
US0060981.22A

United States Patent (19) 11 Patent Number: 6,098,122
Emmes et al. (45) Date of Patent: Aug. 1, 2000

54 METHOD AND APPARATUS FOR 5,644.786 7/1997 Gallagher et al. 395/850
ADAPTIVELY BLOCKING OUTGOING 5,737,635 4/1998 Daines et al. 395/872

COMMUNICATION REQUESTS AND 5. RCS.","...O.S:
ADJUSTING THE BLOCKING FACTOR 2Y-- 12 IIaklet al.

ACCORDING TO THE VOLUME OF 5,993,056 11/1999 Vaman et al. 371/37.02
REQUESTS BEING RECEIVED IN AN FOREIGN PATENT DOCUMENTS
INFORMATION HANDLING SYSTEM

496922 A1 8/1992 Germany 13/364
75 Inventors: David B. Emmes, Poughkeepsie; Primary Examiner Thomas C. Lee

Donald W. Schmidt, Stone Ridge, both ASSistant Examiner Twanna Gossom
of N.Y. Attorney, Agent, or Firm William A. Kinnaman, Jr.

73 Assignee: International Business Machines 57 ABSTRACT
Corporation, Armonk, N.Y. A method and apparatus for handling outgoing communi

21 Appl. No.: 09/049,513 cation requests in an information handling System in which
outgoing communication packets are accumulated into a

22 Filed: Mar 27, 1998 block that is written to an input/output (I/O) device. For each
7 I/O device there is generated a blocking factor representing

51) Int. Cl.' .. G06F 13/14 a predetermined number of packets that are accumulated
52) U.S. Cl. 710/29; 710/29; 710/30; before the block is written to the I/O device, as well as a push

710/18; 710/20; 709/105; 709/235; 712/201 interval representing a maximum period of time for which
58 Field of Search 710/20, 30, 52, any packet in the block can be Stalled. Upon the arrival of

710/58, 18, 29; 709/105, 235; 712/201 a new outgoing packet, the packet is added to the block, and
the block is written to the I/O device if either the block now

56) References Cited contains the predetermined packets or any packet in the
U.S. PATENT DOCUMENTS packet has been waiting for more than the push interval. A

timer running asynchronously with the arrival of outgoing
5,123,091 6/1992 Newman 395/200 requests periodically pops to write the block to the I/O
5,247,517 9/1993 Ross et al. 370/85 device if it has been waiting overlong, even if no new
5,390,299 2/1995 Rege et al. 395/250 requests have arrived. Both the blocking factor and the push
5,546,543 8/1996 Yang et al. 395/250 interval are periodically adjusted in accordance with the
5,572.520 11/1996 Schenk 370/60 actual throughput So that the blocking factor corresponds to
5,590,366 12/1996 Bryant et al. 395/800 h level of lleli f k 5,598.581 1/1997 Daines et al. 395/872 the exact level of consistent parallelism for a given work
5,602,829 2/1997 Nie et al. 370,235 load.
5,602,831 2/1997 Gaskill 370/252
5,633,870 5/1997 Gayton et al. 370/235 20 Claims, 2 Drawing Sheets

REMOTE
SYSTEM

COMMUNICATION
CHANNEL

OCAL SYSTEM

6S rRNE

6,098,122 Sheet 1 of 2 Aug. 1, 2000 U.S. Patent

-

-

|-------------

WNEH SÅS BHOWB?! 70 ||

U.S. Patent

REMOTE
SYSTEM

REMOTE
SYSTEM

Aug. 1, 2000 Sheet 2 of 2 6,098,122

LOCAL
SYSTEM

LOCAL
SYSTEM

6,098,122
1

METHOD AND APPARATUS FOR
ADAPTIVELY BLOCKING OUTGOING
COMMUNICATION REQUESTS AND

ADJUSTING THE BLOCKING FACTOR
ACCORDING TO THE VOLUME OF
REQUESTS BEING RECEIVED IN AN
INFORMATION HANDLING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related to the commonly owned, con
currently filed application of the same inventors, Ser. No.
09/049436, entitled “Method and Apparatus for Selectively
Using Input/Output Buffers as a Retransmission Vehicle in
an Information Handling System” (docket PO998013),
incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a method and apparatus for
adaptively blocking outgoing communication requests in an
information handling System and, more particularly, to a
method and apparatus for adaptively blocking Such requests
in a client/server System in which a plurality of requesters
are operating concurrently.

2. Description of the Related Art
Computer Systems use what are known as input/output

(I/O) operations to transmit data from a central processing
unit (CPU) or main memory to an external device. The
external device may be an output device Such as a printer, a
Storage device Such as a disk or tape drive, or a communi
cation channel Such as a local area network (LAN). There is
generally a fixed cost associated with each I/O operation
performed. AS the amount of data being Sent per I/O
operation decreases, the fixed overhead of the I/O driver
processing becomes proportionally larger relative to the
amount of data Sent. Many network applications today cause
an extremely high frequency of Small data requests (possibly
mixed with larger amounts of data), Such that the overhead
incurred by the I/O driver becomes a significant portion of
the overall communication Stack processing.

Various attempts have been made before to proactively
block the outgoing requests, but they have Subsequently
been abandoned, due to the inability to find the consistent
level of parallelism for all possible workloads. The net result
of these attempts was that certain workloads would incur
unreasonable delayS.

SUMMARY OF THE INVENTION

In general, the present invention contemplates a method
and apparatus for handling outgoing communication
requests in an information handling System in which out
going communication packets are accumulated into a block
that is written to an input/output (I/O) device. For each I/O
device there is generated a blocking factor (BF) representing
a predetermined number of packets that are accumulated
before the block is written to the I/O device, as well as a push
interval representing a maximum period of time for which
any packet in the block can be Stalled. Upon the arrival of
a new outgoing packet, the packet is added to the block, and
the block is written to the I/O device if either the block now
contains the predetermined packets or any packet in the
packet has been waiting for more than the push interval. A
timer running asynchronously with the arrival of outgoing
requests periodically pops to write the block to the I/O

15

25

35

40

45

50

55

60

65

2
device if it has been waiting overlong, even if no new
requests have arrived. Both the blocking factor and the push
interval are periodically adjusted in accordance with the
actual throughput So that the blocking factor corresponds to
the exact level of consistent parallelism for a given work
load.
The invention contemplates determining the exact level of

consistent parallelism for a given workload. This specifica
tion calls this value the incremental blocking factor (BF) for
the workload. Once the correct blocking factor is known,
multiple outgoing requests can be proactively stalled until
that blocking factor is reached (without causing significant
delay), thereby allowing the I/O driver costs to be amortized
acroSS multiple requests. This grouping of requests into
blocks occurs between the main CPU processor(s) and the
I/O adapter. Depending on the type of communication
channel, the adapter may then deblock the group of requests
and Send them out over the media.

Although the disclosed embodiment is designed for out
going MVS TCP/IP packets, the invention defined within
this Specification applies equally well to any communication
Stack, on any platform, where there is the potential for a high
frequency of relatively Small outgoing I/O requests.

Just because an adapter reaches a high packet throughput
rate, it doesn’t mean that blocking is right for that workload.
In the case where a single client/server pair are communi
cating over the adapter, activating blocking could be dev
astating to the throughput when a request/response model is
being used. This is because the first outgoing request would
be stalled, waiting for the Second to arrive, but Since there is
only one client, it will never arrive. That is why the
invention only keeps blocking active for a given workload if
the level of parallelism is consistently maintained. This level
of parallelism is directly related to the number of concurrent
client/server Sessions that are active at any point in time. The
goal of the invention is to get close to a “streaming” level of
performance, even when there is only a high frequency of
Small interactive traffic acroSS the adapter.
The invention tracks outgoing packet heuristics, makes

decisions based upon those heuristics (i.e., adjusts the incre
mental blocking factor), and then enforces the decisions that
are made. All tracking and decision processing is done on a
per-network adapter basis. This allows each adapter to have
a unique blocking factor, based upon current load.

Decisions to adjust the incremental blocking factor are
made every r number of outgoing requests made (under
normal circumstances). Decisions could alternatively be
made via a timer, but high frequency timers cause unnec
essary overhead. Instead, very responsive decisions are
made on the requesters thread of execution, while an out
going request is being processed.
The tracking of outgoing packet heuristics is implemented

by counting the number of outgoing requests, and noting the
time-of-day (TOD) interval between decisions. This is then
used to determine the average interval between outgoing
requests during that decision cycle. The enforcement of
decisions is also primarily done during the processing of an
outgoing request.

This enforcement comes in two forms. The first, involves
determining if the current request “fills” the block. For
example, if the current blocking factor is 5 and only 3
packets are pending in the block, then the current request
will also be stalled, waiting for the 5th packet. When that
packet does arrive, it will “fill” the block, and cause the
block to be written immediately. The invention is ignorant of
when the size of the data causes the block to be filled with

6,098,122
3

data (thereby causing the block to be written immediately,
independent of the number of requests it contains).

The Second form of enforcement involves maintaining an
adaptive “push interval” in addition to the BF value. When
a decision is made, the maximum interval that a packet
should be delayed is also calculated (described in more
detail later). If at the time of a new outgoing request, a block
has been pending for more than the target push interval, then
that block is pushed out immediately, independent of the
number of packets it contains.
As can be seen from the above, there is very low overhead

involved in both tracking, and enforcing blocking factor
decisions in the mainline flow. This invention does assume
however that a very efficient method of serializing the
concurrent access to the outgoing I/O buffer is used, other
wise the performance gains obtained by blocking may be
reduced.

The current workload defines the average packet through
put rate that must be maintained in order to keep blocking
active for that adapter. For example, if a given adapter
reaches 1000 packets per Second before it enters blocking
(i.e., a blocking factor >1), then the adapter must maintain
at least that rate when the incremental blocking factor is
increased. Otherwise, the blocking factor will be decreased,
which may Switch the adapter back to non-blocking mode.
The current workload must consistently exceed the entry
level minimum requirement of e Sustained packets per
second before blocking will even be considered.

Blocking factor decisions are based upon two factors: the
average interval between outgoing requests, and the average
interval between outgoing blockS. It takes g consecutive
good decision cycles to cause the incremental blocking
factor to be increased. It takes b bad decision cycles to cause
the blocking factor to be decreased (a value of g being
greater than b has proved to be the most effective). For a
decision cycle to be considered good, both the outgoing
request rate, and the block rate (related to the push interval
described above) must be within fpercent of the target rates
calculated when the BF was last increased, otherwise it is
considered bad. By including the block rate in the decision
process, we are assured that BF increases do not cause
excessive throughput delayS.

Since the invention proactively Stalls outgoing requests,
preferably there is Some mechanism to ultimately drive out
Stalled requests if the request being waited for never arrives.
The mechanism used in the disclosed embodiment is a
last-resort timer which fires every tims, to drive out pending
blocks as required. This timer uses the push interval
described above to See if a block has been pending too long.
If the invention is working correctly, this timer will most
often find nothing to do.

The push interval is initially calculated very conserva
tively to insure the invention can quickly detect when
blocking is not appropriate for a given workload (i.e., a high
frequency of requests, but little to no consistent parallelism).
Once the workload Sustains blocking using the conservative
model, the invention Switches to a more aggressive model
which attempts to get the highest possible blocking factor
within an ims interval.

If BF increases have been consistently determined to be
bad for a given workload, then future increase attempts are
delayed, to avoid the performance degradation that occurs
every time a bad BF increase occurs. This delay is imple
mented by defining an adaptive multiplier to the g good
decision cycles required to increase the blocking factor. By
increasing this multiplier every time a BF increase is con

15

25

35

40

45

50

55

60

65

4
sidered bad (capped at Some value), Subsequent BF increase
attempts are effectively delayed. This multiplier is only
relevant to a given blocking factor value (i.e., bad experi
ences with a BF of 4 should be forgotten when the BF is
reduced to 3).

If the current BF is no longer appropriate due to a
downturn in outgoing request throughput, then a decision
can be made earlier than the normal request-based cycle.
This decision is made by the push interval enforcing routine,
by counting the number of times a block had to be pushed
out because it exceeded the target push interval (includes f
percent fudge factor to allow for Some variation) calculated
during the previous decision cycle. When the push count
reaches a threshold value within a decision cycle, a decision
is made immediately to decrease the blocking factor. If the
BF has very recently been increased, then the threshold
value is smaller than it normally would be (i.e., decreases BF
more aggressively).
A Second level of decision making is performed to com

plete the invention. The decision making up to this point is
both fairly aggressive, and low level. It is aggressive
because it ultimately attempts to get the highest possible BF
within a ims interval. It is low level because it is based
directly upon the average request/block throughput rates. If
left to its own, the above portion of the invention would
produce widely varying BFS, even for a steady workload,
due to its immediate nature. For example, for a fairly heavy
workload it may determine that a BF of 8 is good for a short
interval, but then it finds that blocking the requests at that
rate causes Starvation because that is not the consistent level
of parallelism for that workload, so the invention would
Subsequently lower the BF. This oscillation in BFS has a
negative impact on performance because whenever a bad
decision is made (i.e., a packet is stalled too long), it takes
time to adjust the BF back to what it should be.
To Stop this oscillation, a conservative governor is inte

grated into the invention. This governor uses the output of
the lower level decisions as its Sampling Set, to determine the
consistent level of parallelism for a given workload. The
governor Sampling Set is implemented by maintaining
counts of the results of each of the lower level decision
cycles. Each time a lower level decision is made, the count
associated with the resulting BF is incremented. When any
one count exceeds a threshold value (i.e., the lower level
decisions are focusing on a particular BF), a new governor
level decision is made.

The governor portion of the invention defines the highest
possible BF that can be set at a given point in the life cycle
of a workload. The lower level decision making is restricted
to making a decision ranging from 1 to the current governor
BF. The governor value is initially set to a low value, until
the workload has been consistent enough to warrant increas
ing the governor BF. The ideal distribution of the lower level
decisions occurs when the majority of the decisions made,
fall close to the governor BF value. When this is sustained
(i.e., c consecutive good governor BFSamples) the governor
BF value is increased by 1, thereby giving the lower level
decision processing one more option to chose from. When
the distribution of the lower level decisions is any but ideal,
the governor BF value is immediately reduced.
Once the governor BF reaches its highest point for a given

workload, the invention has determined the exact level of
consistent parallelism for that workload. This value pro
duces optimal throughput results in that it minimizes delay,
while at the same time minimizing the overhead required to
Satisfy the high frequency of outgoing requests.

6,098,122
S

This invention determines the exact level of consistent
parallelism for any workload, as it changes over time. Once
this blocking factor is known, the I/O driver costs can be
effectively amortized by proactively Stalling outgoing
requests, without incurring any Significant delayS. The net
effect of applying this invention is unique, in that the harder
you push the adapter, the more efficient the communication
with that adapter becomes. An interesting external phenom
enon in fact occurs during StreSS testing when this invention
is applied correctly. Specifically, a given null transaction
workload can cause the CPU to become 100% busy, but this
invention then allows significant new workload to be added
without incurring any additional delay, while using the same
100% of the CPU.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a computer System incorporating the present
invention.

FIG. 2 shows the packet flow in a system in which the
communication channel comprises a local area network.

FIG. 3 shows the packet flow in a system in which the
communication channel comprises a point-to-point connec
tion.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shows a typical configuration 100 in which the
present invention may be used. In the configuration 100, a
first computer system 102 (the “local” system) communi
cates with a remote System 104 via a communication chan
nel 106. Communication channel 106 may be of any suitable
type known to the art, Such as a local area network (LAN),
a point-to-point connection or the like; the particulars of its
construction form no part of the present invention.

Local System 102 may be a Server System Servicing a
remote client System 104, although the particular allocation
of client functions and Server functions among Systems 102
and 104 forms no part of the present invention. Local system
102 is referred to as Such because it is assumed to be
transmitting data to remote system 104 and is therefore the
System of interest in explaining the present invention. In an
actual configuration, remote System 104 may be similarly
equipped for when it assumes a transmitting role. Local
System 102 has the usual components of a programmed
general-purpose computer System (as does remote System
104), including a central processing unit (CPU) 108, an
operating system (OS) kernel 110, an input/output (I/O)
adapter or Subsystem 112 coupling the System to commu
nication channel 106, and one or more requesters 114 that
issue communication requests to OS kernel 110. Requesters
114 may be different processes (either different applications
or multiple instances of the same application), different
threads of the same process, or a combination of both. In the
embodiment shown, local system 102 comprises an IBM
S/390TM server such as an S/390 Parallel Enterprise
Server'TM0 G3 or G4, while OS kernel 110 comprises the
IBM OS/390TM operating system. However, the invention is
not limited to any particular platform.

Requesters 114 issue communication requests to a com
munication stack 118 (e.g., a TCP/IP stack) of the OS kernel
110. Communication stack 118 constructs packets 116 con
taining the user data which are assembled into blocks 120
containing one or more packets 116. After it has assembled
a block 120 of the desired size, communication stack 118
calls an I/O driver 122, a software component that transfers
the block 120 from the buffer storage of the communication
stack to the I/O adapter 112.

15

25

35

40

45

50

55

60

65

6
The manner in which the blocks 120 are handled by the

I/O adapter 112 depends on the type of communication
channel 106, among other factors. Thus, referring to FIG. 2,
if communication channel 106 is a local area network
(LAN), then the local I/O adapter 112 may deblock (or
unblock) the packets 116 and transmit them separately over
the communication channel. On the other hand, referring to
FIG. 3, if communication channel 106 is a point-to-point
connection, then local I/O adapter 112 may send the packets
116 as blocks 120 to the remote system, whose own I/O
adapter (not separately shown) unblocks the packets.

Further details of the operation of the communication
stack 118 may be found in the related application referred to
above, incorporated herein by reference.

Pseudocode listings 1-8 in the Appendix show the pro
cedure of a preferred embodiment of the present invention.
The procedure is executed by the communication Stack 118,
either upon receiving a communication request from a
requester 114 or asynchronously, depending on the operation
involved.

The procedure uses the following control Structures on a
per blocking device (i.e., I/O adapter 112) basis. All fields
but the flags are integers. All fields are initialized to Zero
unless otherwise noted.

902 Current BF: Current Blocking Factor for device
(initialized to 1).

903 Goal Met Count: Number of times throughput
goals were met Since last increase of the Current BF
(intervening decrements cause this field to be reset).

904 Write Count: Number of packet requests made since
last decision.

905 Target Interval: Current target packet throughput
interval. This target throughput rate (and the Push
Interval which is based upon it) must be consistently
maintained to keep the current BF value.

906 Push Count: Number of times block 120 was pushed
out due to exceeding the target Push Interval (907)
Since last decision.

907 Push Interval: Interval between block writes that
must be maintained in order to keep the current BF.

908 Probation Flag: Flag indicating that BF was just
increased. It is used to determine if a recent increase
was “bad”.

909 Aggressive Flag: Flag stating that there has been
enough consistent parallelism to maintain blocking
using the conservative Push Interval calculation.
When set, attempt to reach the highest possible BF,
bounded by both MAX DELAY INTERVAL and the
current Governor BF (914).

910 Consecutive Decr Flag: Flag used to determine
when previous bad history for a given BF (i.e., Goal
Met Multiplier) should be cleared.

911 Goal Met Multiplier: Multiplier used to delay
future Current BF increases because recent increase
attempts have consistently proven to be “bad”
(initialized to 1).

912 Historical Thruput(MAX BF): Array containing
the packet throughput interval that was reached when
the Current BF was last incremented. This is primarily
used during decrement Current BF processing to
determine what the Target Interval should be for the
newly decremented BF.

913 Decision TOD: TOD at time last decision was made.
Preferably in units no greater than 16 microSeconds.

6,098,122
7

914 Governor BF: Highest BF the low level decision
processing has to choose from (i.e., the consistent level
of parallelism for this work load). Initialized to MIN
GOVERNOR BF.

915 Governor Goal Met Count: Number of times
throughput goal was met Since last increase of the
Governor BF (intervening decrements cause this field
to be reset).

916 BF Decisions Sampling Set(MAX BF): Array
used as input to the Governor BF decision making. It
contains counts of the resulting Current BF after each
low-level decision cycle is made.

917 Aggressive Decrement Count: Number of con
secutive decrements that have occurred (i.e., without an
intervening increment) while using the aggressive
Push Interval calculation.

The following static values are also used (on either a per
device or global basis):

918 AGGRESSIVE THRESHOLD: Threshold value of
Aggressive Decrement Count 917 beyond which
operation reverts to conservative model.

919 DECISION CYCLE THRESHOLD: Number of
packet requests between decisions to raise or lower
Current BF 902. Corresponds to the value r.

920 ENTRY LEVEL, BLOCKING INTERVAL:
Minimum (and initial) value of Target Interval 905.
Corresponds to the value e.

921 FUDGE FACTOR: Used when calculating the
Push Interval. It is really f percent of the product of
the Current BF and the Target Interval.

921a FUDGE FACTOR2: Used when calculating the
Target interval. It is really f percent of the Target
Interval.

922 GOAL MET THRESHOLD: Minimum value of
Goal Met Count 903 for Current BF 902 to be
raised. Corresponds to value g.

923 GOVERNOR DECISION THRESHOLD: Value
of BF DECISIONS SAMPLING SET(x) 916 caus
ing a governor decision to be made.

923 a GOVERNOR GOAL MET THRESHOLD:
Value of Governor Goal Met Count 915 for
Governor BF 914 to be raised. Corresponds to value
C

924 MAX BF: Upper bound on Governor BF 914.
925 MAX DELAY INTERVAL: Upper bound on

Push Interval 907.
926 MAX MULTIPLIER: Upper bound on Goal Met

Multiplier 911.
927 MAX PROBATION STALL INTERVAL: Proba

tion threshold value of Stalled Interval beyond which
Current BF 902 is decremented.

928 MIN GOVERNOR BF: Minimum (and initial)
value of Governor BF 914.

929 PUSH THRESHOLD: Threshold value of Push
Count 906 beyond which Current BF 902 is decre
mented.

Listing 1 shows the mainline packet write flow routine
100. This routine 100 is performed by a layer of the
communication Stack 118 that receives a request from
another layer of the Stack that has created a packet 116 in
response to a request from a requester 114.
Upon receiving an outgoing packet, the routine 100 adds

the packet 116 to the current block 120 (step 101) and
determines whether the block 120 is to be considered “full”

15

25

35

40

45

50

55

60

65

8
due to reaching Current BF 902, using the routine shown in
Listing 2 (step 110). If the block 120 is not “full”, then the
routine 100 determines whether the block 120 must be
pushed out due to its being Stalled too long as determined
from Push Interval 907, using the routine shown in Listing
7 (step 120). If the block 120 is “full” or must be “pushed
out', then the routine 100 causes the block 120 to be written
by calling the device driver 122 for the I/O adapter 112 (step
121).
A Separate routine implements an asynchronous last

resort timer that loops through all pending blocks 120 (one
for each device 112 that is blocking data) to write blocks 120
that have been stalled too long because Current BF 902
was not met (step 130).

Listing 2 shows the routine 110 for determining if the
block 120 is “full”. Initially, the routine 110 increments the
count (Write Count 904) of packets 116 written to the
device 112. If Write Count 904 reaches DECISION
CYCLE THRESHOLD 919, then the routine 110 calls the
“Make BF Decision' routine 210 shown in Listing 3 and
zeros Write Count 904 and Push Count 906 (step 202). If
Write Count 904 modulo Current BF 902 is Zero, then the
routine 110 informs the caller that the block 120 is “full
(step 203).

Listing 3 shows the “Make BF Decision” routine 210
invoked at step 202 of routine 110. The routine 210 initially
Serializes at least on a per device basis if required (step 301).
The routine 210 then calculates the time since the decision
was made for this device (Elapsed Time) by Subtracting
Decision TOD 913 from the current time-of-day (TOD)
Current TOD (step 302). The routine 210 then sets
Decision TOD equal to Current TOD (step 303) and cal
culates the average time between packet requests (the packet
throughput interval) by dividing Elapsed Time by Write
Count 904 (step 304). Next, the routine 210 calculates the
average time between block writes (the block throughput
interval) by dividing Elapsed Time by Write Count/
Current BF 902 (step 305). The routine then determines
target throughput intervals for both packets 116 and blockS
120 (step 306).

If Current BF 902 is greater than 1 or there is a history
of BF “bad” increments (i.e., Goal Met Multiplier
911z1), then the routine 210 sets the target packet through
put interval (Target Interval 905) equal to the sum of the
Target Interval that caused the most recent increase of
Current BF 902 and FUDGE FACTOR2 921a, and sets
the target block throughput interval (Push Interval 907)
equal to the Push Interval calculated during most recent
action on Current BF at step 408 or 510 (step 307).
Otherwise, the routine 210 sets both the target block
throughput interval (Push Interval 907) and the target
packet throughput interval (Target Interval 905) equal to
ENTRY LEVEL BLOCKING INTERVAL 920 (step
308).

If both target throughputs are met, then the routine 210
invokes the “Consider BF Increment routine 320 shown in
Listing 4 (step 309). Otherwise, the routine 210 invokes the
“Consider BF Decrement” routine 330 shown in Listing 5
(step 310).
The routine 210 then records the latest BF decision in the

BF Decisions Sampling Set array 916 (i.e., increments
BF Decisions Sampling Set(Current BF) by 1) (step
311). If BF Decisions Sampling Set(Current BF) is
greater than GOVERNOR DECISION THRESHOLD
923, then the routine 210 calls the “Set Governor BF
processing routine 340 shown in Listing 8 (step 312).
Finally, the routine 210 unserializes if it serialized above at
step 301 (step 313).

6,098,122

Listing 4 shows the “Consider BF Increment” routine
320. At step 401, if Probation Flag 908 is ON, the routine
320 sets Probation Flag equal to OFF and sets Goal Met
Multiplier 911 equal to 1. The routine then increments
Goal Met Count 903 (step 402). If Goal Met Count 903
is greater than the product of GOAL MET THRESHOLD
922 and Goal Met Multiplier 513 (step 403), then the
routine 320 performs some or all of steps 404-410;
otherwise, it jumps to Step 411.
At step 404, if Current BF 902 is less than Governor

BF 914 (340), then the routine 320 performs some or all of
steps 405–410; otherwise, the routine jumps to step 411.
At step 405, the routine 320 saves the current packet

throughput interval that must be maintained to keep
Current BF (i.e., stores it as the Historical Thruput
(Current BF) entry of array 912 and as Target Interval
905). The routine 320 then increments the Current BF 902
for this device (i.e., I/O adapter 112) (step 406) and sets
Probation Flag 908 equal to ON (step 407). The routine
then calculates a new target block throughput interval
(Push Interval 907) (step 408). If the conservative model is
active (i.e., Aggressive Flag 909-OFF), then the routine
320 sets Push Interval 907 equal to Current BF * Target
Interval+FUDGE FACTOR 921 (capped by MAX
DELAY INTERVAL 925) (step 409). Otherwise
(Aggressive Flag=ON), the routine 320 sets Push Interval
907 equal to MAX DELAY INTERVAL 925 (step 410).

Finally, the routine 320 Zeros Goal Met Count 903 and
Aggressive Decrement Count 917 and Sets Consecutive
Decr Flag 910 equal to OFF (step 411).

Listing 5 shows the “Consider BF Decrement” routine
330. At step 501, the routine 330 zeros Goal Met Count
903. If Current BF902 is greater than 1 (step 502), then the
routine 330 performs some or all of steps 503–515.
Otherwise, it jumps to step 516.
At step 503 the routine 330 decrements Current BF 902

by 1. The routine then restores the target packet throughput
interval to the value before the most recent BF increase (i.e.,
Target Interval 905=Historical Thruput(Current BF))
(step 504). Next, the routine 320 recalculates the target block
throughput interval (Push Interval 907), using the routine
shown in Listing 6 (step 510). If the decrement occurred
immediately after an increment (i.e., Probation Flag 908–
ON) (step 511), then the routine 330 performs steps
512-515.

At step 512, the routine 330 sets Probation Flag 908
equal to OFF. The routine 330 then increments Goal Met
Multiplier 911 (bounded by MAX MULTIPLIER 926) to
delay future increase attempts, as the most recent increment
was “bad” (i.e., the throughput rate was high, but the
parallelism not consistent) (step 513). If Goal Met
Multiplier 911 is being increased consistently (i.e., Goal
Met Multiplier 911 modulo some valued1 =0), if the con
Servative push interval model is active (i.e., Aggressive
Flag 909-OFF), and if Current BF 902>1, then we have
reached the highest possible BF using the conservative push
interval calculation method, and consistent parallelism
exists (step 514). The routine 330 therefore Switches into the
aggressive push interval model (i.e., sets Aggressive Flag=
ON) (step 515).
As noted above, control passes to step 516 if Current BF

902 is 1. The action taken at this point depends on whether
there has been a previous bad history of BF increments. If
there has been no previous bad history of BF increments
(i.e., Goal Met Multiplier=1)), then the routine 330 resets
Target Interval 905 equal to ENTRY LEVEL
BLOCKING INTERVAL 920 (step 517). If there has been

15

25

35

40

45

50

55

60

65

10
a previous bad history, the routine 330 keeps the throughput
rates that caused entry to blocking as the target throughputs
(i.e., the last BF increment for this throughput was “bad”,
therefore don’t reconsider incrementing Current BF 902
until this level of throughput is exceeded) (step 518).

Listing 6 shows the routine 510 for recalculating Push
Interval 907. At step 601, if the conservative model is active
(i.e., Aggressive Flag 909-OFF), the routine 510 sets
Push Interval 907=(Current BF 902 * Target Interval
905)+FUDGE FACTOR 921 (where FUDGE FACTOR
921=Current BF * Target Interval * f) and skips to step
605.

If, on the other hand, Aggressive Flag 909 is ON, the
routine 510 performs steps 602-604 before proceeding to
step 605. At step 602, the routine 510 increments
Aggressive Decrement Count 917. At step 603, if
Aggressive Decrement Count 917 is greater than
AGGRESSIVE THRESHOLD 918, then the routine recal
culates Push Interval 907 using the conservative model
(601), sets Aggressive Flag 909 equal to OFF, and Zeros
Aggressive Decrement Count 917. Otherwise, the routine
510 takes no immediate action on Push Interval 907 (i.e.,
waits until a Switch back to the conservative model occurs).

At step 605, if Consecutive Decr Flag 910 is ON, then
the routine sets Goal Met Multiplier 911 equal to 1 and
sets Consecutive Decr Flag 910 equal to OFF. Otherwise,
the routine 510 sets Consecutive Decr Flag equal to ON.

Listing 7 shows the routine 120 for determining whether
the block 120 must be pushed out. The routine 120 first
calculates Stalled Interval by Subtracting the TOD of when
the first packet 116 was written to the stalled block 120 from
the current TOD (step 701). If the block 120 has been stalled
longer than the Push Interval 907 calculated at step 408
(step 702), then the routine 120 informs the caller that the
block 120 must be “pushed out” (step 703). If Current BF
902 was recently increased (i.e., Probation Flag=ON) and
Stalled Interval is greater than MAX PROBATION
STALL INTERVAL 927, then the routine 120 notes that a
decrement is required (step 704). Otherwise (step 705), the
routine 120 increments Push Count 906 (step 706) and, if
Push Count is greater than PUSH THRESHOLD 929
(step 707), notes that a decrement is required (step 708).

If a decrement is required (step 709), then the routine 120
serializes at least on a per device basis if required (step 710)
and performs steps 711–713 before unserializing at step 714.
At step 711 the routine 120 calls the “Consider BF decre
ment routine 320 and Zeros Write Count 904 and Push
Count 712. At step 712 the routine 120 records the latest BF
decision in the BF Decisions Sampling Set array 916
(i.e., increments BF Decisions Sampling Set(Current
BF) by 1). At step 713, if the array entry BF Decisions
Sampling Set(Current BF) is greater than GOVERNOR
DECISION THRESHOLD 923, then the routine 120 calls
the “Set Governor BF processing 340 shown in Listing 8.
Finally, the routine 120 unserializes if it serialized above at
step 710 step 714).

Listing 8 shows the “Set Governor BF Processing rou
tine 340 invoked from step 713 of routine 120 or step 312
of routine 210. At step 801 the routine calculates the total
number of decisions made Since the last Governor decision
was made by Summing the counts within the
BF Decisions Sampling Set array 916.

If the majority of the decisions made during the last
governor decision cycle are close to Governor BF914 (step
802), the routine 340 increments Governor Goal Met
Count 915 (step 803) and, if Governor Goal Met Count
915 is greater than GOVERNOR GOAL MET

6,098,122
11

THRESHOLD 923a (step 804), increments Governor BF
914 (bounded by MAX BF 924) and Zeros Governor
Goal Met Count 915, thereby giving the low-level deci
sion making one more BF to choose from (step 805).
On the other hand, if the majority of the decisions made

during the last governor decision cycle are far below
Governor BF 914 (step 806), then the routine 340 decre
ments Governor BF 914 by 2 (bounded by MIN
GOVERNOR BF928) and Zeros Governor Goal Met
Count 915 (step 807).

If neither of these circumstances obtain (i.e., performance
is neither good nor very bad) (step 808), then the routine 340
decrements Governor BF 914 by 1 (bounded by MIN

12
GOVERNOR BF928) and Zeros Governor Goal Met
Count 915 (step 809).

After performing steps 802-805, 806-807 or 808–809,
the routine 340 clears the BF Decisions Sampling Set
array 916 to prepare for next Governor BF decision (step
810).
The invention is preferably implemented as Software (i.e.,

a machine-readable program of instructions tangibly embod
ied on a program Storage device) executing on a hardware
machine. While a particular embodiment has been shown
and described, it will be apparent to those skilled in the art
that various modifications may be made without departing
from the spirit of the invention.

APPENDIX

LISTING 1: 100 Mainline Packet Write Flow

Determine if block is to be considered “full due to reaching

Determine if block must be pushed out due to it being stalled too long

101 Add packet to current block
110

the Current BF(902)
120 If (not “full”) Then

(Push Interval (907))
121. If (block is “full or must be “pushed out) Then

Cause block to be written
130 Implement an asynchronous last resort timer that loops through all

pending blocks (one for each device that is blocking data) to
write blocks that have been stalled too long because the Current BF

Increment Write Count(904) of packets written to this device
If (Write Count reaches the DECISION CYCLE THRESHOLD) Then

Call “Make BF decision' (210), and zero Write Count, Push Count(906)
If (Write Count modulo the Current BF(902) = 0) Then

Calculate time since decision was made for this device (Elapsed Time)
by subtracting the Decision TOD(913) from the Current TOD

ime between packet requests (packet throughput interval)

ime between block writes (block throughput interval)
by dividing the Elapsed Time by (Write Count/Current BF(902))

(i.e., Goal Met Multiplier(911) -=

Determine target throughput intervals for both packets, and blocks
If (Current BF(902) > 1 OR There is a history of BF “bad” increments

1)) Then
. Set Target packet throughput interval = Throughput that caused the

most recent increase of the Current BF (405) (504)
(i.e., Target Interval) + FUDGE FACTOR

. Set Target block throughput interval = Push Interval (907) calculated
during most recent action on the Current BF (408) (510)

. Set Target block, and packet throughput intervals =
ENTRY LEVEL, BLOCKING INTERVAL

If (Both target throughputs are met) Then “Consider BF increment (320)

Record latest BF decision in the BF Decisions Sampling Set(916) array
(i.e., increment BF Decisions Sampling Set(Current BF) by 1)
If (BF Decisions Sampling Set (Current BF) > GOVERNOR DECISION THRESHOLD)

Then Call “Set Governor BF processing (340)

was not met
LISTING 2110 Determine if Block is “Full

2O1
2O2

2O3
Inform caller that block is “full

LISTING 3: 210 “Make BF Decision

301 Serialize at least on a per device basis (if required)
3O2

303 Set Decision TOD = Current TOD
304 Calculate average

by dividing Elapsed Time by Write Count(904)
305 Calculate average

306
307

3O8 Else

309

310 Else “Consider BF decrement” (330)
311

312

313 Unserialize if serialized above
LISTING 4: 320 “Consider BF Increment

4O1
keep
Current BF
(i.e.,
store it
into
the
Current BF(902)
entry
of the

If (Probation Flag(908) = ON) Then

6,098,122
13

APPENDIX-continued

Historical Thruput(912)
array,
and
into
Target Interval (905))
406 . Increment the Current BF for this device
407 . Set Probation Flag = ON
408 . Calculate new target block throughput interval (Push Interval (907))
4.09 . If (Conservative model active (i.e., Aggressive Flag(909) = OFF)) Then

Set Push Interval = Current BF *
Target Interval + FUDGE FACTOR
(capped by MAX DELAY INTERVAL)

410 . Else (Aggressive Flag = ON)
. Set Push Interval = MAX DELAY INTERVAL

411 Zero Goal Met Count, Aggressive Decrement Count(917), and
Set Consecutive Decr Flag(910) = OFF

LISTING 5:330 “Consider BF Decrement

501 Zero Goal Met Count(903)
502 If (Current BF(902) > 1) Then
503 Decrement Current BF by 1
504 Restore Target packet throughput interval to value before the most recent

BF increase
(i.e., Target Interval (905) = Historical Thruput(Current BF))

510 Recalculate target block throughput interval (Push Interval (907))
511 If (decrement occurred immediately after an increment

(i.e., Probation Flag(908) = ON)) Then
512 . Set Probation Flag = OFF
513 . Increment the Goal Met Multiplier(911) (bounded by MAX MULTIPLIER) to

delay future increase attempts, as most recent increment was “bad”
(i.e., throughput rate high, but parallelism not consistent)

514 . If (the Goal Met Multiplier is being increased consistently
(Goal Met Multiplier modulo some value > 1 = 0)

AND the conservative push interval model is active
(i.e., Aggressive Flag(909) = OFF)

AND Current BF > 1) Then
(i.e., we have reached the highest possible BF using the
conservative push interval calculation method, and consistent
parallelism exists)

515 . Switch into the aggressive push interval model
(i.e., Set Aggressive Flag = ON)

516 Else (Current BF = 1)
517 When (no previous bad history of BF increments

(i.e., Goal Met Multiplier = 1))
. Reset Target Interval = ENTRY LEVEL, BLOCKING INTERVAL

518 When (Previous bad history)
Keep throughput rates that caused entry to blocking as the target
throughputs (i.e., last BF increment for this throughput was “bad”, there
fore don’t reconsider incrementing the Current BF until this level of
throughput is exceeded)

LISTING 6:510 Recalculate Push Interval

601 If (Conservative model active (i.e., Aggressive Flag(909) = OFF)) Then
Set Push Interval (907) = Current BF(902) *

Target Interval (905) + FUDGE FACTOR
602 Else (Aggressive Flag = ON)

Increment Aggressive Decrement Count (917)
603 If (Aggressive Decrement Count > AGGRESSIVE THRESHOLD) Then

Recalculate Push Interval using the conservative model (601)
Set Aggressive Flag = OFF, and Zero Aggressive Decrement Count

604 Else Take no immediate action on Push Interval
(i.e., wait until switch back to the conservative model occurs)

605. If (Consecutive Decr Flag = ON) Then
Set Goal Met Multiplier(911) = 1
Set Consecutive Decr Flag = OFF

606 Else Set Consecutive Decr Flag = ON
LISTING 7: 120 Determine if Block must be Pushed Out

701 Calculate Stalled Interval by subtracting the TOD of when the first packet
was written to the stalled block, from the current TOD

702 If (block has been stalled longer than the Push Interval (907) (408)) Then
703 Inform caller that block must be “pushed out
704 If (Current BF(902) was recently increased (i.e., Probation Flag = ON)

AND Stalled Intervals MAX PROBATION STALL INTERVAL) Then
. Note Decrement required

705 Else
7O6 . Increment Push Count(906)
707 . If (Push Count > PUSH THRESHOLD) Then
708 . Note Decrement required

14

6,098,122
15

APPENDIX-continued

16

709 If (Decrement required) Then
710 . Serialize at least on a per device basis (if required)
711 . Call “Consider BF decrement (320), and zero Write Count (904),

Push Count
712 . Record latest BF decision in the BF Decisions Sampling Set(916) array

(i.e., increment BF Decisions Sampling Set(Current BF) by 1)
713 . If (BF Decisions Sampling Set(Current BF) >

GOVERNOR DECISION THRESHOLD) Then
Call “Set Governor BF processing (340)

71.4 . Unserialize if serialized above
LISTING 8:340 “Set Governor BF Processing

801 Calculate total number of decisions made since last Governor decision was
made by Summing the counts within the BF Decisions Sampling Set (916) array

802. When (The majority of the decisions made during the last Governor
decision cycle are close to the Governor BF(914)) Then

803 Increment Governor Goal Met Count(915)
804 If (Governor Goal Met Count > GOVERNOR GOAL MET THRESHOLD) Then
805 . Increment Governor BF (bounded by MAX BF), and zero

Governor Goal Met Count, thereby giving the low level decision making
one more BF to choose from

806 When (The majority of the decisions made during the last Governor
decision cycle are far below the Governor BF) Then

807 Decrement the Governor BF(914) by 2 (bounded by MIN GOVERNOR BF),
and zero Governor Goal Met Count

808 Otherwise (neither good or very bad)
809 Decrement the Governor BF(914) by 1 (bounded by MIN GOVERNOR BF),

and zero Governor Goal Met Count
810 Clear BF Decisions Sampling Set array to prepare for next Governor BF

decision

What is claimed is:
1. In an information handling System in which outgoing

communication requests are accumulated into a block that is
written to an input/output (I/O) device, a method of handling
outgoing communication requests, comprising the Steps of:

accumulating outgoing communication requests into a
block;

generating a blocking factor representing a predetermined
size that is attained before the block is written to the I/O
device;

writing the block to the I/O device when it has attained the
predetermined size; and

dynamically adjusting the blocking factor in accordance
with the volume of the requests.

2. The method of claim 1 in which the blocking factor
represents the number of requests accumulated into a block
before the block is written to the I/O device.

3. The method of claim 1 in which the writing step
comprises the Steps of:

determining whether a new request produces a block of
the predetermined size; and

writing the block to the I/O device if the new request
produces a block of the predetermined size.

4. The method of claim 3 in which the writing step
comprises the further Steps of

determining whether any request in the block has been
stalled in the block for more than a predetermined
interval; and

Writing the block to the device if any request in the block
has been stalled in the block for more than the prede
termined interval.

5. The method of claim 4 in which the determination of
whether any request in the block has been stalled in the
block for more than a predetermined interval is made upon
the arrival of a new request.

35

40

45

50

55

60

65

6. The method of claim 4 in which the determination of
whether any request in the block has been stalled in the
block for more than a predetermined interval is made
asynchronously with respect to the arrival of new requests.

7. The method of claim 1 in which the adjusting step is
performed upon an expiration of a predetermined period of
time.

8. The method of claim 1 in which the adjusting step is
performed upon processing a predetermined number of
requests.

9. The method of claim 1 in which the adjusting step
comprises the Steps of:

determining an actual throughput rate for the requests,
comparing the actual throughput rate with a target

throughput rate for the requests, and
modifying the blocking factor in accordance with the

comparison of the actual throughput rate with the target
throughput rate.

10. The method of claim 9 in which the modifying step
comprises the Step of

counting the number of times that a block remains Stalled
for more than a predetermined interval; and

decrementing the blocking factor if a block remains
Stalled for more than a predetermined interval more
than a predetermined number of times.

11. In an information handling System in which outgoing
communication requests are accumulated into a block that is
written to an input/output (I/O) device, apparatus for han
dling outgoing communication requests, comprising:
means for accumulating outgoing communication

requests into a block;
means for generating a blocking factor representing a

predetermined size that is attained before the block is
written to the I/O device;

means for writing the block to the I/O device when it has
attained the predetermined size; and

means for dynamically adjusting the blocking factor in
accordance with the Volume of the requests.

6,098,122
17

12. The apparatus of claim 11 in which the writing means
comprises:
means for determining whether a new request produces a

block of the predetermined size; and
means for writing the block to the I/O device if the new

request produces a block of the predetermined size.
13. The apparatus of claim 12 in which the writing means

further comprises:
means for determining whether any request in the block

has been stalled in the block for more than a predeter
mined interval; and

means for writing the block to the device if any request in
the block has been stalled in the block for more than the
predetermined interval.

14. The apparatus of claim 11 in which the adjusting
means comprises:
means for determining an actual throughput rate for the

requests,
means for comparing the actual throughput rate with a

target throughput rate for the requests, and
means for modifying the blocking factor in accordance

with the comparison of the actual throughput rate with
the target throughput rate.

15. The apparatus of claim 14 in which the modifying
means comprises:
means for counting the number of times that a block

remains Stalled for more than a predetermined interval;
and

means for decrementing the blocking factor if a block
remains Stalled for more than a predetermined interval
more than a predetermined number of times.

16. A program Storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for handling outgoing
communication requests in an information handling System
in which outgoing communication requests are accumulated
into a block that is written to an input/output (I/O) device,
the method StepS comprising:

accumulating outgoing communication requests into a
block;

1O

15

25

35

40

18
generating a blocking factor representing a predetermined

size that is attained before the block is written to the I/O
device;

writing the block to the I/O device when it has attained the
predetermined size; and

dynamically adjusting the blocking factor in accordance
with the volume of the requests.

17. The program storage device of claim 16 in which the
Writing Step comprises:

determining whether a new request produces a block of
the predetermined size; and

writing the block to the I/O device if the new request
produces a block of the predetermined size.

18. The program storage device of claim 17 in which the
Writing Step further comprises:

determining whether any request in the block has been
stalled in the block for more than a predetermined
interval; and

Writing the block to the device if any request in the block
has been stalled in the block for more than the prede
termined interval.

19. The program storage device of claim 16 in which the
adjusting Step comprises:

determining an actual throughput rate for the requests,
comparing the actual throughput rate with a target

throughput rate for the requests, and
modifying the blocking factor in accordance with the

comparison of the actual throughput rate with the target
throughput rate.

20. The program storage device of claim 19 in which the
modifying Step comprises:

counting the number of times that a block remains Stalled
for more than a predetermined interval; and

decrementing the blocking factor if a block remains
Stalled for more than a predetermined interval more
than a predetermined number of times.

k k k k k

