(54) 发明名称
 颗粒状干冰再压成型方法

(57) 摘要
 颗粒状干冰再压成型方法，依次包括以下步骤：步骤 A：制造颗粒状干冰，所述粒状干冰的单粒规格为直径 1mm-6mm；步骤 B：将所述颗粒状干冰挂入模具内；步骤 C：压板压入模具内，将位于模具内的干冰压实至目标体积；步骤 D：将压板退出模具；步骤 E：将压实成型后的干冰块移除出模具，出料至设备外部。本发明的目的旨在提供一种颗粒状干冰再压成型方法，用以提高制造相同目标体积干冰块的密度，达到提高单件干冰块的使用存时间的目的。
1. 颗粒状干冰再压成型方法，其特征在于，依次包括以下步骤：
步骤A：制造颗粒状干冰，所述粒状干冰的单粒规格为直径1mm-6mm；
步骤B：将所述颗粒状干冰排入模具内；
步骤C：压板压入模具内，将位于模具内的干冰压实至目标体积；
步骤D：将压板退出模具；
步骤E：将压实成型后的干冰块移除出模具，出料至设备外部。
2. 如权利要求1所述的颗粒状干冰再压成型方法，其特征在于，所述步骤A内依次包括：
步骤Aa，生成若干粉末状干冰微粒；
步骤Ab，将粉末状干冰不断塞入至成形管内，该成形管呈入口直径至少大于出口直径，粉末状干冰在成形管内受压成形，至成形管的出口处凝结成条状干冰，该条状干冰折断后呈粒状干冰排出。
3. 如权利要求1所述的颗粒状干冰再压成型方法，其特征在于，步骤A制成的粒状干冰
的单粒规格为直径等于5mm和直径等于1mm两种。
4. 如权利要求1-3任一项所述的颗粒状干冰再压成型方法，其特征在于，执行步骤B、C、
和D时，由外部冷源向模具外围供冷。
颗粒状干冰再压成型方法

技术领域
本发明涉及一种干冰制备方案，尤其涉及一种颗粒状干冰再压成型方法。

背景技术
目前，干冰被广泛地应用到各类场合中。因此，干冰的需求呈现批量少款式多的趋势。一般地，干氷制造时都是由冷冻设备制造出干冰块以方便存储和运输。传统生产块状/片状干冰的方法都是密封式的，以液态二氧化碳作为材料，将其注入至生产设备内受冷生成粉末状的干冰材料，然后再将若干粉末状干冰材料送至指定的大小模具内，压板再将其推压成形所需形状的块状/片状干冰。按照该方法生产出来的片状干冰密度均在1.2mg/cm³或以下，属密度较低的成品。如此会限制了片状干冰的存放使用时间。

发明内容
针对现有技术的不足，本发明的目的旨在提供一种颗粒状干冰再压成型方法，用以提高制造相同目标体积干冰块的密度，达到提高单件干冰块的使用和存时间的目的。

为实现上述目的，本发明采用如下技术方案：
步骤A：制造颗粒状干冰，所述颗粒状干冰的单粒规格为直径1mm～6mm；
步骤B：将所述颗粒状干冰排入模具内；
步骤C：压板压入模具内，将位于模具内的干冰压实至目标体积；
步骤D：将压板退出模具；
步骤E：将压实成型后的干冰块移除出模具，出料至设备外；
优先地，所述步骤A内依次包括：
步骤Aa：生成若干粉末状干冰微粒；
步骤Ab：将粉末状干冰不断塞入到成形管内，该成形管呈入口直径大于出口直径，粉末状干冰在成形管内受压成形，至成形管的出口处凝结成条状干冰，该条状干冰折断后呈粒状干冰排出；
优先地，步骤A制造的粒状干冰的单粒规格为直径等于5mm和直径1mm两种。
优先地，执行步骤B、C、D时，由外部冷源向模具外围供冷。
相比现有技术，本发明的有益效果在于，本发明采用颗粒状干冰作为制造块状干冰的材料，相较于传统的使用粉末状干冰材料制造压制成型的材料的方法，由于颗粒状干冰密度更高，抗外界温度干扰能力更强，因此，采用本发明所述的方法制造出来的干冰块在相同目标体积情况下产品的密度会较粉末状干冰材料制造出来的密度会更高，达到提高单件干冰块的使用存时间的目的。

附图说明
图1为本发明的操作流程图：
具体实施方式

下面，结合附图以及具体实施方式，对本发明做进一步描述：

步骤A：制造粒状干冰，所述粒状干冰的单粒规格为直径1mm-6mm；

步骤B：将所述粒状干冰排入模具1内；如图2所示。

步骤C：压板2压入模具1内，将位于模具1内的干冰压实至目标体积；

步骤D：将压板2退出模具1；

步骤E：将压实成型后的干冰块移除出模具，出料至设备外部。制成密度高于现有技术的成品。

必要时，在步骤C和步骤D之间增加步骤F：保持压板在模具1内位置等待至少60秒，使得不同粒状干冰材料3单体在受压变形后再次凝结在一起。

为了进一步提高块状干冰的成品质量，作为一种优选的方案，所述步骤A内依次包括：

步骤Aa，生成若干粉末状干冰微粒。具体为将液态二氧化碳注入至设备内进行分子热能量交替，一部分通过吸热气化成CO2排出，一部分通过放热凝结成固态干冰微粒，由于其密度很低，容易挥发，所以必须执行步骤Ab，以制造出密度较高的干冰材料；

步骤Ab，成形管4入口端放置一块低密度干冰块后，将粉末状干冰不断推挤至成形管4内，该成形管4呈入口5直径大于出口6直径，粉末状干冰在成形管入口端与低密度干冰块发生积聚，并通过推挤进入成形管内受压成形，至成形管的出口处凝结成条状干冰，该条状干冰折断后呈粒状干冰排出；具体地，由于条状干冰排出至出口后，会因为自重原因折断，或者是碰到设备的硬质内壁，然后折断。

如图5所示，成形管4一端为入口5，另一端为出口6，入口5直径大于出口6直径，所述成形管4中靠近入口5处具有用于使得松散粉末状干冰材料挤压成较高密度条状干冰的挤压管段7，所述成形管4中靠近出口6处具有供条状干冰保持受压及凝结成形的凝结管段8。

作为一种优选的方案，步骤A所制造的粒状干冰的单粒规格分为直径等于5mm和直径1mm两种，两种干冰材料在执行步骤B时被排入模具中，如此，上述两种干冰材料在模具内充分混合，直径1mm的粒状干冰材料可以填充于直径5mm的粒状干冰材料之间的间隙内，实现两种粒状干冰在空间上、性能上优势的互补，使得压制出来的干冰块成品密度更高，续存时间更长。

为了减少压制过程中外界温度较高而导致材料损耗明显，作为一种优选的方案，执行步骤C时，由外部冷源向模具1外围供冷。

根据发明人多次实验总结可知，一般干冰成品的密度与使用的干冰材料存在以下
关系：1、使用粉末状干冰材料压制的成品密度为约1.2mg/cm³；2、使用直径为1mm-6mm粒状干冰材料压制的成品密度约为1.5mg/cm³；

【0038】另外，根据图4的实验数据可知，以室温状态下，四种干冰的除凝情况统计，粉末状干冰因其密度较小，并且粉末状材料与空气接触面积较大而保存周期较短。因此压制成干冰块的使用寿命不长。对于一次成型的干冰块，虽然已大大减少与空气接触的面积，但该方式并不适合小批量、个性化生产，并且密度也不高。相对比下，用所述粒装干冰材料压制成的同等质量的干冰块，其体积有所变小，密度有所提升，其与空气的接触面积有所减少，吸热的交替面也相对较小，因此，比前述两种相同规格产品的汽化周期会明显加长，但是用所述粒状干冰材料压制出来的同等质量的干冰块必然会出现目标体积变小。如果填充更多粒状干冰材料，如图4所示，保持干冰块的目标体积不变，则压制出来的干冰块成品的汽化周期会更长。

【0039】对本领域技术人员来说，可根据以上描述的技术方案以及构思，做出其它各种相应的改变以及形变，而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。
图1

图2

图3
图4

室温下各种干冰块成品（125mm×105mm×25mm）
续存时间统计图

图5