 외부 솔더 볼들(900)이 배치되는 부분은 노출될 수 있다.
- [0072] 외부 솔더 볼 영역(640)은 복수의 원형 구멍(hole)들을 포함할 수 있다. 복수의 원형 구멍들은 하면 인캡슐란트 영역(630)의 하면으로부터 재배선 층(200)으로 갈수록 좁아질 수 있다.
- [0073] 예를 들어, 제1 원형 구멍(641)에서 재배선 충(200)에 인접한 상측 원의 지름의 길이(W2)는, 하면 인캡슐란트 영역(630)의 하면에 인접한 하측 원의 지름의 길이(W3) 보다 작을 수 있다.
- [0074] 예를 들어, 제1 원형 구멍(641)의 상측 원의 지름의 길이(W2)는 300 μm일 수 있다. 제1 원형 구멍(641)의 하측 원의 지름의 길이(W3)는 360 μm일 수 있다.
- [0075] 반도체 패키지(10)의 수직 단면에서, 하면 인캡슐란트 영역(630)의 측면 중 재배선 충(200)의 하면과 수평하는 일 지점(a)으로부터, 제1 원형 구멍(641)의 상측 원의 둘레의 일 지점과의 최단 거리의 길이(W4)는 220 μ m일 수 있다.
- [0076] 반도체 패키지(10)의 수직 단면에서, 하면 인캡슐란트 영역(630)의 측면의 모서리 지점(b)으로부터, 제1 원형 구멍(641)의 하측 원의 둘레와의 최단 거리의 길이(W5)는 190 μm일 수 있다.

- [0077] 반도체 패키지(10)의 수직 단면에서, 제1 원형 구멍(641)의 상측 원의 둘레와 제2 원형 구멍(642)의 상측 원의 둘레 간의 최단 거리의 길이(W6)는 150 µm일 수 있다.
- [0078] 반도체 패키지(10)의 수직 단면에서, 제1 원형 구멍(641)의 하측 원의 둘레와 제2 원형 구멍(642)의 하측 원의 둘레 간의 최단 거리의 길이(W7)는 90 u m일 수 있다.
- [0079] 하면 인캡슐란트 영역(630)의 수직 단면의 높이(H5)는 50 µm일 수 있다.
- [0081] 다시 도 15를 참고하면, 반도체 패키지(10)의 외부 솔더 볼 영역(640)에는 복수의 외부 솔더 볼들이 형성될 수 있다(S211).
- [0082] 예를 들어, 도 18을 참고하면, 반도체 패키지(10)의 외부 솔더 볼 영역(640)에는 복수의 외부 솔더 볼들(900)이 형성될 수 있다.
- [0083] 도 19는 본 개시의 일 실시예에 따른 반도체 패키지(10)의 하면도이다. 도 19를 참고하면, 하면 인캡슐란트 영역(630)은 외부 솔더 볼 영역(640)을 제외한 반도체 패키지(10)의 하면을 인캡슐레이션할 수 있다.
- [0084] 하면 인캡슐란트 영역(630)은 반도체 패키지(10)의 하면에 노출되는 재배선 층(200)의 하면을 외부로부터 보호할 수 있다. 하면 인캡슐란트 영역(630)은 재배선 층(200)의 하면을 보호함으로써, 재배선 층(200)의 안정성 및 신뢰도를 향상시킬 수 있다.
- [0085] 하면 인캡슐란트 영역(630)은 반도체 패키지(10)의 하면에 노출되는 재배선 층(200)의 하면을 격자형(lattice)으로 덮을 수 있다. 하면 인캡슐란트 영역(630)은 반도체 패키지(10)의 하면을 격자형(lattice)으로 고정시킬수 있다. 하면 인캡슐란트 영역(630)은 재배선 층(200)의 하면을 고정시킴으로써, 재배선 층(200)의 하면을 포함하는 반도체 패키지(10)의 하면의 강도를 증가시킬수 있다.
- [0087] 당업자에 의해 인지될 수 있는 바와 같이, 본 개시에서 설명된 혁신적인 개념들은 응용 분야의 넓은 범위에 걸쳐 수정 및 변경될 수 있다. 따라서, 청구된 주제의 범위는 위에서 논의된 특정한 예시적인 교시들의 어떤 것으로 제한되어서는 안되고, 아래의 청구항들에 의해 정의된다.

부호의 설명

[0088] 10: 반도체 패키지 100: 실리콘 웨이퍼 층

200: 재배선 층 201: 제1 재배선 층

202: 제2 재배선 층 203: 제3 재배선 층

204: 제4 재배선 층 210: 도전 라인

211: 제1 도전 라인 212: 제2 도전 라인

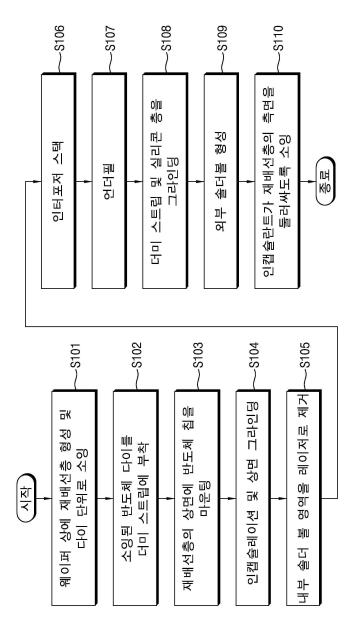
213: 제3 도전 라인 214: 제4 도전 라인

300: 내부 솔더 볼 400: 더미 스트립 기판

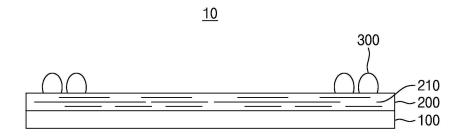
500: 반도체 칩 510: 연결부

600: 인캡슐란트 610: 측면 인캡슐란트 영역

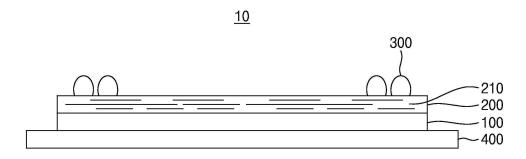
620: 내부 솔더 볼 영역 630: 하면 인캡슐란트 영역

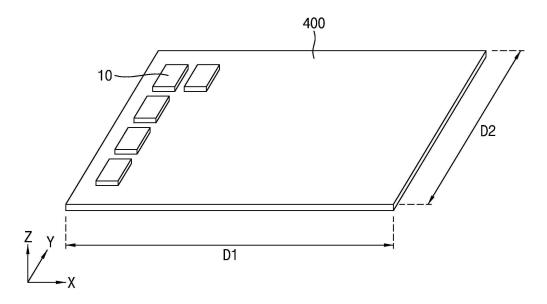

640: 외부 솔더 볼 영역 641: 제1 원형 구멍

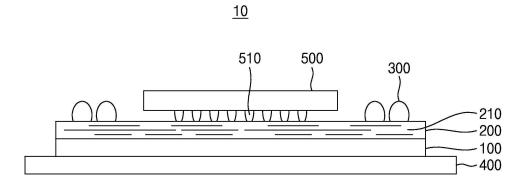
642: 제2 원형 구멍 700: 인터포저


800: 언더필 층 900: 외부 솔더 볼

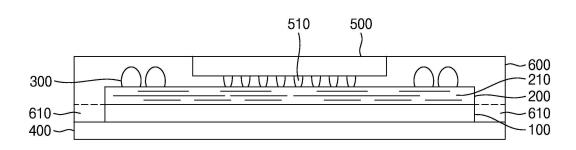
도면


도면1

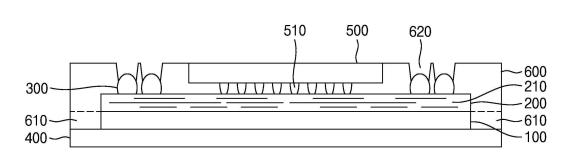

도면2


도면3

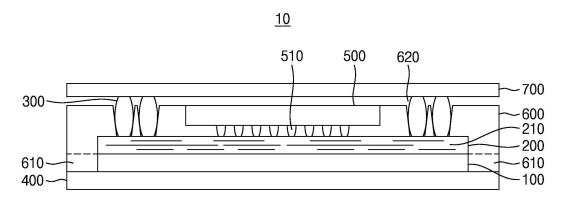
도면4



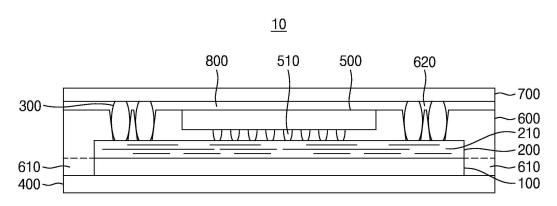
도면5

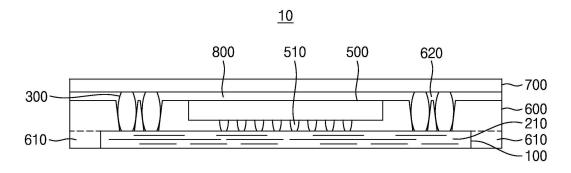

도면6

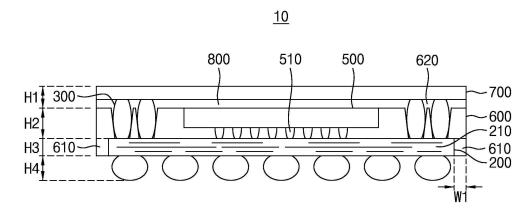
<u>10</u>

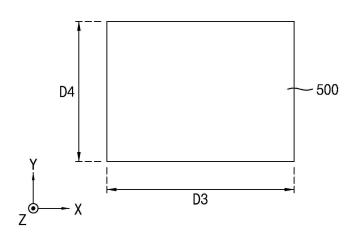


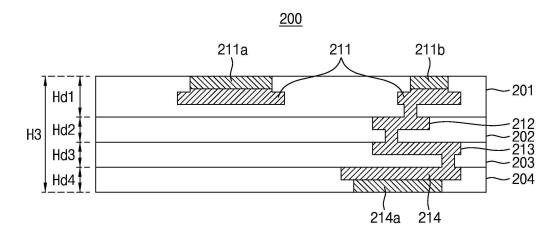
도면7

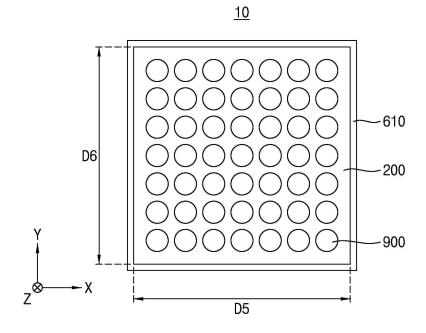

<u>10</u>

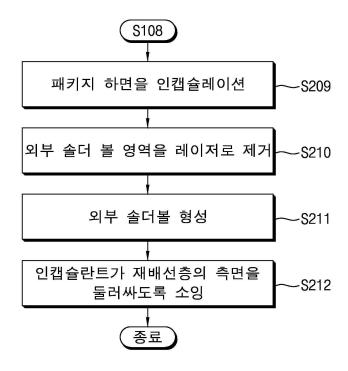

도면8

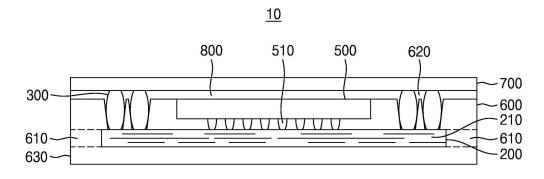

도면9

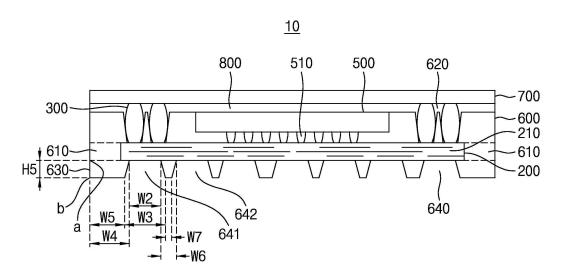

도면10

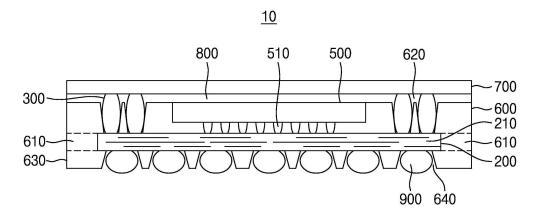

도면11


도면12

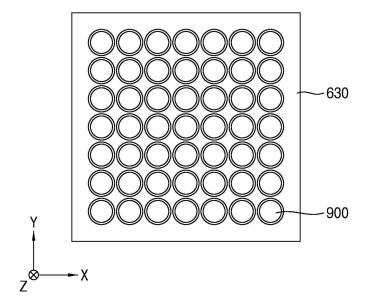

도면13


도면14


도면15


도면16

도면17



도면18

도면19

<u>10</u>

