

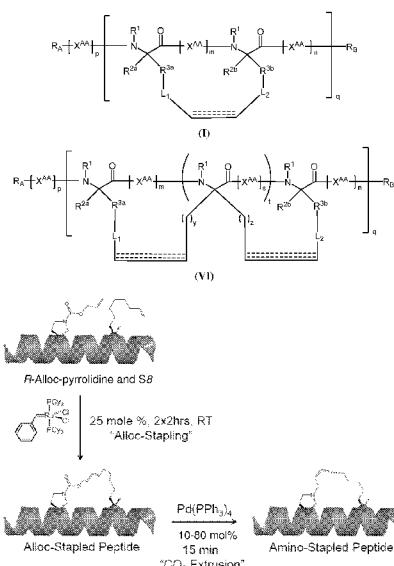
(43) International Publication Date
2 October 2014 (02.10.2014)(51) International Patent Classification:
A61K 38/12 (2006.01) *A61K 38/00* (2006.01)(21) International Application Number:
PCT/US2014/025544(22) International Filing Date:
13 March 2014 (13.03.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/779,917 13 March 2013 (13.03.2013) US(71) Applicant: **PRESIDENT AND FELLOWS OF HARVARD COLLEGE** [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US).(72) Inventors: **VERDINE, Gregory, L.**; 500 Atlantic Avenue, Unit 14N, Boston, MA 02210 (US). **HILINSKI, Gerard**; 106A Concord Avenue, Somerville, MA 02143 (US).(74) Agent: **BAKER, C., Hunter**; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,


BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: STAPLED AND STITCHED POLYPEPTIDES AND USES THEREOF

(57) **Abstract:** The present invention provides stapled polypeptides of the Formulae (I) and (VI); (I) (VI) and salts thereof; wherein the groups =====; R^{1a}, R^{1b}, R^{1c}, R^{2a}, R^{3a}, R^{2b}, R^{3b}, R^{4a}, R^{4b}, R_A, R_Z, L_{1a}, L_{1b}, L₂, L₃, X^{AA}, v, w, p, m, s, n, t, and q are as defined herein. The present invention further provides methods of preparing the inventive stapled polypeptides from unstapled polypeptide precursors. The present invention further provides pharmaceutical compositions comprising a stapled polypeptide of Formula (I) or (VI), and methods of using the stapled peptides. The present invention also provides modifications of the staples post ring closing metathesis.

Figure 1

STAPLED AND STITCHED POLYPEPTIDES AND USES THEREOF

Related Applications

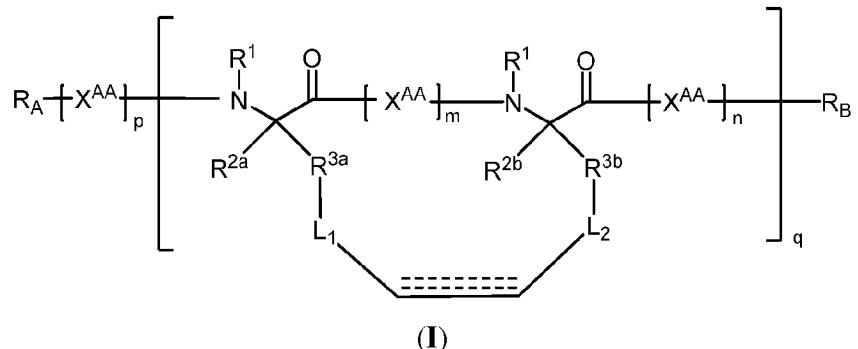
[0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application, U.S.S.N. 61/779,917, filed March 13, 2013, which is incorporated herein by reference.

Background of the Invention

[0002] The important biological roles that peptides and polypeptides play as hormones, enzyme inhibitors and substrates, neurotransmitters, and neuromediators has led to the widespread use of peptides or peptide mimetics as therapeutic agents. A peptide's bioactive conformation, combining structural elements such as alpha-helices, beta-sheets, turns, and loops, is important as it allows for selective biological recognition of receptors or enzymes, thereby influencing cell-cell communication and/or controlling vital cell functions, such as metabolism, immune defense, and reproduction (Babine *et al.*, *Chem. Rev.* (1997) 97:1359). The alpha-helix is one of the major structural components of peptides. However, alpha-helical peptides have a propensity for unraveling and forming random coils, which are, in most cases, biologically less active, or even inactive, and are highly susceptible to proteolytic degradation.

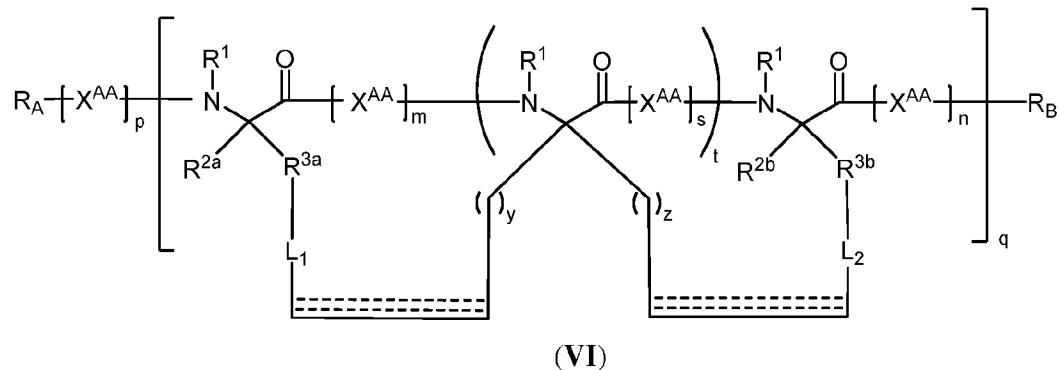
[0003] Many research groups have developed strategies for the design and synthesis of more robust peptides as therapeutics. For example, one strategy has been to incorporate more robust functionalities into the peptide chain while still maintaining the peptide's unique conformation and secondary structure (see, for example, Gante *et al.*, *Angew. Chem. Int. Ed. Engl.* (1994) 33:1699–1720; Liskamp *et al.*, *Recl. Trav. Chim. Pays-Bas* (1994) 113:1; Giannis *et al.*, *Angew. Chem. Int. Ed. Engl.* (1993) 32:1244; P. D. Bailey, *Peptide Chemistry*, Wiley, New York, 1990, p. 182; and references cited therein). Another approach has been to stabilize the peptide via covalent cross-links (see, for example, Phelan *et al.*, *J. Am. Chem. Soc.* (1997) 119:455; Leuc *et al.*, *Proc. Nat'l. Acad. Sci. USA* (2003) 100:11273; Bracken *et al.*, *J. Am. Chem. Soc.* (1994) 116:6432; and Yan *et al.*, *Bioorg. Med. Chem.* (2004) 14:1403). Crosslinking a polypeptide predisposed to having an alpha-helical secondary structure can constrain the polypeptide to its native alpha-helical conformation. The constrained secondary structure may increase the peptide's resistance to proteolytic cleavage, increase the peptide's hydrophobicity, allow for better penetration of the peptide into the target cell's membrane (e.g., through an energy-dependent transport mechanism such as pinocytosis),

and/or lead to an improvement in the peptide's biological activity relative to the corresponding uncrosslinked peptide.

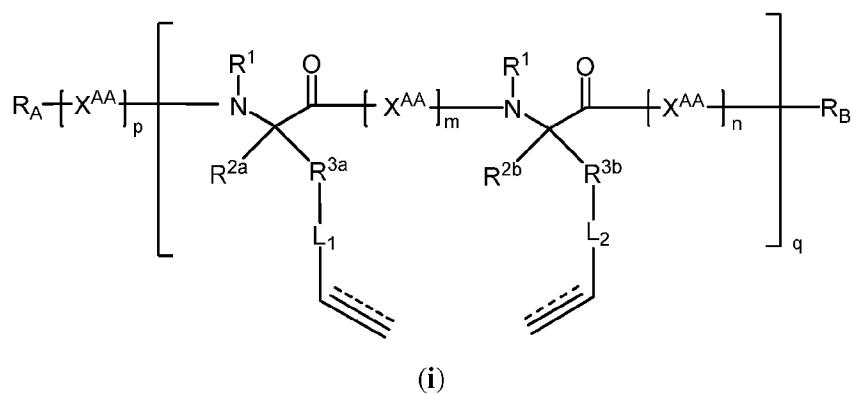

[0004] One such technique for crosslinking peptides is "peptide stapling." "Peptide stapling" is a term coined to describe a synthetic methodology wherein two olefin-containing sidechains present in a polypeptide are covalently joined ("stapled") using a ring-closing metathesis (RCM) reaction to form a crosslink (see, the cover art for *J. Org. Chem.* (2001) vol. 66, issue 16 describing metathesis-based crosslinking of alpha-helical peptides; Blackwell *et al.*; *Angew Chem. Int. Ed.* (1994) 37:3281; and US 7,192,713). "Peptide stitching" involves multiple "stapling" events in a single polypeptide chain to provide a multiply stapled (also known as "stitched") polypeptide (see WO 2008/121767 and WO 2011/008260). Stapling of a peptide using all-hydrocarbon crosslinks has been shown to help maintain its native conformation and/or secondary structure, particularly under physiologically relevant disorders (see Schafmeister *et al.*, *J. Am. Chem. Soc.* (2000) 122:5891–5892; Walensky *et al.*, *Science* (2004) 305:1466–1470). This stapling technology has been applied to the apoptosis-inducing BID–BH3 alpha-helix, resulting in a higher suppression of malignant growth of leukemia in an animal model compared to the unstapled polypeptide. See Walensky *et al.*, *Science* (2004) 305:1466–1470; U.S. Patent Application Publication No. 2005/02506890; and U.S. Patent Application Publication No. 2006/0008848. However, there remains a need and interest in the development of new techniques for stapling and stitching polypeptides which may be useful as therapeutics or research tools.

Summary of the Invention

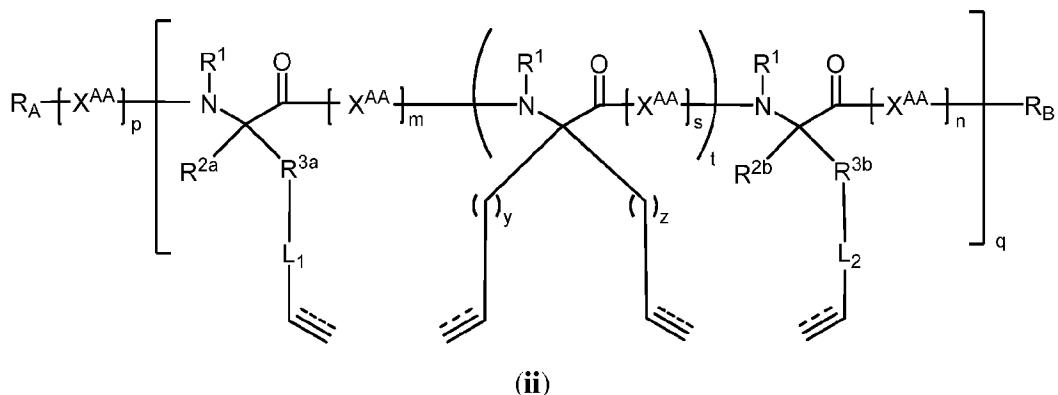
[0005] "Peptide stapling" refers to cross-linking sidechains of a polypeptide chain by covalently joining olefin moieties (*i.e.*, "stapled together") using a ring-closing metathesis (RCM) reaction. "Peptide stitching" encompasses multiple "staples" in a single polypeptide chain to provide a multiply stapled (also known as "stitched") polypeptide (see International PCT Publications WO2008/121767 and WO2011/008260). Peptide stapling and stitching stabilizes the alpha-helical conformation of a polypeptide. The present invention provides stapled and stitched polypeptides with heteroaliphatic or ring-containing crosslinks that connect the alpha-carbons of two amino acids in an alpha-helix. The present invention further provides pharmaceutical compositions of the stapled or stitched polypeptides, methods of preparing the inventive polypeptides, as well as methods of using the inventive polypeptides. The present invention also provides post ring-closing metathesis (RCM) modifications of the


staples such as $-\text{C}(=\text{O})\text{O}-$ extrusion, reduction of the resulting olefin, or addition of a targeting moiety.

[0006] In one aspect, the present invention provides stapled polypeptides of Formula (I):


or a pharmaceutically acceptable salt thereof; wherein R_A , R_B , R^1 , R^{2a} , R^{3a} , R^{2b} , R^{3b} , L_1 , L_2 , X^{AA} , p , m , n , and q are as defined herein.

[0007] In another aspect, the present invention provides stitched polypeptides (*i.e.*, multiply stapled polypeptides) of Formula (VI):


or a pharmaceutically acceptable salt thereof; wherein R_A , R_B , R^1 , R^{2a} , R^{3a} , R^{2b} , R^{3b} , L_1 , L_2 , X^{AA} , p , m , s , t , y , z , n , and q are as defined herein.

[0008] In another aspect, the present invention provides methods of making stapled polypeptides of Formula (I). Such method comprises treating Formula (i):

or a salt thereof, with a ring-closing metathesis (RCM) catalyst.

[0009] In another aspect, the present invention provides methods of making stitched polypeptides of Formula (VI). Such method comprises treating Formula (ii):

or a salt thereof, with a ring-closing metathesis (RCM) catalyst.

[0010] In another aspect, the present invention provides pharmaceutical compositions comprising a compound of Formula (I) or (VI), or a pharmaceutically acceptable salt, and optionally a pharmaceutically acceptable carrier. In certain embodiments, the pharmaceutical compositions described herein include a therapeutically effective amount of a compound of Formula (I) or (VI), or a pharmaceutically acceptable salt thereof.

[0011] In another aspect, the present invention provides kits comprising a compound of Formulae (I) or (VI), or a pharmaceutically acceptable salt, or a pharmaceutical composition thereof. In certain embodiments, the kits further include instructions for administering the compound of Formulae (I) or (VI), or the pharmaceutically acceptable salt, or the pharmaceutical composition thereof. The kits may also include packaging information describing the use or prescribing information for the subject or a health care professional. Such information may be required by a regulatory agency such as the U.S. Food and Drug Administration (FDA). The kit may also optionally include a device for administration of the compound or composition, for example, a syringe for parenteral administration.

[0001] In another aspect, the present invention provides methods of treating a disorder *in vivo* or *in vitro* comprising administering to a subject a therapeutically effective amount of a compound of Formula (I) or (VI). Exemplary disorders are proliferative disorders, neurological disorders, immunological disorders, endocrinologic disorders, cardiovascular disorders, hematologic disorders, inflammatory disorders, and disorders characterized by premature or unwanted cell death.

[0002] This application refers to various issued patent, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference.

[0003] The details of various embodiments of the invention are set forth herein. Other features, objects, and advantages of the invention will be apparent from the Description, Figures, Examples, and Claims.

Definitions

[0004] Definitions of specific functional groups and chemical terms are described in more detail below. The chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, *Handbook of Chemistry and Physics*, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in *Organic Chemistry*, Thomas Sorrell, University Science Books, Sausalito, 1999; Smith and March *March's Advanced Organic Chemistry*, 5th Edition, John Wiley & Sons, Inc., New York, 2001; Larock, *Comprehensive Organic Transformations*, VCH Publishers, Inc., New York, 1989; and Carruthers, *Some Modern Methods of Organic Synthesis*, 3rd Edition, Cambridge University Press, Cambridge, 1987.

[0005] Compounds, amino acids, and polypeptides described herein can comprise one or more asymmetric centers, and thus can exist in various isomeric forms, *e.g.*, enantiomers and/or diastereomers. For example, the compounds, amino acids, and polypeptides described herein can be in the form of an individual enantiomer, diastereomer or geometric isomer, or can be in the form of a mixture of stereoisomers, including racemic mixtures and mixtures enriched in one or more stereoisomer. Isomers can be isolated from mixtures by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts; or preferred isomers can be prepared by asymmetric syntheses. See, for example, Jacques *et al.*, *Enantiomers, Racemates and Resolutions* (Wiley Interscience, New York, 1981); Wilen *et al.*, *Tetrahedron* 33:2725 (1977); Eliel, E.L. *Stereochemistry of Carbon Compounds* (McGraw-Hill, NY, 1962); and Wilen, S.H. *Tables of Resolving Agents and Optical Resolutions* p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN 1972). The invention additionally encompasses compounds, amino acids, and polypeptides described herein as individual isomers substantially free of other isomers, and alternatively, as mixtures of various isomers.

[0006] When a range of values is listed, it is intended to encompass each value and sub-range within the range. For example "C₁₋₆ alkyl" is intended to encompass, C₁, C₂, C₃, C₄, C₅, C₆, C₁₋₆, C₁₋₅, C₁₋₄, C₁₋₃, C₁₋₂, C₂₋₆, C₂₋₅, C₂₋₄, C₂₋₃, C₃₋₆, C₃₋₅, C₃₋₄, C₄₋₆, C₄₋₅, and C₅₋₆ alkyl.

[0007] As used herein, substituent names which end in the suffix “-ene” refer to a biradical derived from the removal of an additional hydrogen atom from monoradical group as defined herein. Thus, for example, the monoradical alkyl, as defined herein, is the biradical alkylene upon removal of an additional hydrogen atom. Likewise, alkenyl is alkenylene; alkynyl is alkynylene; heteroalkyl is heteroalkylene; heteroalkenyl is heteroalkenylene; heteroalkynyl is heteroalkynylene; carbocyclyl is carbocyclylene; heterocyclyl is heterocyclylene; aryl is arylene; and heteroaryl is heteroarylene.

[0008] The term “aliphatic,” as used herein, includes both saturated and unsaturated, nonaromatic, straight chain (*i.e.*, unbranched), branched, acyclic, and cyclic (*i.e.*, carbocyclic) hydrocarbons. In some embodiments, an aliphatic group is optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, “aliphatic” is intended herein to include alkyl, alkenyl, alkynyl, cycloalkyl, and cycloalkenyl moieties.

[0009] The term “heteroaliphatic”, as used herein, refers to aliphatic moieties that contain one or more oxygen, sulfur, nitrogen, phosphorus, or silicon atoms, *e.g.*, in place of carbon atoms. Heteroaliphatic moieties may be branched, unbranched, cyclic or acyclic and include saturated and unsaturated heterocycles such as morpholino, pyrrolidinyl, *etc.* In certain embodiments, heteroaliphatic moieties are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more moieties including, but not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; -F; -Cl; -Br; -I; -OH; -NO₂; -CN; -CF₃; -CH₂CF₃; -CHCl₂; -CH₂OH; -CH₂CH₂OH; -CH₂NH₂; -CH₂SO₂CH₃; -C(O)R_x; -CO₂(R_x); -CON(R_x)₂; -OC(O)R_{xa}; -OCO₂R_{xa}; -OCON(R_{xa})₂; -N(R_{xa})₂; -S(O)₂R_{xa}; -NR_{xa}(CO)R_{xa}, wherein each occurrence of R_{xa} independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, arylalkyl, or heteroarylalkyl, wherein any of the aliphatic, heteroaliphatic, arylalkyl, or heteroarylalkyl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substituents are illustrated by the specific embodiments shown in the Examples that are described herein.

[0010] As used herein, “alkyl” refers to a radical of a straight-chain or branched saturated hydrocarbon group having from 1 to 30 carbon atoms (“C₁₋₃₀ alkyl”). In some embodiments, an alkyl group has 1 to 20 carbon atoms (“C₁₋₂₀ alkyl”). In some embodiments, an alkyl group has 1 to 10 carbon atoms (“C₁₋₁₀ alkyl”). In some embodiments, an alkyl group has 1

to 9 carbon atoms (“C₁₋₉ alkyl”). In some embodiments, an alkyl group has 1 to 8 carbon atoms (“C₁₋₈ alkyl”). In some embodiments, an alkyl group has 1 to 7 carbon atoms (“C₁₋₇ alkyl”). In some embodiments, an alkyl group has 1 to 6 carbon atoms (“C₁₋₆ alkyl”). In some embodiments, an alkyl group has 1 to 5 carbon atoms (“C₁₋₅ alkyl”). In some embodiments, an alkyl group has 1 to 4 carbon atoms (“C₁₋₄ alkyl”). In some embodiments, an alkyl group has 1 to 3 carbon atoms (“C₁₋₃ alkyl”). In some embodiments, an alkyl group has 1 to 2 carbon atoms (“C₁₋₂ alkyl”). In some embodiments, an alkyl group has 1 carbon atom (“C₁ alkyl”). In some embodiments, an alkyl group has 2 to 6 carbon atoms (“C₂₋₆ alkyl”). Examples of C₁₋₆ alkyl groups include methyl (C₁), ethyl (C₂), n-propyl (C₃), isopropyl (C₃), n-butyl (C₄), tert-butyl (C₄), sec-butyl (C₄), iso-butyl (C₄), n-pentyl (C₅), 3-pentanyl (C₅), amyl (C₅), neopentyl (C₅), 3-methyl-2-butanyl (C₅), tertiary amyl (C₅), and n-hexyl (C₆). Additional examples of alkyl groups include n-heptyl (C₇), n-octyl (C₈) and the like. Unless otherwise specified, each instance of an alkyl group is independently unsubstituted (an “unsubstituted alkyl”) or substituted (a “substituted alkyl”) with one or more substituents. In certain embodiments, the alkyl group is an unsubstituted C₁₋₁₀ alkyl (e.g., -CH₃). In certain embodiments, the alkyl group is a substituted C₁₋₁₀ alkyl.

[0011] “Perhaloalkyl” is a substituted alkyl group as defined herein wherein all of the hydrogen atoms are independently replaced by a halogen, *e.g.*, fluoro, bromo, chloro, or iodo. In some embodiments, the alkyl moiety has 1 to 8 carbon atoms (“C₁₋₈ perhaloalkyl”). In some embodiments, the alkyl moiety has 1 to 6 carbon atoms (“C₁₋₆ perhaloalkyl”). In some embodiments, the alkyl moiety has 1 to 4 carbon atoms (“C₁₋₄ perhaloalkyl”). In some embodiments, the alkyl moiety has 1 to 3 carbon atoms (“C₁₋₃ perhaloalkyl”). In some embodiments, the alkyl moiety has 1 to 2 carbon atoms (“C₁₋₂ perhaloalkyl”). In some embodiments, all of the hydrogen atoms are replaced with fluoro. In some embodiments, all of the hydrogen atoms are replaced with chloro. Examples of perhaloalkyl groups include -CF₃, -CF₂CF₃, -CF₂CF₂CF₃, -CCl₃, -CFCl₂, -CF₂Cl, and the like.

[0012] As used herein, “heteroalkyl” refers to a radical of a straight-chain or branched saturated hydrocarbon group having from 1 to 30 carbon atoms, and which further comprises 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur included within the parent chain (“C₁₋₃₀ heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 20 carbon atoms and 1-10 heteroatoms, inclusive (“C₁₋₂₀ heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 20 carbon atoms and 1-10 heteroatoms, inclusive (“C₁₋₁₀ heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 9 carbon atoms and 1-6 heteroatoms, inclusive (“C₁₋₉ heteroalkyl”). In some embodiments, a heteroalkyl group

has 1 to 8 carbon atoms and 1–5 heteroatoms, inclusive (“C_{1–8} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 7 carbon atoms, and 1–4 heteroatoms, inclusive (“C_{1–7} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 6 carbon atoms and 1–3 heteroatoms, inclusive (“C_{1–6} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 5 carbon atoms and 1–2 heteroatoms, inclusive (“C_{1–5} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 4 carbon atoms and 1–2 heteroatoms, inclusive (“C_{1–4} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 3 carbon atoms and 1–2 heteroatoms, inclusive (“C_{1–3} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 to 2 carbon atoms and 1 heteroatom, inclusive (“C_{1–2} heteroalkyl”). In some embodiments, a heteroalkyl group has 1 carbon atom and 1 heteroatom, inclusive (“C₁ heteroalkyl”). In some embodiments, a heteroalkyl group has 2 to 6 carbon atoms and 1–3 heteroatoms, inclusive (“C_{2–6} heteroalkyl”). Unless otherwise specified, each instance of a heteroalkyl group is independently unsubstituted (an “unsubstituted heteroalkyl”) or substituted (a “substituted heteroalkyl”) with one or more substituents. In certain embodiments, the heteroalkyl group is an unsubstituted C_{1–10} alkyl. In certain embodiments, the heteroalkyl group is a substituted C_{1–10} heteroalkyl.

[0013] As used herein, “alkenyl” refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 30 carbon atoms, one or more carbon–carbon double bonds, and no triple bonds (“C_{2–30} alkenyl”). In some embodiments, an alkenyl group has 2 to 20 carbon atoms (“C_{2–20} alkenyl”). In some embodiments, an alkenyl group has 2 to 10 carbon atoms (“C_{2–10} alkenyl”). In some embodiments, an alkenyl group has 2 to 9 carbon atoms (“C_{2–9} alkenyl”). In some embodiments, an alkenyl group has 2 to 8 carbon atoms (“C_{2–8} alkenyl”). In some embodiments, an alkenyl group has 2 to 7 carbon atoms (“C_{2–7} alkenyl”). In some embodiments, an alkenyl group has 2 to 6 carbon atoms (“C_{2–6} alkenyl”). In some embodiments, an alkenyl group has 2 to 5 carbon atoms (“C_{2–5} alkenyl”). In some embodiments, an alkenyl group has 2 to 4 carbon atoms (“C_{2–4} alkenyl”). In some embodiments, an alkenyl group has 2 to 3 carbon atoms (“C_{2–3} alkenyl”). In some embodiments, an alkenyl group has 2 carbon atoms (“C₂ alkenyl”). The one or more carbon–carbon double bonds can be internal (such as in 2–butenyl) or terminal (such as in 1–butenyl). Examples of C_{2–4} alkenyl groups include ethenyl (C₂), 1–propenyl (C₃), 2–propenyl (C₃), 1–butenyl (C₄), 2–butenyl (C₄), butadienyl (C₄), and the like. Examples of C_{2–6} alkenyl groups include the aforementioned C_{2–4} alkenyl groups as well as pentenyl (C₅), pentadienyl (C₅), hexenyl (C₆), and the like. Additional examples of alkenyl include heptenyl (C₇), octenyl (C₈), octatrienyl (C₈), and the like. Unless otherwise specified, each instance of an alkenyl

group is independently unsubstituted (an “unsubstituted alkenyl”) or substituted (a “substituted alkenyl”) with one or more substituents. In certain embodiments, the alkenyl group is an unsubstituted C₂₋₁₀ alkenyl. In certain embodiments, the alkenyl group is a substituted C₂₋₁₀ alkenyl.

[0014] As used herein, “heteroalkenyl” refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 30 carbon atoms, one or more carbon–carbon double bonds, no triple bonds, and which further comprises 1–10 heteroatoms independently selected from oxygen, nitrogen, and sulfur included within the parent chain (“C₂₋₃₀ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 20 carbon atoms and 1–10 heteroatoms, inclusive (“C₂₋₂₀ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 10 carbon atoms and 1–10 heteroatoms, inclusive (“C₂₋₁₀ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 9 carbon atoms and 1–6 heteroatoms, inclusive (“C₂₋₉ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 8 carbon atoms and 1–5 heteroatoms, inclusive (“C₂₋₈ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 7 carbon atoms, and 1–4 heteroatoms, inclusive (“C₂₋₇ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 6 carbon atoms and 1–3 heteroatoms, inclusive (“C₂₋₆ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 5 carbon atoms and 1–2 heteroatoms, inclusive (“C₂₋₅ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 4 carbon atoms and 1–2 heteroatoms, inclusive (“C₂₋₄ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 3 carbon atoms and 1–2 heteroatoms, inclusive (“C₂₋₃ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 carbon atoms and 1 heteroatom, inclusive (“C₂ heteroalkenyl”). In some embodiments, a heteroalkenyl group has 2 to 6 carbon atoms and 1–3 heteroatoms, inclusive (“C₂₋₆ heteroalkenyl”). Unless otherwise specified, each instance of a heteroalkenyl group is independently unsubstituted (an “unsubstituted heteroalkenyl”) or substituted (a “substituted heteroalkenyl”) with one or more substituents. In certain embodiments, the heteroalkenyl group is an unsubstituted C₂₋₁₀ heteroalkenyl. In certain embodiments, the heteroalkenyl group is a substituted C₂₋₁₀ heteroalkenyl.

[0015] As used herein, “alkynyl” refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 30 carbon atoms, one or more carbon–carbon triple bonds, and optionally one or more double bonds (“C₂₋₃₀ alkynyl”). In some embodiments, an alkynyl group has 2 to 20 carbon atoms (“C₂₋₂₀ alkynyl”). In some embodiments, an alkynyl group has 2 to 10 carbon atoms (“C₂₋₁₀ alkynyl”). In some embodiments, an alkynyl group has 2 to 9 carbon atoms (“C₂₋₉ alkynyl”). In some embodiments, an alkynyl group has 2 to 8

carbon atoms (“C₂₋₈ alkynyl”). In some embodiments, an alkynyl group has 2 to 7 carbon atoms (“C₂₋₇ alkynyl”). In some embodiments, an alkynyl group has 2 to 6 carbon atoms (“C₂₋₆ alkynyl”). In some embodiments, an alkynyl group has 2 to 5 carbon atoms (“C₂₋₅ alkynyl”). In some embodiments, an alkynyl group has 2 to 4 carbon atoms (“C₂₋₄ alkynyl”). In some embodiments, an alkynyl group has 2 to 3 carbon atoms (“C₂₋₃ alkynyl”). In some embodiments, an alkynyl group has 2 carbon atoms (“C₂ alkynyl”). The one or more carbon–carbon triple bonds can be internal (such as in 2–butynyl) or terminal (such as in 1–butynyl). Examples of C₂₋₄ alkynyl groups include, without limitation, ethynyl (C₂), 1–propynyl (C₃), 2–propynyl (C₃), 1–butynyl (C₄), 2–butynyl (C₄), and the like. Examples of C₂₋₆ alkenyl groups include the aforementioned C₂₋₄ alkynyl groups as well as pentynyl (C₅), hexynyl (C₆), and the like. Additional examples of alkynyl include heptynyl (C₇), octynyl (C₈), and the like. Unless otherwise specified, each instance of an alkynyl group is independently unsubstituted (an “unsubstituted alkynyl”) or substituted (a “substituted alkynyl”) with one or more substituents. In certain embodiments, the alkynyl group is an unsubstituted C₂₋₁₀ alkynyl. In certain embodiments, the alkynyl group is a substituted C₂₋₁₀ alkynyl.

[0016] As used herein, “heteroalkynyl” refers to a radical of a straight–chain or branched hydrocarbon group having from 2 to 30 carbon atoms, one or more carbon–carbon triple bonds, optionally one or more double bonds, and which further comprises 1–10 heteroatoms independently selected from oxygen, nitrogen, and sulfur included within the parent chain (“C₂₋₃₀ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 20 carbon atoms and 1–10 heteroatoms, inclusive (“C₂₋₂₀ heteroalkynyl”). In some embodiments, a heteroalkenyl group has 2 to 10 carbon atoms and 1–10 heteroatoms, inclusive (“C₂₋₁₀ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 9 carbon atoms and 1–6 heteroatoms, inclusive (“C₂₋₉ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 8 carbon atoms and 1–5 heteroatoms, inclusive (“C₂₋₈ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 7 carbon atoms, and 1–4 heteroatoms, inclusive (“C₂₋₇ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 6 carbon atoms and 1–3 heteroatoms, inclusive (“C₂₋₆ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 5 carbon atoms and 1–2 heteroatoms, inclusive (“C₂₋₅ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 4 carbon atoms and 1–2 heteroatoms, inclusive (“C₂₋₄ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 3 carbon atoms and 1–2 heteroatoms, inclusive (“C₂₋₃ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 carbon atoms and 1 heteroatom, inclusive (“C₂ heteroalkynyl”). In some embodiments, a heteroalkynyl group has 2 to 6 carbon atoms

and 1–3 heteroatoms, inclusive (“C_{2–6} heteroalkynyl”). Unless otherwise specified, each instance of a heteroalkynyl group is independently unsubstituted (an “unsubstituted heteroalkynyl”) or substituted (a “substituted heteroalkynyl”) with one or more substituents. In certain embodiments, the heteroalkynyl group is an unsubstituted C_{2–10} heteroalkynyl. In certain embodiments, the heteroalkynyl group is a substituted C_{2–10} heteroalkynyl.

[0017] As used herein, “carbocyclyl” or “carbocyclic” refers to a radical of a non-aromatic cyclic hydrocarbon group having from 3 to 10 ring carbon atoms (“C_{3–10} carbocyclyl”) and zero heteroatoms in the non-aromatic ring system. In some embodiments, a carbocyclyl group has 3 to 8 ring carbon atoms (“C_{3–8} carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms (“C_{3–6} carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms (“C_{3–6} carbocyclyl”). In some embodiments, a carbocyclyl group has 5 to 10 ring carbon atoms (“C_{5–10} carbocyclyl”). Exemplary C_{3–6} carbocyclyl groups include, without limitation, cyclopropyl (C₃), cyclopropenyl (C₃), cyclobutyl (C₄), cyclobutenyl (C₄), cyclopentyl (C₅), cyclopentenyl (C₅), cyclohexyl (C₆), cyclohexenyl (C₆), cyclohexadienyl (C₆), and the like. Exemplary C_{3–8} carbocyclyl groups include, without limitation, the aforementioned C_{3–6} carbocyclyl groups as well as cycloheptyl (C₇), cycloheptenyl (C₇), cycloheptadienyl (C₇), cycloheptatrienyl (C₇), cyclooctyl (C₈), cyclooctenyl (C₈), bicyclo[2.2.1]heptanyl (C₇), bicyclo[2.2.2]octanyl (C₈), and the like. Exemplary C_{3–10} carbocyclyl groups include, without limitation, the aforementioned C_{3–8} carbocyclyl groups as well as cyclononyl (C₉), cyclononenyl (C₉), cyclodecyl (C₁₀), cyclodeceny (C₁₀), octahydro-1H-indenyl (C₉), decahydronaphthalenyl (C₁₀), spiro[4.5]decanyl (C₁₀), and the like. As the foregoing examples illustrate, in certain embodiments, the carbocyclyl group is either monocyclic (“monocyclic carbocyclyl”) or polycyclic (e.g., containing a fused, bridged or spiro ring system such as a bicyclic system (“bicyclic carbocyclyl”) or tricyclic system (“tricyclic carbocyclyl”)) and can be saturated or can contain one or more carbon–carbon double or triple bonds. “Carbocyclyl” also includes ring systems wherein the carbocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups wherein the point of attachment is on the carbocyclyl ring, and in such instances, the number of carbons continue to designate the number of carbons in the carbocyclic ring system. Unless otherwise specified, each instance of a carbocyclyl group is independently unsubstituted (an “unsubstituted carbocyclyl”) or substituted (a “substituted carbocyclyl”) with one or more substituents. In certain embodiments, the carbocyclyl group is an unsubstituted C_{3–10} carbocyclyl. In certain embodiments, the carbocyclyl group is a substituted C_{3–10} carbocyclyl.

[0018] In some embodiments, “carbocyclyl” is a monocyclic, saturated carbocyclyl group having from 3 to 10 ring carbon atoms (“C₃₋₁₀ cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 8 ring carbon atoms (“C₃₋₈ cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 6 ring carbon atoms (“C₃₋₆ cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 6 ring carbon atoms (“C₅₋₆ cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 10 ring carbon atoms (“C₅₋₁₀ cycloalkyl”). Examples of C₅₋₆ cycloalkyl groups include cyclopentyl (C₅) and cyclohexyl (C₆). Examples of C₃₋₆ cycloalkyl groups include the aforementioned C₅₋₆ cycloalkyl groups as well as cyclopropyl (C₃) and cyclobutyl (C₄). Examples of C₃₋₈ cycloalkyl groups include the aforementioned C₃₋₆ cycloalkyl groups as well as cycloheptyl (C₇) and cyclooctyl (C₈). Unless otherwise specified, each instance of a cycloalkyl group is independently unsubstituted (an “unsubstituted cycloalkyl”) or substituted (a “substituted cycloalkyl”) with one or more substituents. In certain embodiments, the cycloalkyl group is an unsubstituted C₃₋₁₀ cycloalkyl. In certain embodiments, the cycloalkyl group is a substituted C₃₋₁₀ cycloalkyl.

[0019] As used herein, “heterocyclyl” or “heterocyclic” refers to a radical of a 3- to 14-membered non-aromatic ring system having ring carbon atoms and 1 to 4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“3-14 membered heterocyclyl”). In heterocyclyl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits. A heterocyclyl group can either be monocyclic (“monocyclic heterocyclyl”) or polycyclic (e.g., a fused, bridged or spiro ring system such as a bicyclic system (“bicyclic heterocyclyl”) or tricyclic system (“tricyclic heterocyclyl”)), and can be saturated or can contain one or more carbon-carbon double or triple bonds. Heterocyclyl polycyclic ring systems can include one or more heteroatoms in one or both rings. “Heterocyclyl” also includes ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more carbocyclyl groups wherein the point of attachment is either on the carbocyclyl or heterocyclyl ring, or ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups, wherein the point of attachment is on the heterocyclyl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heterocyclyl ring system. Unless otherwise specified, each instance of heterocyclyl is independently unsubstituted (an “unsubstituted heterocyclyl”) or substituted (a “substituted heterocyclyl”) with one or more substituents. In certain embodiments, the heterocyclyl group is an unsubstituted 3-14 membered heterocyclyl. In certain embodiments, the heterocyclyl group is a substituted 3-14 membered heterocyclyl.

[0020] In some embodiments, a heterocyclyl group is a 5–10 membered non-aromatic ring system having ring carbon atoms and 1–4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–10 membered heterocyclyl”). In some embodiments, a heterocyclyl group is a 5–8 membered non-aromatic ring system having ring carbon atoms and 1–4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–8 membered heterocyclyl”). In some embodiments, a heterocyclyl group is a 5–6 membered non-aromatic ring system having ring carbon atoms and 1–4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–6 membered heterocyclyl”). In some embodiments, the 5–6 membered heterocyclyl has 1–3 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5–6 membered heterocyclyl has 1–2 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5–6 membered heterocyclyl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur.

[0021] Exemplary 3–membered heterocyclyl groups containing 1 heteroatom include, without limitation, azirdinyl, oxiranyl, and thioenyl. Exemplary 4–membered heterocyclyl groups containing 1 heteroatom include, without limitation, azetidinyl, oxetanyl, and thietanyl. Exemplary 5–membered heterocyclyl groups containing 1 heteroatom include, without limitation, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothiophenyl, dihydrothiophenyl, pyrrolidinyl, dihydropyrrolyl, and pyrrolyl–2,5–dione. Exemplary 5–membered heterocyclyl groups containing 2 heteroatoms include, without limitation, dioxolanyl, oxathiolanyl, and dithiolanyl. Exemplary 5–membered heterocyclyl groups containing 3 heteroatoms include, without limitation, triazolinyl, oxadiazolinyl, and thiadiazolinyl. Exemplary 6–membered heterocyclyl groups containing 1 heteroatom include, without limitation, piperidinyl, tetrahydropyranyl, dihydropyridinyl, and thianyl. Exemplary 6–membered heterocyclyl groups containing 2 heteroatoms include, without limitation, piperazinyl, morpholinyl, dithianyl, and dioxanyl. Exemplary 6–membered heterocyclyl groups containing 2 heteroatoms include, without limitation, triazinanyl. Exemplary 7–membered heterocyclyl groups containing 1 heteroatom include, without limitation, azepanyl, oxepanyl, and thiepanyl. Exemplary 8–membered heterocyclyl groups containing 1 heteroatom include, without limitation, azocanyl, oxeanyl, and thiocanyl. Exemplary bicyclic heterocyclyl groups include, without limitation, indolinyl, isoindolinyl, dihydrobenzofuranyl, dihydrobenzothienyl, tetrahydrobenzothienyl, tetrahydrobenzofuranyl, tetrahydroindolyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, decahydroisoquinolinyl, octahydrochromenyl, octahydroisochromenyl,

decahydronaphthyridinyl, decahydro-1,8-naphthyridinyl, octahydropyrrolo[3,2-b]pyrrole, indolinyl, phthalimidyl, naphthalimidyl, chromanyl, chromenyl, 1H-benzo[e][1,4]diazepinyl, 1,4,5,7-tetrahydropyrano[3,4-b]pyrrolyl, 5,6-dihydro-4H-furo[3,2-b]pyrrolyl, 6,7-dihydro-5H-furo[3,2-b]pyranyl, 5,7-dihydro-4H-thieno[2,3-c]pyranyl, 2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 2,3-dihydrofuro[2,3-b]pyridinyl, 4,5,6,7-tetrahydro-1H-pyrrolo[2,3-b]pyridinyl, 4,5,6,7-tetrahydrofuro[3,2-c]pyridinyl, 4,5,6,7-tetrahydrothieno[3,2-b]pyridinyl, 1,2,3,4-tetrahydro-1,6-naphthyridinyl, and the like.

[0022] As used herein, “aryl” refers to a radical of a monocyclic or polycyclic (*e.g.*, bicyclic or tricyclic) $4n+2$ aromatic ring system (*e.g.*, having 6, 10, or 14 π electrons shared in a cyclic array) having 6–14 ring carbon atoms and zero heteroatoms provided in the aromatic ring system (“C_{6–14} aryl”). In some embodiments, an aryl group has 6 ring carbon atoms (“C₆ aryl”; *e.g.*, phenyl). In some embodiments, an aryl group has 10 ring carbon atoms (“C₁₀ aryl”; *e.g.*, naphthyl such as 1-naphthyl and 2-naphthyl). In some embodiments, an aryl group has 14 ring carbon atoms (“C₁₄ aryl”; *e.g.*, anthracyl). “Aryl” also includes ring systems wherein the aryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the radical or point of attachment is on the aryl ring, and in such instances, the number of carbon atoms continue to designate the number of carbon atoms in the aryl ring system. Unless otherwise specified, each instance of an aryl group is independently unsubstituted (an “unsubstituted aryl”) or substituted (a “substituted aryl”) with one or more substituents. In certain embodiments, the aryl group is an unsubstituted C_{6–14} aryl group. In certain embodiments, the aryl group is a substituted C_{6–14} aryl group.

[0023] “Aralkyl” is a subset of “alkyl” and refers to an alkyl group, as defined herein, substituted by an aryl group, as defined herein, wherein the point of attachment is on the alkyl moiety.

[0024] As used herein, “heteroaryl” refers to a radical of a 5–14 membered monocyclic or polycyclic (*e.g.*, bicyclic or tricyclic) $4n+2$ aromatic ring system (*e.g.*, having 6, 10, or 14 π electrons shared in a cyclic array) having ring carbon atoms and 1–4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–14 membered heteroaryl”). In heteroaryl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits. Heteroaryl polycyclic ring systems can include one or more heteroatoms in one or both rings. “Heteroaryl” includes ring systems wherein the heteroaryl

ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the point of attachment is on the heteroaryl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heteroaryl ring system. “Heteroaryl” also includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more aryl groups wherein the point of attachment is either on the aryl or heteroaryl ring, and in such instances, the number of ring members designates the number of ring members in the fused polycyclic (aryl/heteroaryl) ring system. Polycyclic heteroaryl groups wherein one ring does not contain a heteroatom (e.g., indolyl, quinolinyl, carbazolyl, and the like) the point of attachment can be on either ring, *i.e.*, either the ring bearing a heteroatom (e.g., 2-indolyl) or the ring that does not contain a heteroatom (e.g., 5-indolyl).

[0025] In some embodiments, a heteroaryl group is a 5–10 membered aromatic ring system having ring carbon atoms and 1–4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–10 membered heteroaryl”). In some embodiments, a heteroaryl group is a 5–8 membered aromatic ring system having ring carbon atoms and 1–4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–8 membered heteroaryl”). In some embodiments, a heteroaryl group is a 5–6 membered aromatic ring system having ring carbon atoms and 1–4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5–6 membered heteroaryl”). In some embodiments, the 5–6 membered heteroaryl has 1–3 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5–6 membered heteroaryl has 1–2 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5–6 membered heteroaryl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur. Unless otherwise specified, each instance of a heteroaryl group is independently unsubstituted (an “unsubstituted heteroaryl”) or substituted (a “substituted heteroaryl”) with one or more substituents. In certain embodiments, the heteroaryl group is an unsubstituted 5–14 membered heteroaryl. In certain embodiments, the heteroaryl group is a substituted 5–14 membered heteroaryl.

[0026] Exemplary 5–membered heteroaryl groups containing 1 heteroatom include, without limitation, pyrrolyl, furanyl and thiophenyl. Exemplary 5–membered heteroaryl groups containing 2 heteroatoms include, without limitation, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, and isothiazolyl. Exemplary 5–membered heteroaryl groups containing 3 heteroatoms include, without limitation, triazolyl, oxadiazolyl, and thiadiazolyl. Exemplary

5-membered heteroaryl groups containing 4 heteroatoms include, without limitation, tetrazolyl. Exemplary 6-membered heteroaryl groups containing 1 heteroatom include, without limitation, pyridinyl. Exemplary 6-membered heteroaryl groups containing 2 heteroatoms include, without limitation, pyridazinyl, pyrimidinyl, and pyrazinyl. Exemplary 6-membered heteroaryl groups containing 3 or 4 heteroatoms include, without limitation, triazinyl and tetrazinyl, respectively. Exemplary 7-membered heteroaryl groups containing 1 heteroatom include, without limitation, azepinyl, oxepinyl, and thiepinyl. Exemplary 5,6-bicyclic heteroaryl groups include, without limitation, indolyl, isoindolyl, indazolyl, benzotriazolyl, benzothiophenyl, isobenzothiophenyl, benzofuranyl, benzoisofuranyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzoxadiazolyl, benzthiazolyl, benzisothiazolyl, benzthiadiazolyl, indolizinyl, and purinyl. Exemplary 6,6-bicyclic heteroaryl groups include, without limitation, naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, cinnolinyl, quinoxalinyl, phthalazinyl, and quinazolinyl. Exemplary tricyclic heteroaryl groups include, without limitation, phenanthridinyl, dibenzofuranyl, carbazolyl, acridinyl, phenothiazinyl, phenoazinyl and phenazinyl.

[0027] “Heteroaralkyl” is a subset of “alkyl” and refers to an alkyl group, as defined herein, substituted by a heteroaryl group, as defined herein, wherein the point of attachment is on the alkyl moiety.

[0028] As used herein, the term “partially unsaturated” refers to a group that includes at least one double or triple bond. The term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aromatic groups (e.g., aryl or heteroaryl moieties) as herein defined.

[0029] As used herein, the term “saturated” refers to a group that does not contain a double or triple bond, *i.e.*, contains all single bonds.

[0030] Alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl groups, as defined herein, are optionally substituted (e.g., “substituted” or “unsubstituted” alkyl, “substituted” or “unsubstituted” alkenyl, “substituted” or “unsubstituted” alkynyl, “substituted” or “unsubstituted” carbocyclyl, “substituted” or “unsubstituted” heterocyclyl, “substituted” or “unsubstituted” aryl or “substituted” or “unsubstituted” heteroaryl group). In general, the term “substituted”, whether preceded by the term “optionally” or not, means that at least one hydrogen present on a group (e.g., a carbon or nitrogen atom) is replaced with a permissible substituent, *e.g.*, a substituent which upon substitution results in a stable compound, *e.g.*, a compound which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, or other reaction. Unless otherwise indicated, a

“substituted” group has a substituent at one or more substitutable positions of the group, and when more than one position in any given structure is substituted, the substituent is either the same or different at each position. The term “substituted” is contemplated to include substitution with all permissible substituents of organic compounds, any of the substituents described herein that results in the formation of a stable compound. The present invention contemplates any and all such combinations in order to arrive at a stable compound. For purposes of this invention, heteroatoms such as nitrogen may have hydrogen substituents and/or any suitable substituent as described herein which satisfy the valencies of the heteroatoms and results in the formation of a stable moiety.

[0031] Exemplary carbon atom substituents include, but are not limited to, halogen, $-CN$, $-NO_2$, $-N_3$, $-SO_2H$, $-SO_3H$, $-OH$, $-OR^{aa}$, $-ON(R^{bb})_2$, $-N(R^{bb})_2$, $-N(R^{bb})_3^+X^-$, $-N(OR^{cc})R^{bb}$, $-SH$, $-SR^{aa}$, $-SSR^{cc}$, $-C(=O)R^{aa}$, $-CO_2H$, $-CHO$, $-C(OR^{cc})_2$, $-CO_2R^{aa}$, $-OC(=O)R^{aa}$, $-OCO_2R^{aa}$, $-C(=O)N(R^{bb})_2$, $-OC(=O)N(R^{bb})_2$, $-NR^{bb}C(=O)R^{aa}$, $-NR^{bb}CO_2R^{aa}$, $-NR^{bb}C(=O)N(R^{bb})_2$, $-C(=NR^{bb})R^{aa}$, $-C(=NR^{bb})OR^{aa}$, $-OC(=NR^{bb})R^{aa}$, $-OC(=NR^{bb})OR^{aa}$, $-C(=NR^{bb})N(R^{bb})_2$, $-OC(=NR^{bb})N(R^{bb})_2$, $-NR^{bb}C(=NR^{bb})N(R^{bb})_2$, $-C(=O)NR^{bb}SO_2R^{aa}$, $-NR^{bb}SO_2R^{aa}$, $-SO_2N(R^{bb})_2$, $-SO_2R^{aa}$, $-SO_2OR^{aa}$, $-OSO_2R^{aa}$, $-S(=O)R^{aa}$, $-OS(=O)R^{aa}$, $-Si(R^{aa})_3$, $-OSi(R^{aa})_3$, $-C(=S)N(R^{bb})_2$, $-C(=O)SR^{aa}$, $-C(=S)SR^{aa}$, $-SC(=S)SR^{aa}$, $-SC(=O)SR^{aa}$, $-OC(=O)SR^{aa}$, $-SC(=O)OR^{aa}$, $-SC(=O)R^{aa}$, $-P(=O)_2R^{aa}$, $-OP(=O)_2R^{aa}$, $-P(=O)(R^{aa})_2$, $-OP(=O)(R^{aa})_2$, $-OP(=O)(OR^{cc})_2$, $-P(=O)_2N(R^{bb})_2$, $-OP(=O)_2N(R^{bb})_2$, $-P(=O)(NR^{bb})_2$, $-OP(=O)(NR^{bb})_2$, $-NR^{bb}P(=O)(OR^{cc})_2$, $-NR^{bb}P(=O)(NR^{bb})_2$, $-P(R^{cc})_2$, $-P(R^{cc})_3$, $-OP(R^{cc})_2$, $-OP(R^{cc})_3$, $-B(R^{aa})_2$, $-B(OR^{cc})_2$, $-BR^{aa}(OR^{cc})$, C_{1-10} alkyl, C_{1-10} perhaloalkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-14} carbocyclyl, 3–14 membered heterocyclyl, C_{6-14} aryl, and 5–14 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{dd} groups;

or two geminal hydrogens on a carbon atom are replaced with the group $=O$, $=S$, $=NN(R^{bb})_2$, $=NNR^{bb}C(=O)R^{aa}$, $=NNR^{bb}C(=O)OR^{aa}$, $=NNR^{bb}S(=O)_2R^{aa}$, $=NR^{bb}$, or $=NOR^{cc}$; each instance of R^{aa} is, independently, selected from C_{1-10} alkyl, C_{1-10} perhaloalkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} carbocyclyl, 3–14 membered heterocyclyl, C_{6-14} aryl, and 5–14 membered heteroaryl, or two R^{aa} groups are joined to form a 3–14 membered heterocyclyl or 5–14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{dd} groups;

each instance of R^{bb} is, independently, selected from hydrogen, $-OH$, $-OR^{aa}$, $-N(R^{cc})_2$, $-CN$, $-C(=O)R^{aa}$, $-C(=O)N(R^{cc})_2$, $-CO_2R^{aa}$, $-SO_2R^{aa}$, $-C(=NR^{cc})OR^{aa}$, $-$

$\text{C}(\text{=NR}^{\text{cc}})\text{N}(\text{R}^{\text{cc}})_2$, $-\text{SO}_2\text{N}(\text{R}^{\text{cc}})_2$, $-\text{SO}_2\text{R}^{\text{cc}}$, $-\text{SO}_2\text{OR}^{\text{cc}}$, $-\text{SOR}^{\text{aa}}$, $-\text{C}(\text{=S})\text{N}(\text{R}^{\text{cc}})_2$, $-\text{C}(\text{=O})\text{SR}^{\text{cc}}$, $-\text{C}(\text{=S})\text{SR}^{\text{cc}}$, $-\text{P}(\text{=O})_2\text{R}^{\text{aa}}$, $-\text{P}(\text{=O})(\text{R}^{\text{aa}})_2$, $-\text{P}(\text{=O})_2\text{N}(\text{R}^{\text{cc}})_2$, $-\text{P}(\text{=O})(\text{NR}^{\text{cc}})_2$, C_{1-10} alkyl, C_{1-10} perhaloalkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} carbocyclyl, 3–14 membered heterocyclyl, C_{6-14} aryl, and 5–14 membered heteroaryl, or two R^{bb} groups are joined to form a 3–14 membered heterocyclyl or 5–14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{dd} groups;

each instance of R^{cc} is, independently, selected from hydrogen, C_{1-10} alkyl, C_{1-10} perhaloalkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} carbocyclyl, 3–14 membered heterocyclyl, C_{6-14} aryl, and 5–14 membered heteroaryl, or two R^{cc} groups are joined to form a 3–14 membered heterocyclyl or 5–14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{dd} groups;

each instance of R^{dd} is, independently, selected from halogen, $-\text{CN}$, $-\text{NO}_2$, $-\text{N}_3$, $-\text{SO}_2\text{H}$, $-\text{SO}_3\text{H}$, $-\text{OH}$, $-\text{OR}^{\text{ee}}$, $-\text{ON}(\text{R}^{\text{ff}})_2$, $-\text{N}(\text{R}^{\text{ff}})_2$, $-\text{N}(\text{R}^{\text{ff}})_3^+\text{X}^-$, $-\text{N}(\text{OR}^{\text{ee}})\text{R}^{\text{ff}}$, $-\text{SH}$, $-\text{SR}^{\text{ee}}$, $-\text{SSR}^{\text{ee}}$, $-\text{C}(\text{=O})\text{R}^{\text{ee}}$, $-\text{CO}_2\text{H}$, $-\text{CO}_2\text{R}^{\text{ee}}$, $-\text{OC}(\text{=O})\text{R}^{\text{ee}}$, $-\text{OCO}_2\text{R}^{\text{ee}}$, $-\text{C}(\text{=O})\text{N}(\text{R}^{\text{ff}})_2$, $-\text{OC}(\text{=O})\text{N}(\text{R}^{\text{ff}})_2$, $-\text{NR}^{\text{ff}}\text{C}(\text{=O})\text{R}^{\text{ee}}$, $-\text{NR}^{\text{ff}}\text{CO}_2\text{R}^{\text{ee}}$, $-\text{NR}^{\text{ff}}\text{C}(\text{=O})\text{N}(\text{R}^{\text{ff}})_2$, $-\text{C}(\text{=NR}^{\text{ff}})\text{OR}^{\text{ee}}$, $-\text{OC}(\text{=NR}^{\text{ff}})\text{R}^{\text{ee}}$, $-\text{OC}(\text{=NR}^{\text{ff}})\text{OR}^{\text{ee}}$, $-\text{C}(\text{=NR}^{\text{ff}})\text{N}(\text{R}^{\text{ff}})_2$, $-\text{OC}(\text{=NR}^{\text{ff}})\text{N}(\text{R}^{\text{ff}})_2$, $-\text{NR}^{\text{ff}}\text{SO}_2\text{R}^{\text{ee}}$, $-\text{SO}_2\text{N}(\text{R}^{\text{ff}})_2$, $-\text{SO}_2\text{R}^{\text{ee}}$, $-\text{SO}_2\text{OR}^{\text{ee}}$, $-\text{OSO}_2\text{R}^{\text{ee}}$, $-\text{S}(\text{=O})\text{R}^{\text{ee}}$, $-\text{Si}(\text{R}^{\text{ee}})_3$, $-\text{OSi}(\text{R}^{\text{ee}})_3$, $-\text{C}(\text{=S})\text{N}(\text{R}^{\text{ff}})_2$, $-\text{C}(\text{=O})\text{SR}^{\text{ee}}$, $-\text{C}(\text{=S})\text{SR}^{\text{ee}}$, $-\text{SC}(\text{=S})\text{SR}^{\text{ee}}$, $-\text{P}(\text{=O})_2\text{R}^{\text{ee}}$, $-\text{P}(\text{=O})(\text{R}^{\text{ee}})_2$, $-\text{OP}(\text{=O})(\text{R}^{\text{ee}})_2$, $-\text{OP}(\text{=O})(\text{OR}^{\text{ee}})_2$, C_{1-6} alkyl, C_{1-6} perhaloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} carbocyclyl, 3–10 membered heterocyclyl, C_{6-10} aryl, 5–10 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{gg} groups, or two geminal R^{dd} substituents can be joined to form $=\text{O}$ or $=\text{S}$;

each instance of R^{ee} is, independently, selected from C_{1-6} alkyl, C_{1-6} perhaloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} carbocyclyl, C_{6-10} aryl, 3–10 membered heterocyclyl, and 3–10 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{gg} groups;

each instance of R^{ff} is, independently, selected from hydrogen, C_{1-6} alkyl, C_{1-6} perhaloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} carbocyclyl, 3–10 membered heterocyclyl, C_{6-10} aryl and 5–10 membered heteroaryl, or two R^{ff} groups are joined to form a 3–14 membered heterocyclyl or 5–14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl,

carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{gg} groups; and

each instance of R^{gg} is, independently, halogen, –CN, –NO₂, –N₃, –SO₂H, –SO₃H, –OH, –OC₁₋₆ alkyl, –ON(C₁₋₆ alkyl)₂, –N(C₁₋₆ alkyl)₂, –N(C₁₋₆ alkyl)₃⁺X[–], –NH(C₁₋₆ alkyl)₂⁺X[–], –NH₂(C₁₋₆ alkyl)⁺X[–], –NH₃⁺X[–], –N(OC₁₋₆ alkyl)(C₁₋₆ alkyl), –N(OH)(C₁₋₆ alkyl), –NH(OH), –SH, –SC₁₋₆ alkyl, –SS(C₁₋₆ alkyl), –C(=O)(C₁₋₆ alkyl), –CO₂H, –CO₂(C₁₋₆ alkyl), –OC(=O)(C₁₋₆ alkyl), –OCO₂(C₁₋₆ alkyl), –C(=O)NH₂, –C(=O)N(C₁₋₆ alkyl)₂, –OC(=O)NH(C₁₋₆ alkyl), –NHC(=O)(C₁₋₆ alkyl), –N(C₁₋₆ alkyl)C(=O)(C₁₋₆ alkyl), –NHCO₂(C₁₋₆ alkyl), –NHC(=O)N(C₁₋₆ alkyl)₂, –NHC(=O)NH(C₁₋₆ alkyl), –NHC(=O)NH₂, –C(=NH)O(C₁₋₆ alkyl), –OC(=NH)(C₁₋₆ alkyl), –OC(=NH)OC₁₋₆ alkyl, –C(=NH)N(C₁₋₆ alkyl)₂, –C(=NH)NH(C₁₋₆ alkyl), –C(=NH)NH₂, –OC(=NH)N(C₁₋₆ alkyl)₂, –NHC(=NH)NH₂, –NHSO₂(C₁₋₆ alkyl), –SO₂N(C₁₋₆ alkyl)₂, –SO₂NH(C₁₋₆ alkyl), –SO₂NH₂, –SO₂C₁₋₆ alkyl, –SO₂OC₁₋₆ alkyl, –OSO₂C₁₋₆ alkyl, –SOC₁₋₆ alkyl, –Si(C₁₋₆ alkyl)₃, –OSi(C₁₋₆ alkyl)₃ –C(=S)N(C₁₋₆ alkyl)₂, C(=S)NH(C₁₋₆ alkyl), C(=S)NH₂, –C(=O)S(C₁₋₆ alkyl), –C(=S)SC₁₋₆ alkyl, –SC(=S)SC₁₋₆ alkyl, –P(=O)₂(C₁₋₆ alkyl), –P(=O)(C₁₋₆ alkyl)₂, –OP(=O)(C₁₋₆ alkyl)₂, –OP(=O)(OC₁₋₆ alkyl)₂, C₁₋₆ alkyl, C₁₋₆ perhaloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ carbocyclyl, C₆₋₁₀ aryl, 3–10 membered heterocyclyl, 5–10 membered heteroaryl; or two geminal R^{gg} substituents can be joined to form =O or =S; wherein X[–] is a counterion.

[0032] As used herein, the term “hydroxyl” or “hydroxy” refers to the group –OH. The term “substituted hydroxyl” or “substituted hydroxyl,” by extension, refers to a hydroxyl group wherein the oxygen atom directly attached to the parent molecule is substituted with a group other than hydrogen, and includes groups selected from –OR^{aa}, –ON(R^{bb})₂, –OC(=O)SR^{aa}, –OC(=O)R^{aa}, –OCO₂R^{aa}, –OC(=O)N(R^{bb})₂, –OC(=NR^{bb})R^{aa}, –OC(=NR^{bb})OR^{aa}, –OC(=NR^{bb})N(R^{bb})₂, –OS(=O)R^{aa}, –OSO₂R^{aa}, –OSi(R^{aa})₃, –OP(R^{cc})₂, –OP(R^{cc})₃, –OP(=O)₂R^{aa}, –OP(=O)(R^{aa})₂, –OP(=O)(OR^{cc})₂, –OP(=O)₂N(R^{bb})₂, and –OP(=O)(NR^{bb})₂, wherein R^{aa}, R^{bb}, and R^{cc} are as defined herein.

[0033] As used herein, the term “thiol” or “thio” refers to the group –SH. The term “substituted thiol” or “substituted thio,” by extension, refers to a thiol group wherein the sulfur atom directly attached to the parent molecule is substituted with a group other than hydrogen, and includes groups selected from –SR^{aa}, –S=SR^{cc}, –SC(=S)SR^{aa}, –SC(=O)SR^{aa}, –SC(=O)OR^{aa}, and –SC(=O)R^{aa}, wherein R^{aa}, and R^{cc} are as defined herein.

[0034] As used herein, the term, “amino” refers to the group $-\text{NH}_2$. The term “substituted amino,” by extension, refers to a monosubstituted amino, a disubstituted amino, or a trisubstituted amino, as defined herein.

[0035] As used herein, the term “monosubstituted amino” refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with one hydrogen and one group other than hydrogen, and includes groups selected from $-\text{NH}(\text{R}^{\text{bb}})$, $-\text{NHC}(=\text{O})\text{R}^{\text{aa}}$, $-\text{NHCO}_2\text{R}^{\text{aa}}$, $-\text{NHC}(=\text{O})\text{N}(\text{R}^{\text{bb}})_2$, $-\text{NHC}(=\text{NR}^{\text{bb}})\text{N}(\text{R}^{\text{bb}})_2$, $-\text{NHSO}_2\text{R}^{\text{aa}}$, $-\text{NHP}(=\text{O})(\text{OR}^{\text{cc}})_2$, and $-\text{NHP}(=\text{O})(\text{NR}^{\text{bb}})_2$, wherein R^{aa} , R^{bb} , and R^{cc} are as defined herein, and wherein R^{bb} of the group $-\text{NH}(\text{R}^{\text{bb}})$ is not hydrogen.

[0036] As used herein, the term “disubstituted amino” refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with two groups other than hydrogen, and includes groups selected from $-\text{N}(\text{R}^{\text{bb}})_2$, $-\text{NR}^{\text{bb}}\text{C}(=\text{O})\text{R}^{\text{aa}}$, $-\text{NR}^{\text{bb}}\text{CO}_2\text{R}^{\text{aa}}$, $-\text{NR}^{\text{bb}}\text{C}(=\text{O})\text{N}(\text{R}^{\text{bb}})_2$, $-\text{NR}^{\text{bb}}\text{C}(=\text{NR}^{\text{bb}})\text{N}(\text{R}^{\text{bb}})_2$, $-\text{NR}^{\text{bb}}\text{SO}_2\text{R}^{\text{aa}}$, $-\text{NR}^{\text{bb}}\text{P}(=\text{O})(\text{OR}^{\text{cc}})_2$, and $-\text{NR}^{\text{bb}}\text{P}(=\text{O})(\text{NR}^{\text{bb}})_2$, wherein R^{aa} , R^{bb} , and R^{cc} are as defined herein, with the proviso that the nitrogen atom directly attached to the parent molecule is not substituted with hydrogen.

[0037] As used herein, the term “trisubstituted amino” or a “quaternary amino salt” or a “quaternary salt” refers to a nitrogen atom covalently attached to four groups such that the nitrogen is cationic, wherein the cationic nitrogen atom is further complexed with an anionic counterion, *e.g.*, such as groups of the Formula $-\text{N}(\text{R}^{\text{bb}})_3^+\text{X}^-$ and $-\text{N}(\text{R}^{\text{bb}})_2^+\text{X}^-$, wherein R^{bb} and X^- are as defined herein.

[0038] As used herein, a “counterion” or “anionic counterion” is a negatively charged group associated with a cationic quaternary amino group in order to maintain electronic neutrality. Exemplary counterions include halide ions (*e.g.*, F^- , Cl^- , Br^- , I^-), NO_3^- , ClO_4^- , OH^- , H_2PO_4^- , HSO_4^- , sulfonate ions (*e.g.*, methansulfonate, trifluoromethanesulfonate, *p*-toluenesulfonate, benzenesulfonate, 10-camphor sulfonate, naphthalene-2-sulfonate, naphthalene-1-sulfonic acid-5-sulfonate, ethan-1-sulfonic acid-2-sulfonate, and the like), and carboxylate ions (*e.g.*, acetate, ethanoate, propanoate, benzoate, glycerate, lactate, tartrate, glycolate, and the like).

[0039] As used herein, the term “sulfonyl” refers to a group selected from $-\text{SO}_2\text{N}(\text{R}^{\text{bb}})_2$, $-\text{SO}_2\text{R}^{\text{aa}}$, and $-\text{SO}_2\text{OR}^{\text{aa}}$, wherein R^{aa} and R^{bb} are as defined herein.

[0040] As used herein, the term “sulfinyl” refers to the group $-\text{S}(=\text{O})\text{R}^{\text{aa}}$, wherein R^{aa} is as defined herein.

[0041] As used herein, the term “acyl” refers a group wherein the carbon directly attached to the parent molecule is sp^2 hybridized, and is substituted with an oxygen, nitrogen or sulfur atom, *e.g.*, a group selected from ketones ($-C(=O)R^{aa}$), carboxylic acids ($-CO_2H$), aldehydes ($-CHO$), esters ($-CO_2R^{aa}$), thioesters ($-C(=O)SR^{aa}$, $-C(=S)SR^{aa}$), amides ($-C(=O)N(R^{bb})_2$, $-C(=O)NR^{bb}SO_2R^{aa}$) thioamides ($-C(=S)N(R^{bb})_2$), and imines ($-C(=NR^{bb})R^{aa}$, $-C(=NR^{bb})OR^{aa}$, $-C(=NR^{bb})N(R^{bb})_2$), wherein R^{aa} and R^{bb} are as defined herein.

[0042] As used herein, the term “azido” refers to a group of the formula: $-N_3$.

[0043] As used herein, the term “cyano” refers to a group of the formula: $-CN$.

[0044] As used herein, the term “isocyano” refers to a group of the formula: $-NC$.

[0045] As used herein, the term “nitro” refers to a group of the formula: $-NO_2$.

[0046] As used herein, the term “halo” or “halogen” refers to fluorine (fluoro, $-F$), chlorine (chloro, $-Cl$), bromine (bromo, $-Br$), or iodine (iodo, $-I$).

[0047] As used herein, the term “oxo” refers to a group of the formula: $=O$.

[0048] As used herein, the term “thiooxo” refers to a group of the formula: $=S$.

[0049] As used herein, the term “imino” refers to a group of the formula: $=N(R^b)$.

[0050] As used herein, the term “silyl” refers to the group $-Si(R^{aa})_3$, wherein R^{aa} is as defined herein.

[0051] Nitrogen atoms can be substituted or unsubstituted as valency permits, and include primary, secondary, tertiary, and quarternary nitrogen atoms. Exemplary nitrogen atom substitutents include, but are not limited to, hydrogen, $-OH$, $-OR^{aa}$, $-N(R^{cc})_2$, $-CN$, $-C(=O)R^{aa}$, $-C(=O)N(R^{cc})_2$, $-CO_2R^{aa}$, $-SO_2R^{aa}$, $-C(=NR^{bb})R^{aa}$, $-C(=NR^{cc})OR^{aa}$, $-C(=NR^{cc})N(R^{cc})_2$, $-SO_2N(R^{cc})_2$, $-SO_2R^{cc}$, $-SO_2OR^{cc}$, $-SOR^{aa}$, $-C(=S)N(R^{cc})_2$, $-C(=O)SR^{cc}$, $-C(=S)SR^{cc}$, $-P(=O)_2R^{aa}$, $-P(=O)(R^{aa})_2$, $-P(=O)_2N(R^{cc})_2$, $-P(=O)(NR^{cc})_2$, C_{1-10} alkyl, C_{1-10} perhaloalkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} carbocyclyl, 3–14 membered heterocyclyl, C_{6-14} aryl, and 5–14 membered heteroaryl, or two R^{cc} groups attached to a nitrogen atom are joined to form a 3–14 membered heterocyclyl or 5–14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{dd} groups, and wherein R^{aa} , R^{bb} , R^{cc} and R^{dd} are as defined above.

[0052] In certain embodiments, the substituent present on the nitrogen atom is an amino protecting group (also referred to herein as a “nitrogen protecting group”). Amino protecting groups include, but are not limited to, $-OH$, $-OR^{aa}$, $-N(R^{cc})_2$, $-C(=O)R^{aa}$, $-C(=O)N(R^{cc})_2$, $-CO_2R^{aa}$, $-SO_2R^{aa}$, $-C(=NR^{cc})R^{aa}$, $-C(=NR^{cc})OR^{aa}$, $-C(=NR^{cc})N(R^{cc})_2$, $-SO_2N(R^{cc})_2$, $-SO_2R^{cc}$, $-SO_2OR^{cc}$, $-SOR^{aa}$, $-C(=S)N(R^{cc})_2$, $-C(=O)SR^{cc}$, $-C(=S)SR^{cc}$, C_{1-10} alkyl (*e.g.*, aralkyl,

heteroaralkyl), C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl, C₃₋₁₀ carbocyclyl, 3–14 membered heterocyclyl, C₆₋₁₄ aryl, and 5–14 membered heteroaryl groups, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aralkyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R^{dd} groups, and wherein R^{aa}, R^{bb}, R^{cc}, and R^{dd} are as defined herein. Amino protecting groups are well known in the art and include those described in detail in *Protecting Groups in Organic Synthesis*, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, incorporated herein by reference.

[0053] For example, amino protecting groups such as amide groups (e.g., -C(=O)R^{aa}) include, but are not limited to, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3-phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitophenylacetamide, o-nitrophenoxyacetamide, acetoacetamide, (N'-dithiobenzylxyacetyl amino)acetamide, 3-(p-hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o-nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4-chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitrocinnamide, N-acetylmethionine derivative, o-nitrobenzamide and o-(benzoyloxymethyl)benzamide.

[0054] Amino protecting groups such as carbamate groups (e.g., -C(=O)OR^{aa}) include, but are not limited to, methyl carbamate, ethyl carbamate, 9-fluorenylmethyl carbamate (Fmoc), 9-(2-sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2-trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), 1-(1-adamantyl)-1-methylethyl carbamate (Adpoc), 1,1-dimethyl-2-haloethyl carbamate, 1,1-dimethyl-2,2-dibromoethyl carbamate (DB-t-BOC), 1,1-dimethyl-2,2,2-trichloroethyl carbamate (TCBOC), 1-methyl-1-(4-biphenyl)ethyl carbamate (Bpoc), 1-(3,5-di-t-butylphenyl)-1-methylethyl carbamate (t-Bumeoc), 2-(2'- and 4'-pyridyl)ethyl carbamate (Pyoc), 2-(N,N-dicyclohexylcarboxamido)ethyl carbamate, t-butyl carbamate (BOC), 1-adamantyl carbamate (Adoc), vinyl carbamate (Voc), allyl carbamate (Alloc), 1-isopropylallyl carbamate (Ipaoc), cinnamyl carbamate (Coc), 4-nitrocinnamyl carbamate (Noc), 8-quinolyl carbamate, N-hydroxypiperidinyl carbamate, alkyldithio carbamate, benzyl carbamate (Cbz), p-methoxybenzyl carbamate (Moz), p-nitobenzyl carbamate, p-bromobenzyl carbamate, p-chlorobenzyl carbamate, 2,4-dichlorobenzyl carbamate, 4-methylsulfinylbenzyl carbamate (Msz), 9-anthrylmethyl carbamate, diphenylmethyl

carbamate, 2-methylthioethyl carbamate, 2-methylsulfonylethyl carbamate, 2-(*p*-toluenesulfonyl)ethyl carbamate, [2-(1,3-dithianyl)]methyl carbamate (Dmoc), 4-methylthiophenyl carbamate (Mtpc), 2,4-dimethylthiophenyl carbamate (Bmpc), 2-phosphonioethyl carbamate (Peoc), 2-triphenylphosphonioisopropyl carbamate (Ppoc), 1,1-dimethyl-2-cyanoethyl carbamate, *m*-chloro-*p*-acyloxybenzyl carbamate, *p*-(dihydroxyboryl)benzyl carbamate, 5-benzisoxazolylmethyl carbamate, 2-(trifluoromethyl)-6-chromonylmethyl carbamate (Troc), *m*-nitrophenyl carbamate, 3,5-dimethoxybenzyl carbamate, *o*-nitrobenzyl carbamate, 3,4-dimethoxy-6-nitrobenzyl carbamate, phenyl(*o*-nitrophenyl)methyl carbamate, *t*-amyl carbamate, *S*-benzyl thiocarbamate, *p*-cyanobenzyl carbamate, cyclobutyl carbamate, cyclohexyl carbamate, cyclopentyl carbamate, cyclopropylmethyl carbamate, *p*-decyloxybenzyl carbamate, 2,2-dimethoxyacetylvinyl carbamate, *o*-(*N,N*-dimethylcarboxamido)benzyl carbamate, 1,1-dimethyl-3-(*N,N*-dimethylcarboxamido)propyl carbamate, 1,1-dimethylpropynyl carbamate, di(2-pyridyl)methyl carbamate, 2-furanylmethyl carbamate, 2-iodoethyl carbamate, isoborynl carbamate, isobutyl carbamate, isonicotinyl carbamate, *p*-(*p*'-methoxyphenylazo)benzyl carbamate, 1-methylcyclobutyl carbamate, 1-methylcyclohexyl carbamate, 1-methyl-1-cyclopropylmethyl carbamate, 1-methyl-1-(3,5-dimethoxyphenyl)ethyl carbamate, 1-methyl-1-(*p*-phenylazophenyl)ethyl carbamate, 1-methyl-1-phenylethyl carbamate, 1-methyl-1-(4-pyridyl)ethyl carbamate, phenyl carbamate, *p*-(phenylazo)benzyl carbamate, 2,4,6-tri-*t*-butylphenyl carbamate, 4-(trimethylammonium)benzyl carbamate, and 2,4,6-trimethylbenzyl carbamate.

[0055] Amino protecting groups such as sulfonamide groups (*e.g.*, $-S(=O)_2R^{aa}$) include, but are not limited to, *p*-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6,-trimethyl-4-methoxybenzenesulfonamide (Mtr), 2,4,6-trimethoxybenzenesulfonamide (Mtb), 2,6-dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5,6-tetramethyl-4-methoxybenzenesulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6-trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4-methylbenzenesulfonamide (iMds), 2,2,5,7,8-pentamethylchroman-6-sulfonamide (Pmc), methanesulfonamide (Ms), β -trimethylsilylethanesulfonamide (SES), 9-anthracenesulfonamide, 4-(4',8'-dimethoxynaphthylmethyl)benzenesulfonamide (DNMBS), benzylsulfonamide, trifluoromethylsulfonamide, and phenacylsulfonamide.

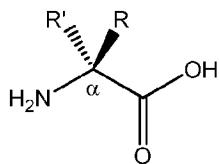
[0056] Other amino protecting groups include, but are not limited to, phenothiazinyl-(10)-acyl derivative, *N*'-*p*-toluenesulfonylaminocarbonyl derivative, *N*'-phenylaminothioacyl derivative, *N*-benzoylphenylalanyl derivative, *N*-acetylmethionine derivative, 4,5-diphenyl-

3-oxazolin-2-one, *N*-phthalimide, *N*-dithiasuccinimide (Dts), *N*-2,3-diphenylmaleimide, *N*-2,5-dimethylpyrrole, *N*-1,1,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5-substituted 1,3-dimethyl-1,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl-1,3,5-triazacyclohexan-2-one, 1-substituted 3,5-dinitro-4-pyridone, *N*-methylamine, *N*-allylamine, *N*-[2-(trimethylsilyl)ethoxy]methylamine (SEM), *N*-3-acetoxypropylamine, *N*-(1-isopropyl-4-nitro-2-oxo-3-pyroolin-3-yl)amine, quaternary ammonium salts, *N*-benzylamine, *N*-di(4-methoxyphenyl)methylamine, *N*-5-dibenzosuberylamine, *N*-triphenylmethylamine (Tr), *N*-[(4-methoxyphenyl)diphenylmethyl]amine (MMTr), *N*-9-phenylfluorenylamine (PhF), *N*-2,7-dichloro-9-fluorenylmethyleneamine, *N*-ferrocenylmethylamino (Fcm), *N*-2-picolylamino *N*'-oxide, *N*-1,1-dimethylthiomethyleneamine, *N*-benzylideneamine, *N*-*p*-methoxybenzylideneamine, *N*-diphenylmethyleneamine, *N*-[(2-pyridyl)mesityl]methyleneamine, *N*-(*N*',*N*'-dimethylaminomethylene)amine, *N,N*'-isopropylidenediamine, *N*-*p*-nitrobenzylideneamine, *N*-salicylideneamine, *N*-5-chlorosalicylideneamine, *N*-(5-chloro-2-hydroxyphenyl)phenylmethyleneamine, *N*-cyclohexylideneamine, *N*-(5,5-dimethyl-3-oxo-1-cyclohexenyl)amine, *N*-borane derivative, *N*-diphenylborinic acid derivative, *N*-[phenyl(pentaacylchromium- or tungsten)acyl]amine, *N*-copper chelate, *N*-zinc chelate, *N*-nitroamine, *N*-nitrosoamine, amine *N*-oxide, diphenylphosphinamide (Dpp), dimethylthiophosphinamide (Mpt), diphenylthiophosphinamide (Ppt), dialkyl phosphoramidates, dibenzyl phosphoramidate, diphenyl phosphoramidate, benzenesulfenamide, *o*-nitrobenzenesulfenamide (Nps), 2,4-dinitrobenzenesulfenamide, pentachlorobenzenesulfenamide, 2-nitro-4-methoxybenzenesulfenamide, triphenylmethylsulfenamide, and 3-nitropyridinesulfenamide (Npys).

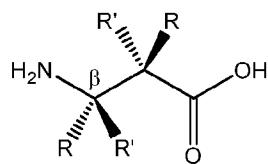
[0057] In certain embodiments, the substituent present on an oxygen atom is a hydroxyl protecting group (also referred to herein as an “oxygen protecting group”). Hydroxyl protecting groups include, but are not limited to, $-R^{aa}$, $-N(R^{bb})_2$, $-C(=O)SR^{aa}$, $-C(=O)R^{aa}$, $-CO_2R^{aa}$, $-C(=O)N(R^{bb})_2$, $-C(=NR^{bb})R^{aa}$, $-C(=NR^{bb})OR^{aa}$, $-C(=NR^{bb})N(R^{bb})_2$, $-S(=O)R^{aa}$, $-SO_2R^{aa}$, $-Si(R^{aa})_3$, $-P(R^{cc})_2$, $-P(R^{cc})_3$, $-P(=O)_2R^{aa}$, $-P(=O)(R^{aa})_2$, $-P(=O)(OR^{cc})_2$, $-P(=O)_2N(R^{bb})_2$, and $-P(=O)(NR^{bb})_2$, wherein R^{aa} , R^{bb} , and R^{cc} are as defined herein.

Hydroxyl protecting groups are well known in the art and include those described in detail in *Protecting Groups in Organic Synthesis*, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, incorporated herein by reference.

[0058] Exemplary oxygen protecting groups include, but are not limited to, methyl, methoxymethyl (MOM), methylthiomethyl (MTM), *t*-butylthiomethyl,


(phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), *p*–methoxybenzyloxymethyl (PMBM), (4–methoxyphenoxy)methyl (*p*–AOM), guaiacolmethyl (GUM), *t*–butoxymethyl, 4–pentenyloxymethyl (POM), siloxymethyl, 2–methoxyethoxymethyl (MEM), 2,2,2–trichloroethoxymethyl, bis(2–chloroethoxy)methyl, 2–(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3–bromotetrahydropyranyl, tetrahydrothiopyranyl, 1–methoxycyclohexyl, 4–methoxytetrahydropyranyl (MTHP), 4–methoxytetrahydrothiopyranyl, 4–methoxytetrahydrothiopyranyl S,S–dioxide, 1–[(2–chloro–4–methyl)phenyl]–4–methoxypiperidin–4–yl (CTMP), 1,4–dioxan–2–yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a,4,5,6,7,7a–octahydro–7,8,8–trimethyl–4,7–methanobenzofuran–2–yl, 1–ethoxyethyl, 1–(2–chloroethoxy)ethyl, 1–methyl–1–methoxyethyl, 1–methyl–1–benzyloxymethyl, 1–methyl–1–benzyloxy–2–fluoroethyl, 2,2,2–trichloroethyl, 2–trimethylsilylethyl, 2–(phenylselenyl)ethyl, *t*–butyl, allyl, *p*–chlorophenyl, *p*–methoxyphenyl, 2,4–dinitrophenyl, benzyl (Bn), *p*–methoxybenzyl, 3,4–dimethoxybenzyl, *o*–nitrobenzyl, *p*–nitrobenzyl, *p*–halobenzyl, 2,6–dichlorobenzyl, *p*–cyanobenzyl, *p*–phenylbenzyl, 2–picolyl, 4–picolyl, 3–methyl–2–picolyl *N*–oxido, diphenylmethyl, *p,p*’–dinitrobenzhydryl, 5–dibenzosuberyl, triphenylmethyl, α –naphthylidiphenylmethyl, *p*–methoxyphenyldiphenylmethyl, di(*p*–methoxyphenyl)phenylmethyl, tri(*p*–methoxyphenyl)methyl, 4–(4’–bromophenacyloxyphenyl)diphenylmethyl, 4,4’,4”–tris(4,5–dichlorophthalimidophenyl)methyl, 4,4’,4”–tris(levulinoxyphenyl)methyl, 4,4’,4”–tris(benzoxyphenyl)methyl, 3–(imidazol–1–yl)bis(4’,4”–dimethoxyphenyl)methyl, 1,1–bis(4–methoxyphenyl)–1’–pyrenylmethyl, 9–anthryl, 9–(9–phenyl)xanthenyl, 9–(9–phenyl–10–oxo)anthryl, 1,3–benzodithiolan–2–yl, benzisothiazolyl S,S–dioxide, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl (DEIPS), dimethylhexylsilyl, *t*–butyldimethylsilyl (TBDMS), *t*–butyldiphenylsilyl (TBDPS), tribenzylsilyl, tri–*p*–xylylsilyl, triphenylsilyl, diphenylmethylsilyl (DPMS), *t*–butylmethoxyphenylsilyl (TBMPs), formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, *p*–chlorophenoxyacetate, 3–phenylpropionate, 4–oxopentanoate (levulinate), 4,4–(ethylenedithio)pentanoate (levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4–methoxycrotonate, benzoate, *p*–phenylbenzoate, 2,4,6–trimethylbenzoate (mesitoate), methyl carbonate, 9–fluorenylmethyl carbonate (Fmoc), ethyl carbonate, 2,2,2–trichloroethyl carbonate (Troc), 2–(trimethylsilyl)ethyl carbonate (TMSEC), 2–(phenylsulfonyl) ethyl carbonate (Psec), 2–

(triphenylphosphonio) ethyl carbonate (Peoc), isobutyl carbonate, vinyl carbonate, allyl carbonate, *t*-butyl carbonate (BOC), *p*-nitrophenyl carbonate, benzyl carbonate, *p*-methoxybenzyl carbonate, 3,4-dimethoxybenzyl carbonate, *o*-nitrobenzyl carbonate, *p*-nitrobenzyl carbonate, *S*-benzyl thiocarbonate, 4-ethoxy-1-naphthyl carbonate, methyl dithiocarbonate, 2-iodobenzoate, 4-azidobutyrate, 4-nitro-4-methylpentanoate, *o*-(dibromomethyl)benzoate, 2-formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-(methylthiomethoxy)butyrate, 2-(methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4-(1,1,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis(1,1-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinate, (*E*)-2-methyl-2-butenoate, *o*-(methoxyacetyl)benzoate, α -naphthoate, nitrate, alkyl *N,N,N',N'*-tetramethylphosphorodiamide, alkyl *N*-phenylcarbamate, borate, dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsulfonate, sulfate, methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts).


[0059] A “thiol protecting group” is well known in the art and include those described in detail in *Protecting Groups in Organic Synthesis*, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, the entirety of which is incorporated herein by reference. Examples of protected thiol groups further include, but are not limited to, thioesters, carbonates, sulfonates allyl thioethers, thioethers, silyl thioethers, alkyl thioethers, arylalkyl thioethers, and alkyloxyalkyl thioethers. Examples of ester groups include formates, acetates, propionates, pentanoates, crotonates, and benzoates. Specific examples of ester groups include formate, benzoyl formate, chloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, *p*-chlorophenoxyacetate, 3-phenylpropionate, 4-oxopentanoate, 4,4-(ethylenedithio)pentanoate, pivaloate (trimethylacetate), crotonate, 4-methoxy-crotonate, benzoate, *p*-benzylbenzoate, 2,4,6-trimethylbenzoate. Examples of carbonates include 9-fluorenylmethyl, ethyl, 2,2,2-trichloroethyl, 2-(trimethylsilyl)ethyl, 2-(phenylsulfonyl)ethyl, vinyl, allyl, and *p*-nitrobenzyl carbonate. Examples of silyl groups include trimethylsilyl, triethylsilyl, *t*-butyldimethylsilyl, *t*-butyldiphenylsilyl, triisopropylsilyl ether, and other trialkylsilyl ethers. Examples of alkyl groups include methyl, benzyl, *p*-methoxybenzyl, 3,4-dimethoxybenzyl, trityl, *t*-butyl, and allyl ether, or derivatives thereof. Examples of arylalkyl groups include benzyl, *p*-methoxybenzyl (MPM), 3,4-dimethoxybenzyl, *O*-nitrobenzyl, *p*-nitrobenzyl, *p*-halobenzyl, 2,6-dichlorobenzyl, *p*-cyanobenzyl, 2- and 4-picolyl ethers.

[0060] The term “amino acid” refers to a molecule containing both an amino group and a carboxyl group. Amino acids include alpha-amino acids and beta-amino acids, the structures

of which are depicted below. In certain embodiments, the amino acid is an alpha-amino acid. In certain embodiments, the amino acid is an unnatural amino acid. In certain embodiments, the amino acid is a natural amino acid. In certain embodiments, the amino acid is an unnatural amino acid.

alpha-amino acid

beta-amino acid

Exemplary amino acids include, without limitation, natural alpha-amino acids such as D- and L-isomers of the 20 common naturally occurring alpha amino acids found in peptides, unnatural alpha-amino acids, natural beta-amino acids (*e.g.*, beta-alanine), and unnatural beta-amino acids. Amino acids used in the construction of peptides of the present invention may be prepared by organic synthesis, or obtained by other routes, such as, for example, degradation of or isolation from a natural source. Amino acids may be commercially available or may be synthesized.

[0061] A “peptide” or “polypeptide” comprises a polymer of amino acid residues linked together by peptide (amide) bonds. The term(s), as used herein, refers to proteins, polypeptides, and peptide of any size, structure, or function. The term(s), as used herein, include stapled, unstapled, stitched, and unstitched polypeptides. Typically, a peptide or polypeptide will be at least three amino acids long. A peptide or polypeptide may refer to an individual protein or a collection of proteins. Inventive proteins preferably contain only natural amino acids, although non-natural amino acids (*i.e.*, compounds that do not occur in nature but that can be incorporated into a polypeptide chain) and/or amino acid analogs as are known in the art may alternatively be employed. One or more of the amino acids in a peptide or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification. A peptide or polypeptide may also be a single molecule or may be a multi-molecular complex, such as a protein. A peptide or polypeptide may be just a fragment of a naturally occurring protein or peptide. A peptide or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof.

[0062] As used herein, the term “salt” or “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact

with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio.

Pharmaceutically acceptable salts are well known in the art. For example, Berge *et al.*, describes pharmaceutically acceptable salts in detail in *J. Pharmaceutical Sciences* (1977) 66:1–19. Pharmaceutically acceptable salts of the compounds, amino acids, and polypeptides of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginic acid, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, *p*-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and $N^+(C_{1-4}\text{alkyl})_4$ salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, quaternary amino salts, *e.g.*, trisubstituted amino groups defined herein.

[0063] These and other exemplary functional groups are described in more detail in the Detailed Description, Examples, and claims. The invention is not intended to be limited in any manner by the above exemplary listing of substituents.

Detailed Description of Figures

[0064] *Figure 1* shows formation of exemplary staples from the Alloc moiety from the pyrrolidine side chain and subsequent CO_2 extrusion.

[0065] *Figures 2A and 2B* show chemical reactions to form stapled or stitched polypeptides.

[0066] *Figure 3* shows preliminary characterization of an amino-stapled *i, i+7* peptide. (a) General scheme of preparing amino stapled stapled *i, i+7* peptide. The (R)-Alloc-pyrrolidine amino acid was incorporated at the *i* position and the S₈ amino acid at the *i+7* position in the SAH-p53-8 peptide sequence. After RCM, nearly complete conversion to the Alloc-stapled intermediate was obtained. This intermediate was then subjected to Pd-mediated CO₂ extrusion, which gave nearly complete conversion to the indicated *i, i+7* amino-stapled peptide. The double bond in the amino-staple can be either E or Z conformation. (b) Circular Dichroism (CD) spectrum showing comparable levels of helix induction by the first-generation staple in the SAH-p53-8 peptide (dashed long lines; FITC-β-ala-p53-8 R₅/S₈ hydrocarbon-stapled) and the amino-stapled version (solid line; FITC-β-ala-p53-8 Pyr_R/S₈ amino-stapled). The unmodified parent peptide is also shown (dashed short lines). The sequence comparison of the unmodified peptide, all-hydrocarbon stapled peptide, and amino-stapled peptide is shown in Table (i)

Table (i)

Parent Unmodified Peptide	Q	S	Q	Q	T	F	S	N	L	W	R	L	L	P	Q	N
SAH-p53-8 (<i>i, i+7</i> All-Hydrocarbon Stapled Peptide)	Q	S	Q	Q	T	F	R₅	N	L	W	R	L	L	S₈	Q	N
SAH-p53-8 (<i>i, i+7</i> Amino-Stapled Peptide)	Q	S	Q	Q	T	F	Pyr_R	N	L	W	R	L	L	S₈	Q	N

α-Helical peptides display a CD spectrum with characteristic dual minima at 208nm and 222nm.

(c) The amino-stapled version of SAH-p53-8 shows more robust cell-penetration than the original hydrocarbon-stapled version. HeLa cells were treated with 10μM peptide labeled N-terminally with Fluorescein isothiocyanate, separated from the peptide by a β-alanine linker, at 37°C for 4 hours in media containing 10% fetal bovine serum. The cells were washed, fixed with paraformaldehyde, then imaged using an Olympus FV300 fluoview confocal fluorescence microscope. The amino-stapled peptide exhibits higher intracellular accumulation at these conditions, as evidenced by a more robust fluorescein signal. Instrument settings were identical for acquisition of each image shown.

[0067] *Figure 4A* shows trypsinization scheme of amino-stapled polypeptide and unstapled polypeptide. The amino acid located at the first asterisk is Pyr_R and the amino acid located at the second asterisk is S₈. Trypsin cleaves peptides on the C-terminal side of K and R of the polypeptide. Trypsin proteolysis of unstapled peptide will result in two fragments. Proteolysis of an amino-stapled peptide with a covalent cross-link will yield a single fragment after proteolysis with trypsin.

[0068] *Figure 4B* shows LC/MS spectra of pre-trypsinization and post-trypsinization of unstapled polypeptide and amino-stapled polypeptide. The trypsinization experiment, analyzed by LC/MS, confirms that RCM of the Alloc group of the Pyr_R amino acid and the olefin of S₈, followed by Pd(PPh₃)₄-catalyzed CO₂ extrusion, produces an amino-stapled peptide with a covalent cross-link. (A) shows LC/MS spectrum of unstapled polypeptide prior to trypsinization. (B) shows LC/MS spectrum of unstapled polypeptide after trypsinization. (C) shows LC/MS spectrum of amino-stapled polypeptide prior to trypsinization. (D) shows LC/MS spectrum of amino-stapled polypeptide after trypsinization.

[0069] *Figure 5* shows CD spectra of unstapled peptides with different pyrrolidine side chains (numbered 2-5). The base peptide used is RNase A wild type peptide sequence: EWAETAAAKFLAAHA. The underlined residues were replaced with the amino acids as shown in the legend. Pyrrolidine amino acids bearing an acetyl cap or Alloc protecting group on the side chain nitrogen induced α -helicity more than a cyclopentane amino acid, suggesting they are useful in inducing α -helicity even in the absence of cross-linking. The pyrrolidine amino acids containing secondary amines appeared to decrease helicity in the absence of a cross-link.

[0070] *Figure 6* shows CD spectra of Alloc-stapled *i, i*+4 pyrrolidine peptides with different stereochemistries at the alpha-carbon. The corresponding sequence is EWA*TAA*KFLAAHA. The asterisks correspond to either the S5 amino acid or the pyrrolidine amino acids with the indicated stereochemistries. Multiple combinations of the pyrrolidine amino acids yield Alloc-stapled peptides with significant helical stabilization.

[0071] *Figure 7* shows CD spectra of unstapled peptides with different different azetidine (Az) side chains. The base peptide used is RNase A Wild Type Peptide Sequence: EWAETAAAKFLAAHA. The underlined residues were replaced with the amino acids (numbered 2-4) as shown in the legend. The azetidine amino acid bearing an Alloc protecting group on the side chain nitrogen induced α -helicity as well as a cyclobutane amino acid, suggesting it is useful in inducing α -helicity even in the absence of cross-linking. The azetidine amino acid containing a secondary amine appeared to decrease helicity in the absence of a cross-link.

[0072] *Figure 8* shows an Alloc-stapled *i, i*+4 azetidine peptide. The base sequence is EWA*TAA*KFLAAHA. The asterisks correspond to either the S5 amino acid or the azetidine amino acid. Figure 8 shows Alloc-stapling increases the α -helicity of the azetidine peptide.

[0073] *Figure 9* shows Alloc-stapled hybrid i, i+4 pyrrolidine/azetidine peptides. The base sequence is EWA*TAA*KFLAAHA. The asterisks correspond to either the S₅ amino acid, the azetidine amino acid, or the pyrrolidine amino acid with the indicated stereochemistry. The Pyr_R...Az and Az...Pyr_S Alloc-stapled peptides yield helical stabilization comparable to the all-hydrocarbon stapled peptide.

[0074] *Figure 10* shows the structure of Fmoc-protected amino acids (and their abbreviations) used to form the exemplary amino-stapled and alloc-stapled peptides described herein. Amino-stapled peptides contain either one or two tertiary amines in the staple, and alloc-stapled peptides contain either one or two carbamates in the staple.

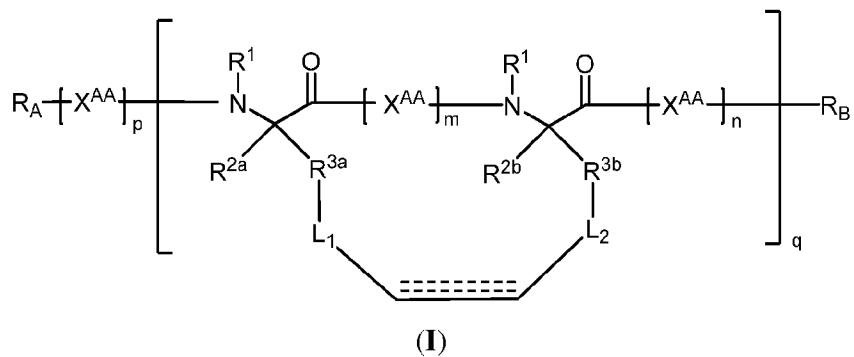
[0075] *Figures 11A to 11D* show the circular dichroism (CD) spectra for exemplary amino-stapled and alloc-stapled peptides. The CD spectra are compared to the wild-type peptide and/or the hydrocarbon stapled peptide. Ac is an abbreviation for an acetyl cap. b-alala is an abbreviation for β -alanine.

[0076] *Figures 12A to 12K* show fluorescence polarization (FP) binding assay data. FAM is an abbreviation for 5-carboxyfluorescein. FITC is an abbreviation for fluorescein isothiocyanate isomer 1.

[0077] *Figures 13A to 13C* show the cell penetration assay data for exemplary labeled peptides using confocal microscopy.

[0078] *Figures 14A and 14B* show the cell penetration assay data for exemplary labeled peptides using flow cytometry.

Detailed Description of Certain Embodiments of the Invention


[0079] The present invention provides inventive polypeptides containing one or more staples, provided that at least one of the staples comprises a heteroaliphatic group or a cyclic group. The presence of the heteroaliphatic moiety or a cyclic moiety in the staple helps to stabilize the alpha helical structure of the polypeptide. The present invention also provides pharmaceutical compositions comprising an inventive stapled or stitched polypeptide, and methods of preparing and using the inventive polypeptides. The present invention provides for the staples to contain one or two carbamate moieties (“Alloc-stapled peptides”) or one or two tertiary amine moieties (“amino-stapled peptides”). The present invention also provides post ring-closing metathesis (RCM) modifications of the staples such as $-\text{C}(=\text{O})\text{O}-$ extrusion. For example, treating a stapled polypeptide containing an Alloc moiety on the pyrrolidine

side chain with a palladium catalyst provides a reduced sized staple in the polypeptide with CO₂ removed (Figure 1).

[0080] The inventive stapled and stitched polypeptides, as described herein, may be useful wherever such stabilized secondary structural motifs are advantageous, for example, as therapeutic agents, biological probes, or drug delivery agents. The inventive stapled or stitched polypeptides may function as modulators of protein–protein, protein–ligand, cell–cell, or protein–receptor binding interactions. In certain embodiments, these stapled polypeptides are useful in the treatment of a disorder in a subject, *e.g.*, a disorder selected from the group consisting of proliferative disorders, neurological disorders, immunological disorders, endocrinologic disorders, cardiovascular disorders, hematologic disorders, inflammatory disorders, and disorders characterized by premature or unwanted cell death. The present invention also contemplates use of the inventive stapled and stitched polypeptides as research tools, *e.g.*, in cellular or biochemical studies.

Polypeptides

[0081] The present invention provides stapled or stitched polypeptides with heteroaliphatic moiety or cyclic moiety in at least one staple. In one aspect, the present invention provides a polypeptide of Formula (I):

or a pharmaceutically acceptable salt thereof;

wherein:

each instance of ~~=====~~ independently represents a single bond, a double bond, or a triple bond;

each instance of R¹ is, independently, hydrogen, acyl, substituted or unsubstituted C₁₋₆ alkyl, or an amino protecting group;

each of R^{2a} and R^{2b} is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted

heteroalkyl; substituted or unsubstituted carbocyclyl; or substituted or unsubstituted heterocyclyl;

each of R^{3a} and R^{3b} is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclylene; or optionally R^{2a} , R^{3a} , and the carbon to which R^{2a} and R^{3a} are attached are joined to form a ring; or optionally R^{2b} , R^{3b} , and the carbon to which R^{2b} and R^{3b} are attached are joined to form a ring;

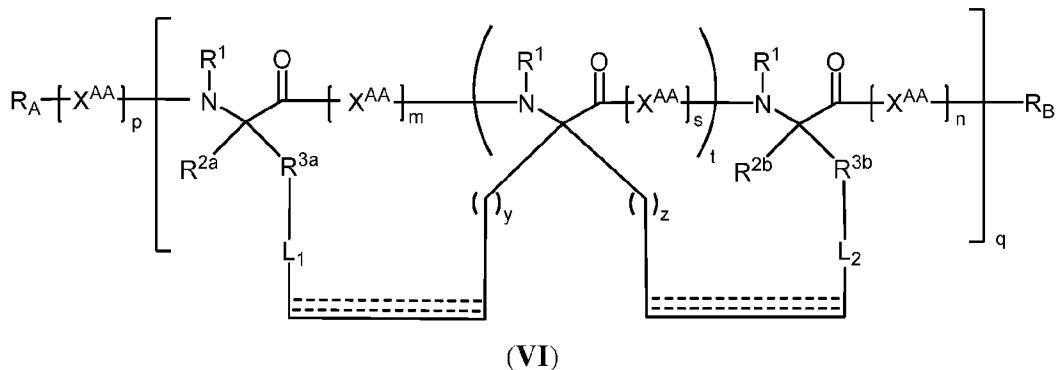
L_1 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L1}-$;

L_2 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L2}-$; provided that when neither R^{2a} and R^{3a} nor R^{2b} and R^{3b} forms a ring, L_1 is $-C(=O)OR^{L1}-$ or L_2 is $-C(=O)OR^{L1}-$;

each of R^{L1} and R^{L2} is independently optionally substituted C_{1-10} alkylene;

R_A is, independently, $-RC$, $-OR_C$, $-N(R_C)_2$, or $-SR_C$, wherein each instance of R_C is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two R_C groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring;

R_B is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched, alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R_A and R_B together form a 5- to 6-membered heterocyclic or heteroaromatic ring;


each instance of X_{AA} is, independently, an amino acid;

m is independently, an integer between 2 and 6, inclusive;

each instance of p and n is, independently, 0, or an integer between 1 and 100, inclusive; and

q is an integer between 1 and 10, inclusive.

[0082] In another aspect, the present invention provides a polypeptide of Formula (VI):

or a pharmaceutically acceptable salt thereof,

wherein:

each instance of ~~=====~~ independently represents a single bond, a double bond, or a triple bond;

each instance of R^1 is, independently, hydrogen, acyl, substituted or unsubstituted C_{1-6} alkyl, or an amino protecting group;

each of R^{2a} and R^{2b} is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl;

each of R^{3a} and R^{3b} is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclylene; or optionally R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached are joined to form a ring; or optionally R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are joined to form a ring;

L_1 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L1}-$;

L_2 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L2}-$; provided that when neither R^{2a} and R^{3a} nor R^{2b} and R^{3b} forms a ring, L_1 is $-C(=O)OR^{L1}-$ or L_2 is $-C(=O)OR^{L1}-$;

each of R^{L1} and R^{L2} is independently optionally substituted C_{1-10} alkylene;

R_A is, independently, $-R_C$, $-OR_C$, $-N(R_C)_2$, or $-SR_C$, wherein each instance of R_C is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl,

amino, or thiol protecting group; or two R_C groups together form a 5– to 6–membered heterocyclic or heteroaromatic ring;

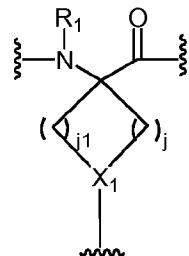
R_B is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkenylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R_A and R_B together form a 5– to 6–membered heterocyclic or heteroaromatic ring;

each instance of X_{AA} is, independently, an amino acid;

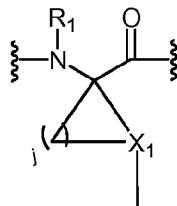
each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive;

each of m and s is independently, an integer between 2 and 6, inclusive; and

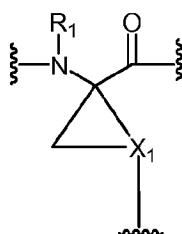
each of q , t , s , y , and z is independently an integer between 1 and 10, inclusive..

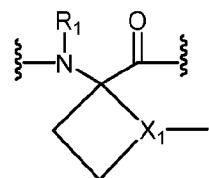

[0083] As generally described above for Formula (I) and (VI), R^{3a} is independently substituted or unsubstituted alkylene; substituted or unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclylene; or optionally R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached are joined to form a ring. In certain embodiments, R^{3a} is substituted or unsubstituted alkylene. In certain embodiments, R^{3a} is substituted or unsubstituted C_{1-10} alkylene. In certain embodiments, R^{3a} is substituted C_{1-10} alkylene. In certain embodiments, R^{3a} is unsubstituted C_{1-10} alkylene. In certain embodiments, R^{3a} is substituted or unsubstituted heteroalkylene. In certain embodiments, R^{3a} is substituted heteroalkylene. In certain embodiments, R^{3a} is unsubstituted heteroalkylene. In certain embodiments, R^{3a} is substituted or unsubstituted heteroalkylene containing at least one nitrogen. In certain embodiments, R^{3a} is $-(CH_2)_j-X_1-$, wherein j is independently an integer between 0 and 10, inclusive; and X_1 is independently a bond, $-CR^5R^6-$ or $-NR^1-$, wherein each of R^5 and R^6 is independently hydrogen, halogen, or C_{1-6} alkyl. In certain embodiments, R^{3a} is $-(CH_2)_j-$. In certain embodiments, R^{3a} is $-(CH_2)_j-NR^1-$. In certain embodiments, R^{3a} is $-(CH_2)_j-NH-$. In certain embodiments, R^{3a} is $-(CH_2)_{j+1}-$. In certain embodiments, j is 0. In certain embodiments, j is 1. In certain embodiments, j is 2. In certain embodiments, j is 3. In certain embodiments, j is 4. In certain embodiments, j is 5. In certain embodiments, j is 6. In

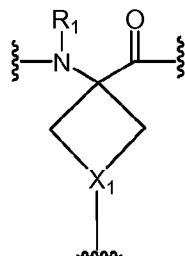
certain embodiments, j is 7. In certain embodiments, j is 8. In certain embodiments, j is 9. In certain embodiments, j is 10.

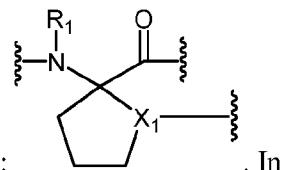

[0084] As generally described above for Formula (I) and (VI), R^{2a} is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl. In certain embodiments, R^{2a} is substituted or unsubstituted C_{1-10} alkyl. In certain embodiments, R^{2a} is substituted methyl. In certain embodiments, R^{2a} is unsubstituted methyl. In certain embodiments, R^{2a} is substituted ethyl. In certain embodiments, R^{2a} is unsubstituted ethyl. In certain embodiments, R^{2a} is substituted *n*-propyl. In certain embodiments, R^{2a} is unsubstituted *n*-propyl. In certain embodiments, R^{2a} is substituted *iso*-propyl. In certain embodiments, R^{2a} is unsubstituted *iso*-propyl. In certain embodiments, R^{2a} is substituted or unsubstituted heteroalkyl. In certain embodiments, R^{2a} is substituted or unsubstituted heteroalkyl with at least one nitrogen. In certain embodiments, R^{2a} is unsubstituted heteroalkyl containing at least one nitrogen. In certain embodiments, R^{2a} is substituted heteroalkyl containing at least one nitrogen.

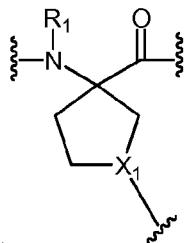
[0085] In certain embodiments, at least one instance of R^{2a} and R^{3a} together with the carbon atom to which they are attached, are joined to form a ring. In this instance, in certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} carbocyclyl or heterocyclyl. In certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} carbocyclyl. In certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl. In certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl containing at least one O, N, or S atom. In certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl containing at least one nitrogen atom. In certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl containing one nitrogen atom. In certain embodiments, the ring formed by R^{2a} and R^{3a} together with the carbon atom to which they are attached is unsubstituted C_{3-6} heterocyclyl containing one nitrogen atom.

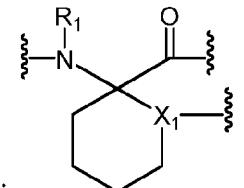

[0086] In certain embodiments, R^{2a} , R^{3a} , and the carbon to which R^{2a} and R^{3a} are attached are joined to form a ring. In certain embodiments, the ring formed by R^{2a} , R^{3a} , and the carbon

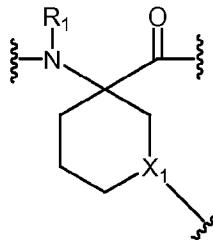

to which R^{2a} and R^{3a} are attached is of the formula:

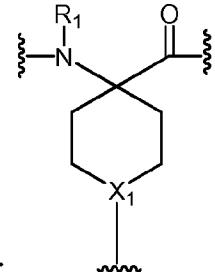

are attached is of the formula:


attached is of the formula:

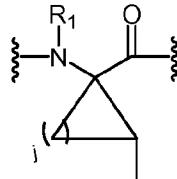

R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula:


attached is of the formula:

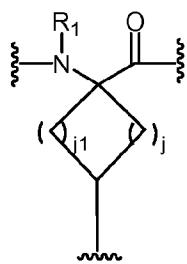

R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula: . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are


attached is of the formula: . In certain embodiments, the ring formed by R^{2a} ,

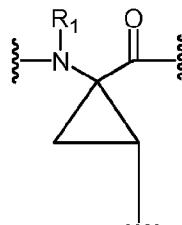
R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula: . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are



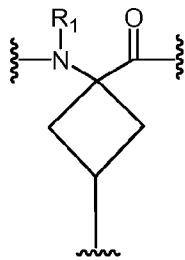
attached is of the formula: . In certain embodiments, the ring formed by R^{2a} ,

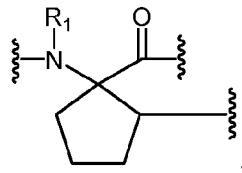


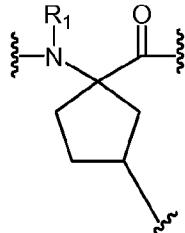
R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula: .

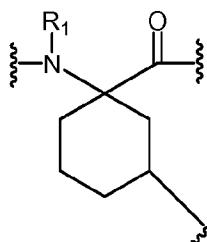

[0087] In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a}

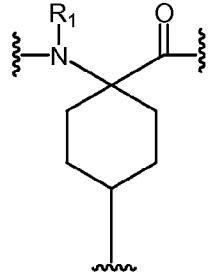

and R^{3a} are attached is of the formula . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula


. In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which

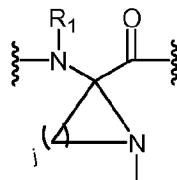

R^{2a} and R^{3a} are attached is of the formula . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula


. In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to

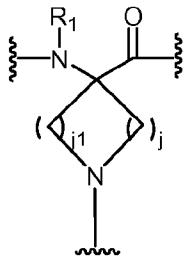

which R^{2a} and R^{3a} are attached is of the formula . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula


. In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to

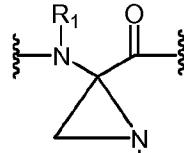
which R^{2a} and R^{3a} are attached is of the formula . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula

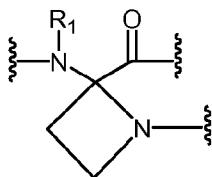


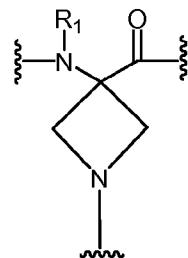
. In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to

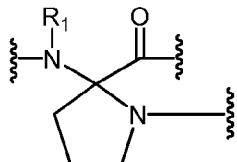


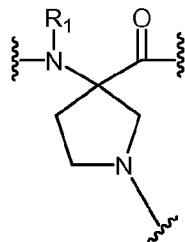
which R^{2a} and R^{3a} are attached is of the formula

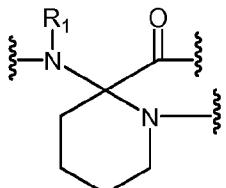

[0088] In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a}

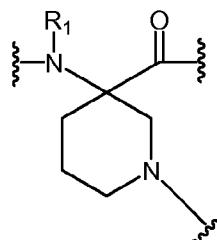

and R^{3a} are attached is of the formula . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula

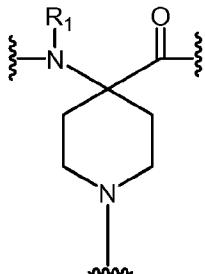

. In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which


R^{2a} and R^{3a} are attached is of the formula: . In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula:


. In certain embodiments, the ring formed by R^{2a} , R^{3a} and the carbon to


which R^{2a} and R^{3a} are attached to is of the formula: . In certain embodiments, the ring formed by R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula:


. In certain embodiments, the ring formed by R^{2a}, R^{3a} and the carbon to


which R^{2a} and R^{3a} are attached is of the formula: . In certain embodiments, the ring formed by R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula:

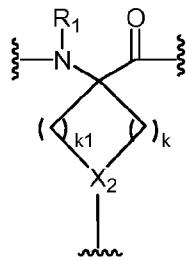
. In certain embodiments, the ring formed by R^{2a}, R^{3a} and the carbon to

which R^{2a} and R^{3a} are attached is of the formula: . In certain embodiments, the ring formed by R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are attached is of the formula:

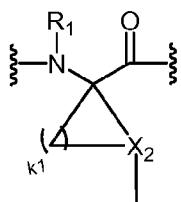
[0089] As used herein, each of j and j_1 is independently an integer between 1 and 10, inclusive. In certain embodiments, j is 1. In certain embodiments, j is 2. In certain embodiments, j is 3. In certain embodiments, j is 4. In certain embodiments, j is 5. In certain embodiments, j is 6. In certain embodiments, j is 7. In certain embodiments, j is 8. In certain embodiments, j is 9. In certain embodiments, j is 10. In certain embodiments, j_1 is 1. In certain embodiments, j_1 is 2. In certain embodiments, j_1 is 3. In certain embodiments, j_1 is 4. In certain embodiments, j_1 is 5. In certain embodiments, j_1 is 6. In certain embodiments, j_1 is 7. In certain embodiments, j_1 is 8. In certain embodiments, j_1 is 9. In certain embodiments, j_1 is 10.

[0090] In certain embodiments, R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are attached are not joined to form a ring. In this instance, R^{3a} is independently substituted or unsubstituted alkylene, substituted or unsubstituted alkenylene, substituted or unsubstituted alkynylene, substituted or unsubstituted heteroalkylene, or substituted or unsubstituted heterocyclylene. In certain embodiments, R^{3a} is independently substituted or unsubstituted C₁₋₁₀ alkylene. In certain embodiments, R^{3a} is substituted C₁₋₁₀ alkylene. In certain embodiments, R^{3a} is independently -(CH₂)_j-, wherein j is an integer between 0 and 10, inclusive.

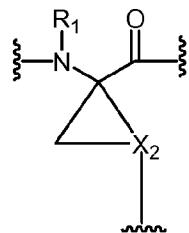
[0091] In certain embodiments, R^{2a} , R^{3a} and the carbon to which R^{2a} and R^{3a} are attached are not joined to form a ring. In this instance, R^{2a} is independently substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocyclyl. In certain embodiments, R^{2a} is independently substituted or unsubstituted C_{1-10} alkyl. In certain embodiments, R^{2a} is independently substituted methyl. In certain embodiments, R^{2a} is independently unsubstituted methyl. In certain embodiments, R^{2a} is independently substituted ethyl. In certain embodiments, R^{2a} is independently unsubstituted ethyl. In certain embodiments, R^{2a} is independently substituted or unsubstituted C_{2-6} alkyl.

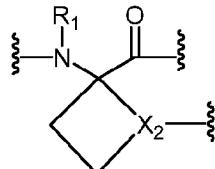

[0092] As generally described above, R^{3b} is independently substituted or unsubstituted alkylene; substituted or unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclylene; or optionally R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are joined to form a ring. In certain embodiments, R^{3b} is substituted or unsubstituted C_{1-10} alkylene. In certain embodiments, R^{3b} is substituted C_{1-10} alkylene. In certain embodiments, R^{3b} is unsubstituted C_{1-10} alkylene. In certain embodiments, R^{3b} is substituted or unsubstituted heteroalkylene. In certain embodiments, R^{3b} is substituted heteroalkylene. In certain embodiments, R^{3b} is unsubstituted heteroalkylene. In

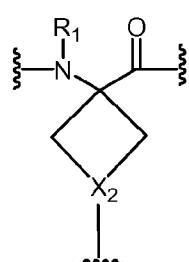
certain embodiments, R^{3b} is substituted or unsubstituted heteroalkylene with at least one nitrogen. In certain embodiments, R^{3b} is $-(CH_2)_k-X_2-$, wherein k is independently an integer between 0 and 10, inclusive, and X_2 is independently a bond, $-CR^5R^6-$, or $-NR^1-$, wherein each of R^5 and R^6 is independently hydrogen, halogen, or C_{1-6} alkyl. In certain embodiments, R^{3b} is $-(CH_2)_k-$. In certain embodiments, R^{3b} is $-(CH_2)_k-NR^1-$. In certain embodiments, R^{3b} is $-(CH_2)_k-NH-$. In certain embodiments, R^{3b} is $-(CH_2)_{k+1}-$. In certain embodiments, k is 0. In certain embodiments, k is 1. In certain embodiments, k is 2. In certain embodiments, k is 3. In certain embodiments, k is 4. In certain embodiments, k is 5. In certain embodiments, k is 6. In certain embodiments, k is 7. In certain embodiments, k is 8. In certain embodiments, k is 9. In certain embodiments, k is 10.

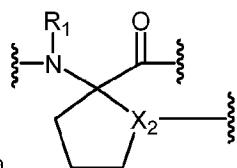

[0093] As generally described above, R^{2b} is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; or substituted or unsubstituted heterocyclyl. In certain embodiments, R^{2b} is substituted or unsubstituted C_{1-10} alkyl. In certain embodiments, R^{2b} is substituted or unsubstituted heteroalkyl. In certain embodiments, R^{2b} is substituted or unsubstituted heteroalkyl with at least one nitrogen atom. In certain embodiments, R^{2b} is unsubstituted heteroalkyl with at least one nitrogen atom. In certain embodiments, R^{2b} is substituted heteroalkyl with at least one nitrogen atom.

[0094] In certain embodiments, for at least one instance, R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are joined to form a ring. In this instance, in certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} carbocyclyl or heterocyclyl. In certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} carbocyclyl. In certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl. In certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl with at least one O, N, or S atom. In certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl with at least one N. In certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is substituted or unsubstituted C_{3-6} heterocyclyl with one N. In certain embodiments, the ring formed by R^{2b} and R^{3b} together with the carbon atom to which they are attached is unsubstituted C_{3-6} heterocyclyl with one N.

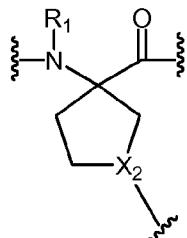

[0095] In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b}


and R^{3b} are attached is of the formula , wherein k is as defined herein, X_2 is independently $-CR^5-$ or $-N-$, and k_1 is independently 0, 1, 2, 3, 4, 5, or 6. In certain embodiments, k_1 is zero, and the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b}

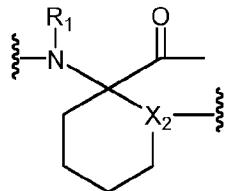

are attached is of the formula . In certain embodiments, k_1 is 1. In certain embodiments, k_1 is 2. In certain embodiments, k_1 is 3. In certain embodiments, k_1 is 4. In certain embodiments, k_1 is 5. In certain embodiments, k_1 is 6. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

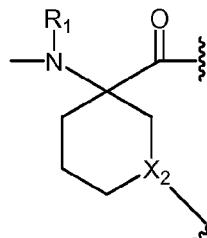


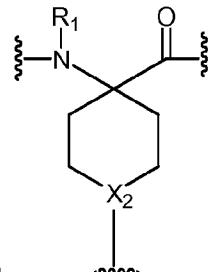
 . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

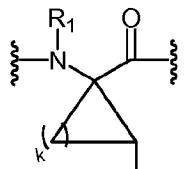


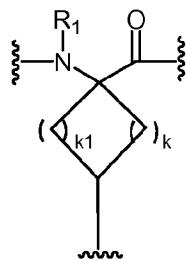
 . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

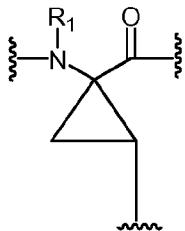


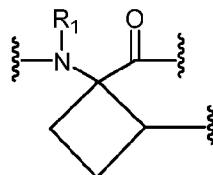

R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

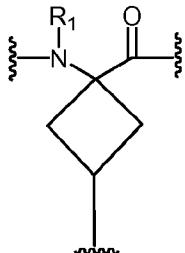

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which

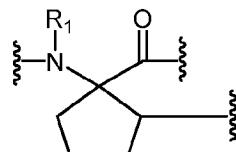

R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula


. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to

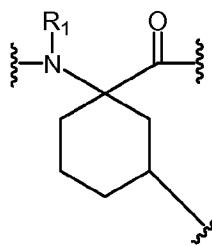

which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

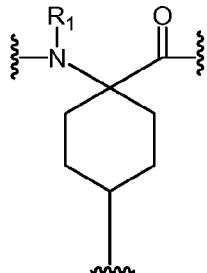

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which

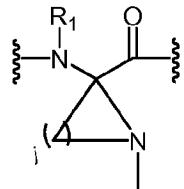

R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

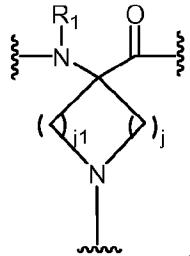

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which

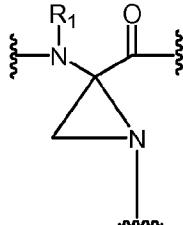
R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

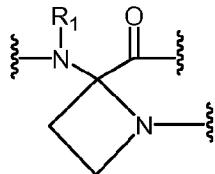

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which

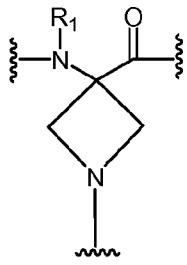

R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

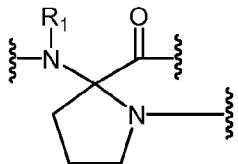

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which

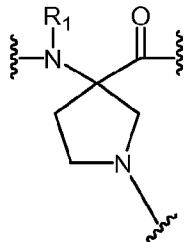

R^{2b} and R^{3b} are attached to one of the carbons of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

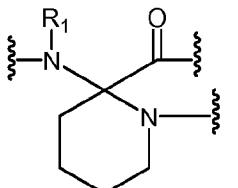

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to

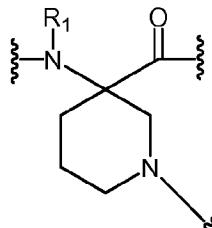

which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

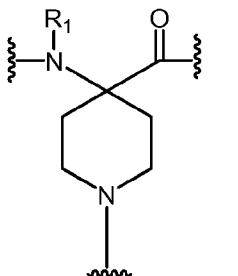

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which


R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula


. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to


which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula


. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to


which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

. In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to

which R^{2b} and R^{3b} are attached is of the formula . In certain embodiments, the ring formed by R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached is of the formula

[0096] As used herein, k is an integer between 0 and 10, inclusive; and k1 is independently an integer between 1 and 10, inclusive. In certain embodiments, k is 0. In certain embodiments, k is 1. In certain embodiments, k is 2. In certain embodiments, k is 3. In certain embodiments, k is 4. In certain embodiments, k is 5. In certain embodiments, k is 6. In certain embodiments, k is 7. In certain embodiments, k is 8. In certain embodiments, k is 9. In certain embodiments, k is 10. In certain embodiments, k1 is 1. In certain embodiments, k1 is 2. In certain embodiments, k1 is 3. In certain embodiments, k1 is 4. In certain embodiments, k1 is 5. In certain embodiments, k1 is 6. In certain embodiments, k1 is 7. In certain embodiments, k1 is 8. In certain embodiments, k1 is 9. In certain embodiments, k1 is 10.

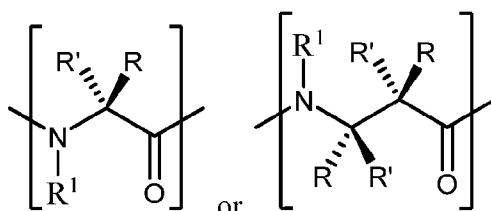
[0097] In certain embodiments, R^{2b}, R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are not joined to form a ring. In this instance, R^{3b} is independently substituted or unsubstituted alkylene, substituted or unsubstituted alkenylene, substituted or unsubstituted alkynylene, substituted or unsubstituted heteroalkylene, or substituted or unsubstituted heterocyclylene. In certain embodiments, R^{3b} is independently substituted or unsubstituted C₁₋₁₀ alkylene. In certain embodiments, R^{3b} is substituted C₁₋₁₀ alkylene. In certain embodiments, R^{3b} is independently -(CH₂)_k-, wherein k is as defined above.

[0098] In certain embodiments, R^{2b}, R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are not joined to form a ring. In this instance, in certain embodiments, R^{2b} is independently substituted or unsubstituted C₁₋₁₀ alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocyclyl. In certain embodiments, R^{2b} is independently substituted or unsubstituted C₁₋₁₀ alkyl. In certain embodiments, R^{2b} is independently substituted methyl. In certain embodiments, R^{2b} is independently unsubstituted methyl. In certain embodiments, R^{2b} is independently substituted ethyl. In certain embodiments, R^{2b} is independently unsubstituted ethyl. In certain embodiments, R^{2b} is independently substituted or unsubstituted C₂₋₆ alkyl.

[0099] In certain embodiments, for at least one instance, R^{2a}, R^{3a}, and the carbon to which R^{2a} and R^{3a} are attached are not joined to form a ring, and R^{2b}, R^{3b}, and the carbon to which R^{2b} and R^{3b} are attached are not joined form a ring. In certain embodiments, R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are attached are not joined to form a ring, and R^{2b}, R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are joined form a ring. In certain embodiments, R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are attached are joined to form a ring, and R^{2b}, R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are not joined form a ring. In certain embodiments, for at least one instance, R^{2a}, R^{3a} and the carbon to which R^{2a} and R^{3a} are

attached are joined to form a ring, and R^{2b} , R^{3b} and the carbon to which R^{2b} and R^{3b} are attached are joined to form a ring.

[00100] As generally described above, L_1 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L1}-$, wherein R^{L1} is optionally substituted C_{1-10} alkylene. In some embodiments, L_1 is substituted or unsubstituted C_{1-10} alkylene. In some embodiments, L_1 is substituted C_{1-10} alkylene. In some embodiments, L_1 is $-(CH_2)_g-$, wherein g is 0 or an integer between 1 and 10. In some embodiments, g is 0, and L_1 is a bond. In some embodiments, g is 1. In some embodiments, g is 2. In some embodiments, g is 3. In some embodiments, g is 4. In some embodiments, g is 5. In some embodiments, g is 6. In some embodiments, g is 7. In some embodiments, g is 8. In some embodiments, g is 9. In some embodiments, g is 10. In certain embodiments, R^{L1} is substituted C_{1-10} alkylene. In certain embodiments, R^{L1} is $-(CH_2)_{g1}-$, wherein $g1$ is an integer between 1 and 10 inclusive. In some embodiments, $g1$ is 1. In some embodiments, $g1$ is 2. In some embodiments, $g1$ is 3. In some embodiments, $g1$ is 4. In some embodiments, $g1$ is 5. In some embodiments, $g1$ is 6. In some embodiments, $g1$ is 7. In some embodiments, $g1$ is 8. In some embodiments, $g1$ is 9. In some embodiments, $g1$ is 10.


[00101] As generally described above, L_2 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L2}-$, wherein R^{L2} is optionally substituted C_{1-10} alkylene. In some embodiments, L_2 is substituted or unsubstituted C_{1-10} alkylene. In some embodiments, L_2 is substituted C_{1-10} alkylene. In some embodiments, L_2 is $-(CH_2)_h-$, wherein h is 0 or an integer between 1 and 10 inclusive. In some embodiments, h is 0, and L_2 is a bond. In some embodiments, h is 1. In some embodiments, h is 2. In some embodiments, h is 3. In some embodiments, h is 4. In some embodiments, h is 5. In some embodiments, h is 6. In some embodiments, h is 7. In some embodiments, h is 8. In some embodiments, h is 9. In some embodiments, h is 10. In certain embodiments, R^{L2} is substituted C_{1-10} alkylene. In certain embodiments, R^{L2} is $-(CH_2)_{h1}-$, wherein $h1$ is an integer between 1 and 10 inclusive. In some embodiments, $h1$ is 1. In some embodiments, $h1$ is 2. In some embodiments, $h1$ is 3. In some embodiments, $h1$ is 4. In some embodiments, $h1$ is 5. In some embodiments, $h1$ is 6. In some embodiments, $h1$ is 7. In some embodiments, $h1$ is 8. In some embodiments, $h1$ is 9. In some embodiments, $h1$ is 10.

[00102] In certain embodiments, for at least one instance of a staple, neither R^{2a} and R^{3a} nor R^{2b} and R^{3b} of the same staple are joined to form a ring. In this instance, L_1 is $-C(=O)OR^{L1}-$, or L_2 is $-C(=O)OR^{L2}-$, wherein each of R^{L1} and R^{L2} is optionally substituted C_{1-10} alkylene. In this instance, in certain embodiments, R^{L1} is substituted C_{1-10} alkylene. In

this instance, in certain embodiments, R^{L1} is $-(CH_2)_{g1}-$, wherein $g1$ is as defined above. In this instance, in certain embodiments, R^{L2} is substituted C_{1-10} alkylene. In this instance, in certain embodiments, R^{L2} is $-(CH_2)_{h1}-$, wherein $h1$ is as defined above.

[00103] In certain embodiments, q is 0. In certain embodiments, q is 1. In certain embodiments, q is 2. In certain embodiments, q is 3. In certain embodiments, q is 4. In certain embodiments, q is 5. In certain embodiments, q is 6. In certain embodiments, q is 7. In certain embodiments, q is 8. In certain embodiments, q is 9. In certain embodiments, q is 10.

[00104] In certain embodiments, $-[X_{AA}]-$ corresponds to the formula:

wherein each instance of R and R' are, independently, hydrogen or a suitable amino acid side chain as defined herein, and R^1 is as defined herein. Suitable amino acid side chains include, but are not limited to, both natural and unnatural amino acid side chains as provided in Tables 1 to 3, and as described herein. In certain embodiments, each instance of X_{AA} is an alpha-amino acid. In certain embodiments, each instance of X_{AA} is a natural *L*-amino acid, as provided in Table 1. In certain embodiments, each instance of X_{AA} is, independently, a natural *L*-amino acid as provided in Table 1, or an unnatural *D*-amino acid as provided in Table 2.

[00105] In certain embodiments, each instance of X_{AA} is a natural amino acid. In certain embodiments, each instance of X_{AA} is an alpha-amino acid. In certain embodiments, each instance of X_{AA} is a natural *L*-amino acid, as provided in Table 1. In certain embodiments, each instance of X_{AA} is, independently, a natural *L*-amino acid as provided in Table 1, or an unnatural amino acid as provided in Tables 2, 3, 4, and/or 5.

Table 1.

Exemplary natural alpha-amino acids	R	R'
L-Alanine (A)	$-CH_3$	$-H$
L-Arginine (R)	$-CH_2CH_2CH_2-NHC(=NH)NH_2$	$-H$
L-Asparagine (N)	$-CH_2C(=O)NH_2$	$-H$

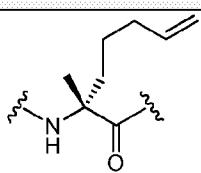
Exemplary natural alpha–amino acids	R	R'
L–Aspartic acid (D)	–CH ₂ CO ₂ H	–H
L–Cysteine (C)	–CH ₂ SH	–H
L–Glutamic acid (E)	–CH ₂ CH ₂ CO ₂ H	–H
L–Glutamine (Q)	–CH ₂ CH ₂ C(=O)NH ₂	–H
Glycine (G)	–H	–H
L–Histidine (H)	–CH ₂ –2–(1H–imidazole)	–H
L–Isoleucine (I)	–sec–butyl	–H
L–Leucine (L)	–iso–butyl	–H
L–Lysine (K)	–CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	–H
L–Methionine (M)	–CH ₂ CH ₂ SCH ₃	–H
L–Phenylalanine (F)	–CH ₂ Ph	–H
L–Proline (P)	–2–(pyrrolidine)	–H
L–Serine (S)	–CH ₂ OH	–H
L–Threonine (T)	–CH ₂ CH(OH)(CH ₃)	–H
L–Tryptophan (W)	–CH ₂ –3–(1H–indole)	–H
L–Tyrosine (Y)	–CH ₂ –(p–hydroxyphenyl)	–H
L–Valine (V)	–isopropyl	–H

Table 2.

Exemplary unnatural alpha–amino acids	R	R'
D–Alanine	–H	–CH ₃
D–Arginine	–H	–CH ₂ CH ₂ CH ₂ –NHC(=NH)NH ₂
D–Asparagine	–H	–CH ₂ C(=O)NH ₂
D–Aspartic acid	–H	–CH ₂ CO ₂ H
D–Cysteine	–H	–CH ₂ SH
D–Glutamic acid	–H	–CH ₂ CH ₂ CO ₂ H
D–Glutamine	–H	–CH ₂ CH ₂ C(=O)NH ₂
D–Histidine	–H	–CH ₂ –2–(1H–imidazole)
D–Isoleucine	–H	–sec–butyl
D–Leucine	–H	–iso–butyl

Exemplary unnatural alpha-amino acids	R	R'
D-Lysine	-H	-CH ₂ CH ₂ CH ₂ CH ₂ NH ₂
D-Methionine	-H	-CH ₂ CH ₂ SCH ₃
D-Phenylalanine	-H	-CH ₂ Ph
D-Proline	-H	-2-(pyrrolidine)
D-Serine	-H	-CH ₂ OH
D-Threonine	-H	-CH ₂ CH(OH)(CH ₃)
D-Tryptophan	-H	-CH ₂ -3-(1H-indole)
D-Tyrosine	-H	-CH ₂ -(p-hydroxyphenyl)
D-Valine	-H	-isopropyl
Di-vinyl	-CH=CH ₂	-CH=CH ₂

Table 3.

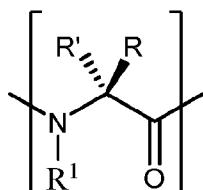

Exemplary unnatural alpha-amino acids	R and R' are equal to:	
α -methyl-Alanine (Aib, 2-amino-2-methylpropanoic acid)	-CH ₃	-CH ₃
α -methyl-Arginine	-CH ₃	-CH ₂ CH ₂ CH ₂ -NHC(=NH)NH ₂
α -methyl-Asparagine	-CH ₃	-CH ₂ C(=O)NH ₂
α -methyl-Aspartic acid	-CH ₃	-CH ₂ CO ₂ H
α -methyl-Cysteine	-CH ₃	-CH ₂ SH
α -methyl-Glutamic acid	-CH ₃	-CH ₂ CH ₂ CO ₂ H
α -methyl-Glutamine	-CH ₃	-CH ₂ CH ₂ C(=O)NH ₂
α -methyl-Histidine	-CH ₃	-CH ₂ -2-(1H-imidazole)
α -methyl-Isoleucine	-CH ₃	-sec-butyl
α -methyl-Leucine	-CH ₃	-iso-butyl
α -methyl-Lysine	-CH ₃	-CH ₂ CH ₂ CH ₂ CH ₂ NH ₂
α -methyl-Methionine	-CH ₃	-CH ₂ CH ₂ SCH ₃
α -methyl-Phenylalanine	-CH ₃	-CH ₂ Ph
α -methyl-Proline	-CH ₃	-2-(pyrrolidine)
α -methyl-Serine	-CH ₃	-CH ₂ OH
α -methyl-Threonine	-CH ₃	-CH ₂ CH(OH)(CH ₃)

Exemplary unnatural alpha-amino acids	R and R' are equal to:	
α -methyl-Tryptophan	-CH ₃	-CH ₂ -3-(1H-indole)
α -methyl-Tyrosine	-CH ₃	-CH ₂ -(p-hydroxyphenyl)
α -methyl-Valine	-CH ₃	-isopropyl
Di-vinyl	-CH=CH ₂	-CH=CH ₂
Norleucine	-H	-CH ₂ CH ₂ CH ₂ CH ₃

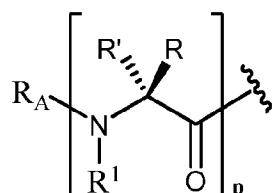
Table 4.

Exemplary unnatural alpha-amino acids	R and R' is independently equal to hydrogen or -CH ₃ , and the group:
Terminally unsaturated alpha-amino acids and bis alpha-amino acids (e.g., modified cysteine, modified lysine, modified tryptophan, modified serine, modified threonine, modified proline, modified histidine, modified alanine, and the like).	$-(CH_2)_g-S-(CH_2)_gCH=CH_2$, $-(CH_2)_g-O-(CH_2)_gCH=CH_2$, $-(CH_2)_g-NH-(CH_2)_gCH=CH_2$, $-(CH_2)_g-(C=O)-S-(CH_2)_gCH=CH_2$, $-(CH_2)_g-(C=O)-O-(CH_2)_gCH=CH_2$, $-(CH_2)_g-(C=O)-NH-(CH_2)_gCH=CH_2$, $-CH_2CH_2CH_2CH_2-NH-(CH_2)_gCH=CH_2$, $-(C_6H_5)-p-O-(CH_2)_gCH=CH_2$, $-CH(CH_3)-O-(CH_2)_gCH=CH_2$, $-CH_2CH(-O-CH=CH_2)(CH_3)$, $-histidine-N((CH_2)_gCH=CH_2)$, $-tryptophan-N((CH_2)_gCH=CH_2)$, and $-(CH_2)_g(CH=CH_2)$, wherein: each instance of g is, independently, 0 to 10.

Table 5.


Other unnatural alpha-amino acids	R and R' are equal to:	
 R₅ - (R)-2-amino-2-methylhept-6-enoic acid	-CH ₃	-(CH ₂) ₃ CH=CH ₂

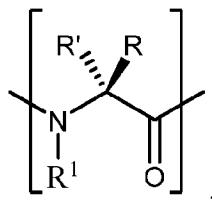
Other unnatural alpha-amino acids	R and R' are equal to:	
S₅ - (S)-2-amino-2-methylhept-6-enoic acid		
	-CH ₃	-(CH ₂) ₆ CH=CH ₂
R₈ - (R)-2-amino-2-methyldec-9-enoic acid		
S₈ - (S)-2-amino-2-methyldec-9-enoic acid		
	-(CH ₂) ₃ CH=CH ₂	-(CH ₂) ₃ CH=CH ₂
B₅ - 2-amino-2-(pent-4-enyl)hept-6-enoic acid		


[00106] There are many known unnatural amino acids any of which may be included in the peptides of the present invention. See, for example, S. Hunt, *The Non-Protein Amino Acids: In Chemistry and Biochemistry of the Amino Acids*, edited by G. C. Barrett, Chapman and Hall, 1985. Some additional examples of unnatural amino acids are 4-hydroxyproline, desmosine, gamma-aminobutyric acid, beta-cyanoalanine, norvaline, 4-(E)-butenyl-4(R)-methyl-N-methyl-L-threonine, N-methyl-L-leucine, 1-amino-cyclopropanecarboxylic acid, 1-amino-2-phenyl-cyclopropanecarboxylic acid, 1-amino-cyclobutanecarboxylic acid, 4-amino-cyclopentenecarboxylic acid, 3-amino-cyclohexanecarboxylic acid, 4-piperidylacetic acid, 4-amino-1-methylpyrrole-2-carboxylic acid, 2,4-diaminobutyric acid, 2,3-diaminopropionic acid, 2,4-diaminobutyric acid, 2-aminoheptanedioic acid, 4-(aminomethyl)benzoic acid, 4-aminobenzoic acid, *ortho*-, *meta*- and *para*-substituted phenylalanines (e.g., substituted with -C(=O)C₆H₅; -CF₃; -CN; -halo; -NO₂; -CH₃), disubstituted phenylalanines, substituted tyrosines (e.g., further substituted with -C(=O)C₆H₅; -CF₃; -CN; -halo; -NO₂; -CH₃), and statine. Furthermore, the amino acids for use in the present invention may be derivatized to include amino acid residues that are

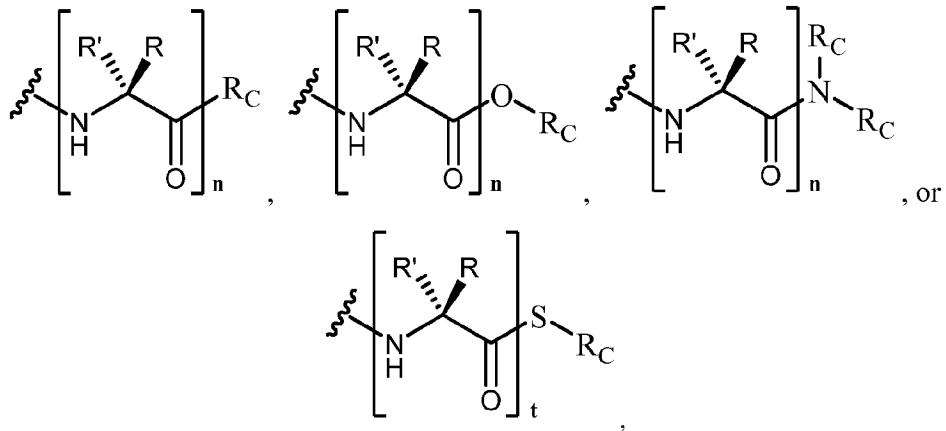
hydroxylated, phosphorylated, sulfonated, acylated, alkylated, farnesylated, geryanylated, and/or glycosylated.

[00107] The group R_A corresponds to the N-terminus of the polypeptide. For example, if – $[X_{AA}]_p$ – corresponds to an alpha-amino acid of formula:

it follows that, in certain embodiments, $R_A-[X_{AA}]_p-$ corresponds to the formula:


wherein p, R, and R' are as defined herein; and

R_A is hydrogen; cyclic or acyclic, branched or unbranched, substituted or unsubstituted aliphatic; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroaliphatic; substituted or unsubstituted aryl; substituted or unsubstituted heteroaryl; substituted or unsubstituted acyl; a resin; a suitable amino protecting group; a label optionally joined by a linker, wherein the linker is cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkynylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkynylene; substituted or unsubstituted arylene; substituted or unsubstituted heteroarylene; or substituted or unsubstituted acylene; or R_A and R^1 together form a substituted or unsubstituted heterocyclic or heteroaromatic ring.

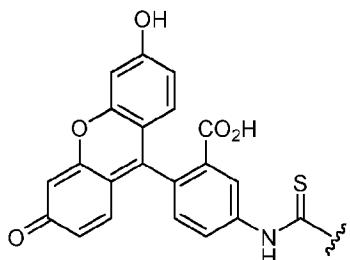

[00108] In certain embodiments, R_A is hydrogen. In certain embodiments, R_A is C_{1-6} alkyl. In certain embodiments, R_A is $-CH_3$. In certain embodiments, R_A is an amino protecting group. In certain embodiments, R_A is $-Boc$. In certain embodiments, R_A is $-Fmoc$. In certain embodiments, R_A is acyl. In certain embodiments, R_A is $-(C=O)CH_3$. In certain embodiments, R^A is a label. In certain embodiments, R^A is a resin. In certain embodiments, R^A is a solid support.

[00109] In certain embodiments, R_A is a label optionally joined by a linker, wherein the linker is cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkynylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkynylene; substituted or unsubstituted arylene; substituted or unsubstituted heteroarylene; or substituted or unsubstituted acylene.

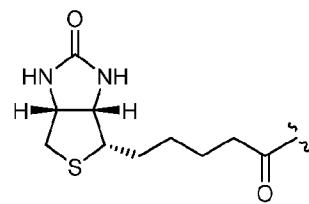
[00110] As generally described above, the group R_B corresponds to the C-terminus of the peptide chain, and corresponds to the variables $-R_C$, $-OR_C$, $-N(R_C)_2$, or $-SR_C$, wherein R_C is as defined herein. For example, if $-[X_{AA}]$ corresponds to an alpha-amino acid of the formula:

it follows that, in certain embodiments, $-[X_{AA}]_n-R_B$ corresponds to the formula:

wherein each instance of R_C is, independently, hydrogen; cyclic or acyclic, branched or unbranched, substituted or unsubstituted aliphatic; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroaliphatic; substituted or unsubstituted aryl; substituted or unsubstituted heteroaryl; substituted or unsubstituted acyl; a resin; or a suitable hydroxyl, amino, or thiol protecting group; and two R_C groups taken together may optionally form a substituted or unsubstituted heterocyclic or heteroaromatic ring.


[00111] In certain embodiments, R_B is –OR_C, wherein R_C is hydrogen, cyclic or acyclic, branched or unbranched, substituted or unsubstituted aliphatic; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroaliphatic; substituted or unsubstituted aryl; substituted or unsubstituted heteroaryl; substituted or unsubstituted acyl; a resin; or a suitable hydroxyl protecting group.

[00112] In certain embodiments, R_B is –SR_C, wherein R_C is hydrogen, cyclic or acyclic, branched or unbranched, substituted or unsubstituted aliphatic; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroaliphatic; substituted or unsubstituted aryl; substituted or unsubstituted heteroaryl; substituted or unsubstituted acyl; a resin; or a suitable thiol protecting group.


[00113] In certain embodiments, R_B is –N(R_C)₂, wherein each instance of R_C is, independently, hydrogen, cyclic or acyclic, branched or unbranched, substituted or unsubstituted aliphatic; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroaliphatic; substituted or unsubstituted aryl; substituted or unsubstituted heteroaryl; substituted or unsubstituted acyl; a resin; a suitable amino protecting group; or two R_C groups together form a substituted or unsubstituted heterocyclic or heteroaromatic ring.

[00114] As used herein, a “label” refers to a moiety that has at least one element, isotope, or functional group incorporated into the moiety which enables detection of the inventive polypeptide to which the label is attached. Labels encompass moieties that are directly attached (*i.e.*, via a bond) to the polypeptide or such moieties that are attached to the polypeptide by a linking group. It will be appreciated that the label may be attached to the polypeptide at any position that does not interfere with the biological activity or characteristic of the inventive polypeptide that is being detected. In general, a label can fall into any one (or more) of five classes: a) a label which contains isotopic moieties, which may be radioactive or heavy isotopes, including, but not limited to, ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁸F, ³¹P, ³²P, ³⁵S, ⁶⁷Ga, ^{99m}Tc (Tc-99m), ¹¹¹In, ¹²³I, ¹²⁵I, ¹⁶⁹Yb, and ¹⁸⁶Re; b) a label which contains an immune moiety, which may be antibodies or antigens, which may be bound to enzymes (*e.g.*, such as horseradish peroxidase); c) a label which is a colored, luminescent, phosphorescent, or fluorescent moieties (*e.g.*, such as the fluorescent label FITC); d) a label which has one or more photoaffinity moieties; and e) a label which has a ligand moiety with one or more known binding partners (such as biotin–streptavidin, FK506–FKBP). Any of these types of labels as described above may also be referred to as “diagnostic agents” as defined herein.

Exemplary labels include, but are not limited to, FITC, 5-carboxyfluorescein (FAM) and biotin:

FITC

Biotin

[00115] In certain embodiments, the label is directly attached to the inventive polypeptide (*i.e.*, through a bond). In certain embodiments, the label is indirectly attached to the inventive polypeptide (*i.e.*, through a linker). In certain embodiments, the linker is a cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkylene. In certain embodiments, the linker is a cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkenylene. In certain embodiments, the linker is a cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkynylene. In certain embodiments, the linker is a cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkylene. In certain embodiments, the linker is a cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkenylene. In certain embodiments, the linker is a cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkynylene. In certain embodiments, the linker is a substituted or unsubstituted arylene. In certain embodiments, the linker is a substituted or unsubstituted heteroarylene. In certain embodiments, the linker is a substituted or unsubstituted acylene. In certain embodiments, the linked is a β -alanine (β -ala) linker.

[00116] As used herein, a “diagnostic agent” refers to imaging agents. Exemplary imaging agents include, but are not limited to, those used in positron emissions tomography (PET), computer assisted tomography (CAT), single photon emission computerized tomography, x-ray, fluoroscopy, and magnetic resonance imaging (MRI); and contrast agents.

[00117] In certain embodiments, such as in the identification of a biological target, the label comprises a radioactive isotope, preferably an isotope which emits detectable particles, such as β particles. In certain embodiments, the label comprises one or more photoaffinity moieties for the direct elucidation of intermolecular interactions in biological systems. A variety of known photophores can be employed, most relying on photoconversion of diazo compounds, azides, or diazirines to nitrenes or carbenes (*see*, Bayley, H., Photogenerated

Reagents in Biochemistry and Molecular Biology (1983), Elsevier, Amsterdam, the entire contents of which are incorporated herein by reference). In certain embodiments of the invention, the photoaffinity labels employed are *o*-, *m*- and *p*-azidobenzoys, substituted with one or more halogen moieties, including, but not limited to 4-azido-2,3,5,6-tetrafluorobenzoic acid. In certain embodiments, the label comprises one or more fluorescent moieties. In certain embodiments, the label is the fluorescent label FITC. In certain embodiments, the label comprises a ligand moiety with one or more known binding partners. In certain embodiments, the label comprises the ligand moiety biotin.

[00118] As used herein, a “solid support” includes, but is not limited to, solid insoluble surface to which the polypeptide is attached. Solid supports include, but are not limited to, glass slides, glass beads, resins, and the like.

[00119] As used herein, a “resin” refers to a material useful in solid phase synthesis, wherein the polypeptide is attached thereto. Solid phase synthesis is a well-known synthetic technique; see generally, Atherton, E., Sheppard, R.C. *Solid Phase Peptide Synthesis: A Practical Approach*, IRL Press, Oxford, England, 1989, and Stewart J.M., Young, J.D. *Solid Phase Peptide Synthesis*, 2nd edition, Pierce Chemical Company, Rockford, 1984, the entire contents of each of which are hereby incorporated herein by reference. Exemplary resins which may be employed by the present invention include, but are not limited to, alkenyl resins, amine functionalized resins, benzhydrylamine (BHA) resins, Br-functionalized resins, Chloromethyl resins, CHO-functionalized resins, Cl-functionalized resins, CO₂H functionalized resins, Hypo-Gel resins, I-functionalized resins, MBHA resins, OH-functionalized resins, oxime resins, PEG resins, Boc-Blz peptide synthesis resins, Fmoc-tBu peptide synthesis resins, thiol-functionalized resins, and Wang resins.

[00120] Exemplary alkenyl resins include, but are not limited to, REM resin, vinyl sulfone polymer-bound resin, and vinyl-polystyrene resin.

[00121] Exemplary amine functionalized resins include, but are not limited to, amidine resin, *N*-(4-benzyloxybenzyl)hydroxylamine polymer bound, (aminomethyl)polystyrene, polymer bound (R)-(+)- α -methylbenzylamine, 2-chlorotriyl Knorr resin, 2-*N*-Fmoc-amino-dibenzocyclohepta-1,4-diene, polymer-bound resin, 4-[4-(1-Fmoc-aminoethyl)-2-methoxy-5-nitrophenoxy]butyramidomethyl-polystyrene resin, 4-benzyloxybenzylamine, polymer-bound, 4-Carboxybenzenesulfonamide, polymer-bound, bis(tert-butoxycarbonyl)thiopseudourea, polymer-bound, dimethylaminomethyl-polystyrene, Fmoc-3-amino-3-(2-nitrophenyl)propionic acid, polymer-bound, *N*-methyl aminomethylated

polystyrene, PAL resin, Sieber amide resin, *tert*-butyl N-(2-mercaptopethyl)carbamate, polymer-bound, and triphenylchloromethane-4-carboxamide polymer bound resin.

[00122] Exemplary benzhydrylamine (BHA) resins include, but are not limited to, 2-chlorobenzhydryl chloride, polymer-bound, HMPB-benzhydrylamine polymer bound, 4-m, polymer-bound, benzhydryl chloride, polymer-bound, and benzhydrylamine polymer-bound resin.

[00123] Exemplary PEG resins include but are not limited to ethylene glycol polymer bound resin.

[00124] The variable m indicates how many amino acids, defined by the variable X_{AA} , there are between amino acids containing the terminally unsaturated side chains in the polypeptides of Formulae (I)-(V). As depicted below for a polypeptide of Formula (I)-(V), variable m provides information as to the position of the amino acid containing a terminally unsaturated side chain on the C-terminal side of i , such as the positions $i+3, i+4, i+5, i+6$, and $i+7$. Table 6 correlates the specific positions of terminally unsaturated side chains present in Formulae (I).

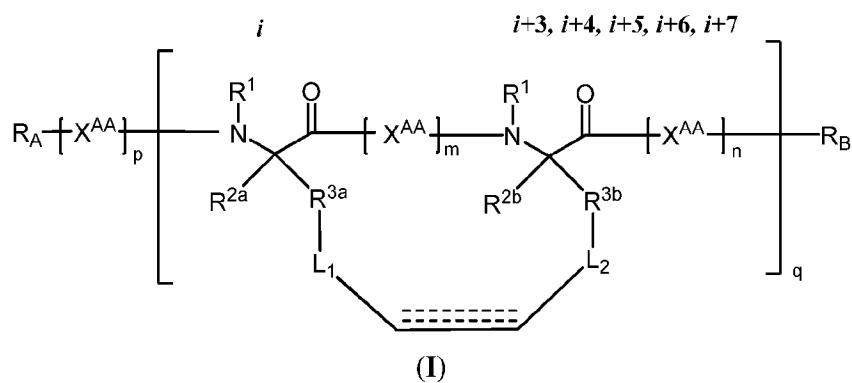


Table 6.

	$i+3$	$i+4$	$i+5$	$i+6$	$i+7$
m	2	3	4	5	6

[00125] The variables m and s indicate how many amino acids, defined by the variable X_{AA} , there are between amino acids containing the terminally unsaturated side chains in the bis-polypeptides of Formulae (VI)-(IX). In certain embodiments, m is 2. In certain embodiments, m is 3. In certain embodiments, m is 4. In certain embodiments, m is 5. In certain embodiments, m is 6. For example, as depicted below for a polypeptide of Formula (VI), wherein variables $R_A, R_B, R^1, R^{2a}, R^{2b}, R^{3a}, R^{3b}, L_1, L_2, p, m, s, t, n$, and q are as defined above, i represents one site of an alpha,alpha-disubstituted (terminally unsaturated amino acid side chain) amino acid, variable m provides information as to the position of the amino acid

containing a terminally unsaturated side chain on the N-terminal side of *i*, such as the positions *i*-3, *i*-4, *i*-5, *i*-6, and *i*-7, and *s* provides information as to the position of the amino acid containing a terminally unsaturated side chain on the C-terminal side of *i*, such as the positions *i*+3, *i*+4, *i*+5, *i*+6, and *i*+7. Table 3 correlates these specific locations of *i* relative to the variables *m* and *s* for Formulae (VI)-(IX).

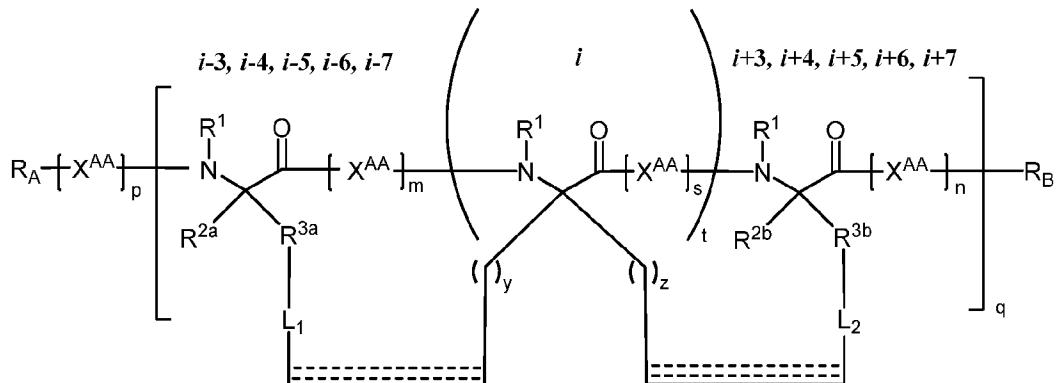


Table 7.

	<i>i</i> -7	<i>i</i> -6	<i>i</i> -5	<i>i</i> -4	<i>i</i> -3	<i>I</i>	<i>i</i> +3	<i>i</i> +4	<i>i</i> +5	<i>i</i> +6	<i>i</i> +7
m	6	5	4	3	2						
s							2	3	4	5	6

[00126] In certain embodiments, each instance of *m* is independently, an integer of between 2 and 6, inclusive. In certain embodiments, *m* is 2. In certain embodiments, *m* is 3. In certain embodiments, *m* is 4. In certain embodiments, *m* is 5. In certain embodiments, *m* is 6.

[00127] In certain embodiments, each instance of *s* is independently, an integer of between 2 and 6, inclusive. In certain embodiments, *s* is 2. In certain embodiments, *s* is 3. In certain embodiments, *s* is 4. In certain embodiments, *s* is 5. In certain embodiments, *s* is 6.

[00128] In certain embodiments, *m* is 2, and *s* is 2. In certain embodiments, *m* is 2, and *s* is 3. In certain embodiments, *m* is 2, and *s* is 4. In certain embodiments, *m* is 2, and *s* is 5. In certain embodiments, *m* is 2, and *s* is 6.

[00129] In certain embodiments, *m* is 3, and *s* is 2. In certain embodiments, *m* is 3 and *s* is 3. In certain embodiments, *m* is 3 and *s* is 4. In certain embodiments, *m* is 3 and *s* is 5. In certain embodiments, *m* is 3 and *s* is 6.

[00130] In certain embodiments, *m* is 4 and *s* is 2. In certain embodiments, *m* is 4 and *s* is 3. In certain embodiments, *m* is 4 and *s* is 4. In certain embodiments, *m* is 4 and *s* is 5. In certain embodiments, *m* is 4 and *s* is 6.

[00131] In certain embodiments, m is 5 and s is 2. In certain embodiments, m is 5 and s is 3. In certain embodiments, m is 5, and s is 4. In certain embodiments, m is 5 and s is 5. In certain embodiments, m is 5 and s is 6.

[00132] In certain embodiments, m is 6, and s is 2. In certain embodiments, m is 6, and s is 3. In certain embodiments, m is 6 and s is 4. In certain embodiments, m is 6, and s is 5. In certain embodiments, m is 6, and s is 6.

[00133] As used herein, a “staple” encompasses the entire crosslink attaching one alpha-amino acid to the second alpha-amino acid, excluding the alpha carbons of each amino acid and the polypeptide chain of which they are a part.

[00134] In certain embodiments, wherein two amino acids in staple are related by (i, i+3) or (i, i-3), there comprise less than 10 consecutively bound atoms, inclusive, from alpha carbon to alpha carbon of the staple provided in the polypeptide of the Formula (I) or (VI).

[00135] In certain embodiments, wherein two amino acids in a staple are related by (i, i+4) or (i, i-4) there comprise between 8 and 15 consecutively bound atoms, inclusive, from alpha carbon to alpha carbon of the staple provided in the polypeptide of the Formula (I) or (VI)

[00136] In certain embodiments, wherein two amino acids in a staple are related by (i, i+7) or (i, i-7), there comprise between 11 and 20 consecutively bound atoms, inclusive, from alpha carbon to alpha carbon of the staple provided in the polypeptide of the Formula (I) or (VI).

[00137] As generally defined above, each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive.

[00138] In certain embodiments, p is 0 or an integer between 1 and 100, inclusive. In certain embodiments, p is 0. In certain embodiments, p is an integer between 1 and 100, inclusive. In certain embodiments, p is an integer between 75 and 100, inclusive. In certain embodiments, p is an integer between 50 and 100, inclusive. In certain embodiments, p is an integer between 25 and 100, inclusive. In certain embodiments, p is an integer between 15 and 100, inclusive. In certain embodiments, p is an integer between 10 and 100, inclusive. In certain embodiments, p is an integer between 5 and 100, inclusive. In certain embodiments, p is an integer between 10 and 75, inclusive. In certain embodiments, p is an integer between 25 and 50, inclusive. In certain embodiments, p is an integer between 1 and 10, inclusive. In certain embodiments, p is an integer between 3 and 6, inclusive.

[00139] In certain embodiments, n is 0 or an integer between 1 and 100, inclusive. In certain embodiments, n is 0. In certain embodiments, n is an integer between 1 and 100, inclusive. In certain embodiments, n is an integer between 75 and 100, inclusive. In certain

embodiments, n is an integer between 50 and 100, inclusive. In certain embodiments, n is an integer between 25 and 100, inclusive. In certain embodiments, n is an integer between 15 and 100, inclusive. In certain embodiments, n is an integer between 10 and 100, inclusive. In certain embodiments, n is an integer between 5 and 100, inclusive. In certain embodiments, n is an integer between 10 and 75, inclusive. In certain embodiments, n is an integer between 25 and 50, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.

[00140] As generally defined above, q is an integer between 1 and 10, inclusive. In certain embodiments, q is an integer between 1 and 9, inclusive. In certain embodiments, q is an integer between 1 and 8, inclusive. In certain embodiments, q is an integer between 1 and 7, inclusive. In certain embodiments, q is an integer between 1 and 6, inclusive. In certain embodiments, q is an integer between 1 and 5, inclusive. In certain embodiments, q is an integer between 1 and 4, inclusive. In certain embodiments, q is an integer between 1 and 3, inclusive. In certain embodiments, q is an integer between 1 and 2, inclusive. In certain embodiments, q is 10. In certain embodiments, q is 9. In certain embodiments, q is 8. In certain embodiments, q is 7. In certain embodiments, q is 6. In certain embodiments, q is 5. In certain embodiments, q is 4. In certain embodiments, q is 3. In certain embodiments, q is 2. In certain embodiments, q is 1.

[00141] In certain embodiments, m is 6, p is 3 or 6, n is 0 or 2, and q is 1. In certain embodiments, m is 6, p is 6, n is 2, and q is 1. In certain embodiments, m is 6, p is 3, n is 0, and q is 1. In certain embodiments, the polypeptide has a staple with one tertiary amine. In certain embodiments, the polypeptide has a staple with two tertiary amines. In certain embodiments, the polypeptide has a staple with one carbamate. In certain embodiments, the polypeptide has a staple with two carbamates. In certain embodiments, the polypeptides comprises both staples with the E and Z configurations. In certain embodiments, the staple has a double bond with an E configuration. In certain embodiments, the staple has a double bond with a Z configuration.

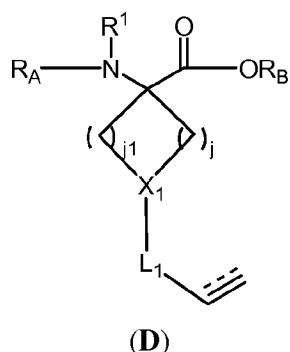
[00142] As generally defined above, y is an integer between 1 and 10. In certain embodiments, y is 10. In certain embodiments, y is 9. In certain embodiments, y is 8. In certain embodiments, y is 7. In certain embodiments, y is 6. In certain embodiments, y is 5. In certain embodiments, y is 4. In certain embodiments, y is 3. In certain embodiments, y is 2. In certain embodiments, y is 1.

[00143] As generally defined above, z is an integer between 1 and 10. In certain embodiments, z is 10. In certain embodiments, z is 9. In certain embodiments, z is 8. In

certain embodiments, z is 7. In certain embodiments, z is 6. In certain embodiments, z is 5. In certain embodiments, z is 4. In certain embodiments, z is 3. In certain embodiments, z is 2. In certain embodiments, z is 1.

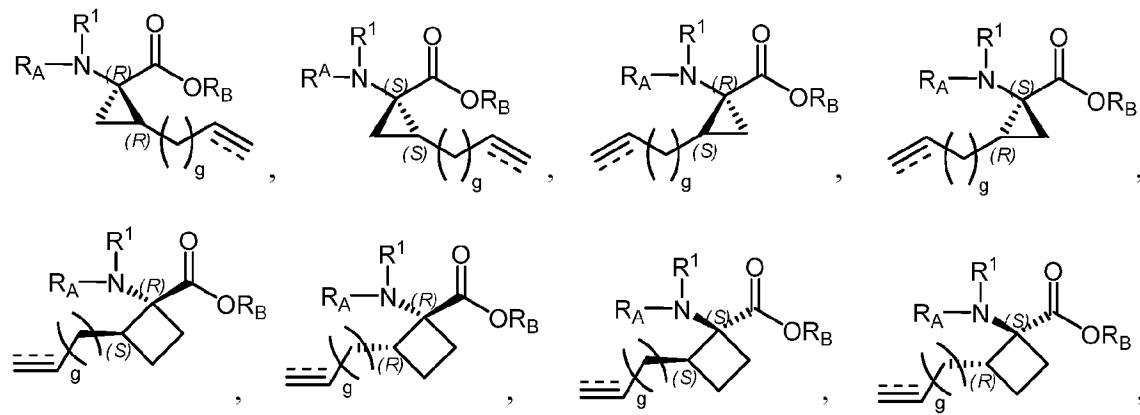
[00144] In certain embodiments, y is 1 and z is 1. In certain embodiments, y is 1 and z is 2. In certain embodiments, y is 1 and z is 3. In certain embodiments, y is 1 and z is 4. In certain embodiments, y is 1 and z is 5. In certain embodiments, y is 1 and z is 6. In certain embodiments, y is 2 and z is 1. In certain embodiments, y is 2 and z is 2. In certain embodiments, y is 2 and z is 3. In certain embodiments, y is 2 and z is 4. In certain embodiments, y is 2 and z is 5. In certain embodiments, y is 2 and z is 6. In certain embodiments, y is 3 and z is 1. In certain embodiments, y is 3 and z is 2. In certain embodiments, y is 3 and z is 3. In certain embodiments, y is 3 and z is 4. In certain embodiments, y is 3 and z is 5. In certain embodiments, y is 3 and z is 6. In certain embodiments, y is 4 and z is 1. In certain embodiments, y is 4 and z is 2. In certain embodiments, y is 4 and z is 3. In certain embodiments, y is 4 and z is 4. In certain embodiments, y is 4 and z is 5. In certain embodiments, y is 4 and z is 6. In certain embodiments, y is 5 and z is 1. In certain embodiments, y is 5 and z is 2. In certain embodiments, y is 5 and z is 3. In certain embodiments, y is 5 and z is 4. In certain embodiments, y is 5 and z is 5. In certain embodiments, y is 5 and z is 6. In certain embodiments, y is 6 and z is 1. In certain embodiments, y is 6 and z is 2. In certain embodiments, y is 6 and z is 3. In certain embodiments, y is 6 and z is 4. In certain embodiments, y is 6 and z is 5. In certain embodiments, y is 6 and z is 6.

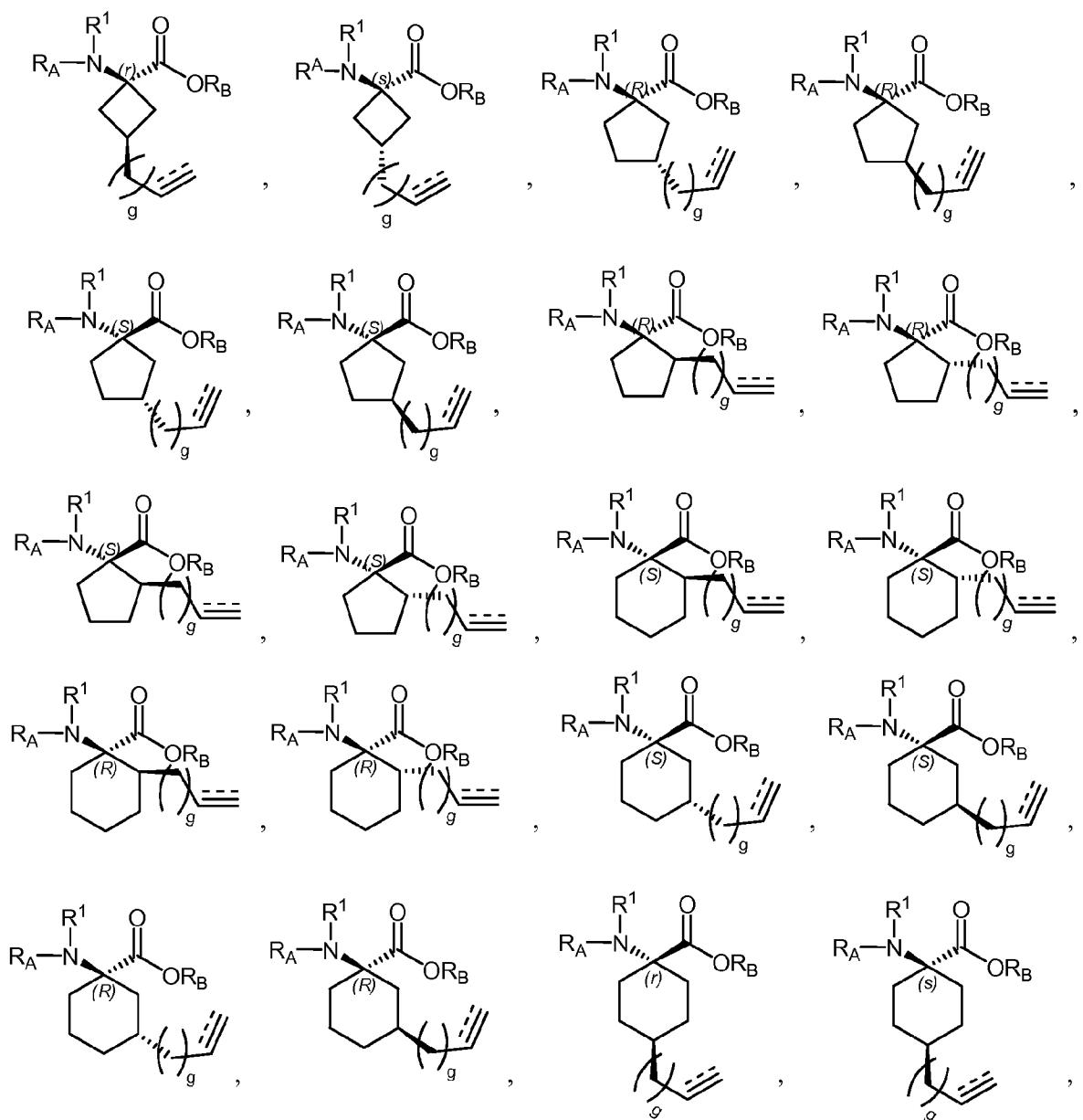
[00145] Exemplary secondary structural motifs of polypeptides and proteins include, but are not limited to, an alpha-helix, alpha-L, 3₁₀ helix, π helix, and type II helices (*e.g.*, left-handed helices). In certain embodiments, the predominant secondary structural motif of the inventive polypeptide is an alpha-helix.

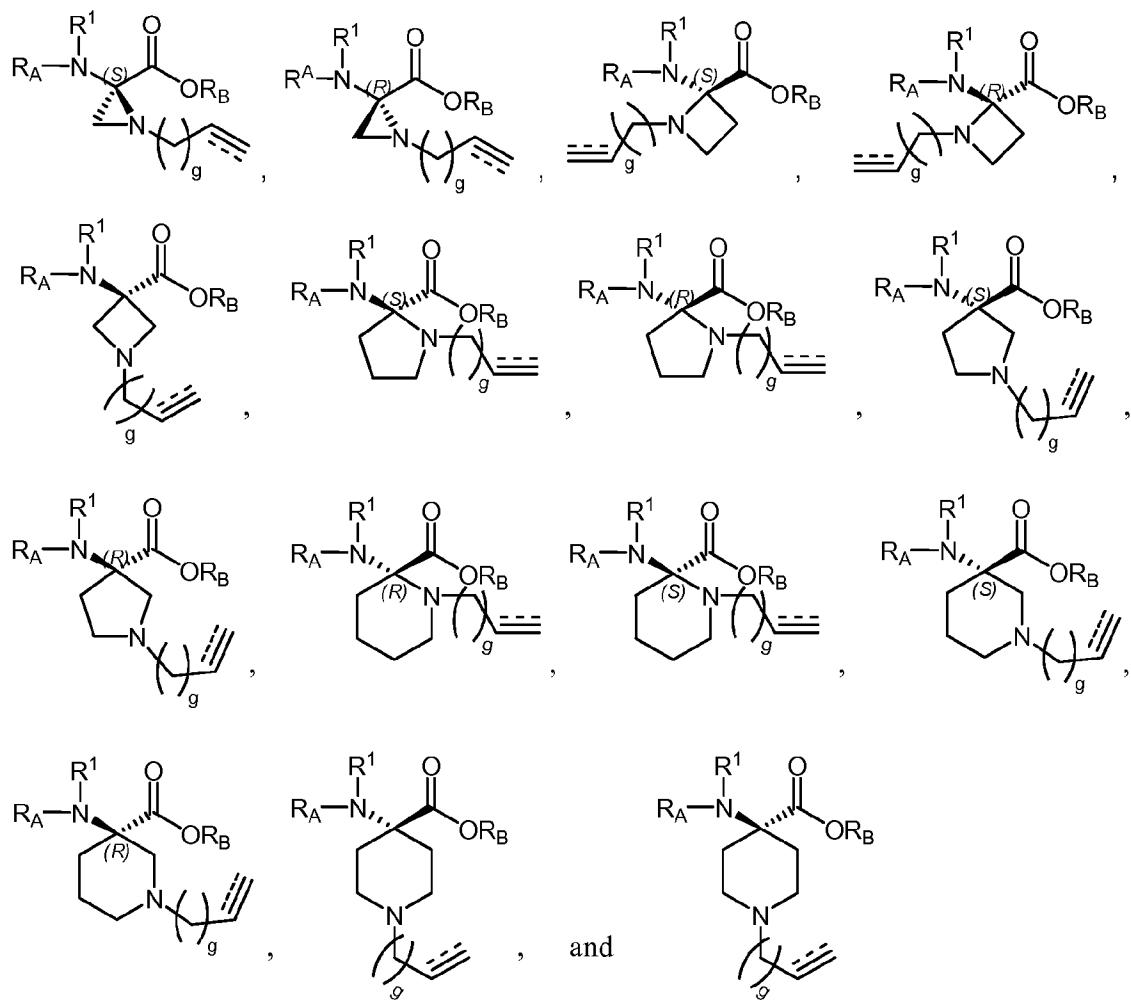

[00146] In certain embodiments, the polypeptide of the above Formulae (I)-(X), or subset thereof, is an alpha-helical polypeptide. In certain embodiments, the polypeptide of the above Formulae (I)-(X), or subset thereof, is a substantially alpha-helical polypeptide. As used herein, the phrase “substantially alpha-helical” refers to a polypeptide comprising: (I) backbone (ϕ , ψ) dihedral angles, on average, in a range from about (-90°, -15°) to about (-35°, -70°); and/or (ii) dihedral angles such that the ψ dihedral angle of one residue and the ϕ

dihedral angle of the next residue sums, on average, about -80° to about -125° ; and/or (iii) having at least 50%, 60%, 70%, 80%, 90%, or 95% of the amino acids provided in the polypeptide chain adopting an alpha-helical conformation.

[00147] In certain embodiments, the inventive polypeptide adopts dihedral angles such that the ψ dihedral angle of one residue and the ϕ dihedral angle of the next residue sums, on average, about -100° to about -110° . In certain embodiments, the inventive polypeptide adopts dihedral angles such that the ψ dihedral angle of one residue and the ϕ dihedral angle of the next residue sums, on average, about -105° . Confirmation of a polypeptide's alpha-helical secondary structure may be ascertained by well-known analytical techniques, such as x-ray crystallography, electron crystallography, fiber diffraction, fluorescence anisotropy, circular dichroism (CD), and nuclear magnetic resonance spectroscopy.

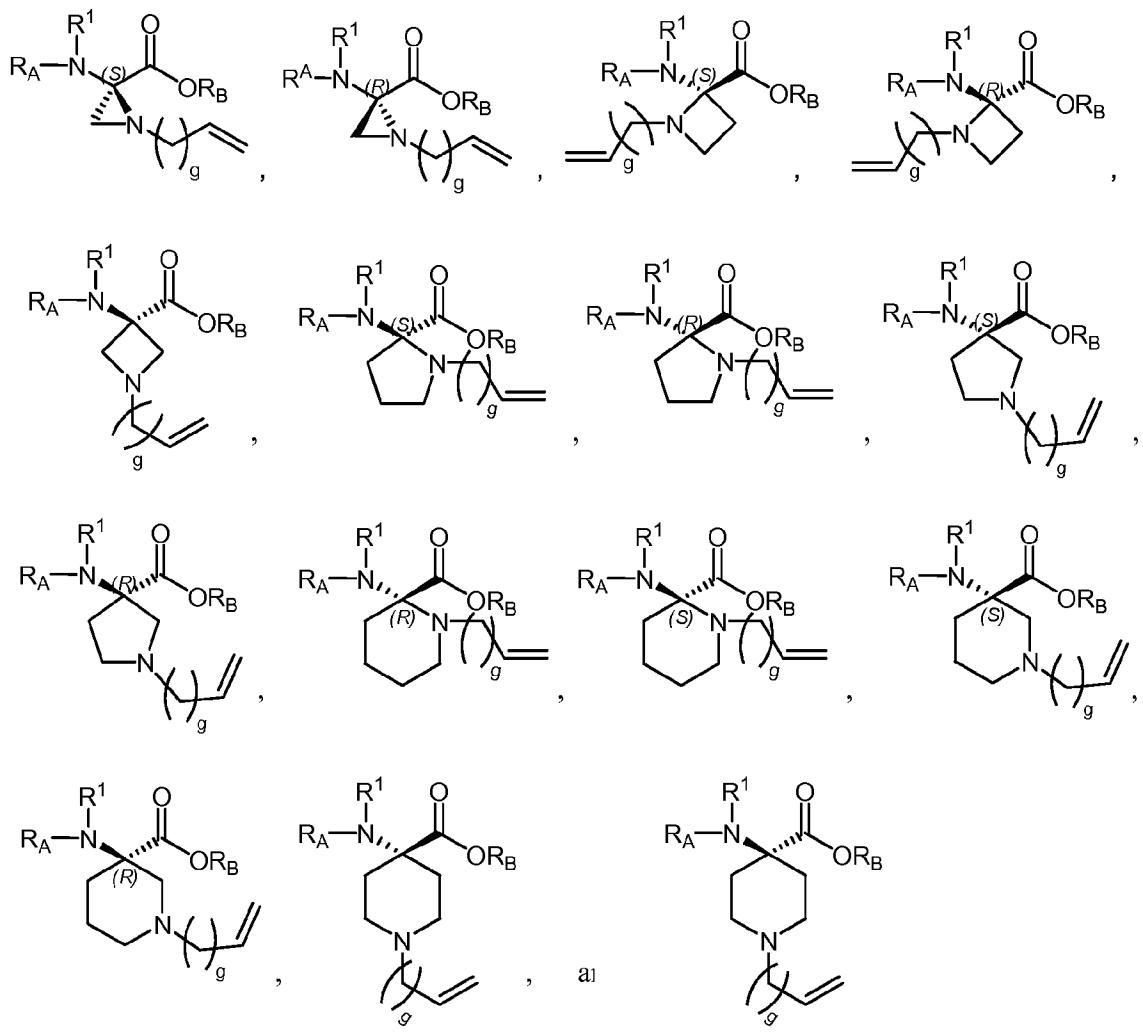

[00148] In certain embodiments, the inventive polypeptide is homologous to a known alpha helical peptide. In certain embodiments, the inventive polypeptide is at least 80%, 85%, 90%, or 95% homologous to a known alpha helical peptide.

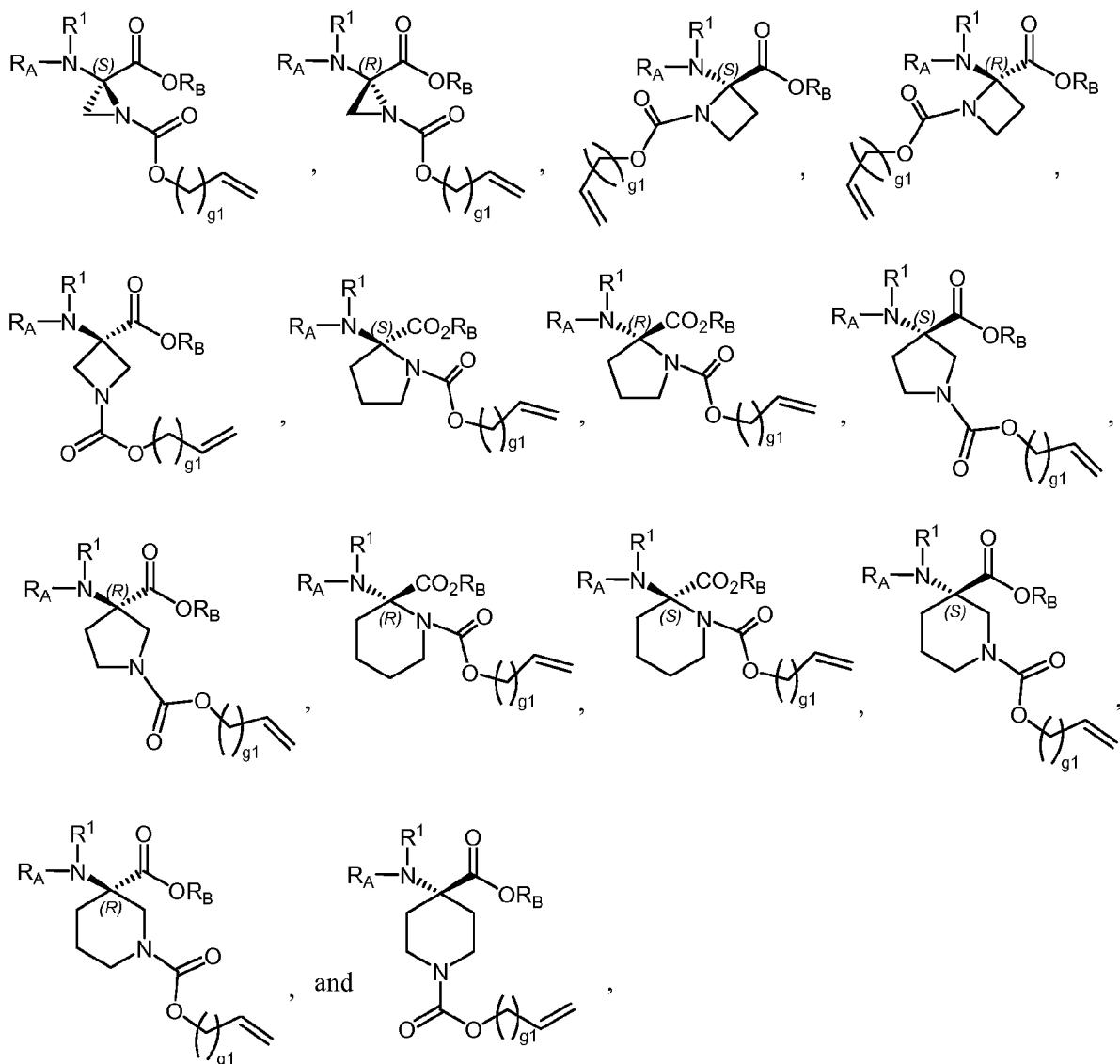

[00149] In certain embodiments, the present invention also provides intermediates and starting materials used in the synthesis of the inventive polypeptides. For example, the present invention provides amino acids of Formula (D):



wherein R_A , R_B , R_1 , L_1 , X_1 , j_1 , and j are defined herein.

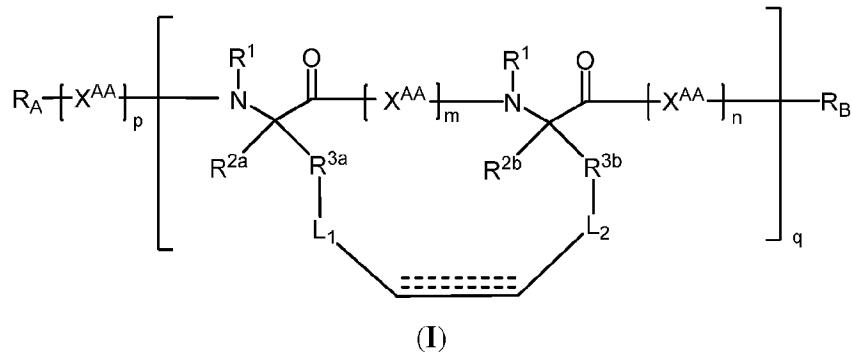
[00150] In certain embodiments, the present invention also provides intermediates used in the synthesis of inventive polypeptides. For example, the present invention provides amino acids of any one of the following structures:



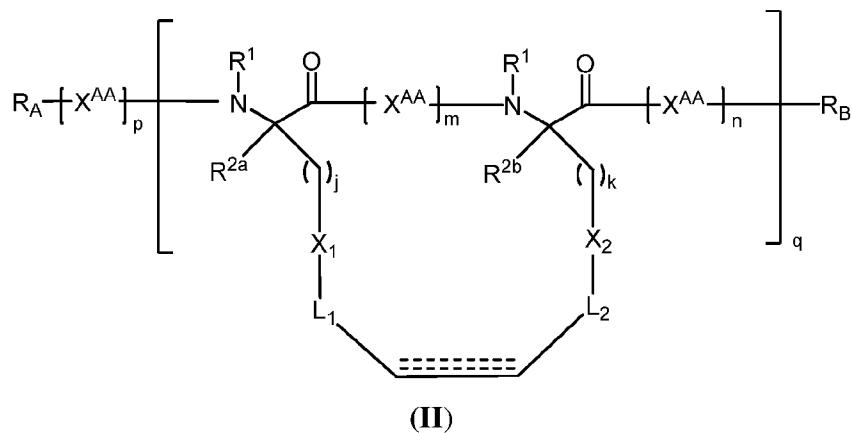


and salts thereof, wherein g is 0 or an integer of between 1 and 10, inclusive.

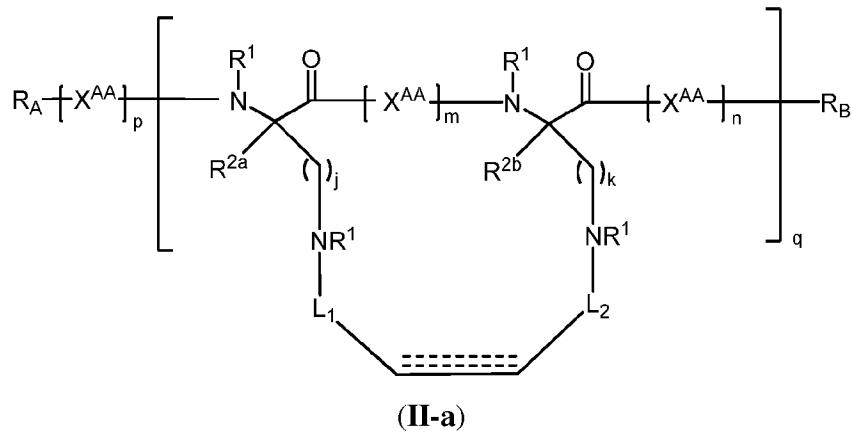
[00151] In certain embodiments, amino acids provided herein are selected from any one of the following structures:



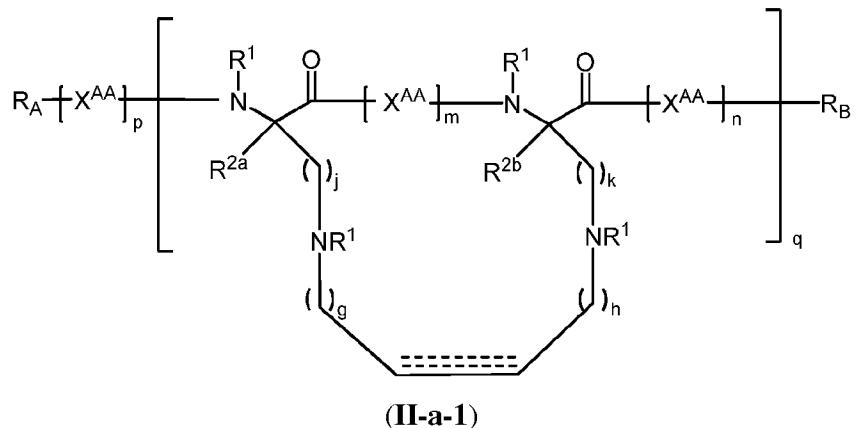
and salts thereof, wherein g is 0 or an integer of between 1 and 10, inclusive.


[00152] In certain embodiments, g is 0. In certain embodiments, g is 1. In certain embodiments, g is 2. In certain embodiments, g is 3. In certain embodiments, g is 4. In certain embodiments, g is 5. In certain embodiments, g is 6. In certain embodiments, g is 7. In certain embodiments, g is 8. In certain embodiments, g is 9. In certain embodiments, g is 10.

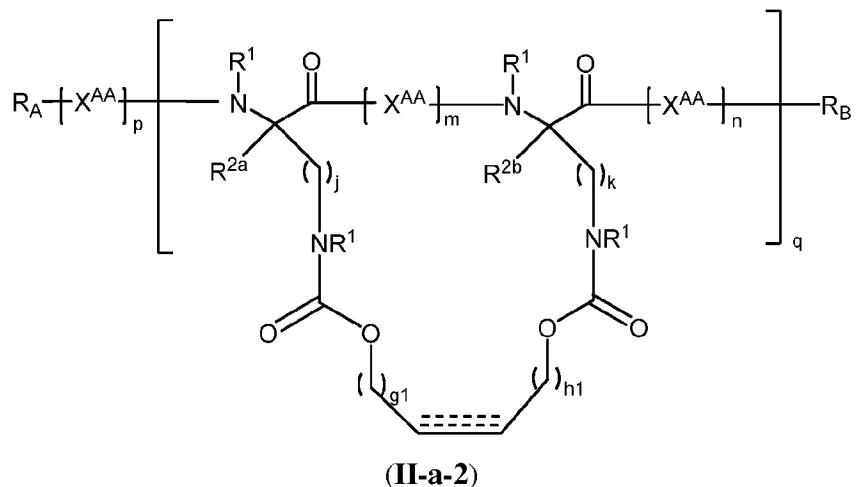
[00153] In certain embodiments, provided is a polypeptide of Formula (I):


or a pharmaceutically acceptable salt thereof.

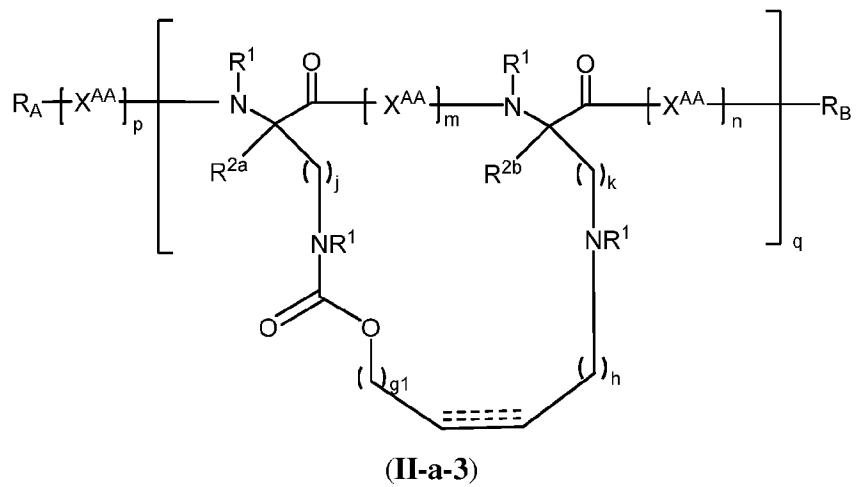
[00154] In certain embodiments, provided is a polypeptide of Formula (II):


or a pharmaceutically acceptable salt thereof.

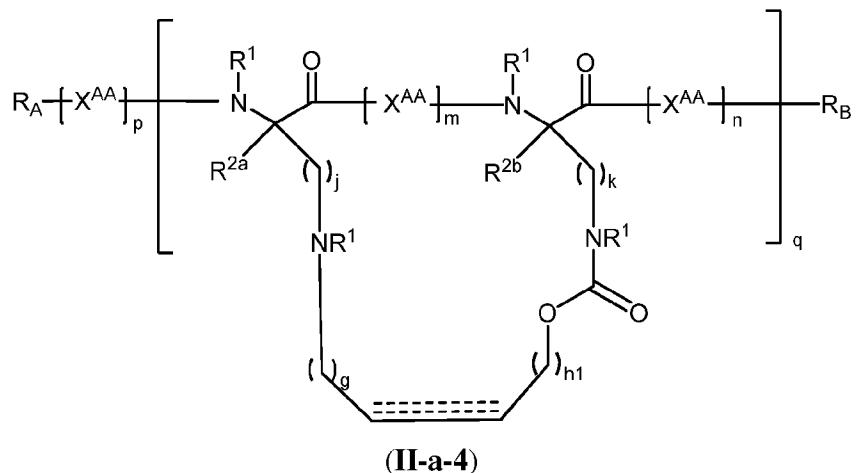
[00155] In certain embodiments, provided is a polypeptide of Formula (II-a):


or a pharmaceutically acceptable salt thereof.

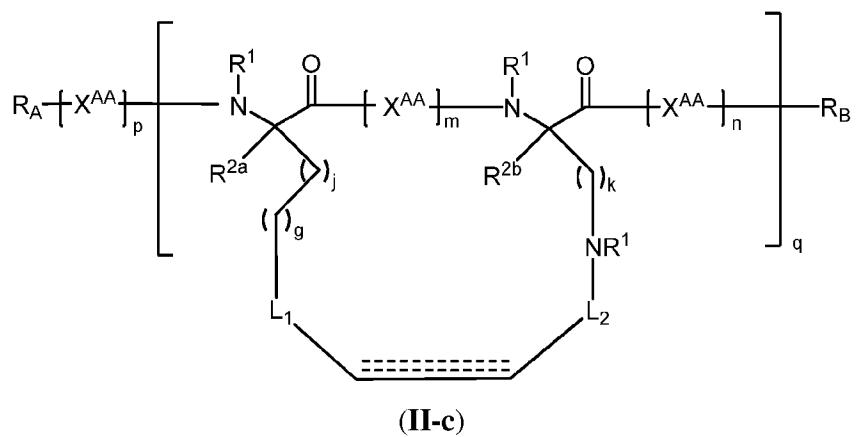
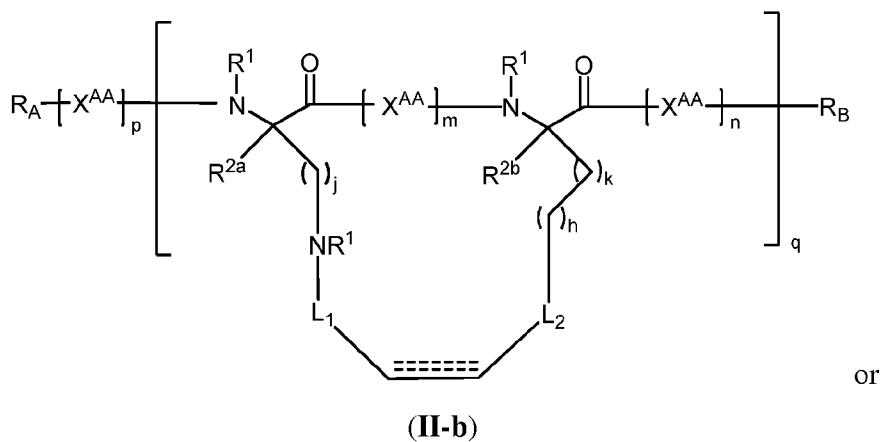
[00156] In certain embodiments, provided is a polypeptide of of Formula (II-a-1):


or a pharmaceutically acceptable salt thereof.

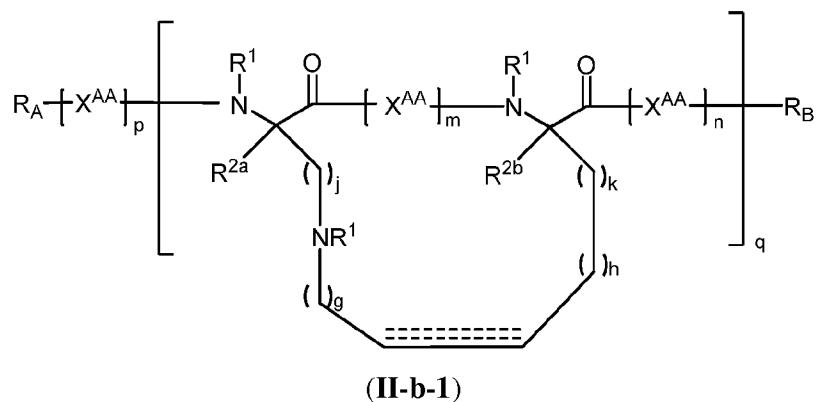
[00157] In certain embodiments, provided is a polypeptide of of Formula (II-a-2):


or a pharmaceutically acceptable salt thereof.

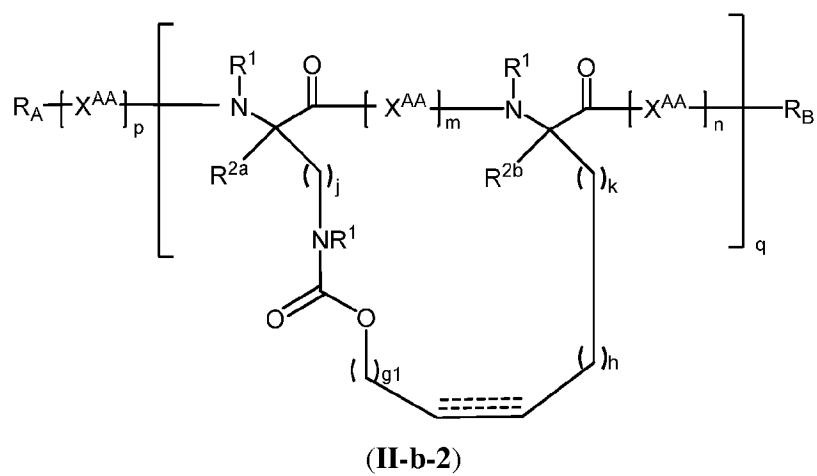
[00158] In certain embodiments, provided is a polypeptide of of Formula (II-a-3):



or a pharmaceutically acceptable salt thereof.

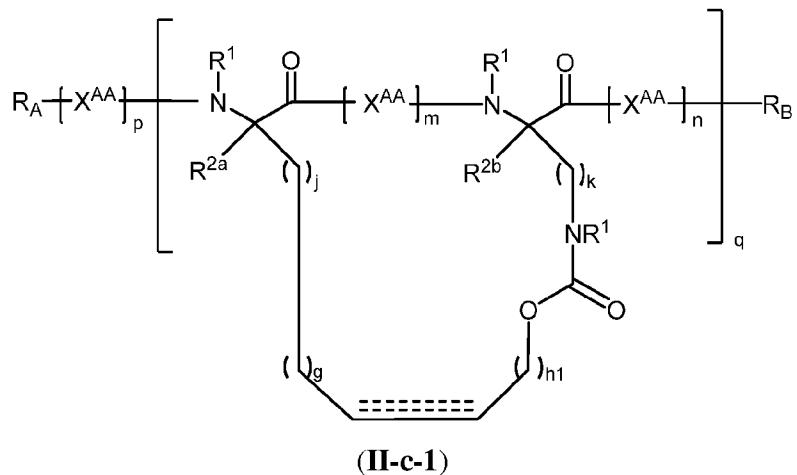
[00159] In certain embodiments, provided is a polypeptide of Formula **(II-a-4)**:


or a pharmaceutically acceptable salt thereof.

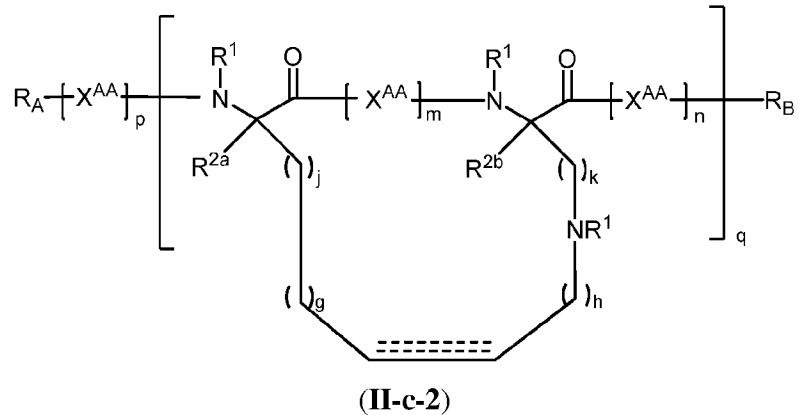
[00160] In certain embodiments, provided is a polypeptide of Formula **(II-b)** or **(II-c)**:


or a pharmaceutically acceptable salt thereof.

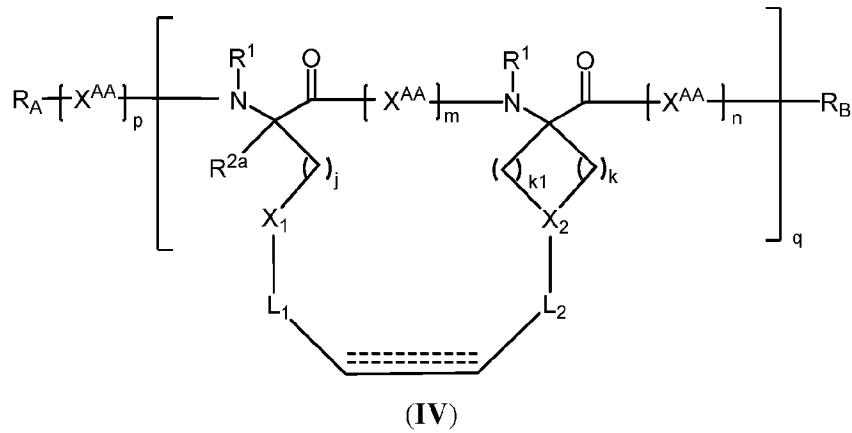
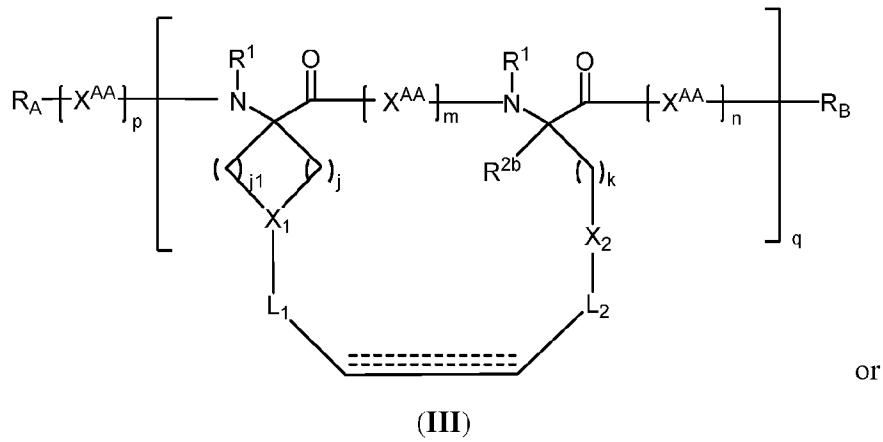
[00161] In certain embodiments, provided is a polypeptide of of Formula (II-b-1):


or a pharmaceutically acceptable salt thereof.

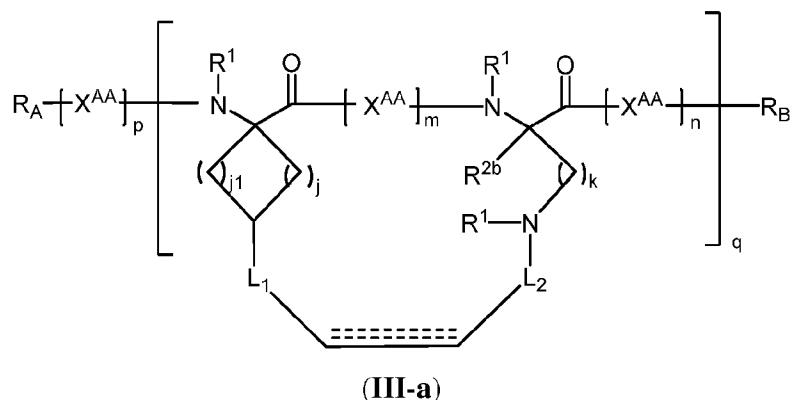
[00162] In certain embodiments, provided is a polypeptide of Formula (II-b-2):


or a pharmaceutically acceptable salt thereof.

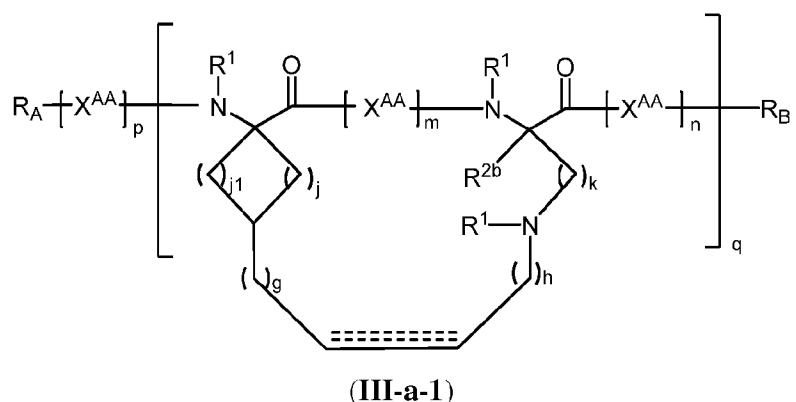
[00163] In certain embodiments, provided is a polypeptide of Formula (II-c-1):



or a pharmaceutically acceptable salt thereof.

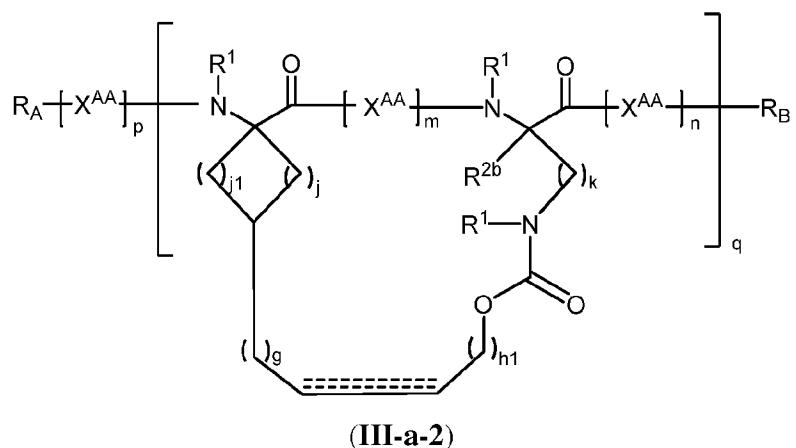
[00164] The polypeptide of claim 8, wherein the polypeptide is of Formula (II-c-2):


or a pharmaceutically acceptable salt thereof.

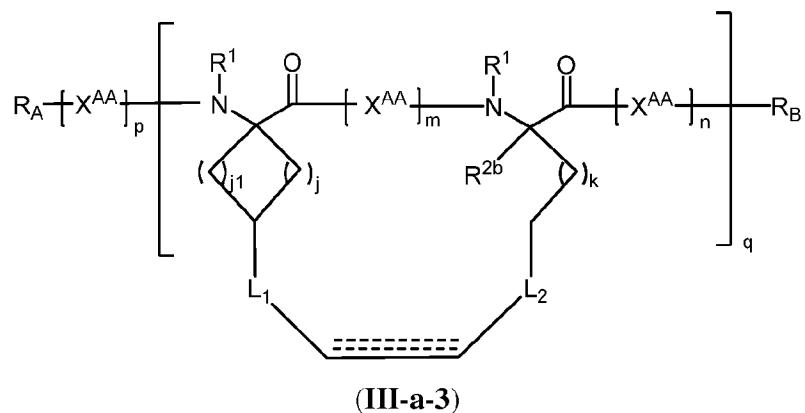
[00165] In certain embodiments, provided is a polypeptide of Formula (III) or Formula (IV):


or a pharmaceutically acceptable salt thereof.

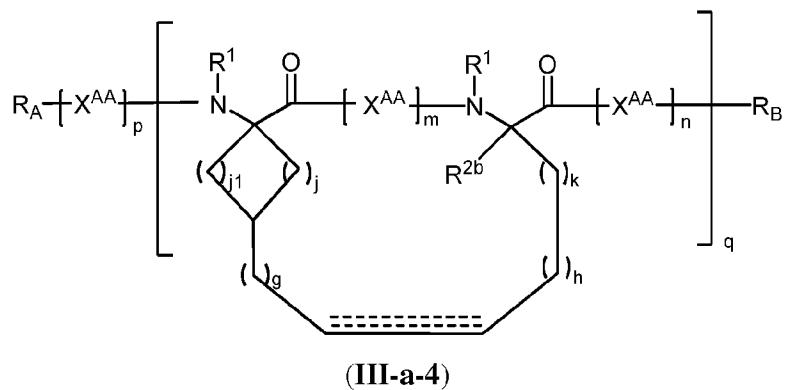
[00166] In certain embodiments, provided is a polypeptide of Formula **(III-a)**:


or a pharmaceutically acceptable salt thereof.

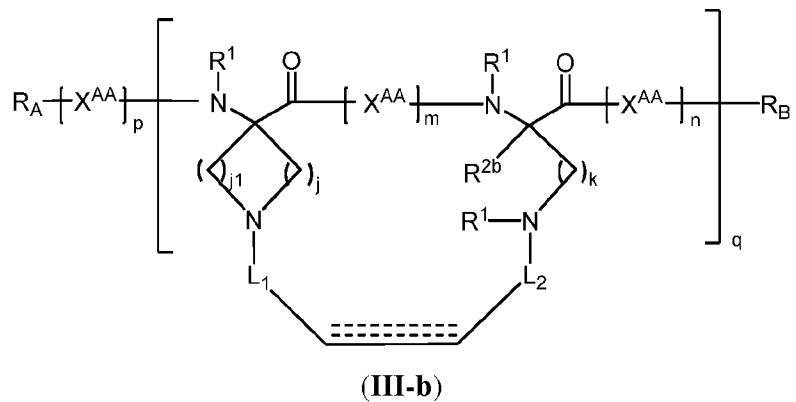
[00167] In certain embodiments, provided is a polypeptide of Formula **(III-a-1)**:


or a pharmaceutically acceptable salt thereof.

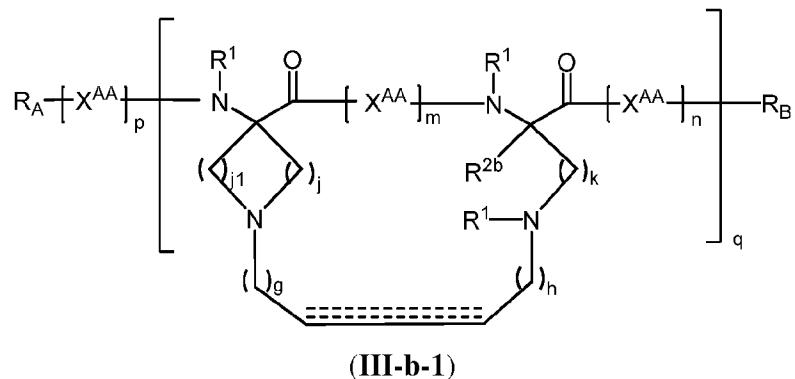
[00168] In certain embodiments, provided is a polypeptide of Formula **(III-a-2)**:


or a pharmaceutically acceptable salt thereof

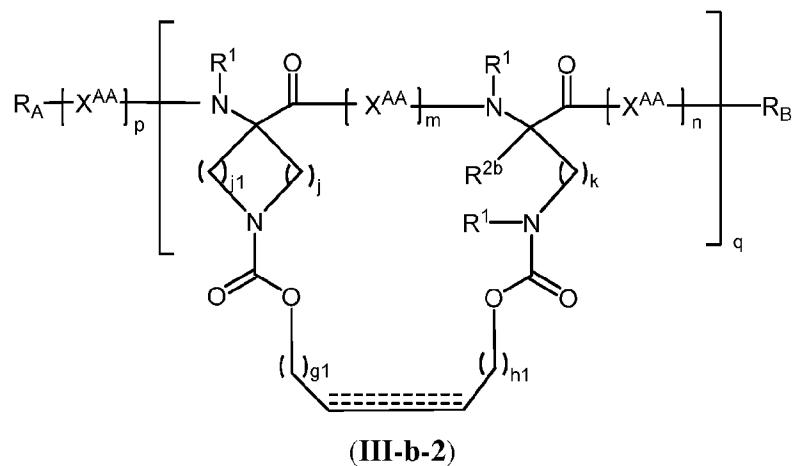
[00169] In certain embodiments, provided is a polypeptide of Formula **(III-a-3)**:


or a pharmaceutically acceptable salt thereof.

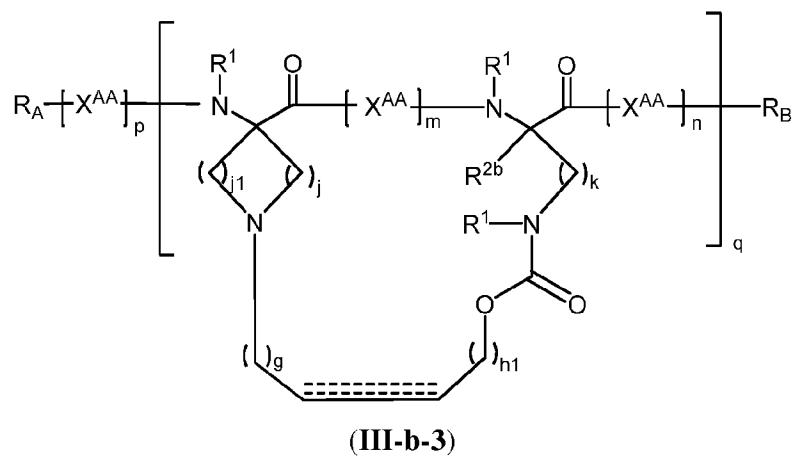
[00170] In certain embodiments, provided is a polypeptide of Formula **(III-a-4)**:


or a pharmaceutically acceptable salt thereof.

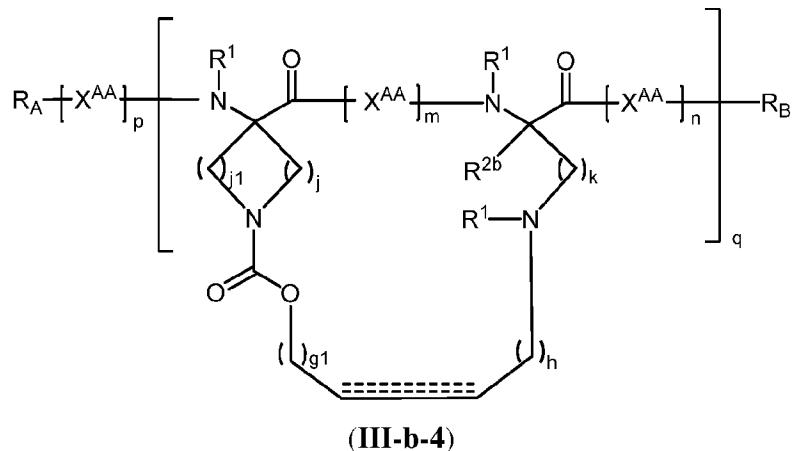
[00171] In certain embodiments, provided is a polypeptide of Formula **(III-b)**:


or a pharmaceutically acceptable salt thereof.

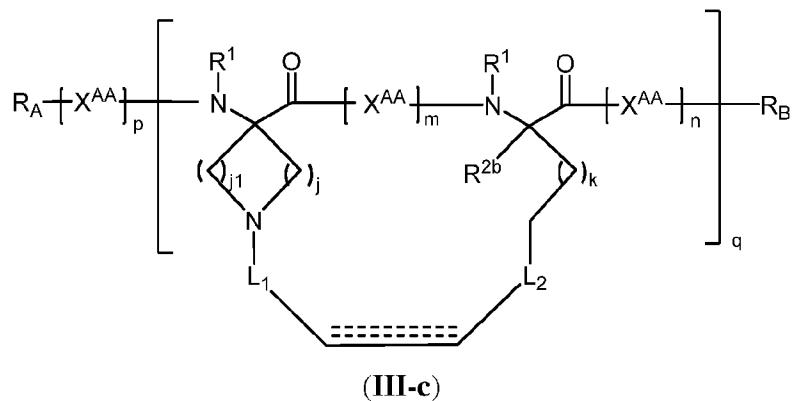
[00172] In certain embodiments, provided is a polypeptide of Formula (III-b-1):


or a pharmaceutically acceptable salt thereof.

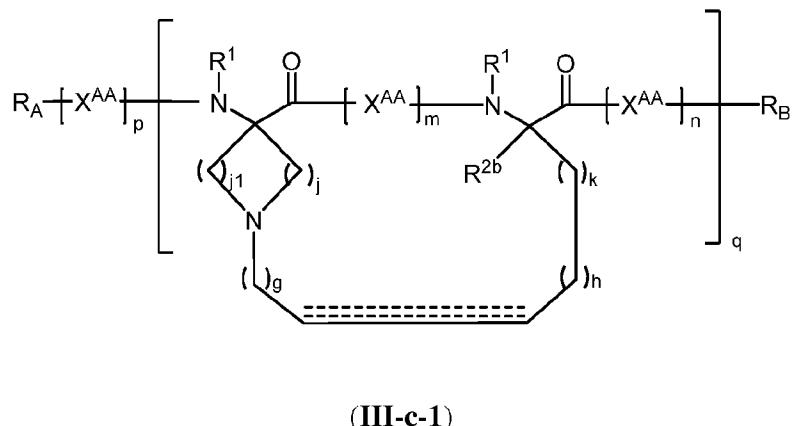
[00173] In certain embodiments, provided is a polypeptide of Formula (III-b-2):


or a pharmaceutically acceptable salt thereof.

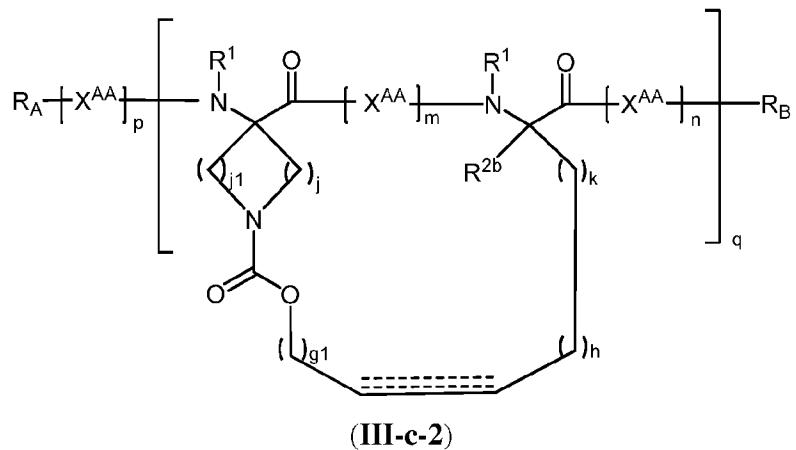
[00174] In certain embodiments, provided is a polypeptide of Formula (III-b-3):


or a pharmaceutically acceptable salt thereof.

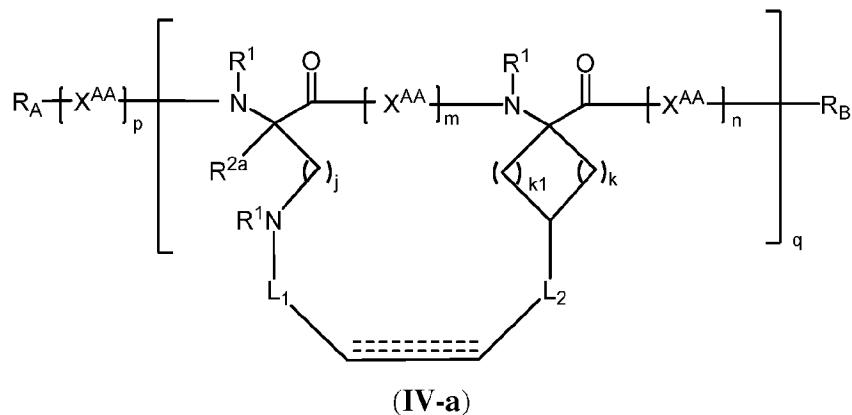
[00175] In certain embodiments, provided is a polypeptide of Formula (III-b-4):


or a pharmaceutically acceptable salt thereof.

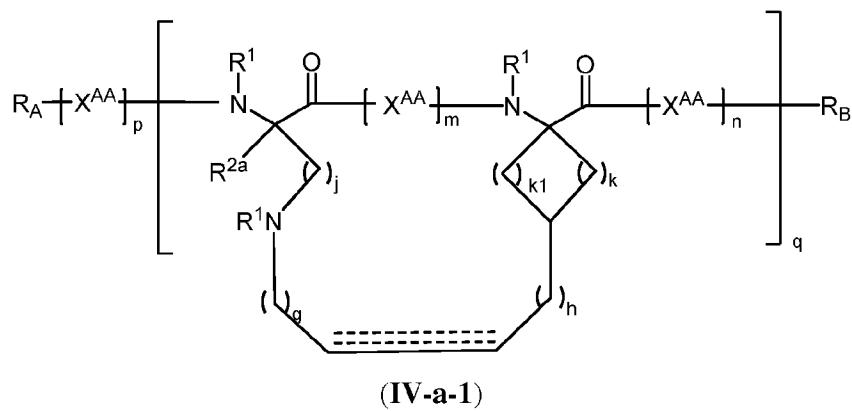
[00176] In certain embodiments, provided is a polypeptide of Formula (III-c):


or a pharmaceutically acceptable salt thereof.

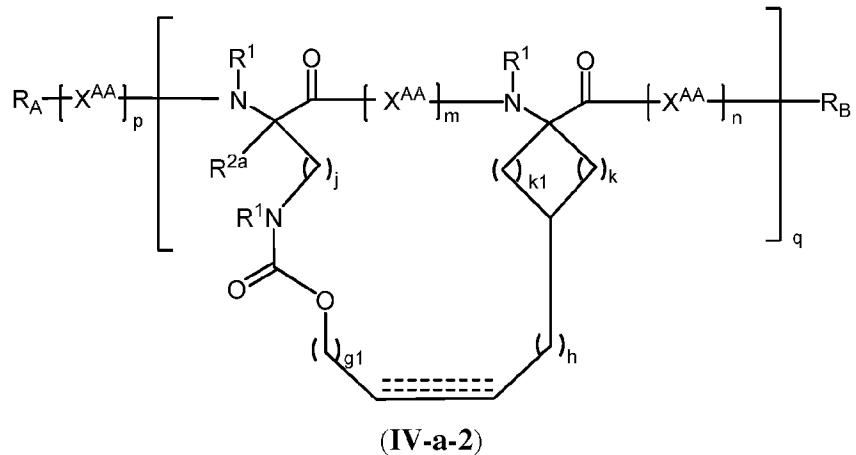
[00177] In certain embodiments, provided is a polypeptide of Formula (III-c-1):


or a pharmaceutically acceptable salt thereof.

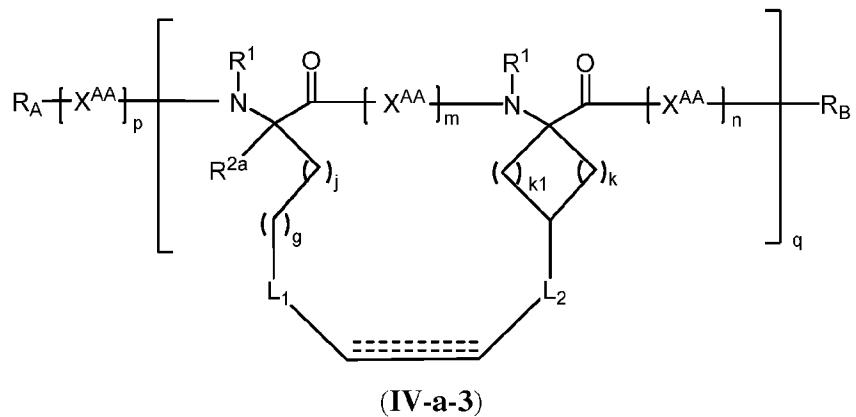
[00178] In certain embodiments, provided is a polypeptide of Formula **(III-c-2)**:


or a pharmaceutically acceptable salt thereof.

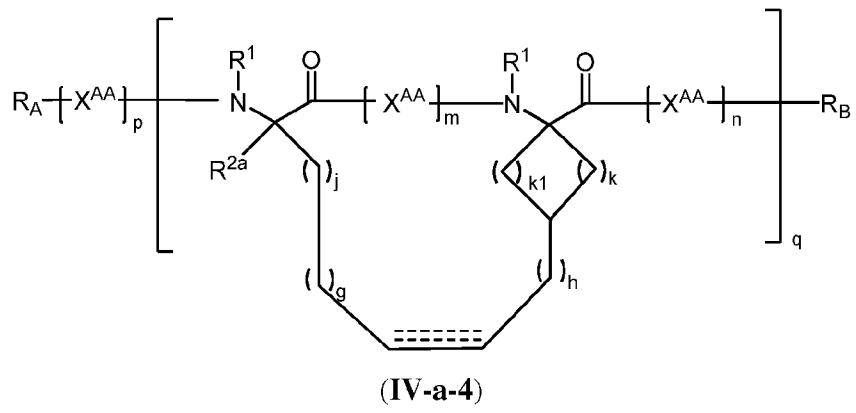
[00179] In certain embodiments, provided is a polypeptide of Formula **(IV-a)**:


or a pharmaceutically acceptable salt thereof.

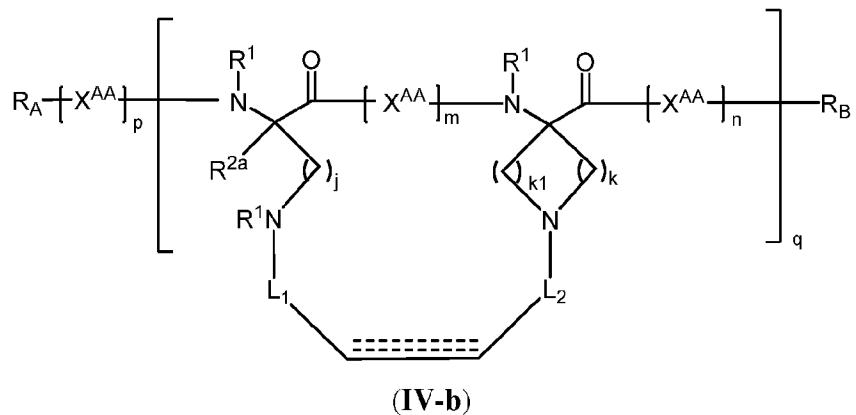
[00180] In certain embodiments, provided is a polypeptide of Formula **(IV-a-1)**:


or a pharmaceutically acceptable salt thereof.

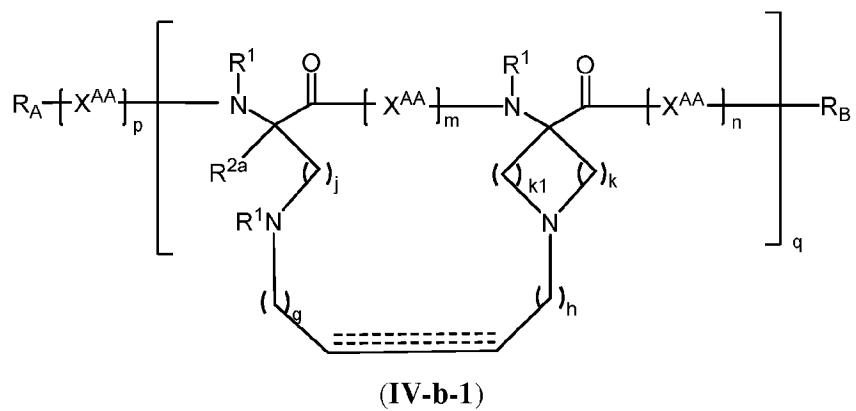
[00181] In certain embodiments, provided is a polypeptide of Formula (IV-a-2):


or a pharmaceutically acceptable salt thereof.

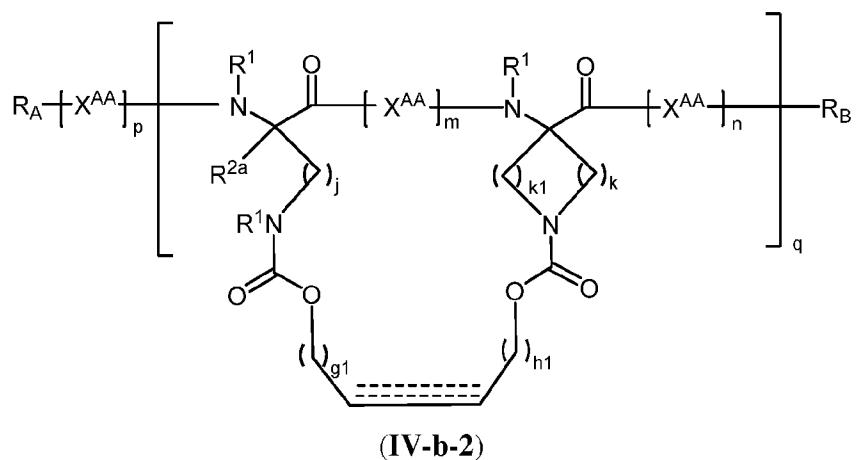
[00182] In certain embodiments, provided is a polypeptide of Formula (IV-a-3):


or a pharmaceutically acceptable salt thereof.

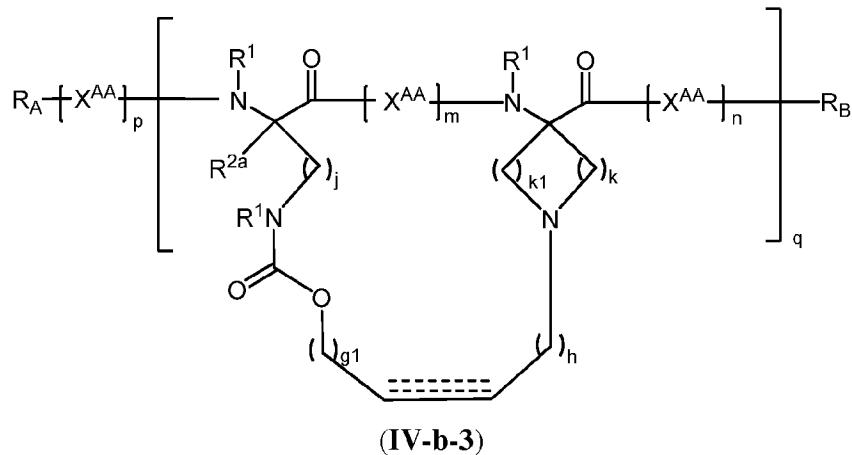
[00183] In certain embodiments, provided is a polypeptide of Formula (IV-a-4):


or a pharmaceutically acceptable salt thereof.

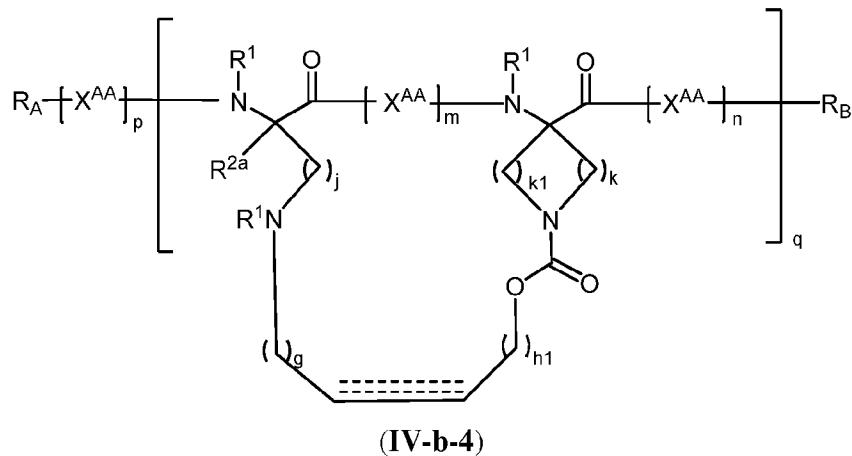
[00184] In certain embodiments, provided is a polypeptide of Formula **(IV-b)**:


or a pharmaceutically acceptable salt thereof.

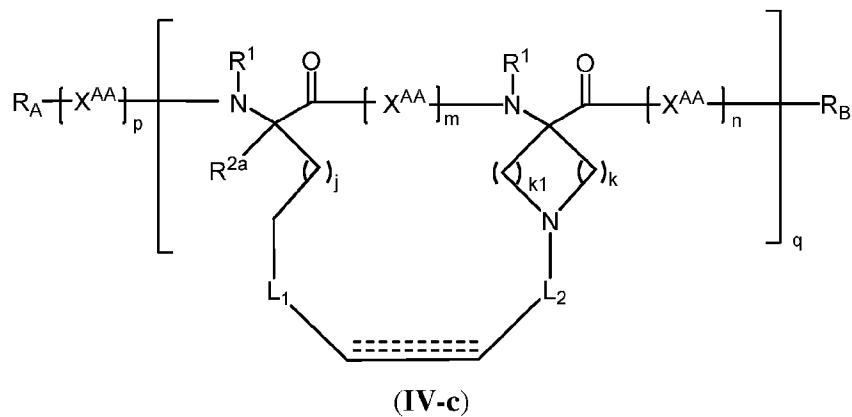
[00185] In certain embodiments, provided is a polypeptide of Formula **(IV-b-1)**:


or a pharmaceutically acceptable salt thereof.

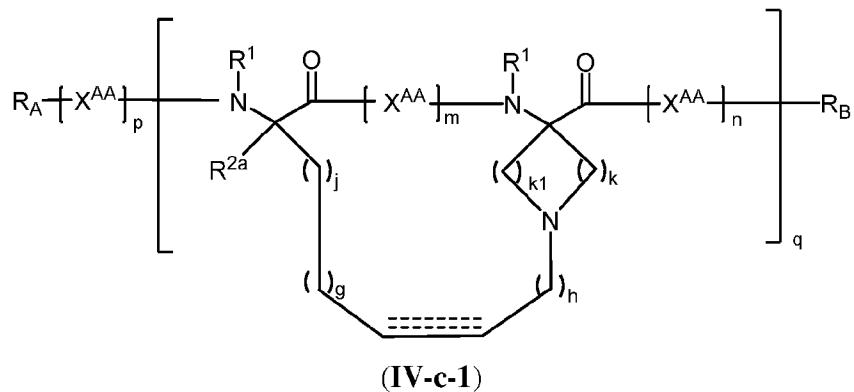
[00186] In certain embodiments, provided is a polypeptide of Formula **(IV-b-2)**:


or a pharmaceutically acceptable salt thereof.

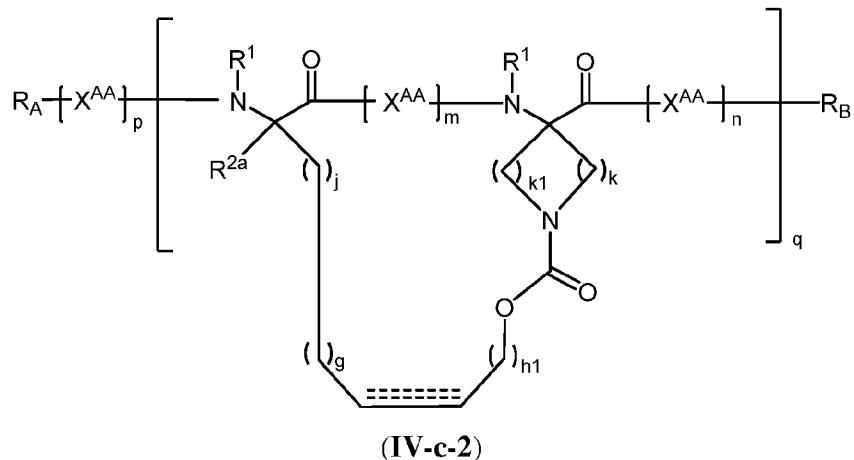
[00187] In certain embodiments, provided is a polypeptide of Formula **(IV-b-3)**:


or a pharmaceutically acceptable salt thereof.

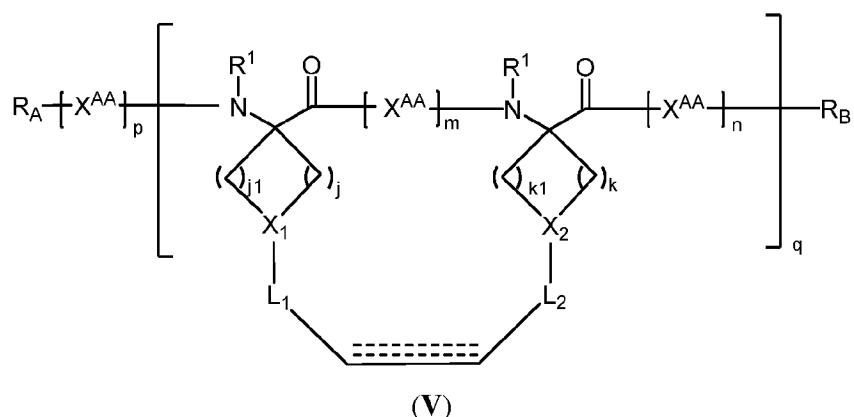
[00188] In certain embodiments, provided is a polypeptide of Formula **(IV-b-4)**:


or a pharmaceutically acceptable salt thereof.

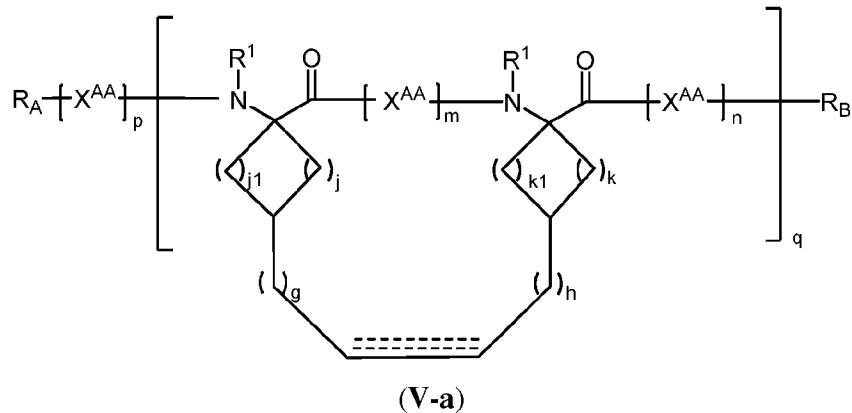
[00189] In certain embodiments, provided is a polypeptide of Formula **(IV-c)**:


or a pharmaceutically acceptable salt thereof.

[00190] In certain embodiments, provided is a polypeptide of Formula (IV-c-1):


or a pharmaceutically acceptable salt thereof.

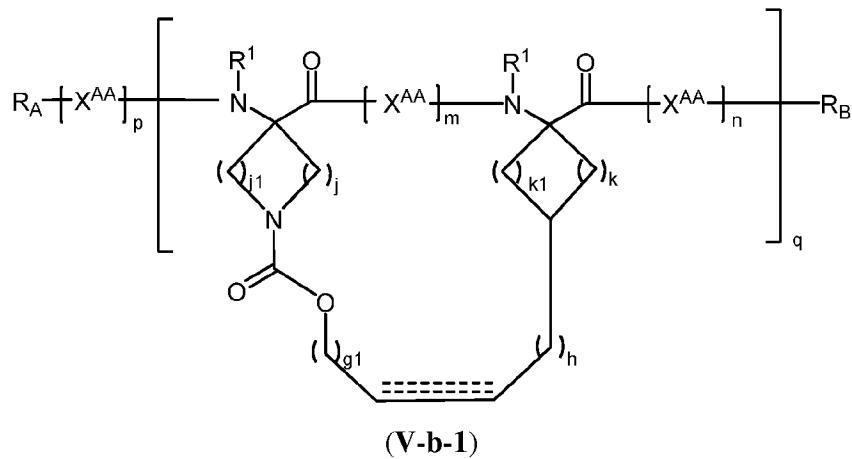
[00191] In certain embodiments, provided is a polypeptide of Formula (IV-c-2):


or a pharmaceutically acceptable salt thereof.

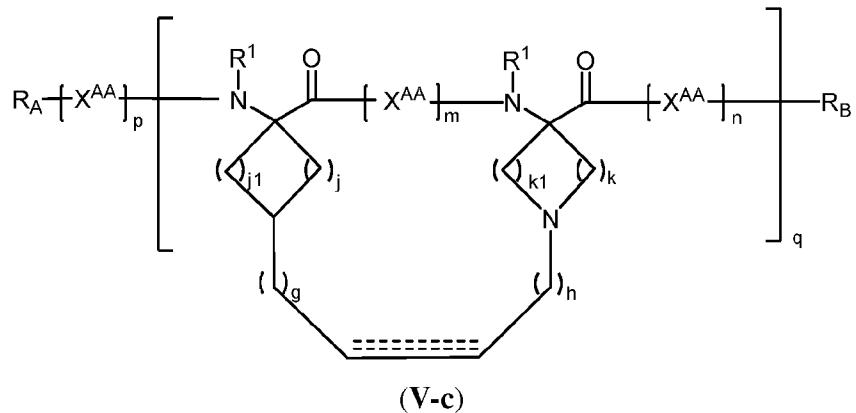
[00192] In certain embodiments, provided is a polypeptide of Formula (V):

or a pharmaceutically acceptable salt thereof.

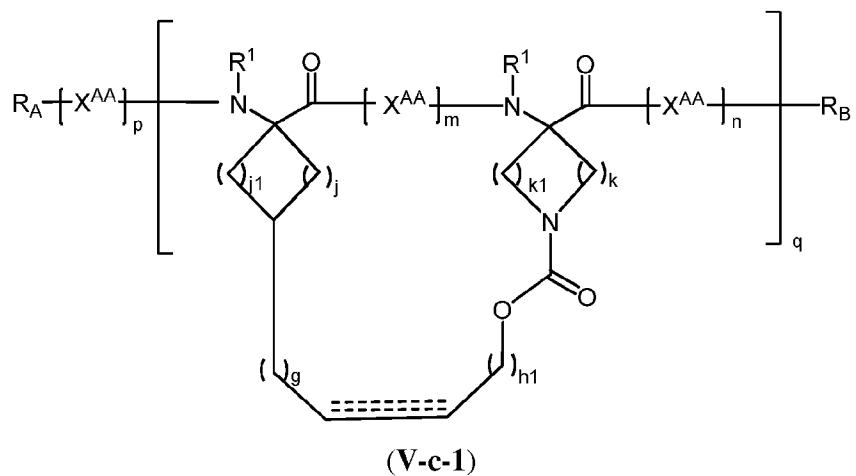
[00193] In certain embodiments, provided is a polypeptide of Formula (V-a):


or a pharmaceutically acceptable salt thereof.

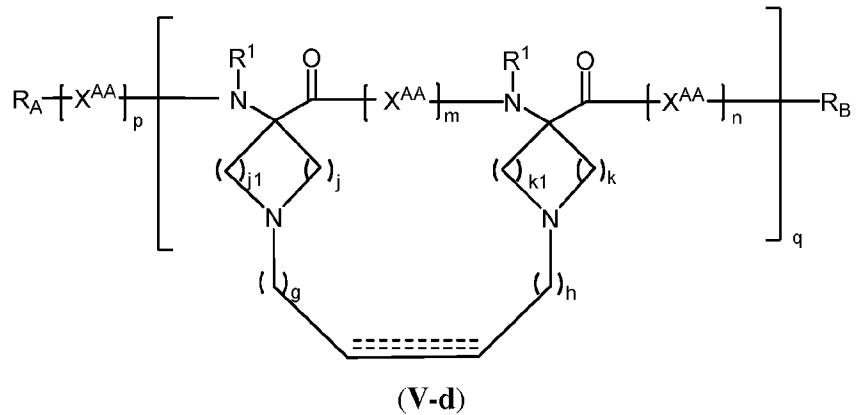
[00194] In certain embodiments, provided is a polypeptide of Formula (V-b):


or a pharmaceutically acceptable salt thereof.

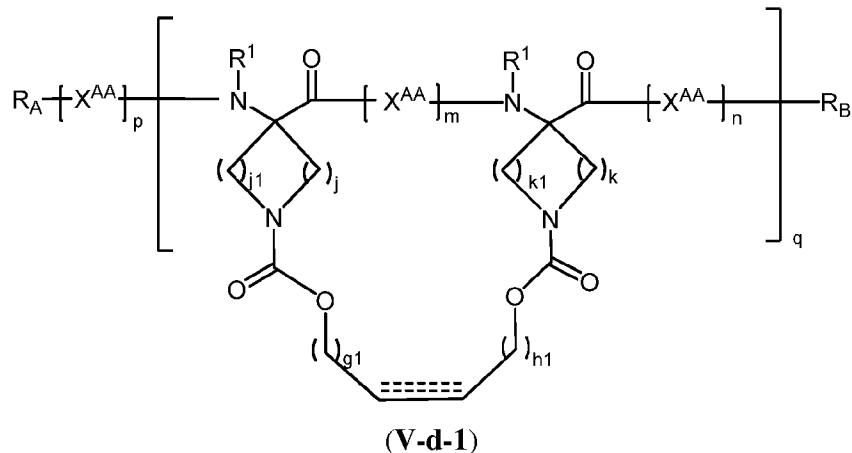
[00195] In certain embodiments, provided is a polypeptide of Formula (V-b-1):


or a pharmaceutically acceptable salt thereof.

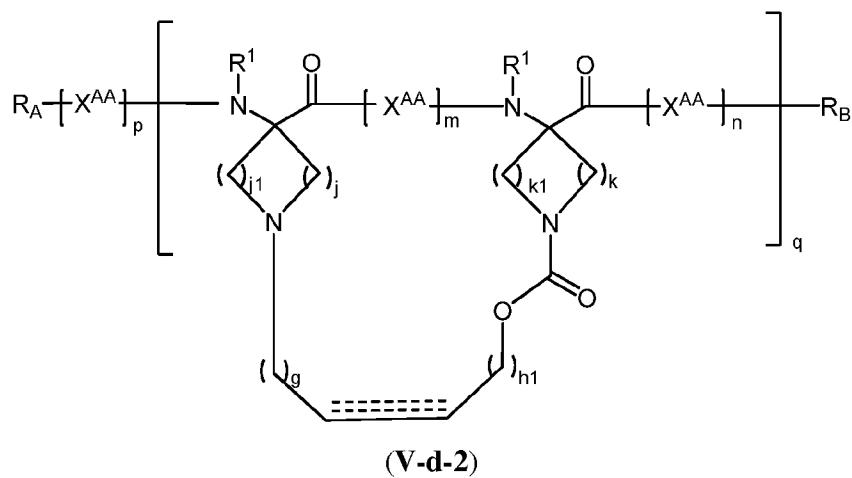
[00196] In certain embodiments, provided is a polypeptide of Formula (V-c):


or a pharmaceutically acceptable salt thereof.

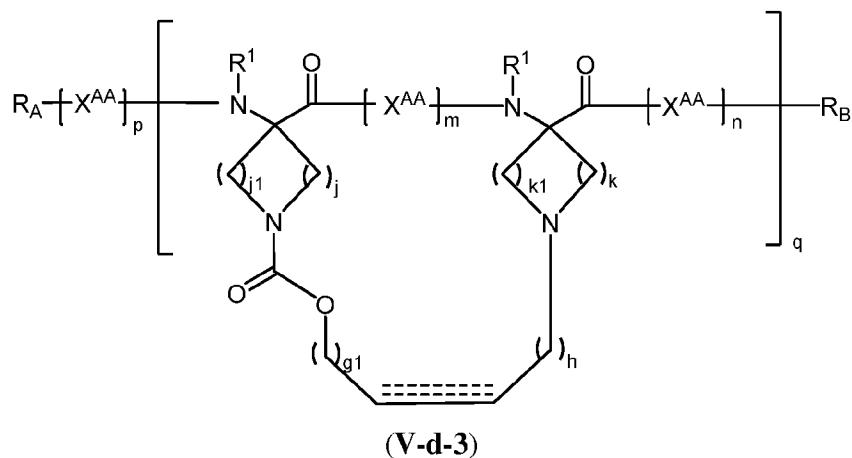
[00197] In certain embodiments, provided is a polypeptide of Formula (V-c-1):


or a pharmaceutically acceptable salt thereof.

[00198] In certain embodiments, provided is a polypeptide of Formula (V-d):


or a pharmaceutically acceptable salt thereof.

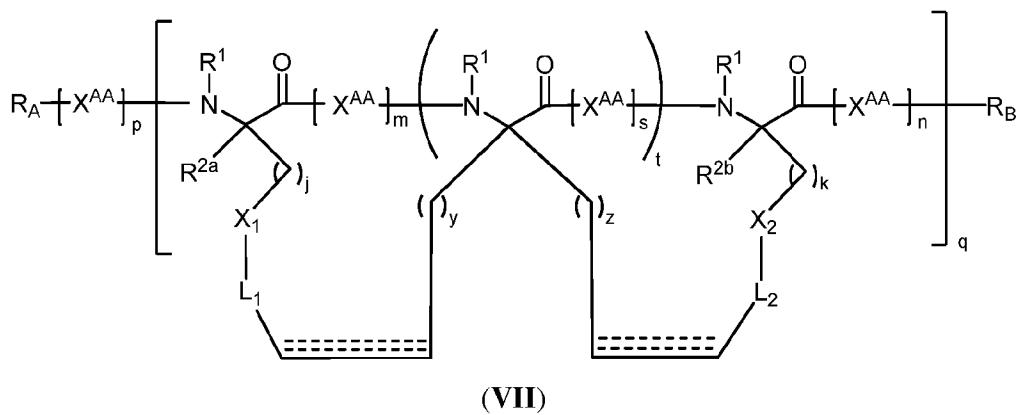
[00199] In certain embodiments, provided is a polypeptide of Formula (V-d-1):


or a pharmaceutically acceptable salt thereof.

[00200] In certain embodiments, provided is a polypeptide of Formula (V-d-2):

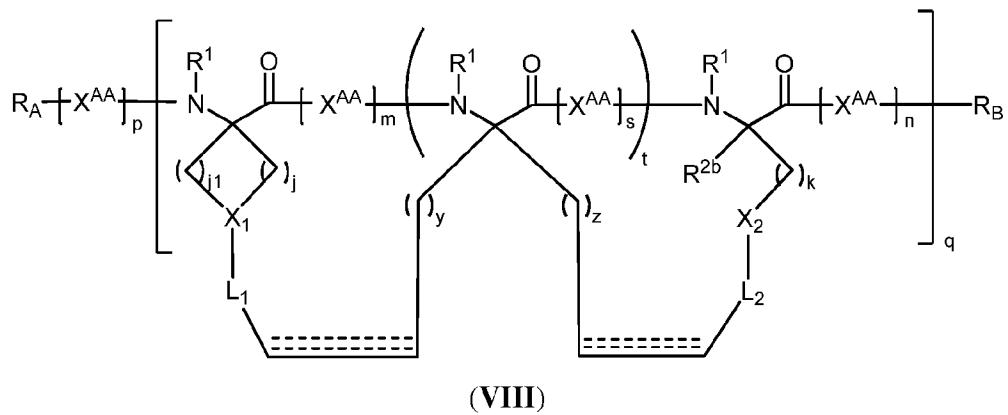

or a pharmaceutically acceptable salt thereof.

[00201] In certain embodiments, provided is a polypeptide of Formula (V-d-3):

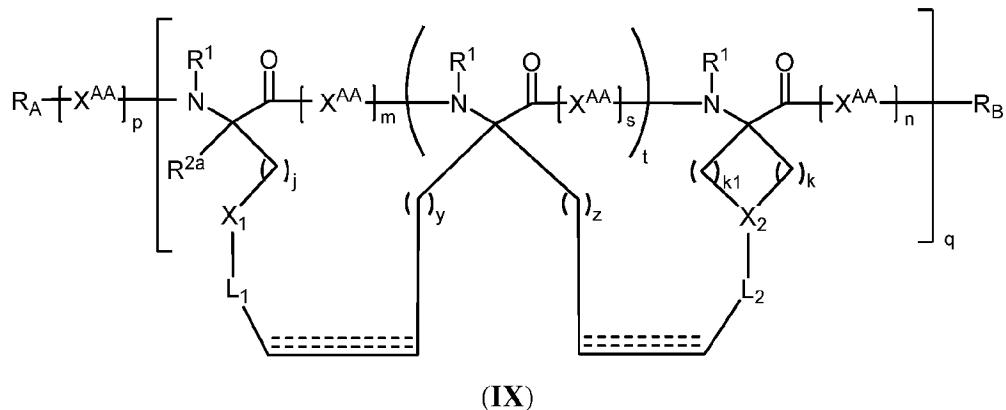


or a pharmaceutically acceptable salt thereof.

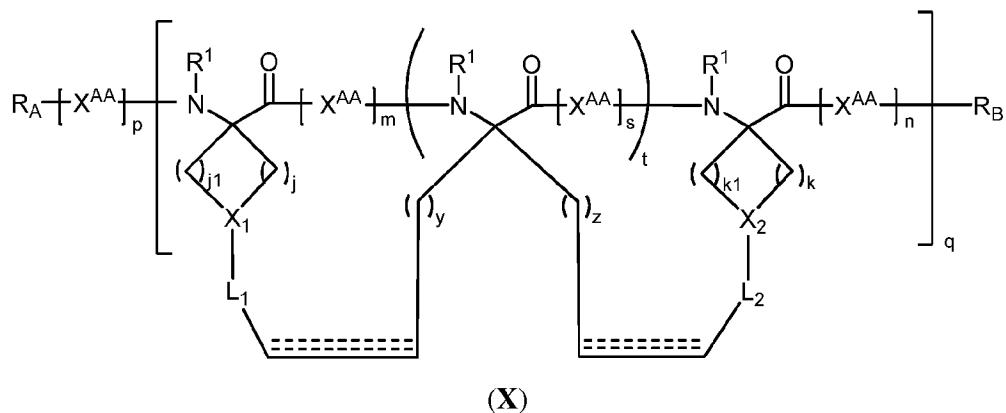
[00202] In certain embodiments, provided is a polypeptide of the Formula (VI):



[00203] In certain embodiments, provided is a polypeptide of Formula (VII):


or a pharmaceutically acceptable salt thereof.

[00204] In certain embodiments, provided is a polypeptide of Formula (VIII):


or a pharmaceutically acceptable salt thereof.

[00205] In certain embodiments, provided is a polypeptide of Formula (IX):

or a pharmaceutically acceptable salt thereof.

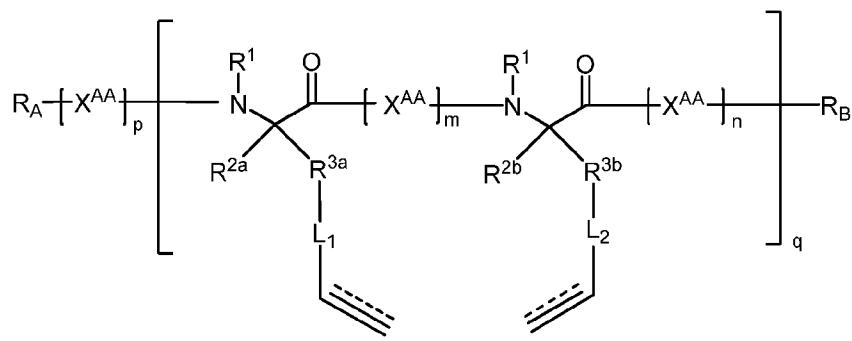
[00206] In certain embodiments, provided is a polypeptide of Formula (X):

or a pharmaceutically acceptable salt thereof.

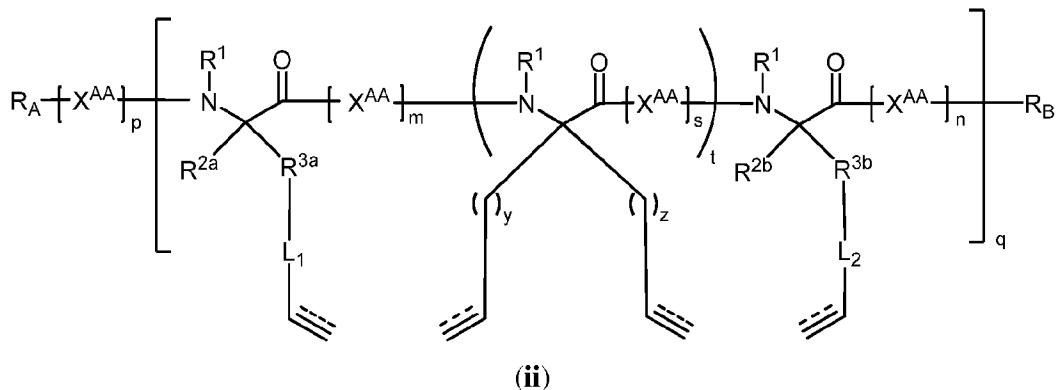
[00207] In certain embodiments, the staple is prepared using two amino acids each comprising a carbamate moiety. In certain embodiments, the staple is prepared using an amino acid selected from one without a carbamate moiety and another amino acid is selected from one with a carbamate moiety. In certain embodiments, the staple is prepared using two amino acids selected from Pyr_R, Pyrs, Az, S_GN, S_DN, S_EN, R_GN, R_DN, R_EN, S₅, S₈, R₅, and R₈. In certain embodiments, the amino acid used is an analog of one of the exemplary amino acids shown in Figure 10. For example, analogs of S₅, S₈, R₅, or R₈ containing additional methylene units (*e.g.*, S₁₀ or R₁₀) can be used. In certain embodiments, the staple is prepared using an amino acid selected from either R₅, R₈, S₅, S₈ or an analog thereof and another amino acid selected from either Pyr_R, Pyrs, Az, S_GN, S_DN, S_EN, R_GN, R_DN, or R_EN. In certain embodiments, the staple is prepared using an amino acid selected from either R₈ or S₈ and another amino acid selected from either Pyr_R, Pyrs, Az, S_GN, S_DN, S_EN, R_GN, R_DN, or R_EN. In certain embodiments, the staple is prepared from Pyr_R and S₈. In certain

embodiments, the staple is using R₈ and Pyr_S. In certain embodiments, the staple is prepared using Az and S₈. In certain embodiments, the staple is prepared using R₈ and Az. In certain embodiments, the staple is prepared using R₈ and S_{GN}. In certain embodiments, the staple is prepared using R₈ and S_{DN}. In certain embodiments, the staple is prepared using R₈ and S_{EN}. In certain embodiments, the staple is prepared using S₁₀ and S_{EN}. In certain embodiments, the staple is prepared using R_{DN} and S₈. In certain embodiments, the staple is prepared using R_{DN} and S_{EN}. In certain embodiments, the staple is an Alloc-staple comprising one or two carbamate moieties. In certain embodiments, the staple is an Alloc-staple comprising two carbamate moieties. In certain embodiments, the staple is an Alloc-staple with one carbamate moiety. In certain embodiments, the staple is an amino-staple comprising one or two amino moieties. In certain embodiments, the staple is an amino-staple comprising two amino moieties. In certain embodiments, the staple is an amino-staple with one amino moiety. In certain embodiments, the cross-linking amino acids are located at positions i and i+7. In certain embodiments, the stapled peptide is prepared from a peptide segment of p53. In certain embodiments, the stapled peptide is prepared from a p53-4 parent peptide. In certain embodiments, the stapled peptide is prepared from a p53-8 parent peptide. In certain embodiments, the stapled peptide is prepared from a PM2 parent peptide.

[00208] Examples of inventive peptides are listed in Table 8.


Table 8.

Peptide	Sequence (asterisk denotes the i, i+7 positions of the cross-link amino acid incorporation)	Position i (first asterisk)	Position i + 7 (second asterisk)	Type of staple
p53-4: wild-type	LSQETFSDLWKLLP EN	-	-	n/a
p53-4: modified; i, i+7	LSQETF*DLWKLL* EN	Pyr _R	S ₈	Amino-stapled
		R ₈	Pyr _S	Amino-stapled
p53-8: wild-type	QSQQTFSNLWRLLP QN	-	-	n/a
p53-8: modified; i, i+7	QSQQTF*NLWRLL* QN	Pyr _R	S ₈	Amino-stapled
		Pyr _R	S ₈	Alloc-stapled
		R ₈	Pyr _S	Amino-stapled
		Az	S ₈	Amino-stapled
		Az	S ₈	Alloc-stapled
		R ₈	Az	Amino-stapled


		R ₈	S _G N	Amino-stapled
		R ₈	S _D N	Amino-stapled
		R ₈	S _E N	Amino-stapled
		R _D N	S ₈	Amino-stapled
		R _E N	S _E N	Amino-stapled
PM2: wild-type	TSFAEYWALLS	-	-	n/a
PM2: modified; i, i+7	TSF*EYWALL*	Pyr _R	S ₈	Amino-stapled
		R ₈	Pyr _S	Amino-stapled
		R ₈	S _G N	Amino-stapled
		Pyr _R	S ₈	Alloc-stapled
		Pyr _R	Pyr _S	Alloc-stapled; isomer A
		Pyr _R	Pyr _S	Alloc-stapled; isomer B

Methods of Preparing Stapled and Stitched Polypeptides

[00209] The present invention is also directed to methods of preparing polypeptides of the Formulae (I)-(X), and salts thereof. The invention also provides intermediates in the synthesis of the inventive polypeptides. The synthesis typically involves preparing unstapled polypeptide precursors of Formula (i) or (ii), or salts thereof,

(i)

(ii)

wherein R_A , R_B , R^1 , R^{2a} , R^{3a} , L_1 , L_2 , p , m , n , q , s , t , y , z , and X^{AA} are as defined in Formula (I) and (VI). Then the unstapled polypeptide precursor is treated with a ring-closing metathesis catalyst to provide an inventive stapled polypeptide of Formula (I) or (VI).

[00210] The synthesis of an inventive unstapled polypeptide first involves the selection of a desired sequence and number of amino acids and amino acid analogues. As one of ordinary skill in the art will realize, the number, stereochemistry, and type of amino acid structures (natural or non-natural) selected will depend upon the size of the polypeptide to be prepared, the ability of the particular amino acids to generate a desired structural motif (e.g., an alpha-helix), and any particular peptide sequences that are desirable to mimic (for example, a p53 donor helical peptide).

[00211] Once the amino acids are selected, synthesis of the inventive unstapled polypeptide can be achieved using standard deprotection and coupling reactions. Formation of peptide bonds and polypeptide synthesis are techniques well-known to one skilled in the art, and encompass both solid phase and solution phase methods; see generally, Bodanszky and Bodanszky, *The Practice of Peptide Synthesis*, Springer-Verlag, Berlin, 1984; Atherton and Sheppard, *Solid Phase Peptide Synthesis: A Practical Approach*, IRL Press at Oxford University Press Oxford, England, 1989, and Stewart and Young, *Solid phase Peptide Synthesis*, 2nd edition, Pierce Chemical Company, Rockford, 1984, the entire contents of each of which are incorporated herein by reference. In both solution phase and solid phase techniques, the choice of the protecting groups must be considered, as well as the specific coupling techniques to be utilized. For a detailed discussion of peptide synthesis techniques for solution phase and solid phase reactions, see, Hecht, *Bioorganic chemistry: Peptides and Proteins*, Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference.

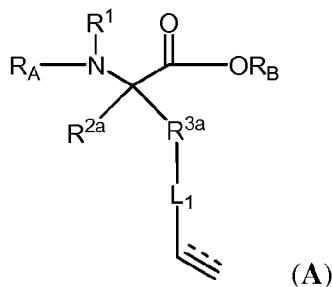
[00212] In certain embodiments, the methods comprises associating the inventive stapled peptides by ligating it to another polypeptide or a protein following the strategies as described in International Application No. PCT/US2010/001952, which is also incorporated herein by reference.

[00213] In certain embodiments, the method comprises a solution phase synthesis of an unstapled polypeptide precursor of Formula (i) or (ii). Solution phase synthesis, as mentioned above, is a well-known technique for the construction of polypeptides. An exemplary solution phase synthesis comprises the steps of: (1) providing an amino acid protected at the N-terminus with an amino protecting group; (2) providing an amino acid protected at the C-terminus with an oxygen protecting group; (3) coupling the N-protected

amino acid to the C-protected amino acid; (4) deprotecting the product of the coupling reaction either at the N-terminus or C-terminus; and (5) repeating steps (3) to (4) until a desired polypeptide is obtained, wherein at least two of the amino acids coupled at any of the above steps each comprise at least one terminally unsaturated amino acid sidechain, and, optionally, an amino acid comprising two terminally unsaturated amino acid side chains.

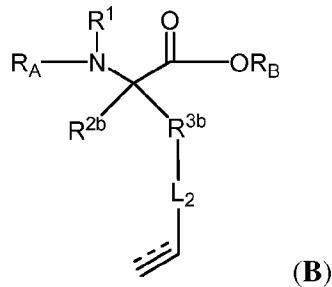
During the course of the above synthesis, various parameters can be varied, including, but not limited to, placement of amino acids with terminally unsaturated side chains, stereochemistry of amino acids, terminally unsaturated side chain length and functionality, and amino acid residues utilized.

[00214] In certain embodiments, the method comprises a solid phase synthesis of an unstapled polypeptide precursor of the Formula (i) or (ii). Solid phase synthesis, as mentioned above, is a well-known technique for the construction of polypeptides. An exemplary solid phase synthesis includes the steps of: (1) providing a resin-bound amino acid; (2) deprotecting the resin bound amino acid; (3) coupling an amino acid to the deprotected resin-bound amino acid; (4) repeating steps (3) until a desired peptide is obtained, wherein at least two of the amino acids coupled at any of the above steps each comprise at least one terminally unsaturated amino acid sidechain, and, optionally, an amino acid comprising two terminally unsaturated amino acid side chains. During the course of the above synthesis, various parameters can be varied, including, but not limited to placement of amino acids with terminally unsaturated side chains, stereochemistry of amino acids, terminally unsaturated side chain length and functionality, and amino acid residues utilized.


[00215] After a desired polypeptide is synthesized, the polypeptide of Formula (i) or (ii) is contacted with a specific catalyst to promote the stapling, or multiple stapling, to provide a polypeptide of Formula (I) or (VI). For example, the resin-bound polypeptide may be contacted with a catalyst to promote stapling or may first be cleaved from the resin, and then contacted with a catalyst to promote stapling. The amino acids comprising one to two terminally unsaturated amino acid sidechains are so incorporated into the polypeptide chain in order to provide proximal terminally unsaturated sidechains. These proximal terminally unsaturated sidechains may be in the same plane as, or same side of the polypeptide chain as each other in any given conformation of the polypeptide. Upon treatment with a catalyst, these proximal side chains react with each other via stapling to provide a conformationally stabilized polypeptide. In certain embodiments, the proximal terminally unsaturated sidechains are arranged such that the resulting staple does not interfere with the biological/therapeutic activity of the inventive stapled polypeptide.

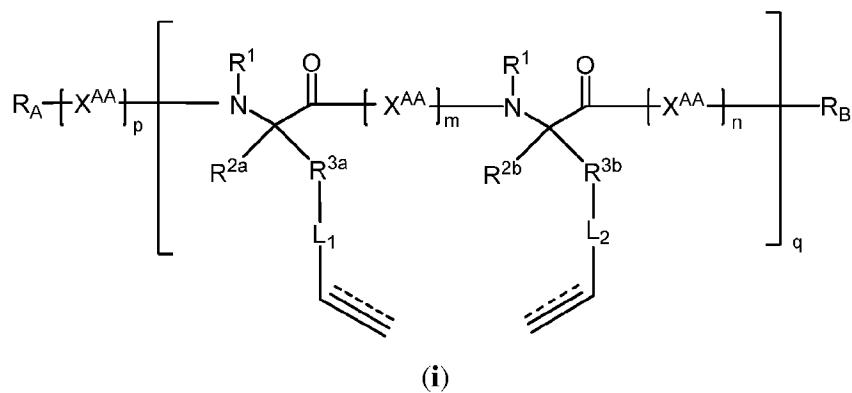
[00216] After stapling of an inventive polypeptide, the method may further comprise additional synthetic modification(s). Any chemical or biological modification to the stapled or stitched polypeptide may be made. In certain embodiments, the modifications are carried out on the Alloc moiety of a polypeptide. In certain embodiments, the modifications extrude CO₂ from the Alloc moiety of the stapled peptides. In certain embodiments, the CO₂ extrusion is carried out in the presence of a palladium catalyst. In certain embodiments, the CO₂ extrusion is carried out in the presence of Pd(PPh₃)₄. In certain embodiments, about 10-80 mole % of a palladium catalyst is used for the CO₂ extrusion. In certain embodiments, about 20-40 mole % of a palladium catalyst is used for the CO₂ extrusion.

[00217] In certain embodiments, additional modifications of the stapled or stitched peptides include reduction, oxidation, and nucleophilic or electrophilic additions to the double bond provided from a metathesis reaction to provide a synthetically modified polypeptide. Other modifications may include conjugation of a stapled polypeptide, or a synthetically modifying the stapled polypeptide with a therapeutically active agent, label, or diagnostic agent anywhere on the stapled polypeptide scaffold, *e.g.*, such as at the N-terminus of the stapled polypeptide, the C-terminus of the stapled polypeptide, on an amino acid side chain of the stapled polypeptide, or at one or more modified or unmodified stapled sites (*i.e.*, to a staple). Such modification may be useful in delivery of the peptide or therapeutically active agent to a cell, tissue, or organ. Such modifications may, in certain embodiments, allow for targeting to a particular type of cell or tissue.


[00218] In one aspect, provided is a method of making a polypeptide of Formula (I), or a salt thereof, comprising the steps of:

(i) providing an amino acid of Formula (A)

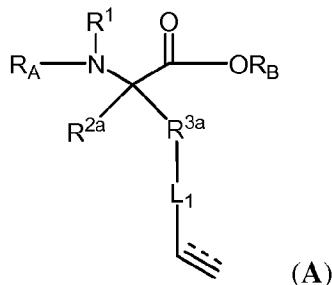
or a salt thereof;


(ii) providing an amino acid of Formula (B):

(B)

or a salt thereof;

- (iii) providing at least one additional amino acid; and
- (iv) coupling the amino acids of Formulae (A) and (B), and optionally step (iii) to provide a polypeptide of Formula (i):



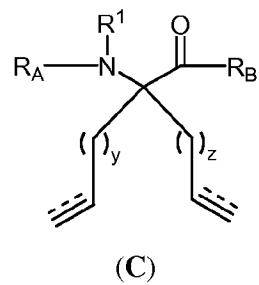
(i)

or a salt thereof.

[00219] In another aspect, provided is a method of making a polypeptide of Formula (VI), or a salt thereof, comprising the steps of:

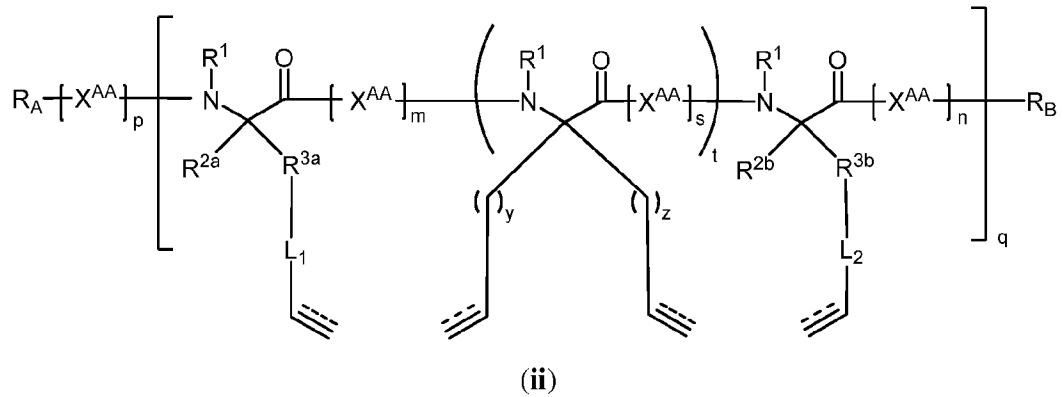

(I) providing an amino acid of Formula (A)

(A)

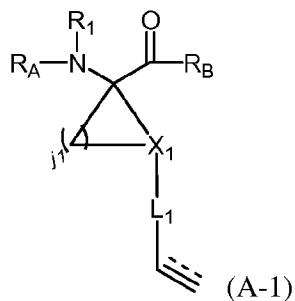

or a salt thereof;

(ii) providing an amino acid of Formula (B):

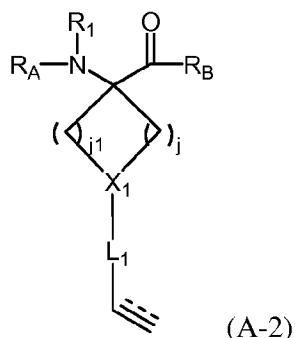
or a salt thereof;


(iii) providing an amino acid of Formula (C):

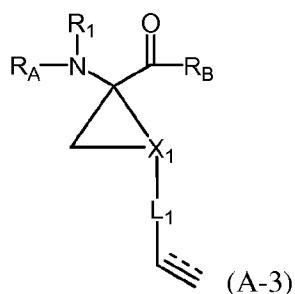
or a salt thereof;


(iv) providing at least one amino acid; and

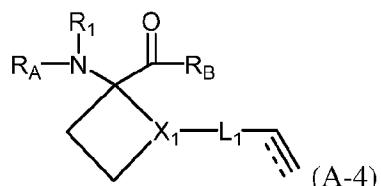
(v) coupling the amino acids of (A), (B), and (C), and optionally step (iv) to provide a polypeptide of Formula (ii):


or a salt thereof.

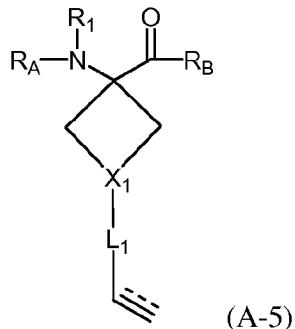
[00220] In certain embodiments, the amino acid of Formula (A) is of Formula (A-1):


or a salt thereof.

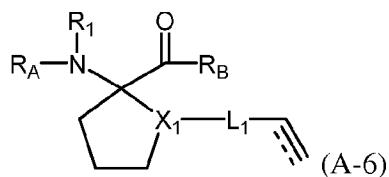
[00221] In certain embodiments, the amino acid of Formula (A) is of Formula (A-2):


or a salt thereof.

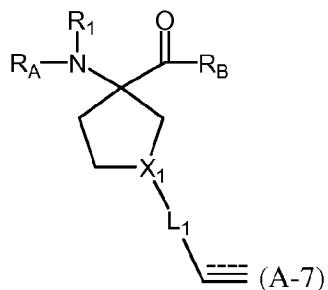
[00222] In certain embodiments, the amino acid of Formula (A) is of Formula (A-3):


or a salt thereof.

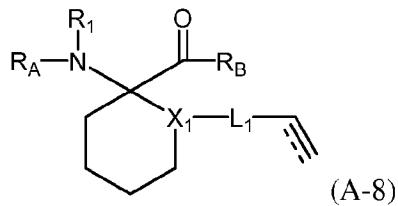
[00223] In certain embodiments, the amino acid of Formula (A) is of Formula (A-4):


or a salt thereof.

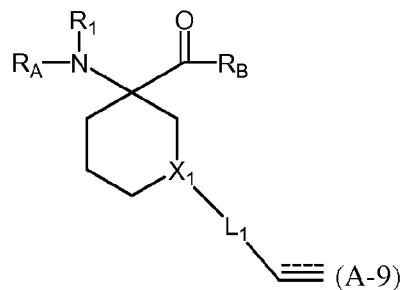
[00224] In certain embodiments, the amino acid of Formula (A) is of Formula (A-5):


or a salt thereof.

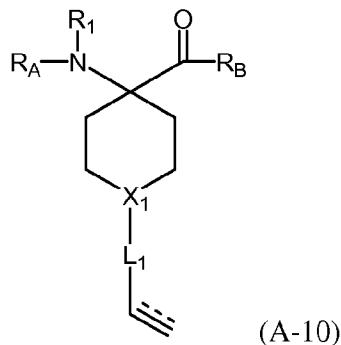
[00225] In certain embodiments, the amino acid of Formula (A) is of Formula (A-6):


or a salt thereof.

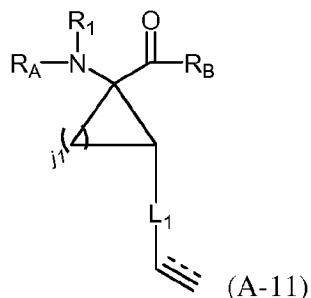
[00226] In certain embodiments, the amino acid of Formula (A) is of Formula (A-7):


or a salt thereof.

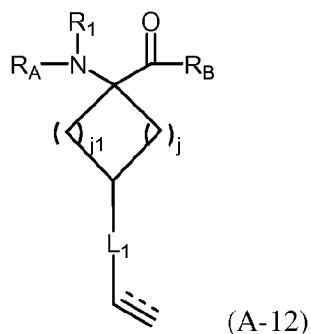
[00227] In certain embodiments, the amino acid of Formula (A) is of Formula (A-8):


or a salt thereof.

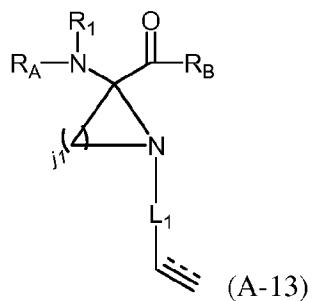
[00228] In certain embodiments, the amino acid of Formula (A) is of Formula (A-9):


or a salt thereof.

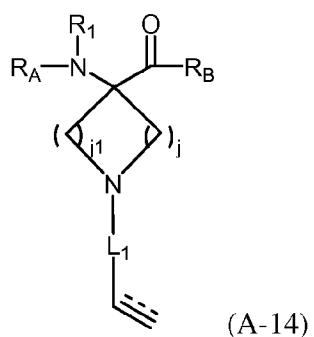
[00229] In certain embodiments, the amino acid of Formula (A) is of Formula (A-10):


or a salt thereof.

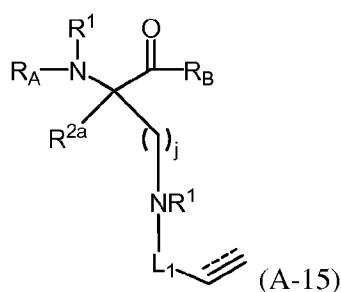
[00230] In certain embodiments, the amino acid of Formula (A) is of Formula (A-11):


or a salt thereof.

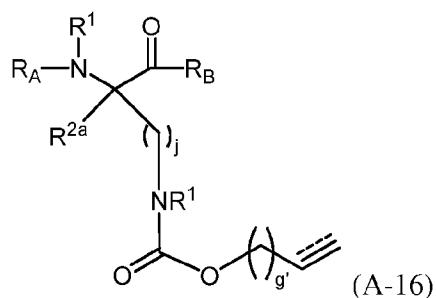
[00231] In certain embodiments, the amino acid of Formula (A) is of Formula (A-12):


or a salt thereof.

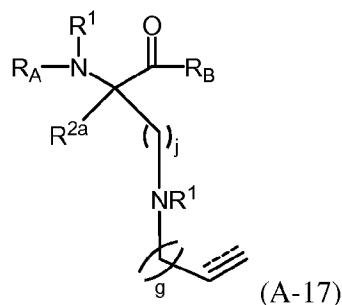
[00232] In certain embodiments, the amino acid of Formula (A) is of Formula (A-13):


or a salt thereof.

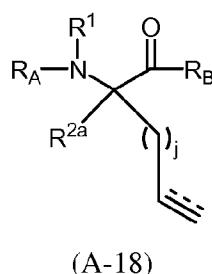
[00233] In certain embodiments, the amino acid of Formula (A) is of Formula (A-14):


or a salt thereof.

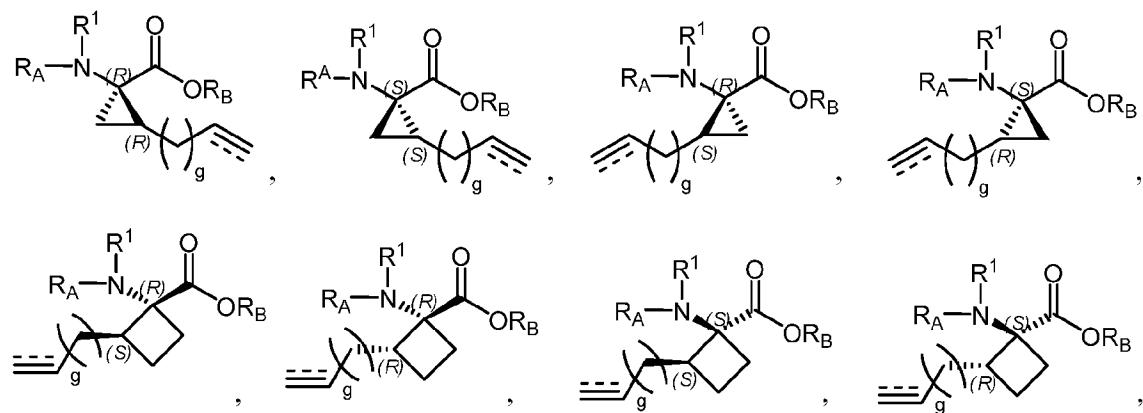
[00234] In certain embodiments, the amino acid of Formula (A) is of Formula (A-15):

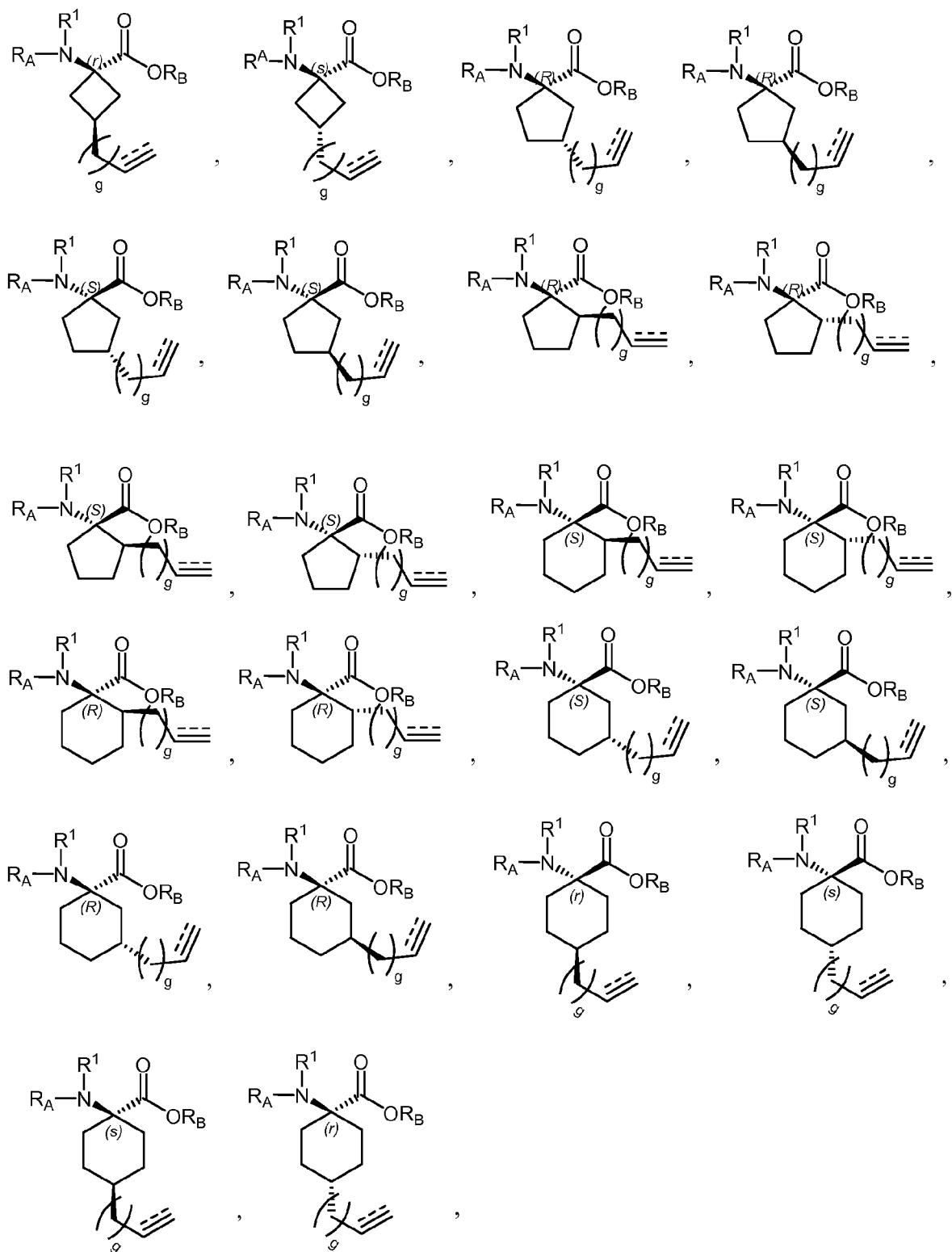

or a salt thereof.

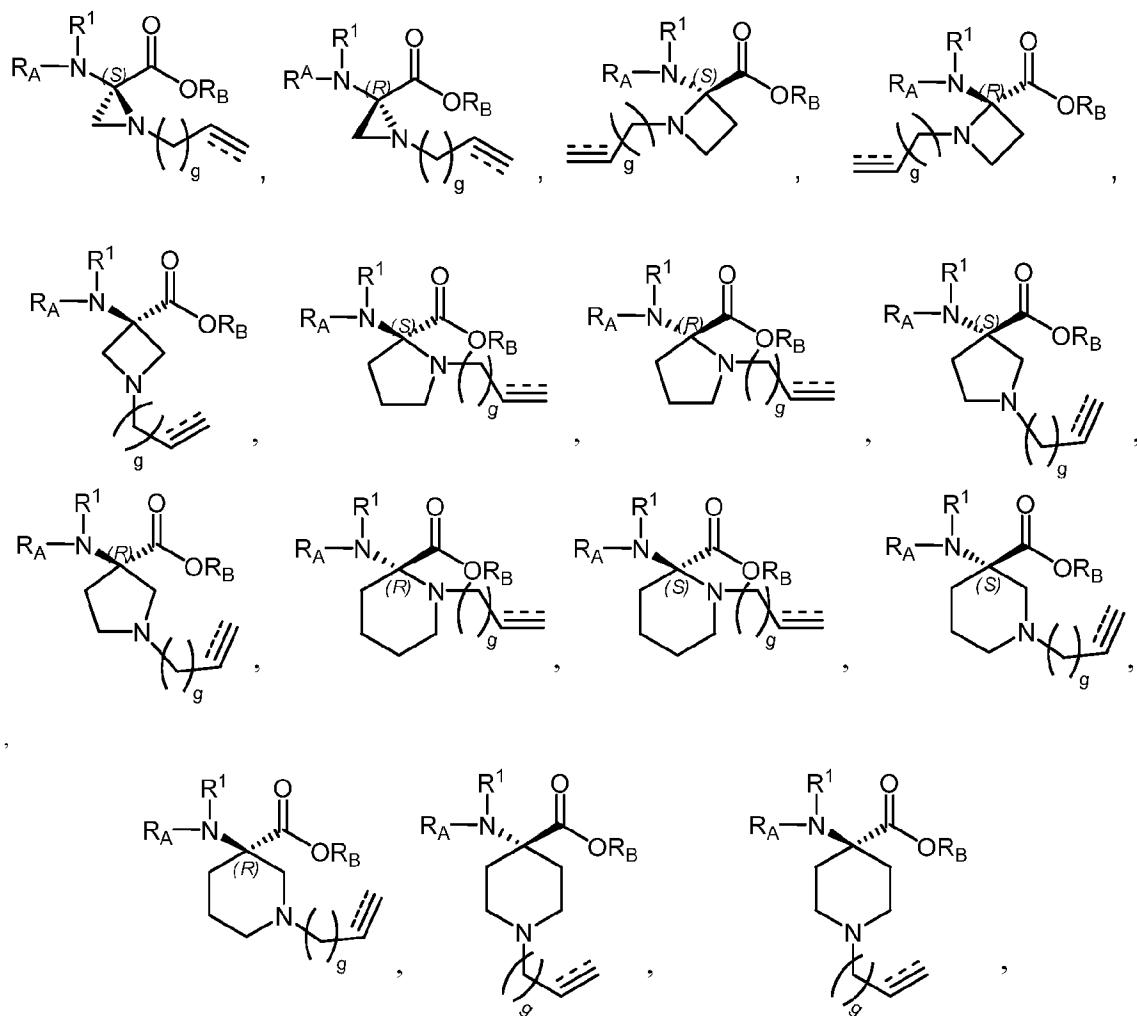
[00235] In certain embodiments, the amino acid of Formula (A) is of Formula (A-16):

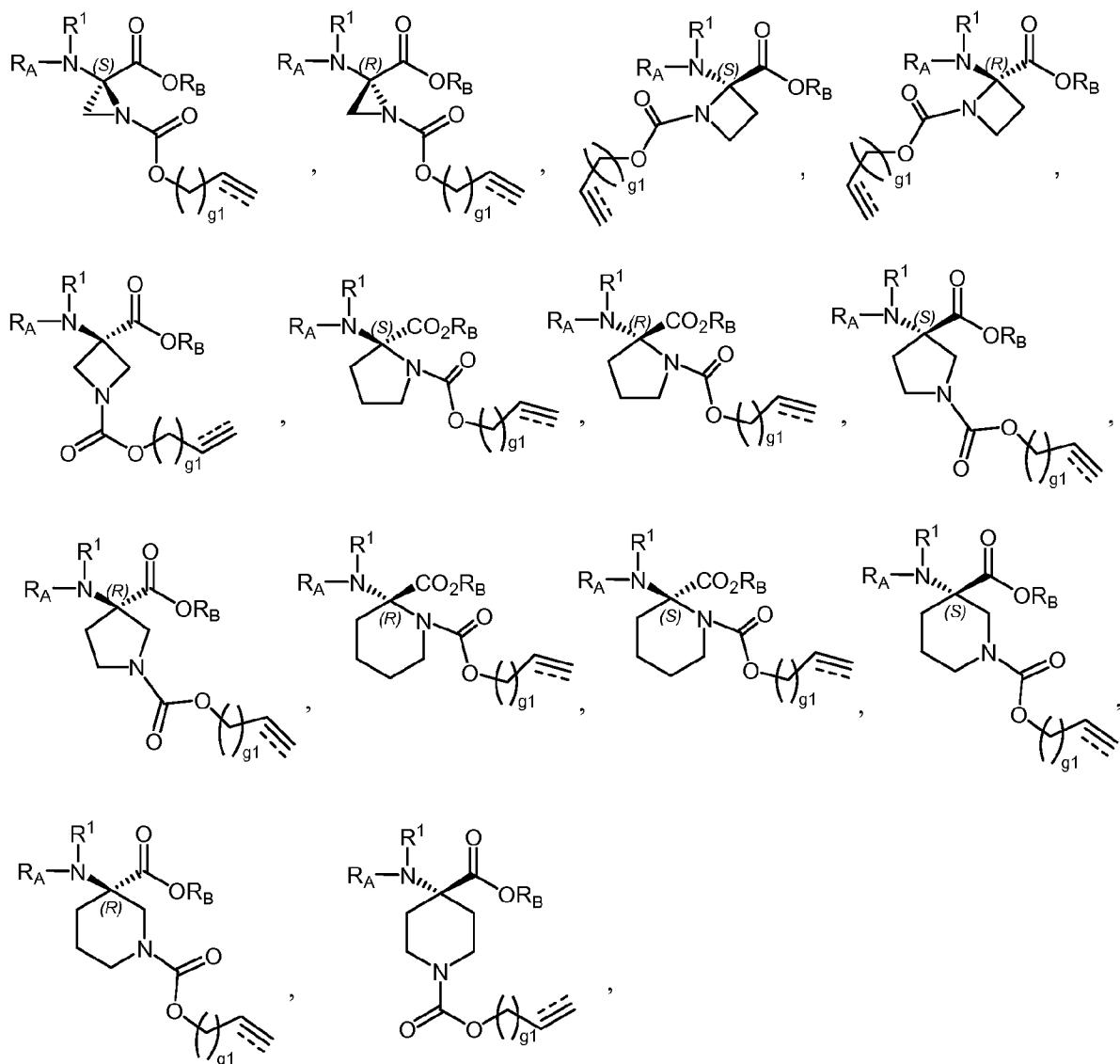

or a salt thereof.

[00236] In certain embodiments, the amino acid of Formula (A) is of Formula (A-17):

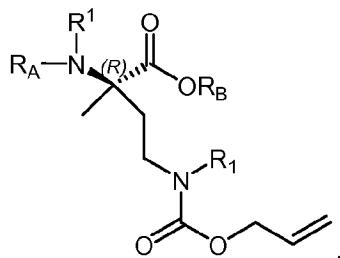

or a salt thereof.

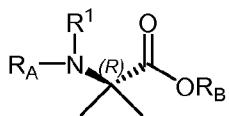

[00237] In certain embodiments, the amino acid of Formula (A) is of Formula (A-18):



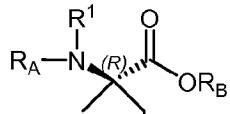

or a salt thereof.

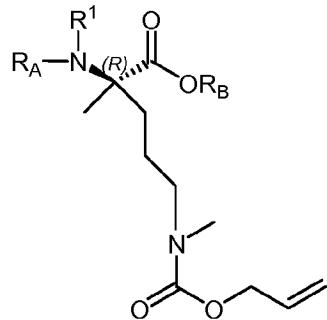
[00238] In certain embodiments, the amino acid of Formula (A) is selected from the group consisting of:



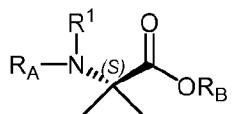


or a salt thereof, wherein each of g and g_1 are as defined herein.

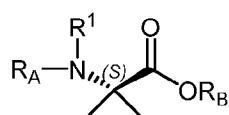

[00239] In certain embodiments, the amino acid of Formula (A) is of the formula:


. In certain embodiments, the amino acid of Formula (A) is of the

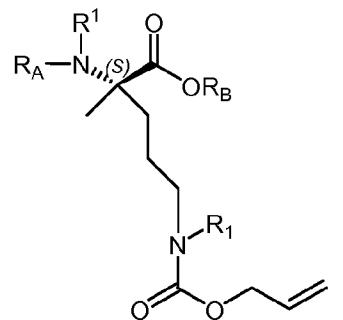
formula: . In certain embodiments, the amino acid of Formula (A)



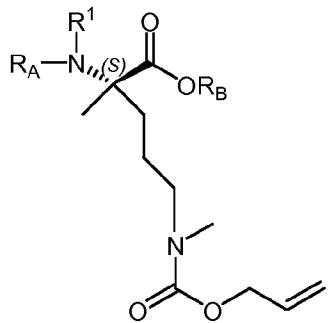
is of the formula: . In certain embodiments, the amino acid of


Formula (A) is of the formula:

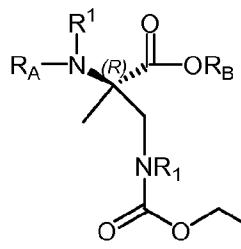
. In certain embodiments, the amino


acid of Formula (A) is of the formula:

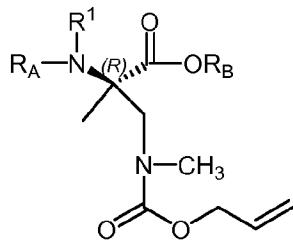
. In certain embodiments,

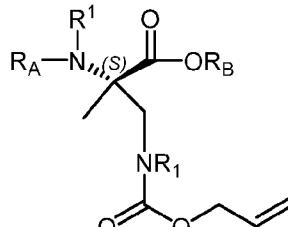

the amino acid of Formula (A) is of the formula:

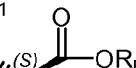
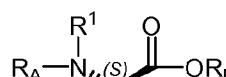
. In certain

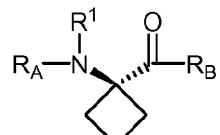
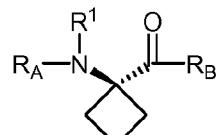


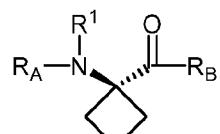
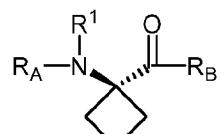
embodiments, the amino acid of Formula (A) is of the formula:

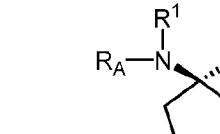
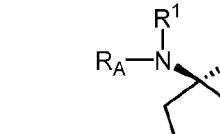

In certain embodiments, the amino acid of Formula (A) is of the formula:

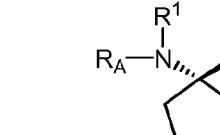
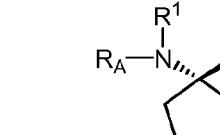

. In certain embodiments, the amino acid of Formula (A) is of the

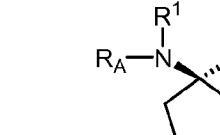


formula: . In certain embodiments, the amino acid of Formula (A) is



of the formula: . In certain embodiments, the amino acid of Formula



(A) is of the formula: . In certain embodiments, the amino acid of

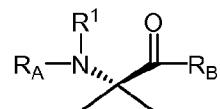


Formula (A) is of the formula:



acid of Formula (A) is of the formula:

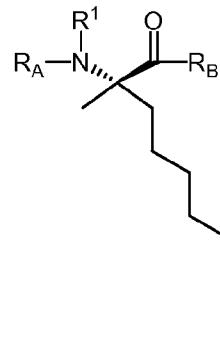

acid of Formula (A) is of the formula:

amino acid of Formula (A) is of the formula:

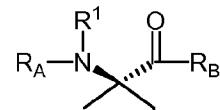
amino acid of Formula (A) is of the formula:

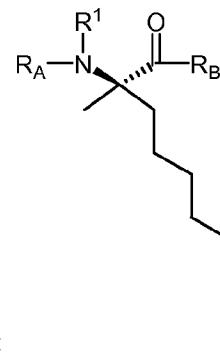


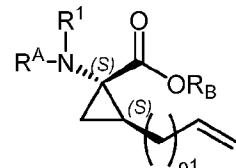
amino acid of Formula (A) is of the formula:

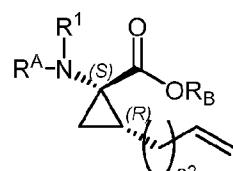


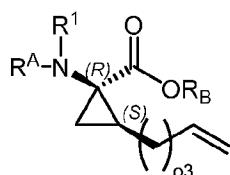
the amino acid of Formula (A) is of the formula:

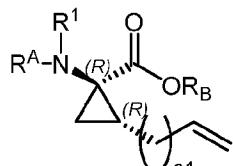


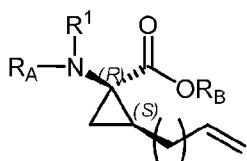

embodiments, the amino acid of Formula (A) is of the formula:

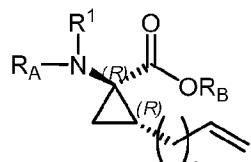

embodiments, the amino acid of Formula (A) is of the formula:

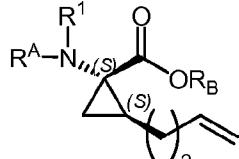

certain embodiments, the amino acid of Formula (A) is of the formula:

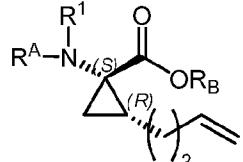

certain embodiments, the amino acid of Formula (A) is of the formula:


[00240] In certain embodiments, Formula (A) is of the formula

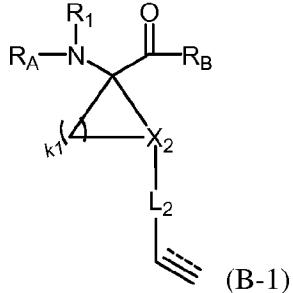

certain embodiments, Formula (A) is of the formula


embodiments, Formula (A) is of the formula . In certain embodiments,

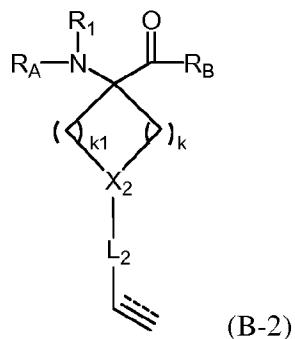

Formula (A) is of the formula . As generally used above, o1, o2, o3, o4 are as defined herein. In certain embodiments, the amino acid of Formula (A) is of the


formula: . In certain embodiments, the amino acid of Formula (A) is of

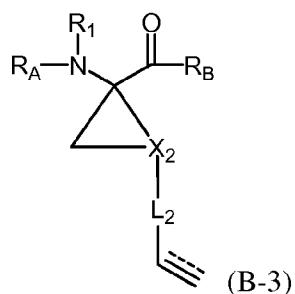
the formula: . In certain embodiments, the amino acid of Formula (A) is



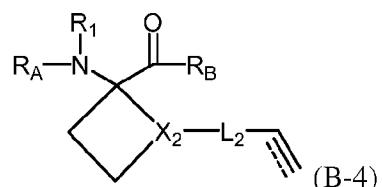
of the formula: . In certain embodiments, the amino acid of Formula (A) is


is of the formula: .

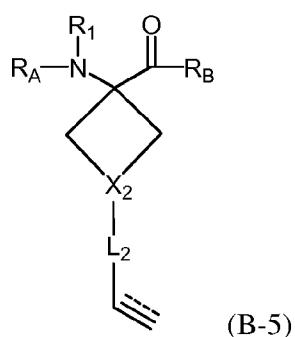
[00241] In certain embodiments, the amino acid of Formula (B) is of Formula (B-1):


or a salt thereof.

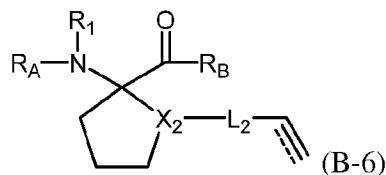
[00242] In certain embodiments, the amino acid of Formula (B) is of Formula (B-2):


or a salt thereof.

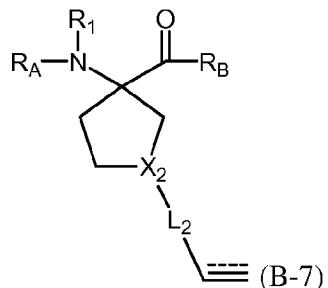
[00243] In certain embodiments, the amino acid of Formula (B) is of Formula (B-3):


or a salt thereof.

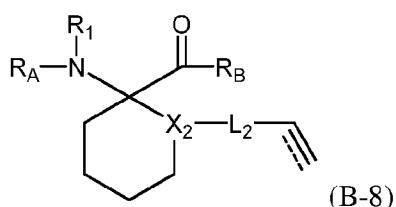
[00244] In certain embodiments, the amino acid of Formula (B) is of Formula (B-4):


or a salt thereof.

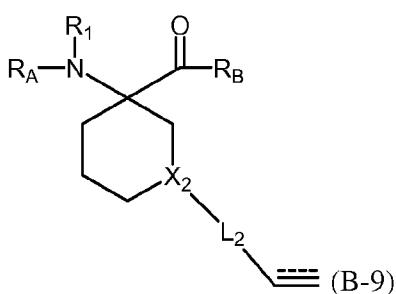
[00245] In certain embodiments, the amino acid of Formula (B) is of Formula (B-5):


or a salt thereof.

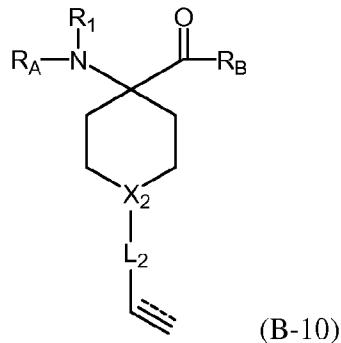
[00246] In certain embodiments, the amino acid of Formula (B) is of Formula (B-6):


or a salt thereof.

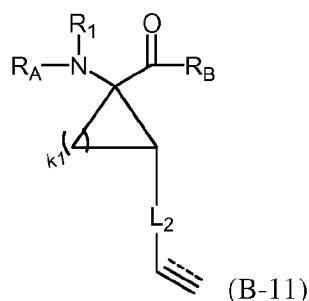
[00247] In certain embodiments, the amino acid of Formula (B) is of Formula (B-7):


or a salt thereof.

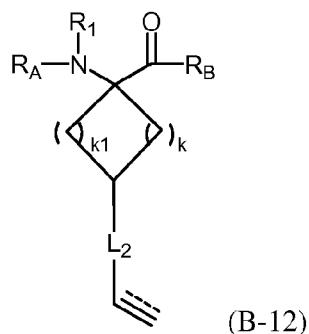
[00248] In certain embodiments, the amino acid of Formula (B) is of Formula (B-8):


or a salt thereof.

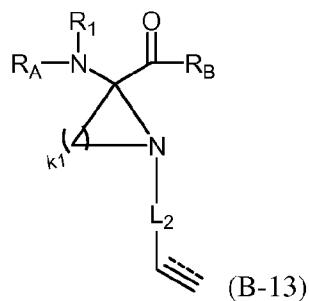
[00249] In certain embodiments, the amino acid of Formula (B) is of Formula (B-9):


or a salt thereof.

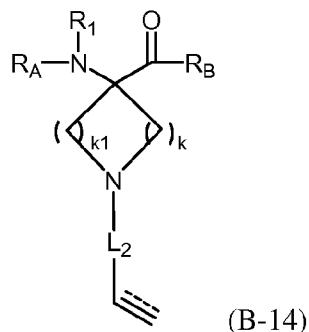
[00250] In certain embodiments, the amino acid of Formula (B) is of Formula (B-10):


or a salt thereof.

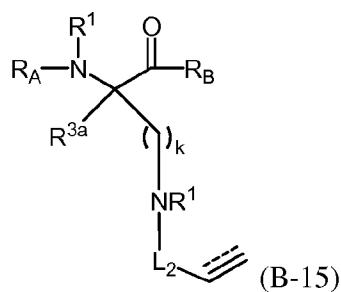
[00251] In certain embodiments, the amino acid of Formula (B) is of Formula (B-11):


or a salt thereof.

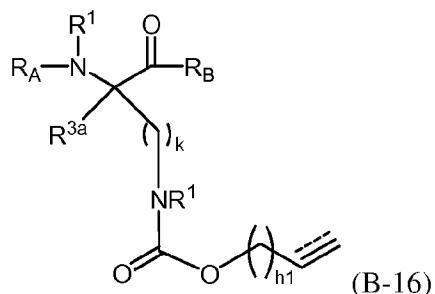
[00252] In certain embodiments, the amino acid of Formula (B) is of Formula (B-12):


or a salt thereof.

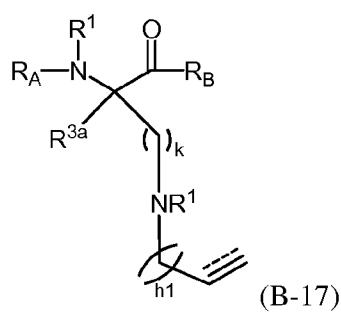
[00253] In certain embodiments, the amino acid of Formula (B) is of Formula (B-13):


or a salt thereof.

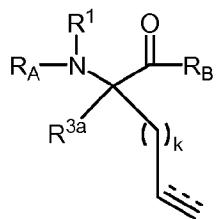
[00254] In certain embodiments, the amino acid of Formula (B) is of Formula (B-14):


or a salt thereof.

[00255] In certain embodiments, the amino acid of Formula (B) is of Formula (B-15):

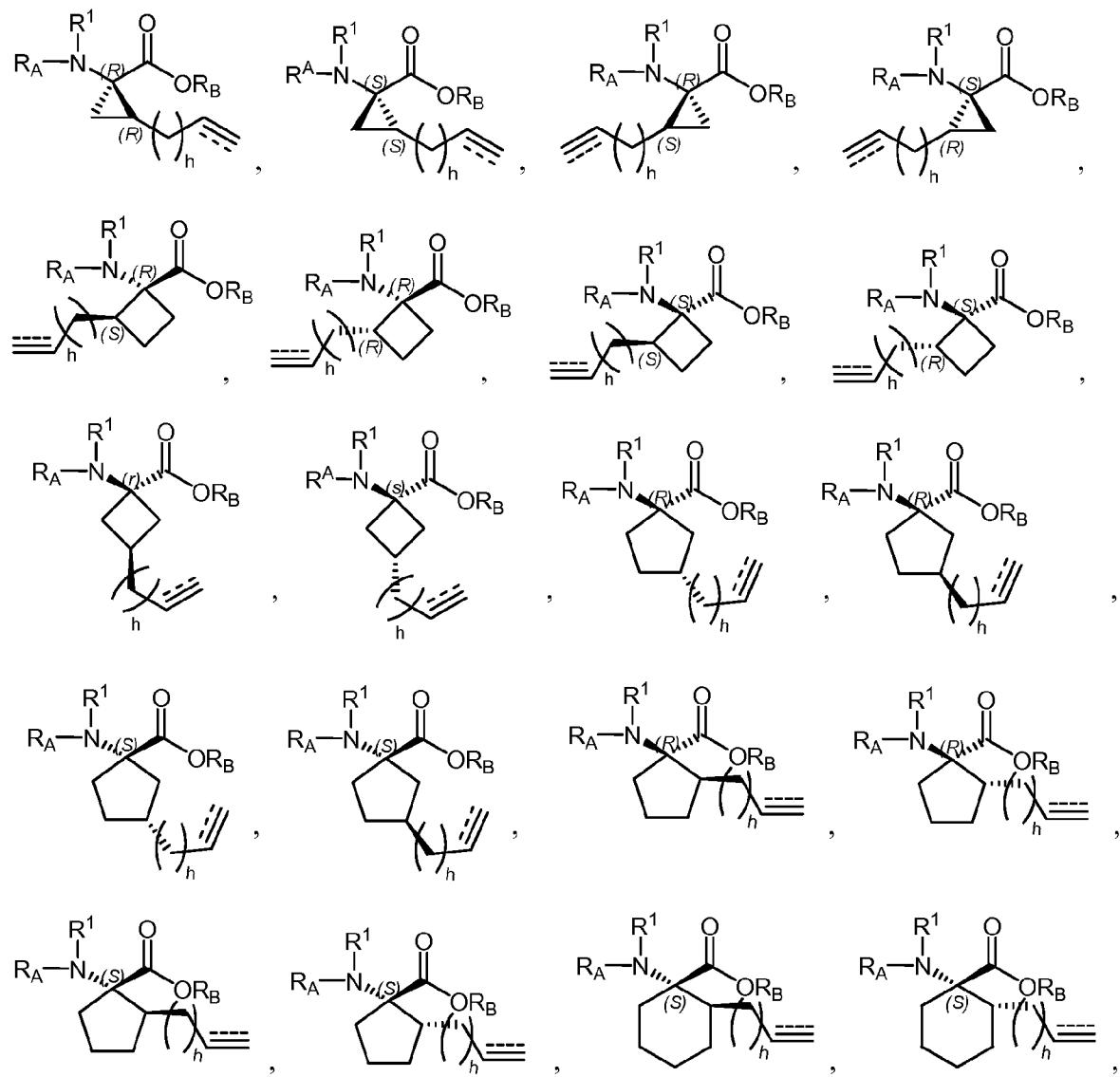

or a salt thereof.

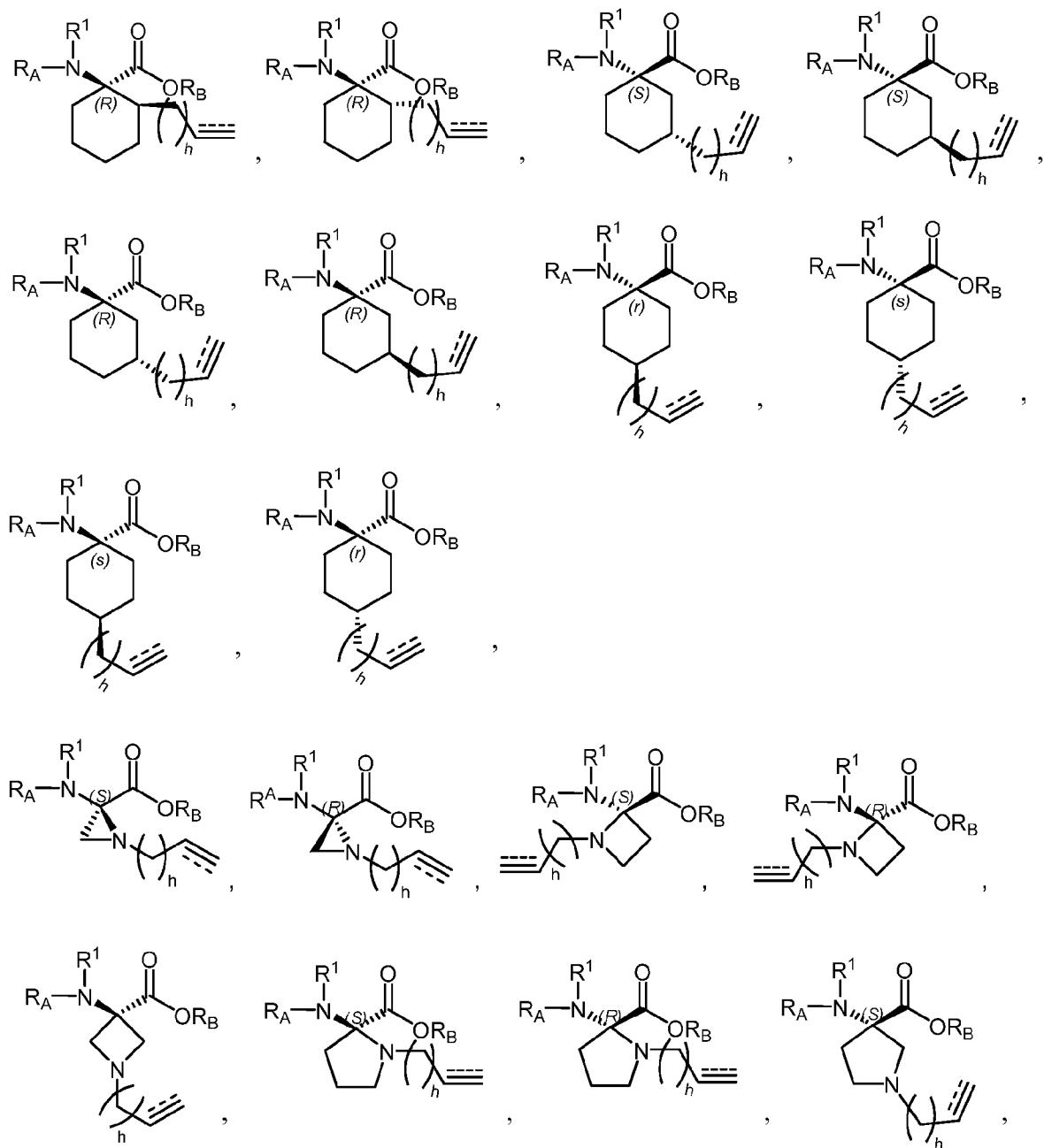
[00256] In certain embodiments, the amino acid of Formula (B) is of Formula (B-16):

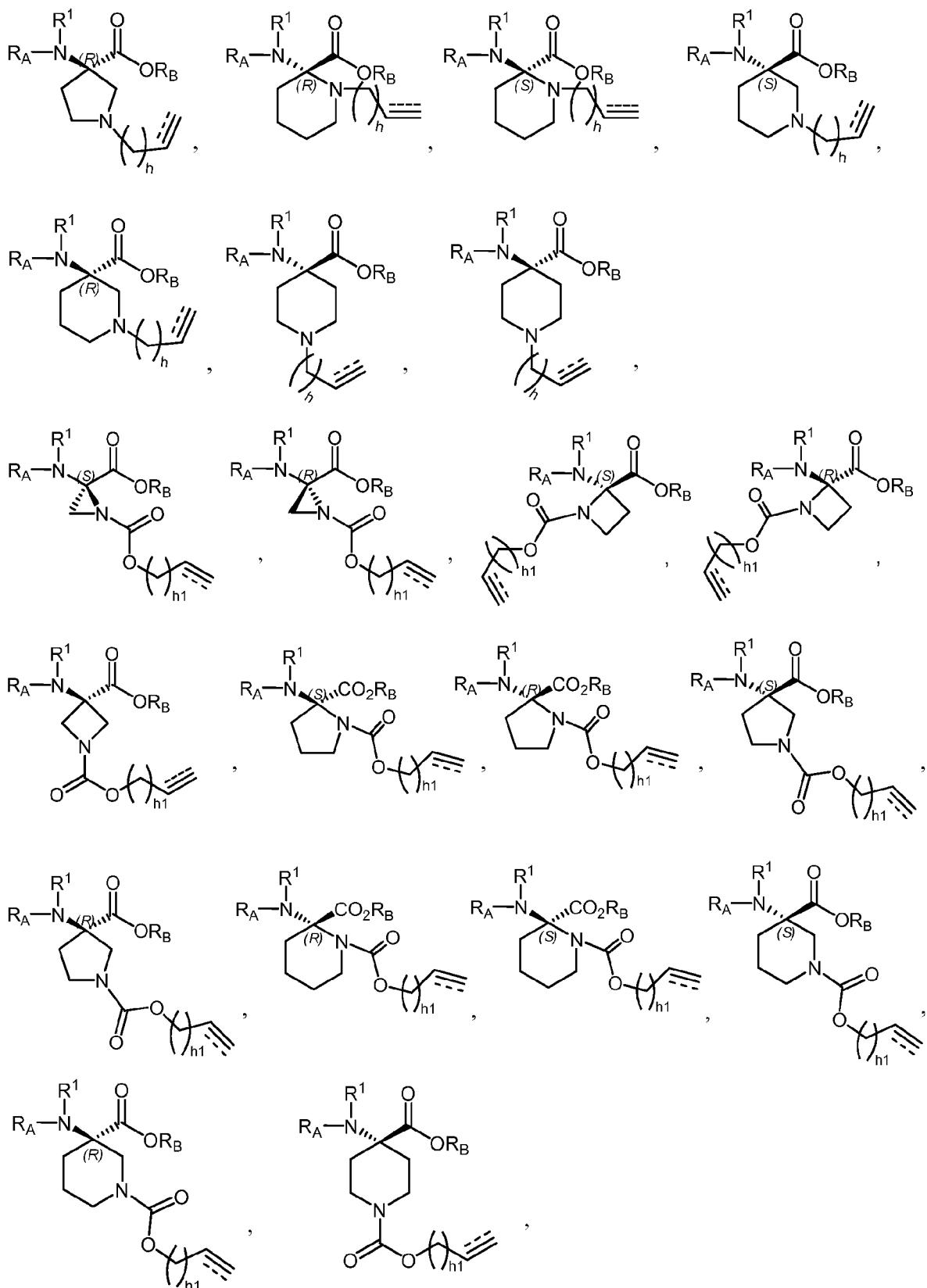

or a salt thereof.

[00257] In certain embodiments, the amino acid of Formula (B) is of Formula (B-17):

or a salt thereof.

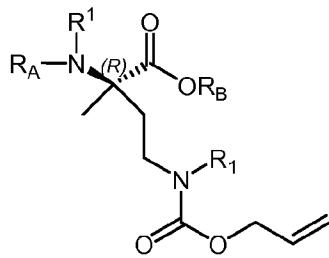

[00258] In certain embodiments, the amino acid of Formula (B) is of Formula (B-18):

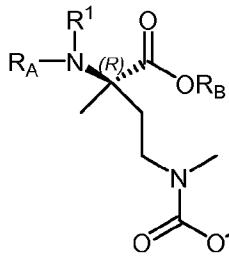



(B-18)

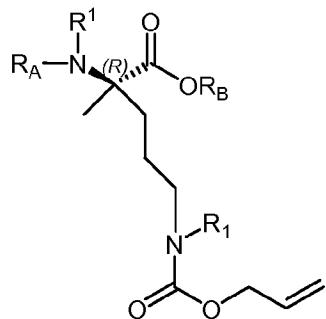
or a salt thereof.

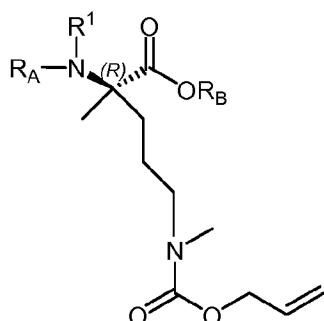
[00259] In certain embodiments, the amino acid of Formula (B) is one of the following structures:



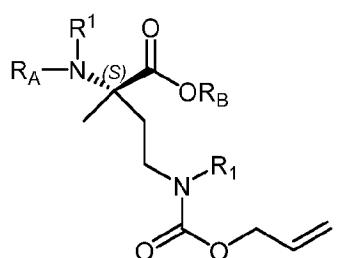


or a salt thereof, wherein h and h1 are as defined herein.

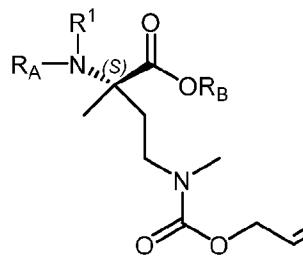

[00260] In certain embodiments, the amino acid of Formula (B) is of the formula:


. In certain embodiments, the amino acid of Formula (B) is of the

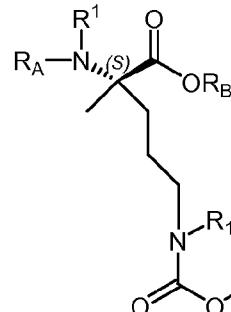
formula: . In certain embodiments, the amino acid of Formula (B)



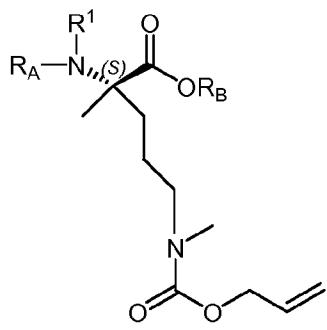
is of the formula: . In certain embodiments, the amino acid of

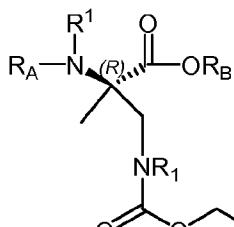

Formula (B) is of the formula:

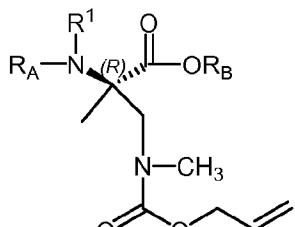
. In certain embodiments, the amino

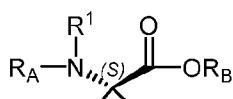


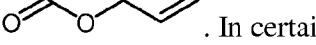
acid of Formula (B) is of the formula:

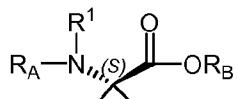

. In certain embodiments,

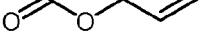

the amino acid of Formula (B) is of the formula:

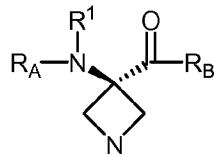

embodiments, the amino acid of Formula (B) is of the formula: . In certain embodiments, the amino acid of Formula (B) is of the formula:

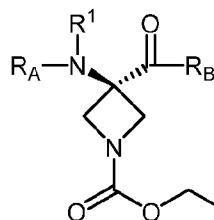

. In certain embodiments, the amino acid of Formula (B) is of the

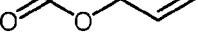


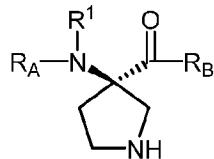

formula: . In certain embodiments, the amino acid of Formula (B) is

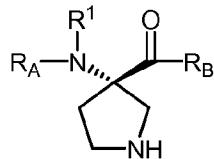


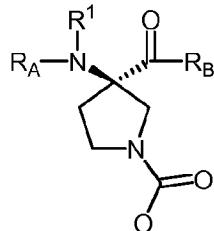

of the formula: . In certain embodiments, the amino acid of Formula

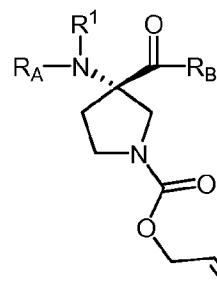

(B) is of the formula: . In certain embodiments, the amino acid of

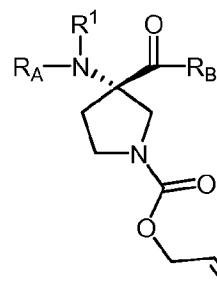


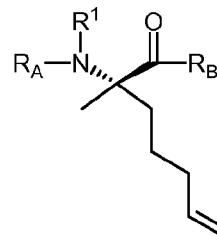

Formula (B) is of the formula: . In certain embodiments, the amino

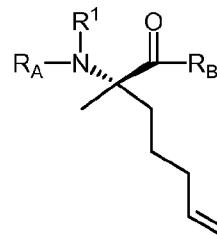

acid of Formula (B) is of the formula: . In certain embodiments, the amino

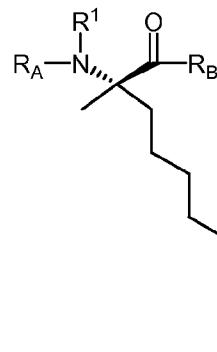

acid of Formula (B) is of the formula: . In certain embodiments, the

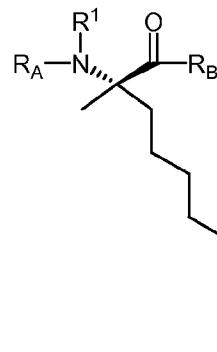

amino acid of Formula (B) is of the formula: . In certain embodiments, the

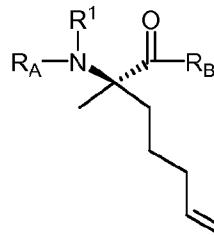


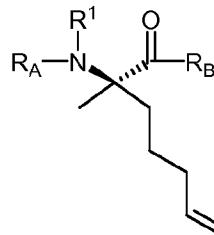

amino acid of Formula (B) is of the formula: . In certain embodiments, the

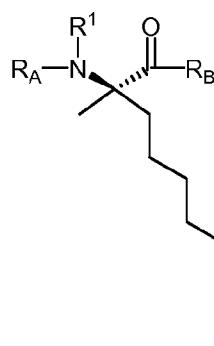


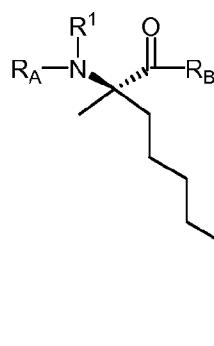

amino acid of Formula (B) is of the formula: . In certain embodiments, the

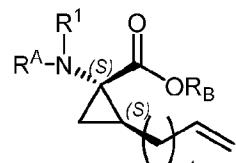


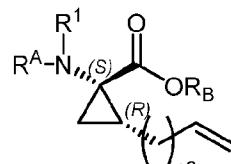

amino acid of Formula (B) is of the formula: . In certain embodiments, the

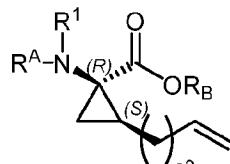


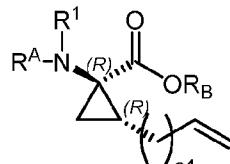

amino acid of Formula (B) is of the formula: . In certain embodiments, the

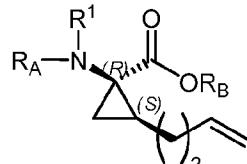


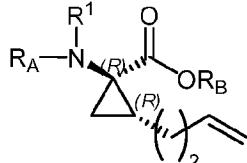

amino acid of Formula (B) is of the formula: . In certain embodiments,

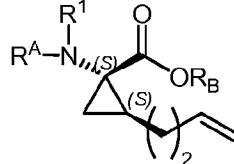

the amino acid of Formula (B) is of the formula: . In certain embodiments,

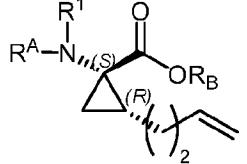

the amino acid of Formula (B) is of the formula: .


[00261] In certain embodiments, Formula (B) is of the formula


certain embodiments, Formula (B) is of the formula

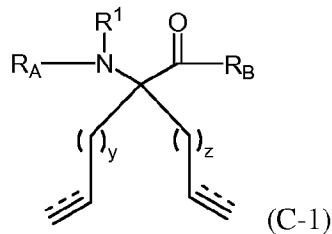

embodiments, Formula (B) is of the formula


Formula (B) is of the formula


Formula (B) is of the formula:

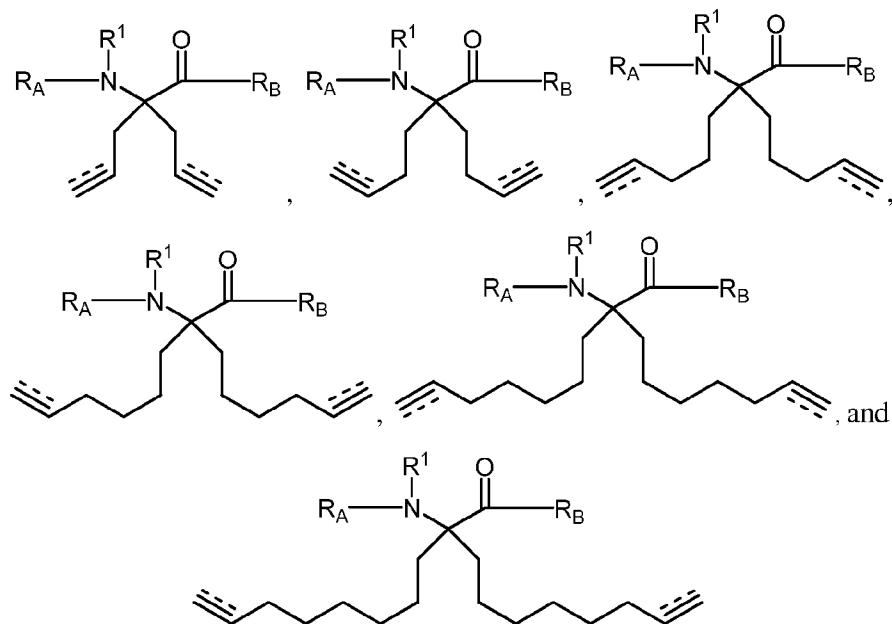
of Formula (B) is of the formula:

acid of Formula (B) is of the formula:



amino acid of Formula (B) is of the formula:

[00262] As used herein, each instance of o1, o2, o3, and o4 is independently 0, 1, 2, 3, 4, 5, or 6. In certain embodiments, o1 is 0. In certain embodiments, o1 is 1. In certain


embodiments, o1 is 2. In certain embodiments, o1 is 3. In certain embodiments, o1 is 4. In certain embodiments, o1 is 5. In certain embodiments, o1 is 6. As used herein, each instance of o2 is independently 0, 1, 2, 3, 4, 5, or 6. In certain embodiments, o2 is 0. In certain embodiments, o2 is 1. In certain embodiments, o2 is 2. In certain embodiments, o2 is 3. In certain embodiments, o2 is 4. In certain embodiments, o2 is 5. In certain embodiments, o2 is 6. In certain embodiments, o3 is 0. In certain embodiments, o3 is 1. In certain embodiments, o3 is 2. In certain embodiments, o3 is 3. In certain embodiments, o3 is 4. In certain embodiments, o3 is 5. In certain embodiments, o3 is 6. In certain embodiments, o4 is 0. In certain embodiments, o4 is 1. In certain embodiments, o4 is 2. In certain embodiments, o4 is 3. In certain embodiments, o4 is 4. In certain embodiments, o4 is 5. In certain embodiments, o4 is 6.

[00263] In certain embodiments, the optional amino acid is of Formula (C)

or a salt thereof, wherein R^1 , R^A , R^B , y , and z are as defined herein.

[00264] In certain embodiments, the optional amino acid of Formula (C) is selected from the group consisting of:

and salts thereof.

[00265] In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+3$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+4$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+5$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+6$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+7$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+8$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+9$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+10$ to form the stapled peptide. In certain embodiments, Formula (A) is at position i and Formula (B) is at position $i+11$ to form the stapled peptide. In certain embodiments, the amino acid alpha-carbon of Formula (A) having R chirality is at position i . In certain embodiments, the amino acid alpha-carbon of Formula (A) having S chirality is at position i . In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+3$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+3$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+4$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+4$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+5$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+5$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+6$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+6$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+7$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+7$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+8$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+8$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+9$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+9$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having R chirality is at position $i+10$. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position $i+10$. In certain embodiments, the amino acid alpha-carbon of

Formula (B) having R chirality is at position *i*+11. In certain embodiments, the amino acid alpha-carbon of Formula (B) having S chirality is at position *i*+11.

[00266] As used herein, the phrase “providing at least one additional amino acid” of step (iv) refers to providing at least one natural or unnatural amino acid as defined herein. The above synthetic method may employ any and all known amino acids in order to generate a polypeptide Formula (I). In certain embodiments, the amino acids employable by the above synthetic method are defined and described herein.

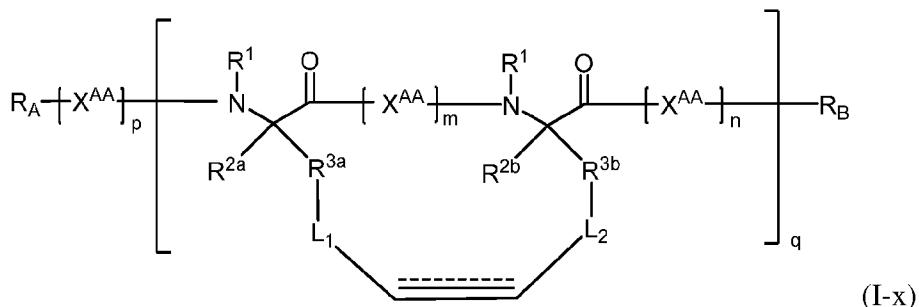
[00267] In certain embodiments, step (iv) provides at least one structurally different amino acids from (A), (B), and (C). In certain embodiments, step (iv) provides at least two structurally different amino acids. In certain embodiments, step (iv) provides at least three structurally different amino acids. In certain embodiments, step (iv) provides at least four structurally different amino acids. In certain embodiments, step (iv) provides at least five structurally different amino acids. Different amino acids have different propensities for forming different secondary structures. For example, methionine (M), alanine (A), leucine (L), glutamate (E), and lysine (K) all have especially high alpha-helix forming propensities. In contrast, proline (P) and glycine (G) are alpha-helix disruptors. Thus, in certain embodiments, the at least one of the amino acids of step (iv) refers to a group selected from alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, and valine.

[00268] In certain embodiments, the “at least one amino acid” of step (iv) is a dipeptide or a polypeptide. In certain embodiments, step (iv) comprises providing a dipeptide. In certain embodiments, step (iv) comprises providing a polypeptide. In certain embodiments, the polypeptide comprises at least 4 amino acids. In certain embodiments, the polypeptide comprises at least 5 amino acids.

[00269] In certain embodiments, the coupling step (v) comprises the use of a coupling reagent. Exemplary coupling reagents include, but are not limited to, benzotriazol-1-yloxy-tris(dimethylamino)-phosphonium hexafluorophosphate (BOP), benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP), bromo-tris-pyrrolidino phosphonium hexafluorophosphate (PyBroP), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N,N'-carbonyldiimidazole (CDI), 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT), 1-hydroxy-7-azabenzotriazole (HOAt), 1-hydroxy-7-benzotriazole (HOBt), 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), 2-(6-chloro-1H-benzotriazole-1-yl)-1,1,3,3-

tetramethylaminium hexafluorophosphate (HCTU), 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), O-(7-azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TATU), 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), N,N,N',N'-tetramethyl-O-(3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl)uranium tetrafluoroborate (TDBTU), (1-Cyano-2-ethoxy-2-oxoethylideneaminoxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU), and O-(N-succinimidyl)-1,1,3,3-tetramethyl uranium tetrafluoroborate (TSTU)).

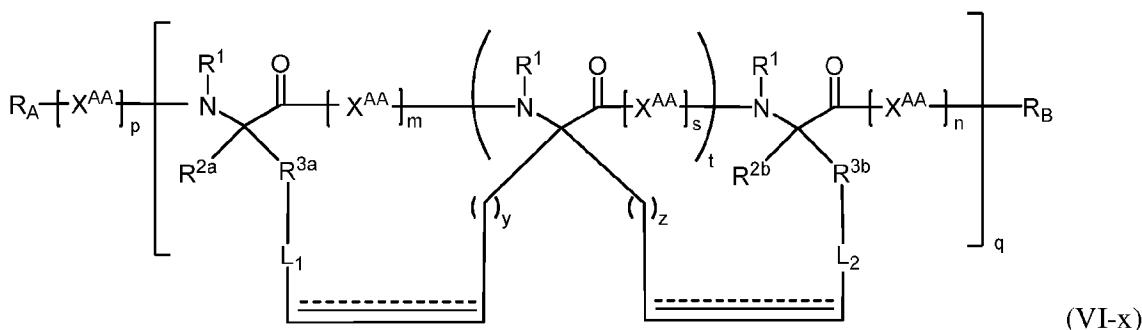
[00270] In certain embodiments, the coupling step (v) comprises a base. Exemplary bases include, but are not limited to, potassium carbonate, potassium hydroxide, sodium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, triethylbenzylammonium hydroxide, 1,1,3,3-tetramethylguanidine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), N-methylmorpholine, diisopropylethylamine (DIPEA), tetramethylethylenediamine (TMEDA), pyridine (Py), 1,4-diazabicyclo[2.2.2]octane (DABCO), N,N-dimethylamino pyridine (DMAP), or triethylamine (NEt₃).


[00271] In certain embodiments, coupling step (v) is carried out in a medium. A medium is a solvent or a solvent mixture that, in combination with the combined reacting partners and reagents, facilitates the progress of the reaction therebetween. A solvent may solubilize one or more of the reaction components, or, alternatively, the solvent may facilitate the suspension of one or more of the reaction components; see generally, *March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*, M.B. Smith and J. March, 5th Edition, John Wiley & Sons, 2001, and *Comprehensive Organic Transformations*, R.C. Larock, 2nd Edition, John Wiley & Sons, 1999, the entire contents of each of which are incorporated herein by reference. Solvents for include ethers, halogenated hydrocarbons, aromatic solvents, polar aprotic solvents, or mixtures thereof. In other embodiments, the solvent is diethyl ether, dioxane, tetrahydrofuran (THF), dichloromethane (DCM), dichloroethane (DCE), acetonitrile (ACN), chloroform, toluene, benzene, dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO), N-methyl pyrrolidinone (NMP), or mixtures thereof.

[00272] In certain embodiments, coupling step (v) is conducted at a temperature between about 0 °C and about 100 °C, inclusive.

[00273] In certain embodiments, the coupling step (v) comprises a coupling reagent, a base, and a medium, and is conducted at temperature of between about 0 °C and about 100 °C, inclusive.

[00274] In certain embodiments, the method further comprises the step of:


(v) treating the polypeptide of Formula (i) with a ring closing metathesis (RCM) catalyst to provide polypeptide of Formula (I-x):

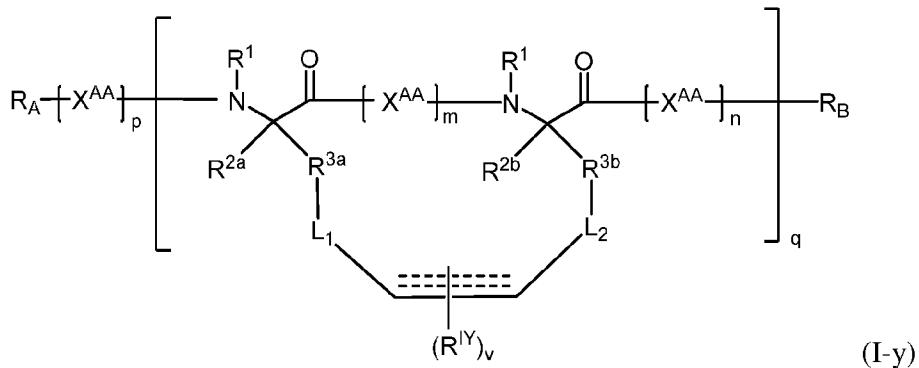
or a salt thereof.

[00275] In certain embodiments, the method further comprises the step of:

(vi) treating the polypeptide of Formula (ii) with a ring closing metathesis (RCM) catalyst to provide polypeptide of Formula (VI-x):

or a salt thereof.

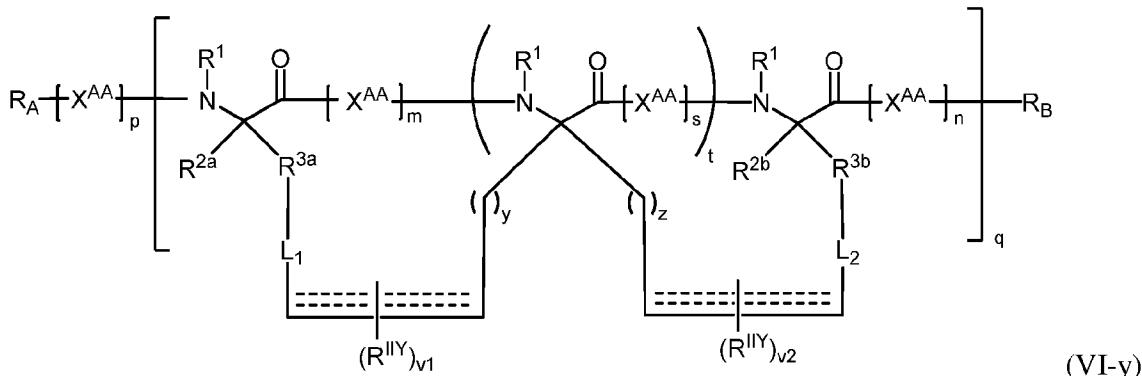
[00276] In certain embodiments, the RCM catalyst is a tungsten (W), molybdenum (Mo), or ruthenium (Ru) catalyst. In certain embodiments, the RCM catalyst is a ruthenium catalyst. Examples of suitable olefin metathesis catalyst include, but are not limited to, Schrock catalyst, Grubbs Catalyst 1st generation, or benzylidene-bis(tricyclohexylphosphine)dichlororuthenium, Grubbs Catalyst 2nd Generation, or benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-midazolidinylidene]dichloro-(tricyclohexylphosphine)ruthenium, and Hoveyda-Grubbs Catalyst 2nd Generation, or 1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-isopropoxyphenylmethylene)ruthenium. RCM catalysts employable by the above synthetic method are described in Grubbs *et al.*, *Acc. Chem. Res.* 1995, 28, 446–452; U.S. Pat. No. 5,811,515; Schrock *et al.*, *Organometallics* (1982) 1 1645; Gallivan *et al.*, *Tetrahedron Letters* (2005) 46:2577–2580; Furstner *et al.*, *J. Am. Chem. Soc.* (1999) 121:9453; and *Chem. Eur. J.* (2001) 7:5299; the entire contents of each of which are incorporated herein by reference.


[00277] The metathesis catalyst may be provided in any suitable form that enables it to promote polymerisation. For example, the catalyst may be combined with a suitable carrier material such as a solvent or perhaps a solid and formed into a tablet. It will be appreciated that any such carrier material should be compatible with other components of the curable systems.

[00278] It will also be appreciated, that in addition to RCM catalysts, other reagents capable of promoting carbon–carbon bond or carbon-heteroatom bond formation can also be utilized. For example, other reactions that can be utilized, include, but are not limited to, palladium coupling reactions, transition metal catalyzed cross coupling reactions, pinacol couplings (terminal aldehydes), hydrozirconation (terminal alkynes), nucleophilic addition reactions, and NHK (Nozaki–Hiyama–Kishi (Furstner *et al.*, *J. Am. Chem. Soc.* 1996, 118, 12349)) coupling reactions, reductive amination, Michael addition, cyclic carbonate alkylation (Parrish *et al.*, Perspectives on Alkyl Carbonates in Organic Synthesis, *Tetrahedron*, 2000, 56, 8207-8237), nucleophilic substitution with epoxides, Willgerodt-Kindler reaction, or Huisgen cycloaddition (Mundy *et al.*, Name Reactions and Reagents in Organic Synthesis, 2005, Wiley-Interscience, 2 Ed.). Examples of the carbon–carbon bond or carbon-heteroatom bond formations are shown in Figures 2A and 2B. Thus, the appropriate reactive moieties are first incorporated into the desired amino acids, and then the peptide is subjected to reaction disorders to effect the formation of one or more staples.

[00279] In certain embodiments, the stapling step generates one stapled product as a preferred product. As used herein a “preferred product” refers to one constitutional isomer present as the major constituent in a mixture of isomers. In certain embodiments, a “preferred product” refers to one constitutional isomer present as a component in at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% of an isomeric mixture.

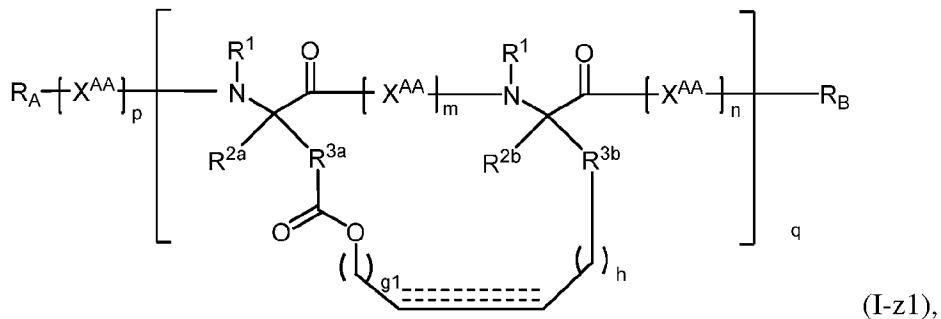
[00280] In certain embodiments, the method further comprises the step of:


(vii) modifying the double bond of the polypeptide of Formula (I-x) to provide a polypeptide of Formula (I-y):

or a salt thereof, wherein R_A, R_B, R¹, R^{2a}, R^{3a}, R^{2b}, R^{3b}, L₁, L₂, X^{AA}, p, m, n, and q are as defined above, each instance of R^{IY} is independently hydrogen, halogen, hydroxyl, nitro, alkoxy, -N(R¹)₂, optionally substituted aliphatic, and v is 0, 1, or 2.

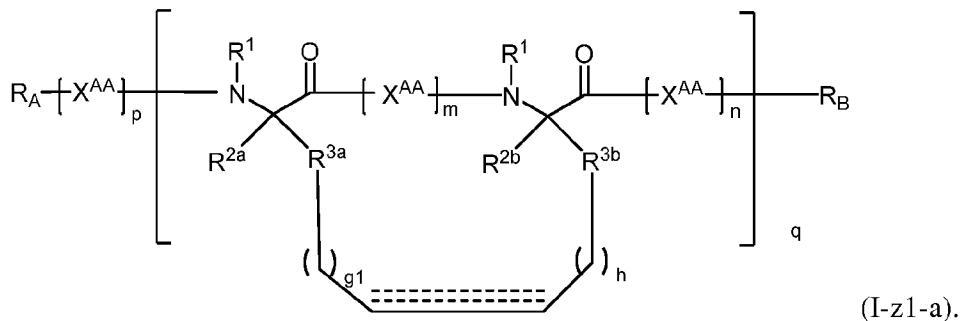
[00281] In certain embodiments, the method further comprises the step of:

(vii) modifying the double bond of the polypeptide of Formula (VI-x) to provide a polypeptide of Formula (VI-y):

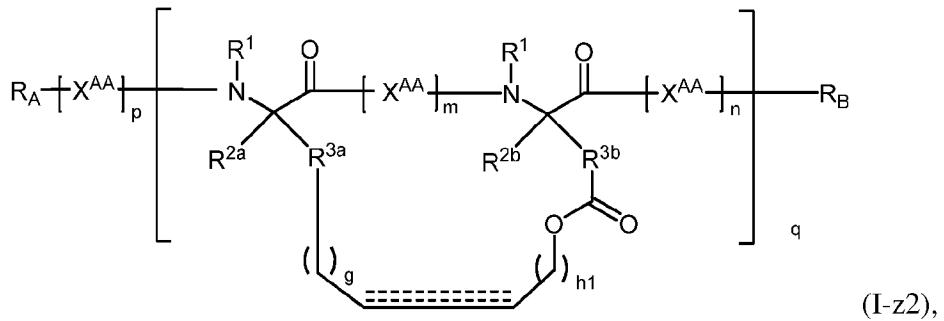


or a salt thereof, wherein R_A, R_B, R¹, R^{2a}, R^{3a}, R^{2b}, R^{3b}, L₁, L₂, X^{AA}, p, m, n, and q are as defined in Formula (VI), each instance of R^{IY} is independently hydrogen, halogen, hydroxyl, nitro, alkoxy, -N(R¹)₂, optionally substituted aliphatic, and each of v₁ and v₂ is independently 0, 1, or 2.

[00282] One of ordinary skill in the art will appreciate that a wide variety of reactions, disorders, and reactive agents may be employed to promote such a transformation, therefore, a wide variety of reactions, disorders, and reactive agents are envisioned; see generally, *March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*, M.B. Smith and J. March, 5th Edition, John Wiley & Sons, 2001; *Advanced Organic Chemistry, Part B: Reactions and Synthesis*, Carey and Sundberg, 3rd Edition, Plenum Press, New York, 1993;

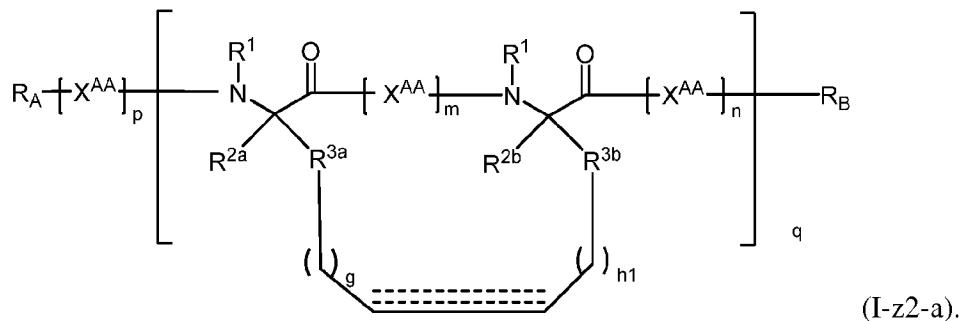

and *Comprehensive Organic Transformations*, R.C. Larock, 2nd Edition, John Wiley & Sons, 1999, the entirety of each of which is hereby incorporated herein by reference. Exemplary reactive agents may be any agent reactive with double bond. In certain embodiments, reactive agents are able to react with a double bond, for example, *via* hydrogenation, osmylation, hydroxylation (mono- or di-), amination, halogenation, cycloaddition (e.g., cyclopropanation, aziridination, epoxidation), oxy-mercuration, and/or a hydroboronation reaction, to provide a functionalized staple. As one of ordinary skill in the art will clearly recognize, these above-described transformations will introduce functional groups compatible with the particular stabilized structures and the desired biological interactions. In particularly preferred embodiments, in but one example, the hydrophilicity of stabilized structures may be increased by the introduction of hydroxyl moieties. As one of ordinary skill in the art will realize, these synthetic modifications will be selected to introduce functionalities compatible with the particular stabilized structures and the desired biological interactions.

[00283] In certain embodiments, the polypeptide of Formula (I-x) is of the Formula (I-z1):

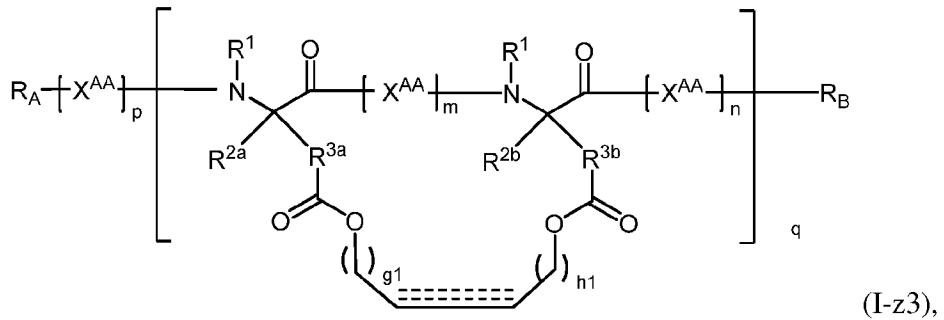


wherein R_A, R_B, R¹, R^{2a}, R^{3a}, R^{2b}, R^{3b}, L₁, L₂, X^{AA}, p, m, n, q, g₁, and h are as defined in Formula (I). In certain embodiments, the method does not further comprise the step of extruding $-\text{C}(=\text{O})\text{O}-$. In certain embodiments, the method further comprises the step of:

(vii) extruding $-\text{C}(=\text{O})\text{O}-$ from Formula (I-z1) to provide a polypeptide of Formula (I-z):

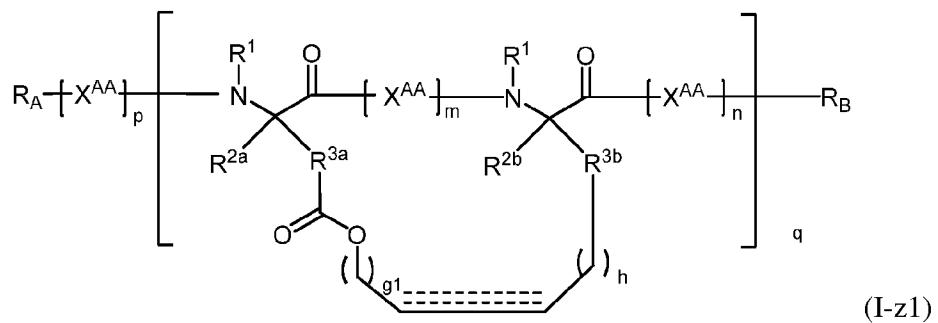


[00284] In certain embodiments, the polypeptide of Formula (I-x) is of the Formula (I-z2):

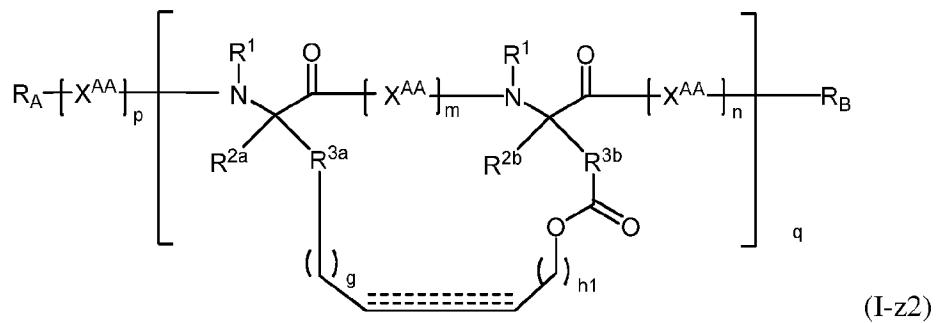


wherein R_A , R_B , R^1 , R^{2a} , R^{3a} , R^{2b} , R^{3b} , L_1 , L_2 , X^{AA} , p , m , n , q and $h1$ are as defined in Formula (I). In certain embodiments, the method does not further comprise the step of extruding $-C(=O)O-$. In certain embodiments, the method further comprises the step of:

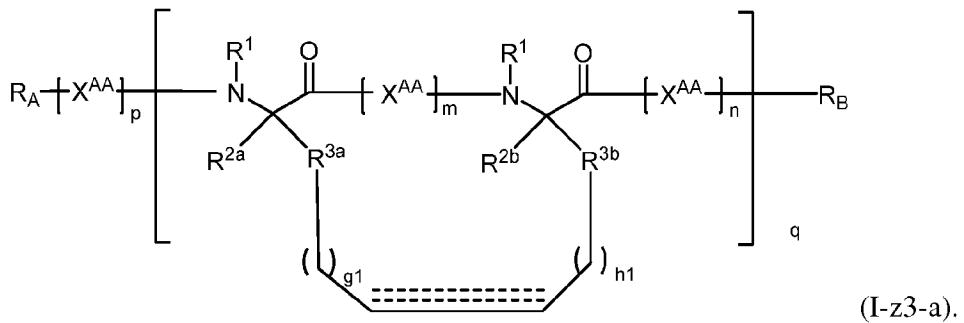
(vii) extruding $-C(=O)O-$ from Formula (I-z2) to provide a polypeptide of Formula (I-z):



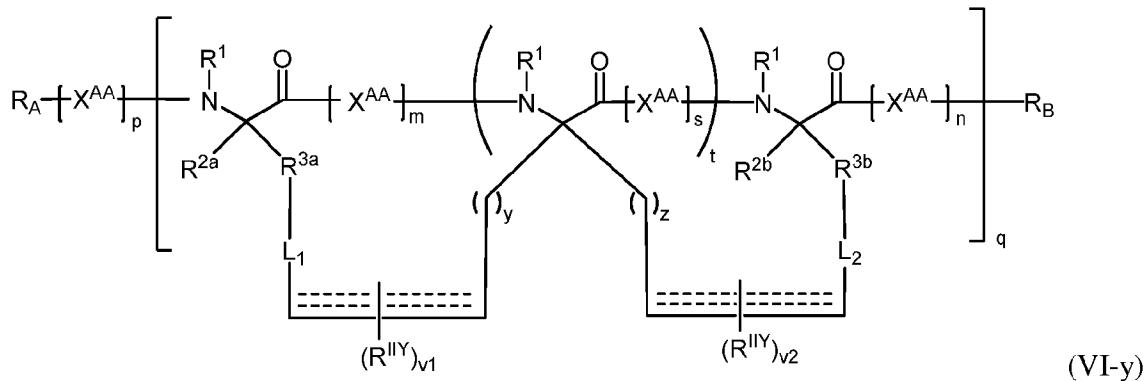
[00285] In certain embodiments, the polypeptide of Formula (I-x) is of the Formula (I-z3):



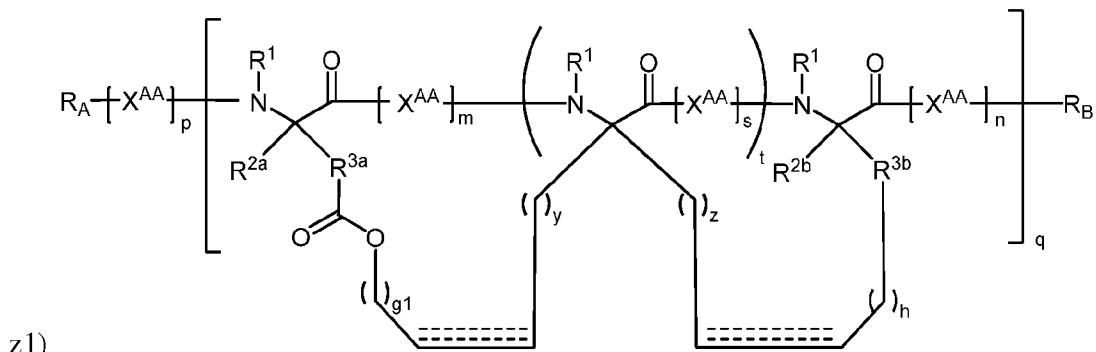
wherein R_A , R_B , R^1 , R^{2a} , R^{3a} , R^{2b} , R^{3b} , L_1 , L_2 , X^{AA} , p , m , n , q , $g1$ and $h1$ are as defined in Formula (I). In certain embodiments, the method does not further comprise the step of extruding $-C(=O)O-$. In certain embodiments, the method further comprises the step of:


(vii) extruding $-\text{C}(=\text{O})\text{O}-$ from Formula (I-z3) to provide a polypeptide of Formula (I-z1), Formula (I-z2), or Formula (I-z), or a mixture thereof:

and/or

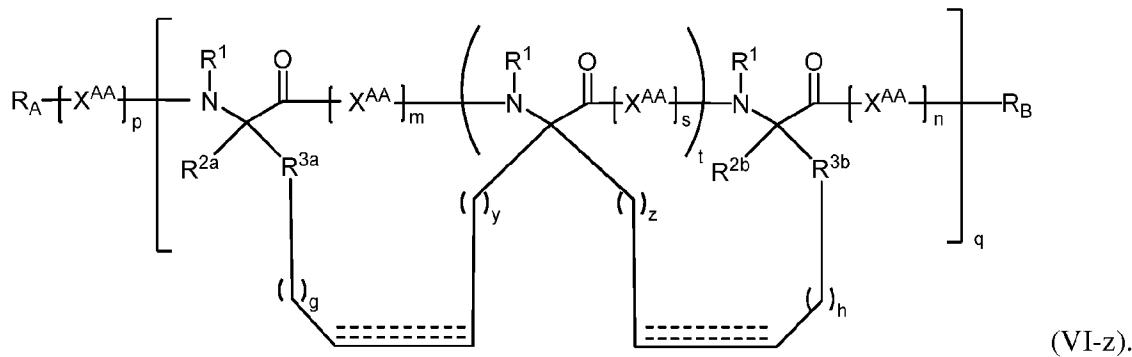


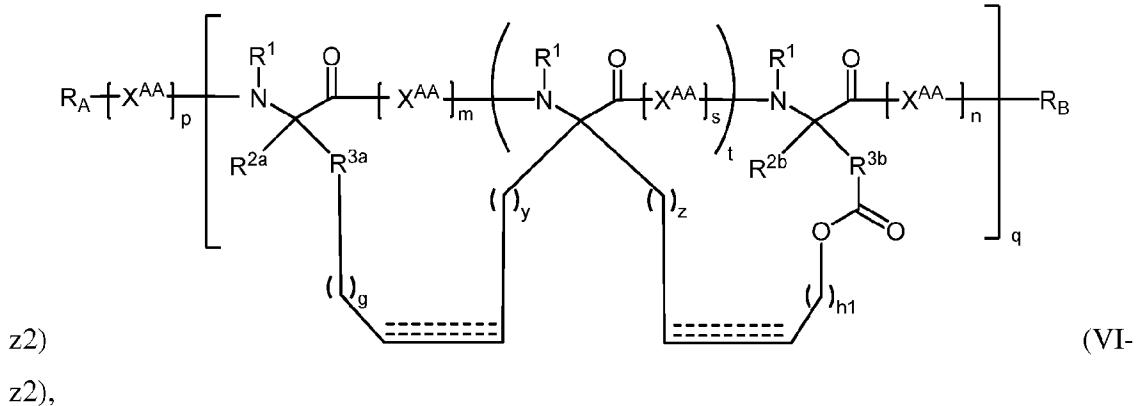
and/or


[00286] In certain embodiments, the method further comprises the step of:

(vii) modifying the double bond of the polypeptide of Formula (VI-x) to provide a polypeptide of Formula (VI-y):

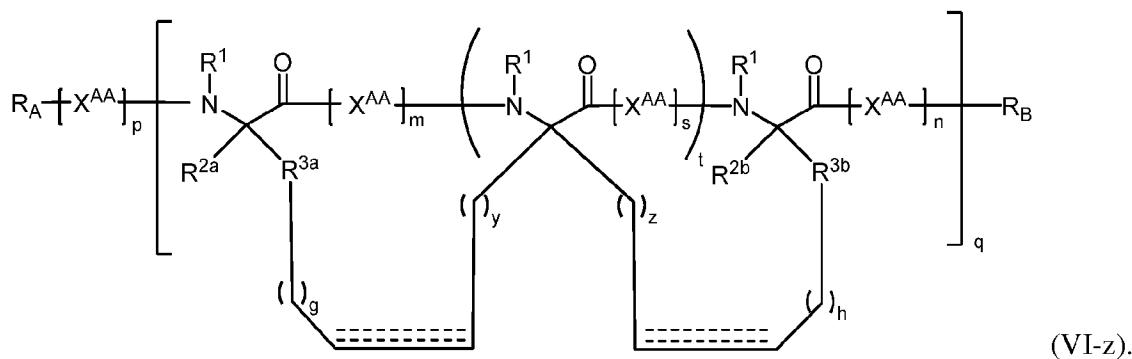
or a salt thereof, wherein R_A, R_B, R¹, R^{2a}, R^{3a}, R^{2b}, R^{3b}, L₁, L₂, X^{AA}, p, m, n, and q are as defined in Formula (VI), each instance of R^{IY} is independently hydrogen, halogen, hydroxyl, nitro, alkoxy, -N(R¹)₂, optionally substituted aliphatic, and each of v1 and v2 is independently 0, 1, or 2.


[00287] In certain embodiments, the polypeptide of Formula (VI-x) is of the Formula (VI-

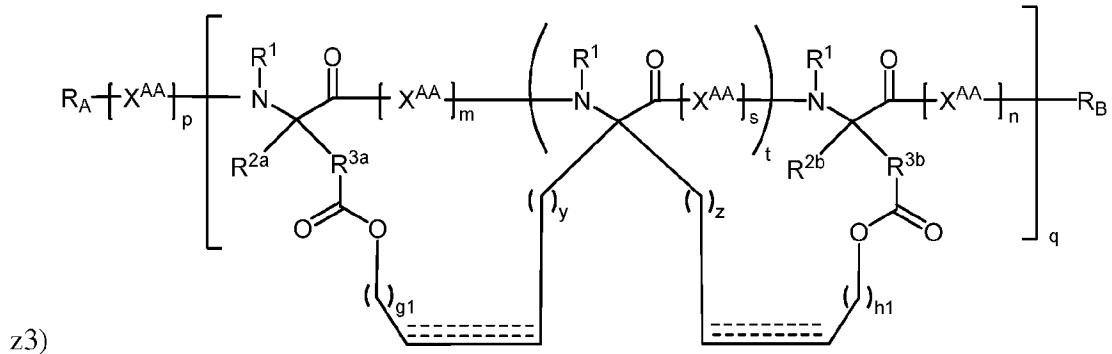

(VI-z1),

wherein R_A, R_B, R¹, R^{2a}, R^{3a}, R^{2b}, R^{3b}, L₁, L₂, X^{AA}, p, m, n, q, s, t, g1, and h are as defined in Formula (VI). In certain embodiments, the method does not further comprise the step of extruding -C(=O)O-. In certain embodiments, the method further comprises the step of:

(vii) extruding $-\text{C}(=\text{O})\text{O}-$ from Formula (VI-z1) to provide a polypeptide of Formula (VI-z):

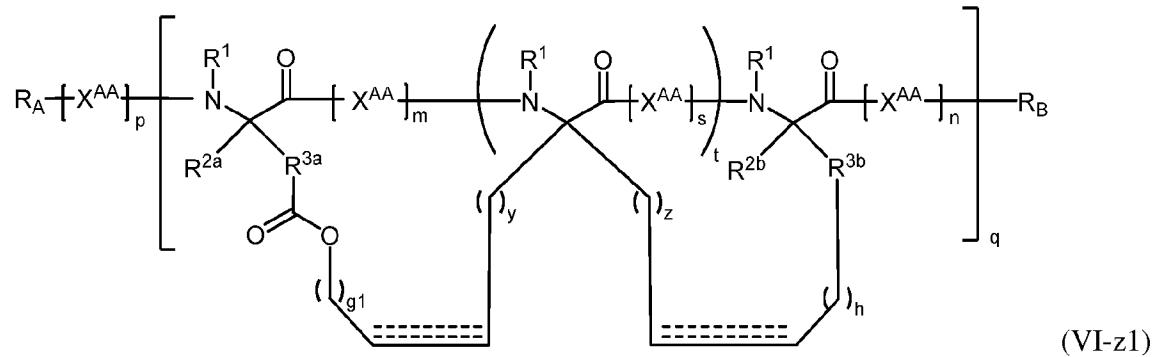


[00288] In certain embodiments, the polypeptide of Formula (VI-x) is of the Formula (VI-



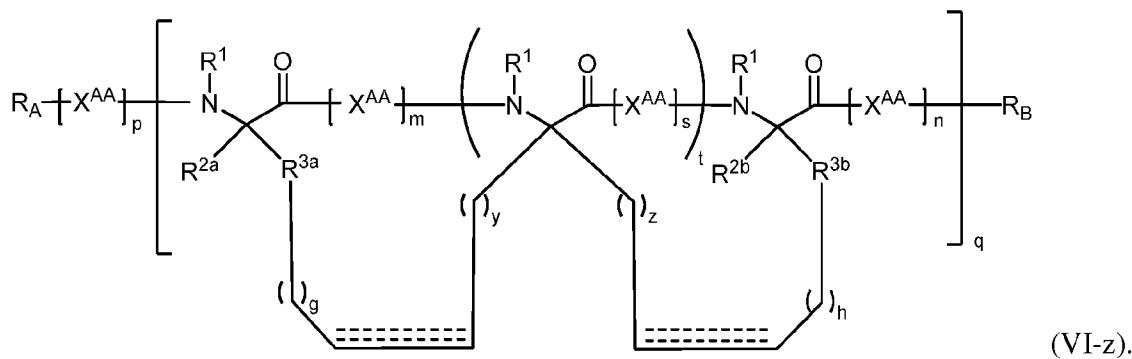
wherein R_A , R_B , R^1 , R^{2a} , R^{3a} , R^{2b} , R^{3b} , L_1 , L_2 , X^{AA} , p , m , n , q , s , t , g and $h1$ are as defined in Formula (VI). In certain embodiments, the method does not further comprise the step of extruding $-\text{C}(=\text{O})\text{O}-$. In certain embodiments, the method further comprises the step of:

(vii) extruding $-\text{C}(=\text{O})\text{O}-$ from Formula (VI-z2) to provide a polypeptide of Formula (VI-z):


[00289] In certain embodiments, the polypeptide of Formula (VI-x) is of the Formula (VI-

(VI-z3),

wherein R_A, R_B, R¹, R^{2a}, R^{3a}, R^{2b}, R^{3b}, L₁, L₂, X^{AA}, p, m, n, q, s, t, g1 and h1 are as defined in Formula (VI). In certain embodiments, the method does not further comprise the step of extruding $-\text{C}(=\text{O})\text{O}-$. In certain embodiments, the method further comprises the step of:


(vii) extruding $-\text{C}(=\text{O})\text{O}-$ from Formula (VI-z3) to provide a polypeptide of Formula (VI-z1), Formula (VI-z2), or Formula (VI-z), or a mixture thereof:

and/or

and/or

[00290] In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is a palladium (Pd) catalyst. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is $\text{Pd}(\text{PPh}_3)_4$. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is a Ruthenium catalyst. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is $[\text{Cp}^*\text{RuCl}]_4$, $[\text{Cp}^*\text{RuCl}]_4$ with bpy, or $[\text{Cp}^*\text{RuCl}]_4$ with TMEDA. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is a transition metal catalyst. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is $[\text{Ir}(\text{COD})\text{Cl}]_2$ or $\text{Ni}[\text{P}(\text{OEt})_3]_4$. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is a Group VI metal catalyst. In certain embodiments, the catalyst for extruding $-\text{C}(=\text{O})\text{O}-$ is $\text{Mo}(\text{CO})_6\text{-dppe}$. (See Chemical Reviews, (2011), 111, 1846-1913; Tet. Lett., 2007, 48(40), 7084-7098; Chemistry Letters, (1984), 1721-1724; Synlett, (2005), 18, 2759-2762).

[00291] In certain embodiments, the stapling method can be any one listed in Figures 2A and 2B.

[00292] In another aspect, in certain embodiments, the above method further comprises activating the inventive polypeptide of Formula (I) or Formula (VI), followed by conjugation with a therapeutically active agent to provide polypeptide of Formula (I) or Formula (VI) conjugated to therapeutically active agent.

[00293] Furthermore, in another aspect, in certain embodiments, the above method further comprises treating the polypeptide of Formula (I) or Formula (VI) with a label to provide a polypeptide of Formula (I) or Formula (VI) conjugated to a label.

[00294] In another aspect, in certain embodiments, the above method further comprises treating the polypeptide of Formula (I) or Formula (VI) with a diagnostic agent to provide a polypeptide of Formula (I) or Formula (VI) conjugated to a diagnostic agent.

[00295] As used herein, when two entities are “conjugated” to one another they are linked by a direct or indirect covalent or non-covalent interaction. In certain embodiments, the association is covalent. In other embodiments, the association is non-covalent. Non-covalent interactions include hydrogen bonding, van der Waals interactions, hydrophobic

interactions, magnetic interactions, and electrostatic interactions. An indirect covalent interaction is when two entities are covalently connected, optionally through a linker group.

[00296] Conjugation of an agent (*e.g.*, a label, a diagnostic agent, a therapeutically active agent) to the inventive polypeptide may be achieved in a variety of different ways. The agent may be covalently conjugated, directly or indirectly, to the polypeptide at the site of stapling, or to the N-terminus or the C-terminus of the polypeptide chain. Alternatively, the agent may be noncovalently conjugated, directly or indirectly, to the polypeptide at the site of stapling, or to the N-terminus or the C-terminus of the polypeptide chain. Indirect covalent conjugation is by means of one or more covalent bonds. Indirect noncovalent conjugation is by means of one or more noncovalent bonds. Conjugation may also be *via* a combination of non-covalent and covalent forces/bonds. The agent may also be conjugated through a covalent or non-covalent linking group.

[00297] Any bond may be used in the conjugation of a therapeutically active agent, label, and/or diagnostic agent to the inventive polypeptide present invention. Such bonds include amide linkages, ester linkages, disulfide linkages, carbon-carbon bonds, carbamate, carbonate, urea, hydrazide, and the like. In some embodiments, the bond is cleavable under physiological disorders (*e.g.*, enzymatically cleavable, cleavable with a high or low pH, with heat, light, ultrasound, x-ray). However, in some embodiments, the bond is not cleavable.

[00298] It will also be appreciated by one of ordinary skill in the art that the synthetic method as described above can also be applied to combinatorial synthesis of inventive polypeptides. Although combinatorial synthesis techniques can be applied in solution, it is more typical that combinatorial techniques are performed on the solid phase using split-and-pool techniques. During the course of the combinatorial synthesis, various parameters can be varied, including, but not limited to placement of amino acids with terminally unsaturated side chains, stereochemistry of amino acids, terminally unsaturated side chain length and functionality, and amino acid residues utilized.

Methods of Use and Treatment

[00299] The present invention provides a method of treating a disorder in a subject in need thereof, comprising administering to the subject an effective amount of a polypeptide of Formula (I)-(X), or a salt thereof.

[00300] The present invention provides a method of treating a disorder in a subject in need thereof, comprising instructing the subject to take an effective amount of a polypeptide of Formula (I)-(X), or a salt thereof.

[00301] The present invention also provides a polypeptide of Formula (I)-(X), or salt thereof, for use in treating a disorder.

[00302] As used herein, a “disease” or “disorder” are used interchangeably.

[0001] A “subject” to which administration is contemplated includes, but is not limited to, humans (*i.e.*, a male or female of any age group, *e.g.*, a pediatric subject (*e.g.*, infant, child, adolescent) or adult subject (*e.g.*, young adult, middle-aged adult or senior adult)) and/or other non-human animals, for example mammals (*e.g.*, primates (*e.g.*, cynomolgus monkeys, rhesus monkeys); commercially relevant mammals such as cattle, pigs, horses, sheep, goats, cats, and/or dogs), birds (*e.g.*, commercially relevant birds such as chickens, ducks, geese, and/or turkeys), reptiles, amphibians, and fish. In certain embodiments, the non-human animal is a mammal. The non-human animal may be a male or female and at any stage of development. A non-human animal may be a transgenic animal.

[0002] As used herein, and unless otherwise specified, the terms “treat,” “treating” and “treatment” contemplate an action that occurs while a subject is suffering from a disorder which reduces the severity of the disorder or retards or slows the progression of the disorder (“therapeutic treatment”), and also contemplates an action that occurs before a subject begins to suffer from the disorder and which inhibits or reduces the severity of the disorder (“prophylactic treatment”).

[0003] In general, the “effective amount” of a compound refers to an amount sufficient to elicit the desired biological response, *i.e.*, treating the disorder. As will be appreciated by those of ordinary skill in this art, the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disorder being treated, the mode of administration, and the age, health, and the subject. An effective amount encompasses therapeutic and prophylactic treatment.

[0004] As used herein, and unless otherwise specified, a “therapeutically effective amount” of a compound is an amount sufficient to provide a therapeutic benefit in the treatment of the disorder or to delay or minimize one or more symptoms associated with the disorder. A therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the disorder. The term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of the disorder, or enhances the therapeutic efficacy of another therapeutic agent.

[0005] As used herein, and unless otherwise specified, a “prophylactically effective amount” of a compound is an amount sufficient to prevent the disorder, or one or more

symptoms associated with the disorder or prevent its recurrence. A prophylactically effective amount of a compound means an amount of a therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disorder. The term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.

[00303] Exemplary disorders include, but are not limited to, proliferative disorders, neurological disorders, immunological disorders, endocrinologic disorders, cardiovascular disorders, hematologic disorders, inflammatory disorders, and disorders characterized by premature or unwanted cell death.

[00304] As used herein, a proliferative disorder includes, but is not limited to, cancer, hematopoietic neoplastic disorders, proliferative breast disease, proliferative disorders of the lung, proliferative disorders of the colon, proliferative disorders of the liver, and proliferative disorders of the ovary.

[00305] Exemplary cancers include, but are not limited to, carcinoma, sarcoma, or metastatic disorders, breast cancer, ovarian cancer, colon cancer, lung cancer, fibrosarcoma, myosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, gastric cancer, esophageal cancer, rectal cancer, pancreatic cancer, ovarian cancer, prostate cancer, uterine cancer, cancer of the head and neck, skin cancer, brain cancer, squamous cell carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular cancer, small cell lung carcinoma, non-small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrogioma, meningioma, melanoma, neuroblastoma, retinoblastoma, leukemia, lymphoma, and Kaposi's sarcoma.

[00306] Exemplary hematopoietic neoplastic disorders include, but are not limited to, disorders involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. In certain embodiments, the disorders arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia. Additional exemplary myeloid disorders include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML)

and chronic myelogenous leukemia (CML); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM). Additional forms of malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T-cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease, and Reed-Sternberg disease.

[00307] Exemplary proliferative breast diseases include, but are not limited to, epithelial hyperplasia, sclerosing adenosis, and small duct papillomas; tumors, *e.g.*, stromal tumors such as fibroadenoma, phyllodes tumor, and sarcomas, and epithelial tumors such as large duct papilloma; carcinoma of the breast including *in situ* (noninvasive) carcinoma that includes ductal carcinoma *in situ* (including Paget's disease) and lobular carcinoma *in situ*, and invasive (infiltrating) carcinoma including, but not limited to, invasive ductal carcinoma, invasive lobular carcinoma, medullary carcinoma, colloid (mucinous) carcinoma, tubular carcinoma, and invasive papillary carcinoma, and miscellaneous malignant neoplasms.

Disorders in the male breast include, but are not limited to, gynecomastia and carcinoma.

[00308] Exemplary proliferative disorders of the lung include, but are not limited to, bronchogenic carcinoma, including paraneoplastic syndromes, bronchioloalveolar carcinoma, neuroendocrine tumors, such as bronchial carcinoid, miscellaneous tumors, and metastatic tumors; pathologies of the pleura, including inflammatory pleural effusions, noninflammatory pleural effusions, pneumothorax, and pleural tumors, including solitary fibrous tumors (pleural fibroma) and malignant mesothelioma.

[00309] Exemplary proliferative disorders of the colon include, but are not limited to, non-neoplastic polyps, adenomas, familial syndromes, colorectal carcinogenesis, colorectal carcinoma, and carcinoid tumors.

[00310] Exemplary proliferative disorders of the liver include, but are not limited to, nodular hyperplasias, adenomas, and malignant tumors, including primary carcinoma of the liver and metastatic tumors.

[00311] Exemplary proliferative disorders of the ovary include, but are not limited to, ovarian tumors such as, tumors of coelomic epithelium, serous tumors, mucinous tumors, endometrioid tumors, clear cell adenocarcinoma, cystadenofibroma, brenner tumor, surface epithelial tumors; germ cell tumors such as mature (benign) teratomas, monodermal teratomas, immature malignant teratomas, dysgerminoma, endodermal sinus tumor,

choriocarcinoma; sex cord–stomal tumors such as, granulosa–theca cell tumors, thecomafibromas, androblastomas, hill cell tumors, and gonadoblastoma; and metastatic tumors such as Krukenberg tumors.

[00312] The polypeptides described herein can also be used to treat, prevent or diagnose disorders characterised by overactive cell death or cellular death due to physiologic insult. Some examples of disorders characterized by premature or unwanted cell death, or alternatively unwanted or excessive cellular proliferation, include, but are not limited to hypocellular/hypoplastic, acellular/aplastic, or hypercellular/hyperplastic disorders. Such disorders include but not limited to fanconi anemia, aplastic anemia, thalassemia, congenital neutropenia, myelodysplasia. The polypeptides of the invention that act to decrease apoptosis can be used to treat disorders associated with an undesirable level of cell death. Thus, the anti-apoptotic peptides of the invention can be used to treat disorders such as those that lead to cell death associated with viral infection, *e.g.*, infection associated with infection with human immunodeficiency virus (HIV).

[00313] A wide variety of neurological diseases are characterized by the gradual loss of specific sets of neurons, and the anti-apoptotic peptides can be used in the treatment of these disorders. Such disorders include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) retinitis pigmentosa, spinal muscular atrophy, and various forms of cerebellar degeneration. The cell loss in these disorders does not induce an inflammatory response, and apoptosis appears to be the mechanism of cell death. In addition, a number of hematologic diseases are associated with a decreased production of blood cells. These disorders include anemia associated with chronic disease, aplastic anemia, chronic neutropenia, and the myelodysplastic syndromes. Disorders of blood cell production, such as myelodysplastic syndrome and some forms of aplastic anemia, are associated with increased apoptotic cell death within the bone marrow. These disorders could result from the activation of genes that promote apoptosis, acquired deficiencies in stromal cells or hematopoietic survival factors, or the direct effects of toxins and mediators of immune responses. Two common disorders associated with cell death are myocardial infarctions and stroke. In both disorders, cells within the central area of ischemia, which is produced in the event of acute loss of blood flow, appear to die rapidly as a result of necrosis. However, outside the central ischemic zone, cells die over a more protracted time period and morphologically appear to die by apoptosis. The anti-apoptotic peptides of the invention can be used to treat all such disorders associated with undesirable cell death.

[00314] Some examples of neurologic disorders that can be treated with the polypeptides described herein include but are not limited to Alzheimer's Disease, Down's Syndrome, Dutch Type Hereditary Cerebral Hemorrhage Amyloidosis, Reactive Amyloidosis, Familial Amyloid Nephropathy with Urticaria and Deafness, Muckle-Wells Syndrome, Idiopathic Myeloma; Macroglobulinemia-Associated Myeloma, Familial Amyloid Polyneuropathy, Familial Amyloid Cardiomyopathy, Isolated Cardiac Amyloid, Systemic Senile Amyloidosis, Adult Onset Diabetes, Insulinoma, Isolated Atrial Amyloid, Medullary Carcinoma of the Thyroid, Familial Amyloidosis, Hereditary Cerebral Hemorrhage With Amyloidosis, Familial Amyloidotic Polyneuropathy, Scrapie, Creutzfeldt-Jacob Disease, Gerstmann Straussler-Scheinker Syndrome, Bovine Spongiform Encephalitis, a Prion-mediated disease, Huntington's Disease, Pick's Disease, Amyotrophic Lateral Schlerosis (ALS), Parkinson's Disease, and Lewy Body Disease.

[00315] Some examples of endocrinologic disorders that can be treated with the polypeptides described herein include but are not limited to diabetes, hypothyroidism, hypopituitarism, hypoparathyroidism, hypogonadism, fertility disorders, .

[00316] Some examples of immunologic disorders that can be treated with the polypeptides described herein include but are not limited to organ transplant rejection, arthritis, lupus, inflammatory bowel disease (IBD), Crohn's disease, asthma, multiple sclerosis, diabetes, graft versus host diseases, autoimmune diseases, psoriasis, rheumatoid arthritis, .

[00317] Examples of cardiovascular disorders that can be treated or prevented with the polypeptides of the invention include, but are not limited to, atherosclerosis, myocardial infarction, stroke, thrombosis, aneurism, heart failure, ischemic heart disease, angina pectoris, sudden cardiac death, hypertensive heart disease; non-coronary vessel disease, such as arteriolosclerosis, small vessel disease, nephropathy, hypertriglyceridemia, hypercholesterolemia, hyperlipidemia, xanthomatosis, asthma, hypertension, emphysema and chronic pulmonary disease; or a cardiovascular disorder associated with interventional procedures ("procedural vascular trauma"), such as restenosis following angioplasty, placement of a shunt, stent, synthetic or natural excision grafts, indwelling catheter, valve or other implantable devices.

[00318] The inventive polypeptides may serve to treat the above-described disorders, by disrupting native protein-protein, protein-ligand, and/or protein-receptor interactions. For example, many biologically important protein/protein interactions, such as p53/MDM2 and Bcl-X1/Bak, are mediated by one protein donating a helix into a cleft of its helix-accepting

partner. The interaction of p53 and MDM2 and mutations in the p53 gene have been identified in virtually half of all reported cancer cases (see, Shair *Chem. & Biol.* 1997, 4, 791, the entire contents of which are incorporated herein by reference). As stresses are imposed on a cell, p53 is believed to orchestrate a response that leads to either cell–cycle arrest and DNA repair, or programmed cell death. As well as mutations in the p53 gene that alter the function of the p53 protein directly, p53 can be altered by changes in MDM2. The MDM2 protein has been shown to bind to p53 and disrupt transcriptional activation by associating with the transactivation domain of p53. For example, an 11 amino–acid peptide derived from the transactivation domain of p53 forms an amphipathic alpha–helix of 2.5 turns that inserts into the MDM2 crevice.

[00319] Thus, in certain embodiments, an inventive polypeptide is an alpha helical polypeptide that is capable of binding tightly to a helix acceptor and disrupting native protein/protein interactions. These structures may then be screened using high throughput techniques to identify optimal small molecule peptides. In certain embodiments, an inventive polypeptide is an alpha helical p53 polypeptide capable of binding to the Xenopus MDM2 protein. The novel structures that disrupt the MDM2 interaction might be useful for many applications, including, but not limited to, control of soft tissue sarcomas (which overexpresses MDM2 in the presence of wild type p53). These cancers may be held in check with small molecules that could intercept MDM2, thereby preventing suppression of p53. Additionally, small molecules disrupters of MDM2–p53 interactions could be used as adjuvant therapy to help control and modulate the extent of the p53 dependent apoptosis response in conventional chemotherapy.

[00320] In addition, the inventive polypeptides may be useful in the area of materials science. For example, molecules such as lipids and other polymeric molecules may be attached to the peptides and thus generate biomaterials.

[00321] In addition to the above-mentioned uses, the inventive polypeptides may be used for studies in bioinorganic chemistry or in catalysis, either as a ligand for a transition metal capable of mimicking an important biological environment, or by acting in concert with a particular transition metal catalyst to effect a desired chemical reaction.

[00322] The present invention further provides a method of altering a biological pathway in a cell comprising treating the cell with a polypeptide of Formula (I)–(X), or salt thereof. Such a method comprises *in vitro* or *in vivo* methods. Such a polypeptide may be useful as a research tool, *e.g.*, for cellular assays.

[00323] The present invention provides pharmaceutical compositions comprising a polypeptide of the Formula (I)-(X), or a salt thereof, and a pharmaceutically acceptable excipient. Pharmaceutical compositions comprise compositions for therapeutic use as well as cosmetic compositions. Such compositions may optionally comprise one or more additional therapeutically active agents. In accordance with some embodiments, a method of administering a pharmaceutical composition comprising an inventive composition to a subject in need thereof is provided. In some embodiments, the inventive composition is administered to humans. For the purposes of the present invention, the “active ingredient” generally refers to a polypeptide of the Formula (II), as described herein.

[00324] Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation.

[00325] Pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.

[00326] A pharmaceutical composition of the invention may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.

[00327] The relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition of the invention will vary, depending upon the identity, size, and/or disorder of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100% (w/w) active ingredient.

[00328] As used herein, a pharmaceutically acceptable excipient includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's *The Science and Practice of Pharmacy*, 21st Edition, A. R. Gennaro, (Lippincott, Williams & Wilkins, Baltimore, MD, 2006) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention.

[00329] In some embodiments, the pharmaceutically acceptable excipient is at least 95%, 96%, 97%, 98%, 99%, or 100% pure. In some embodiments, the excipient is approved for use in humans and for veterinary use. In some embodiments, the excipient is approved by the United States Food and Drug Administration. In some embodiments, the excipient is pharmaceutical grade. In some embodiments, the excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.

[00330] Pharmaceutically acceptable excipients used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients may optionally be included in the inventive formulations. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and perfuming agents can be present in the composition, according to the judgment of the Formulator.

[00331] Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, and combinations thereof.

[00332] Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-

pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, and combinations thereof.

[00333] Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (*e.g.* acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (*e.g.* bentonite [aluminum silicate] and Veegum [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (*e.g.* stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (*e.g.* carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (*e.g.* carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (*e.g.* polyoxyethylene sorbitan monolaurate [Tween 20], polyoxyethylene sorbitan [Tween 60], polyoxyethylene sorbitan monooleate [Tween 80], sorbitan monopalmitate [Span 40], sorbitan monostearate [Span 60], sorbitan tristearate [Span 65], glyceryl monooleate, sorbitan monooleate [Span 80]), polyoxyethylene esters (*e.g.* polyoxyethylene monostearate [Myrj 45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and Solutol), sucrose fatty acid esters, polyethylene glycol fatty acid esters (*e.g.* Cremophor), polyoxyethylene ethers, (*e.g.* polyoxyethylene lauryl ether [Brij 30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, Pluronic F 68, Poloxamer 188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docosate sodium, and/or combinations thereof.

[00334] Exemplary binding agents include, but are not limited to, starch (*e.g.* cornstarch and starch paste); gelatin; sugars (*e.g.* sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol,); natural and synthetic gums (*e.g.* acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (Veegum), and larch arabogalactan); alginates;

polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylates; waxes; water; alcohol; and combinations thereof.

[00335] Exemplary preservatives may include antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and other preservatives. Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and sodium sulfite. Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and trisodium edetate. Exemplary antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and thimerosal. Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and sorbic acid. Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and phenylethyl alcohol. Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and phytic acid. Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, detersoxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant Plus, Phenonip, methylparaben, Germall 115, Germaben II, Neolone, Kathon, and Euxyl. In certain embodiments, the preservative is an anti-oxidant. In other embodiments, the preservative is a chelating agent.

[00336] Exemplary buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium

phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, ., and combinations thereof.

[00337] Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, ., and combinations thereof.

[00338] Exemplary oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macadamia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils.

Exemplary oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and combinations thereof.

[00339] Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredients, the liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. In certain embodiments for parenteral

administration, the conjugates of the invention are mixed with solubilizing agents such as Cremophor, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and combinations thereof.

[00340] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using dispersing or wetting agents and suspending agents. The sterile injectable preparation may be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

[00341] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

[00342] In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

[00343] Compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing the conjugates of this invention with non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.

[00344] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates,

gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may comprise buffering agents.

[00345] Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

[00346] The active ingredients can be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active ingredient may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such as magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may comprise buffering agents. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.

[00347] Dosage forms for topical and/or transdermal administration of a conjugate of this invention may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays,

inhalants and/or patches. Generally, the active component is admixed under sterile disorders with a pharmaceutically acceptable carrier and/or any needed preservatives and/or buffers as may be required. Additionally, the present invention contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of an active ingredient to the body. Such dosage forms may be prepared, for example, by dissolving and/or dispensing the active ingredient in the proper medium. Alternatively or additionally, the rate may be controlled by either providing a rate controlling membrane and/or by dispersing the active ingredient in a polymer matrix and/or gel.

[00348] Suitable devices for use in delivering intradermal pharmaceutical compositions described herein include short needle devices such as those described in U.S. Patents 4,886,499; 5,190,521; 5,328,483; 5,527,288; 4,270,537; 5,015,235; 5,141,496; and 5,417,662. Intradermal compositions may be administered by devices which limit the effective penetration length of a needle into the skin, such as those described in PCT publication WO 99/34850 and functional equivalents thereof. Jet injection devices are described, for example, in U.S. Patents 5,480,381; 5,599,302; 5,334,144; 5,993,412; 5,649,912; 5,569,189; 5,704,911; 5,383,851; 5,893,397; 5,466,220; 5,339,163; 5,312,335; 5,503,627; 5,064,413; 5,520,639; 4,596,556; 4,790,824; 4,941,880; 4,940,460; and PCT publications WO 97/37705 and WO 97/13537. Alternatively or additionally, conventional syringes may be used in the classical mantoux method of intradermal administration.

[00349] Formulations for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water in oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions. Topically-administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent. Formulations for topical administration may further comprise one or more of the additional ingredients described herein.

[00350] A pharmaceutical composition of the invention may be prepared, packaged, and/or sold in a formulation for pulmonary administration via the buccal cavity. Such a formulation may comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 to about 7 nanometers or from about 1 to about 6 nanometers. Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self propelling solvent/powder dispensing container such

as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container. Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nanometers and at least 95% of the particles by number have a diameter less than 7 nanometers. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nanometer and at least 90% of the particles by number have a diameter less than 6 nanometers. Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.

[00351] Low boiling propellants generally include liquid propellants having a boiling point of below 65 °F at atmospheric pressure. Generally the propellant may constitute 50 to 99.9% (w/w) of the composition, and the active ingredient may constitute 0.1 to 20% (w/w) of the composition. The propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).

[00352] Pharmaceutical compositions of the invention formulated for pulmonary delivery may provide the active ingredient in the form of droplets of a solution and/or suspension. Such formulations may be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebulization and/or atomization device. Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate. The droplets provided by this route of administration may have an average diameter in the range from about 0.1 to about 200 nanometers.

[00353] The formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition of the invention. Another formulation for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 to 500 micrometers. Such a formulation is administered in the manner in which snuff is taken, *i.e.* by rapid inhalation through the nasal passage from a container of the powder held close to the nares.

[00354] Formulations for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of the active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition of the invention may be prepared, packaged, and/or sold in a formulation for buccal

administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may, for example, 0.1 to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, formulations for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising the active ingredient. Such powdered, aerosolized, and/or aerosolized formulations, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein.

[00355] A pharmaceutical composition of the invention may be prepared, packaged, and/or sold in a formulation for ophthalmic administration. Such formulations may, for example, be in the form of eye drops including, for example, a 0.1/1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid carrier. Such drops may further comprise buffering agents, salts, and/or one or more other of the additional ingredients described herein. Other ophthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are contemplated as being within the scope of this invention.

[00356] General considerations in the formulation and/or manufacture of pharmaceutical agents may be found, for example, in *Remington: The Science and Practice of Pharmacy* 21st ed., Lippincott Williams & Wilkins, 2005.

[00357] Inventive polypeptides provided herein are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disease, disorder, or disorder being treated and the severity of the disorder; the activity of the specific active ingredient employed; the specific composition employed; the age, body weight, general health, sex and diet of the subject; the time of administration, route of administration, and rate of excretion of the specific active ingredient employed; the duration of the treatment; drugs used in combination or coincidental with the specific active ingredient employed; and like factors well known in the medical arts.

[00358] The polypeptide of Formula (I)-(X), salt thereof, or pharmaceutical composition thereof, may be administered by any route. In some embodiments, the polypeptide of

Formula (II), salt thereof, or pharmaceutical composition thereof, are administered by a variety of routes, including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, intradermal, rectal, intravaginal, intraperitoneal, topical (as by powders, ointments, creams, and/or drops), mucosal, nasal, bucal, enteral, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray, nasal spray, and/or aerosol. Specifically contemplated routes are systemic intravenous injection, regional administration via blood and/or lymph supply, and/or direct administration to an affected site. In general the most appropriate route of administration will depend upon a variety of factors including the nature of the agent (*e.g.*, its stability in the environment of the gastrointestinal tract), and the disorder of the subject (*e.g.*, whether the subject is able to tolerate oral administration). At present the oral and/or nasal spray and/or aerosol route is most commonly used to deliver therapeutic agents directly to the lungs and/or respiratory system. However, the invention encompasses the delivery of the inventive pharmaceutical composition by any appropriate route taking into consideration likely advances in the sciences of drug delivery.

[00359] In certain embodiments, polypeptide of Formula (II), salt thereof, or pharmaceutical composition thereof, may be administered at dosage levels sufficient to deliver from about 0.001 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect. The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (*e.g.*, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).

[00360] It will be appreciated that dose ranges as described herein provide guidance for the administration of provided pharmaceutical compositions to an adult. The amount to be administered to, for example, a child or an adolescent can be determined by a medical practitioner or person skilled in the art and can be lower or the same as that administered to an adult. The exact amount of an inventive polypeptide required to achieve an effective amount will vary from subject to subject, depending, for example, on species, age, and general disorder of a subject, severity of the side effects or disorder, identity of the particular compound(s), mode of administration, and the like.

[00361] In some embodiments, the present invention encompasses “therapeutic cocktails” comprising inventive polypeptides. In some embodiments, the inventive polypeptide comprises a single species which can bind to multiple targets. In some embodiments, different inventive polypeptides comprise different targeting moiety species, and all of the different targeting moiety species can bind to the same target. In some embodiments, different inventive polypeptides comprise different targeting moiety species, and all of the different targeting moiety species can bind to different targets. In some embodiments, such different targets may be associated with the same cell type. In some embodiments, such different targets may be associated with different cell types.

[00362] It will be appreciated that inventive polypeptides and pharmaceutical compositions of the present invention can be employed in combination therapies. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will be appreciated that the therapies employed may achieve a desired effect for the same purpose (for example, an inventive conjugate useful for detecting tumors may be administered concurrently with another agent useful for detecting tumors), or they may achieve different effects (*e.g.*, control of any adverse effects).

[00363] Pharmaceutical compositions of the present invention may be administered either alone or in combination with one or more therapeutically active agents. By “in combination with,” it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the invention. The compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent. Additionally, the invention encompasses the delivery of the inventive pharmaceutical compositions in combination with agents that may improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body. It will further be appreciated that therapeutically active agent and the inventive polypeptides utilized in this combination may be administered together in a single composition or administered separately in different compositions.

[00364] The particular combination employed in a combination regimen will take into account compatibility of the therapeutically active agent and/or procedures with the inventive polypeptide and/or the desired therapeutic effect to be achieved. It will be appreciated that

the combination employed may achieve a desired effect for the same disorder (for example, an inventive polypeptide may be administered concurrently with another therapeutically active agent used to treat the same disorder), and/or they may achieve different effects (e.g., control of any adverse effects).

[00365] As used herein, a “therapeutically active agent” refers to any substance used as a medicine for treatment, prevention, delay, reduction or amelioration of a disorder, and refers to a substance that is useful for therapy, including prophylactic and therapeutic treatment. A therapeutically active agent also includes a compound that increases the effect or effectiveness of another compound, for example, by enhancing potency or reducing adverse effects of the compound of Formula (I) or (VI).

[00366] In certain embodiments, a therapeutically active agent is an anti-cancer agent, antibiotic, anti-viral agent, anti-HIV agent, anti-parasite agent, anti-protozoal agent, anesthetic, anticoagulant, inhibitor of an enzyme, steroid agent, steroid or non-steroidal anti-inflammatory agent, antihistamine, immunosuppressant agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, sedative, opioid, analgesic, anti-pyretic, birth control agent, hormone, prostaglandin, progestational agent, anti-glaucoma agent, ophthalmic agent, anti-cholinergic, analgesic, anti-depressant, anti-psychotic, neurotoxin, hypnotic, tranquilizer, anti-convulsant, muscle relaxant, anti-Parkinson agent, anti-spasmodic, muscle contractant, channel blocker, miotic agent, anti-secretory agent, anti-thrombotic agent, anticoagulant, anti-cholinergic, β -adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, vasodilating agent, anti-hypertensive agent, angiogenic agent, modulators of cell-extracellular matrix interactions (e.g. cell growth inhibitors and anti-adhesion molecules), or inhibitors/intercalators of DNA, RNA, protein-protein interactions, protein-receptor interactions, .

[00367] In some embodiments, inventive pharmaceutical compositions may be administered in combination with any therapeutically active agent or procedure (e.g., surgery, radiation therapy) that is useful to treat, alleviate, ameliorate, relieve, delay onset of, inhibit progression of, reduce severity of, and/or reduce incidence of one or more symptoms or features of cancer.

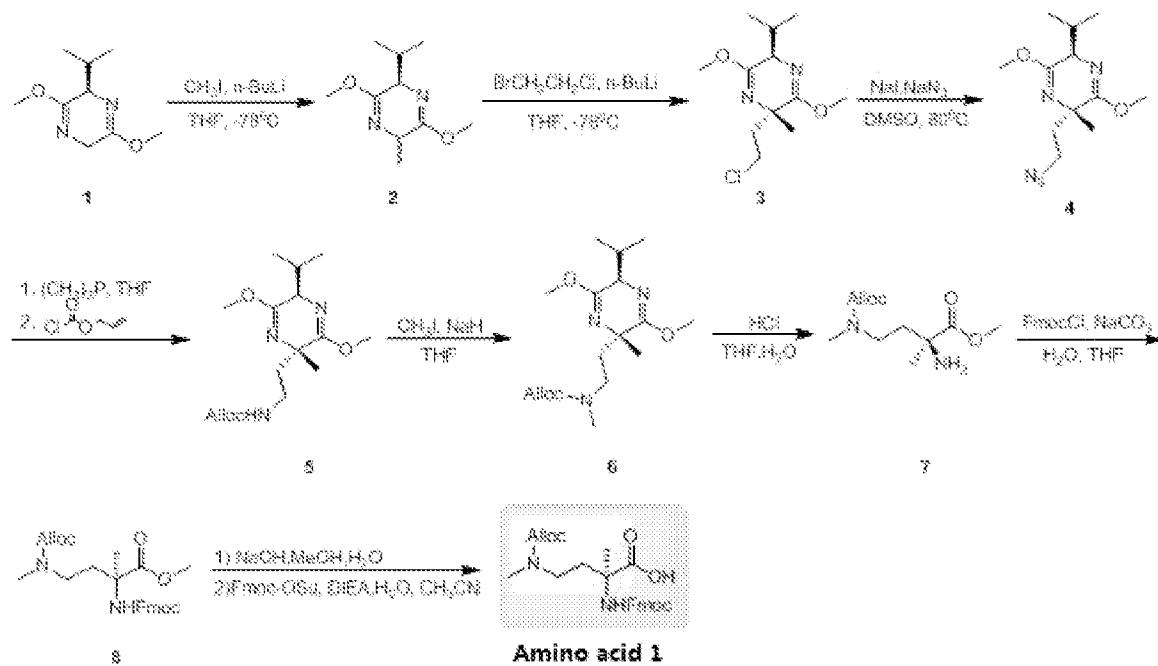
Kits

[00368] The invention also provides a variety of kits comprising one or more of the polypeptides of the invention. For example, the invention provides a kit comprising an inventive polypeptide and instructions for use. A kit may comprise multiple different

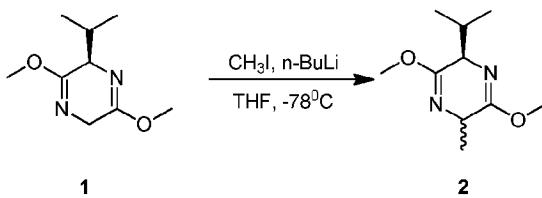
polypeptides. A kit may comprise any of a number of additional components or reagents in any combination. All of the various combinations are not set forth explicitly but each combination is included in the scope of the invention.

[00369] According to certain embodiments of the invention, a kit may include, for example, (I) one or more inventive polypeptides and, optionally, one or more particular therapeutically active agents to be delivered; (ii) instructions for administration to a subject in need thereof.

[00370] Kits typically include instructions which may, for example, comprise protocols and/or describe disorders for production of inventive polypeptides, administration of inventive polypeptides to a subject in need thereof, design of novel inventive polypeptide. Kits will generally include one or more vessels or containers so that some or all of the individual components and reagents may be separately housed. Kits may also include a means for enclosing individual containers in relatively close confinement for commercial sale, *e.g.*, a plastic box, in which instructions, packaging materials such as styrofoam, may be enclosed. An identifier, *e.g.*, a bar code, radio frequency identification (ID) tag, may be present in or on the kit or in or one or more of the vessels or containers included in the kit. An identifier can be used, *e.g.*, to uniquely identify the kit for purposes of quality control, inventory control, tracking, movement between workstations.


[00371] In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.

Examples

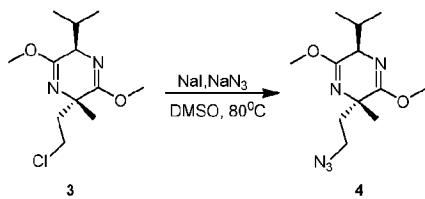

[00372] In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.

Example 1

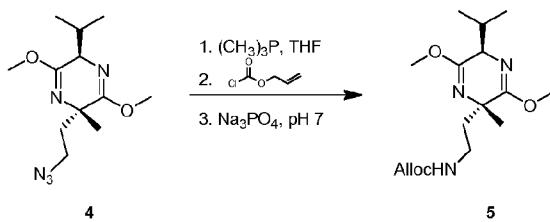
[00373] Preparation of amino acid **1** is shown in Scheme 1:

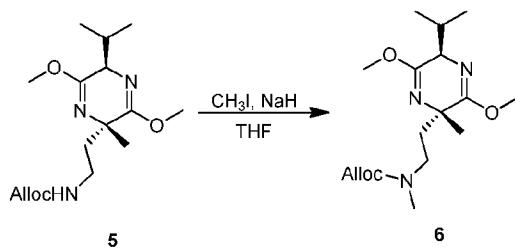

Scheme 1

Synthetic procedures:

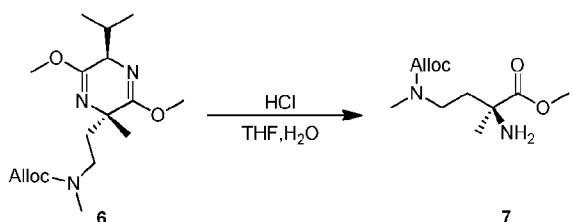


[00374] 100 g (0.543 mol) of **1** (100 g, 5.4 mol) was taken up in THF (1000 mL) and cooled to -78 °C. 228 mL (0.570 moles) of *n*-BuLi (2.5M in THF) was added dropwise over 30 minutes. Then the solution was stirred vigorously for an additional 30 minutes. 81 g of methyl iodide (0.57 mol) was diluted to 250 mL with THF and cooled to -78 °C. The methyl iodide was then added dropwise over 30 minutes. Following completion of the addition of methyl iodide, the reaction was stirred at -78 °C for 2 hours. 1L of diethyl ether was then added to the mixture, followed by 500 mL of H₂O. The reaction was then warmed to room temperature. The aqueous layer was extracted multiple times with diethyl ether and the organic layer were combined, washed with saturated sodium thiosulfate, once with brine, and dried over MgSO₄. The organics were concentrated under vacuum to give residue which was purified by chromatography with gradient of 50:1 to 20:1 petroleum ether: diethyl ether to yield 110 g (80.5%) of **2** (pale yellow oil). **¹H NMR:** (400 MHz, CDCl₃-*d*) ppm 0.60 - 0.72

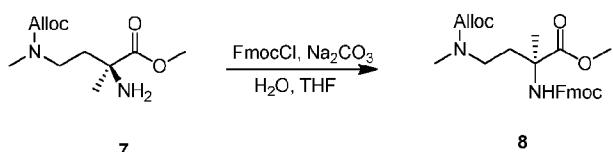

(m, 3 H), 0.94 - 1.03 (m, 3 H), 1.26 - 1.35 (m, 3 H), 2.07 - 2.30 (m, 1 H), 3.53 - 3.70 (m, 6 H), 3.89 (br. s., 2 H).


[00375] 40 g (0.202 mol) of **2** was taken up in 400 mL of THF and cooled to -78 °C. 85 mL (0.212 mol) of *n*-BuLi (2.5 M in THF) was added dropwise over 20 minutes. The solution was then stirred vigorously for an additional 40 minutes. 30 g of 1-bromo-2-chloroethane (0.212 moles) was diluted to 200mL in THF and cooled to -78 °C. The 1-bromo-2-chloroethane was then added dropwise over 90 minutes. Following completion of addition of the 1-bromo-2-chloroethane, the reaction was stirred at -78 °C for an additional 90 minutes. 500 mL of diethyl ether were added to the reaction, followed by 500 mL of H₂O. The reaction was then warmed to room temperature. The aqueous layer was extracted with diethyl ether and the combined organics were washed once with H₂O and once with brine then dried over Na₂SO₄. Then the combined organic layer was concentrated under vacuum to give residue which was purified by chromatography (petroleum ether: diethyl ether=50:1) to afford product **3** as pale yellow oil (36 g yield 70%). **¹H NMR:** (400 MHz, CDCl₃-*d*) ppm 0.61 (d, *J*=6.78 Hz, 3 H), 1.00 (d, *J*=6.78 Hz, 3 H), 1.23 - 1.32 (m, 3 H), 1.91 - 2.02 (m, 1 H), 2.11 - 2.32 (m, 2 H), 3.13 - 3.34 (m, 2 H), 3.60 (d, *J*=7.53 Hz, 6 H), 3.80 - 3.95 (m, 1 H).

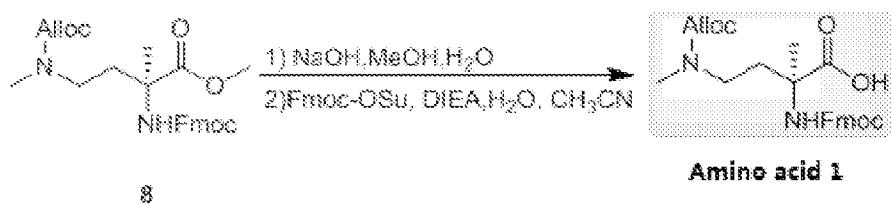
[00376] To a solution of **3** (20 g, 0.075 mol) in DMSO (300 mL) was added NaI (33 g, 0.226 mol) and NaN₃ (15 g, 226mmol) at 25°C, then the mixture solution was stirred at 80 °C over night. Then the solution was cooled and water was added, extracted with diethyl ether (150 ml*3), washed with brine (50ml), dried over Na₂SO₄ and concentrated under vacuum to afford crude product, used in next step directly.



[00377] 19 g (0.0711 mol) of **4** was taken up in 300 mL of THF and stirred at room temperature. 71 mL (0.0711 mol) of $(CH_3)_3P$ (1M in THF) was then added by syringe over a few minutes. After stirring for 45 minutes, 9.2 mL (0.850 mol) of allyl chloroformate was added and the reaction was stirred for an additional 60 minutes at room temperature. 100 mL of 0.4 M K_3PO_4 was then added to convert the phosphonium intermediate to **5**. The product was extracted multiple times with DCM, and the combined organics were washed with brine, dried over Na_2SO_4 , and concentrated under vacuum to give residue. The resulting yellow oil was purified by chromatography on silica gel using 3:1 petroleum ether: ethyl acetate to yield 17 g (71.0%, three steps) of **5** as colorless oil. **1H NMR:** (400 MHz, $CDCl_3-d$) ppm 0.62 (d, $J=7.03$ Hz, 3 H), 1.00 (d, $J=6.78$ Hz, 3 H), 1.26 (s, 3 H), 1.68 - 1.78 (m, 1 H), 1.91 - 2.01 (m, 1 H), 2.11 - 2.23 (m, 1 H), 2.96 - 3.14 (m, 2 H), 3.60 (d, $J=3.76$ Hz, 6 H), 3.85 - 3.92 (m, 1 H), 4.46 (br. s., 2 H), 5.08 - 5.20 (m, 2 H), 5.77 - 5.95 (m, 1 H).

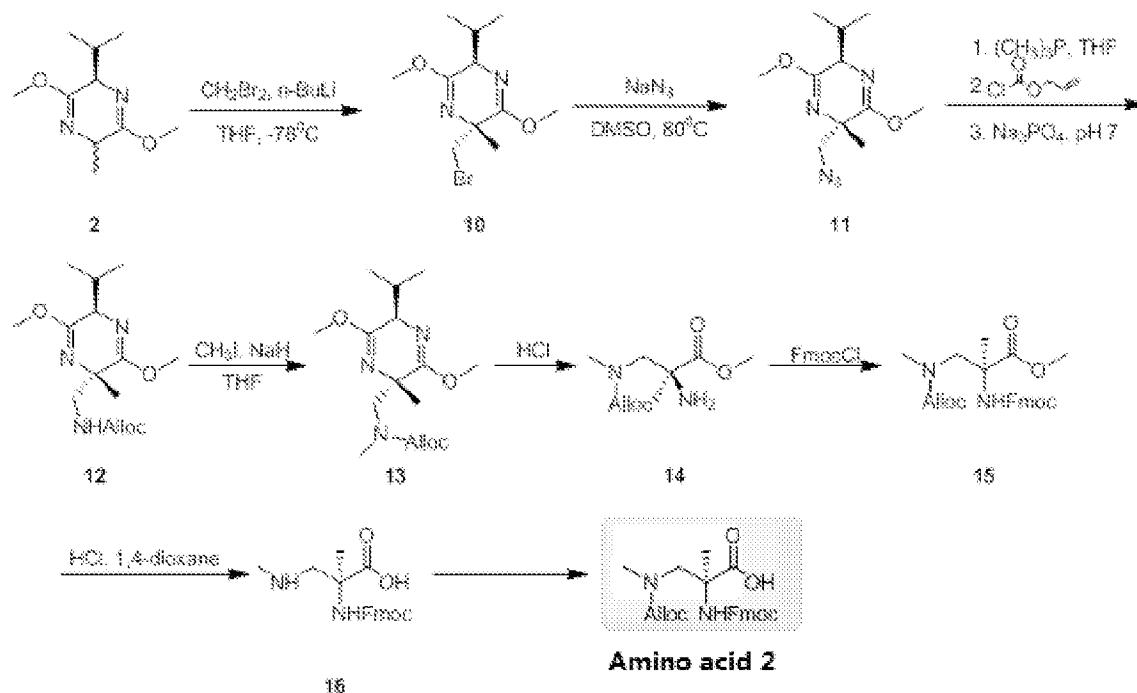


[00378] 17 g (0.052 mol) of **5** was taken up in 300 mL of THF and stirred at room temperature. 3.12 g (0.078 mol) of NaH (60% dispersion in mineral oil) were added. After the reaction was stirred for 10 minutes, 23 g (0.156 moles) of CH₃I was added by syringe over 5 minutes. After stirred for 3 hours, the reaction was quenched by the addition of water, and the product was extracted multiple times with diethyl ether. The combined organics were washed with H₂O, saturated sodium thiosulfate, brine, dried over Na₂SO₄ and concentrated under vacuum to give residue which was purified by chromatography on silica gel (5:1 petroleum ether: ethyl acetate) to yield 13 g (73.1%) of **6** (a slightly yellow oil). ¹H NMR: (400 MHz, CDCl₃-*d*) ppm 0.64 - 0.73 (m, 3 H), 1.02 - 1.11 (m, 3 H), 1.28 - 1.38 (m, 3 H), 1.68 - 1.82 (m, 1 H), 1.99 - 2.12 (m, 1 H), 2.18 - 2.39 (m, 1 H), 2.76 - 2.89 (m, 3 H), 2.97 -

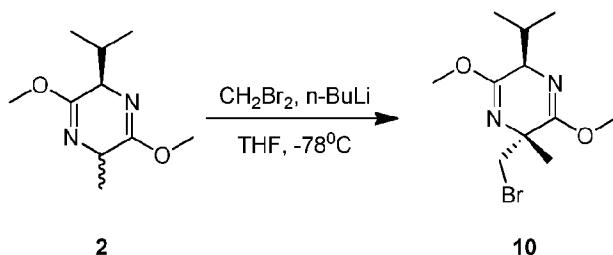

3.25 (m, 2 H), 3.67 (s, 6 H), 3.90 - 4.04 (m, 1 H), 4.46 - 4.70 (m, 2 H), 5.14 - 5.22 (m, 1 H), 5.25 - 5.36 (m, 1 H), 5.81 - 6.02 (m, 1 H).

[00379] To a solution of 6 (6 g, 17.7 mmol) in THF (50 ml) was added HCl/H₂O (150 ml, 0.25N) at 18°C. Then the mixture solution was stirred at 18°C for overnight, then basified with aq. NaOH to pH=8, extracted with DCM, washed with brine, dried over Na₂SO₄, and concentrated under vacuum to afford residue which was used in next step directly.

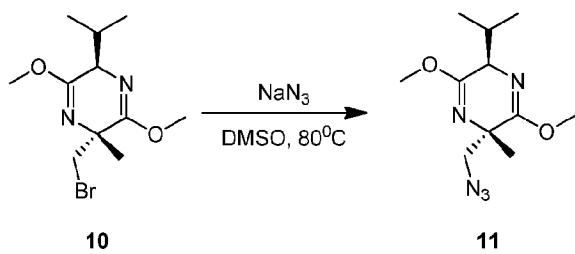
[00380] To a solution of 7 (10 g, 0.041 mol) in THF (100 ml) and H₂O (100 ml) was added Na₂CO₃ (8.7 g, 0.087 mol) and FmocCl (10.3 g, 0.082 mol) at 10°C, then the mixture solution was stirred at 10°C for 0.5 hour, extracted with ethyl acetate multiple, washed with H₂O, brine and concentrated under vacuum to give crude, which was purified by chromatography on silica gel (petroleum ether: ethyl acetate= 15:1) to afford product as colorless oil (8.5 g, 45%). **¹H NMR:** (400 MHz, CDCl₃-*d*) ppm 1.48 - 1.60 (m, 3 H), 2.01 - 2.20 (m, 1 H), 2.23 - 2.50 (m, 1 H), 2.75 (br. s., 3 H), 2.96 - 3.39 (m, 2 H), 3.69 (br. s., 3 H), 4.04 - 4.21 (m, 1 H), 4.23 - 4.41 (m, 2 H), 4.43 - 4.55 (m, 2 H), 5.04 - 5.15 (m, 1 H), 5.15 - 5.20 (m, 1 H), 5.23 (s, 2 H), 5.60 - 5.99 (m, 2 H), 7.21 - 7.28 (m, 2 H), 7.33 (t, *J*=7.40 Hz, 2 H), 7.55 (br. s., 2 H), 7.70 (d, *J*=7.53 Hz, 2 H).

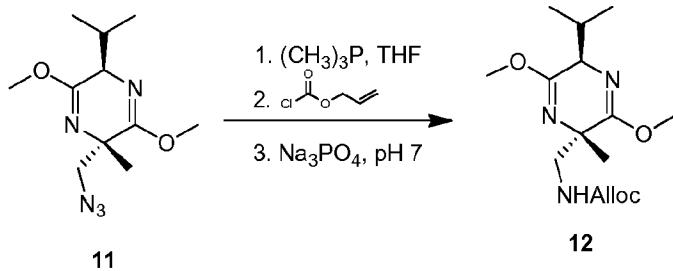

[00381] To a solution of 8 (8.5 g, 0.0183 mol) in MeOH (80 ml) and H₂O (80 ml) was added NaOH (4.38 g, 0.109 mol) at 12 °C, and then the mixture was stirred under 12°C

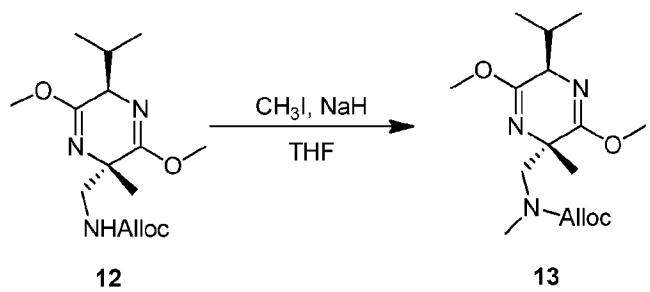
overnight. The mixture solution was acidified with 1N HCl to pH=4, then the solvent was removed under vacuum and dissolved with MeCN (15ml) and H₂O (15ml), Fmoc-OSu (9.3 g, 0.0275mol) and DIEA (9.5 g, 0.0732 mol) was added at 12°C, then the mixture solution was stirred at room temperature overnight, extracted with ethyl acetate, washed with 1N HCl, washed with brine and concentrated under vacuum to give crude product, which was purified by chromatography on silica gel (petroleum ether: ethyl acetate=10:1 to 1:1) to afford product as pale solid. The product was separated using SFC to afford final product as pale solid (3.8 g, 44%). **¹H NMR:** WH10057-012-1D1 (400 MHz, DMSO-*d*₆) ppm 1.35 (br. s., 3 H), 1.81 - 1.97 (m, 1 H), 1.99 - 2.20 (m, 1 H), 2.79 (d, *J*=12.05 Hz, 3 H), 3.09 - 3.28 (m, 2 H), 4.17 - 4.33 (m, 3 H), 4.41 - 4.60 (m, 2 H), 4.97 - 5.40 (m, 2 H), 5.78 - 6.08 (m, 1 H), 7.35 (d, *J*=7.53 Hz, 2 H), 7.43 (s, 2 H), 7.49 - 7.57 (m, 1 H), 7.68 - 7.77 (m, 2 H), 7.90 (d, *J*=7.53 Hz, 2 H), 12.37 - 12.75 (m, 1 H). **LCMS:** WH10057-012-1B3 (M+1: 232.13). **SFC:** WH10057-012-1B2_2 ee=100%.


Example 2

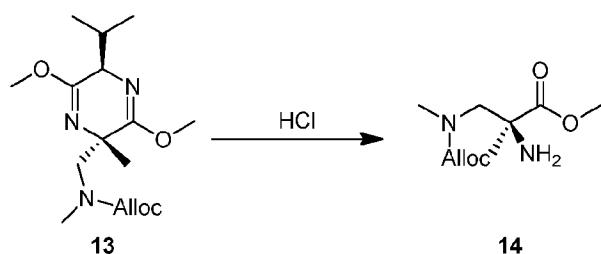
[00382] Preparation of amino acid **2** is shown in Scheme 2:


Scheme 2:

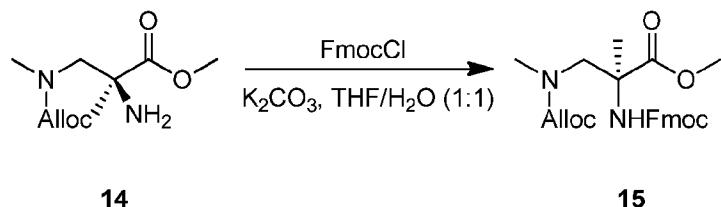

Synthetic procedures:


[00383] 78.5 g (396.42 mmol) of synthetic intermediate 2 was taken up in 1.1 L of THF and cooled to -78 °C. 436 mL (436 mmol) of *n*-BuLi (2.5 M in Hexanes) was then added dropwise over 10 minutes, and the reaction was then stirred at -78 °C for an additional 60 minutes. 203 g (1.189 mol) of dibromomethane was taken up in 200 mL of THF and cooled to -78 °C. The solution of dibromomethane in THF was then added to the reaction dropwise over 40 minutes. After completion of the addition, the reaction was stirred while allowing it to warm to -20 °C over 3 hours. At the end of this three hours, TLC analysis indicated the reaction was virtually complete and diethyl ether and H₂O were added and the reaction was warmed to room temperature. The organics were collected, and the aqueous layer contained no product. The organics were then washed with H₂O, brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting yellow oil was chromatographed on silica gel to yield 95 g (82.7 %) of **Compound 10** (slightly yellow oil). ¹H NMR WH10098-005-1A (400 MHz, CHLOROFORM-d) 0.61 (d, *J*=6.78 Hz, 3 H), 1.02 (d, *J*=6.78 Hz, 3 H), 1.38 (s, 3 H), 2.13 - 2.32 (m, 1 H), 3.33 (d, *J*=9.29 Hz, 1 H), 3.63 (d, *J*=7.03 Hz, 6 H), 3.69 (d, *J*=9.54 Hz, 1 H), 3.96 (d, *J*=3.26 Hz, 1 H).

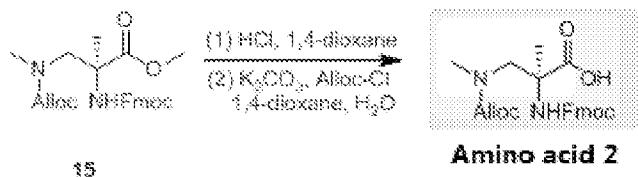
[00384] 40 g (137 mol) of **Compound 10** was taken up in 400 mL of DMSO. 24 g (369 mmol) of NaN_3 was added and the reaction was heated to 80 °C and stirred for >24 hours, until TLC analysis (20:1 Hexanes:Ethyl Acetate) confirmed the consumption of **Compound 11**. After cooling to room temperature, H_2O was added to the reaction and the product was then extracted multiple times with DCM. The combined organics were dried over MgSO_4 and concentrated under reduced pressure to give oil. The result oil was used directly to the next step. **LCMS:** WH10098-007-1A ($\text{M}+1=254.2$)



[00385] 17.3 (68.5 mmol) of **compound 11** was taken up in 160 mL of THF and stirred at room temperature. 70 mL (70 mmol) of $(\text{CH}_3)_3\text{P}$ (1M in THF) was then added by syringe over a few minutes. After stirring for 45 minutes, 8.8 mL (70 mmol) of allyl chloroformate was added and the reaction was stirred for an additional 60 minutes at room temperature. 600 mL of 0.4 M Na_3PO_4 (pH7) was then added to convert the phosphonium intermediate to **compound 12**. The product was extracted multiple times with DCM, and the combined organics were washed with brine, dried over Na_2SO_4 , and concentrated under reduced pressure. The resulting yellow oil was chromatographed on silica gel using 10:1 Hexanes:Ethyl Acetate to yield 13 g (62 %) of **compound 12** (a colorless oil). **^1H NMR:** (400 MHz, CHLOROFORM-d) 0.71 (d, $J=6.78$ Hz, 3 H), 0.83 - 0.93 (m, 1 H), 1.09 (d, $J=6.78$ Hz, 3 H), 1.33 (s, 3 H), 2.26 (dq, $J=10.29, 6.78$ Hz, 1 H), 3.30 (dd, $J=12.92, 5.65$ Hz, 1 H), 3.54 (dd, $J=12.92, 6.65$ Hz, 1 H), 3.68 (d, $J=4.27$ Hz, 6 H), 3.99 (d, $J=3.26$ Hz, 1 H), 4.50 - 4.64 (m, 2 H), 4.82 (br. s., 1 H), 5.19 - 5.38 (m, 2 H), 5.92 (ddt, $J=16.75, 10.98, 5.46, 5.46$ Hz, 1 H).

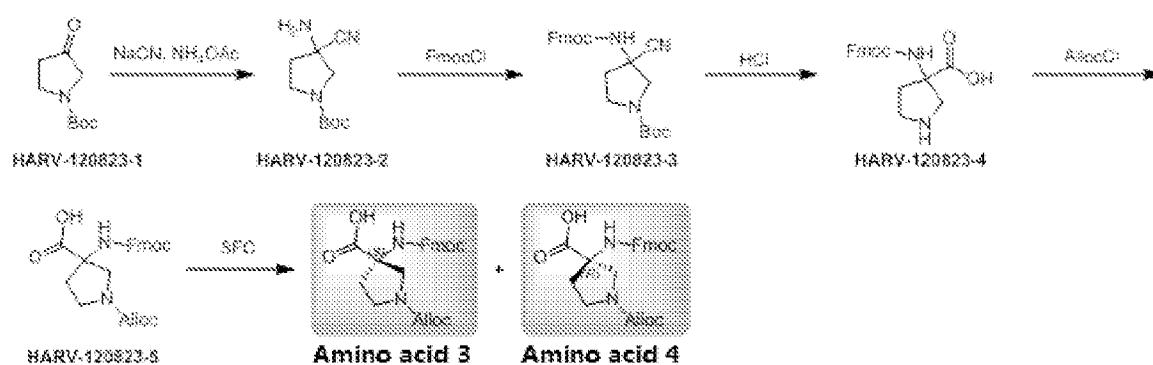


[00386] 13 g (41.8 mmol) of **compound 12** was taken up in 105 mL of THF and stirred at room temperature. 2.5 g (62.7 mmol) of NaH (60% dispersion in mineral oil) were added. After the reaction was stirred for 10 minutes, 17.8 g (125.4 mmol) of CH_3I were added by syringe over about 5 minutes. After 1 hour, TLC analysis (5:1 Hexanes:Ethyl Acetate) confirmed the reaction was complete and the reaction was quenched by the addition of a saturated solution of KH_2PO_4 . H_2O was then added to the solution, and the product was

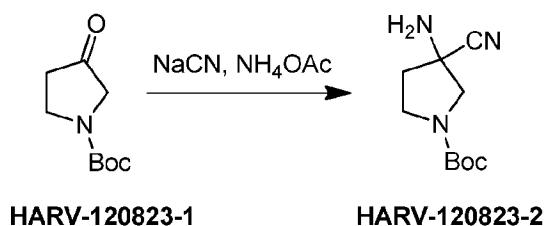

extracted multiple times with DCM. The combined organics were washed with H_2O , saturated sodium thiosulfate, brine, dried over Na_2SO_4 and concentrated under reduced pressure. The resulting yellow oil was chromatographed on silica gel (20:1 Hexanes:Ethyl Acetate) to yield 11.3 g (83.7 %) of **compound 13** (a slightly yellow oil). **1H NMR:** (400 MHz, CHLOROFORM-d) 0.58 (d, $J=6.02$ Hz, 3 H), 0.99 (d, $J=6.78$ Hz, 3 H), 1.24 (d, $J=6.53$ Hz, 3 H), 1.62 (s, 1 H), 2.20 (td, $J=13.58$, 6.70, 6.70, 3.39 Hz, 1 H), 2.77 (s, 3 H), 3.40 - 3.54 (m, 2 H), 3.55 - 3.64 (m, 6 H), 3.85 (br. s., 1 H), 4.47 (br. s., 2 H), 5.05 - 5.33 (m, 2 H), 5.84 (d, $J=5.02$ Hz, 1 H).

[00387] 400 ml of 0.25 N HCl was added to the solution of **compound 13** (10 g, 30 mmol) in 250 ml of THF and stirring was continued for overnight at 15 °C. The excess of HCl and the THF was evaporated in vacuo and the crude **compound 14** was obtained as oil which was used for the next step without further purification.

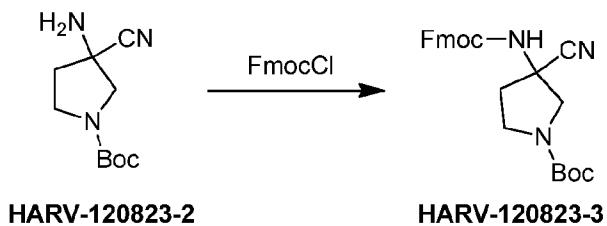
[00388] A mixture of **compound 14** (9 g, crude), FmocCl (13.9 g, 54 mmol, 2 eq.), K_2CO_3 (7.45 g, 54 mmol, 2 eq.) in THF (135 ml) and water (135 ml) was stirred at room temperature for 5 h, until TLC analysis (1:1 Hexanes:Ethyl Acetate) confirmed the consumption of **compound 15** (9 g, 74 %). **1H NMR:** WH10098-011-1A 1H NMR (400 MHz, CHLOROFORM-d) 1.52 - 1.73 (m, 3 H), 2.81 (br. s., 3 H), 3.45 - 3.90 (m, 5 H), 4.17 (d, $J=6.53$ Hz, 1 H), 4.20 - 4.40 (m, 2 H), 4.54 (br. s., 2 H) 5.05 - 5.32 (m, 2 H), 5.86 (d, $J=10.29$ Hz, 1 H), 7.20 - 7.27 (m, 2 H), 7.33 (t, $J=7.40$ Hz, 2 H), 7.53 (d, $J=5.52$ Hz, 2 H), 7.69 (d, $J=7.53$ Hz, 2 H).

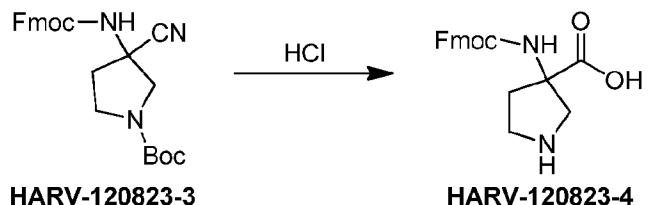

[00389] A 6N hydrochloric acid aqueous solution (32 ml) was added to a stirred solution of **compound 15** (8 g, 17.6 mmol, 1eq.) in dioxane (160 ml) at room temperature. And then the mixture was stirred at reflux for 2d. Only 50 % product was found by LC-MS. And about 40% de-Alloc by product was also detected by LC-MS. So the mixture was cooled to room temperature, and acidified with NaOH (1 mol/L) until the pH=8, dioxane was removed under reduce pressure and the aqueous residue was extracted with EtOAc(3*200 ml). The organic extracted were combined, dried over Na₂SO₄, filter and concentrated under reduce pressure to give a **mixture of compound 2** (8.1 g). The **mixture of amino acid 2** (8.1 g)was dissolved in dioxane (100 ml), H₂O (200 ml). And then K₂CO₃ (12.96 g, 2eq.), Alloc-Cl (2.835 g, 1.5 eq.) was added. The mixture was stirred at 10 °C for overnight. The reaction was acidified with aqueous HCl (1 mol/L) till pH=7. And the mixture was concentrated under reduced pressure to dryness to provide an oil. The crude product was purified by chromatographed on silica gel using 1:1 Hexanes:Ethyl Acetate to yield 7 g (91 %) of **amino acid 2** (a colorless oil, ee 80%). The enantiomer was purified by SFC to give the s of **amino acid 2** (5 g, ee>99%) as a colorless solid.

¹HNMR: (400 MHz, DMSO-d6) 1.23 (br. s., 3 H), 2.64 - 2.84 (m, 3 H), 3.18 (d, J =5.02 Hz, 1 H), 3.49 - 3.69 (m, 1 H), 3.86 (d, J =14.05 Hz, 1 H), 4.17 - 4.32 (m, 2 H), 4.36 - 4.59 (m, 3 H), 5.09 - 5.34 (m, 2 H), 5.91 (d, J =10.04 Hz, 1 H), 7.30 - 7.36 (m, 2 H), 7.38 - 7.47 (m, 2 H), 7.61 (br. s., 1 H), 7.66 - 7.77 (m, 2 H), 7.89 (d, J =7.28 Hz, 2 H), 12.64 (br. s., 1 H).
LCMS: WH10098-029-1C ($M+1$ =439.2).

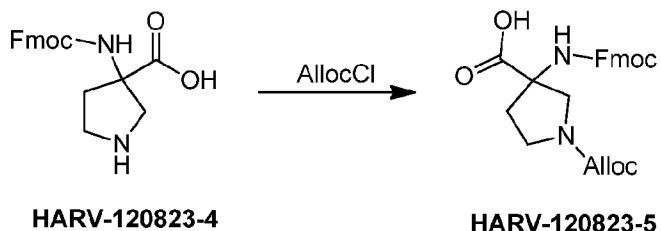

Example 3

[00390] Preparation of amino acids **3** and **4** is shown in Scheme 3:

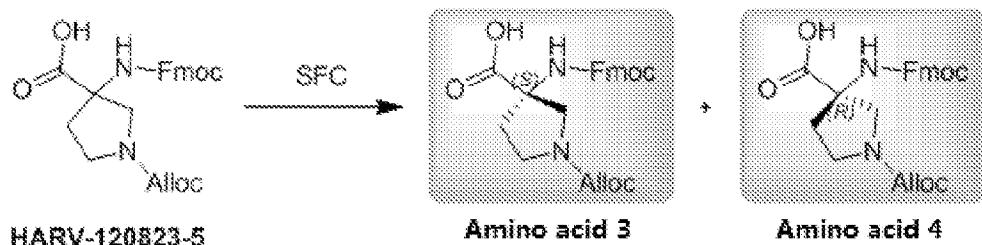

Scheme 3:


Synthetic procedure:

[00391] To a solution of **HARV-120823-1** (80 g, 0.432 mol) and NH₄OAc (46.61 g, 0.605 mol) in MeOH (1000 mL) was added NaCN (21.71 g, 0.432 mol) at room temperature. After the addition, the mixture was stirred at room temperature overnight. TLC (Petroleum ether/EtOAc=3/1) showed the reaction was complete. The mixture was concentrated and water (300 mL) was added. The mixture was extracted with DCM (3*450 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give crude **HARV-120823_2**. The crude product was dissolved HCl aqueous (<1N) and extracted with DCM. The aqueous layer was added NaHCO₃ to adjust pH = 8 and extracted with DCM. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give pure product **HARV-120823_2** (85 g, yield: 93%). **1H NMR** (CDCl₃, 400 MHz, WH10085-001-1A): δ 3.76-3.73 (m, 1H), 3.61-3.43 (m, 3H), 2.34-2.32 (m, 1H), 1.82 (s, 2H), 1.45 (s, 9H).



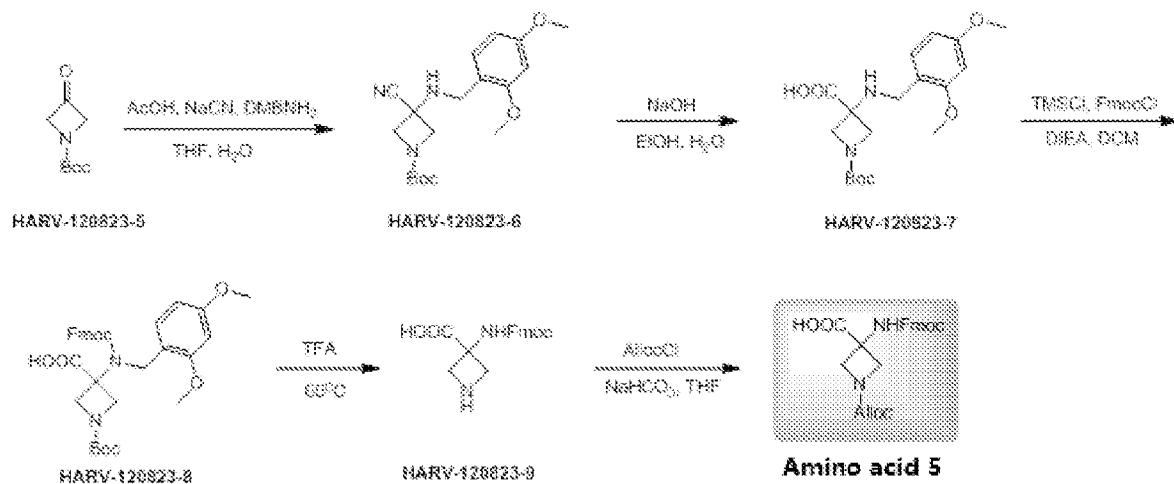
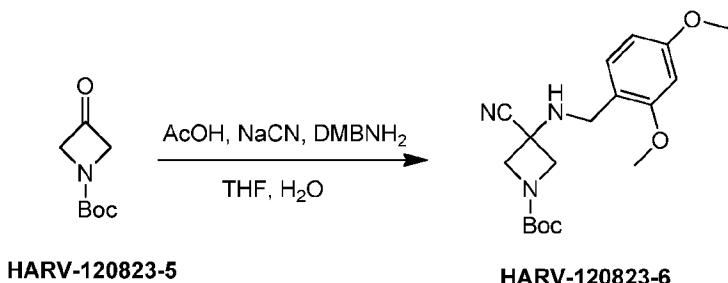
[00392] To a mixture of **HARV-120823-2** (85 g, 0.4 mol), NaHCO_3 (67.6 g, 0.804 mol).in dioxane (800 mL) was added a solution of Fmoc-Cl (104 g, 0.4 mol) in dioxane (200 mL) dropwise. Then the resulting mixture was stirred at room temperature for another 3 hrs. 300 mL of water was added and extracted with DCM (2*450 mL). The combined organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give crude product **HARV-120823-3**, which was purified by silica column chromatography to afford pure product **HARV-120823-3** (150 g, yield: 86%). **1H NMR** (CDCl_3 , 400 MHz, WH10085-002-1A): δ 7.77-7.75 (d, 2H), 7.57-7.55 (d, 2H), 7.42-7.38 (m, 2H), 7.33-7.26 (m, 2H), 5.50-5.48 (m, 1H), 4.54-4.53 (m, 2H), 4.22-4.19 (m, 1H), 3.68-3.67 (m, 1H), 3.58-3.46 (m, 3H), 2.46-2.32 (m, 2H), 1.46 (s, 9H). (See Figure 26)



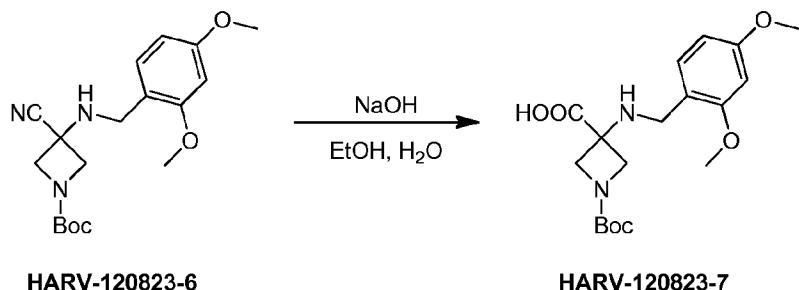
[00393] A solution of **HARV-120823-3** (150 g, 0.346 mol) in concentrated aqueous HCl (1000 mL) was stirred for 20 mins at room temperature. Then the mixture was heated to reflux overnight. The mixture was concentrated under reduced pressure to give 120 g of crude product **HARV-120823-4** which was used directly for next step without further purification.

1H NMR (DMSO , 400 MHz, WH10085-005-1A): δ 7.90-7.84 (m, 2H), 7.74-7.65 (m, 2H), 7.44-7.29 (m, 4H), 4.38-4.31 (m, 1H), 4.29-4.22 (m, 2H), 3.74-3.29 (m, 4H), 2.36-2.29 (m, 1H), 2.21-2.13 (m, 1H).

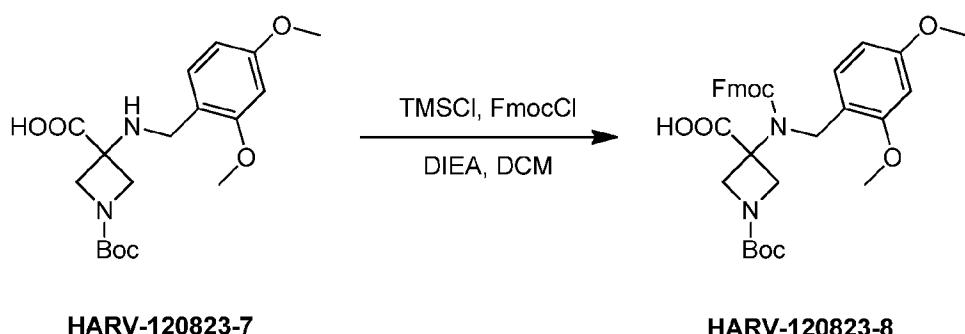
[00394] To a solution of **HARV-120823-4** (100 g, 0.284 mol) in CH₃CN (200 mL) was added pyridine to adjust pH=7. Then the mixture was stirred for 30 min. Then Alloc-Cl (34.21 g, 0.284 mol) was added drop-wise. After the addition, the resulting mixture was stirred for 1 h. The mixture was concentrated and the residue was dissolved in DCM, washed with HCl solution, separated the organic layer and dried over Na₂SO₄, concentrated to give crude product **HARV-120823** which was purified by silica column chromatography to afford the pure product **HARV-120823** (80 g, yield: 75%). **1H NMR** (CDCl₃, 400 MHz, WH10085-006-1A): δ 7.76-7.74 (d, 2H), 7.57-7.56 (d, 2H), 7.41-7.38 (m, 2H), 7.32-7.29 (m, 2H), 5.93-5.89 (m, 1H), 5.32-5.19 (m, 2H), 4.59 (m, 2H), 4.43 (m, 2H), 4.20-4.18 (m, 1H), 4.00-3.93 (m, 1H), 3.76-3.54 (m, 3H), 2.53-2.27 (m, 2H).



[00395] 5.06 g of **amino acid 3** and 5.07 g **amino acid 4**.were obtained by Chiral Separation.

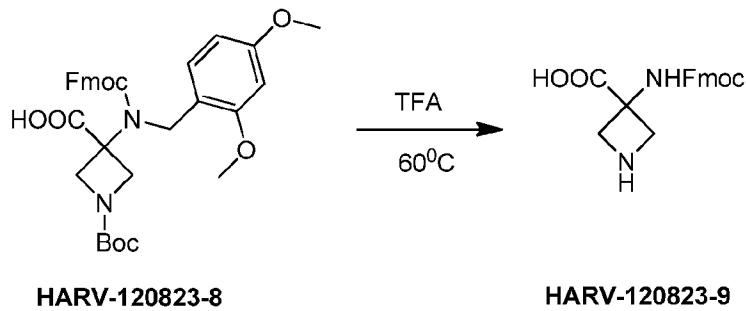
1H NMR (DMSO, 400 MHz, WH10085-006-2F): δ 12.91 (brs, 1 H); 8.067-8.054 (d, J =5.2 Hz, 1H), 7.90-7.88 (d, 2H), 7.71-7.69 (d, 2H), 7.43-7.39 (m, 2H), 7.35-7.31 (m, 2H), 5.96-5.86 (m, 1H), 5.31-5.15 (m, 2H), 4.53-4.52 (m, 2H), 4.32-4.30 (m, 2H), 4.24-4.21 (m, 1H), 3.83-3.63 (m, 1H), 3.61-3.51 (m, 3H), 2.23-2.17 (m, 2H).

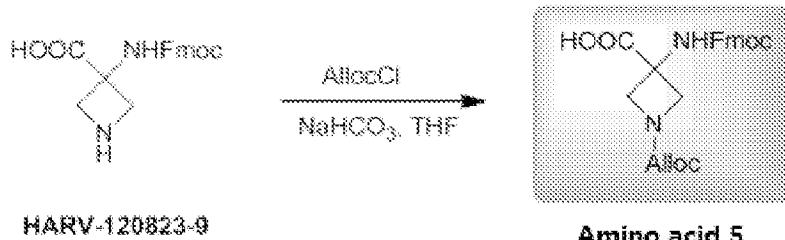

Example 4

[00396] Preparation of amino acid **5** is shown in Scheme 3:


Scheme 4:

Synthetic procedure:


[00397] 2, 4-Dimethoxy-benzylamine (24.2 g, 144.7 mmol) and acetic acid (8.4 g, 140 mmol) in 40 mL of water were added to a solution of tert-butyl 3-oxoazetidine-1-carboxylate (20 g, 116.8 mmol) in THF (80 mL). After five minutes, a solution of sodium cyanide (1.03 g, 116.8 mmol) in 10 mL of water was added, and the mixture was heated at 60°C for 15 hours. After cooling, the reaction mixture was extracted with EA (150mL*2). The organics were washed with brine, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The resulting residue was purified on a silica gel column using PE/EA = 20/1~5/1 to give 35g product as a pale yellow oil (yield 86.24%).


[00398] To a solution of 3-cyano-3-(2,4-dimethoxy-benzylamino)-azetidine-1-carboxylic acid tert-butyl ester (35 g, 100 mmol) in ethanol (400 mL) was added NaOH (12.09 g, 300 mmol). The mixture was stirred at room temperature for 16 hours. Then an aqueous solution of NaOH (200 mL, 5 M) was added, the mixture was stirred at 90°C for 2h. LCMS showed starting material was consumed. After cooling to room temperature, the residue was neutralized to pH~6 with acetic acid. The precipitate was filtered, washed with water and dried in vacuo to give 30g product (yield 81.27%). **¹H NMR** (400 MHz, DMSO-d₆, WH10085-004-1A) δ 7.22 (d, J = 8.4 Hz, 1H), 6.54 (s, 1H), 6.49 (d, J = 8.0 Hz, 1H), 4.12-4.08 (m, 2H), 3.78-3.75 (m, 8H), 3.67 (s, 2H), 1.38 (s, 9H).

[00399] To a solution of 3-(2,4-Dimethoxy-benzylamino)-azetidine-1,3-dicarboxylic acid mono-tert-butyl ester (21 g, 57.31 mmol) in DCM (200 mL) was added TMSCl (6.23 g, 57.31 mmol), FmocCl (14.83 g, 57.31 mmol) and DIEA (14.81 g, 114.63 mmol). The mixture was stirred at room temperature for 30 minutes, TLC and LCMS showed the starting material was consumed. Then water was added and the mixture was extracted with DCM (3×150mL). The combined organic layers were washed with sat. NaHCO₃ and brine, dried over MgSO₄ and concentrated to give the residue, which was used directly for the next step.

[00400] 3-[(2,4-Dimethoxy-benzyl)-(9H-fluoren-9-ylmethoxycarbonyl)-amino]-azetidine-1,3-dicarboxylic acid mono-tert-butyl ester (30 g, 51 mmol) in CF_3COOH (200 mL) was stirred at 60°C for 16 hours. LCMS showed the starting material was consumed. After cooling to room temperature, the mixture was concentrated to give residue used directly for the next step.

[00401] To a solution of 3-(9H-Fluoren-9-ylmethoxycarbonylamino)-azetidine-3-carboxylic acid (30 g, 88.66 mmol) in THF (200 mL) were added sat. NaHCO_3 (40 mL) and Alloc-Cl (11 g, 88.7 mmol). The mixture was stirred at room temperature for 30 minutes, TLC and LCMS showed the starting material was consumed. Then water was added and the mixture was extracted with DCM (3×150mL). The combined organic layers were washed with sat. NaHCO_3 , brine, dried over MgSO_4 and concentrated. The residue was purified by silica gel column (DCM : MeOH = 100:1 ~ 5:1) to give 6.5 g product.(yield 30.2% for 3 steps). **$^1\text{H NMR}$** (400 MHz, DMSO-d6) : 7.89 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.2 Hz, 2H), 7.43-7.32 (m, 4H), 5.93-5.86 (m, 1H), 5.27 (d, J = 17.2 Hz, 1H), 5.16 (d, J = 14.4 Hz, 1H), 4.48 (d, J = 5.2 Hz, 2H), 4.33 (d, J = 6.4 Hz, 2H), 4.24 (t, J = 6.4 Hz, 1H), 4.12-4.00 (m, 4H). **MS:** m/z 445.2 $[\text{M}+\text{Na}]^+$.

Example 5

[00402] Preparation of stapled peptides

[00403] Solid-Phase Peptide Synthesis: Peptides were prepared using Fmoc chemistry on one of the following resins: Rink Amide MBHA, Rink Amide MBHA Low Loading,

PAL-NovaSyn TG, NovaPEG Rink Amide resin, or NovaPEG Rink Amide Low Loading Resin. The dry resin was typically swelled in dichloromethane and then N-methyl-2-pyrrolidone (NMP) before use. Fmoc protecting groups were removed using 25% (v/v) piperidine in NMP (4x5min). Natural amino acids were typically coupled for 60 minutes using 4 equivalents of Fmoc-protected amino acid, 4 equivalents of (1-Cyano-2-ethoxy-2-oxoethylidenaminoxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU) as the coupling reagent, and 8 equivalents of N,N-diisopropylethylamine (DIPEA) as the base. Non-natural amino acids (*e.g.* S₅, Pyr_R *et al.* such as those shown in Figure 10) were typically coupled for 120 minutes using 3 equivalents of Fmoc-protected amino acid, 3 equivalents of (1-Cyano-2-ethoxy-2-oxoethylidenaminoxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU) as the coupling reagent, and 6 equivalents of N,N-diisopropylethylamine (DIPEA) as the base. NMP was used to wash the resin (5x1min) in between each coupling and deprotection step.

[00404] N-terminal Acetylation: Peptides used for Circular Dichroism Spectroscopy (CD) were prepared with either free N-termini or acetylated N-termini. To acetylate the N-terminus on the solid phase, the N-terminal Fmoc was deprotected and the resin subsequently washed with NMP. Acetylation was typically carried out by treating the resin-bound peptide for 1-2 hours with a solution of 20 equivalents of acetic anhydride and 40 equivalents of DIPEA in NMP. After completion of the reaction, the resin was typically washed with NMP (5x1min), DCM (3x1min), and dried with methanol.

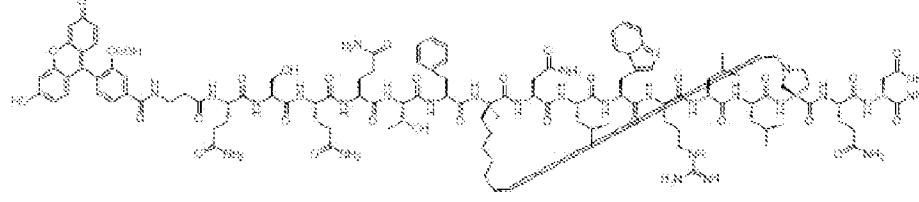
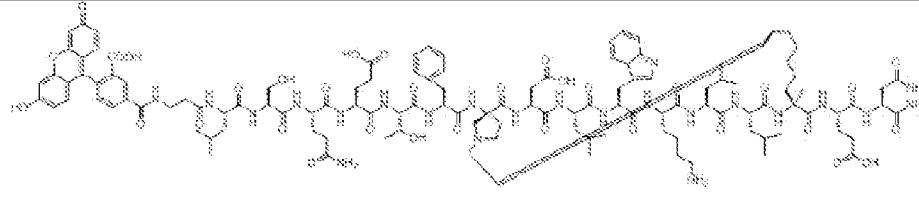
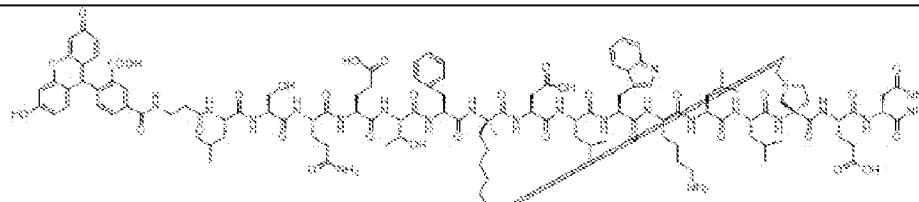
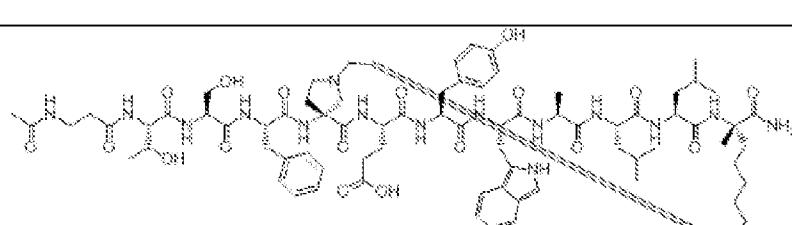
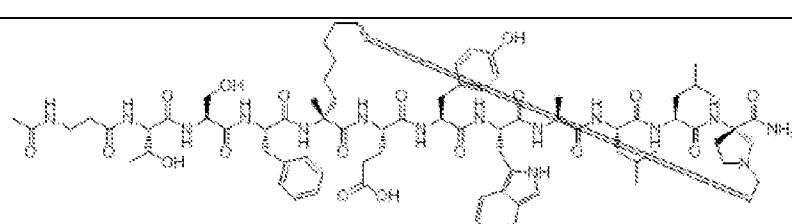
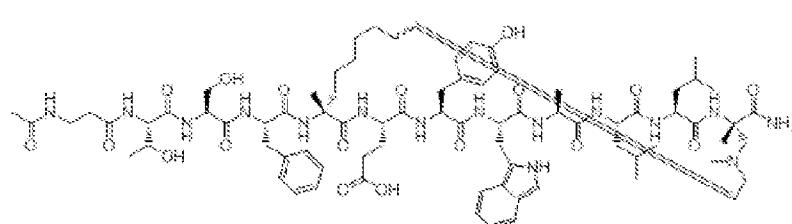
[00405] N-terminal labeling with Fluorescein Isothiocyanate Isomer I (FITC): Prior to labeling with FITC on the solid phase, Fmoc-β-alanine was coupled to the N-terminus of the peptides using procedures described above for natural amino acids. After subsequent deprotection of the N-terminal Fmoc, the resin-bound peptide was treated with a solution of 7 equivalents of FITC and 14 equivalents of DIPEA in NMP for 4 hours. After completion of the reaction, the resin was typically washed with NMP (5x1min), DCM (3x1min), and dried with methanol.

[00406] N-terminal labeling with 5-carboxyfluorescein (FAM): Prior to labeling with FAM on the solid phase, Fmoc-β-alanine was coupled to the N-terminus of the peptides using procedures described above for natural amino acids. After subsequent deprotection of the N-terminal Fmoc, the resin-bound peptide was typically treated with a solution in NMP of 8 equivalents of FAM, 8 equivalents of N,N-diisopropylcarbodiimide (DIC) and 8 equivalents of HOBT·H₂O for 2 hours. After the coupling reaction, the resin was washed with NMP (5x1min) followed by 25% piperidine in NMP (3x10min, or until the solution was no longer

colored). After the final wash with 25% piperidine in NMP, the resin was typically washed with NMP (5x1min), DCM (3x1min), and dried with methanol.

[00407] Ring-Closing Metathesis: Ring-closing metathesis was performed on the solid phase on peptides that contained either an N-terminal acetyl cap or an N-terminal Fmoc using the following general procedure. The resin was swelled in dry 1,2-dichloroethane (DCE) for at least 20 minutes. The resin-bound peptide was then treated for 2 hours with 25 mole % (relative to the initial loading of the resin) of Grubbs 1st Generation metathesis catalyst (Benzylidene-bis(tricyclohexylphosphine)dichlororuthenium, Bis(tricyclohexylphosphine)benzylidene ruthenium(IV) dichloride) dissolved to a concentration of approximately 8-10 mg/mL in DCE. Generally, 2 or 3 treatments with catalyst were used to achieve complete conversion to the hydrocarbon-stapled or alloc-stapled product. In between each treatment, excess catalyst was removed by washing with DCE (3x1min). After the final treatment with catalyst, the resin was typically washed multiple times with DCE, multiple times with DCM, and dried with methanol.

[00408] Palladium-catalyzed CO₂ Extrusion: Resin containing alloc-stapled peptides prepared by ring closing metathesis using the above procedures was swelled in dry dichloromethane (DCM) for at least 20 minutes. The resin was then treated for 15-30 minutes with 20-40 mole % (relative to the moles of carbamates present in the staple, calculated relative to the initial loading of the resin) of Pd(PPh₃)₄ dissolved in dry DCM to a final concentration of approximately 5-10mM. Typically, 2 treatments were performed to ensure complete reaction of the alloc-stapled starting material. In between each treatment, the resin was washed with dry DCM (3x1min).







[00409] Peptide Cleavage/Deprotection and Purification: The side-chain protecting groups were removed and the peptides cleaved from the resin simultaneously using the following procedure. Dry resin was treated with a solution of trifluoroacetic acid:triisopropylsilane:water (95:2.5:2.5) for 3 hours. After completion of the incubation, the volume of the solution was reduced by evaporation under a stream of N₂(g) and the resulting residue was treated with cold diethyl ether. The precipitated peptide was pelleted by centrifugation, the supernatant decanted, and the pellet air-dried. The crude peptides were typically dissolved in a 1:1 solution of acetonitrile:water and then purified by reverse phase HPLC using acetonitrile containing 0.1% (v/v) trifluoroacetic acid and water containing 0.1% (v/v) trifluoroacetic acid as the components of the mobile phase. The purity of the HPLC fractions was assessed by LC/MS, and clean fractions were pooled and concentrated by speedvac. The peptides were then lyophilized to dryness.

[00410] Liquid chromatography–mass spectrometry (LC/MS): The purified Alloc-stapled and amino-stapled peptides were analyzed by reverse-phase LC/MS using an Agilent 1260 series instrument and a Zorbax SB-C18 column. The mobile phase consisted of a gradient of acetonitrile and water, both containing 0.1% (v/v) trifluoroacetic acid.

[00411] Table 9 provides the electrospray mass spectral data (either under positive-ion or negative-ion mode) from LC/MS for the exemplary peptides.

Table 9.

Stapled peptide	m/z (positive-ion or negative-ion mode indicated)	Stapled peptide structure
Ac-SAH-p53-8 Pyr _R /S ₈ amino-stapled	2122.2 (M+H ⁺)	
Ac-SAH-p53-8 R ₈ /Pyr _S amino-stapled	2122.2 (M+H ⁺)	
Ac-SAH-p53-4 R ₈ /Pyr _S amino-stapled	2082.1 (M+H ⁺)	
Ac-SAH-p53-4 Pyr _R /S ₈ amino-stapled	2082.1 (M+H ⁺)	
FAM-b-alala-SAH-p53-8 Pyr _R /S ₈ Amino-Stapled	2509.2 (M+H ⁺)	

FAM-b-ala-SAH-p53-8 R ₈ /Pyr _S Amino-Stapled	2509.2 (M+H ⁺)	
FAM-b-ala-SAH-p53-4 Pyr _R /S ₈ Amino-Stapled	2469.2 (M+H ⁺)	
FAM-b-ala-SAH-p53-4 R ₈ /Pyr _S Amino-Stapled	2469.2 (M+H ⁺)	
Ac-b-ala-PM2 Pyr _R /S ₈ Amino-Stapled	1544.8 (M-H ⁺)	
Ac-b-ala-PM2 R ₈ /Pyr _S Amino-Stapled	1544.8 (M-H ⁺)	
Ac-b-ala-PM2 R ₈ /S _G N Amino-Stapled	1546.8 (M-H ⁺)	

FAM-b- ala-PM2 Pyr _R /S ₈ Amino- Stapled	1860.9 (M-H ⁺)	
FAM-b- ala-PM2 R ₈ /Pyr _S Amino- Stapled	1860.9 (M-H ⁺)	
FAM-b- ala-PM2 R ₈ /S _{GN} Amino- Stapled	1862.9 (M-H ⁺)	
Ac-PM2 Pyr _R /S ₈ Alloc- stapled	1517.8 (M-H ⁺)	
Ac-PM2 Pyr _R /Pyr _S Alloc- Stapled Isomer A	1532.7 (M-H ⁺)	
Ac-PM2 Pyr _R /Pyr _S Alloc- Stapled Isomer B	1532.7 (M-H ⁺)	

Example 6**[00412] Characterization of stapled peptides**

[00413] Circular Dichroism (CD) Spectroscopy: CD spectra (Figures 11A-11D) were obtained using unlabeled peptides in 10mM sodium phosphate pH 7.0 buffer. The raw data has been converted to the concentration-independent unit of molar ellipticity. α -Helices typically show dual minima at approximately 208nm and 222nm and a maximum at approximately 192nm. In Figure 11D, two distinct LC/MS peaks with the same mass were found for the Ac-PM2 Pyr_R/Pyr_S Alloc-Stapled peptide. These likely correspond to the E and Z isomers of the olefin in the staple. Both peptides are α -helical, although one isomer shows a slightly higher α -helical character.

[00414] Fluorescence Polarization (FP) Binding Assay Data: The p53-4, p53-8 and PM2 peptide sequences are all known to bind to the p53 recruitment pocket of the E3 ubiquitin ligase HDM2. For these binding experiments, a hexahistidine-tagged version of HDM2 (residues 17-125) was expressed in *E. coli* and purified to >90% purity. Standard fluorescence polarization assays were used to examine the binding of FITC-labeled peptides to this HDM2 construct. Assays were performed at room temperature and the buffer used was 50mM TRIS pH8.0, 140mM NaCl, 5mM β -mercaptoethanol. Error bars shown in Figures 12A-12K are the standard deviation of duplicate experiments. The dissociation constant (K_d) indicated on each plot was found by fitting the data with the Hill equation.

[00415] Cell Penetration by Confocal Microscopy: HeLa cells grown in DMEM/10% FBS with Pen/Strep were treated with 10 μ M FITC-labeled peptide at 37°C for 3.5 hours then washed and fixed with paraformaldehyde. The intracellular accumulation of the labeled peptides (Figures 13A-13C) was then imaged using a 20X objective on an Olympus FV300 Confocal Fluorescence Microscope.

[00416] Cell Penetration by Flow Cytometry: Jurkat cells grown in RPMI-1640/10% FBS with Pen/Strep were treated with 5 μ M FITC-labeled peptide at 37°C for 4 hours then washed multiple times and suspended in PBS containing propidium iodide. The intracellular accumulation of the labeled peptides was then analyzed by flow cytometry. Dead cells, which were positive for propidium iodide, were removed from analysis. Samples were performed in duplicate. The mean cellular fluorescence is shown in Figure 14A.

[00417] HeLa cells grown in EMEM/10% FBS with Pen/Strep were treated with 5 μ M FAM-labeled peptide at 37°C for 4 hours then washed multiple times and suspended in PBS containing propidium iodide. The intracellular accumulation of the labeled peptides was then analyzed by flow cytometry. Dead cells, which were positive for propidium iodide, were

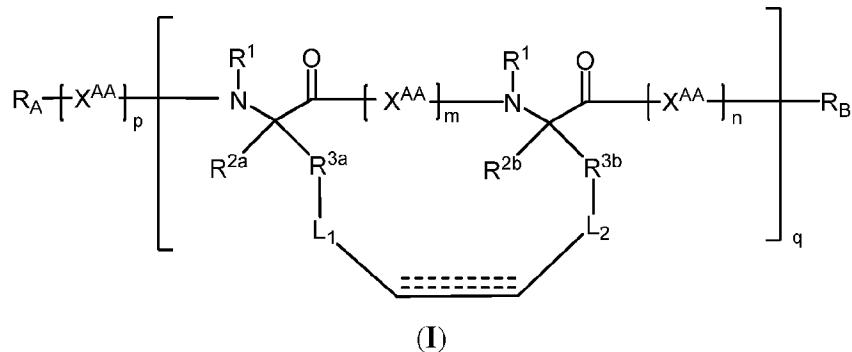
removed from analysis. Samples were performed in duplicate or triplicate. The mean cellular fluorescence is shown in Figure 14B.

Equivalents and Scope

[00418] In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.

[00419] Furthermore, the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Where elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements and/or features, certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements and/or features. For purposes of simplicity, those embodiments have not been specifically set forth in *haec verba* herein. It is also noted that the terms “comprising” and “containing” are intended to be open and permits the inclusion of additional elements or steps. Where ranges are given, endpoints are included. Furthermore, unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.

[00420] This application refers to various issued patents, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference. If there is a conflict between any of the incorporated references and the instant specification, the specification shall control. In addition, any particular embodiment of the present invention


that falls within the prior art may be explicitly excluded from any one or more of the claims. Because such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the invention can be excluded from any claim, for any reason, whether or not related to the existence of prior art.

[00421] Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments described herein. The scope of the present embodiments described herein is not intended to be limited to the above Description, but rather is as set forth in the appended claims. Those of ordinary skill in the art will appreciate that various changes and modifications to this description may be made without departing from the spirit or scope of the present invention, as defined in the following claims.

Claims

What is claimed is:

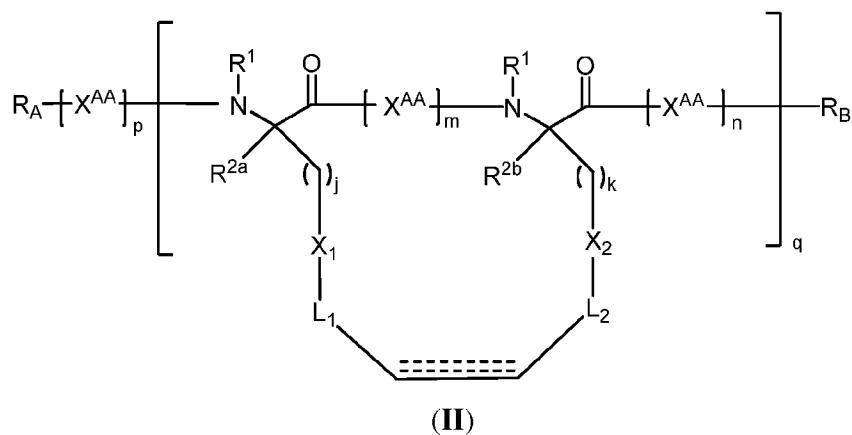
1. A polypeptide of Formula (I):

or a pharmaceutically acceptable salt thereof; wherein:

- each instance of ~~=====~~ independently represents a single bond or a double bond;
- each instance of R¹ is, independently, hydrogen; acyl; substituted or unsubstituted C₁₋₆ alkyl; or an amino protecting group;
- each of R^{2a} and R^{2b} is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl;
- each of R^{3a} and R^{3b} is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclylene; or optionally R^{2a} and R^{3a} are joined to form a ring; or optionally R^{2b} and R^{3b} are joined to form a ring;
- L₁ is independently, a bond, substituted or unsubstituted C₁₋₁₀ alkylene, or –C(=O)OR^{L1}–;
- L₂ is independently, a bond, substituted or unsubstituted C₁₋₁₀ alkylene, or –C(=O)OR^{L2}–; provided that when neither R^{2a} and R^{3a} nor R^{2b} and R^{3b} forms a ring, L₁ is –C(=O)OR^{L1}– or L₂ is –C(=O)OR^{L1}–;
- each of R^{L1} and R^{L2} is independently optionally substituted C₁₋₁₀ alkylene;
- R_A is, independently, –R_C, –OR_C, –N(R_C)₂, or –SR_C, wherein each instance of R_C is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl,

amino, or thiol protecting group; or two R_C groups together form a 5– to 6–membered heterocyclic or heteroaromatic ring;

R_B is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkenylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R_A and R_B together form a 5– to 6–membered heterocyclic or heteroaromatic ring;

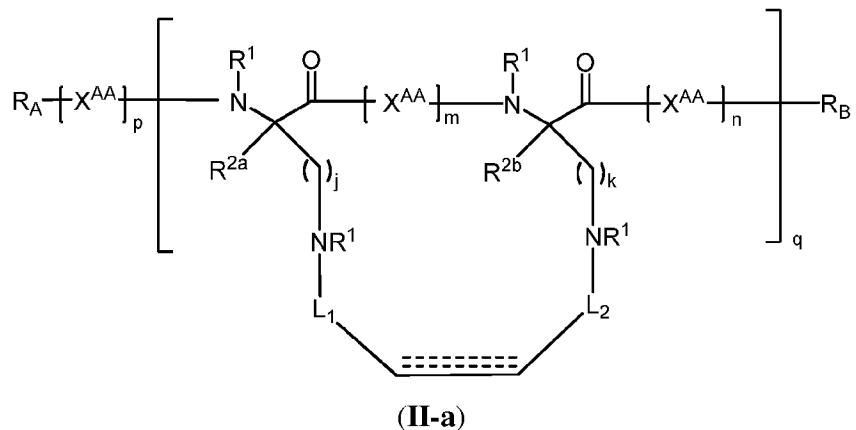

each instance of X_{AA} is, independently, an amino acid;

m is independently, an integer between 2 and 6, inclusive;

each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive; and

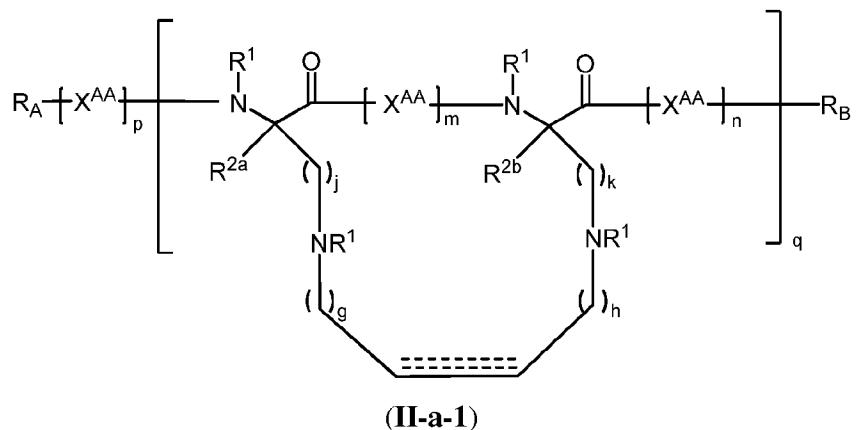
q is independently an integer between 1 and 10, inclusive.

2. The polypeptide of claim 1, wherein the polypeptide is of Formula (II):


or a pharmaceutically acceptable salt thereof; wherein:

each of X_1 and X_2 is independently a bond, $-CR^5R^6-$ or $-NR^1-$, provided that at least one of X_1 and X_2 is $-NR^1-$;

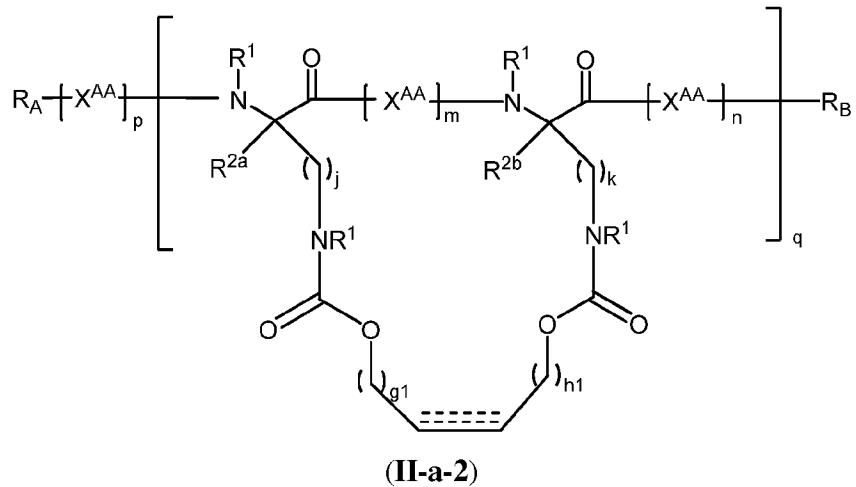
each of R^5 and R^6 is independently hydrogen, halogen, $-NO_2$, $-OH$, $-CN$, or C_{1-6} alkyl; and


each of j and k is independently an integer between 0 and 10, inclusive.

3. The polypeptide of claim 2, wherein the polypeptide is of Formula (II-a):

or a pharmaceutically acceptable salt thereof.

4. The polypeptide of claim 2, wherein the polypeptide is of Formula (II-a-1):

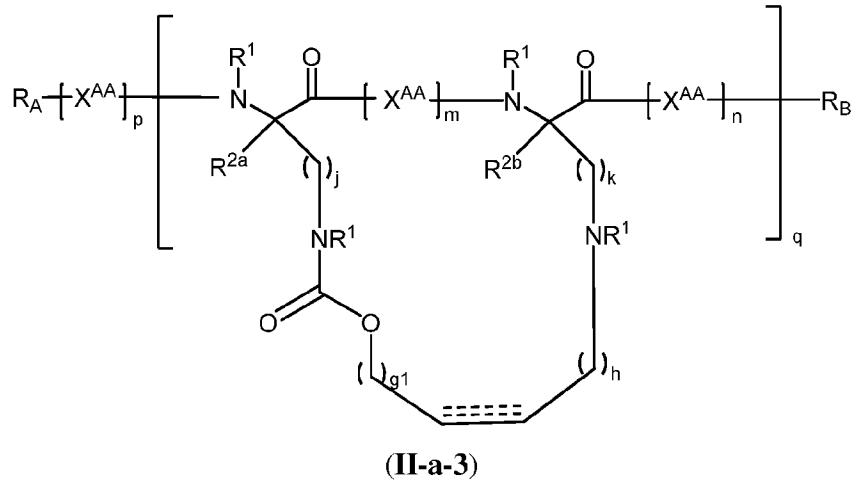


or a pharmaceutically acceptable salt thereof;

wherein

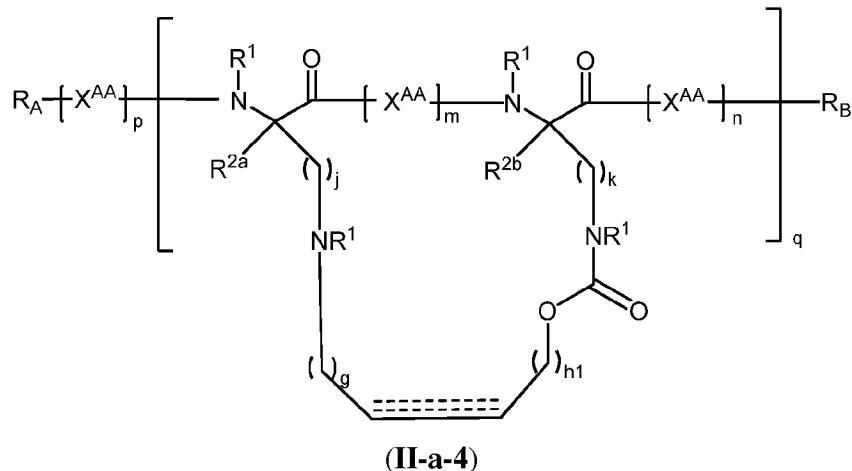
each of g and h is independently zero or an integer between 1 and 10, inclusive.

5. The polypeptide of claim 2, wherein the polypeptide is of Formula (II-a-2):

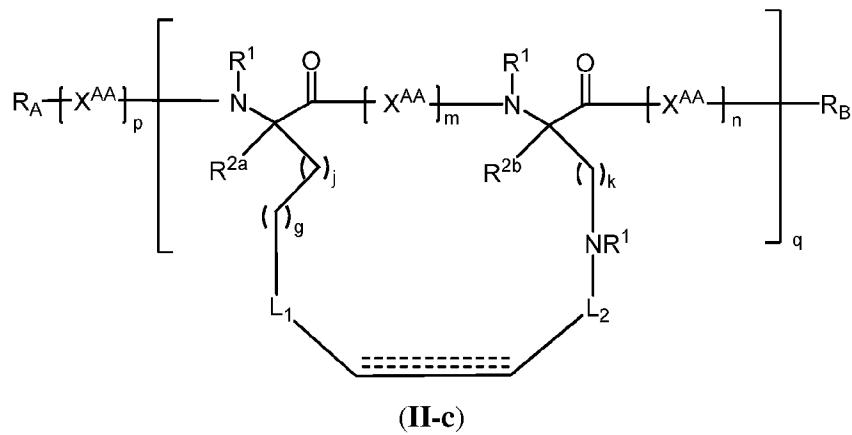
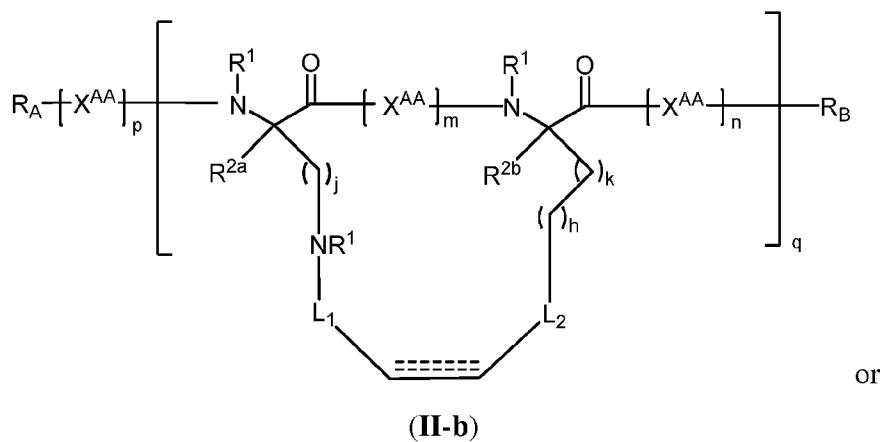


or a pharmaceutically acceptable salt thereof;

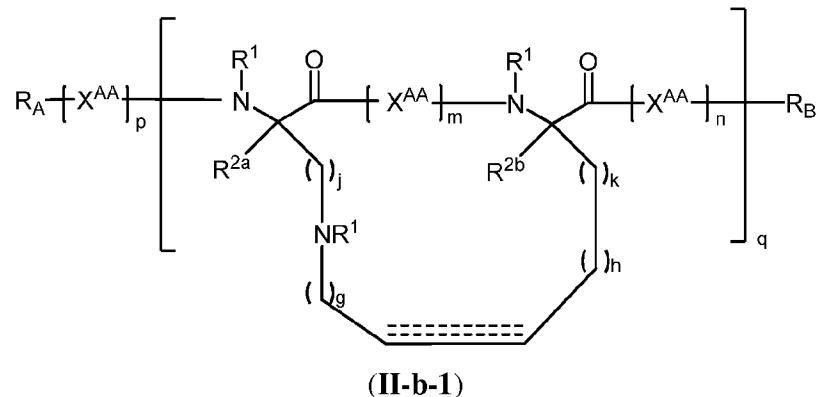
wherein


each of g1 and h1 is independently zero or an integer between 1 and 10, inclusive.

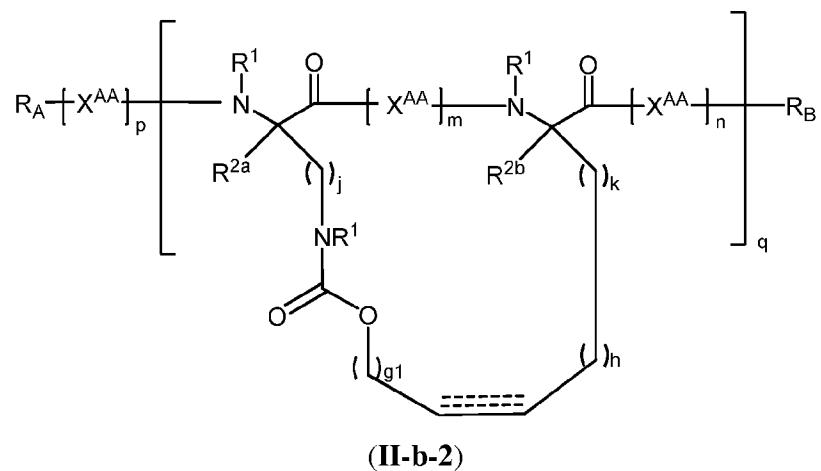
6. The polypeptide of claim 2, wherein the polypeptide is of Formula (II-a-3):



or a pharmaceutically acceptable salt thereof; wherein each of g1 and h is independently zero or an integer between 1 and 10, inclusive.

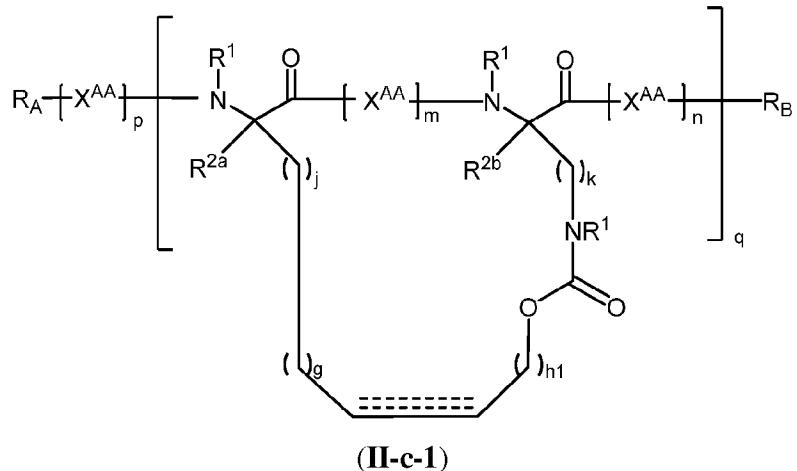
7. The polypeptide of claim 2, wherein the polypeptide is of Formula (II-a-4):


or a pharmaceutically acceptable salt thereof; wherein each of g and $h1$ is independently zero or an integer between 1 and 10, inclusive.

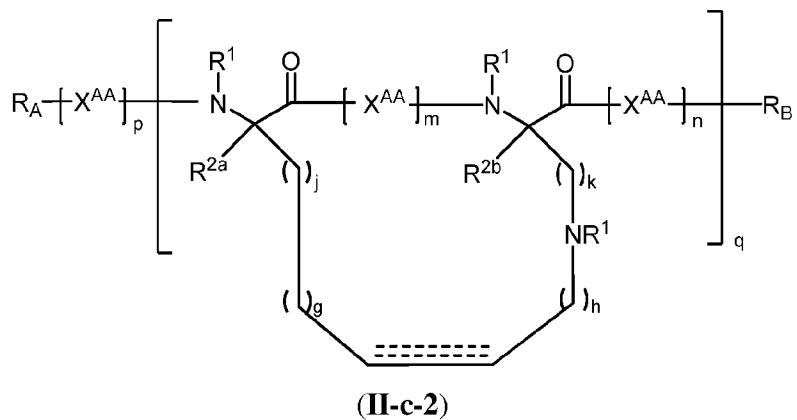
8. The polypeptide of claim 2, wherein the polypeptide is of Formula (II-b) or (II-c):


or a pharmaceutically acceptable salt thereof; wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

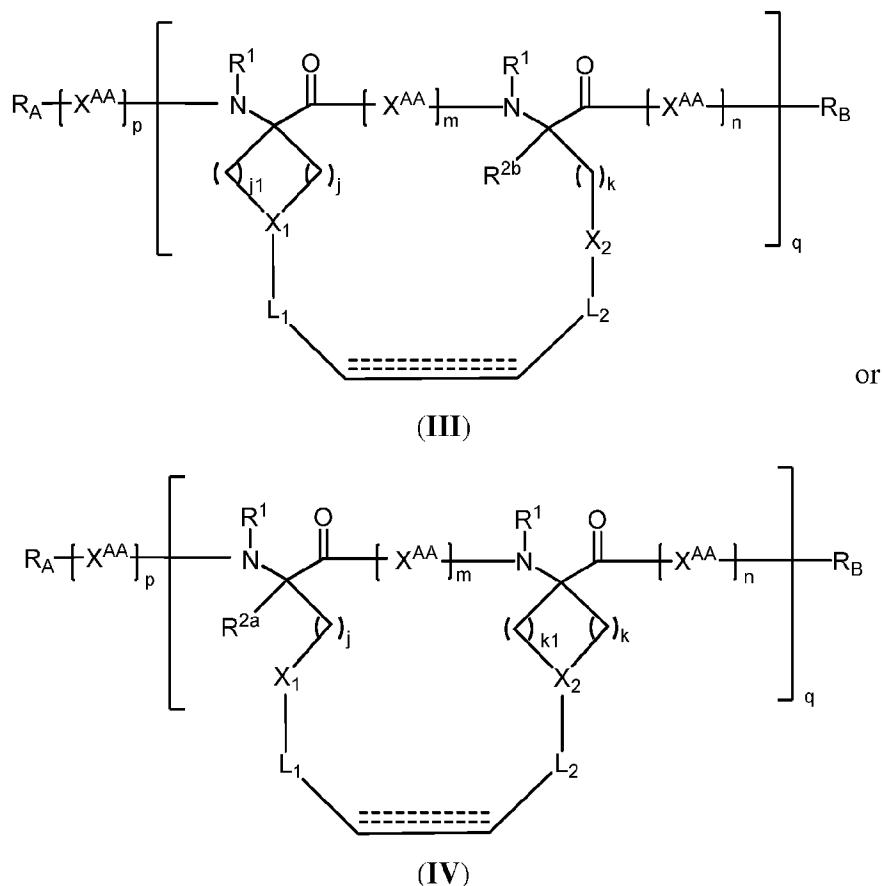
9. The polypeptide of claim 8, wherein the polypeptide is of Formula (II-b-1):


or a pharmaceutically acceptable salt thereof, wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

10. The polypeptide of claim 8, wherein the polypeptide is of Formula (II-b-2):


or a pharmaceutically acceptable salt thereof, wherein each of g1 and h is independently zero or an integer between 1 and 10, inclusive.

11. The polypeptide of claim 8, wherein the polypeptide is of Formula (II-c-1):


or a pharmaceutically acceptable salt thereof, wherein each of g and h1 is independently zero or an integer between 1 and 10, inclusive.

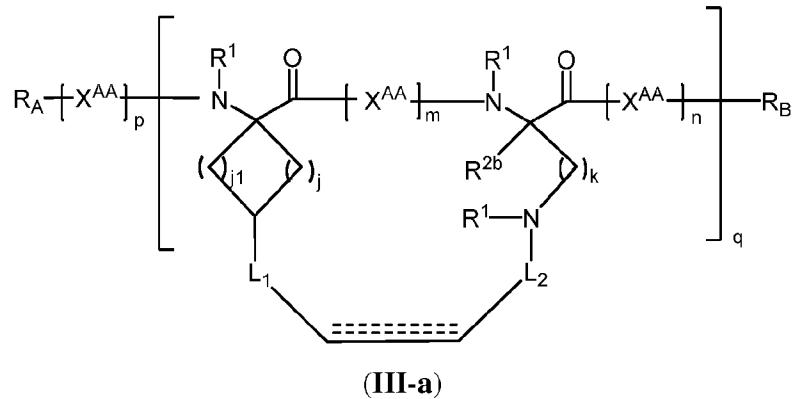
12. The polypeptide of claim 8, wherein the polypeptide is of Formula (II-c-2):

or a pharmaceutically acceptable salt thereof, wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

13. The polypeptide of claim 1, wherein the polypeptide is of Formula (III) or Formula (IV):

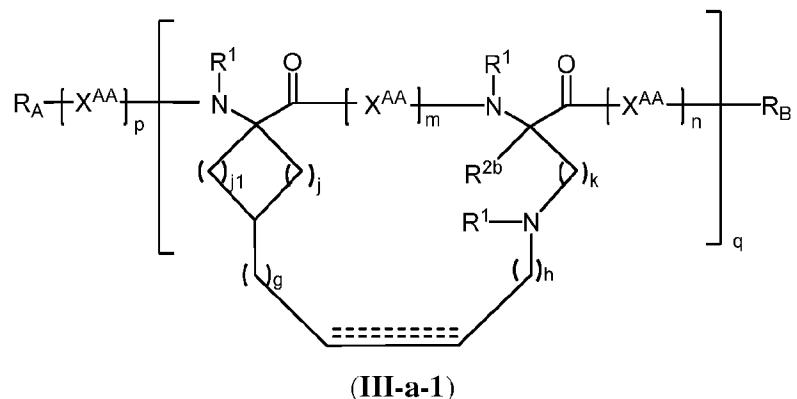
or a pharmaceutically acceptable salt thereof;

wherein:

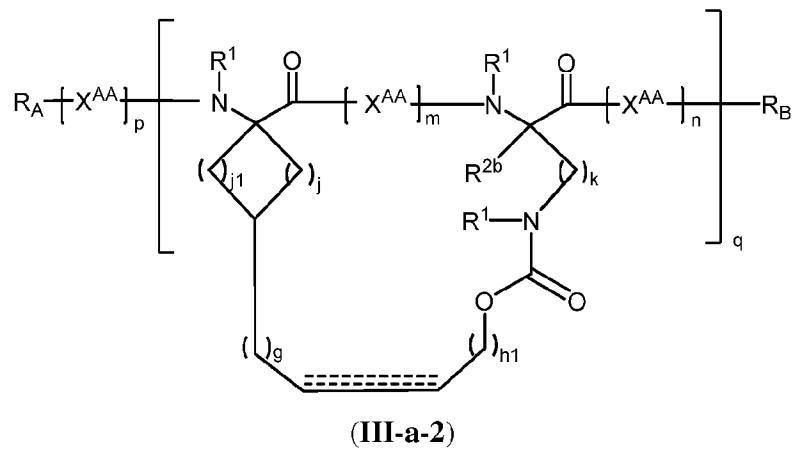

each of X_1 and X_2 is independently a bond, $-CR^5R^6-$ or $-NR^1-$ as valence permits;

R^1 is, independently, hydrogen, acyl, substituted or unsubstituted C_{1-6} alkyl, or an amino protecting group;

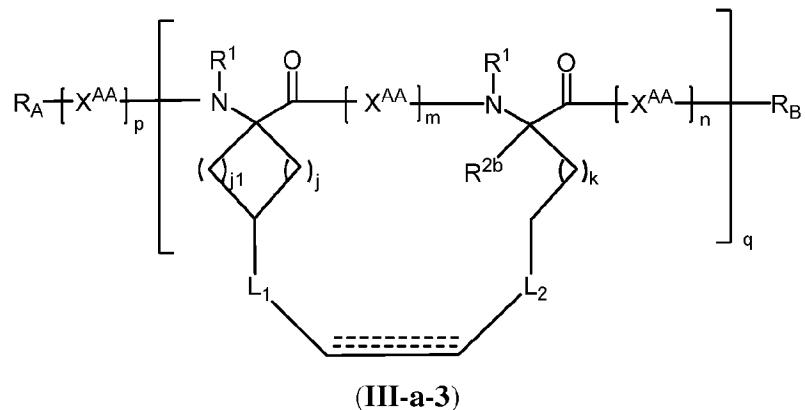
each of R^5 and R^6 is independently hydrogen, halogen, $-NO_2$, $-OH$, $-CN$, or C_{1-6} alkyl;


each of j , k , j_1 , and k_1 is independently an integer between 0 and 10, inclusive;

14. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-a):


or a pharmaceutically acceptable salt thereof.

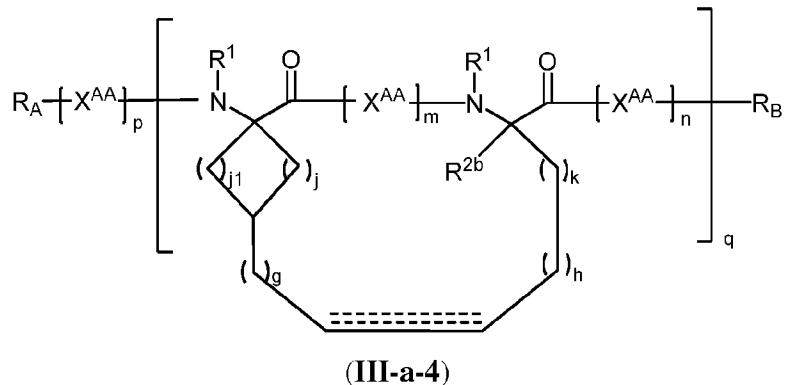
15. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-a-1):


or a pharmaceutically acceptable salt thereof; wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

16. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-a-2):

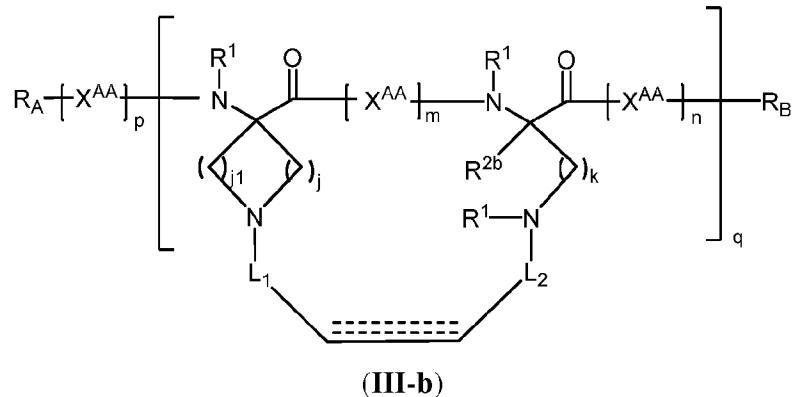
or a pharmaceutically acceptable salt thereof; wherein each of g and $h1$ is independently zero or an integer between 1 and 10, inclusive.

17. The polypeptide of claim 13, wherein the polypeptide is of Formula **(III-a-3)**:

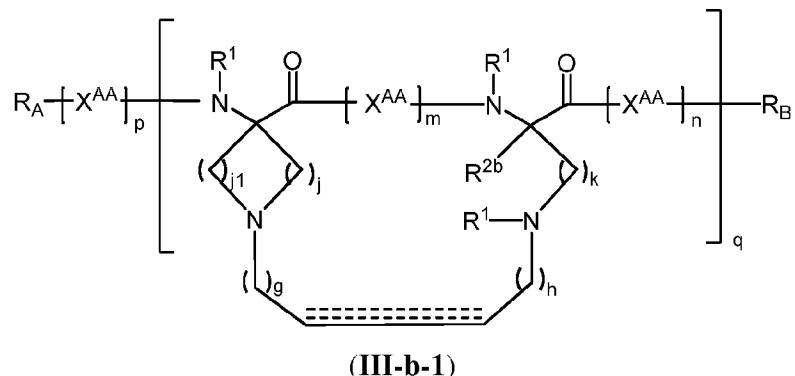


or a pharmaceutically acceptable salt thereof,

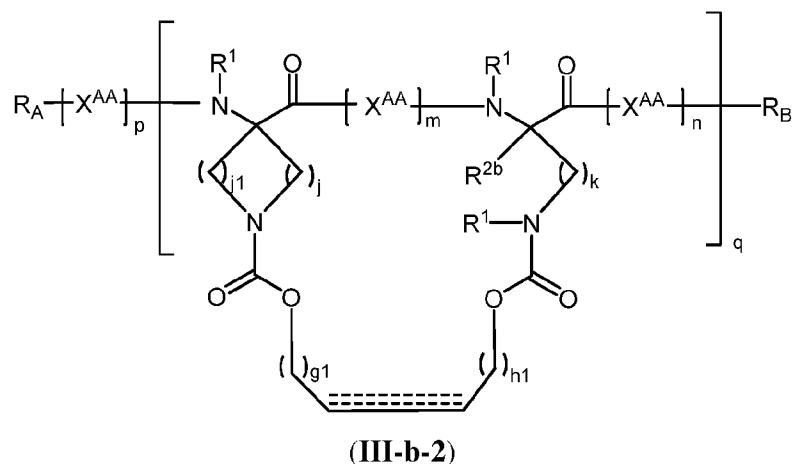
wherein


each of j , k , j_1 , and k_1 is independently an integer between 0 and 10, inclusive.

18. The polypeptide of claim 13, wherein the polypeptide is of Formula **(III-a-4)**:

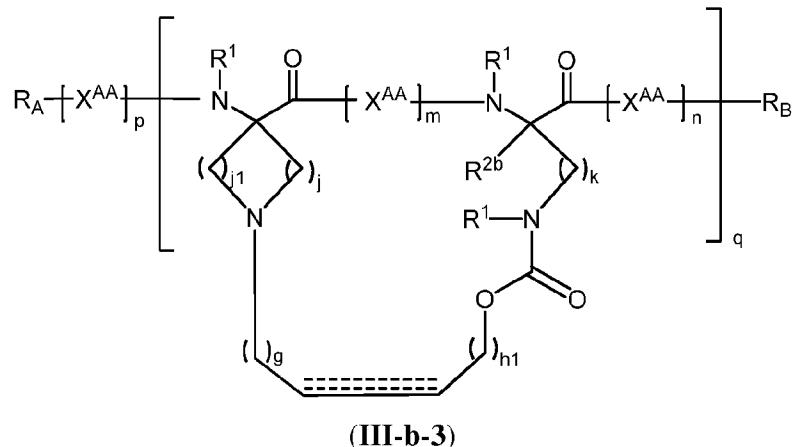

or a pharmaceutically acceptable salt thereof; wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

19. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-b):

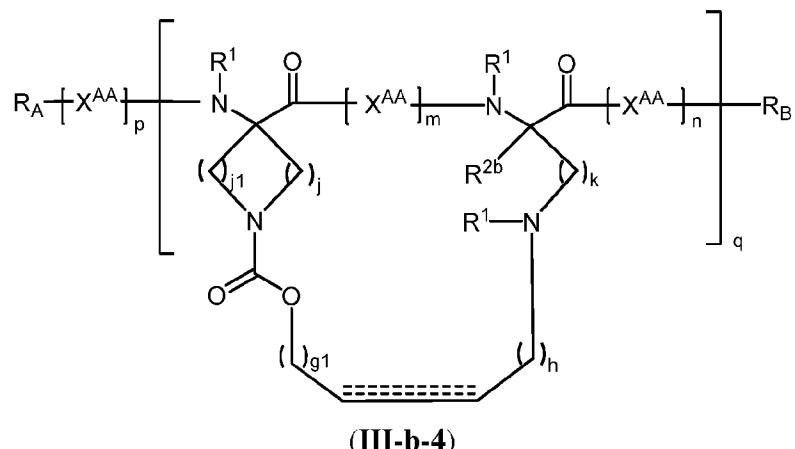

or a pharmaceutically acceptable salt thereof.

20. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-b-1):

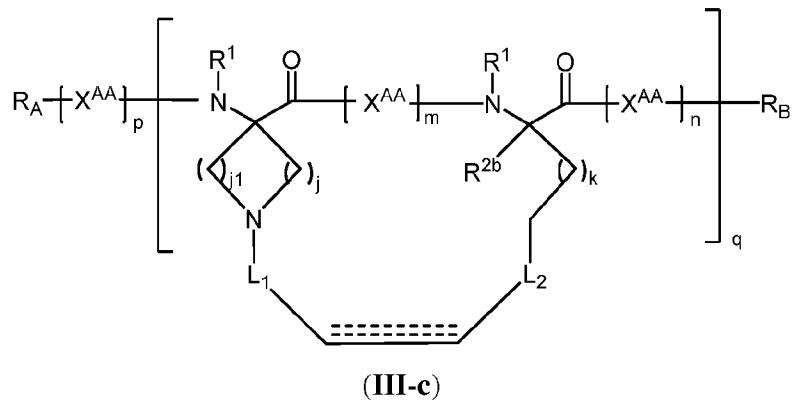
or a pharmaceutically acceptable salt thereof; wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.


21. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-b-2):

or a pharmaceutically acceptable salt thereof;

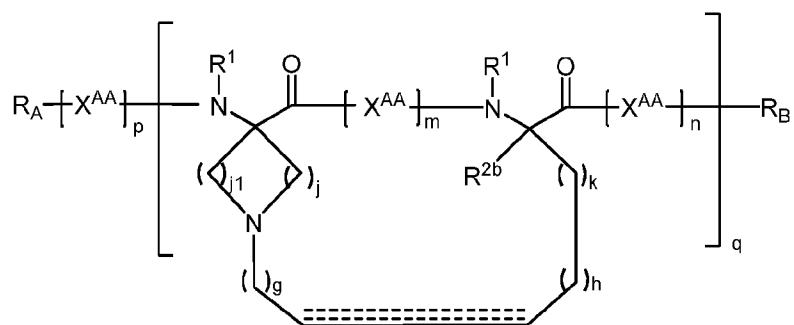

wherein each of g_1 and h_1 is independently zero or an integer between 1 and 10, inclusive.

22. The polypeptide of claim 13, wherein the polypeptide is of Formula **(III-b-3)**:


or a pharmaceutically acceptable salt thereof; wherein each of g and h_1 is independently zero or an integer between 1 and 10, inclusive.

23. The polypeptide of claim 13, wherein the polypeptide is of Formula **(III-b-4)**:

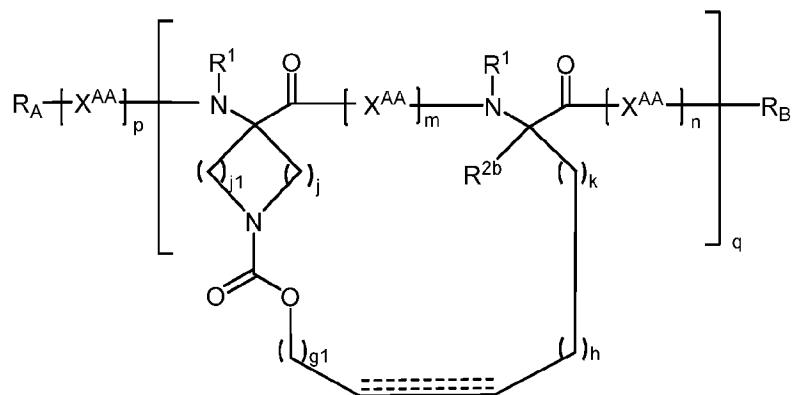
or a pharmaceutically acceptable salt thereof; wherein each of g_1 and h is independently zero or an integer between 1 and 10, inclusive.


24. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-c):

or a pharmaceutically acceptable salt thereof;

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

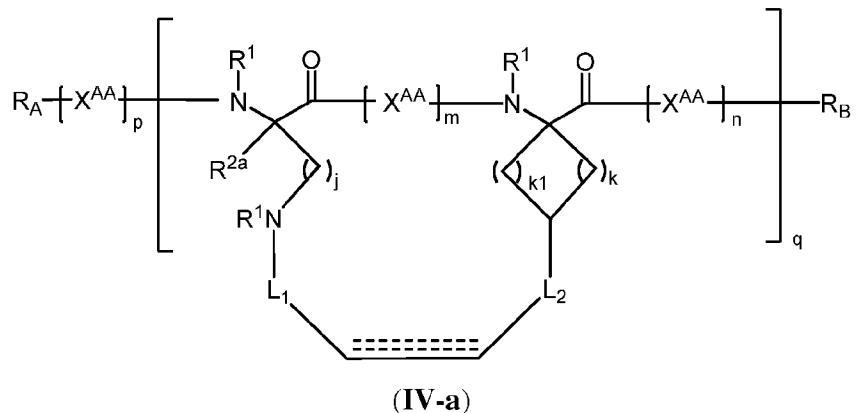
25. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-c-1):



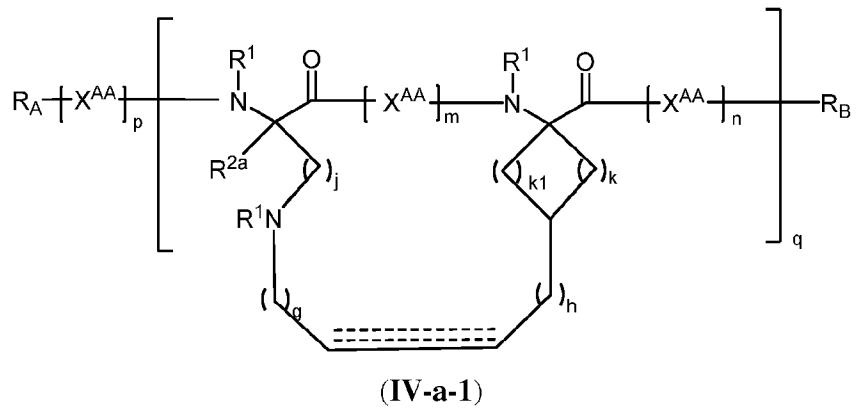
(III-c-1)

or a pharmaceutically acceptable salt thereof;

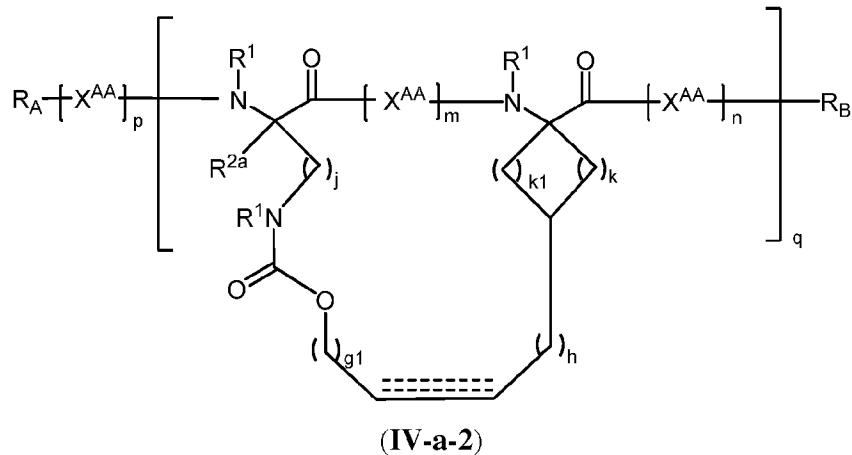
wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.


26. The polypeptide of claim 13, wherein the polypeptide is of Formula (III-c-2):

(III-c-2)

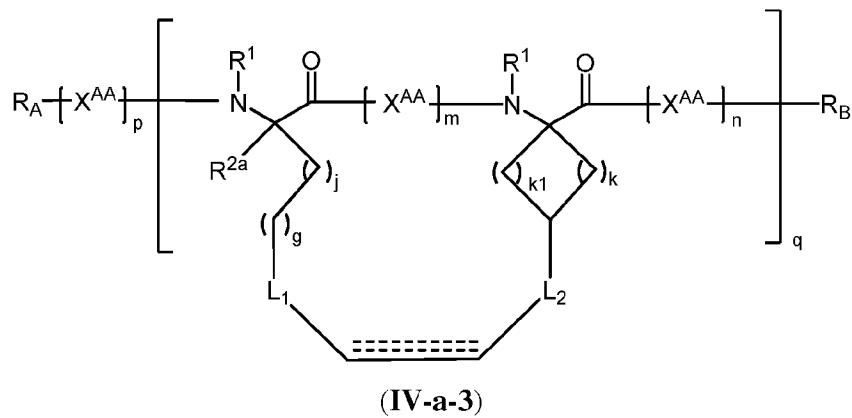

or a pharmaceutically acceptable salt thereof;
 wherein each of g_1 and h is independently zero or an integer between 1 and 10, inclusive.

27. The polypeptide of claim 1, wherein the polypeptide is of Formula (IV-a):


or a pharmaceutically acceptable salt thereof.

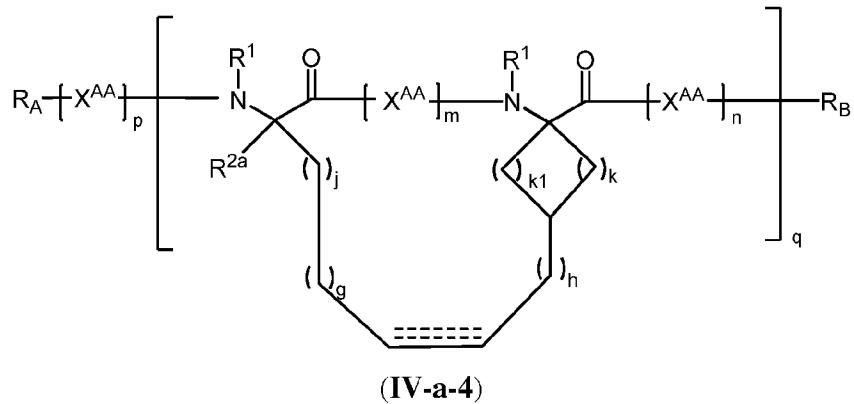
28. The polypeptide of claim 27, wherein the polypeptide is of Formula (IV-a-1):

or a pharmaceutically acceptable salt thereof,
 wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.


29. The polypeptide of claim 27, wherein the polypeptide is of Formula **(IV-a-2)**:

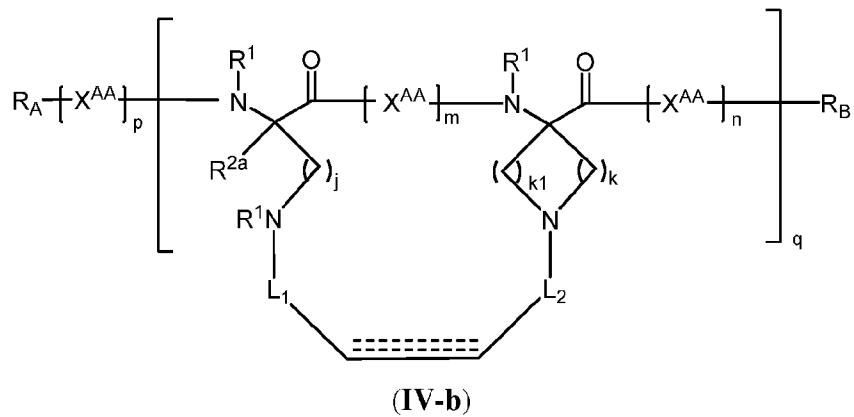
or a pharmaceutically acceptable salt thereof,

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

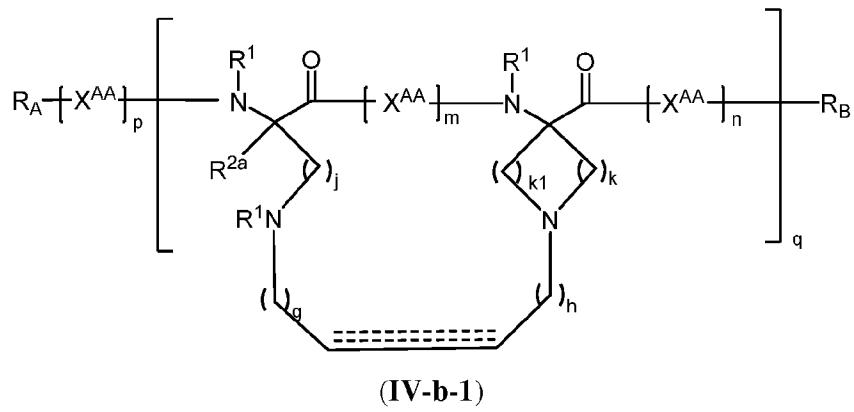

30. The polypeptide of claim 27, wherein the polypeptide is of Formula **(IV-a-3)**:

or a pharmaceutically acceptable salt thereof,

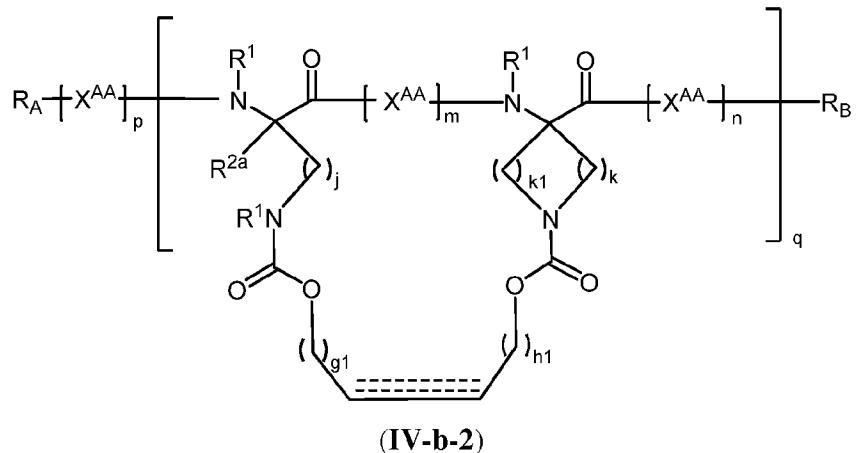
wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.


31. The polypeptide of claim 27, wherein the polypeptide is of Formula **(IV-a-4)**:

or a pharmaceutically acceptable salt thereof,

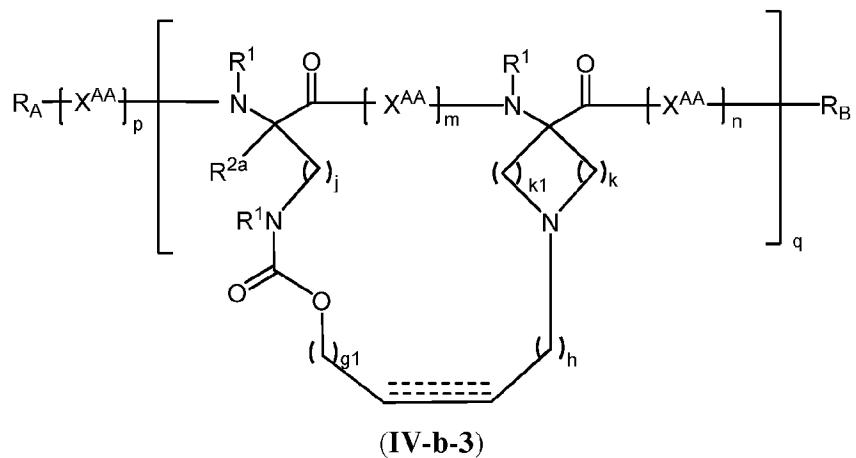

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

32. The polypeptide of claim 1, wherein the polypeptide is of Formula **(IV-b)**:


or a pharmaceutically acceptable salt thereof.

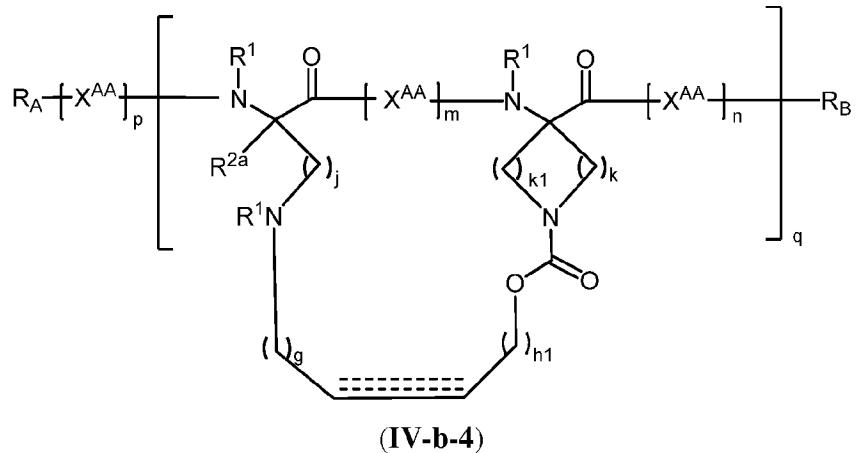
33. The polypeptide of claim 32, wherein the polypeptide is of Formula **(IV-b-1)**:

or a pharmaceutically acceptable salt thereof, wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

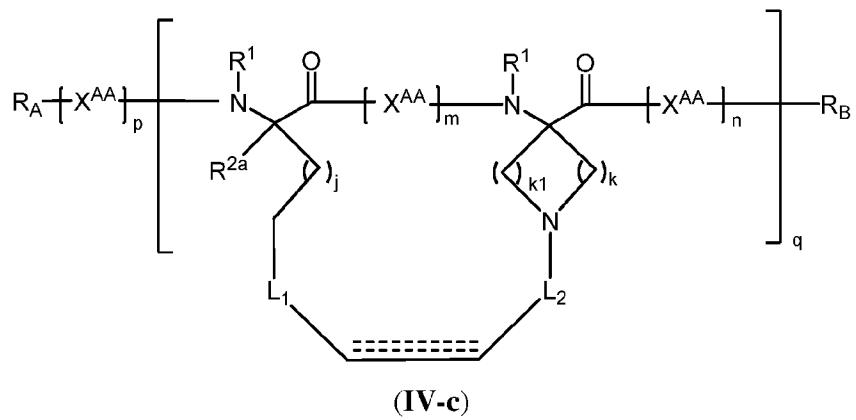

34. The polypeptide of claim 32, wherein the polypeptide is of Formula **(IV-b-2)**:

or a pharmaceutically acceptable salt thereof,

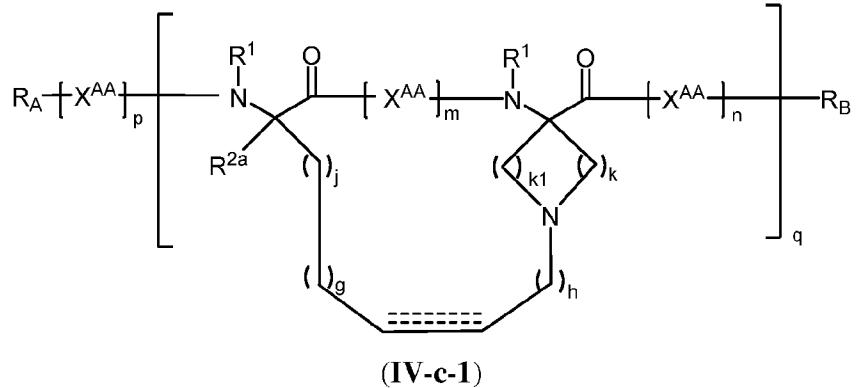
wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.


35. The polypeptide of claim 32, wherein the polypeptide is of Formula **(IV-b-3)**:

or a pharmaceutically acceptable salt thereof,

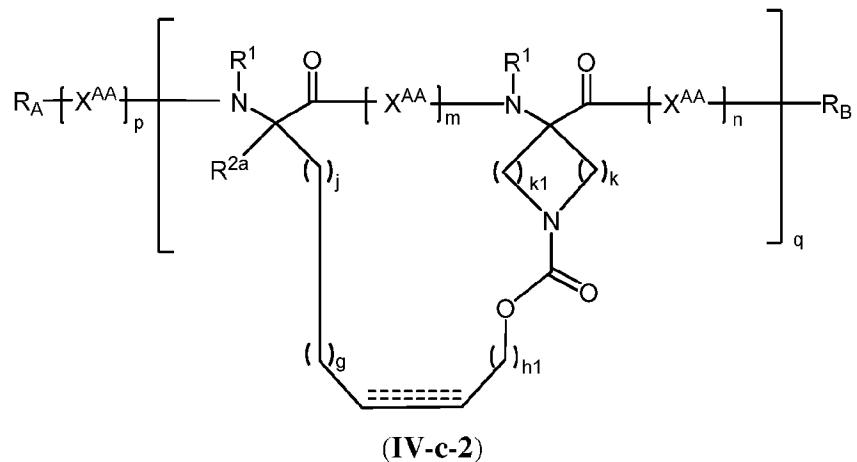

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

36. The polypeptide of claim 32, wherein the polypeptide is of Formula **(IV-b-4)**:


or a pharmaceutically acceptable salt thereof, wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

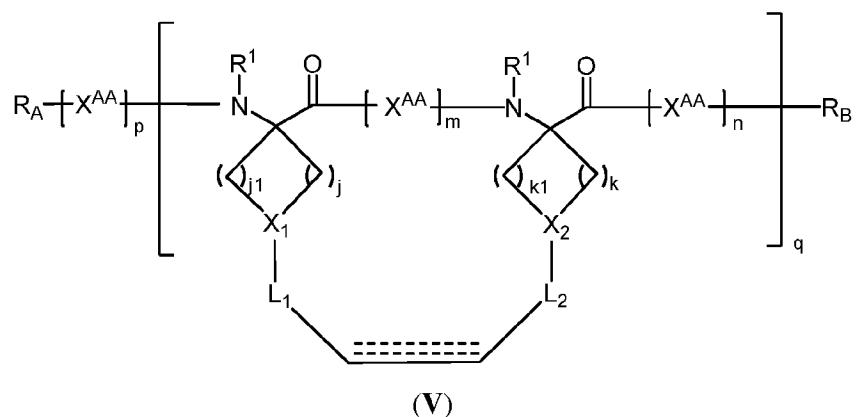
37. The polypeptide of claim 1, wherein the polypeptide is of Formula **(IV-c)**:

or a pharmaceutically acceptable salt thereof.

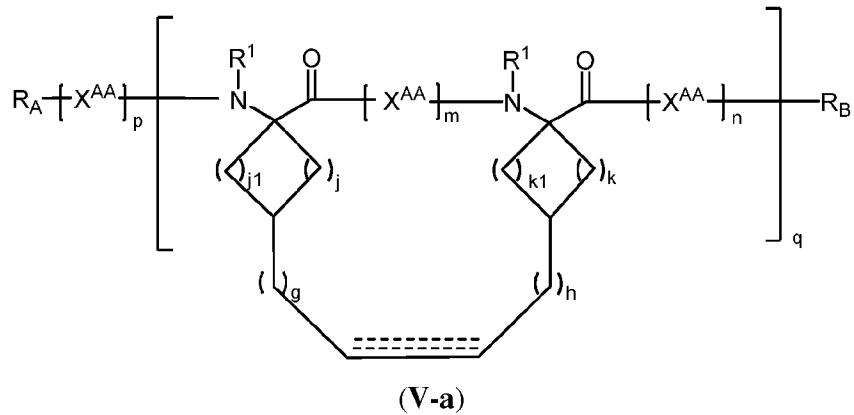

38. The polypeptide of claim 37, wherein the polypeptide is of Formula **(IV-c-1)**:

or a pharmaceutically acceptable salt thereof,

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

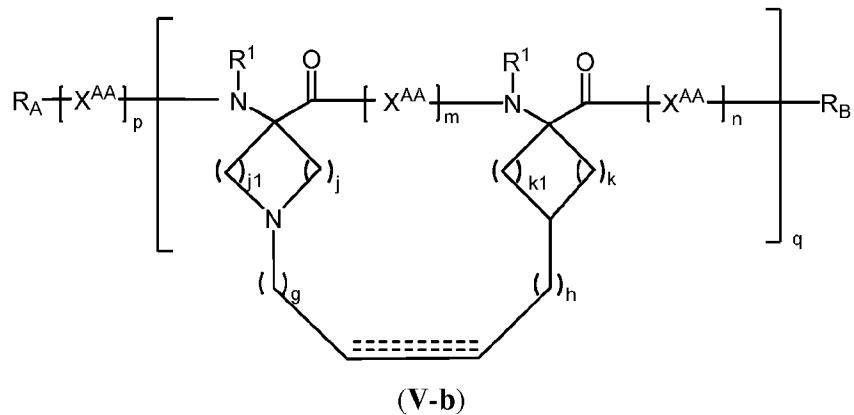

39. The polypeptide of claim 37, wherein the polypeptide is of Formula **(IV-c-2)**:

or a pharmaceutically acceptable salt thereof,


wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

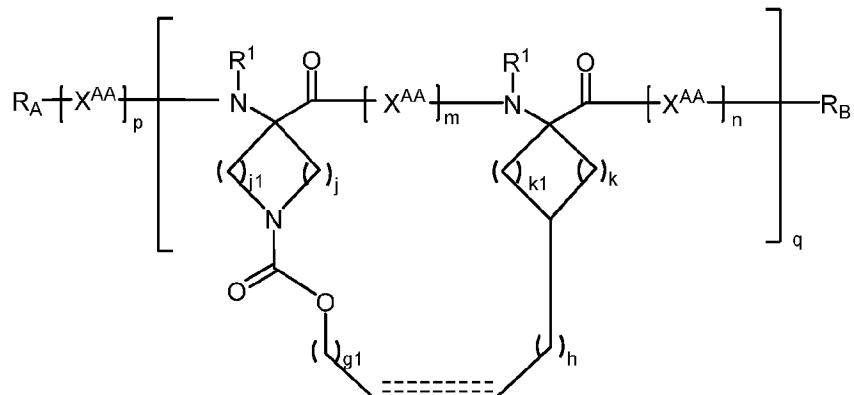
40. The polypeptide of claim 1, wherein the polypeptide is of Formula **(V)**:

or a pharmaceutically acceptable salt thereof.


41. The polypeptide of claim 1, wherein the polypeptide is of Formula (V-a):

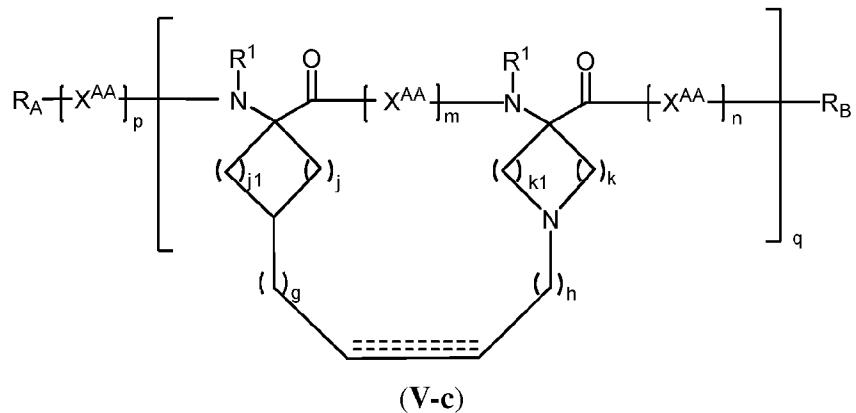
or a pharmaceutically acceptable salt thereof,

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.


42. The polypeptide of claim 1, wherein the polypeptide is of Formula (V-b):

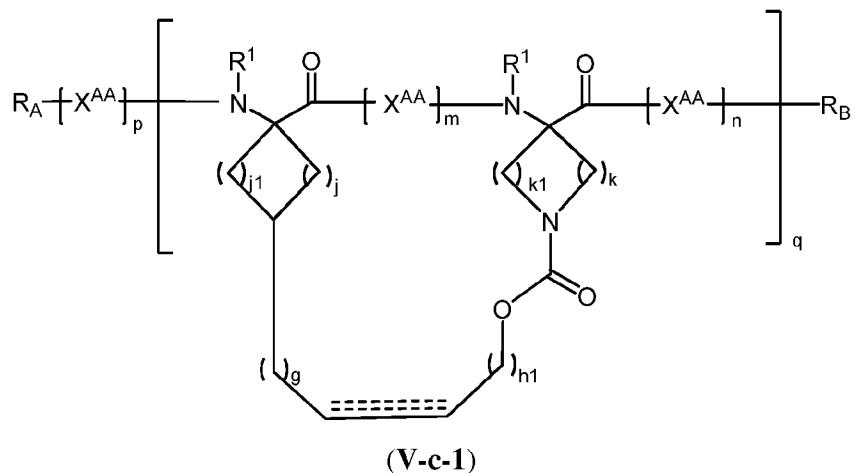
or a pharmaceutically acceptable salt thereof,

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

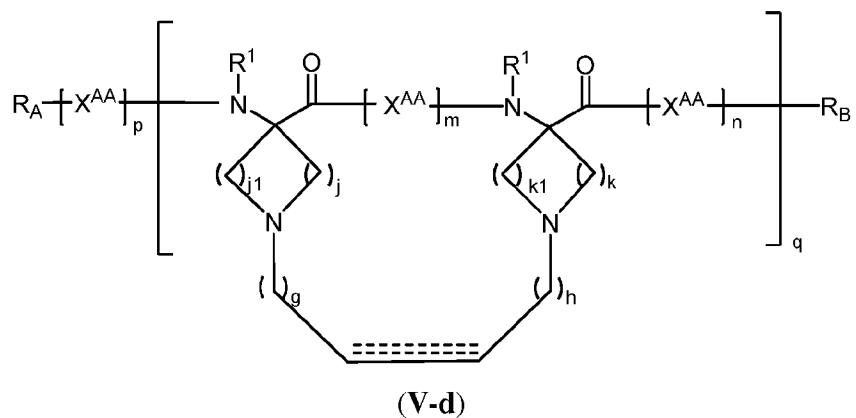

43. The polypeptide of claim 42, wherein the polypeptide is of Formula (V-b-1):

(V-b-1)

or a pharmaceutically acceptable salt thereof.

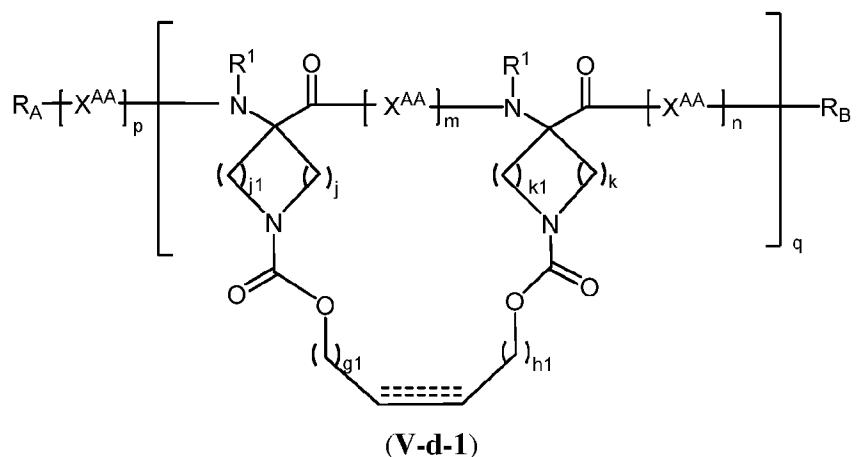

44. The polypeptide of claim 1, wherein the polypeptide is of Formula (V-c):

or a pharmaceutically acceptable salt thereof,

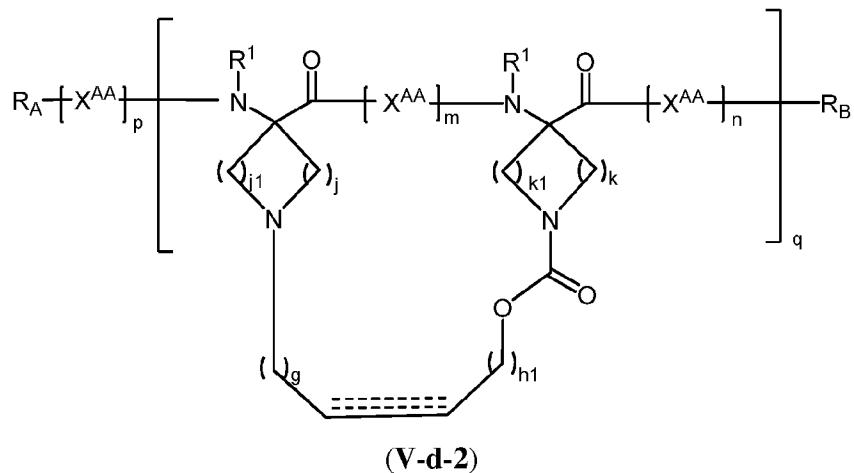

wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

45. The polypeptide of claim 44, wherein the polypeptide is of Formula (V-c-1):

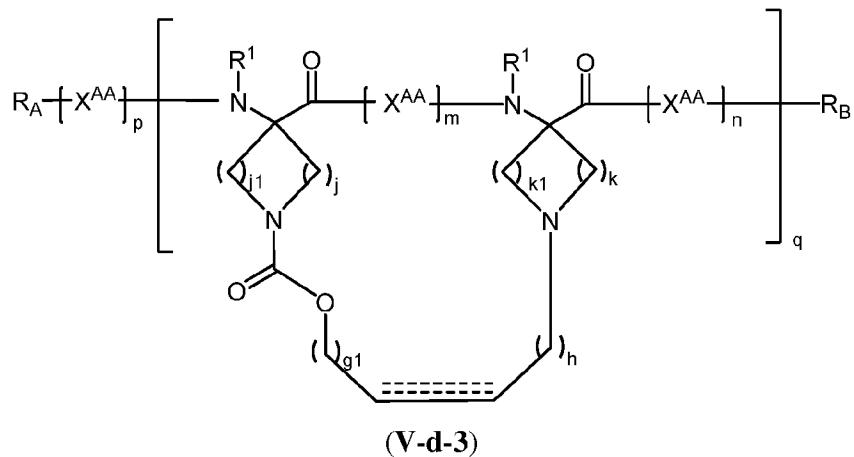
or a pharmaceutically acceptable salt thereof.


46. The polypeptide of claim 1, wherein the polypeptide is of Formula (V-d):

or a pharmaceutically acceptable salt thereof,


wherein each of g and h is independently zero or an integer between 1 and 10, inclusive.

47. The polypeptide of claim 46, wherein the polypeptide is of Formula (V-d-1):


or a pharmaceutically acceptable salt thereof.

48. The polypeptide of claim 46, wherein the polypeptide is of Formula (V-d-2):

or a pharmaceutically acceptable salt thereof.

49. The polypeptide of claim 46, wherein the polypeptide is of Formula (V-d-3):

or a pharmaceutically acceptable salt thereof.

50. A polypeptide of the Formula (VI):

or a pharmaceutically acceptable salt thereof;

wherein:

each instance of ~~=====~~ independently represents a single bond, a double bond, or a triple bond;

each instance of R^1 is, independently, hydrogen; acyl; substituted or unsubstituted C_{1-6} alkyl; or an amino protecting group;

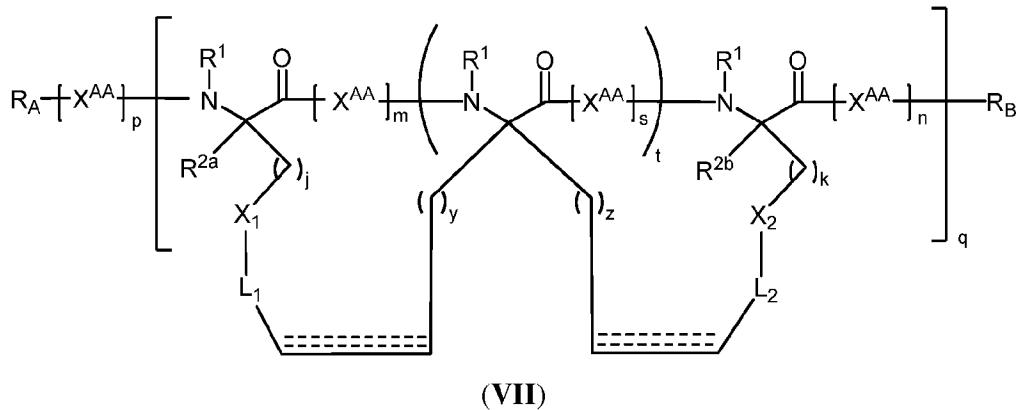
each of R^{2a} and R^{2b} is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl;

each of R^{3a} and R^{3b} is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclene; or optionally R^{2a} and R^{3a} are joined to form a ring; or optionally R^{2b} and R^{3b} are joined to form a ring;

L_1 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L1}-$;

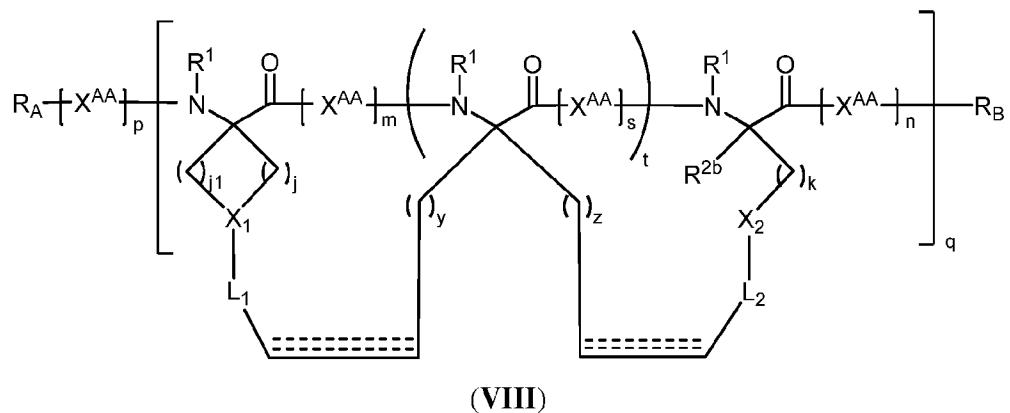
L_2 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^{L2}-$; each of R^{L1} and R^{L2} is independently optionally substituted C_{1-10} alkylene;

R_A is, independently, $-R_C$, $-OR_C$, $-N(R_C)_2$, or $-SR_C$, wherein each instance of R_C is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two R_C groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring;

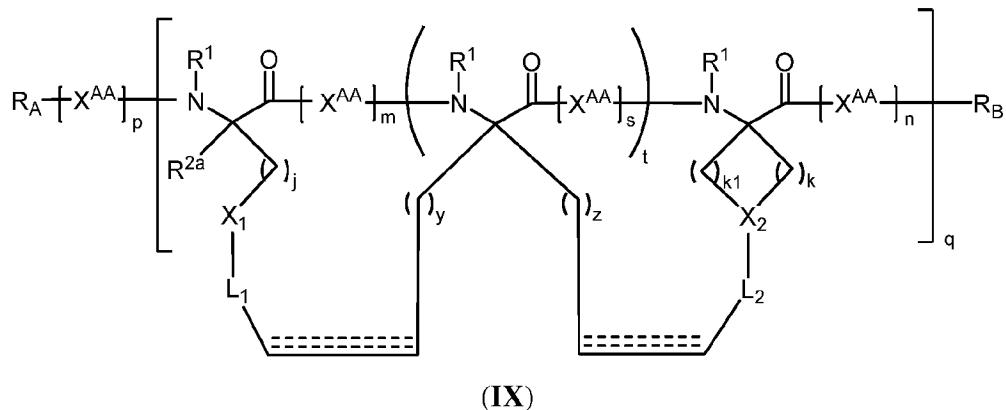

R_B is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R_A and R_B together form a 5- to 6-membered heterocyclic or heteroaromatic ring;

each instance of X_{AA} is, independently, an amino acid;

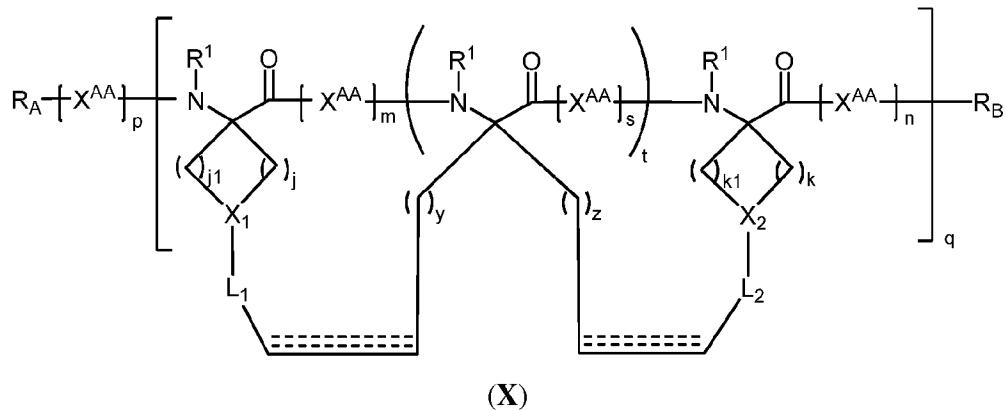
each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive;


each of m and s is independently an integer between 2 and 6, inclusive;
 each of q, t, y, and z is independently an integer between 1 and 10, inclusive.

51. The polypeptide of claim 50, wherein the polypeptide is of Formula (VII):


or a pharmaceutically acceptable salt thereof,
 wherein each of j and k is independently an integer between 0 and 10, inclusive.

52. The polypeptide of claim 50, wherein the polypeptide is of Formula (VIII):


or a pharmaceutically acceptable salt thereof,
 wherein each of j1 and k1 is independently an integer between 0 and 10, inclusive.

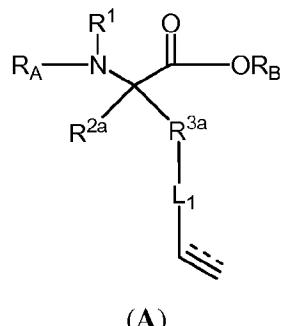
53. The polypeptide of claim 50, wherein the polypeptide is of Formula (IX):

or a pharmaceutically acceptable salt thereof.

54. The polypeptide of claim 50, wherein the polypeptide is of Formula (X):

or a pharmaceutically acceptable salt thereof.

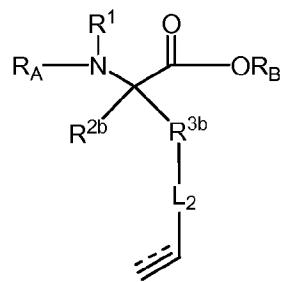
55. A composition comprising a polypeptide of any one of claims 1-6 and a pharmaceutically acceptable excipient.


56. A method of treating a disorder in a subject, said method comprising administering an effective amount of a polypeptide of any one of claims 1-54 to a subject in need thereof.

57. A method of treating a disorder in a subject, said method comprising instructing the subject to take an effective amount of a polypeptide of any one of claims 1-54.

58. A polypeptide of any one of claims 1-54 for use in treating a disorder.

59. A method of making a polypeptide of claim 1, said method comprising the steps of:


- providing an amino acid of Formula (A):

(A)

or a salt thereof;

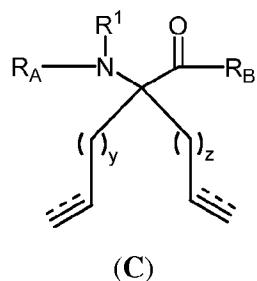
- providing an amino acid of Formula (B):

(B)

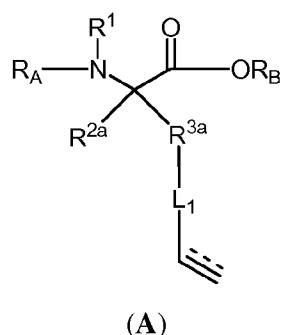
or a salt thereof;

- providing at least one amino acid is independently selected from the group consisting of natural amino acids and unnatural amino acids; and

- coupling the amino acids of Formulae (A) and (B) and optionally (iii).

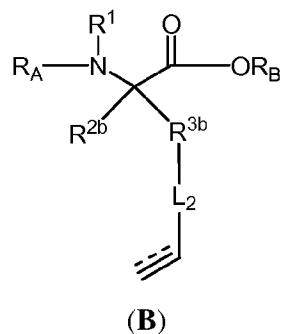

60. The method of claim 59 further comprising a step of treating the polypeptide of step (iii) with a catalyst.

61. The method of claim 60 wherein the catalyst is a ruthenium catalyst.


62. The method of claim 61 further comprising a step of treating the polypeptide of a palladium catalyst.

63. A method of making a polypeptide of claim 50, said method comprising the steps of:

(i) providing a bis-amino acid of Formula (C):



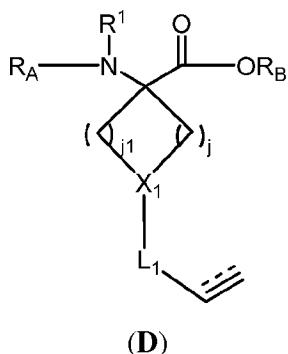
(ii) providing an amino acid of Formula (A):

or salt thereof;

(iii) providing an amino acid of Formula (B):

or salt thereof;

(iv) providing at least one amino acid; and


(v) coupling the amino acids of (A), (B), and (C), and optionally (iv).

64. The method of claim 63 further comprising a step of treating the polypeptide of step (v) with a catalyst.

65. The method of claim 64 wherein the catalyst is a ruthenium catalyst.

66. The method of claim 65 further comprising a step (vi) treating the polypeptide of (v) with a palladium catalyst.

67. An amino acid of Formula (D):

or a pharmaceutically acceptable salt thereof,

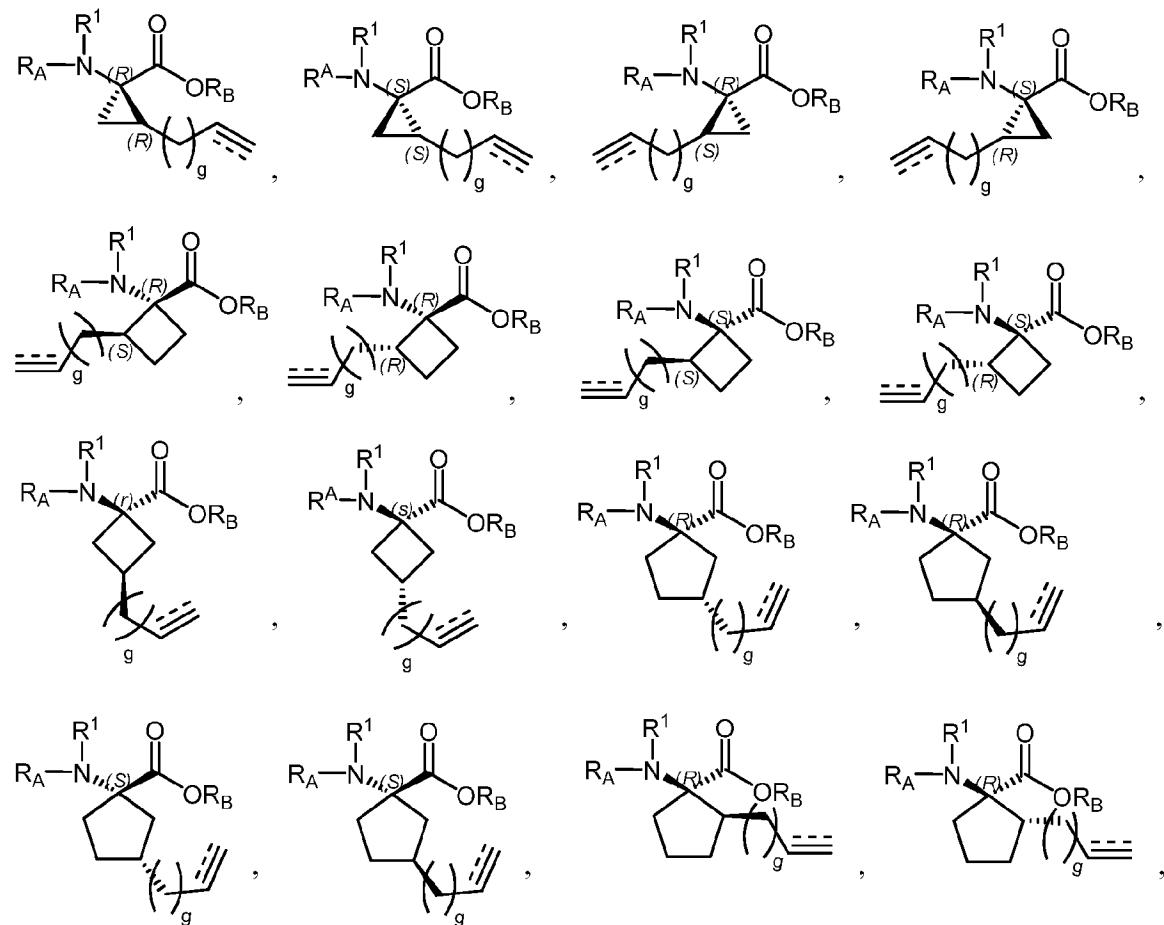
wherein:

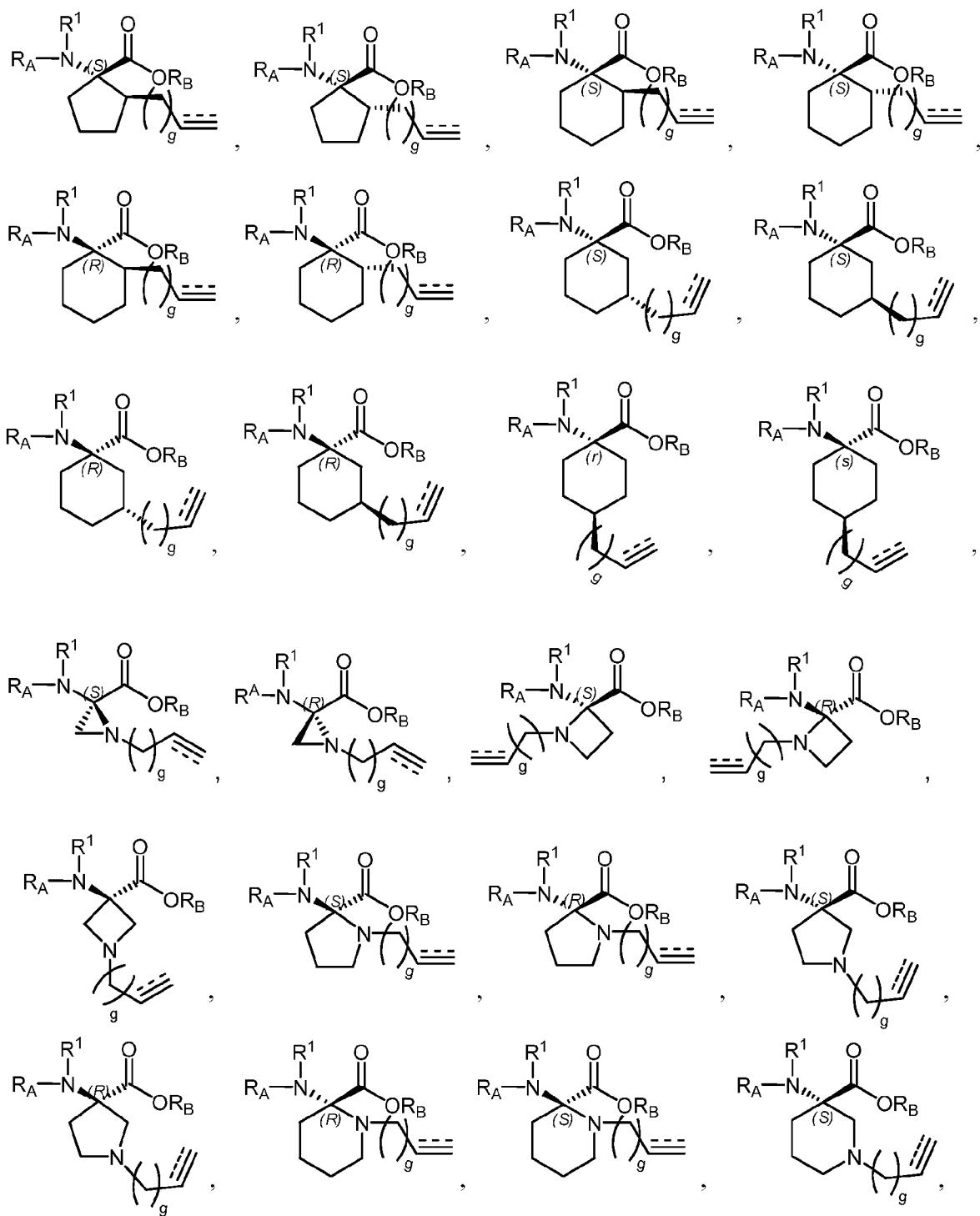
R^1 is hydrogen; acyl; substituted or unsubstituted C_{1-6} alkyl; or an amino protecting group;

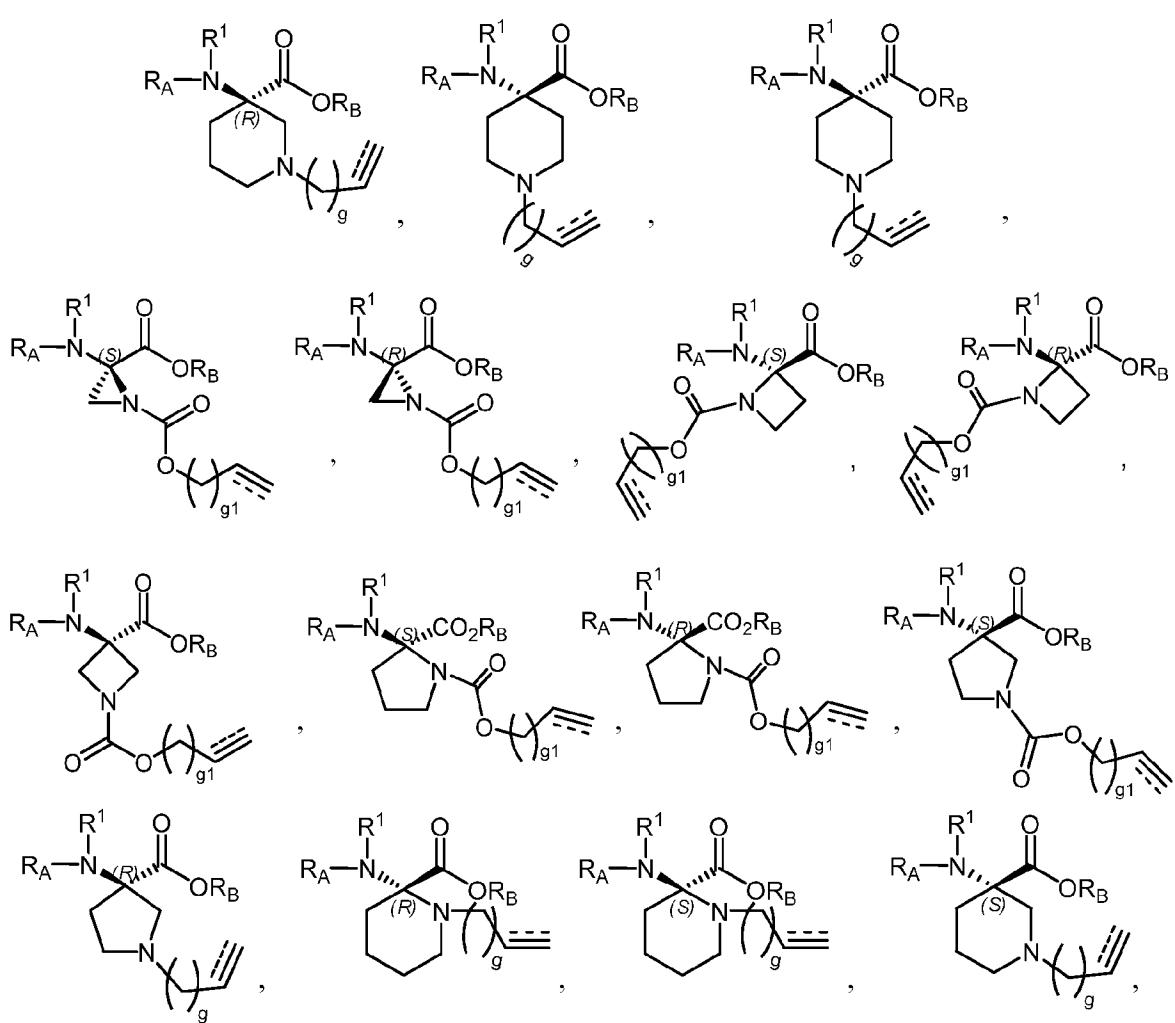
L_1 is independently, a bond, substituted or unsubstituted C_{1-10} alkylene, or $-C(=O)OR^6-$;

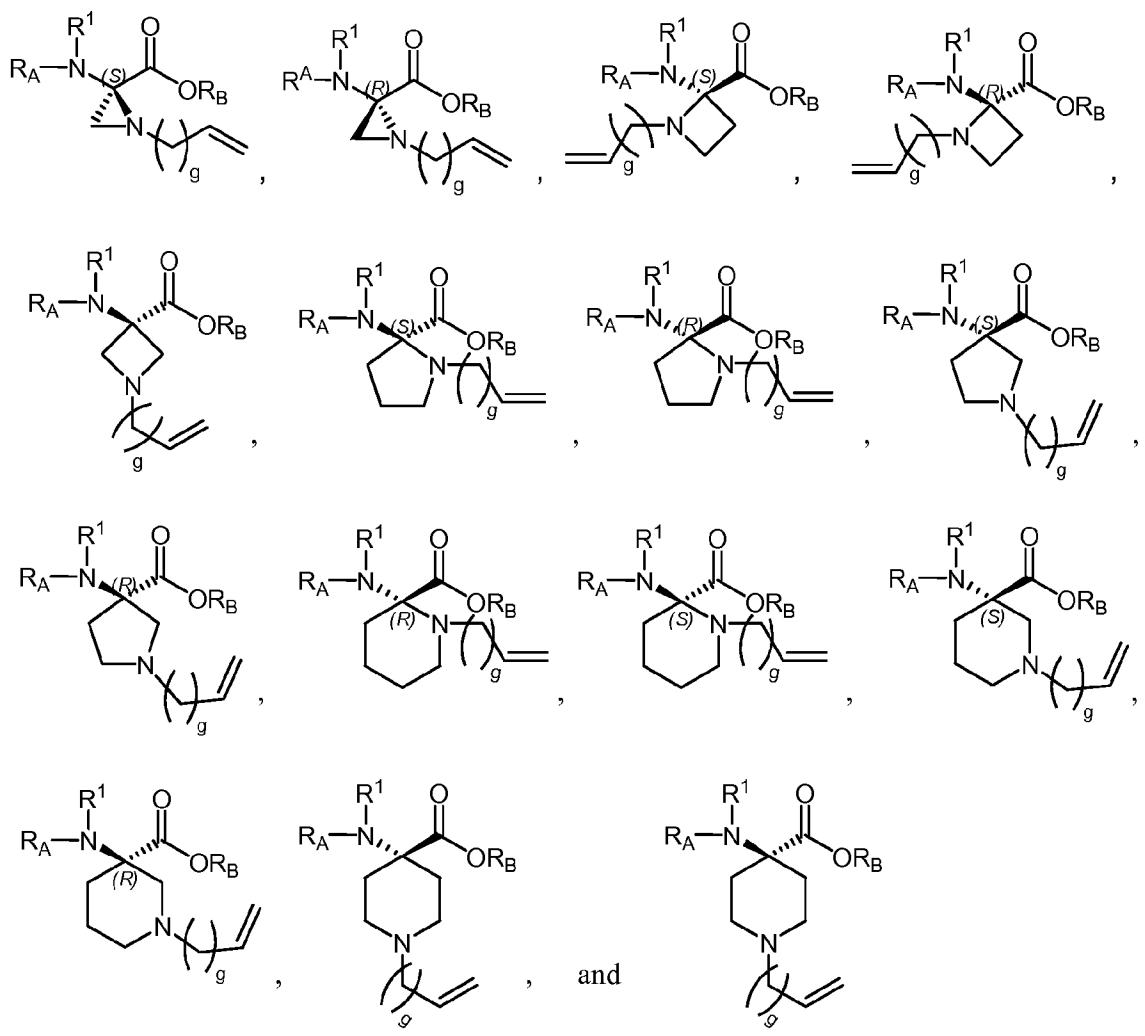
R_A is, independently, $-R_C$, $-OR_C$, $-N(R_C)_2$, or $-SR_C$, wherein each instance of R_C is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two R_C groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring;

R_B is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkenylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R_A and R_B together form a 5- to 6-membered heterocyclic or heteroaromatic ring;

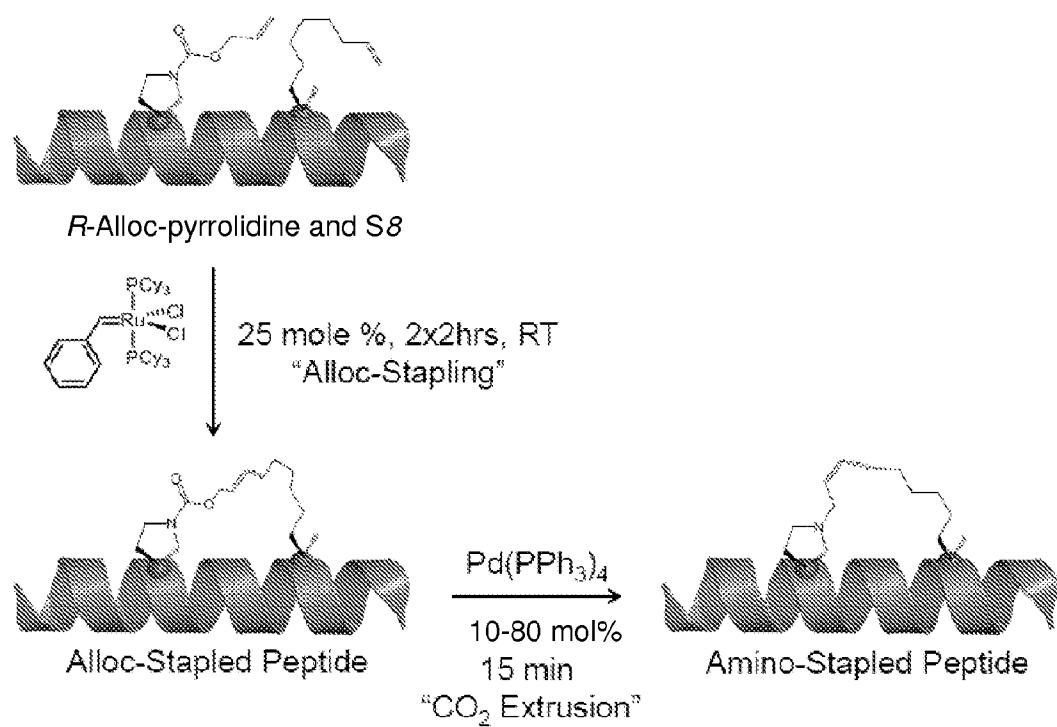

X_1 is independently a bond, $-CR^5R^6-$ or $-NR^1-$;


R^1 is, independently, hydrogen; acyl; substituted or unsubstituted C_{1-6} alkyl; or an amino protecting group;


each of R^5 and R^6 is independently hydrogen, halogen, $-NO_2$, $-OH$, $-CN$, or C_{1-6} alkyl; and


each of j and $j1$ is independently an integer between 1 and 10, inclusive.

64. The amino acid of claim 63, wherein the amino acid is selected from the group consisting of:



and salts thereof, wherein g is 0 or an integer of between 1 and 10, inclusive.

Figure 1

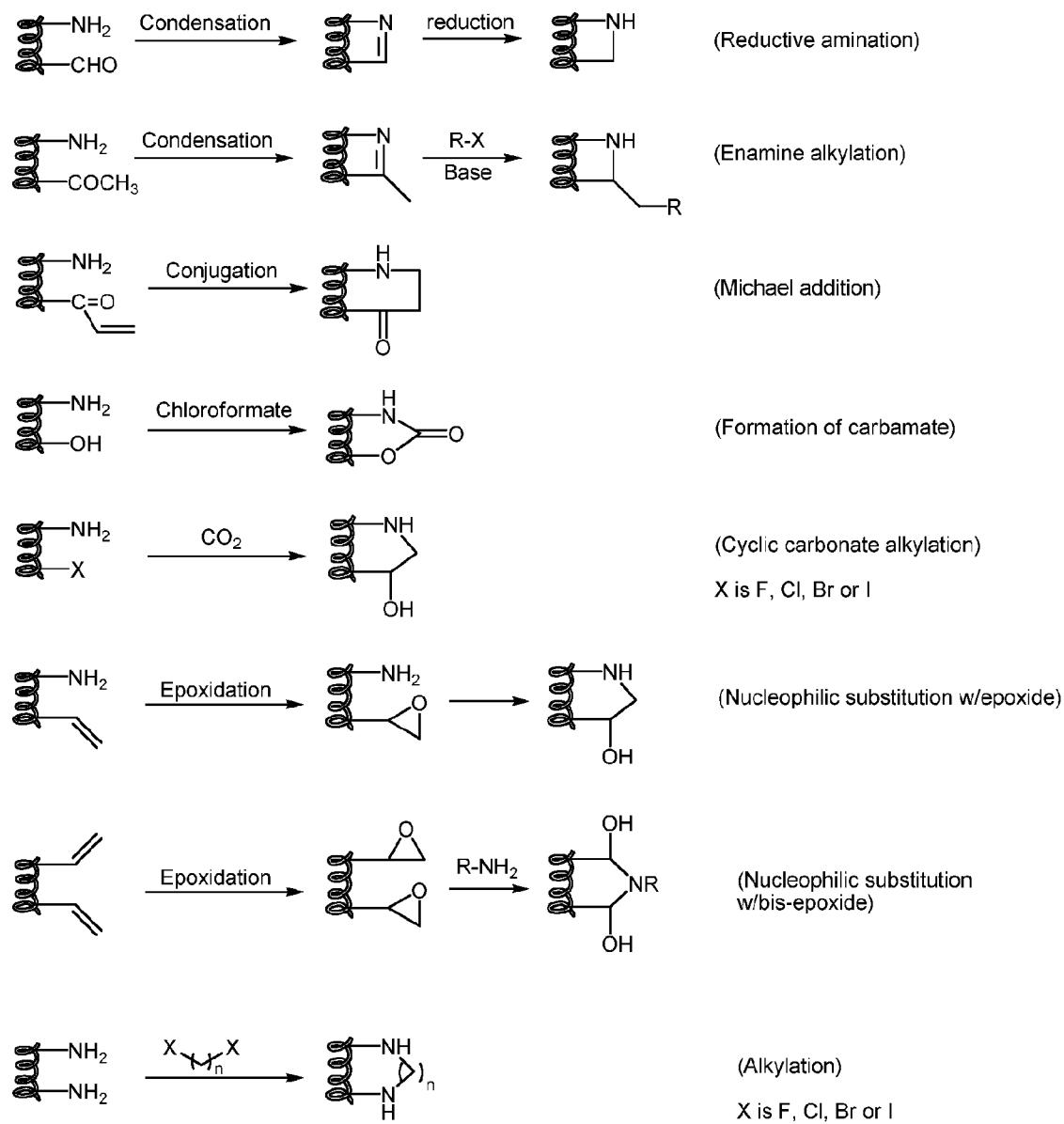
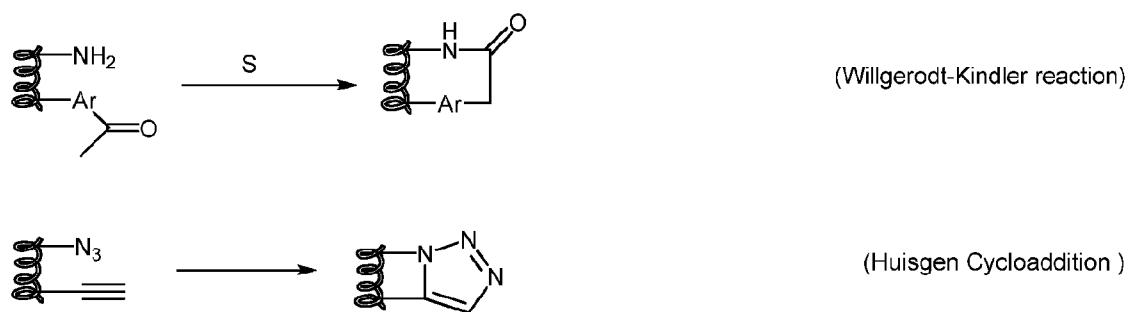
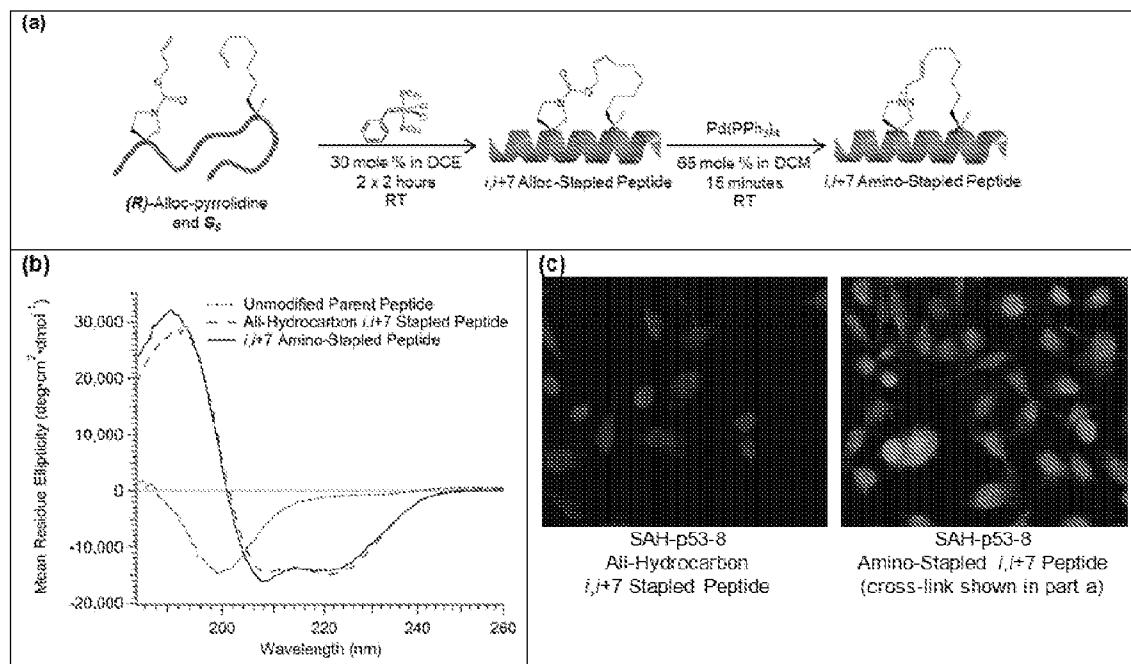
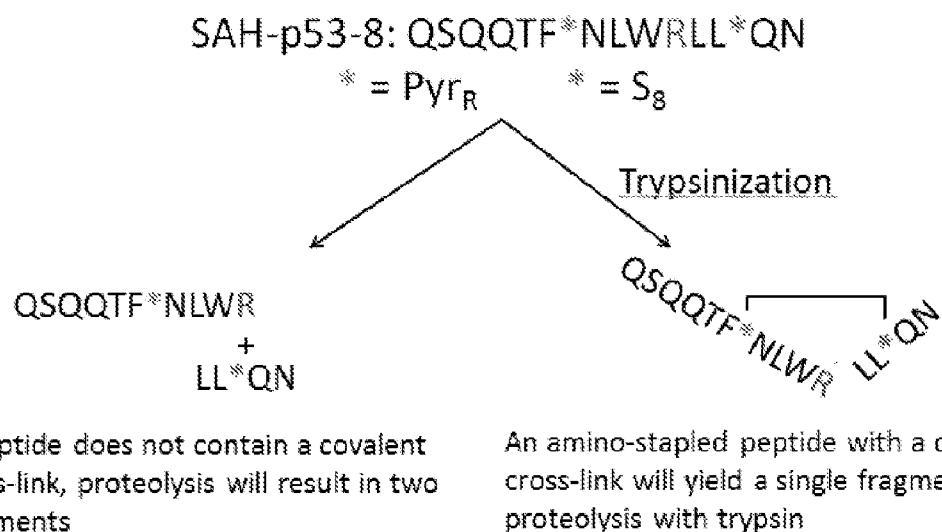
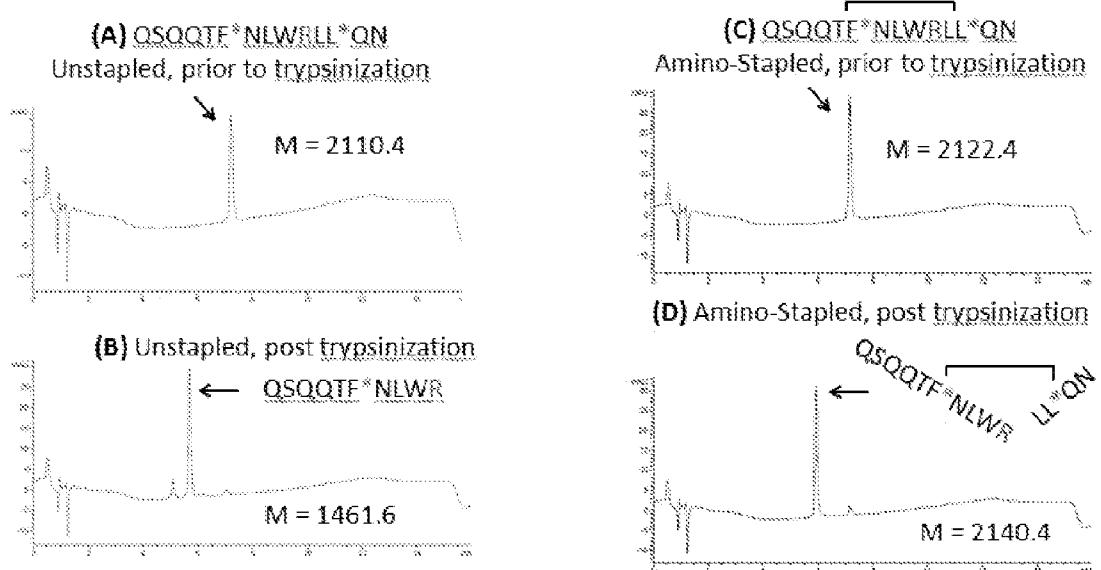
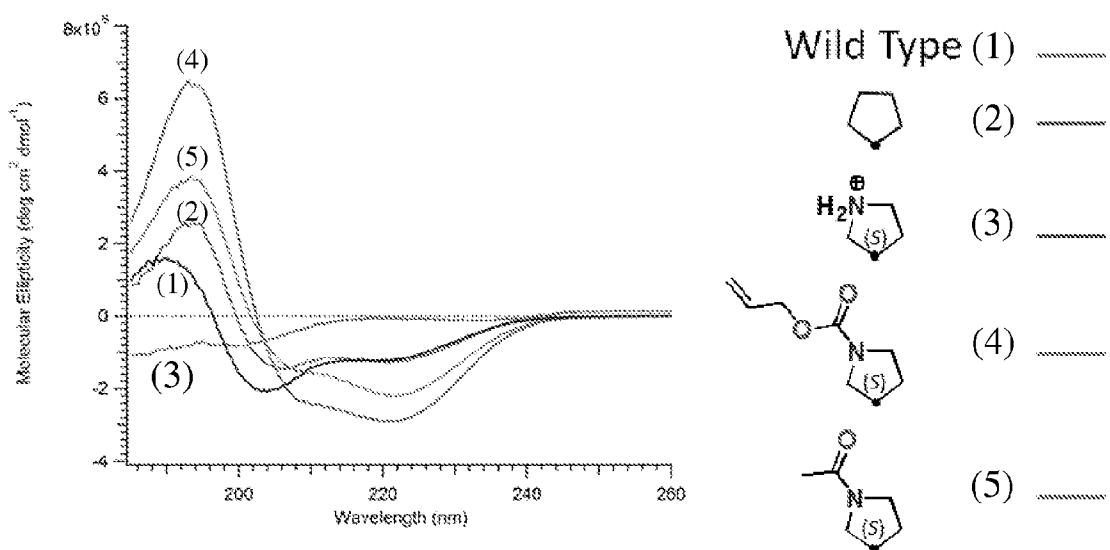




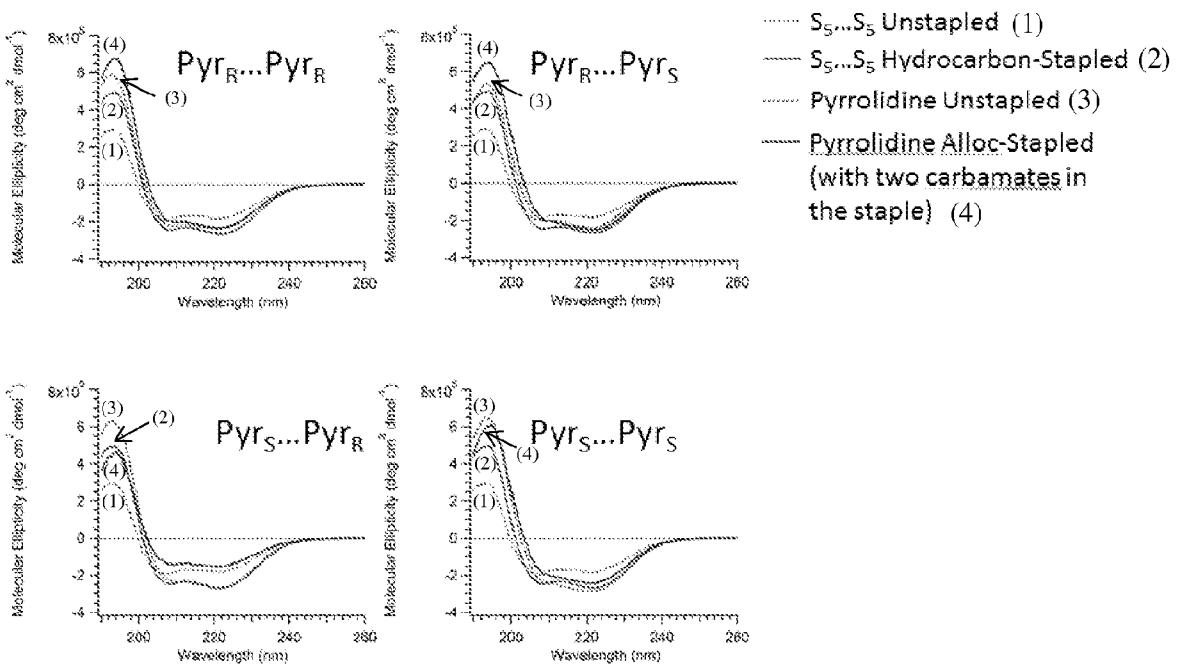
Figure 2A

3/25

Figure 2B

Figure 3


Figure 4A

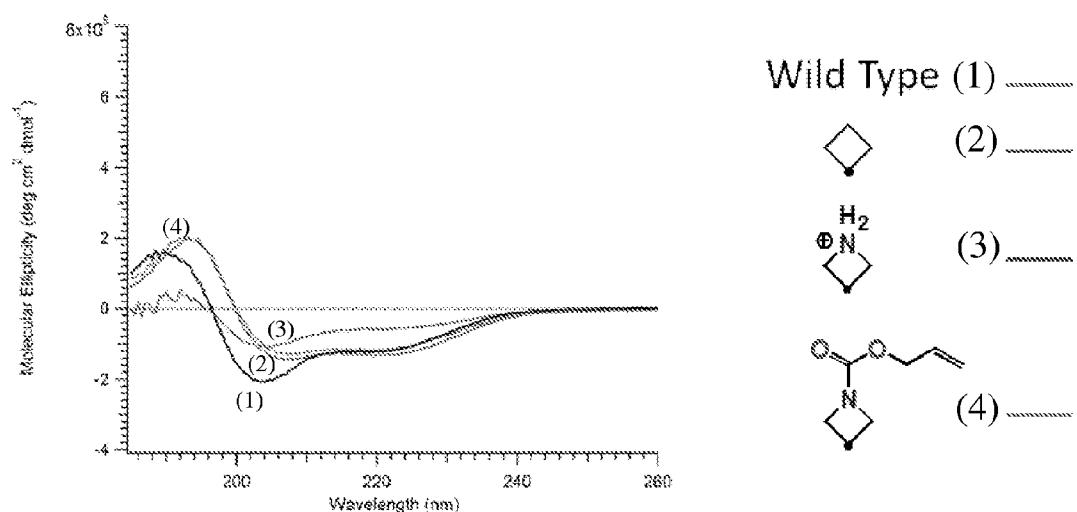
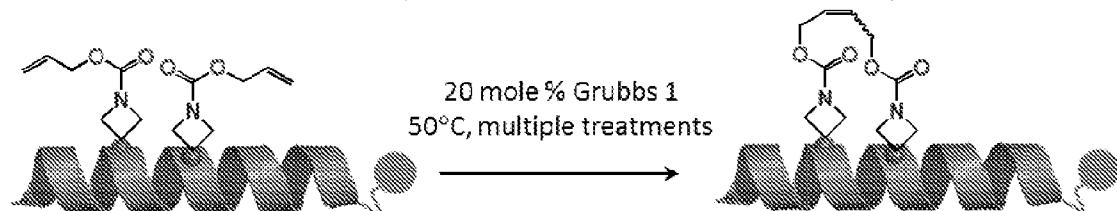
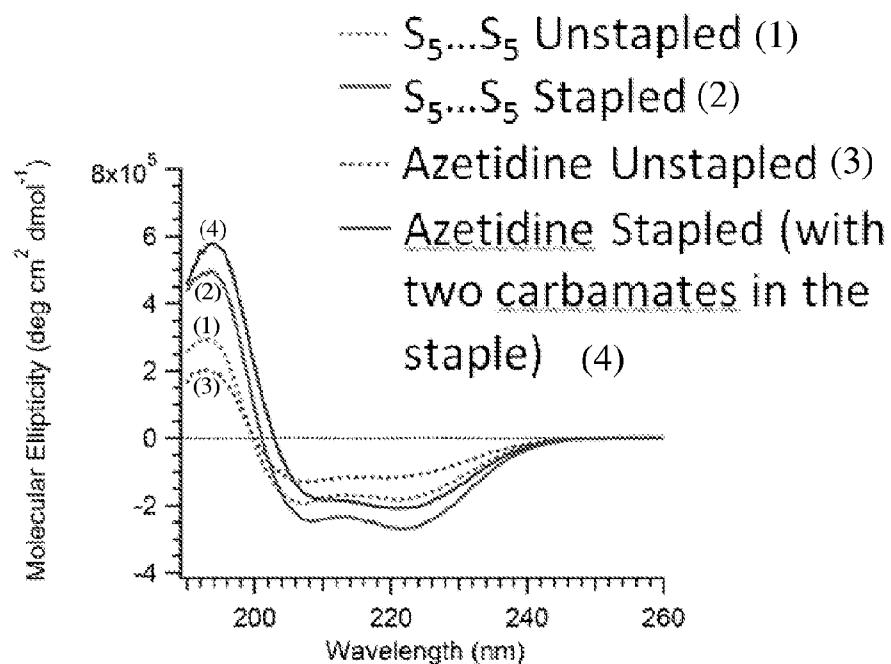
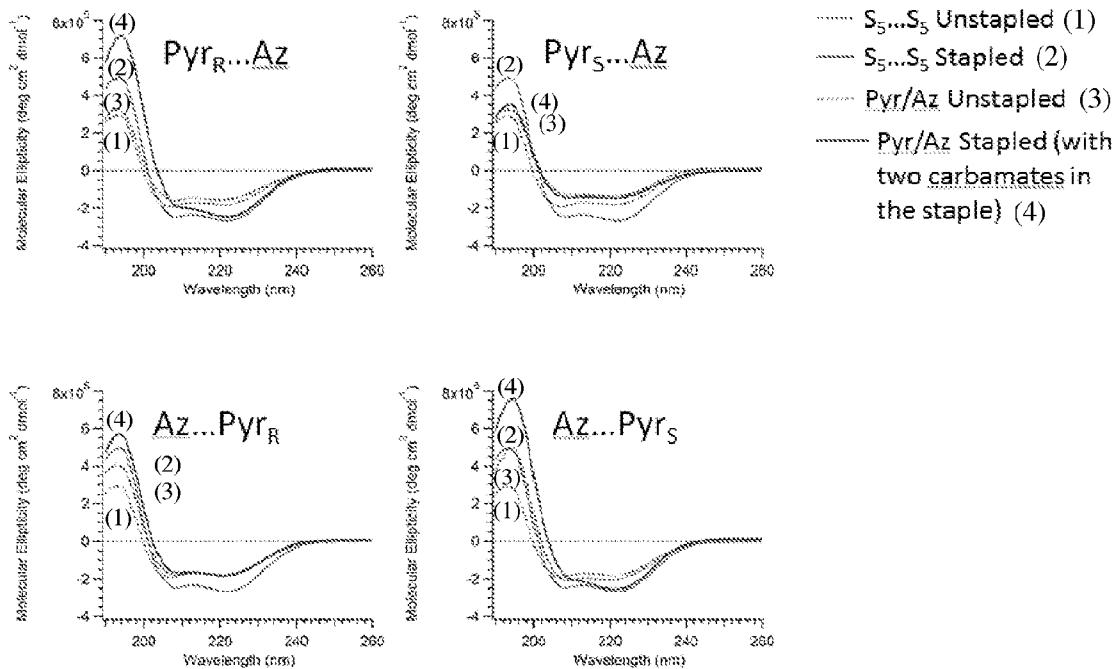

Figure 4B

Figure 5


Figure 6


Figure 7

10/25


(A)

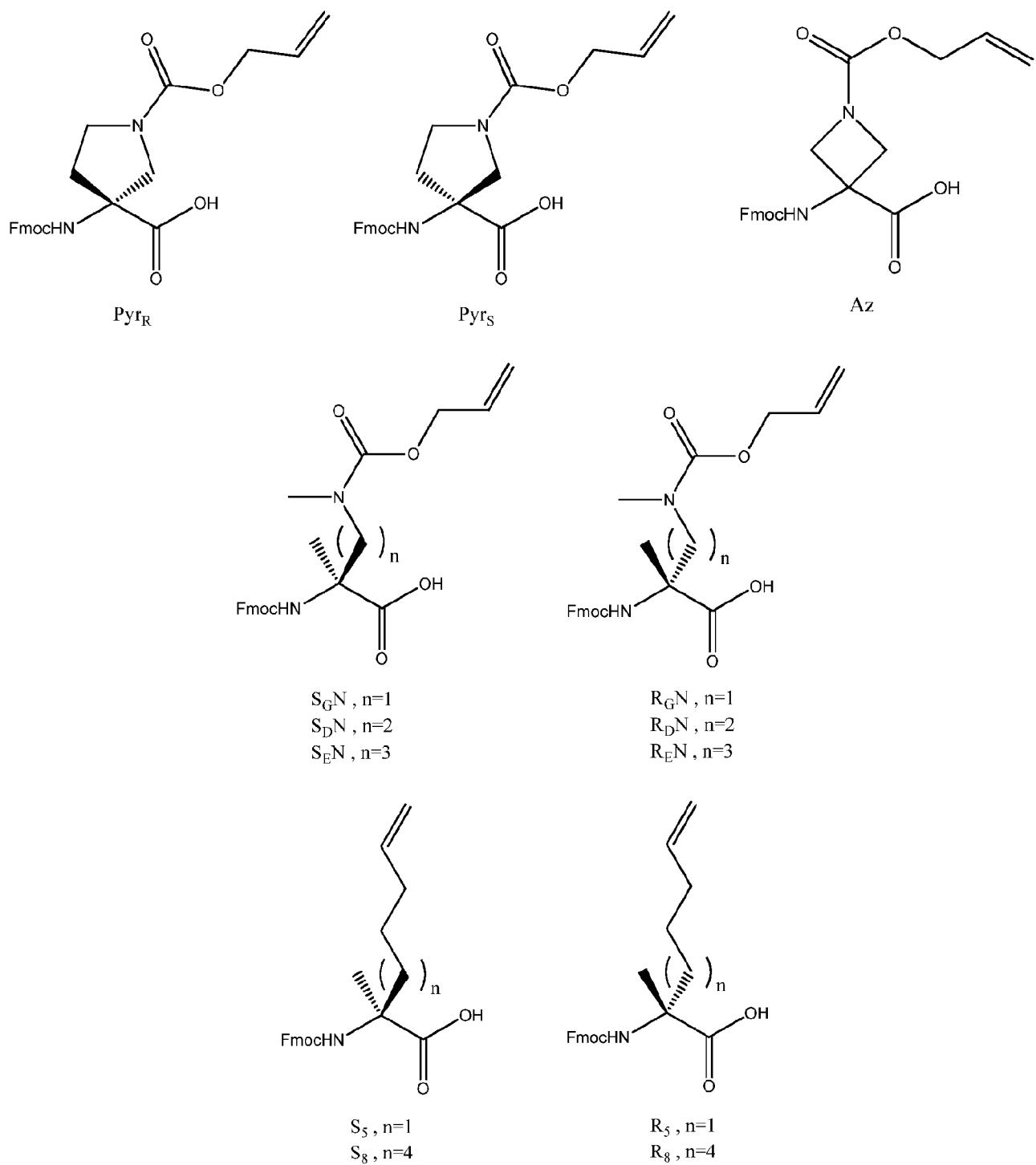
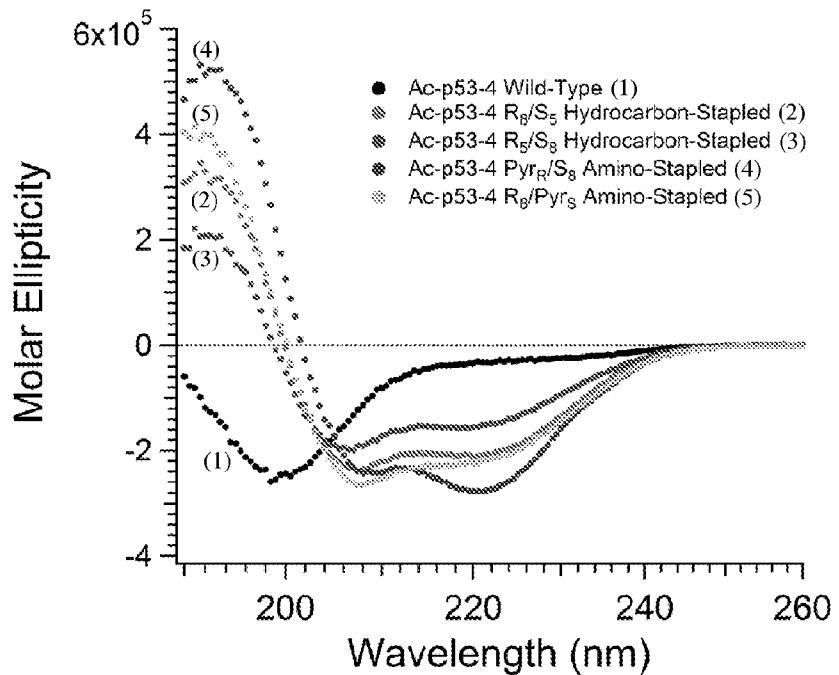
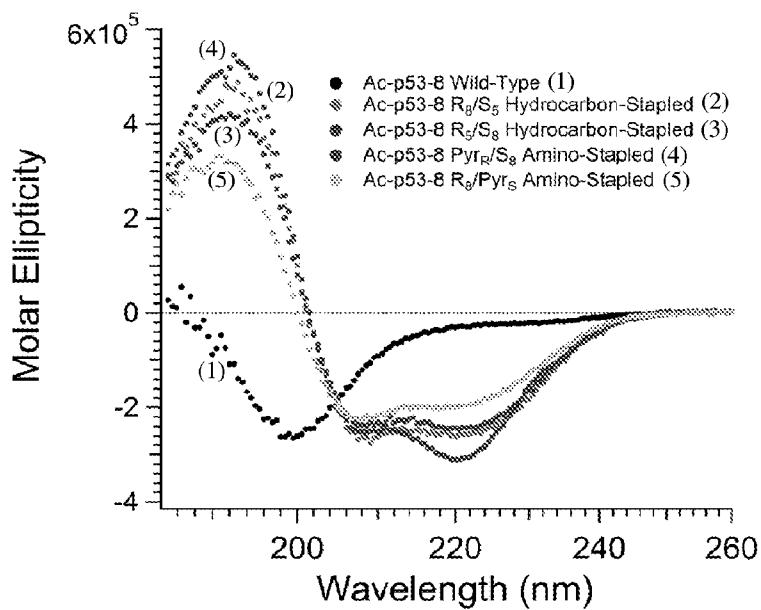

(B)

Figure 8

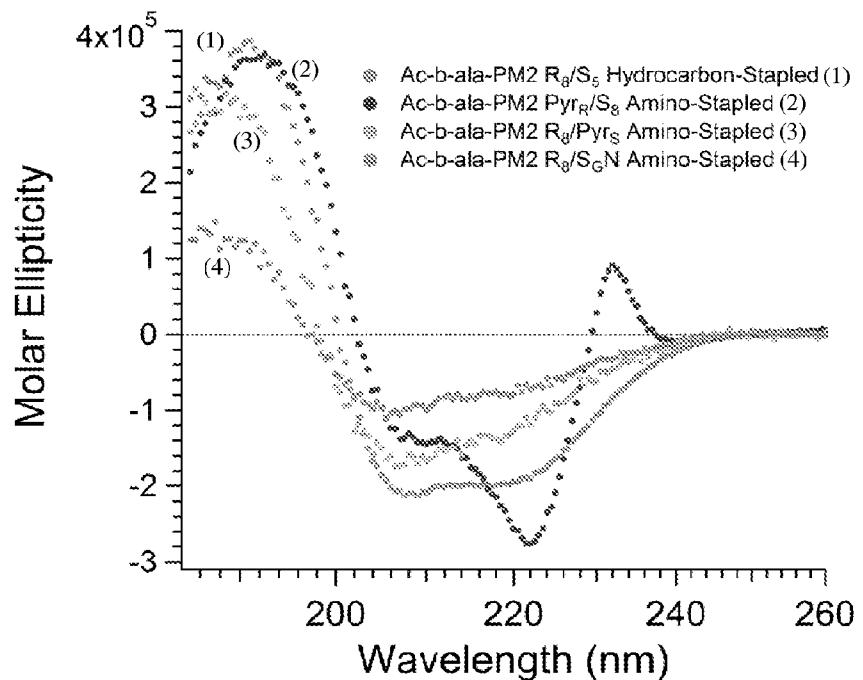
11/25


Figure 9

12/25


Figure 10

13/25

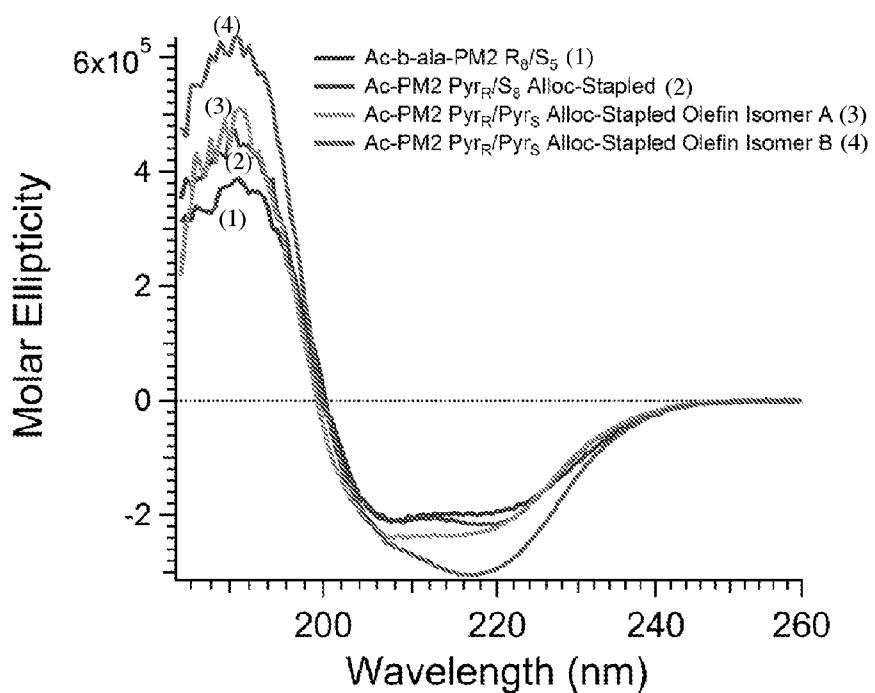
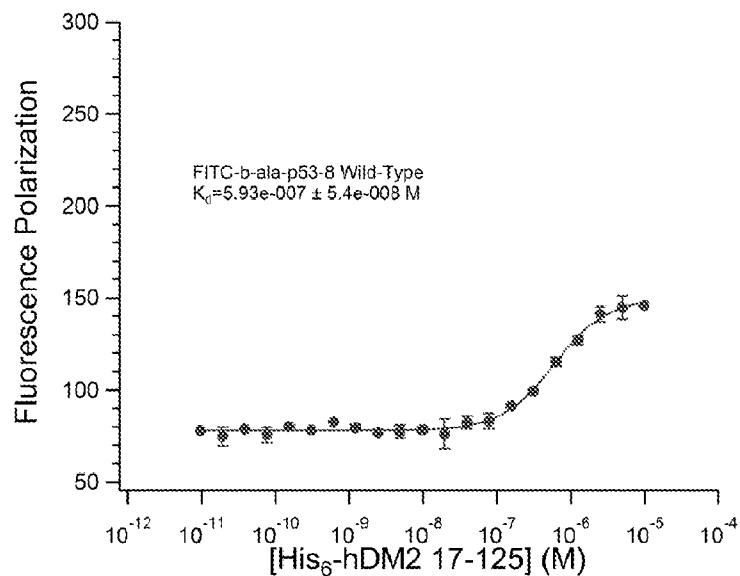

(A)

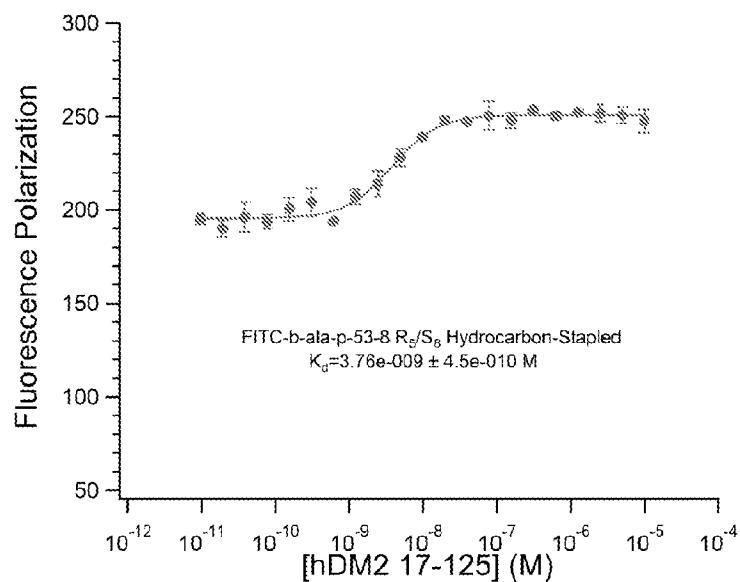
(B)

Figure 11A and 11B

(C)

(D)


Figure 11C and 11D

15/25

(A)

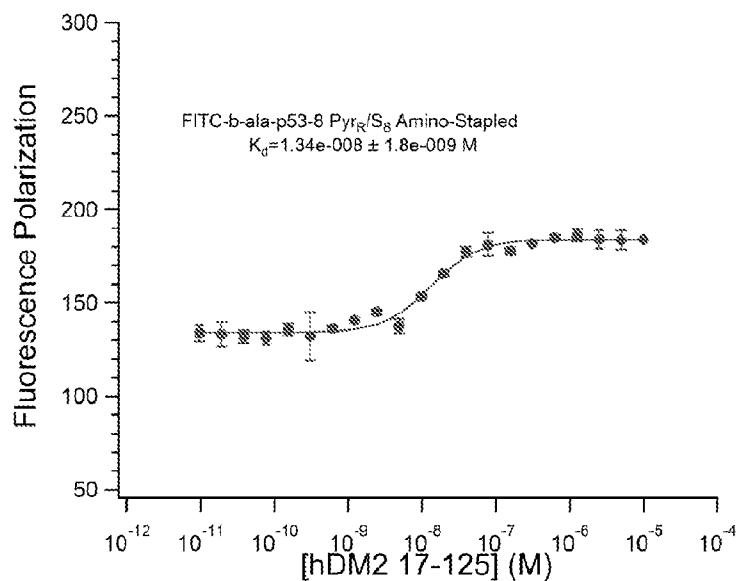

(B)

Figure 12A and 12B

16/25

(C)

(D)

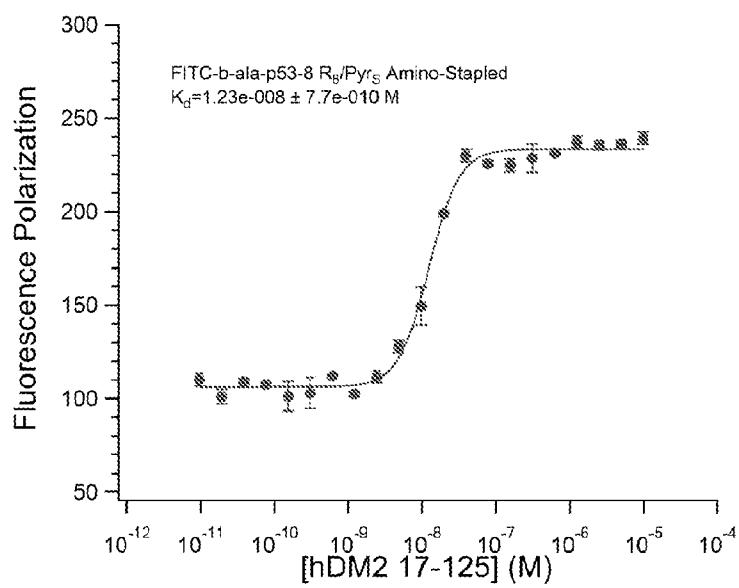
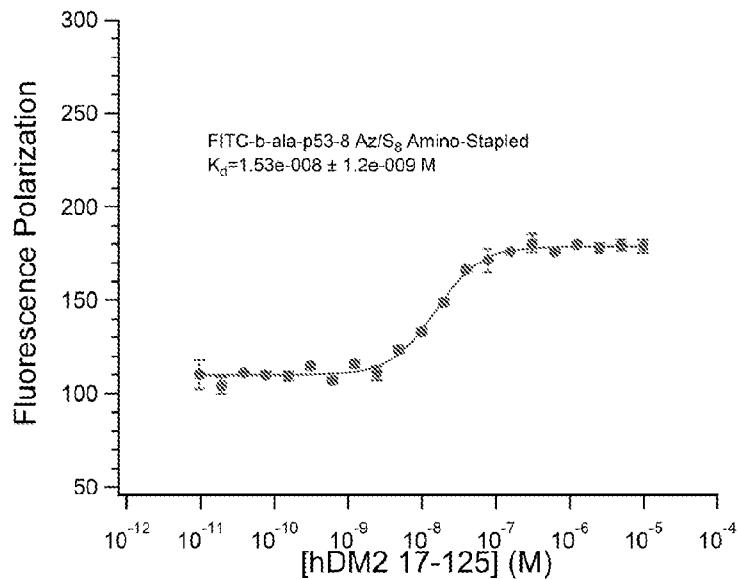
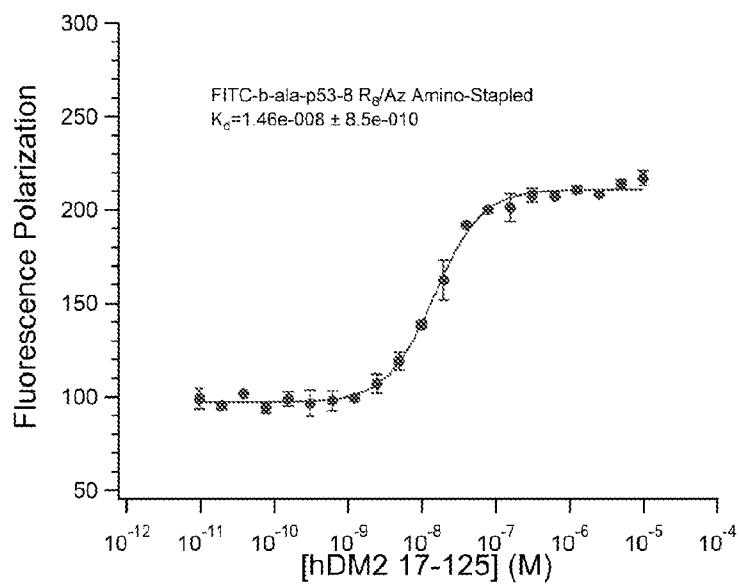
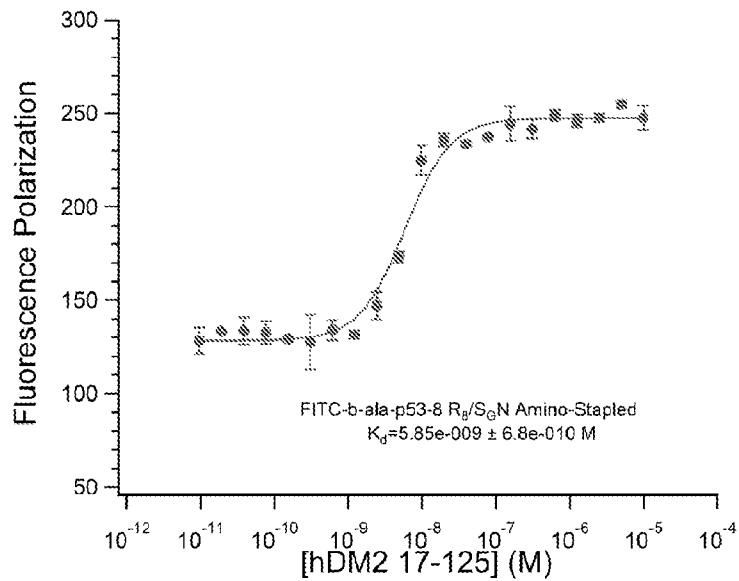



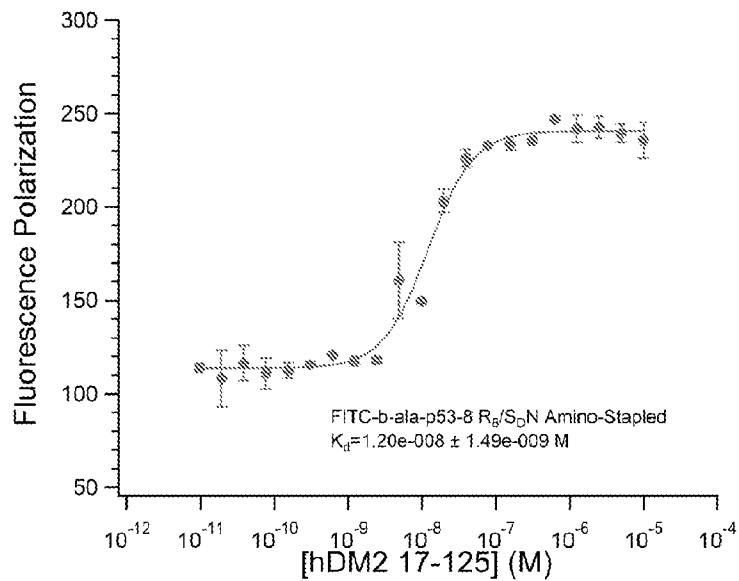
Figure 12C and 12D

17/25

(E)

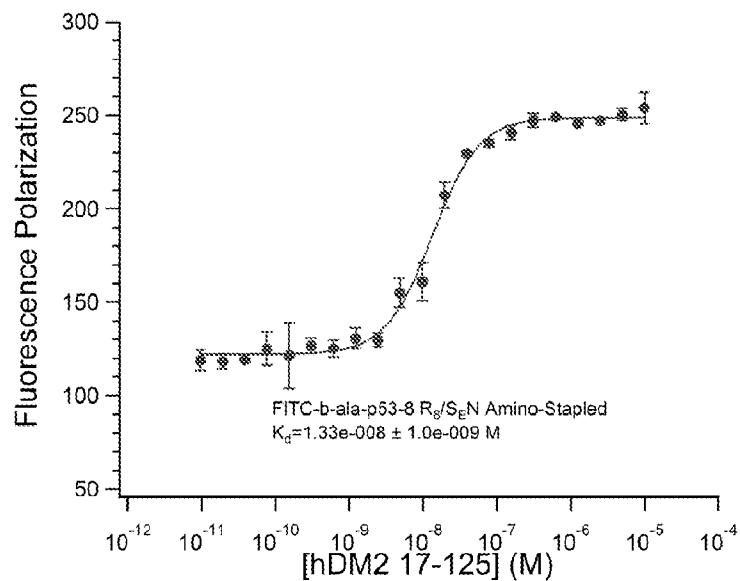
(F)

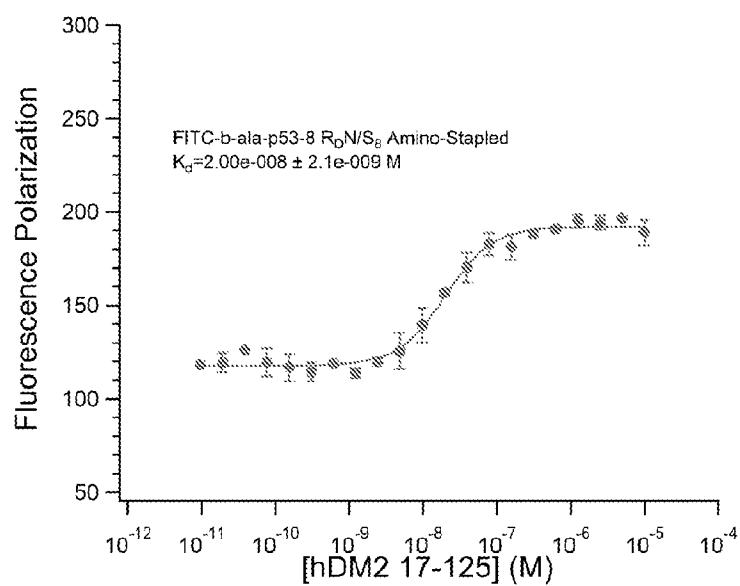




Figure 12E and 12F

18/25

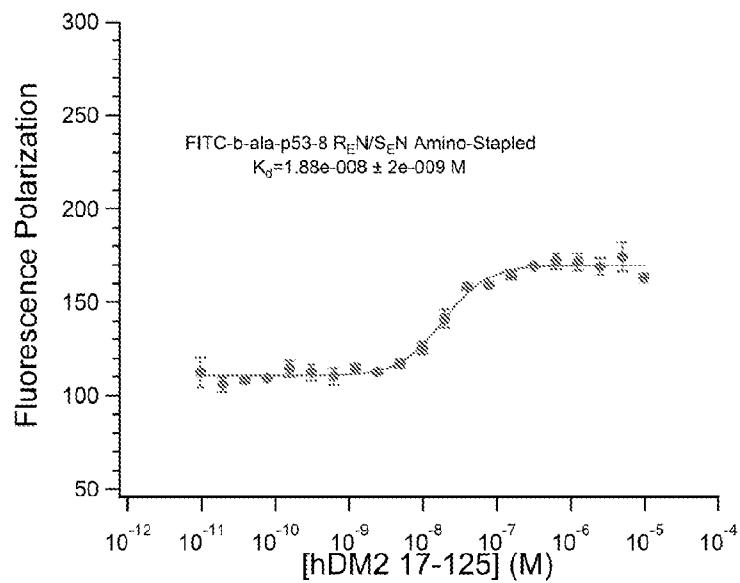
(G)

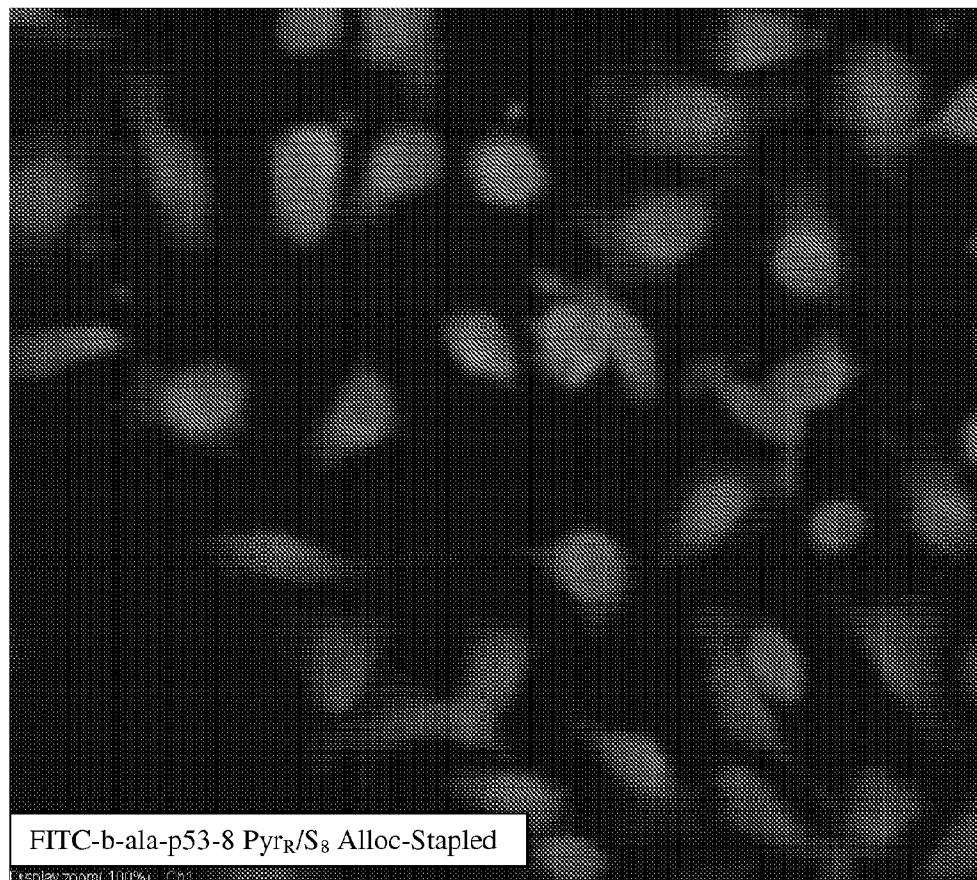

(H)


Figure 12G and 12H

19/25

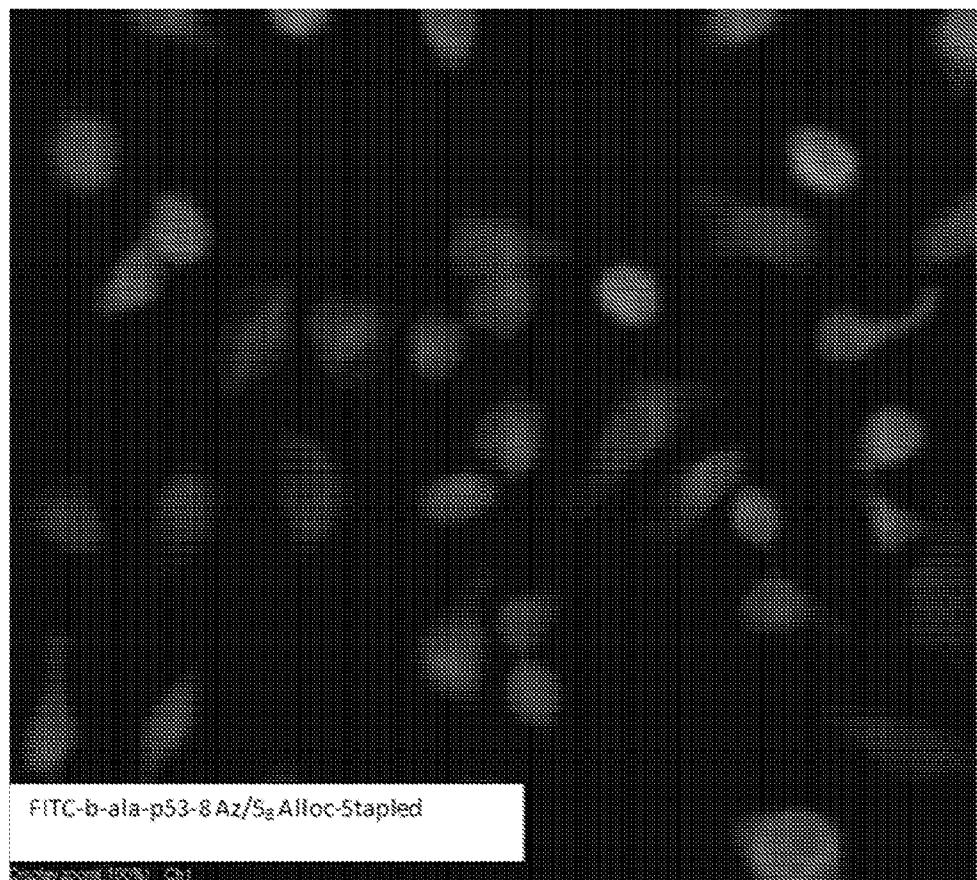
(I)


(J)

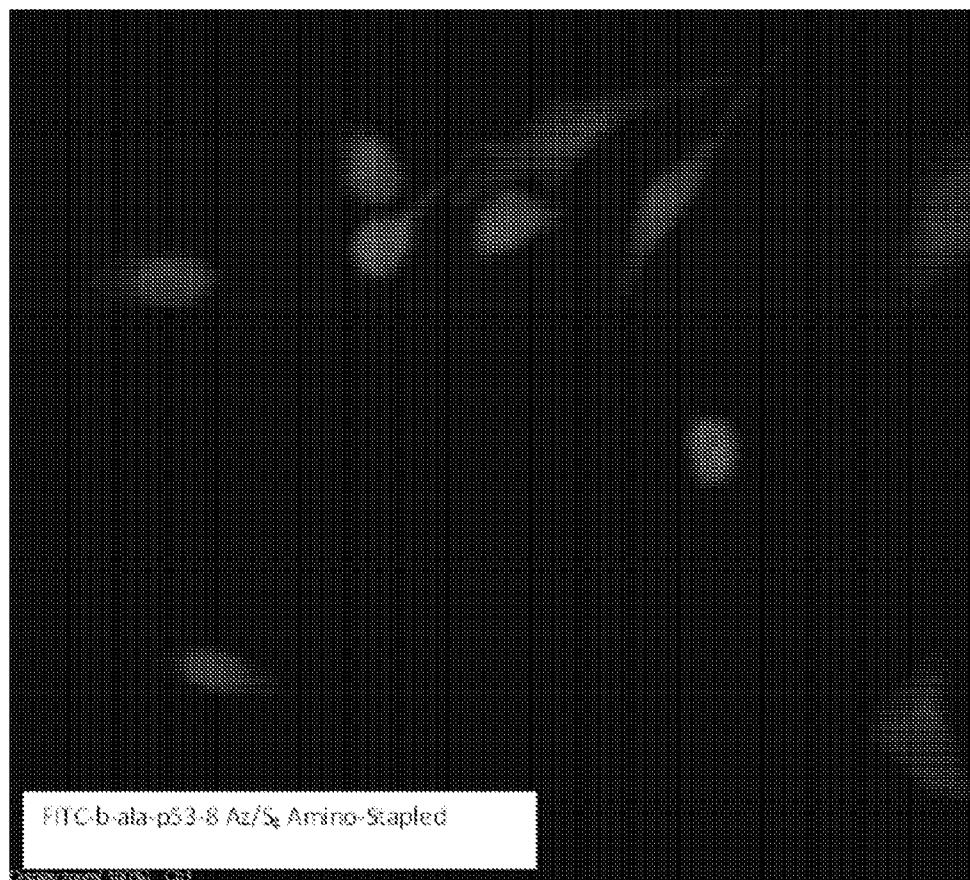

Figure 12I and 12J

20/25

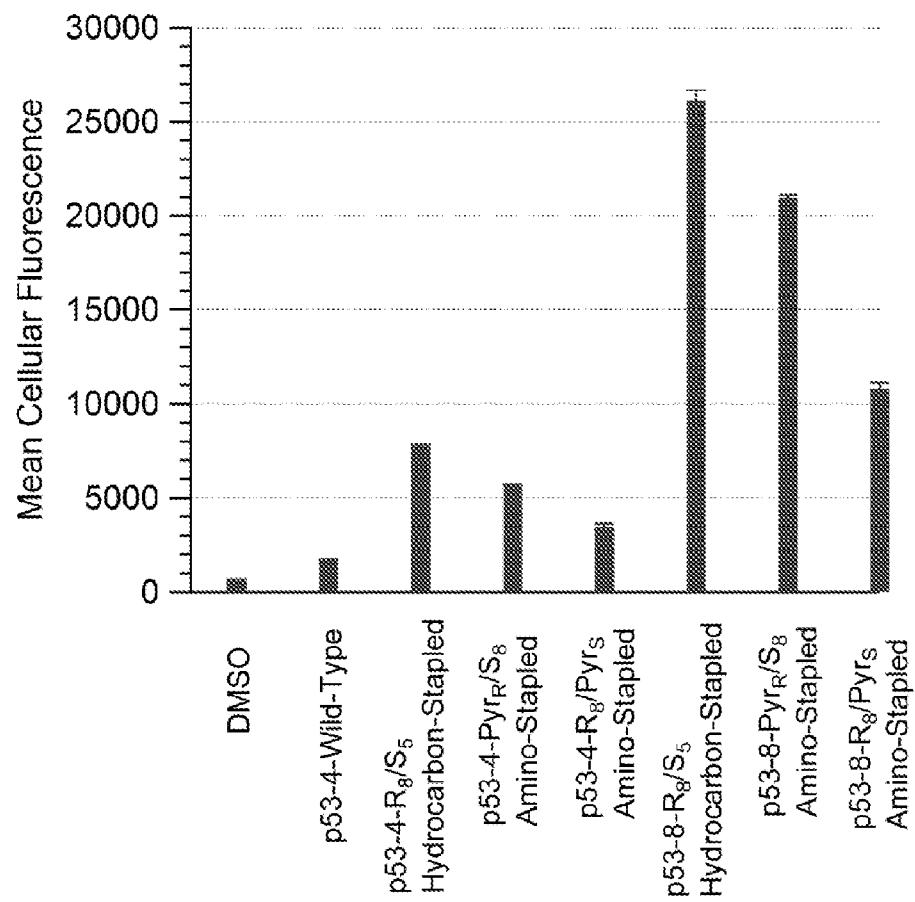
(K)


Figure 12K

21/25


Figure 13A

22/25


Figure 13B

23/25

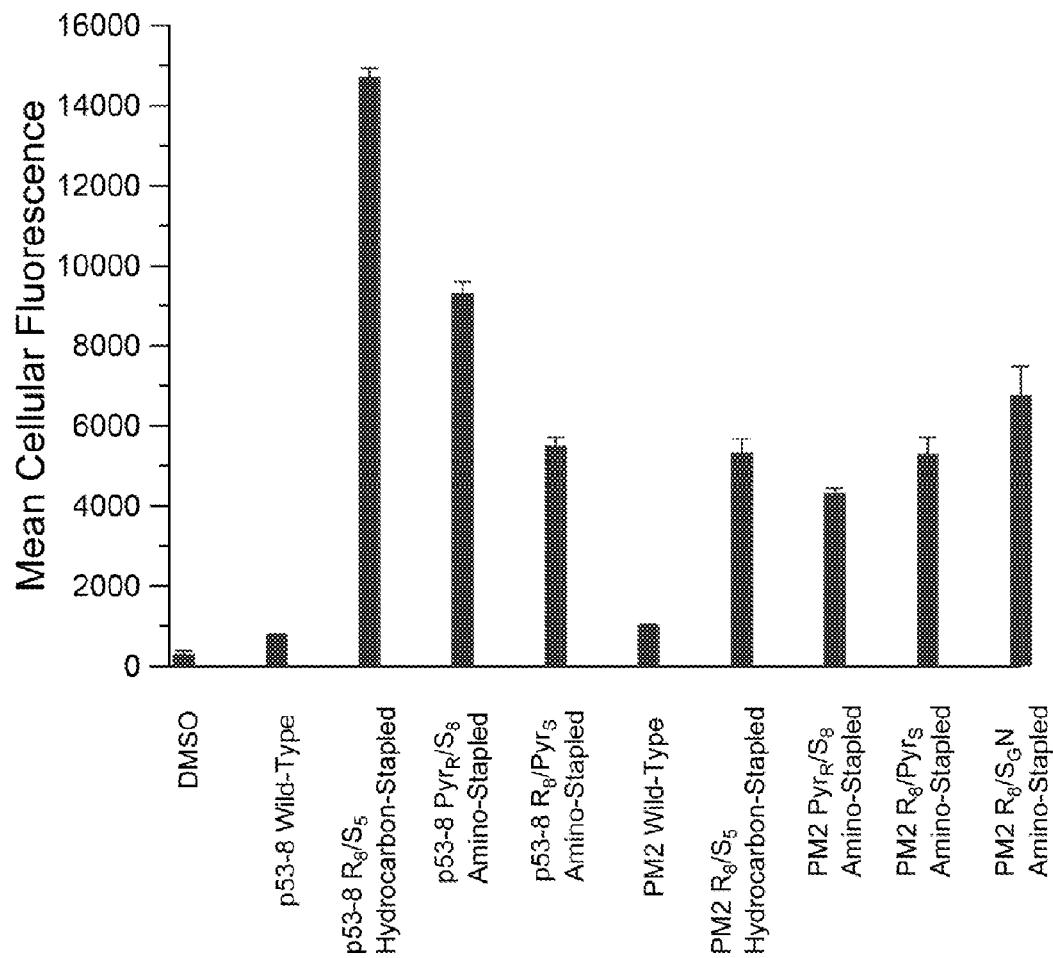


Figure 13C

24/25

Figure 14A

25/25

Figure 14B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US14/25544

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61K 38/12, 38/00 (2014.01)

USPC - 514/21.1, 1.1, 1; 530/333, 300

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8): A61K 38/12, 38/00 (2014.01)

USPC: 514/21.1, 1.1, 1; 530/333, 300; CPC A61K 38/00, C07K 7/06, 7/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MicroPatent (US-G, US-A, EP-A, EP-B, WO, JP-bib, DE-C,B, DE-A, DE-T, DE-U, GB-A, FR-A); SureChem; Google; Google Scholar; PubMed; ProQuest; preparing, making, synthesizing, stapled, stitched, polypeptides

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2008/121767 A2 (VERDINE, GL et al.) October 09, 2008; paragraphs [0006], [0007], [0009], [0011], [0012], [0016], [00103], [00214], [00219], [00319], [00320]	1, 55-62
A	WO 2010/068684 A2 (WALENSKY, LD et al.) June 17, 2010; abstract; page 19, lines 34-37; page 20, lines 1-35; figure 7	55, 56, 58, 60, 61

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

04 September 2014 (04.09.2014)

Date of mailing of the international search report

10 SEP 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US14/25544

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

-***-Please See Supplemental Page-***-

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Groups I+: Claims 1 (in-part), 55 (in-part), 56 (in-part), 57 (in-part), 58 (in-part), 59 (in-part; wherein the R and L groups correspond to the first selected embodiment of the compound), 60 (in-part), 61 (in-part), 62 (in-part), a polypeptide of Formula I

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US14/25544

***-Continuation of Box No. III: Observations Where Unity Of Invention Is Lacking:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I+: Claims 1-49, 55, 56 (in-part), 57 (in-part), 58 (in-part) and 59-62, and a polypeptide of Formula I, wherein: each instance of ===== independently represents a single bond; each instance of R1 is hydrogen; each of R2a and R2b is, independently, substituted alkyl; each of R3a and R3b is, independently, substituted alkylene; L1 is independently, a bond; L2 is a bond; R(sub)(A) is -R(sub)(C), wherein each instance of R(C) is hydrogen; R(B) is hydrogen; m is 2; each instance of p and n are 0; and q is 1 are directed toward a polypeptide of Formula I, and a method of making said polypeptide.

A polypeptide of Formula I will be searched to the extent that it encompasses the polypeptide, wherein: each instance of ===== represents a single bond; each instance of R1 is hydrogen; each of R2a and R2b is substituted alkyl; each of R3a and R3b is substituted alkylene; L1 is a bond; L2 is a bond; R(sub)(A) is -R(sub)(C), wherein R(sub)(C) is hydrogen; R(sub)(B) is hydrogen; m is 2, p and n are 0; and q is 1. It is believed that Claims 1 (in-part), 55 (in-part), 56 (in-part), 57 (in-part), 58 (in-part), 59 (in-part); wherein the R and L groups correspond to the first selected embodiment of the compound), 60 (in-part), 61 (in-part) and 62 (in-part) encompass this first named invention and thus these claims will be searched without fee to the extent that they encompass a polypeptide of Formula I, wherein: each instance of ===== independently represents a single bond; each instance of R1 is hydrogen; each of R2a and R2b is, independently, substituted alkyl; each of R3a and R3b is, independently, substituted alkylene; L1 is independently, a bond; L2 is a bond; R(sub)(A) is -R(sub)(C), wherein each instance of R(C) is hydrogen; R(B) is hydrogen; m is 2; each instance of p and n are 0; and q is 1. Additional fully specified polypeptide structures will be searched upon the payment of additional fees. Applicants must specify the claims that encompass any additionally elected structural formulae of the compositions. Applicants must further indicate, if applicable, the claims which encompass the first named invention, if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined. An Exemplary Election would be: a polypeptide of Formula I, wherein each instance of ===== represents a single bond; each instance of R1 is hydrogen; each of R2a and R2b is, independently substituted alkyl; each of R3a and R3b is, independently, substituted alkylene; L1 is a bond; L2 is a bond; R(sub)(A) is -R(sub)(C), wherein R(sub)(C) is hydrogen; R(B) is hydrogen; m is 2, p and n, independently, are 1; and q is 3.

Groups II+: Claims 50-54, 56 (in-part), 57 (in-part), 58 (in-part), 63, 64(A), 65, 66 and a polypeptide of Formula VI, wherein: each instance of ===== is a single bond, each instance of R1 is hydrogen, each of R2a and R2b is substituted alkyl; each of R3a and R3b is substituted alkylene; L1 is a bond; L2 is a bond; R(sub)(A) is -R(sub)(C), wherein R(sub)(C) is hydrogen; R(B) is hydrogen; p and n are 0; m and s are 2; and each of q, t, y and z is independently 1 are directed toward a polypeptide of Formula VI, and a method of making said polypeptide.

Groups III+: Claims 67, 64(B) and an amino acid of Formula (D), or a pharmaceutically acceptable salt thereof, wherein R1 is hydrogen; L1 is a bond; R(sub)(A) is -R(sub)(C), wherein R(sub)(C) is hydrogen; R(sub)(B) is hydrogen; X1 is a bond; and each of j and j1 is independently 1 are directed toward an amino acid of Formula (D).

The inventions listed as Groups I+-III+ do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the special technical features of Groups I+ include a polypeptide of Formula I, which is not present in Groups II+ or III+, the special technical features of Groups II+ including a polypeptide of Formula VI, which is not present in Groups I+ or III+, the special technical features of Groups III+ including an amino acid of Formula (D).

Groups I+-III+ share the technical features including amino acids comprising a terminal single, double, or triple bond. Groups I+ and II+ share the technical features including a polypeptide comprising at least one staple; and a method of making a polypeptide comprising providing an amino acid of Formula A, an amino acid of Formula B, and coupling the amino acids. Groups I+ share the technical features including a polypeptide of Formula (I): (I), or a pharmaceutically acceptable salt thereof; wherein: each instance of ===== independently represents a single bond or a double bond; each instance of R1 is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group; each of R2a and R2b is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl; each of R3a and R3b is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclylene; or optionally R2a and R3a are joined to form a ring; or optionally R2b and R3b are joined to form a ring; L1 is independently, a bond, substituted or unsubstituted C1-10 alkylene, or -C(=O)OR(sup)(L1)-; L2 is independently, a bond, substituted or unsubstituted C1-10 alkylene, or -C(=O)OR(sup)(L2)-; provided that when neither R2a and R3a nor R2b and R3b forms a ring, L1 is -C(=O)OR(sup)(L1)- or L2 is C(=O)OR(sup)(L2); each of R(sub)(L1) and R(sub)(L2) is independently optionally substituted C1-10 alkylene; RA is, independently, -R(sub)(C), -OR(sub)(C), -N(R)(sub)(C)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; resin; a hydroxyl, amino, or thiol protecting group; or two R(sub)(C) groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring; R(sub)(B) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched, -alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R(sub)(A) and R(sub)(B) together form a 5- to 6-membered heterocyclic or heteroaromatic ring; each instance of X(sub)(AA) is, independently, an amino acid; m is independently, an integer between 2 and 6, inclusive; each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive; and q is independently an integer between 1 and 10, inclusive; and a method of making a polypeptide, comprising the steps of: (i) providing an amino acid of Formula A, or a salt thereof; (ii) providing an amino acid of Formula B, or a salt thereof; (iii) providing at least one amino acid is independently selected from the group consisting of natural amino acids and unnatural amino acids; and (iv) coupling the amino acids of Formulae (A) and (B) and optionally (iii); Groups II+ share the technical features including a polypeptide of the Formula (VI): or a pharmaceutically acceptable salt thereof; wherein each instance of ===== independently represents a single bond, a double bond, or a ... Continued on Next Supplemental Page ...

-Continued Within the Next Supplemental Box.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US14/25544

-***-Continued from Previous Supplemental Page:

... Continued from Previous Supplemental Page ... triple bond; each instance of R1 is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group; each of R2a and R2b is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl; each of R3a and R3b is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclene; or substituted or unsubstituted heterocyclene; or optionally R2a and R3a are joined to form a ring; or optionally R2b and R3b are joined to form a ring; L1 is independently, a bond, substituted or unsubstituted C1-10 alkylene, or -C(=O)RL1-; L2 is independently, a bond, substituted or unsubstituted C1-10 alkylene, or -C(=O)ORL2-; each of RL1 and RL2 is independently optionally substituted C1-10 alkylene; RA is, independently, -R(sub(C), -OR(syb)(C), -N(R(sub(C)2, or -SR(sub(C), wherein each instance of R(sub(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two Rc groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring; R(sub(B) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or Ra and Rb together form a 5- to 6-membered heterocyclic or heteroaromatic ring; each instance of X(sub)(AA) is, independently, an amino acid; each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive; each of m and s is independently an integer between 2 and 6, inclusive; each of q, t, y, and z is independently an integer between 1 and 10, inclusive; and a method of making a polypeptide, comprising the steps of: (i) providing a bis-amino acid of Formula (C); (ii) providing an amino acid of Formula A, or a salt thereof; (iii) providing an amino acid of Formula B, or a salt thereof; (iv) providing at least one amino acid; and (v) coupling the amino acids of A, B and C, and optionally (iv). The inventions of Groups III+ share the technical features including an amino acid of Formula (D); or a pharmaceutically acceptable salt thereof, wherein R1 is hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group; L1 is independently, a bond, substituted or unsubstituted C1-10 alkylene, or -C(=O)OR6-; Ra is, independently, -R(sub(C), -OR(sub(C), -N(R(sub(C)2, or -SR(sub(C), wherein each instance of R(sub(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two R(sub(E) groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring; R(sub(B) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R(sub(A) and R(sub(B) together form a 5- to 6-membered heterocyclic or heteroaromatic ring; X1 is independently a bond, CR5R6- or -NR1-; each of R5 and R6 is independently hydrogen, halogen, -NO2, -OH, -CN, or C1-6 alkyl; and each of j and j1 is independently an integer between 1 and 10, inclusive.

However, these shared technical features are previously disclosed by WO 2008/121767 A2 to Verdine, et al. (hereinafter 'Verdine'). Verdine discloses amino acids comprising a terminal single, double, or triple bond (amino acids comprising a terminal single, double, or triple bond; paragraph [0011]); a polypeptide comprising at least one staple (a polypeptide comprising at least one staple; paragraphs [0006], [0009]; Formula II); and a method of making a polypeptide (a method of making a polypeptide; paragraph [0011]) comprising providing an amino acid of Formula A (providing an amino acid of Formula B (equivalent of providing an amino acid of Formula A); paragraph [0011]), an amino acid of Formula B (an amino acid of Formula C (equivalent of an amino acid of Formula B); paragraph [0011]), and coupling the amino acids (reacting (coupling) the amino acids; paragraph [0011]); a polypeptide of Formula (I) (a polypeptide of Formula II (equivalent of a polypeptide of Formula I); paragraph [0009], wherein R(sub)(A) and R(sub)(B) are hydrogen, p and n are 0, and q is 2); or a pharmaceutically acceptable salt thereof; wherein: each instance of ===== independently represents a single bond or a double bond (each instance of ===== independently represents a single bond or a double bond; paragraph [0009]); each instance of R1 is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl (each instance of Ra (R1) is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; paragraph [0007]); or an amino protecting group; each of R2a and R2b is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl (each R(sub)(B) (R2a and R2b) is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl; paragraph [0007]); each of R3a and R3b is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclene; or substituted or unsubstituted heterocyclene; or optionally R2a and R3a are joined to form a ring; or optionally R2b and R3b are joined to form a ring (each of L1 and L2 (R3a and R3b) is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclene; or substituted or unsubstituted heterocyclene; or optionally R2a and R3a are joined to form a ring; or optionally R2b and R3b are joined to form a ring; paragraph [0007]); L1 is independently, a bond (K, L1, L2, and M, is, independently, a bond, cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkynylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkynylene; substituted or unsubstituted carbocyclene; or substituted or unsubstituted heterocyclene; or optionally R2a and R3a are joined to form a ring; or optionally R2b and R3b are joined to form a ring; paragraph [0007]); R(sub)(A) is, independently, -R(sub)(C), -OR(aub)(C), -N(R(sub)(C)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two R(sub)(C) groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring (R(sub)(F), (R(sub)(A)) is, independently, -R(sub)(C), -OR(sub)(C), -N(R(sub)(C)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched ... Continued on Next Supplemental Page ...

-***-Continued Within the Next Supplemental Box-***-

-***-Continued from Previous Supplemental Page:

... Continued from Previous Supplemental Page ... aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; or two R(sub)(C) groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring; paragraph [0007]); L2 is independently, a bond (K, L1, L2, and M, is, independently, a bond, cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted alkynylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkynylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkenylene; cyclic or acyclic, branched or unbranched, substituted or unsubstituted heteroalkynylene; substituted or unsubstituted arylene; substituted or unsubstituted heteroarylene; or substituted or unsubstituted acylene (L2 is a bond); paragraph [0007]; wherein the bond is included in any of the aforementioned structures), substituted or unsubstituted C1-10 alkenylene, or -C(=O)OR(sub)(L2)-; R(sub)(B) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group (R(sub)(E), equivalent of (R(sub)(B)) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroalkynylene; cyclic or acyclic, branched or unbranched heteroalkynylene; cyclic or acyclic, branched or unbranched heteroalkenylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R(sub)(A) and R(sub)(B) together form a 5- to 6-membered heterocyclic or heteroaromatic ring; each instance of X(suv)(AA) is, independently, an amino acid (each instance of X(sub)(AA) is, independently, an amino acid; paragraph [0007]); m is independently, an integer between 2 and 6, inclusive (z (m) is independently, an integer between 2 and 6, inclusive); each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive (each instance of s and t (p and n) is, independently, 0 or an integer between 1 and 100, inclusive; paragraph [0007]); and q is independently an integer between 1 and 10, inclusive (j (q) is independently an integer between 1 and 10, inclusive; paragraph [0007]); a method of making a polypeptide (a method of making a polypeptide; paragraph [0011]), comprising the steps of: (i) providing an amino acid of Formula A (comprising the steps of: (i) providing an amino acid of Formula B (equivalent of Formula A); paragraph [0011]), or a salt thereof; (ii) providing an amino acid of Formula B (ii) providing an amino acid of Formula C (equivalent of Formula B); paragraph [0011]), or a salt thereof; (iii) providing at least one amino acid is independently selected from the group consisting of natural amino acids and unnatural amino acids (iii) providing at least one amino acid is independently selected from the group consisting of natural amino acids and unnatural amino acids; paragraph [0011]); and (iv) coupling the amino acids of Formulae (A) and (B) and optionally (iii) (coupling the amino acids of Formulae B and C (equivalent of Formulae (A) and (B)) and optionally (iii); paragraph [0011]); a polypeptide of the Formula (VI) (a polypeptide of Formula II (a polypeptide of Formula VI); paragraph [0009]; where p(Verdine) is 0) or a pharmaceutically acceptable salt thereof; wherein each instance of ===== independently represents a single bond, a double bond, or a triple bond (wherein each instance of ===== independently represents a single bond, a double bond, or a triple bond; paragraph [0009]); each instance of R1 is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group (each instance of R(sub)(A) (R1) is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group; paragraph [0007]); each of R2a and R2b is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl (each of R(sub)(B) (R2a and R2b) is, independently, substituted or unsubstituted alkyl; substituted or unsubstituted alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted heteroalkyl; substituted or unsubstituted carbocyclyl; substituted or unsubstituted heterocyclyl; paragraph [0007]); each of R3a and R3b is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclene (each of K and M (R3a and R3b) is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclene; or substituted or unsubstituted heterocyclene; paragraph [0007]); or optionally R2a and R3a are joined to form a ring; or optionally R2b and R3b are joined to form a ring; L1 is independently, a bond (K is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclylene; or substituted or unsubstituted heterocyclene (L1 is independently, a bond); paragraph [0007]; where the bond of L1 is a part of K (Verdine)), substituted or unsubstituted C1-10 alkenylene, or -C(=O)RL1-; L2 is independently, a bond (M is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene; substituted or unsubstituted carbocyclene; or substituted or unsubstituted heterocyclene (L2 is independently, a bond); paragraph [0007]; where the bond of L2 is a part of M(Verdine)), substituted or unsubstituted C1-10 alkenylene, or -C(=O)ORL2-; each of RL1 and RL2 is independently optionally substituted C1-10 alkenylene; R(sub)(A) is, independently, -R(sub)(C), -OR(sub), -N(R)(sub)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group (Rf (Ra) is, independently, -R(sub)(C), -OR(sub)(C), -N(R)(sub)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkenylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R(sub)(F) and R ... Continued on Next Supplemental Page ...

-***-Continued on Next Supplemental Page-***-

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US14/25544

-***-Continued from Previous Supplemental Page:

... Continued from Previous Supplemental Page ... (sub)(E) (equivalent of R(sub)(A) and R(sub)(B)) together form a 5- to 6-membered heterocyclic or heteroaromatic ring; paragraph [0007]); each instance of X(sub)(AA) is, independently, an amino acid (each instance of X (sub)(AA) is, independently, an amino acid; paragraph [0007]); each instance of p and n is, independently, 0 or an integer between 1 and 100, inclusive (each instance of s and t (p and n) is, independently, 0 or an integer between 1 and 100, inclusive; paragraph [0007]); each of m and s is independently an integer between 2 and 6, inclusive (each of y and z (equivalent of m and s) is independently an integer between 2 and 6, inclusive; paragraph [0007]); each of q, t, y, and z is independently an integer between 1 and 10, inclusive (each of j (q) p (t) L1 (y) and L2 (z) is independently an integer between 1 and 10, inclusive, or unsubstituted aliphatic (an integer between 1 and 10); paragraph [0007]); and a method of making a polypeptide (a method of making a polypeptide; paragraph [0011]), comprising the steps of: (i) providing a bis-amino acid of Formula (C) (providing a bis-amino acid of Formula A (equivalent of Formula (C)); paragraph [0011]); (ii) providing an amino acid of Formula A, or a salt thereof (providing an amino acid of Formula A, or a salt thereof; paragraph [0011]); (iii) providing an amino acid of Formula B, or a salt thereof (iii) providing an amino acid of Formula B, or a salt thereof; paragraph [0011]); (iv) providing at least one amino acid (providing at least one amino acid; paragraph [0011]); and (v) coupling the amino acids of A, B and C, and optionally (iv) ((v) reacting (coupling) the amino acids of A, B and C, and optionally (iv); paragraph [0011]); an amino acid of Formula D (an amino acid of Formula B (equivalent of Formula D); paragraphs [0007], [0011]) or a pharmaceutically acceptable salt thereof, wherein R1 is hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group (each instance of R(sub)(A) (R1) is, independently, hydrogen; acyl; substituted or unsubstituted C1-6 alkyl; or an amino protecting group; paragraph [0007]); L1 is independently, a bond, substituted or unsubstituted C1-10 alkylene (K is, independently, substituted or unsubstituted alkylene; unsubstituted heteroalkylene (L1 is independently, a bond, substituted or unsubstituted C1-10 alkylene); paragraph [0007]), or -C(=O)OR6; R(sub)(A) is, independently, -R(sub)(C), -OR(sub)(C), -N(R)(sub)(C)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group (R(sub)(F), (R(sub)(A)) is, independently, -R(sub)(C), -OR(sub)(C), -N(R)(sub)(C)2, or -SR(sub)(C), wherein each instance of R(sub)(C) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; a hydroxyl, amino, or thiol protecting group; paragraph [0007]); or two R(sub)(C) groups together form a 5- to 6-membered heterocyclic or heteroaromatic ring; R(sub)(B) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched, alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R(sub)(A) and R(sub)(B) together form a 5- to 6-membered heterocyclic or heteroaromatic ring (R(sub)(E), (R(sub)(B) is, independently, hydrogen; cyclic or acyclic, branched or unbranched aliphatic; cyclic or acyclic, branched or unbranched heteroaliphatic; aryl; heteroaryl; acyl; a resin; an amino protecting group; a label optionally joined by a linker, wherein the linker is selected from cyclic or acyclic, branched or unbranched alkylene; cyclic or acyclic, branched or unbranched alkenylene; cyclic or acyclic, branched or unbranched alkynylene; cyclic or acyclic, branched or unbranched heteroalkylene; cyclic or acyclic, branched or unbranched heteroalkynylene; cyclic or acyclic, branched or unbranched heteroalkynylene; arylene; heteroarylene; or acylene; or R(sub)(F) and R (sub)(E) (equivalent of R(sub)(A) and R(sub)(B)) together form a 5- to 6-membered heterocyclic or heteroaromatic ring; paragraph [0007]); X1 is independently a bond, CR5R6- or -NR1-; each of R5 and R6 is independently hydrogen, halogen, -NO2, -OH, -CN, or C1-6 alkyl; and each of j and j1 is independently an integer between 1 and 10, inclusive (K is cyclic, branched or unbranched, substituted or unsubstituted alkenylene; cyclic branched or unbranched, substituted or unsubstituted alkynylene; cyclic branched or unbranched, substituted or unsubstituted heteroalkynylene; cyclic branched or unbranched, substituted or unsubstituted heteroalkynylene; substituted or unsubstituted arylene; substituted or unsubstituted heteroarylene (X1 is independently a bond, CR5R6- or -NR1-; each of R5 and R6 is independently hydrogen, halogen, -NO2, -OH, -CN, or C1-6 alkyl; and each of j and j1 is independently an integer between 1 and 10, inclusive); paragraphs [0007], [0011]).

Since none of the special technical features of the Groups I+III+ inventions is found in more than one of the inventions, and since all of the shared technical features are previously disclosed by the Verdine reference, unity of invention is lacking.