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decode the slice using WPP.
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DVDs, CD-ROMs, flash memory, or other suitable digital storage media for storing
encoded video data.

In a further example, channel 16 may include a file server or another &
intermediate storage device that stores encoded video generated by source device 12. In
this example, destination device 14 may access encoded video data stored at the file
server or other intermediate storage device via streaming or download. The file server
may be a type of server capable of storing encoded video data and transmitting the
encoded video data to destination device 14. Example file servers include web servers =
(e.g., for a website), file transfer protocol (FTP) servers, network attached storage -
(NAS) devices, and local disk drives. frot

Destination device 14 may access the encoded video data through a standard
data connection, such as an Internet connection. Example types of data connections
include wireless channels (e.g., Wi-Fi connections), wired connections (e.g., DSL, cable
modem, etc.), or combinations of both that are suitable for accessing encoded video data
stored on a file server. The transmission of encoded video data from the file server may
be a streaming transmission, a download transmission, or a combination of both.

The techniques of this disclosure are not limited to wireless applications or
settings. The techniques may be applied to video coding in support of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, streaming video transmissions, e.g., via
the Internet, encoding of video data for storage on a data storage medium, decoding of
video data stored on a data storage medium, or other applications. In some examples,
video coding system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

" In the example of FIG. 1, source device 12 includes a video source 18, a video
encoder 20, and an output interface 22. In some examples, output interface 22 may
include a modulator/demodulator (modem) and/or a transmitter. Video source 18 may
include a video capture device, e.g., a video camera, a video archive containing
previously-captured video data, a video feed interface to receive video data from a video

content provider, and/or a computer graphics system for generating video data, or a

combination of such sources of video data.
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Video encoder 20 may encode video data from video source 18. In some
examples, source device 12 directly transmits the encoded video data to destination
device 14 via output interface 22. The encoded video data may also be stored onto a -
storage medium or a file server for later access by destination device 14 for decoding
and/or playback.

_ In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some examples, input interface 28
includes a receiver and/or a modem. Input interface 28 may receive encoded video data
over channel 16. Display device 32 may be integrated with or may be external to
destination device 14. In general, display device 32 displays decoded video data.
Display device 32 may comprise a variety of display devices, such as a liquid crystal
display (LCD), a plasma display, an organic light emitting diode (OLED) display, or
another type of display device.

Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development, and may conform to a HEVC Test Model (HM). A draft
of the upcoming HEVC standard, referred to as “HEVC Working Draft 5” or “WD5,” is
described in Bross et al., “WD5: Working Draft 5 of High-Efficiency Video Coding,”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, 7th Meeting: Geneva, Switzerland, November, 2011,
which, as of October 10, 2012, is downloadable from: http://phenix.int-
evry.fr/jct/doc_end_user/documents/7_Geneva/wgl1/JCTVC-G1103-v3.zip, the entire
content of which is incorporated herein by reference. Another draft of the upcoming
HEVC standard, referred to as “HEVC Working Draft 9,” is described in Bross et al.,
“High Efficiency Video Coding (HEVC) text specification draft 9,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WGT11, 11th Meeting: Shanghai, China, October, 2012, which, as of
November 7, 2012, is downloadable from: http://phenix.int-
evry.fr/jct/doc_end_user/documents/11_Shanghai/wg11/JCTVC-K1003-v8.zip, the
entire content of which is incorporated herein by reference.

Alternatively, video encoder 20 and video decoder 30 may operate according to
other proprietary or industry standards, including ITU-T H.261, ISO/IEC MPEG-1
Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4
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Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multiview Video Coding (MVC) extensions. The
techniques of this disclosure, however, are not limited to any particular coding standard
or technique.

i Again, FIG. 1 is merely an example and the techniques of this disclosure may
apply to video coding settings (e.g., video encoding or video decoding) that do not
necessarily include any data communication between the encoding and decoding
devices. In other examples, data is retrieved from a local memory, streamed over a
network, or the like. An encoding device may encode and store data to memory, and/or
a decoding device may retrieve and decode data from memory. In many examples, the
encoding and decoding is performed by devices that do not communicate with one
another, but simply encode data to memory and/or retrieve and decode data from
memory.

- Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application-specific integrated circuits (ASICs), field-programmable
gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. If the
techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable storage medium and may
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Any of the foregoing (including hardware, software, a
combination of hardware and software, etc.) may be considered to be one or more
processors. Each of video encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated as part of a combined
encoder/decoder (CODEC) in a respective device.

* This disclosure may generally refer to video encoder 20 “signaling” certain
information to another device, such as video decoder 30. The term “signaling” may
generally refer to the communication of syntax elements and/or other data that represent
encoded video data. Such communication may occur in real- or near-real-time.
Alternately, such communication may occur over a span of time, such as might occur
when storing syntax elements to a computer-readable storage medium in an encoded
bitstream at the time of encoding, which then may be retrieved by a decoding device at

any time after being stored to this medium.
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As mentioned briefly above, video encoder 20 encodes video data. The video
data may comprise one or more pictures. Each of the pictures may be a still image. In
some instances, a picture may be referred to as a video “frame.” Video encoder 20 may
generate a bitstream that includes a sequence of bits that form a coded representation of
the video data. The bitstream may include coded pictures and associated data. A coded
picture is a coded representation of a picture. The associated data may include sequence
parameter sets (SPSs), picture parameter sets (PPSs), and other syntax structures. A
SPS may contain parameters applicable to zero or more sequences of pictures. A PPS
may contain parameters applicable to zero or more pictures.

To generate an encoded representation of a picture, video encoder 20 may
partition the picture into a grid of coding tree blocks (CTBs). In some instances, a CTB
may be referred to as a “tree block”, a “largest coding unit” (LCU) or a “coding tree
unit.” The CTBs of HEVC may be broadly analogous to the macroblocks of previous
standards, such as H.264/AVC. However, a CTB is not necessarily limited to a
particular size and may include one or more coding units (CUs).

~ Each of the CTBs may be associated with a different equally-sized block of
pixels within the picture. Each pixel may comprise a luminance (luma) sample and two
chrominance (chroma) samples. Thus, each CTB may be associated with a block of
luminance samples and two blocks of chrominance samples. For ease of explanation,
this disclosure may refer to a two-dimensional array of pixels as a pixel block and may
refer to a two-dimensional array of samples as a sample block. Video encoder 20 may
use quad-tree partitioning to partition the pixel block associated with a CTB into pixel
blocks associated with CUs, hence the name “coding tree blocks.”

The CTBs of a picture may be grouped into one or more slices. In some
examples, each of the slices includes an integer number of CTBs. As part of encoding a
picture, video encoder 20 may generate encoded representations of each slice of the
picture (i.e., coded slices). To generate a coded slice, video encoder 20 may encode
each CTB of the slice to generate encoded representations of each of the CTBs of the
slice (i.e., coded CTBs).

To generate a coded CTB, video encoder 20 may recursively perform quad-tree
partitioning on the pixel block associated with a CTB to divide the pixel block into
progressively-smaller pixel blocks. Each of the smaller pixel blocks may be associated

with a CU. A partitioned CU may be a CU whose pixel block is partitioned into pixel
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blocks associated with other CUs. A non-partitioned CU may be a CU whose pixel :
block is not partitioned into pixel blocks associated with other CUs. r
Video encoder 20 may generate one or more prediction units (PUs) for each non-
partitioned CU. Each of the PUs of a CU may be associated with a different pixel block
within the pixel block of the CU. Video encoder 20 may generate predictive pixel
blocks for each PU of the CU. The predictive pixel block of a PU may be a block of =
pixels.

Video encoder 20 may use intra prediction or inter prediction to generate the e
predictive pixel block for a PU. If video encoder 20 uses intra prediction to generate the -
predictive pixel block of a PU, video encoder 20 may generate the predictive pixel block
of the PU based on decoded pixels of the picture associated with the PU. If video
encoder 20 uses inter prediction to generate the predictive pixel block of the PU, video
encoder 20 may generate the predictive pixel block of the PU based on decoded pixels
of one or more pictures other than the picture associated with the PU.

Video encoder 20 may generate a residual pixel block for a CU based on
predictive pixel blocks of the PUs of the CU. The residual pixel block for the CU may
indicate differences between samples in the predictive pixel blocks for the PUs of the
CU and corresponding samples in the original pixel block of the CU.

Furthermore, as part of encoding a non-partitioned CU, video encoder 20 may
perform recursive quad-tree partitioning on the residual pixel block of the CU to
partition the residual pixel block of the CU into one or more smaller residual pixel
blocks associated with transform units (TUs) of the CU. Because the pixels in the pixel
blocks associated with the TUs each include a luma sample and two chroma samples,
each of the TUs may be associated with a residual sample block of luma samples and
two residual sample blocks of chroma samples.

Video coder 20 may apply one or more transforms to the residual sample blocks
associated with the TUs to generate coefficient blocks (i.e., blocks of coefficients).
Video encoder 20 may perform a quantization process on each of the coefficient blocks.
Quantization generally refers to a process in which coefficients are quantized to
possibly reduce the amount of data used to represent the coefficients, providing further
compression.

Video encoder 20 may generate sets of syntax elements that represent the

coefficients in the quantized coefficient blocks. Video encoder 20 may apply entropy
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encoding operations, such as Context Adaptive Binary Arithmetic Coding (CABAC)

operations, to at least some of these syntax elements. As part of performing an entropy s

encoding operation, video encoder 20 may select a coding context. In the case of
CABAGC, the coding context may indicate probabilities of 0-valued and 1-valued bins.

The bitstream generated by video encoder 20 may include a series of Network
Abstraction Layer (NAL) units. Each of the NAL units may be a syntax structure
containing an indication of a type of data in the NAL unit and bytes containing the data.
For example, a NAL unit may contain data representing a SPS, a PPS, a coded slice, -
supplemental enhancement information (SEI), an access unit delimiter, filler data, or
another type of data. Coded slice NAL units are NAL units that include coded slices.

Video decoder 30 may receive a bitstream. The bitstream may include a coded
representation of video data encoded by video encoder 20. Video decoder 30 may parse
the bitstream to extract syntax elements from the bitstream. As part of extracting some
syntax elements from the bitstream, video decoder 30 may entropy decode (e.g.,
CABAC decode, exponential-Golomb decode, etc.) data in the bitstream. Video
decoder 30 may reconstruct the pictures of the video data based on the syntax elements
extracted from the bitstream.

The process to reconstruct the video data based on the syntax elements may be
generally reciprocal to the process performed by video encoder 20 to generate the
syntax elements. For instance, video decoder 30 may generate, based on syntax
elements associated with a CU, predictive pixel blocks for PUs of the CU. In addition,
video decoder 30 may inverse quantize coefficient blocks associated with TUs of the
CU. Video decoder 30 may perform inverse transforms on the coefficient blocks to
reconstruct residual pixel blocks associated with the TUs of the CU. Video decoder 30
may reconstruct the pixel block of a CU based on the predictive pixel blocks and the
residual pixel blocks.

In some examples, video encoder 20 may divide a picture into a plurality of
entropy slices. This disclosure may use the term “regular slice” to differentiate slices
from entropy slices. An entropy slice may include a subset of the CUs of a regular slice.
In some examples, video encoder 20 may partition the CUs among entropy slices such
that none of the entropy slices includes more bins (e.g., entropy coded bits) than an

upper limit. Each entropy slice may be included in a separate NAL unit.



10

15

20

25

30

14 e

In this disclosure, in-picture prediction may refer to the use of information

associated with a first unit (e.g., CTB, CU, PU, etc.) of a picture for coding a second

unit of the same picture. In-picture prediction across entropy slice boundaries is

allowed, except for the purpose of entropy coding. For example, if a video coder (e.g.,

..........

video encoder 20 or video decoder 30) is performing intra prediction on a particular PU, 3
the video coder may use samples from a neighboring PU, even if the neighboring PU is -

in a different entropy slice than the particular PU. In this example, the video coder may

not be able to use samples from the neighboring PU if the neighboring PU is in a .

different slice than the particular PU. -
However, when a video coder is performing entropy coding on data associated

with a particular PU, the video coder is only allowed to select coding contexts based on

information associated with a neighboring PU if the particular PU and the neighboring

PU are in the same entropy slice. Because of this restriction, the video coder may be

able to perform entropy coding (i.e., entropy encoding or decoding) operations on

multiple entropy slices of a slice in parallel. Hence, video decoder 30 may be able to

parse, in parallel, the syntax elements of multiple entropy slices. However, video

decoder 30 is not able to reconstruct the pixel blocks of multiple entropy slices of a slice

in parallel.

As indicated above, a coded slice NAL unit may contain a coded slice. This
slice may be either an entropy slice or a regular slice. The slice header in the coded
slice NAL unit may include a syntax element (e.g., entropy_slice_flag) that indicates
whether the slice is an entropy slice or a regular slice. For instance, if the syntax
element is equal to 1, the slice in the coded slice NAL unit may be an entropy slice.

Each coded slice may include a slice header and slice data. The slice headers of
entropy slices may be different than the slice headers of regular slices. For instance, the
syntax elements in the slice headers of entropy slices may include a subset of the syntax
elements in the slice headers of regular slices. Because the slice headers of entropy
slices include fewer syntax elements than the slice headers of regular slices, entropy
slices may also be referred to as lightweight slices, slices with short slice headers, or
short slices. An entropy slice may inherit, from a slice header of a regular slice that

precedes the entropy slice in decoding order, the syntax elements omitted from the slice

header of the entropy slice.
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Conventionally, video encoders generate separate NAL units for each entropy
slice. Individual NAL units are often transported on a network in separate packets. In
other words, there may be one NAL unit per packet during transmission of the NAL
units through a network. This may be problematic for NAL units that contain entropy
slices. If a packet that contains a NAL unit that includes a regular slice is lost during
transmission, video decoder 30 may be unable to use entropy slices that inherit syntax
elements from the slice header of the regular slice. Furthermore, if one or more CTBs
of a first entropy slice rely on one or more CTBs of a second entropy slice for in-picture
prediction and a packet that contains a NAL unit that includes the second entropy slice
is lost during transmission, video encoder 30 may be unable to decode the CTBs of the
first entropy slice.

In some examples, a video coder may code at least portions of a picture using
wavefront parallel processing (WPP). FIG. 9, described in detail below, is a conceptual
diagram that illustrates an example of WPP. If a video coder codes the picture using
WPP, the video coder may divide the CTBs of the picture into a plurality of “WPP
waves.” Each of the WPP waves may correspond to a different row of CTBs in the
picture. If the video coder codes the picture using WPP, the video coder may start
coding a top row of CTBs. After the video coder has coded two or more CTBs of the
top row, the video coder may start coding a second-to-top row of CTBs in parallel with
coding the top row of CTBs. After the video coder has coded two or more CTBs of the
second-to-top row, the video coder may start coding a third-to-top row of CTBs in
parallel with coding the higher rows of CTBs. This pattern may continue down the
rows of CTBs in the picture.

If the video coder is using WPP, the video coder may use information associated
with spatially-neighboring CUs outside a current CTB to perform in-picture prediction
on a particular CU in the current CTB, so long as the spatially-neighboring CUs are left,
above-left, above, or above-right of the current CTB. If the current CTB is the leftmost
CTB in a row other than the topmost row, the video coder may use information
associated with the second CTB of the immediately higher row to select a context for
CABAC coding one or more syntax elements of the current CTB. Otherwise, if the
current CTB is not the leftmost CTB in the row, the video coder may use information
associated with a CTB to the left of the current CTB to select a context for CABAC

coding one or more syntax elements of the current CTB. In this way, the video coder

......
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may initialize CABAC states of a row based on the CABAC states of the immediately
higher row after encoding two or more CTBs of the immediately higher row.

Thus, in response to determining that a first CTB is separated from a left
boundary of the picture by a single CTB, a video coder may store context variables
associated with the first CTB. The video coder may entropy code (e.g., entropy encode
or entropy decode), based at least in part on the context variables associated with the
first CTB, one or more syntax elements of a second CTB, the second CTB being
adjacent to the left boundary of the picture and one row of CTBs lower than the first
CTB.

Coded CTBs of a slice are ordinarily arranged in a coded slice NAL unit
according to raster scan order, even when WPP is used. This may complicate the design
of video coders that implement WPP. When the number of WPP waves is greater than
one and less than the number of CTB rows of the picture, the bitstream order (i.e. the
decoding order if the coded picture is processed by one decoder core, not decoded in
parallel) of coded bits for CTBs is changed as compared to when WPP is not applied as
follows. A coded CTB later in bitstream/decoding order may be needed for in-picture
prediction by another coded CTB earlier in decoding order. This may break the
bitstream causality in which no earlier data depends on data coming later in
bitstream/decoding order. Bitstream causality has been a generally-followed principle
in video coding designs, including video coding standards. While the decoding process
works, the decoding process may be more complex as a bitstream pointer that indicates
a current position in the bitstream may move backward and forward within the portion
of the bitstream associated with a coded slice NAL unit.

. In some examples, video encoder 20 may divide a picture into one or more tiles.
The tiles may comprise non-overlapping sets of the CTBs of the picture. Video encoder
20 may divide the picture into tiles by defining two or more vertical tile boundaries and
two or more horizontal tile boundaries. Each vertical side of the picture may be a
vertical tile boundary. Each horizontal side of the current picture may be a horizontal
tile boundary. For example, if video encoder 20 defines four vertical tile boundaries
and three horizontal tile boundaries for the picture, the current picture is divided into six
tiles.

A video coder, such as video encoder 20 or video decoder 30, may code the

CTBs of tiles of a picture according to a tile scan order. To code the CTBs according to
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the tile scan order, the video coder may code the tiles of a picture according to raster
scan order. That is, the video coder may code each tile in a row of tiles in a left-to-right
order, starting from a top row of tiles and then proceeding down the picture. o
Furthermore, the video coder may code each CTB within a tile according to a raster
scan order. In this way, the video coder may code each CTB of a given tile of the
picture before coding any CTB of another tile of the picture. In other words, the tile
scan order traverses CTBs in CTB raster scan order within a tile and traverses tiles in
tile raster scan order within a picture. Consequently, the order in which the video coder
codes the CTBs of the picture may be different if the picture is partitioned into multiple
tiles than if the picture is not partitioned into multiple tiles. FIG. 10, described below, is
a conceptual diagram illustrating an example tile scan order when a picture is
partitioned into a plurality of tiles.

In some instances, a video coder may perform in-picture prediction across tile
boundaries, but not across slice boundaries. In other instances, in-picture prediction is
prohibited across tile boundaries and slice boundaries. In instances where in-picture
prediction is prohibited across tile boundaries and slice boundaries, a video coder may
be able to code, in parallel, multiple tiles.

In some examples, in-picture prediction across tile boundaries is controlled by a
flag (e.g., “tile_boundary independence idc™). If the flag is equal to 1, in-picture
prediction across tile boundaries is disallowed within a picture. Otherwise, in-picture
prediction across tile boundaries is allowed, except for the tile boundaries that are also
picture boundaries or slice boundaries. If in-picture prediction across tile boundaries is
allowed, the functionality of tiles may be to change the scan order of CTBs as compared
to the case where the picture has no tiles, or equivaléntly, only one tile. If in-picture
prediction across tile boundaries is not allowed, besides changing the scan order of
CTB:s, tiles may also provide independent partitioning that can be used for parallel
coding (encoding and/or decoding) of tiles. Thus, if the picture is partitioned into at
least a first tile and a second tile, when video decoder 30 decodes the tiles without using
WPP, video decoder 30 may decode, in parallel, a CTB of the first tile and a CTB of the
second tile.

In some instances, a picture may be partitioned into a combination of tiles, WPP
waves, and entropy slices. For example, a picture may be partitioned into a tile and a

set of WPP waves. In another example, a picture may be partitioned into two tiles and
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an entropy slice. Allowing combinations of tiles, WPP waves, and entropy slices within
a picture may be problematic because allowing such combinations may increase the
complexity and costs of video encoders and/or video decoders.

The techniques of this disclosure may resolve the problems described above. In
accordance with the techniques of this disclosure, a picture may not be partitioned into
any combination of tiles, WPP waves, and entropy slices. In other words, a picture may
be partitioned into one or more tiles, the picture may be partitioned into WPP waves, or
the picture may be partitioned into one or more entropy slices. However, a picture may
not be partitioned into any of the following combinations: (a) tiles, WPP waves and
entropy slices, (b) tiles and WPP waves, (c) tiles and entropy slices, or (d) WPP waves
and entropy slices.

~ To accomplish this, video encoder 20 may include, in a bitstream, a syntax
element that indicates that a picture is encoded according to either a first coding mode
or a second coding mode. In the first coding mode, the picture is entirely encoded using
WPP. That is, each row of CTBs in the picture may be encoded as a WPP wave. In the
second coding mode, the picture may have one or more tiles. Furthermore, in the
second coding mode, each tile of the picture may be encoded without using WPP. For
instance, in the second coding mode, video encoder 20 may, for each tile of a picture,
encode the CTBs within the tile sequentially in an order from left-to-right across rows
of CTBs and down the rows of CTBs of the tile. For ease of explanation, this syntax
element may be referred to herein as the coding mode syntax element.

Video decoder 30 may parse, from a bitstream that includes a coded
representation of a picture in the video data, a syntax element. In response to
determining that the syntax element has a particular value, video decoder 30 may
decode the picture entirely using WPP. In response to determining that the syntax
element does not have the particular value, video decoder 30 may decode each tile of
the picture without using WPP, wherein the picture has one or more tiles.

Various portions of the bitstream may include the coding mode syntax element .
For example, video encoder 20 may generate a SPS that includes the coding mode
syntax element. In this example, video decoder 30 may parse, from the bitstream, a SPS
that includes the coding mode syntax element. In another example, video encoder 20
may generate a PPS that includes the coding mode syntax element. In this example,

video decoder 30 may parse, from the bitstream, a PPS that includes the coding mode
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syntax element. Furthermore, if a picture is encoded according to the second coding
mode, the bitstream may include one or more syntax elements that indicate whether
entropy slices are enabled for the picture. Various portions of the bitstream may include
the one or more syntax elements that indicate whether entropy slices are enabled for a
picture. For example, a SPS may include one or more syntax elements that indicate that
entropy slices are enabled for pictures associated with the SPS. In another example, a
PPS may include one or more syntax elements that indicate that entropy slices are
enabled for pictures associated with the PPS. For instance, in this example, a PPS may
include an entropy_slice_enabled_flag syntax element that indicates whether or not
coded slices that refer to the PPS may consist of entropy slices.

, If the picture includes one or more entropy slices, each entropy slice associated
with a slice of the picture may be included in a single coded slice NAL unit, instead of
being included in separate NAL units. Thus, an entropy slice may be defined as a
subset of a slice, wherein the entropy decoding process of an entropy slice is
independent of other entropy slices in the same slice.

As mentioned briefly above, the bitstream may include coded slice NAL units
that include coded slices. A coded slice may comprise a slice header and slice data.
The slice data may include one or more sub-streams. In accordance with the techniques
of this disclosure, if the picture is encoded in the first coding mode (i.e., the picture is
entirely encoded using WPP), each row of CTBs of the slice is represented by a single
one of the sub-streams. If the picture is encoded in the second coding mode (i.e., each
tile of the picture is encoded without using WPP), each tile of the picture that has one or
more CTBs in the slice is represented by a single one of the sub-streams.

Furthermore, in accordance with the techniques of this disclosure, a slice header
of a coded slice may include a set of syntax elements that indicate entry points of tiles,
WPP waves, or entropy slices within the slice data of the coded slice NAL unit. The
entry point of a sub-stream may be a first bit of the sub-stream. Furthermore, the tiles,
WPP waves, or entropy slices within the slice data of a coded slice NAL unit may
include padding bits that ensure that the tiles, WPP waves, or entropy slices are byte
aligned.

FIG. 2 is a block diagram that illustrates an example video encoder 20 that is
configured to implement the techniques of this disclosure. FIG. 2 is provided for

purposes of explanation and should not be considered limiting of the techniques as
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broadly exemplified and described in this disclosure. For purposes of explanation, this
disclosure describes video encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other coding standards or methods. |:

In the example of FIG. 2, video encoder 20 includes a prediction processing unit '
100, a residual generation unit 102, a transform processing unit 104, a quantization unit
106, an inverse quantization unit 108, an inverse transform processing unit 110, a
reconstruction unit 112, a filter unit 113, a decoded picture buffer 114, and an entropy
encoding unit 116. Prediction processing unit 100 includes an inter-prediction
processing unit 121 and an intra-prediction processing unit 126. Inter-prediction
processing unit 121 includes a motion estimation unit 122 and a motion compensation A+
unit 124. In other examples, video encoder 20 may include more, fewer, or different
functional components.

Video encoder 20 may receive video data. To encode the video data, video
encoder 20 may encode each slice of each picture of the video data. As part of encoding
a slice, video encoder 20 may encode each CTB in the slice. As part of encoding a
CTB, prediction processing unit 100 may perform quad-tree partitioning on the pixel
block associated with the CTB to divide the pixel block into progressively-smaller pixel
blocks. The smaller pixel blocks may be associated with CUs. For example, prediction
processing unit 100 may partition the pixel block of a CTB into four equally-sized sub-
blocks, partition one or more of the sub-blocks into four equally-sized sub-sub-blocks,
and so on.

Video encoder 20 may encode CUs of a CTB to generate encoded
representations of the CUs (i.e., coded CUs). Video encoder 20 may encode the CUs of
a CTB according to a z-scan order. In other words, video encoder 20 may encode a top-
left CU, a top-right CU, a bottom-left CU, and then a bottom-right CU, in that order.
When video encoder 20 encodes a partitioned CU, video encoder 20 may encode CUs
associated with sub-blocks of the pixel block of the partitioned CU according to the z-
scan order.

' As part of encoding a CU, prediction processing unit 100 may partition the pixel

block of the CU among one or more PUs of the CU. Video encoder 20 and video
decoder 30 may support various PU sizes. Assuming that the size of a particular CU is
2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or
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similar for inter prediction. Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N for inter o
prediction. -

Inter-prediction processing unit 121 may generate predictive data for a PU by
performing inter prediction on each PU of a CU. The predictive data for the PU may
include a predictive pixel block that corresponds to the PU and motion information for
the PU. Slices may be I slices, P slices, or B slices. Inter-prediction unit 121 may
perform different operations for a PU of a CU depending on whether the PUisinanl
slice, a P slice, or a B slice. In an I slice, all PUs are intra predicted. Hence, if the PU is o
in an I slice, inter-prediction unit 121 does not perform inter prediction on the PU.

If aPU is in a P slice, motion estimation unit 122 may search the reference
pictures in a list of reference pictures (e.g., “list 0”) for a reference block for the PU.
The reference block of the PU may be a pixel block that most closely corresponds to the
pixel block of the PU. Motion estimation unit 122 may generate a reference picture
index that indicates the reference picture in list O containing the reference block of the
PU and a motion vector that indicates a spatial displacement between the pixel block of
the PU and the reference block. Motion estimation unit 122 may output the reference
picture index and the motion vector as the motion information of the PU. Motion
compensation unit 124 may generate the predictive pixel block of the PU based on the
reference block indicated by the motion information of the PU.

, If aPU is in a B slice, motion estimation unit 122 may perform uni-directional

inter prediction or bi-directional inter prediction for the PU. To perform uni-directional
inter prediction for the PU, motion estimation unit 122 may search the reference
pictures of a first reference picture list (“list 0”) or a second reference picture list (“list
1”) for a reference block for the PU. Motion estimation unit 122 may output, as the
motion information of the PU, a reference picture index that indicates a position in list 0
or list 1 of the reference picture that contains the reference block, a motion vector that
indicates a spatial displacement between the pixel block of the PU and the reference
block, and a prediction direction indicator that indicates whether the reference picture is
in list O or list 1.

To perform bi-directional inter prediction for a PU, motion estimation unit 122
may search the reference pictures in list 0 for a reference block for the PU and may also

search the reference pictures in list 1 for another reference block for the PU. Motion
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estimation unit 122 may generate reference picture indexes that indicate positions in list
0 and list 1 of the reference pictures that contain the reference blocks. In addition, _
motion estimation unit 122 may generate motion vectors that indicate spatial
displacements between the reference blocks and the pixel block of the PU. The motion -
information of the PU may include the reference picture indexes and the motion vectors -
of the PU. Motion compensation unit 124 may generate the predictive pixel block of ;l
the PU based on the reference blocks indicated by the motion information of the PU.

' Intra-prediction processing unit 126 may generate predictive data for a PU by
performing intra prediction on the PU. The predictive data for the PU may include a
predictive pixel block for the PU and various syntax elements. Intra-prediction
processing unit 126 may perform intra prediction on PUs in I slices, P slices, and B
slices.

To perform intra prediction on a PU, intra-prediction processing unit 126 may
use multiple intra prediction modes to generate multiple sets of predictive data for the
PU. To use an intra prediction mode to generate a set of predictive data for the PU,
intra-prediction processing unit 126 may extend samples from sample blocks of
neighboring PUs across the sample blocks of the PU in a direction associated with the
intra prediction mode. The neighboring PUs may be above, above and to the right,
above and to the left, or to the left of the PU, assuming a left-to-right, top-to-bottom
encoding order for PUs, CUs, and CTBs. Intra-prediction processing unit 126 may use
various numbers of intra prediction modes, e.g., 33 directional intra prediction modes.
In some examples, the number of intra prediction modes may depend on the size of the
pixel block of the PU.

Prediction processing unit 100 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 121 for the
PUs or the predictive data generated by intra-prediction processing unit 126 for the PUs.
In some examples, prediction processing unit 100 selects the predictive data for the PUs
of the CU based on rate/distortion metrics of the sets of predictive data. The predictive
pixel blocks of the selected predictive data may be referred to herein as the selected
predictive pixel blocks.

" Residual generation unit 102 may generate, based on the pixel block of a CU
and the selected predictive pixel blocks of the PUs of the CU, a residual pixel block of a

CU. For instance, residual generation unit 102 may generate the residual pixel block of
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the CU such that each sample in the residual pixel block has a value equal to a
difference between a sample in the pixel block of the CU and a corresponding sample in
a selected predictive pixel block of a PU of the CU. -
Prediction processing unit 100 may perform quad-tree partitioning to partition
the residual pixel block of a CU into sub-blocks. Each undivided residual pixel block
may be associated with a different TU of the CU. The sizes and positions of the =
residual pixel blocks associated with TUs of a CU may or may not be based on the sizes
and positions of pixel blocks of the PUs of the CU. =
Because the pixels of the residual pixel blocks of the TUs may comprise a luma ot
sample and two chroma samples, each of the TUs may be associated with a block of |
luma samples and two blocks of chroma samples. Transform processing unit 104 may
generate coefficient blocks for each TU of a CU by applying one or more transforms to
the residual sample blocks associated with the TU. Transform processing unit 104 may
apply various transforms to a residual sample block associated with a TU. For example,
transform processing unit 104 may apply a discrete cosine transform (DCT), a
directional transform, or a conceptually similar transform to a residual sample block.
" Quantization unit 106 may quantize the coefficients in a coefficient block
associated with a TU. The quantization process may reduce the bit depth associated
with some or all of the coefficients. For example, an n-bit coefficient may be rounded
down to an m-bit coefficient during quantization, where n is greater than m.
Quantization unit 106 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefficient blocks associated
with a CU by adjusting the QP value associated with the CU.
Inverse quantization unit 108 and inverse transform processing unit 110 may
apply inverse quantization and inverse transforms to a coefficient block, respectively, to
reconstruct a residual sample block from the coefficient block. Reconstruction unit 112
may add the reconstructed residual sample block to corresponding samples from one or
more predictive sample blocks generated by prediction processing unit 100 to produce a
reconstructed sample block associated with a TU. By reconstructing sample blocks for
each TU of a CU in this way, video encoder 20 may reconstruct the pixel block of the
CU.
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Filter unit 113 may perform a deblocking operation to reduce blocking artifacts
in the pixel block associated with a CU. Decoded picture buffer 114 may store the =

reconstructed pixel blocks after filter unit 113 performs the one or more deblocking = .

operations on the reconstructed pixel blocks. Inter-prediction unit 121 may use a
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reference picture that contains the reconstructed pixel blocks to perform inter prediction
on PUs of other pictures. In addition, intra-prediction processing unit 126 may use
reconstructed pixel blocks in decoded picture buffer 114 to perform intra prediction on
other PUs in the same picture as the CU.

Entropy encoding unit 116 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 116 may receive coefficient
blocks from quantization unit 106 and may receive syntax elements from prediction
processing unit 100. Entropy encoding unit 116 may perform one or more entropy
encoding operations on the data to generate entropy-encoded data. For example,
entropy encoding unit 116 may perform a context-adaptive variable length coding
(CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.

Video encoder 20 may output a bitstream that includes entropy-encoded data
generated by entropy encoding unit 116. The bitstream may include a series of NAL
units. The NAL units may include coded slice NAL units, SPS NAL units, PPS NAL
units, and so on. To ensure that a picture does not include combinations of tiles, WPP
waves, and entropy slices, the bitstream may include a syntax element that indicates
whether the picture is encoded entirely using WPP or whether each tile of the picture is
encoded without using WPP.

FIG. 3 is a block diagram that illustrates an example video decoder 30 that is
configured to implement the techniques of this disclosure. FIG. 3 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified
and described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

In the example of FIG. 3, video decoder 30 includes an entropy decoding unit

150, a prediction processing unit 152, an inverse quantization unit 154, an inverse
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transform processing unit 156, a reconstruction unit 158, a filter unit 159, and a decoded
picture buffer 160. Prediction processing unit 152 includes a motion compensation unit
162 and an intra-prediction processing unit 164. In other examples, video decoder 30
may include more, fewer, or different functional components.

Video decoder 30 may receive a bitstream. Entropy decoding unit 150 may
parse the bitstream to extract syntax elements from the bitstream. As part of parsing the
bitstream, entropy decoding unit 150 may entropy decode entropy-encoded syntax
elements in the bitstream. Prediction processing unit 152, inverse quantization unit 154,
inverse transform processing unit 156, reconstruction unit 158, and filter unit 159 may
generate decoded video data based on the syntax elements extracted from the bitstream.

The bitstream may comprise a series of NAL units. The NAL units of the
bitstream may include coded slice NAL units. As part of parsing the bitstream, entropy
decoding unit 150 may extract and entropy decode syntax elements from the coded slice
NAL units. Each of the coded slices may include a slice header and slice data. The
slice header may contain syntax elements pertaining to a slice. The syntax elements in
the slice header may include a syntax element that identifies a PPS associated with a
picture that contains the slice.

" In addition, video decoder 30 may perform a reconstruction operation on a non-
partitioned CU. To perform the reconstruction operation on a non-partitioned CU,
video decoder 30 may perform a reconstruction operation on each TU of the CU. By
performing the reconstruction operation for each TU of the CU, video decoder 30 may
reconstruct a residual pixel block associated with the CU.

As part of performing a reconstruction operation on a TU of a CU, inverse
quantization unit 154 may inverse quantize, i.e., de-quantize, coefficient blocks
associated with the TU. Inverse quantization unit 154 may use a QP value associated
with the CU of the TU to determine a degree of quantization and, likewise, a degree of
inverse quantization for inverse quantization unit 154 to apply.

After inverse quantization unit 154 inverse quantizes a coefficient block, inverse
transform processing unit 156 may apply one or more inverse transforms to the
coefficient block in order to generate a residual sample block associated with the TU.
For example, inverse transform processing unit 156 may apply an inverse DCT, an

inverse integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse
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rotational transform, an inverse directional transform, or another inverse transform to

the coefficient block.

If a PU is encoded using intra prediction, intra-prediction processing unit 164
may perform intra prediction to generate a predictive sample block for the PU. Intra-
prediction processing unit 164 may use an intra prediction mode to generate the
predictive pixel block for the PU based on the pixel blocks of spatially-neighboring
PUs. Intra-prediction processing unit 164 may determine the intra prediction mode for
the PU based on one or more syntax elements parsed from the bitstream. i

Motion compensation unit 162 may construct a first reference picture list (list 0)
and a second reference picture list (list 1) based on syntax elements extract fromthe
bitstream. Furthermore, if a PU is encoded using inter prediction, entropy decoding unit
150 may extract motion information for the PU. Motion compensation unit 162 may
determine, based on the motion information of the PU, one or more reference blocks for
the PU. Motion compensation unit 162 may generate, based on the one or more
reference blocks for the PU, a predictive pixel block for the PU.

Reconstruction unit 158 may use the residual pixel blocks associated with TUs
of a CU and the predictive pixel blocks of the PUs of the CU, i.e., either intra-prediction
data or inter-prediction data, as applicable, to reconstruct the pixel block of the CU. In
particular, reconstruction unit 158 may add samples of the residual pixel blocks to
corresponding samples of the predictive pixel blocks to reconstruct the pixel block of
the CU.

_ Filter unit 159 may perform a deblocking operation to reduce blocking artifacts
associated with the pixel block of the CU. Video decoder 30 may store the pixel block
of the CU in decoded picture buffer 160. Decoded picture buffer 160 may provide
reference pictures for subsequent motion compensation, intra prediction, and
presentation on a display device, such as display device 32 of FIG. 1. For instance,
video decoder 30 may perform, based on the pixel blocks in decoded picture buffer 160,
intra prediction or inter prediction operations on PUs of other CUs.

As mentioned above, video decoder 30 may receive a bitstream that includes a
coding mode syntax element. If the coding mode syntax element has a particular value,
the coding mode syntax element indicates that a picture is entirely encoded using WPP.

In various examples, the coding mode syntax element may be in various portions of the

bitstream. For instance, a SPS may include a coding mode syntax element. Table 1,
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below, provides an example syntax for an SPS that includes a coding mode syntax

element (“tile_mode™).

TABLE 1 - Sequence parameter set RBSP syntax

seq_parameter_set_rbsp( ) { Descriptor
inter_4x4_enabled_flag u(l)
tile_meode // 0: only one tile in one picture; 1: uniform spacing; 2: non- u(2)

uniform spacing; 3: WPP
if( tile_mode==1 || tile_mode==2) {
num_tile_columns_minus1 ue(v)

num_tile_rows_minusl ue(v)

}
if( tile_mode==2) {
for (i=0; i <num_tile_columns minusl; i++)

column_width[ i ] ue(v)
for (i=0; i <num_tile_rows_minusl; i++)
row_height[ i} ue(v)
}
if( tile_mode==1 || tile_mode==2) {
tile_boundary_independence_flag u(l)

if( tile_boundary_independence_flag )

loop_filter_across_tile flag u(l1)

}
rbsp_trailing_bits( )

Syntax elements with type descriptor ue(v) are unsigned variable-length values
encoded using exponential-Golomb coding with left bit first. Syntax elements with type
descriptor u(1) and u(2) are unsigned values that are 1 or 2 bits in length, respectively.
In the example syntax of Table 1, the inter 4x4 enabled flag syntax element specifies
whether inter prediction can be applied to blocks having the size of 4x4 luma samples.

Furthermore, in the example syntax of Table 1, the tile_mode syntax element
specifies a tile mode for pictures associated with the SPS. If the tile_mode syntax
element is equal to 0, there is only one tile in each of the pictures associated with the
SPS. The CTBs in the single tile of each picture are coded according to raster scan
order without using WPP. If the tile_mode syntax element is equal to 1, the pictures
associated with the SPS are in uniformly-spaced tile mode. When a picture is in

uniformly-spaced tile mode, tile column boundaries and tile row boundaries are
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SUB-STREAMS FOR WAVEFRONT PARALLEL el
PROCESSING IN VIDEO CODING

This application claims the benefit of U.S. Provisional Patent Application No. |
61/588,096, filed January 18, 2012, the entire content of which is hereby incorporated

by reference. o

TECHNICAL FIELD

This disclosure relates to video coding (i.e., encoding and/or decoding of video

data). =

BACKGROUND

Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
tree blocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (1)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice

of a picture may use spatial prediction with respect to reference samples in neighboring
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uniformly distributed in each picture associated with the SPS. As a result, when a

picture is in uniformly-spaced tile mode, the tiles of the picture have the same size.

CTBs within each of the uniformly-distributed tiles may be encoded according to a i
raster scan order without using WPP. If the tile_mode syntax element is equal to 2, the
pictures associated with the SPS are in non-uniformly-spaced tile mode. When a picture
is in the non-uniformly-spaced tile mode, tile column boundaries and tile row s
boundaries are not distributed uniformly across the picture, but may be signaled
explicitly using the column_width[i] and row_height[i] syntax elements of the SPS.
CTBs within each of the non-uniformly-spaced tiles may be encoded according to a
raster scan order without using WPP.

If the tile_mode syntax element is equal to 3, the pictures associated with the
SPS are coded using WPP mode. In other words, if the tile_mode syntax element has a
particular value (e.g., 3), the pictures associated with the SPS are entirely encoded using
WPP. If the tile_mode syntax element has any value other than 3, no tile of any picture
associated with the SPS is encoded using WPP. Furthermore, when a picture is coded
using WPP, a specific memorization process is invoked after decoding two CTBs of a
row of CTBs of the picture. In addition, a specific synchronization process is invoked
before decoding the first CTB of a row of CTBs of the picture. In addition, a specific
CABAC state re-initialization process of internal variables is invoked when the
rightmost CTB of a row has been coded.

. In the specific memorization process mentioned above, a video coder may, in
response to determining that a first CTB is separated from a left boundary of a picture
by a single CTB, store particular context variables associated with the first CTB. In the
specific synchronization process, the video coder may entropy code (i.e., entropy
encode or entropy decode), based at least in part on the context variables associated with
the first CTB, one or more syntax elements of a second CTB, the second CTB being
positioned adjacent to the left boundary of the picture and positioned one row of CTBs
lower than the first CTB.

Furthermore, in the example syntax of Table 1, the num_tile_columns_minusl
syntax element specifies the number of tile columns partitioning each of the pictures
associated with the SPS. When the tile_mode syntax element is equal to 0 or 3, the
value of the num_tile columns_minus] syntax element may be inferred to be equal to 0.

This is because there is only a single tile in a picture when the tile_mode syntax element
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is equal to 0, and each CTB row of the picture is a single tile when the tile_mode syntax

clement is equal to 3. The num_tile rows_minus] syntax element specifies the number o
of tile rows partitioning each of the pictures associated with the SPS. When the s
tile_mode syntax element is equal to 0, the value of the num_tile_rows_minusl syntax
element may be inferred to be equal to 0. When the tile_mode syntax element is equal -
to 3, video decoder 30 may automatically determine (i.e., infer) that the value of the {.ﬂi}
num_tile_rows_minusl syntax element is equal to the height of the pictures in CTBs,
minus 1. Furthermore, when the tile_mode syntax element is equal to 1 or 2, at least
one of the num_tile columns_minusl syntax element and the num_tile_rows_minusl
syntax element is greater than 0.

Video decoder 30 may determine, based on the column_width[i] syntax
elements and the row_height[i] syntax elements, the widths and heights of tiles of the
pictures associated with the SPS. The column_width[i] syntax elements indicate widths
of tile columns of the pictures associated with the SPS. Video decoder 30 may
generate, based at least in part on the column_width[i] syntax elements, a columnWidth
vector that indicates the widths of columns of tiles in the pictures associated with the
SPS. Video decoder 30 may use the following pseudo-code to generate the

columnWidth vector from the column_width[i] syntax elements of the SPS.

for (1=0; i <=num _tile columns minusl; i++) {
if (tile mode !1=2)
columnWidth[i] =
( (i+1) * PicWidthInL.CUs) /
(num_tile columns minusl +1)—
(i* PicWidthInLCUs )/ ( num_tile_columns_minusl + 1)
else
columnWidth([i] = column_width[i]

Video decoder 30 may generate a rowHeight vector that indicates the heights of
tiles in the pictures associated with the SPS. In some examples, video decoder 30 may

use the following pseudo-code to generate the rowHeight vector.
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for (1=0; i <=num_tile_rows_minusl; i++) {
if (tile_ mode 1=2)
rowHeight[i] =
((i+1) * PicHeightInLCUs) /
(num_tile rows_minusl +1)—
(i * PicHeightInLCUs ) / (num_tile_rows_minusl +1)
else

rowHeight[i] = row_width[i]

Furthermore, video decoder 30 may generate a colBd vector that indicates
locations within the pictures associated with the SPS of the leftmost column boundary
for each column of tiles. In some examples, video decoder 30 may determine the colBd

vector using the following pseudo-code.

colBd[0] =0
for (1=0; i <=num_tile columns minusl; i++)
colBd[i+1] = colBd[i] + columnWidth[i]

" Video decoder 30 may generate a rowBd vector that indicates locations within
the picture associated with the SPS of a top row boundary of each row of tiles. In some
examples, video decoder 30 may determine the rowBd vector using the following

pseudo-code.

rowBd[0] =0
for (1=0; i <=num_tile rows_minusl; i++)

rowBd[i+1] = rowBd[i] + rowHeight[i]

. In the example syntax of Table 1, the tile_boundary independence flag syntax
element indicates whether tiles are independently decodable. For example, if the
tile_boundary_independence flag is equal to 1, the tiles are independently decodable.
For instance, if the tile_boundary _independence_flag is equal to 1 and video decoder 30

1s decoding a particular CTB, all CTBs that neighbor the particular CTB that are not



10

15.

20

25

30

31 =

within the same tile as the particular CTB are determined to be unavailable for in-

picture prediction. Furthermore, if the tile_boundary independence_flag is equal to 1,

video decoder 30 re-initializes an entropy coding context prior to entropy decoding the
first CTB in a tile.
If the tile_boundary_independence_flag syntax element is equal to 0, the

availability of CTBs for in-picture prediction is not affected by tile boundaries. In other

words, if the tile_boundary_independent_flag syntax element is equal to 0, video

decoder 30 may perform in-picture prediction across tile boundaries. Furthermore, if
the tile_boundary_independence flag syntax element is equal to 0, entropy decoding
unit 150 may invoke a synchronization process when decoding the first CTB in a tile,
except for the first treeblock in a picture. In this synchronization process, entropy
decoding unit 150 may use information associated with a last CTB of a previous tile to
select a coding context for entropy decoding one or more syntax elements of the first
CTB inatile. In addition, entropy decoding unit 150 may perform a memorization
process when decoding the first CTB of the second CTB row in a tile. The
memorization process may store context variables for use in selecting a context for
CABAC coding one or more syntax elements of a leftmost CTB of the next lower row
of CTBs.

If the tile_mode syntax element is equal to 0 (i.e., there is only one tile per
picture), the SPS does not, in the example syntax of Table 1, include the
tile_boundary_independence_flag syntax element. However, if the tile_mode syntax
element is equal to 0, video decoder 30 may automatically determine that the value of
the tile_boundary_independence flag syntax element is equal to 1. Similarly, if the
tile_mode syntax element is equal to 3 (i.e., the picture is entirely encoded using WPP),
the SPS does not, in the example syntax of Table 1, include the
tile_boundary_independence flag syntax element. However, if the tile_mode syntax
element is equal to 3, video decoder 30 may automatically determine that the value of
the tile_boundary_independencé_ﬂag syntax element is equal to be 0.

. In the example syntax of Table 1, the loop_filter across_tile_flag syntax element
specifies whether video decoder 30 is to perform in-loop filtering operations across tile
boundaries. For example, if the loop_filter across_tile flag syntax element is equal to
1, video decoder 30 may perform in-loop filtering operations across tile boundaries.

Otherwise, if the loop_filter across tile flag syntax element is equal to 0, video
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decoder 30 may not perform the in-loop filtering operations across tile boundaries.
Example in-loop filtering operations may include deblocking filters, sample adaptive
offsets, and adaptive loop filters.

If the tile_mode syntax element is equal to O (i.e., there is only one tile per
picture) or equal to 3 (i.e., each picture associated with the SPS is encoded entirely
using WPP), the SPS does not, in the example syntax of Table 1, include the
loop_filter_across_tile flag syntax element. However, if the tile_mode syntax element
is equal to 0, video decoder 30 may automatically determine that the value of the
loop_filter_across_tile_flag syntax element is equal to 0. If the tile_mode syntax
element is equal to 3, video decoder 30 may automatically determine that the value of
the loop_filter_across_tile_flag syntax element is equal to 1.

, Alternatively, or in addition to receiving a SPS that includes a coding mode
syntax element, video decoder 30 may receive a PPS that includes a coding mode syntax
element. In some examples where video decoder 30 receives an SPS and a PPS that
apply to the same picture and both the SPS and the PPS include coding mode syntax
elements, video decoder 30 may give priority to the coding mode syntax element
specified by the PPS. Table 2, below, presents an example syntax of a PPS that

includes a coding mode syntax element (“tile_mode”).

TABLE 2 — Picture parameter set RBSP syntax

pic_parameter_set_rbsp( ) { Descriptor
pic_parameter_set_id ue(v)
seq_parameter_set_id ue(v)
num_temporal_layer_switching_point_flags ue(v)
for(i=0; i <num_temporal_layer switching_point_flags; i++)
temporal_layer_switching_point_flag[ i ] u(1)
num_ref_idx_10_default_active_minusl ue(v)
num_ref_idx_l1_default_active_minusl ue(v)
pic_init_qp_minus26 /* relative to 26 */ se(v)
constrained_intra_pred_flag u(l)
slice_granularity u(2)
max_cu_qp_delta_depth ue(v)
weighted_pred_flag u(1)
weighted_bipred_idc u(2)
tile_partition_info_present_flag u(l)
if( tile_partition_info_present flag==1) {
tile_mode // 0: only one tile in one picture; 1: uniform spacing; 2: non- u(2)
uniform spacing; 3: WPP
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i tile_mode ==1 || tile_mode==2) {
num_tile_columns_minusl ue(v)
num_tile_rows_minus1 ue(v)
3 o
if( tile mode ==2) { e
for(i=0;i<num_tile columns minusl; i++) ot
column_width[ i ] ue(v) b
for(i=0;i <num_tile_rows_minusl; i++) R
row_height| i ] ue(v) 1

} i

} (S
if( tile mode==1 || tile_mode==2){ -

tile_control_info_present_flag u(l) d

if( tile_control_info_present_flag==1) {
tile_boundary_independence flag u(1)
if( tile_boundary_independence flag)

loop_filter_across_tile flag u(1)
}
}
if( tile_mode==0)

entropy_slice_enabled _flag u(1)

rbsp_trailing_bits( )
}

In the example syntax of Table 2, if the tile_partition_info_present_flag syntax
element is equal to 1, the tile_mode syntax element is present. In addition, if the
tile partition_info_present flag syntax element is equal to 1, the
num_tile_columns_minusl, num_tile_rows_minusl, column_width[i], and
row_height[i] syntax elements may be present in the PPS. The semantics of the
tile_mode syntax element, the num _tile columns_minus] syntax element, the
num_tile_rows_minusl syntax element, the column width syntax elements, and the
row_height syntax elements may be the same as those described above with regard to
the example SPS syntax of Table 1. If the tile partition_info present_flag syntax
element is equal to 0, the tile_ mode, num_tile columns_minusl,
num_tile_rows_minusl, column_width[i], and row_height[i] syntax elements are not
present in the PPS.

In this way, video decoder 30 may determine, based at least in part on the coding
mode syntax element (e.g., tile_mode) having a value that indicates that no CTB of the

picture is encoded using WPP, that a parameter set (e.g., a SPS or a PPS) includes a tile
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column number syntax element and a tile row number syntax element. Video decoder
30 may also determine, based on the tile column number syntax element, the number of
tile columns. The number of columns of tiles of each picture associated with the
parameter set may be equal to the number of tile columns. Video decoder 30 may also
determine, based on the tile row number syntax element, the number of tile rows. The
number of rows of tiles of each picture associated with the parameter set may be equal
to the number of tile rows. Furthermore, video decoder 30 may determine that a
parameter set (e.g., a SPS or a PPS) includes a series of one or more column width
syntax elements and a series of one or more tiles height syntax elements. In addition,
video decoder 30 may determine, based at least in part on the column width syntax
elements, widths of the columns of tiles of each picture associated with the parameter
set. Furthermore, video decoder 30 may determine, based at least in part on the tile
height syntax elements, heights of tiles of each picture associated with the parameter set.
Similarly, video encoder 20 may generate a parameter set that includes a tile
column number syntax element and a tile row number syntax element. The parameter
set may be a picture parameter set (PPS) or a sequence parameter set (SPS). The
number of tile columns is determinable based on the tile column number syntax element
and the number of columns of tiles of each picture associated with the parameter set is
equal to the number of tile columns. The number of tile rows is determinable based on
the tile row number syntax element and the number of rows of tiles of each picture
associated with the parameter set is equal to the number of tile rows. When video
encoder 20 generates the parameter set, video encoder 20 may generate a series of one
or more column width syntax elements and a series of one or more row height syntax
elements. Widths of the columns of tiles of each picture associated with the parameter
set may be determinable based at least in part on the column width syntax elements.
The heights of the rows of tiles of each picture associated with the parameter set may be

determinable based at least in part on the row height syntax elements.

, Furthermore, in the example syntax of Table 2, if the
tile_control _info_present flag syntax element is equal to 1, the
tile_boundary independence flag and loop_filter across_tile_ flag syntax elements may
be present in the PPS.- If the tile_control_info_present_flag syntax element is equal to 0,
the tile_boundary_independence flag and loop_filter across_tile_flag syntax elements

are not present in the PPS.
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"~ In the example syntax of Table 2, if the entropy_slice_enabled_flag is equal to 1,
coded slices that refer to the PPS may include (and may consist of) one or more entropy I,;'ijf_"
slices. If the entropy_slice_enabled_flag syntax element is equal to 0, coded slices that
refer to the PPS do not contain entropy slices. When the entropy_slice_enabled_flag

syntax element is not present, video decoder 30 may automatically determine (i.e., infer)
that the entropy_slice_enabled flag syntax element is equal to 0. The semantics for ~  ©
other syntax elements of the PPS may be the same as the semantics defined in HEVC

WDS.
In the example syntax of Table 2, the PPS only includes the

entropy_slice_enabled flag syntax element if the tile_mode syntax element is equal to
0. As discussed above, video decoder 30 may determine, based on the tile_mode syntax
element, whether to use WPP to decode the CTBs of each tile of a picture. Thus, video
decoder 30 may determine, based on a coding mode syntax element (e.g., tile_mode)
having a particular value, that the bitstream includes an additional syntax element (e.g.,
entropy_slice_enabled_flag) that indicates whether entropy slices are enabled for
encoded representations of pictures that refer to a parameter set (e.g., a SPS or a PPS)

that includes the coding mode syntax element and the additional syntax element.

As described above, a coded slice NAL unit may include a coded representation
of aslice. The coded representation of the slice may include a slice header followed by
slice data. In some examples, video decoder 30 may determine, based at least in part on
a coding mode syntax element (e.g., tile_mode), whether the slice header includes a
plurality of entry offset syntax elements from which entry points of sub-streams in the
slice data are determinable. In response to determining that the slice header includes the
entry offset syntax elements, video decoder 30 may use the plurality of entry offset
syntax elements to determine entry points of sub-streams in the slice data. In other
words, video decoder 30 may determine, based at least in part on the offset syntax
elements, positions in memory of the sub-streams. If the coding mode syntax element
has a value (e.g., 3), each row of CTBs of the picture is represented by a single one of
the sub-streams. If the coding mode syntax element has a different value (e.g., 0, 1, or
2), each tile of the picture that has one or more CTBs in the slice is represented by a
single one of the sub-streams. The slice header may conform to the example syntax of

Table 3, below.
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TABLE 3 - Slice header syntax

slice_header( ) { Descriptor
first_slice_in_pic_flag u(l)
if( first_slice_in_pic_flag==0)
slice_address u(v)
slice_type ue(v)
pic_parameter_set_id ue(v)
if( sample_adaptive_offset_enabled_flag || adaptive_loop_filter enabled_flag )
aps_id ue(v)
frame_num u(v)
if( IdrPicFlag )
idr_pic_id ue(v)
if( pic_order_cnt_type == 0)
pic_order_cnt_lsb u(v)
if( slice_type == P || slice_type == B) {
num_ref_idx_active_override_flag u(1)
if( num_ref idx_active_override flag ) {
num_ref_idx_10_active_minusl ue(v)
if( slice_type == B)
num_ref_idx_l1_active_minusl ue(v)
}
}
ref_pic_list_modification( )
ref_pic_list_combination( )
if( nal_ref flag)
dec_ref pic_marking( )
if( slice_type = 1)
cabac_init_idc ue(v)
slice_qp_delta se(v)
disable_deblocking_filter_flag u(1)
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if( slice_type==B)
collocated_from_10_flag u(1)
if( adaptive_loop_filter enabled flag && aps_adaptive_loop_filter flag ) {
byte_align() “
alf_cu_control param( )

byte_align() -

}
if( ( weighted_pred_flag && slice type==P) || e
(weighted bipred idc == 1 && slice_type == B)) 5
pred_weight_table( )
if( slice_type ==P || slice_type==B) -
5_minus_max_num_merge_cand ue(v) dza

if( tile_mode =0 || entropy slice enabled flag) {

num_entry_offsets ue(v)
if{ num_entry offsets ) {
offset_len_minus8 ue(v)
for(i=0; i <num_entry_offsets; i++)
entry_offset[ i ] u(v)
}

}
if( entropy_slice enabled flag && num_entry offsets)

for(i=10; i <num_entry_offsets; i++) {

entropy_slice_address| i ] u(v)
if( slice_type '=1)
entropy_slice_cabac_init_idc[i ] ue(v)

* In the example syntax of Table 3, the value of the slice header syntax elements
“pic_parameter_set_id,” “frame num,” “idr_pic_id,” “pic_order_cnt_lIsb,”
“delta_pic_order_cnt[ 0 ],” and “delta_pic_order_cnt{ 1 ]” are the same in all slice
headers of a coded picture. Furthermore, in the example syntax of Table 3, the
first_slice in pic_flag syntax element indicates whether the slice includes a CU that
covers a top-left luma sample of the picture. If the first slice in pic_flag syntax
element is equal to 1, video decoder 30 may set both the variables SliceAddress and
LCUAddress to 0 and video decoder 30 may start the decoding with the first CTB in the
picture.

Furthermore, in the example syntax of Table 3, the slice_address syntax element
specifies, in slice granularity resolution, an address in which the slice starts. The slice

granularity resolution is the granularity with which the slice is defined. The number of
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blocks in the same picture or temporal prediction with respect to reference samples in

other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to a reference frames.

Spatial or temporal prediction results in a predicﬁve block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion =
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual coefficients, which then may be
quantized. The quantized coefficients, initially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional vector of coefficients, and

entropy coding may be applied to achieve even more compression.

SUMMARY

In general, this disclosure describes techniques for video coding involving tiles
and wavefront parallel processing (WPP). More specifically, a video encoder may
signal whether WPP is used to encode a picture of a sequence of video picture. If WPP
is used to encode the picture, the video encoder generates a plurality of sub-streams.
Each of the sub-streams may include a consecutive series of bits that represents one
encoded row of coding tree blocks (CTBs) in a slice of the picture. The video encoder
may generate a coded slice network abstraction layer (NAL) unit that includes the
plurality of sub-streams. A video decoder may receive a bitstream that includes the
coded slice NAL unit. Furthermore, the video decoder may determine, based on a
syntax element in the bitstream, that the slice is encoded using WPP and may decode
the slice using WPP.

In one aspect, this disclosure describes a method for encoding video data. The
method comprises signaling that WPP is used to encode a picture of a sequence of video
picture. The method also comprises performing WPP to generate a plurality of sub-
streams, each of the sub-streams including a consecutive series of bits that represents

one encoded row of CTBs in a slice of the picture. The method also comprises
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bits of the slice_address syntax element may be equal to
( Ceil( Log2( NumLCUsInPicture ) ) + SliceGranularity ), where “NumLCUsInPicture” o

is the number of CTBs in a picture.
In the example syntax of Table 3, video decoder 30 sets the LCUAddress
variable to ( slice_address >> SliceGranularity ). The LCUAddress variable indicates

the LCU part of the slice address of the slice in raster scan order. Video decoder 30 sets

the GranularityAddress variable to ( slice_address -

( LCUAddress << SliceGranularity ) ). The GranularityAddress variable represents the ot
sub-LCU part of the slice address. The GranularityAddress variable is expressed in z-
scan order.

. Video decoder 30 sets the SliceAddress variable to
(LCUAddress << ( log2_diff max min_coding_block size <<1))+
( GranularityAddress << ( (log2_diff max_min coding block size <<1) -

SliceGranularity ) ). The value log2 diff max min_coding_block_size specifies a
difference between a maximum and minimum CU size. Video decoder 30 may start
decoding the slice with the largest CU possible at the slice starting coordinate. The slice
starting coordinate may be a coordinate of a top-left pixel of a first CU of the slice.

Furthermore, in the example syntax of Table 3, the cabac _init_idc syntax
specifies an index for determining an initialization table used in the initialization
process for context variables. The value of the cabac_init_idc syntax element may be in
the range of 0 to 2, inclusive.

In the example syntax of Table 3, the num_entry offsets syntax element
specifies the number of entry_offset[i] syntax elements in the slice header. In other
words, the number of entry offset syntax elements in the plurality of entry offset syntax
elements is determinable based on the num_entry_offsets syntax element. When the
num_entry_offsets syntax element is not present, video decoder 30 may determine that
the value of the num_entry_offsets syntax element is equal to 0. In this way, video
decoder 30 may determine, based on the num_entry offsets syntax element, how many
offset syntax elements are in the plurality of entry offset syntax elements. The
offset_len_minus8 syntax element, plus 8, specifies the length, in bits, of the
entry_offset[i] syntax elements. In other words, a length, in bits, of each of the entry
offset syntax elements is determinable based on the offset_len_minus8 syntax element.

In this way, video decoder 30 may determine, based on the offset len minus8 syntax
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element, a length, in bits, of the offset syntax elements. The entry_offset[i] syntax
element specifies the i-th entry offset, in bytes.

"~ Video decoder 30 may parse, based at least in part on how many offset syntax
elements are in the plurality of offset syntax elements and the length, in bits, of the
offset syntax elements, the offset syntax elements from the bitstream. The number of
sub-streams in the coded slice NAL unit may be equal to num_entry_offsets + 1. Index
values of the sub-streams may be in the range of 0 to num_entry_offsets, inclusive.
Sub-stream 0 of the coded slice NAL unit may consist of bytes 0 to entry_offset{ 0] — 1,
inclusive, of the slice data of the coded slice NAL unit. Sub-stream £ of the coded slice
NAL unit, with £ in the range of 1 to num_entry offsets — 1, inclusive, may consist of
bytes entry_offset[ 4-1 ] to entry_offset] £ ] — 1, inclusive, of the slice data of the coded
slice NAL unit. The last sub-stream of the coded slice NAL unit (with sub-stream index
equal to num_entry_offsets) may consist of the rest of the bytes of the slice data of the
coded slice NAL unit.

In the example syntax of Table 3, if the tile_mode syntax element is greater than
0, each sub-stream with a sub-stream index in the range of 1 to num_entry offsets — 1
contains each coded bit of one tile and the sub-stream with sub-stream index 0 contains
either each coded bit of a tile or a number of the ending coded bits of a tile. The ending
coded bits of the tile are the coded bits coded at the end of the tile. Furthermore, if the
tile_mode syntax element is greater than 0, the last sub-stream (i.e., the sub-stream with
sub-stream index equal to num_entry_offsets) contains either all coded bits of a tile or
the number of the starting coded bits of a tile. The starting coded bits of the tile are the
coded bits coded at the start of the tile. A sub-stream does not contain coded bits of
more than one tile. In the example syntax of Table 3, the NAL unit header and the slice
header of a coded slice NAL unit are always included in sub-stream 0. If the tile_mode
syntax element is equal to 0 and the entropy_slice_enabled_flag syntax element is equal
to 1, each sub-stream contains each coded bit of one entropy slice and does not contain
any coded bits of another entropy slice.

In the example syntax of Table 3, the entropy _slice address[i] syntax element
specifies a start address, in slice granularity resolution, of the (i + 1)-th entropy slice in
the coded slice NAL unit. The size in bits of each of the entropy_slice address[i]
syntax elements may be equal to

( Ceil( Log2( NumLCUslInPicture ) ) + SliceGranularity ).
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Furthermore, in the example syntax of Table 3, the
“entropy_slice_cabac_init_idc[ i ]” syntax element specifies an index for determining an

initialization table used in an initialization process for context variables for the (i + 1)-th

entropy slice in the coded slice NAL unit. The value of the
entropy_slice_cabac_init_idc[ i ] is in the range of 0 to 2, inclusive. Semantics for other
syntax elements of the slice header may be the same as the semantics defined in HEVC
WDs. .

. In some examples, the entry offset] i ] syntax elements indicate offsets of sub-
streams in terms of bits. Moreover, in some examples, a slice header may include a flag =
that indicates whether the unit of “entry_offset[ i ]” is bytes (when equal to 1) or bits s
(when equal to 0). This flag may be located in the slice header after the
offset_len_minus8 syntax element.

Furthermore, in some examples, a slice header may include a syntax element for
each sub-stream, including sub-stream 0, to indicate a sub-stream type of the respective
sub-stream. In this example, if the syntax element for a sub-stream has a first value, the
sub-stream is a tile. If the syntax element for a sub-stream has a second value, the sub-
stream is an entropy slice.

As mentioned above, a coded representation may include a slice header and slice
data. The slice data may include one or more sub-streams. If the coding mode syntax
element has a first value (e.g., 3), each row of CTBs of the picture is represented by a
single one of the sub-streams. If the syntax element has a second value (e.g., 0, 1, or 2),
each tile of the picture that has one or more CTBs in the slice is represented by a single
one of the sub-streams. To facilitate WPP or decoding tiles of the slice in parallel, the
sub-streams in the slice data may include padding bits that ensure byte alignment of the
sub-streams. However, in instances where there is only one tile in a picture and entropy
slices are not enabled, there may be no need to include such padding bits. Accordingly,
video decoder 30 may determine, based at least in part on the coding mode syntax
element (e.g., tile_ mode) whether sub-streams in the slice data include padding bits that
ensure byte alignment of the sub-streams.

The slice data may conform to the example syntax of Table 4, below.
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TABLE 4 - Slice data syntax

slice_data( ) {

Descriptor

CurrTbAddr = LCUAddress

moreDataFlag = 1

if( adaptive_loop_filter_flag && alf cu_control_flag )

AlfCuFlagldx = -1

subStreamlIdx =0

do {

xCU = HorLumaLocation( CurrTbAddr )

yCU = VerLumal.ocation( CurrTbAddr )

moreDataFlag = coding_tree( xCU, yCU, Log2TbSize, 0 )

CurrTbAddr = NextTbAddress( CurrTbAddr )

if( tile_ mode !=0 || entropy_slice_enabled flag) {

byteldx = byte index( )

if( byte aligned() && byteldx == entry_offset[ subStreamlIdx ]

subStreamldx+ +

else if( !byte aligned() && byteldx ==
entry offset[ subStreamldx - 1) {

while( !byte aligned())

bit_equal_to_one

f(1)

subStreamIdx+ +

}

moreDataFlag = moreDataFlag && (subStreamIdx ==
num_entry offsets )

}

} while( moreDataFlag )

}

In the example syntax of Table 4, the slice data includes a coding_tree()

function. When video decoder 30 parses the slice data, video decoder 30 may perform a

loop. During each iteration of the loop, video decoder 30 invokes the coding_tree()

function to parse a coded CTB in the slice data. When video decoder 30 invokes the

coding_tree() function to parse a particular coded CTB, video decoder 30 may parse an

end_of slice_flag syntax element from the slice data. If the end_of_slice_flag syntax

element is equal to 0, there is another CTB following the particular coded CTB in the

slice or the entropy slice. If the end_of slice flag syntax element is equal to 1, the

particular coded CTB is the last coded CTB of the slice or the entropy slice.
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Furthermore, the example syntax of Table 4 includes a byte_index() function.
The byte_index() function may return a byte index of a current position within bits of
the NAL unit. The current position within the bits of the NAL unit may be a first
unparsed bit of the NAL unit. If a next bit in the bitstream is any bit of the first byte of
a NAL unit header, the byte_index() function returns a value equal to 0.

The slice data syntax of Table 4 is an example. In other example of slice data
syntaxes, the condition “if( tile_mode !=0 || entropy_slice_enabled_flag )” of Table 4
is replaced with the condition “if( tile mode==1 || tile mode==2 ||
entropy_slice enabled flag).”

FIG. 4 is a flowchart illustrating an example operation 200 of video encoder 20
for encoding video data in which combinations of tiles and WPP waves within a single
picture are disallowed, in accordance with one or more aspects of this disclosure. FIG.
4 is provided as an example. In other examples, the techniques of this disclosure may
be implemented using more, fewer, or different steps than those shown in the example
of FIG. 4.

In the example of FIG. 4, video encoder 20 generates a first coded picture by
encoding a picture according to a first coding mode (202). When video encoder 20
encodes the picture according to the first coding mode, the picture is entirely encoded
using WPP. In addition, video encoder 20 may generate a second coded picture by
encoding the picture according to a second coding mode (204). When video encoder 20
encodes the picture according to the second coding mode, video encoder 20 may
partition the picture into one or more tiles. Video encoder 20 may encode each tile of
the picture (i.e., encode each CTB in each of the tiles) without using WPP. For
instance, video encoder 20 may encode the CTBs of each of the tiles according to a
raster scan order without using WPP. Video encoder 20 may then select the first coded
picture or the second coded picture (206). In some examples, video encoder 20 may
select the first coded picture or the second coded picture based on a rate/distortion
analysis of the first and second coded pictures. Video encoder 20 may generate a
bitstream that includes the selected coded picture and a syntax element that indicates
whether the picture is encoded according to either the first coding mode or the second
coding mode (208).

1 FIG. 5 is a flowchart illustrating an example operation 220 of video decoder 30

for decoding video data in which combinations of tiles and WPP within a single picture
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is disallowed, in accordance with one or more aspects of this disclosure. FIG. 5 is vt

provided as an example.

In the example of FIG. 5, video decoder 30 may parse, from a bitstream that
includes a coded representation of a picture in the video data, a syntax element (222).
Video decoder 30 may determine whether the syntax element has a particular value
(224). In response to determining that the syntax element has the particular value
(“YES” of 224), video decoder 30 may decode the picture entirely using WPP (226). In

L

response to determining that the syntax element does not have the particular value -
(“NO” of 224), video decoder 30 may decode each tile of the picture without using i
WPP, wherein the picture has one or more tiles (228). '

FIG. 6 is a flowchart illustrating an example operation 230 of video decoder 30
for decoding video data in which combinations of tiles and WPP within a single picture
is disallowed, in accordance with one or more aspects of this disclosure. FIG. 6 is
provided as an example. In other examples, the techniques of this disclosure may be
implemented using more, fewer, or different steps than those shown in the example of
FIG. 6. FIG. 6 may be a more specific example of operation 220 of FIG. 5.

| In the example of FIG. 6, video decoder 30 receives a bitstream (231). Video

decode 30 may parse, from the bitstream, a syntax element (232). In some examples,
the bitstream includes a SPS that includes the syntax element. In other examples, the
bitstream includes a PPS that includes the syntax element.

Subsequently, video decoder 30 may determine whether the syntax element has
a first value, e.g., 0 (234). In the example of FIG. 6, if the syntax element has the first
value (“YES” of 234), the picture has a single tile and video decoder 30 may decode the
single tile of the picture without using WPP (236).

However, if the syntax element does not have the first value (“NO” of 234),
video decoder 30 may determine whether the syntax element has a second value, e.g., 1
(238). Inresponse to determining that the syntax element has the second value (“YES”
of 238), video decoder 30 may determine that the picture has multiple uniformly-spaced
tiles and video decoder 30 may decode each of the uniformly-spaced tiles without using
WPP (238).

On the other hand, if the syntax element does not have the second value (“NO”
of 238), video decoder 30 may determine whether the syntax element has a third value,

e.g., 2 (242). Inresponse to determining that the syntax element has the third value

{
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(“YES” of 242), video decoder 30 may determine that the picture has multiple non-

uniformly spaced tiles and video decoder 30 may decode the non-uniformly-spaced tiles

of the picture without using WPP (244). However, in response to determining that the

syntax element does not have the third value (“NO’; of 242), video decoder 30 may

decode the picture entirely using WPP (246). In this way, if the syntax element has a ‘
first value (e.g., 3), the picture is entirely encoded using WPP and if the syntax element |
has a second value different from the first value (e.g., 0, 1, or 2), the picture is 11

partitioned into one or more tiles and the picture is encoded without using WPP. =
| FIG. 7 is a flowchart illustrating an example operation 270 of video encoder 20 o

for encoding video data in which each row of CTBs of a picture is in a separate sub- i

stream, in accordance with one or more aspects of this disclosure. In some video coding

systems, there are different ways of signaling entry points for tiles and WPP waves.

This may add complexity to these video coding systems. The techniques of this

disclosure, and as explained with regard to FIGS. 7 and 8, may resolve these issues by

providing a unified syntax for indicating entry points of tiles, WPP waves, and, in some

examples, entropy slices.

In the example of FIG. 7, video encoder 20 signals that WPP is used to encode a
picture of a sequence of video pictures (272). Video encoder 20 may signal in various
ways that WPP is used to encode the picture. For example, video encoder 20 may
generate a SPS that includes a syntax element (e.g., “tile_mode”) that indicates whether
WPP is to be used to entirely decode the picture. In another example, video encoder 20
may generate a PPS that includes a syntax element (e.g., “tile_mode”) that indicates
whether WPP is to be used to decode the picture.

Furthermore, video encoder 20 may perform WPP to generate a plurality of sub-
streams (274). Each of the sub-streams may include a consecutive series of bits that
represents one encoded row of CTBs in a slice of the picture. Thus, each row of CTBs
is encoded as one sub-stream. Video encoder 20 may generate a coded slice NAL unit
that includes the plurality of sub-streams (276). The coded slice NAL unit may include
a slice header and slice data that conform to the example syntaxes of Tables 3 and 4,
above.

" 7 FIG. 8 is a flowchart illustrating an example operation 280 of video decoder 30
for decoding video data in which each row of CTBs of é picture is in a separate sub-

stream, in accordance with one or more aspects of this disclosure. In the example of
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FIG. 8, video decoder 30 receives a bitstream that includes a coded slice NAL unit
(282). The coded slice NAL unit includes a plurality of sub-streams. Each of the sub-
streams may include a consecutive series of bits that represents one row of CTBs in a
slice of a picture. Furthermore, in the example of FIG. 8, video decoder 30 determines,
based on one or more syntax elements in the bitstream, that the slice is encoded using
WPP (284). For example, video decoder 30 may determine, based on a tile_mode
syntax element being equal to 3, that the slice is encoded using WPP. In this example,
if the tile_mode syntax element is not equal to 3, video decoder 30 may decode each of
the one or more tiles of the picture without using WPP.

Next, video decoder 30 may decode the slice using WPP (286). When video
decoder 30 decodes the slice, video decoder 30 may parse syntax elements associated
with the CTBs of the slice. Video decoder 30 may perform a CABAC parsing process
on some of the syntax elements as part of parsing the syntax elements associated with
the CTBs.

FIG. 9A is a flowchart illustrating a first portion of an example CABAC parsing
process 300 to parse slice data, in accordance with one or more aspects of this
disclosure. Video decoder 30 may perform the process of FIG. 9A when parsing syntax
elements with descriptor ae(v) in a slice data and in a coding tree syntax. The process
of FIG. 9A may output a value of a syntax element.

In the example of FIG. 9A, entropy decoding unit 150 of video decoder 30
performs an initialization of the CABAC parsing process (302). In some examples, the
initialization of the CABAC parsing process is the same as that described in sub-clause
9.2.1 of HEVC WD5.

In addition, entropy decoding unit 150 may determine an address of a
neighboring CTB (304). The neighboring CTB may be a CTB that contains a block that
neighbors the current CTB (i.e., the CTB that video decoder 30 is currently decoding) to
the left, above-left, above, or above-right. In some examples, entropy decoding unit 150

may determine the address of the neighboring CTB as:

tbAddrT = cuAddress(x0 +2 * (1 << Log2MaxCUSize )—1,y0-1)

In the formula above, tbAddrT denotes the address of the neighboring CTB, x0 denotes

the x coordinate of a top-left luma sample of the current CTB, y0 denotes the y
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coordinate of the top-left luma sample of the current CTB, and Log2ZMaxCUSize
denotes the log, base 2, of the maximum size of a CU. The function cuAddress returns
an address of a CU that includes an x coordinate specified by the first parameter and a y
coordinate specified by the second parameter.

Next, entropy decoding unit 150 may use the address of the neighboring CTB to
determine the availability of the neighboring CTB for in-picture prediction (306). In
other words, entropy decoding unit 150 may determine whether information associated
with the neighboring CTB is available for use in selecting a CABAC context.

Entropy decoding unit 150 may determine the availability of the neighboring
CTB for in-picture prediction in various ways. For example, entropy decoding unit 150
may perform the process described in sub-clause 6.4.3 of WDS5, with tbAddrT as input,
to determine the availability of the neighboring CTB for in-picture prediction. In
another example, entropy decoding unit 150 may determine that a CTB is available for
in-picture prediction, unless one of the following conditions is true. If one of the
following conditions is true, entropy decoding unit 150 may determine that a CTB is
unavailable for in-picture prediction. First, entropy decoding unit 150 may determine
that a CTB is unavailable for in-picture prediction if the address of the CTB is less than
0. Second, entropy decoding unit 150 may determine that a CTB is unavailable for in-
picture prediction if the address of the CTB is greater than the address of the CTB that
entropy decoding unit 150 is currently parsing. Third, entropy decoding unit 150 may
determine that a particular CTB is unavailable for in-picture prediction if the particular
CTB belongs to a different slice than the CTB that entropy decoding unit 150 is
currently parsing. For instance, if the address of the particular CTB is denoted as
tbAddr and the address of the CTB that entropy decoding unit 150 is currently parsing is
denoted as CurrTbAddr, entropy decoding unit 150 may determine that the CTB with
address tbAddr belongs to a different slice than the CTB with address CurrTbAddr.
Fourth, entropy decoding unit 150 may determine that a CTB is unavailable for in-
picture prediction if one or more syntax elements in the bitstream indicate that the tiles
of the picture that video decoder 30 is currently decoding are independently decodable
and the CTB is in a different tile than the CTB that entropy decoding unit 150 is
currently parsing. For instance, entropy decoding unit 150 may determine that a CTB is

unavailable for in-picture prediction if the tile boundary independence_flag syntax
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element of the example syntax of Table 1 is equal to 1 and the CTB with address tbAddr -
is contained in a different tile than the CTB with address CurrTbAddr.
Furthermore, entropy decoding unit 150 may determine whether the syntax

element that entropy decoding unit 150 is currently parsing (i.e., the current syntax
element) is in a coding tree syntax structure (308). If the current syntax element is not

in a coding tree syntax structure (“NO” of 308), entropy decoding unit 150 may perform
the portion of CABAC parsing process 300 shown in FIG. 9B. On the other hand, if the
current syntax element is in a coding tree structure (“YES” of 308), entropy decoding =
unit 150 may determine whether tiles of the current picture (i.e., the picture that includes
the current CTB) are independently decodable (310). For instance, in the example SPS
syntax of Table 1, entropy decoding unit 150 may determine that the tiles of the current
picture are independently decodable if an SPS associated with the current picture
includes a tile_boundary_independence_flag syntax element that is equal to 1. In
response to determining that the tiles of the current picture are independently decodable
(“YES” of 310), entropy decoding unit 150 may perform the portion of CABAC parsing
process 300 shown in FIG. 9B.

However, in response to determining that the tiles of the current picture are not
independently decodable (“NO” of 310), entropy decoding unit 150 may determine
whether tbAddr % picWidthInLCUs is equal to 0, where tbAddr is the address of the
neighboring CTB, % denotes the modulo operator, and picWidthInLCUs indicates a
width of the current picture in CTBs (i.e., LCUs) (312).

‘ In response to determining that tbAddr % picWidthInLCUs is equal to 0 (“YES”
of 312), entropy decoding unit 150 may determine whether the neighboring CTB is
available for in-picture prediction (314). In some examples, entropy decoding unit 150
may perform, in action 306, a process to determine a value of a variable availableFlagT
that indicates whether the neighboring CTB is available for in-picture prediction. If the
variable availableFlagT is equal to 1, the neighboring CTB is available for in-picture
prediction. In action 314, entropy decoding unit 150 may determine whether the
variable availableFlagT is equal to 1.

In response to determining that the neighboring CTB is available for in-picture
prediction (“YES” of 314), entropy decoding unit 150 may perform a synchronization
process of the CABAC parsing process (316). In some examples, entropy decoding unit
150 may perform the synchronization process described in sub-clause 9.2.1.3 of HEVC
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generating a coded slice network abstraction layer (NAL) unit that includes the plurality
of sub-streams.

In another aspect, this disclosure describes, a computing device that comprises
one or more processors configured to signal that WPP is used to encode a picture of a
sequence of video pictures. The one or more processors are also configured to perform
WPP to generate a plurality of sub-streams, each of the sub-streams including a
consecutive series of bits that represents one encoded row of CTBs in a slice of the
picture. The one or more processors are also configured to generate a coded slice NAL
unit that includes the plurality of sub-streams.

In another aspect, this disclosure describes a computing device that comprises
means for signaling that WPP is used to encode a picture. The computing device also
comprises means for performing WPP to generate a plurality of sub-streams, each of the
sub-streams including a consecutive series of bits that represents one encoded row of
CTBs in a slice of the picture. In addition, the method comprises means for generating
a coded slice NAL unit that includes the plurality of sub-streams.

" In another aspect, this disclosure describes a computer-readable storage medium
that stores instructions that, when executed by one or more processors of a computing
device, configure the computing device to signal that WPP is used to encode a picture.
The instructions also configure the computing device to perform WPP to generate a
plurality of sub-streams, each of the sub-streams including a consecutive series of bits
that represents one encoded row of CTBs in a slice of the picture. In addition, the
instructions configure the computing device to generate a coded slice NAL unit that
includes the plurality of sub-streams.

In another aspect, this disclosure describes a method for decoding video data.
The method comprises receiving a bitstream that includes a coded slice NAL unit, the
coded slice NAL unit including a plurality of sub-streams, each of the sub-streams
including a consecutive series of bits that represents one row of coding tree blocks
(CTBs) in a slice of a picture. The method also comprises determining, based on a
syntax element in the bitstream, that the slice is encoded using WPP. In addition, the
method comprises decoding the slice using WPP.

In another aspect, this disclosure describes a computing device that comprises
one or more processors configured to receive a bitstream that includes a coded slice

NAL unit, the coded slice NAL unit including a plurality of sub-streams, each of the
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WDS. After performing the synchronization process or in response to determining that
the neighboring CTB is not available for in-picture prediction (“NO” of 314), entropy ,
decoding unit 150 may perform a decoding process for binary decisions before -
termination (318). In general, the decoding process for binary decisions before
termination is a special decoding process for entropy decoding the end_of_slice_flag
and pcm_flag syntax elements. Video decoder 30 may use the end of _slice_flag and J
pcm_flag to make binary decisions before termination of the process of parsing slice
data. In some examples, entropy decoding unit 150 may perform the decoding process —
for binary decisions before termination, as specified in sub-clause 9.2.3.2.4 of HEVC L
WDS. |
After performing the decoding process for binary decisions before termination
(318), entropy decoding unit 150 may perform an initialization process for an arithmetic
decoding engine (320). In some examples, entropy decoding unit 150 may perform the
initialization process defined in sub-clause 9.2.1.4 of HEVC WDS5. After performing
the initialization process for the arithmetic decoding engine, entropy decoding unit 150
may perform the portion of CABAC parsing process 300 shown in FIG. 9B.
If tbAddr % picWidthInLCUs is not equal to 0 (“NO” of 312), entropy decoding
unit 150 may determine whether tbAddr % picWidthInL.CUs is equal to 2 (322). In
other words, entropy decoding unit 150 may determine whether the CTB address of the
neighboring CTB mod the width of the current picture in CTBs is equal to 2. In
response to determining that tbAddr % picWidthInl.CUs is not equal to 2, entropy
decoding unit 150 may perform the portion of CABAC parsing process 300 shown in
FIG. 9B. However, in response to determining that tbAddr % picWidthInLCUs is equal
to 2 (“YES” of 322), entropy decoding unit 150 may perform a memorization process
(324). In general, the memorization process outputs variables used in the initialization
process of context variables that are assigned to syntax elements other than the
end_of slice_flag syntax element. In some examples, entropy decoding unit 150 may
perform the memorization process defined in sub-clause 9.2.1.2 of HEVC WD5. After
performing the memorization process, entropy decoding unit 150 may perform the
portion of CABAC parsing process 300 shown in FIG. 9B.
FIG. 9B is a flowchart illustrating a continuation of the example CABAC
parsing process 300 of FIG. 9A. As shown in FIG. 9B, entropy decoding unit 150 may

binarize the current syntax element (330). In other words, entropy decoding unit 150
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may derive a binarization of the current syntax element. The binarization of a syntax
element may be a set of bin strings for all possible values of the syntax element. A bin
string is a string of bins that is an intermediate representation of values of syntax =
elements from the binarization of the syntax element. In some examples, entropy

decoding unit 150 may perform the process defined in sub-clause 9.2.2 of HEVC WD5 '*
to derive the binarization of the current syntax element.

In addition, entropy decoding unit 150 may determine coding process flow
(332). Entropy decoding unit 150 may determine the coding process flow based on the
binarization of the current syntax element and the sequence of parsed bins. In some e
examples, entropy decoding unit 150 may determine the coding process flow as
described in sub-clause 9.2.2.9 of HEVC WDS5.

Furthermore, entropy decoding unit 150 may determine a context index for each
bin of the binarization of the current syntax element (334). Each of the bins of the
binarization of the current syntax element is indexed by the variable binldx and the
context index for a bin of the binarization of the current syntax element may be denoted
as ctxIdx. In some examples, entropy decoding unit 150 may determine the context
index for a bin of the binarization of the current syntax element as specified in sub-
clause 9.2.3.1 of HEVC WD5.

Entropy decoding unit 150 may perform an arithmetic decoding process for each
context index (336). In some examples, entropy decoding unit 150 may perform the
arithmetic decoding process for each context index as specified in sub-clause 9.2.3.2 of
HEVC WDS5. By performing the arithmetic decoding process for each context index,
entropy decoding unit 150 may generate a sequence of parsed bins.

Entropy decoding unit 150 may determine whether the sequence of parsed bins
matches a bin string in the set of bin strings produced by the binarization of the current
syntax element (340). If the sequence of parsed bins matches a bin string in the set of
bin strings produced by the binarization of the current syntax element (“YES” of 340),
entropy decoding unit 150 may assign a corresponding value to the current syntax
element (342). After assigning the corresponding value to the current syntax element or
in response to determining that the sequence of parsed bins does not match any bin
string in the set of bin strings produced by the binarization of the current syntax element
(“NO” of 340), entropy decoding unit 150 has finished parsing the current syntax

element.
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* In some examples, if the current syntax element is the mb_type syntax element
and the decoded value of the mb_type syntax element is equal to I_PCM, entropy r
decoding unit 150 may be initialized after decoding any pcm_alignment zero_bit syntax
element and all pcm_sample luma and pcm_sample chroma data as specified in sub-
clause 9.2.1.2 of HEVC WD5.
FIG. 10 is a conceptual diagram that illustrates an example of WPP. As i
described above, a picture may be partitioned into pixel blocks, each of which is
associated a CTB. FIG. 10 illustrates the pixel blocks associated with the CTBs as a =
grid of white squares. The picture includes CTB rows 350A-350E (collectively, “CTB n
rows 3507).
A first parallel processing thread (e.g., executed by one of a plurality of parallel
processing cores) may be coding CTBs in CTB row 350A. Concurrently, other threads
(e.g., executed by other parallel processing cores) may be coding CTBs in CTB rows
350B, 350C, and 350D. In the example of FIG. 10, the first thread is currently coding a
CTB 352A, a second thread is currently coding a CTB 352B, a third thread is currently
coding a CTB 352C, and a fourth thread is currently coding a CTB 352D. This
disclosure may refer to CTBs 352A, 352B, 352C, and 352D collectively as “current
CTBs 352.” Because the video coder may begin coding a CTB row after more than two
CTBs of an immediately higher row have been coded, current CTBs 352 are
horizontally displaced from each other by the widths of two CTBs.
In the example of FIG. 10, the threads may use data from CTBs indicated by the
thick gray arrows to perform intra prediction or inter prediction for CUs in current
CTBs 352. (The threads may also use data from one or more reference frames to
perform inter prediction for CUs.) To code a given CTB, a thread may select one or
more CABAC contexts based on information associated with previously-coded CTBs.
The thread may use the one or more CABAC contexts to perform CABAC coding on
syntax elements associated with the first CU of the given CTB. If the given CTB is not
the leftmost CTB of a row, the thread may select the one or more CABAC contexts
based on information associated with a last CU of the CTB to the left of the given CTB.
If the given CTB is the leftmost CTB of a row, the thread may select the one or more
CABAC contexts based on information associated with a last CU of a CTB that is above
and two CTBs right of the given CTB. The threads may use data from the last CUs of
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the CTBs indicated by the thin black arrows to select CABAC contexts for the first CUs
of current CTBs 352. ’

{ FIG. 11 is a conceptual diagram that illustrates an example CTB coding order
for a picture 400 that is partitioned into multiple tiles 402A, 402B, 402C, 402D, 402E,
and 402F (collectively, “tiles 402”). Each square block in picture 400 represents a pixel
block associated with a CTB. The thick dashed lines indicate example tile boundaries.
Different types of cross-hatching correspond to different slices.

The numbers in the pixel blocks indicate positions of the corresponding CTBs
(LCUs) in a tile coding order for picture 400. As illustrated in the example of FIG. 11,
CTBs in tile 402A are coded first, followed by CTBs in tile 402B, followed by CTBs in
tile 402C, followed by CTBs in tile 402D, followed by CTBs in tile 402E, followed by
CTBs in tile 402F. Within each of tiles 402, the CTBs are coded according to a raster
scan order.

A video encoder may generate four coded slice NAL units for picture 400. The
first coded slice NAL unit may include encoded representations of CTBs 1-18. The
slice data of the first coded slice NAL unit may include two sub-streams. The first sub-
stream may include the encoded representations of CTBs 1-9. The second sub-stream
may include the encoded representations of CTBs 10-18. Thus, the first coded slice
NAL unit may include an encoded representation of a slice that contains multiple tiles.

A second coded slice NAL unit may include encoded representations of CTBs
19-22. The slice data of the second coded slice NAL unit may include a single sub-
stream. A third coded slice NAL unit may include encoded representations of CTBs 23-
27. The slice data of the third coded slice NAL unit may include only a single sub-
stream. Thus, tile 402C may contain multiple slices.

A fourth coded slice NAL unit may include encoded representations of CTBs
28-45. The slice data of the fourth coded slice NAL unit may include three sub-streams,
one each for tiles 402D, 402E, and 402F. Thus, the fourth coded slice NAL unit may
include an encoded representation of a slice that contains multiple tiles.

In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which
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corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer- =
readable media generally may correspond to (1) tangible computer-readable storage e
media which is non-transitory or (2) a communication medium such as a signal or b
carrier wave. Data storage media may be any available media that can be accessed by
ON€ Or MOore computers or one or more processors to retrieve instructions, code and/or 1
data structures for implementation of the techniques described in this disclosure. A o
computer program product may include a computer-readable medium. I
By way of example, and not limitation, such computer-readable storage media T
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.
Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or
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software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

( The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.

Various examples have been described. These and other examples are within the

scope of the following claims.
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sub-streams including a consecutive series of bits that represents one row of CTBs in a
slice of a picture. The one or more processors are also configured to determine, based

on one or more syntax elements in the bitstream, that the slice is encoded using WPP.

In addition, the one or more processors are configured to decode the slice using WPP.
~ In another aspect, this disclosure describes a computing device that comprises

means for receiving a bitstream that includes a coded slice NAL unit, the coded slice

NAL unit including a plurality of sub-streams, each of the sub-streams including a

consecutive series of bits that represents one row of CTBs in a slice of a picture. The

computing device also comprises means for determining, based on one or more syntax
elements in the bitstream, that the slice is encoded using WPP. The computing device T
also comprises means for decoding the slice using WPP.

In another aspect, this disclosure describes a computer-readable storage medium
that stores instructions that, when executed by one or more processors of a computing
device, configure the computing device to receive a bitstream that includes a coded slice
NAL unit, the coded slice NAL unit including a plurality of sub-streams, each of the
sub-streams including a consecutive series of bits that represents one row of CTBs in a
slice of a picture. The instructions also configure the computing device to determine,
based on one or more syntax elements in the bitstream, that the slice is encoded using
WPP. In addition, the instructions configure the computing device to decode the slice
using WPP.

The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and

advantages will be apparent from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram illustrating an example video coding system that may
utilize the techniques described in this disclosure.

FIG. 2 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

FIG. 3 is a block diagram illustrating an example video decoder that may

implement the techniques described in this disclosure.
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FIG. 4 is a flowchart illustrating an example operation of a video encoder for
encoding video data in which combinations of tiles and wavefront parallel processing
(WPP) within a single picture are disallowed, in accordance with one or more aspects of
this disclosure.

FIG. 5 is a flowchart illustrating an example operation of a video decoder for
decoding video data in which combinations of tiles and WPP within a single picture are
disallowed, in accordance with one or more aspects of this disclosure.

FIG. 6 is a flowchart illustrating another example operation of a video decoder
for decoding video data in which combinations of tiles and WPP within a single picture
are disallowed, in accordance with one or more aspects of this disclosure.

FIG. 7 is a flowchart illustrating an example operation of a video encoder for
encoding video data in which each row of coding tree blocks (CTBs) of a picture is in a
separate sub-stream, in accordance with one or more aspects of this disclosure.

" FIG. 8 is a flowchart illustrating an example operation of a video decoder for
decoding video data in which each row of CTBs of a picture is in a separate sub-stream,
in accordance with one or more aspects of this disclosure.

FIG. 9A is a flowchart illustrating a first portion of an example Context-
Adaptive Binary Arithmetic Coding (CABAC) parsing process to parse slice data, in
accordance with one or more aspects of this disclosure.

FIG. 9B is a flowchart illustrating a continuation of the example CABAC
parsing process of FIG. 9A.

FIG. 10 is a conceptual diagram that illustrates an example of WPP.

 FIG. 11 is a conceptual diagram that illustrates an example coding order when a

picture 1s partitioned into a plurality of tiles.

DETAILED DESCRIPTION
During video coding, a picture may be partitioned into multiple tiles, wavefront
parallel processing (WPP) waves, and/or entropy slices. The tiles of a picture are
defined by horizontal and/or vertical tile boundaries that pass through the picture. The
tiles of a picture are coded according to a raster scan order and coding tree blocks
(CTBs) within each tile are also coded according to the raster scan order. In WPP, each
row of CTBs in a picture is a “WPP wave.” When a video coder uses WPP to code the

picture, the video coder may start coding the CTBs of a WPP wave from left-to-right

‘‘‘‘‘‘‘
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after the video coder has coded two or more CTBs of an immediately higher WPP wave., =

An entropy slice may include a series of consecutive CTBs according to a raster scan
order. Use of information from across entropy slice boundaries is prohibited for use in
selection of entropy coding contexts, but may be allowed for other purposes.

In existing video coding systems, a picture may have any combination of tiles,

WPP waves, and entropy slices. For example, a picture may be partitioned into a

plurality of tiles. In this example, the CTBs in some of the tiles may be coded
according to the raster scan order while CTBs in other ones of the tiles may be coded
using WPP. Allowing a picture to include combinations of tiles, WPP waves, and i
entropy slices may unnecessarily increase the implementation complexity and costs of
such video coding systems.

The techniques of this disclosure may remedy this problem. That is, in
accordance with the techniques of this disclosure, combinations within a picture of any
of two or more tiles, WPP waves, and entropy slices are disallowed. For instance, a
video encoder may generate a bitstream that includes a syntax element that indicates
whether a picture is encoded according to either a first coding mode or a second coding
mode. In the first coding mode, the picture is entirely encoded using WPP. In the
second coding mode, the picture has one or more tiles and each tile of the picture is
encoded without using WPP.

Furthermore, in this example, a video decoder may parse, from a bitstream that
includes a coded representation of a picture, a syntax element. In response to
determining that the syntax element has a particular value, the video decoder may
decode the picture entirely using WPP. In response to determining that the syntax
element does not have the particular value, the video decoder may decode each tile of
the picture without using WPP. The picture may have one or more tiles.

The attached drawings illustrate examples. Elements indicated by reference
numbers in the attached drawings correspond to elements indicated by like reference
numbers in the following description. In this disclosure, elements having names that
start with ordinal words (e.g., “first,” “second,” “third,” and so on) do not necessarily
imply that the elements have a particular order. Rather, such ordinal words are merely
used to refer to different elements of a same or similar type.

~ FIG. 1 is a block diagram illustrating an example video coding system 10 that

may utilize the techniques of this disclosure. As used described herein, the term “video
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coder” refers generically to both video encoders and video decoders. In this disclosure,
the terms “video coding” or “coding™ may refer generically to video encoding or video
decoding.

As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device or a video encoding
apparatus. Destination device 14 may decode the encoded video data generated by
source device 12. Accordingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source device 12 and destination
device 14 may be examples of video coding devices or video coding apparatuses.
Source device 12 and destination device 14 may comprise a wide range of devices,
including desktop computers, mobile computing devices, notebook (e.g., laptop)
computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video
gaming consoles, in-car computers, or the like.

- Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise one or more media and/or devices capable of
moving the encoded video data from source device 12 to destination device 14. In one
example, channel 16 may comprise one or more communication media that enable
source device 12 to transmit encoded video data directly to destination device 14 in real-
time. In this example, source device 12 may modulate the encoded video data
according to a communication standard, such as a wireless communication protocol, and
may transmit the modulated video data to destination device 14. The one or more
communication media may include wireless and/or wired communication media, such
as a radio frequency (RF) spectrum or one or more physical transmission lines. The one
or more communication media may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network (e.g., the Internet). The one or
more communication media may include routers, switches, base stations, or other
equipment that facilitate communication from source device 12 to destination device 14.

In another example, channel 16 may include to a storage medium that stores
encoded video data generated by source device 12. In this example, destination device
14 may access the storage medium via disk access or card access. The storage medium

may include a variety of locally-accessed data storage media such as Blu-ray discs,
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CLAIMS: : | ATocT

1. A method of encoding video data, the method comprising:
partitioning a picture into a plurality of tiles, the picture being in a sequence
of video pictures of the video data, the picture having a plurality of coding tree block
(CTB) rows, each of the CTB rows being 1 CTB high, and each respective CTB row of
the plurality of CTB rows forming a respective tile of the plurality of tiles;
performing wavefront parallel processing (WPP) to generate a plurality of
sub-streams, each respective sub-stream of the plurality of sub-streams including a )
consecutive series of encoded bits of one tile of the plurality of tiles, wherein none
of the sub-bitstreams contains coded bits of more than one tile and at least some of
the sub-streams include padding bits to ensure byte alignment of the sub-streams;
signaling, in a bitstream, a syntax element having a particular value, the
syntax element having the particular value indicating that WPP is used to encode the
picture and that each respective CTB row of the plurality of CTB rows forms a
respective tile of the plurality of tiles; and
generating a respective coded slice network abstraction layer (NAL) unit that
includes a slice header and slice data, the slice header including a number of entry
offsets syntax element and a set of entry offset syntax elements, the number of
entry offsets syntax element specifying the total number of entry offset syntax
elements in the set of entry offset syntax elements, the slice data consisting of the
total number of entry offset syntax elements plus 1 sub-streams of the plurality of
sub-streams, and each respective entry offset syntax element of the plurality of

entry offset syntax elements specifying a respective entry point offset in bytes.

2. The method of claim 1, wherein signaling the syntax element comprises

generating a picture parameter set (PPS) that includes the syntax element.

3. The method of claim 1, wherein signaling the syntax element comprises

generating a sequence parameter set (SPS) that includes the syntax element.
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4, The method of claim 1, wherein performing WPP to generate the plurality of
sub-streams comprises:

in response to determining that a first CTB is separated from a left boundary
of the picture by a single CTB, storing context variables associated with the first CTB;
and

entropy encoding, based at least in part on the context variables associated
with the first CTB, one or more syntax elements of a second CTB, the second CTB
being adjacent to the left boundary of the picture and one row of CTBs lower than

the first CTB.

5. The method of claim 1, wherein the method is performed by a mobile

computing device.

6. A computing device for encoding video data, the computing device
comprising:
a computer-readable storage medium configured to store the video data; and
one or more processors configured to:
partition a picture into a plurality of tiles, the picture beingina
sequence of video pictures of the video data, the picture having a plurality of
coding tree block (CTB) rows, each of the CTB rows being 1 CTB high, and
each respective CTB row of the plurality of CTB rows forming a respective tile
of the plurality of tiles;
perform wavefront parallel processing (WPP) to generate a plurality
of sub-streams, each respective sub-stream of the plurality of sub-streams
including a consecutive series of encoded bits of one tile of the plurality of
tiles, wherein none of the sub-bitstreams contains coded bits of more than
one tile and at least some of the sub-streams include padding bits to ensure

byte alignment of the sub-streams;
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signal, in a bitstream, a syntax element having a particular value, the
syntax element having the particular value indicating that WPP is used to
encode the picture and that each respective CTB row of the plurality of CTB
rows forms a respective tile of the plurality of tiles; and

generate a respective coded slice network abstraction layer (NAL) unit
that includes a slice header and slice data, the slice header including a
number of entry offsets syntax element and a set of offset syntax elements,
the number of entry offsets syntax element specifying the total number of
offset syntax elements in the set of offset syntax elements, the slice data
consisting of the total number of offset syntax elements plus 1 sub-streams
of the plurality of sub-streams, and each respective entry offset syntax

element of the plurality of offset syntax elements specifying a respective

entry point offset in bytes.

7. The computing device of claim 6, wherein the one or more processors are

configured to generate a picture parameter set (PPS) that includes the syntax

element.

8. The computing device of claim 6, wherein the one or more processors are

configured to generate a sequence parameter set (SPS) that includes the syntax

element.

9. The computing device of claim 6, wherein the one or more processors are
configured to:

store, in response to determining that a first CTB is separated from a left
boundary of the picture by a single CTB, context variables associated with the first
CTB; and

entropy encode, based at least in part on the context variables associated

with the first CTB, one or more syntax elements of a second CTB, the second CTB
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being adjacent to the left boundary of the picture and one row of CTBs lower than

the first CTB.

10. The computing device of claim 6, wherein the computing device is a mobile

computing device.

11. The computing device of claim 6, wherein the computing device comprises at
least one of: an integrated circuit; a microprocessor; or a wireless communication

device.

12, The computing device of claim 6, further comprising a camera configured to

capture the video data.

13. A computing device for encoding video data, the computing device
comprising:
means for partitioning a picture into a plurality of tiles, the picture being in a
sequence of video pictures of the video data, the picture having a plurality of coding
tree block (CTB) rows, each of the CTB rows being 1 CTB high, and each respective
CTB row of the plurality of CTB rows forming a respective tile of the plurality of tiles;
means for performing wavefront parallel processing (WPP) to
generate a plurality of sub-streams, each respective sub-stream of the
plurality of sub-streams including a consecutive series of encoded bits of one
tile of the plurality of tiles, wherein none of the sub-bitstreams contains
coded bits of more than one tile and at least some of the sub-streams include
padding bits to ensure byte alignment of the sub-streams;
signaling, in a bitstream, a syntax element having a particular value,
the syntax element having the particular value indicating that WPP is used to
encode the picture and that each respective CTB row of the plurality of CTB

rows forms a respective tile of the plurality of tiles; and
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means for generating a respective coded slice network abstraction

layer (NAL) unit that includes a slice header and slice data, the slice header
including a number of entry offsets syntax element and a set of entry offset
syntax elements, the number of entry offsets syntax element specifying the
total number of entry offset syntax elements in the set of entry offset syntax
elements, the slice data consisting of the total number of entry offset syntax
elements plus 1 sub-streams of the plurality of sub-streams, and each
respective entry offset syntax element of the plurality of entry offset syntax

elements specifying a respective entry point offset in bytes.

14, A non-transitory computer-readable storage medium that stores instructions
that, when executed by one or more processors of a computing device for encoding
video data, configure the computing device to:

partition a picture into a plurality of tiles, the picture being in a sequence of
video pictures of the video data, the picture having a plurality of coding tree block
(CTB) rows, each of the CTB rows being 1 CTB high, and each respective CTB row of
the plurality of CTB rows forming a respective tile of the plurality of tiles;

perform wavefront parallel processing (WPP) to generate a plurality of sub-
streams, each respective sub-stream of the plurality of sub-streams including a
consecutive series of encoded bits of one tile of the plurality of tiles, wherein none
of the sub-bitstreams contains coded bits of more than one tile and at least some of
the sub-streams include padding bits to ensure byte alignment of the sub-streams;

signal, in a bitstream, a syntax element having a particular value, the syntax
element having the particular value indicating that WPP is used to encode the
picture and that each respective CTB row of the plurality of CTB rows forms a
respective tile of the plurality of tiles; and

generate a respective coded slice network abstraction layer (NAL) unit that
includes a slice header and slice data, the slice header including a number of entry
offsets syntax element and a set of entry offset syntax elements, the number of

entry offsets syntax element specifying the total number of entry offset syntax

a0
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elements in the set of entry offset syntax elements, the slice data consisting of the i

total number of entry offset syntax elements plus 1 sub-streams of the plurality of

sub-streams, and each respective entry offset syntax element of the plurality of

entry offset syntax elements specifying a respective entry point offset in bytes.

l‘—’.“
15, A method of decoding video data, the method comprising: b
receiving a bitstream that includes a coded slice network abstraction layer ‘
(NAL) unit that includes a slice header and slice data, the slice header including a

number of entry offsets syntax element and a set of offset syntax elements, the .
number of entry offsets syntax element specifying the total number of offset syntax |
elements in the set of offset syntax elements, the slice data consisting of the total
number of offset syntax elements plus 1 sub-streams of a plurality of sub-streams,
each respective entry offset syntax element of the plurality of offset syntax elements
specifying a respective entry point offset in bytes, and each respective sub-stream of
the plurality of sub-streams including a consecutive series of encoded bits of one tile
of a plurality of tiles, wherein a picture of the video data is partitioned into the
plurality of tiles, the picture has a plurality of coding tree block (CTB) rows, each of
the CTB rows being 1 CTB high, and at least some of the sub-bitstreams include
padding bits to ensure byte alignment of the sub-bitstreams;
determining, based on a syntax element in the bitstream having a particular
value, that the picture is encoded using wavefront parallel processing (WPP) and that
each respective CTB row of the plurality of CTB rows forms a respective tile of the
plurality of tiles; and

decoding the picture using WPP.

16.  The method of claim 15, further comprising, determining, based at least in

part on the entry offset syntax elements, positions in memory of the sub-streams.

17. The method of claim 15, wherein the bitstream includes a picture parameter

set (PPS) that includes the syntax element.
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18. The method of claim 15, wherein the bitstream includes a sequence o

parameter set (SPS) that includes the syntax element. ok

19.  The method of claim 15, wherein decoding the picture using WPP comprises:
in response to determining that a first CTB is separated from a left boundary

of the picture by a single CTB, storing context variables associated with the first CTB;

and
entropy decoding, based at least in part on the context variables associated -

with the first CTB, one or more syntax elements of a second CTB, the second CTB

being adjacent to the left boundary of the picture and one row of CTBs lower than

the first CTB.

20. The method of claim 15, wherein the method is performed by a mobile

computing device.

21, A computing device for decoding video data, the computing device
comprising:
a computer-readable data storage medium configured to store the video
data; and
one or more processors configured to:
receive a bitstream that includes a coded slice network abstraction
layer (NAL) unit that includes a slice header and slice data, the slice header
including a number of entry offsets syntax element and a set of offset syntax
elements, the number of entry offsets syntax element specifying the total
number of offset syntax elements in the set of offset syntax elements, the
slice data consisting of the total number of offset syntax elements plus 1 sub-
streams of a plurality of sub-streams, each respective entry offset syntax
element of the plurality of offset syntax elements specifying a respective

entry point offset in bytes, and each respective sub-stream of the plurality of
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sub-streams including a consecutive series of encoded bits of one tile of a
plurality of tiles, wherein a picture of the video data is partitioned into the
plurality of tiles, the picture has a plurality of coding tree block (CTB) rows,
each of the CTB rows being 1 CTB high, and at least some of the sub-
bitstreams include padding bits to ensure byte alignment of the sub-
bitstreams;
determine, based on a syntax element in the bitstream having a particular
value, that the picture is encoded using wavefront parallel processing (WPP) and that
each respective CTB row of the plurality of CTB rows forms a respective tile of the
plurality of tiles; and

decode the picture using WPP.

22.  The computing device of claim 21, wherein the bitstream includes a picture

parameter set (PPS) that includes the syntax element.

23.  The computing device of claim 21, wherein the bitstream includes a sequence

parameter set (SPS) that includes the syntax element.

24, The computing device of claim 21, wherein the one or more processors are
configured to:

store, in response to determining that a first CTB is separated from a left
boundary of the picture by a single CTB, context variables associated with the first
CTB; and

entropy decode, based at least in part on the context variables associated
with the first CTB, one or more syntax elements of a second CTB, the second CTB

being adjacent to the left boundary of the picture and one row of CTBs lower than

the first CTB.

25.  The computing device of claim 21, wherein the computing device is a mobile

computing device.
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26. The computing device of claim 21, wherein the computing device comprises

at least one of:

an integrated circuit;

!..._iu

a microprocessor; or o

a wireless communication device.

27.  The computing device of claim 21, further comprising a display configured to 1

display the decoded video data.

-

28. A computing device for decoding video data, the computing device
comprising:

means for receiving a bitstream that includes a coded slice network
abstraction layer (NAL) unit that includes a slice header and slice data, the slice
header including a number of entry offsets syntax element and a set of offset syntax
elements, the number of entry offsets syntax element specifying the total number of
offset syntax elements in the set of offset syntax elements, the slice data consisting
of the total number of offset syntax elements plus 1 sub-streams of a plurality of
sub-streams, each respective entry offset syntax element of the plurality of offset
syntax elements specifying a respective entry point offset in bytes, and each
respective sub-stream of the plurality of sub-streams including a consecutive series
of encoded bits of one tile of a plurality of tiles, wherein a picture of the video data is
partitioned into the plurality of tiles, the picture has a plurality of coding tree block
(CTB) rows, each of the CTB rows being 1 CTB high, and at least some of the sub-
bitstreams include padding bits to ensure byte alignment of the sub-bitstreams;

means for determining, based on a syntax element in the bitstream having a
particular value, that the picture is encoded using wavefront parallel processing
(WPP) and that each respective CTB row of the plurality of CTB rows forms a
respective tile of the plurality of tiles; and

means for decoding the picture using WPP.
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29.  Anon-transitory computer-readable storage medium that stores instructions -

that, when executed by one or more processors of a computing device for decoding i
video data, configure the computing device to:
receive a bitstream that includes a coded slice NAL unit that includes a slice

header and slice data, the slice header including a number of entry offsets syntax -

exe

element and a set of offset syntax elements, the number of entry offsets syntax

}

element specifying the total number of offset syntax elements in the set of offset

T

syntax elements, the slice data consisting of the total number of offset syntax o
elements plus 1 sub-streams of a plurality of sub-streams, each respective entry
offset syntax element of the plurality of offset syntax elements specifying a
respective entry point offset in bytes, and each respective sub-stream of the plurality
of sub-streams including a consecutive series of encoded bits of one tile of a plurality
of tiles, wherein a picture of the video data is partitioned into the plurality of tiles,
the picture has a plurality of coding tree block (CTB) rows, each of the CTB rows
being 1 CTB high, and at least some of the sub-bitstreams include padding bits to
ensure byte alignment of the sub-bitstreams;

determine, based on a syntax element in the bitstream having a particular
value, that the picture is encoded using wavefront parallel processing (WPP) and that
each respective CTB row of the plurality of CTB rows forms a respective tile of the

plurality of tiles; and

decode the picture using WPP.
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