凝血酶受体拮抗剂的硫酸氢盐的结晶多晶型物

公开了凝血酶受体拮抗剂化合物的硫酸氢盐的结晶多晶型物，其显示出与图1中所示的基本相同的粉末X射线衍射图，或者显示出与图3中所示的基本相同的差示扫描量热图，并且由化合物2的化学式表示；化学式应该在这里插入，因为它在纸件形式中摘要上出现，还公开了制备化合物2的方法。还公开了包含所述硫酸氢盐的多晶型物和至少一种赋形剂或载体的药物组合物，以及使用化合物2的多晶型物治疗多种生理病症，如血栓形成的方法。
1. 下式化合物 2 的结晶多晶型物形式 1：

化合物 2
其显示出具有 11.2, 16.4, 19.2 和 21.0 度 2θ 的特征性峰位置的粉末 x 射线衍射模式。

2. 权利要求 1 的化合物 2 的结晶多晶型物，其显示出具有 9.9, 11.2, 16.4, 19.2, 21.0, 22.1, 23.7 和 26.7 度 2θ 的特征性峰位置的粉末 x 射线衍射模式。

3. 权利要求 1 的化合物 2 的结晶多晶型物，其显示出具有 9.9, 11.2, 12.6, 14.5, 16.4, 19.2, 21.0, 22.1, 23.7, 26.7, 28.2 和 30.8 度 2θ 的特征性峰位置的粉末 x 射线衍射模式。

4. 权利要求 1 的化合物 2 的结晶多晶型物，其显示出与图 1 中显示的粉末 x 射线衍射模式基本相同的粉末 x 射线衍射模式。

5. 下式化合物 2 的结晶多晶型物形式 1：

化合物 2
其显示出与图 3 中显示的差示扫描量热模式基本相同的差示扫描量热模式。
凝血酶受体拮抗剂的硫酸氢盐的结晶多晶型物

发明背景

本发明涉及凝血酶受体拮抗剂的硫酸氢盐的结晶多晶型物，合成该硫酸氢盐的方法和使用该硫酸氢盐的方法。

背景

已知凝血酶在不同细胞类型中具有多种活性，并且凝血酶受体存在于此类细胞类型如人血小板、血管平滑肌细胞、内皮细胞和成纤维细胞中。因此凝血酶受体拮抗剂（也称作蛋白酶激活的受体（PAR）拮抗剂）可能用于治疗血栓形成、炎症、动脉粥样硬化和纤维增殖性（fibroproliferative）病症，以及其中凝血酶及其受体起病理作用的其他病症。

取代的凝血酶受体拮抗剂公开在US 6,063,847、US 6,326,380 和 U.S. Serial No. 10/271,715。

美国申请号10/412,982(将其完整引述本文作为参考)教导了一类凝血酶受体拮抗剂化合物，其具有如下的式(1):

![Chemical Structure](image)

和该化合物的可药用盐和溶剂合物，其中取代基和结构特征在该文中定义。所述申请还公开了制备此类凝血酶受体拮抗剂化合物的一般方法。

美国申请号10/412,982还公开了鉴定为表1中实施例11的特定凝血酶受体拮抗
剂化合物，其在本文中鉴定为化合物 1。化合物 1 具有下面的结构：

![化合物 1 结构图]

【0014】化合物 1
【0015】化合物 1 展现出良好的凝血酶受体拮抗剂活性（效能）和选择性，并且用于治疗血栓形成、其他心血管和非心血管状况。共同未决的美国专利申请号 10/705,282（本文引用作为参考）公开了凝血酶受体拮抗剂的多种适应症和组合制剂。
【0016】改善化合物 1 的热力学性质将是有益的。产生与化合物相关的稳定的结晶形式也是有益的，所述结晶形式具有一致的物理性质。本发明寻求提供这些和其他益处，它们将随着描述的进行而变得显而易见。
【0017】发明概述
【0018】本发明提供了下式的化合物 2 的结晶多晶型物形式 1：

![化合物 2 结构图]

【0019】化合物 2
【0020】其粉末 x 射线衍射模式具有 11.2、16.4 和 19.2 和 21.0 度 2θ 的特征性峰位置。更优选地，所述结晶多晶型物的粉末 x 射线衍射模式具有 9.9、11.2、16.4、19.2、21.0、22.1、23.7 和 26.7 度 2θ 的特征性峰位置。甚至更优选地，所述结晶多晶型物的粉末 x 射线衍射模式具有 9.9、11.2、12.6、14.5、16.4、19.2、21.0、22.1、23.7、26.7、28.2 和 30.8 度 2θ 的特征性峰位置。
【0021】在另一实施方案中，本发明提供了化合物 2 的结晶多晶型物形式 1，其粉末 x 射线衍射模式与图 1 中显示的粉末 x 射线衍射模式基本相同。
【0022】在另一实施方案中，本发明提供了化合物 2 的结晶多晶型物形式 1，其差示扫描量热模式与图 3 中显示的差示扫描量热模式基本相同。
【0023】在另一实施方案中，本发明提供了根据如下反应从化合物 1 制备化合物 2 的方法：

![制备反应方程式]

5
[00025] 其包括：
[00026] a) 将化合物 1 在有机溶剂中混合以形成混合物；
[00027] b) 加热混合物到约 40-80℃的温度；和
[00028] c) 向加热的混合物加入硫酸。
[00029] 在再一个实施方案中，本发明提供了化合物 2 的结晶多晶型物形式 1，其是上面方
法的产物。
[00030] 优选地，有机溶剂选自醇、腈、酯、酮、醚和它们的混合物。甚至更优选地，有机溶剂
是乙腈。优选地，将硫酸与乙腈混合。优选地，温度为约 50℃。
[00031] 在其他实施方案中，本发明提供了药物组合物，其包含化合物 2 的结晶多晶型物
形式 1 和至少一种赋形剂或载体。
[00032] 在其他实施方案中，本发明提供了抑制凝血酶受体的方法，其包括对需要此类治
疗的哺乳动物施用有效量的化合物 2 的结晶多晶型物形式 1。
[00033] 在其他实施方案中，本发明提供了治疗血栓形成、动脉粥样硬化、再狭窄、高血压、
心绞痛、无节律性、心力衰竭、心肌梗死、肾小球肾炎、血栓形成性中风、血栓栓塞中风、外周
血管疾病、炎性病症、脑缺血或者癌症的方法，其包括对需要此类治疗的哺乳动物施用有效
量的化合物 2 的结晶多晶型物形式 1。
[00034] 在其他实施方案中，本发明提供了治疗血栓形成、动脉粥样硬化、再狭窄、高压
水、心绞痛、无节律性、心力衰竭、心肌梗死、肾小球肾炎、血栓形成性中风、血栓栓塞
(thromboembolitic) 中风、外周血管疾病、炎性病症、脑缺血或者癌症的方法，其包括对需要此类治
疗的哺乳动物联合施用有效量的化合物 2 的结晶多晶型物形式 1 与至少一种额外的心血管试剂。优选地，所述至少一种额外的心血管试剂选自血栓烷 A2 生物合成抑制剂、GP IIb/IIIa 抗凝剂、血栓烷拮抗剂、磷酸二酯酶抑制剂、环加氧酶抑制剂、血管紧张肽抗
剂、内皮生成肽抑制剂、血管紧张肽转化酶抑制剂、中性内肽酶抑制剂、抗凝剂、利尿剂和
血小板聚集抑制物。更优选地，所述至少一种额外的心血管试剂是阿司匹林或者氯吡格雷
硫酸盐。
[00035] 在其他实施方案中，本发明提供了纯化形式的化合物 2 的结晶多晶型物形式 1。
[00036] 从下面的附图、描述和权利要求将进一步理解本发明。
[00037] 附图简述
[00038] 图 1 是从乙腈结晶的化合物 2 的形式 1 的粉末 x 射线衍射 (PXRD) 模式的曲线图，
该曲线图用 Rigaku MiniFlex 衍射计产生。该曲线图描绘了相对于衍射角 θ（度）的峰强度（由每秒计数定义）。

[0040] 图 2 是室温下从丙酮中的硫酸氢盐浆液合成化合物 2 的形式 2 的粉末 x 射线衍射 (PXRD) 模式的曲线图。该曲线图用 Rigaku MiniFlex 衍射计产生。该曲线图描绘了相对于衍射角 θ（度）的峰强度（由每秒计数定义）。

[0041] 图 3 是从乙醚结晶的化合物 2 的形式 1 的调制的差示扫描量热法 (DSC) 差示热分析图。该图描绘了相对于测量的样品温度 (C) 的归一化的热流动（单位为瓦特 / 克 (“W/g”)）。

[0042] 详细描述
[0043] 如在美国申请序列 No. 10/412,982 中讨论的，化合物 1 是有效的凝血酶受体拮抗剂。

[0044]

[0045] 然而，发现游离碱 (freebase) 形式的化合物 1 具有差的结晶稳定性。发现化合物 1 的硫酸氢盐显示出优良的稳定性特征和基本上相似的活性。本文所用的“硫酸氢盐”指 HSO_4^-。化合物 2 具有下面的结构：

[0046]

[0047] 化合物 2
[0048] 发现存在化合物 2 的两种不同的结晶多晶型物。这两种形式在本文中称作形式 1 和形式 2。发现形式 2 是不稳定的，并且随时间推移转化成形式 1 的结晶结构。硫酸氢盐的两种结晶形式都可以称作多晶型物。

[0049] 可以将多晶现象表征为化合物结晶成不同的晶体形式，同时保持相同的化学式的能力。给定药物物质的结晶多晶型物与该药物物质的任何其他结晶多晶型物在化学上相同，表现为它们含有以相同方式相互结合的相同原子，但是晶体形式不同，这可以影响一种
或多种物理性质，如稳定性、溶解性、熔点、堆积密度、流动性质、生物利用率等等。
[0050] 化合物 2 有至少一个受限旋转的键。预计所有互变异构体和内旋异构体都是本发明的部分。
[0051] 化合物 2 可以以未溶剂化以及溶剂合物形式，包括水合形式存在。对于本发明的目的，通常，与可药用溶剂，如水、乙醇等等的溶剂合物形式等同于未溶剂化形式。
[0052] 如说明书全文使用的，除非另外指出，下面的术语将理解为具有下面的含义：
[0053] “患者”包括人和其他动物。
[0054] “哺乳动物”包括人和其他哺乳动物。
[0055] “多晶型物”指结晶形式的物质，其与另一种结晶形式不同但是具有相同的化学式。
[0056] “醇”指含有羟基 (—OH) 的有机化合物。
[0057] “腈”指含有 —C ≡ N 基的有机化合物。
[0058] “酯”指式 RC(O)OR 的有机化合物，其中两个 R 独立地为烷基或者芳基，并且括号表示括号内的 0 通过双键结合到 C。
[0059] “酮”指含有接着到两个烷基的羰基 (C = O) 的有机化合物。
[0060] “赋形剂”指用作稀释剂或者使制剂产生形状或者稠度的基本上惰性的物质。
[0061] “有效的”或者“治疗有效的”意指在描述有效拮抗凝血酶受体并从而产生所希望的治疗、改善、抑制或者预防效果的本发明的化合物或组合物。“有效量”或者“治疗有效量”意指描述有效拮抗凝血酶受体并从而产生所希望的治疗、改善、抑制或者预防效果的本发明的化合物或组合物的量。
[0062] 样品制备
[0063] 化合物 2 的形式 1 作为干燥粉末用于粉末 X 射线衍射 (“PXRD”) 和调制的差示扫描量热法 (“DSC”) 分析。分析前，用粉碎机碾磨材料并对其分类。通过在碾磨室周围以规则距离间隔的喷嘴导入过滤的氮气。操作期间，产生高速涡旋，并将材料注射到外周壁周围的涡旋中。喷嘴附近强的速度梯度导致悬浮颗粒碰撞并通过冲击相互减小。较重的过大型通过离心力保持在碾磨区。进料速度和碾磨气压是控制输出颗粒大小的主要因素。碾磨气体通过室顶部中央的出口排出并将其微粒化的产物随其排出到收集袋中。将该批次以 150 克 / 分钟 (”g/分钟”) 的进料速率和 50psig 的碾磨压力在 4 英寸的粉碎机上微粒化。在内衬双聚乙烯袋的鼓中收集碾磨的材料并在冷藏区保存。
[0064] 微粒化后，用最小制备分析样品以防止任何形式改变。将样品轻轻摩擦以确保颗粒不团在一起。这些分析不使用溶剂、干燥或其他制备步骤。PXRD 和 DSC 数据每种都可以唯一地鉴定一种形式。
[0065] 粉末 X 射线衍射
[0066] 用 Rigaku MiniFlex® 维他儒计 (1999 年生产) 进行 PXRD 分析。该仪器使用具 0/2θ 扫描轴构型的可变发散狭缝和铜的辐射源 (Kα)。以粉末形式提供多晶型物样品。并随后使用手持式椎杆用最小力将样品置于 Si—涂层的低背景散射铝板的面上。结晶硅标准用于检查峰位置准确性。在以每分钟 54 转 (“rpm”) 旋转的同时将样品暴露于环境条件以减小晶体的优选取向。使用来自 Materials Data Inc.(“MDI”) 的 JADE® 图像处理软件版本 5.0 评估数据。该软件自动进行最终滤光，拟合背景，并测量每个峰的面积和高度。将
x 射线模式用 9 点 Savitzky-Golay 抛物线滤光器滤光，否则它基本上是没有背景校正或者 K-α 2 峰除去的原始模式。

[0067] 使用上述方法和设备，将化合物 2 的形式 1 进行 PXRD 分析。产生 PXRD 模式并在图 1 中显示。将峰的强度（y 轴为每秒计数）对 2θ 角（x 轴为度数 2θ）作图。此外，将对每步收集时间归一化的检测器计数对 2θ 角的数据作图。与这些图一致的峰位置（在 2θ x-轴上）在图 1 中显示。这些 PXRD 峰的位置是化合物 2 的结晶多晶型物形式 1 特有的。

[0068] 表 1

化合物 2 的形式 1 的 PXRD 峰位置

<table>
<thead>
<tr>
<th>2θ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.90</td>
</tr>
<tr>
<td>11.24</td>
</tr>
<tr>
<td>11.77</td>
</tr>
<tr>
<td>12.64</td>
</tr>
<tr>
<td>13.96</td>
</tr>
<tr>
<td>14.48</td>
</tr>
<tr>
<td>15.68</td>
</tr>
<tr>
<td>16.44</td>
</tr>
<tr>
<td>17.97</td>
</tr>
<tr>
<td>19.22</td>
</tr>
<tr>
<td>19.52</td>
</tr>
<tr>
<td>21.04</td>
</tr>
<tr>
<td>21.58</td>
</tr>
<tr>
<td>22.38</td>
</tr>
<tr>
<td>23.06</td>
</tr>
<tr>
<td>23.70</td>
</tr>
<tr>
<td>24.36</td>
</tr>
<tr>
<td>25.06</td>
</tr>
<tr>
<td>25.89</td>
</tr>
<tr>
<td>26.68</td>
</tr>
<tr>
<td>28.20</td>
</tr>
<tr>
<td>29.74</td>
</tr>
<tr>
<td>30.78</td>
</tr>
<tr>
<td>32.16</td>
</tr>
<tr>
<td>34.06</td>
</tr>
<tr>
<td>34.66</td>
</tr>
<tr>
<td>36.12</td>
</tr>
<tr>
<td>37.30</td>
</tr>
</tbody>
</table>

[0071] 以如表 1 中显示的化合物 2 的形式 1 晶体结构的 PXRD 峰位置开始，可以选择最具特征性的峰位置并通过相对强度分组以方便地区分该晶体结构与其他晶体结构。独特峰的这种选择在表 2 中显示。从而，化合物 2 的形式 1 的晶体结构可以通过峰位置组 No. 1 确定，该峰位置组 No. 1 由 4 个特征性 PXRD 峰位置组成。更优选地，化合物 2 的形式 1 的晶体结构可以通过峰位置组 No. 2 确定，该峰位置组 No. 2 由组 No. 1 的 4 个特征性 PXRD 峰位置和额外的 4 个峰位置组成。更优选地，化合物 2 的形式 1 晶体结构可以通过峰位置组 No. 3 确定。
定，该峰位置组 No. 3 由组 No. 2 的 8 个特征性 PXRD 峰位置和额外的 4 个峰位置组成。

[0072] 表 2

[0073] 化合物 2 的形式 1 的特征性 PXRD 峰位置

<table>
<thead>
<tr>
<th>峰位置组 No.</th>
<th>峰位置 (度 2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>21.0</td>
</tr>
<tr>
<td>2</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>26.7</td>
</tr>
<tr>
<td>3</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>30.8</td>
</tr>
</tbody>
</table>

[0075] 还将化合物 2 的形式 2 进行 PXRD 分析。在室温下从硫酸氯盐在丙酮中的浆液合成形式 2 晶体。形式 2 晶体没有被微粉化。用于分析形式 2 的晶体结构的晶体样品制备、分析仪器和分析技术在其他方面类似于如上述应用于形式 1 的技术。形式 2 材料的 PXRD
图在图 2 中显示。化合物 2 的形式 2 晶体结构的 PXRD 峰位置在表 3 中显示。表 1 和 3 中显示的 PXRD 峰位置的比较支持如下结论：形式 1 和 2 是化合物 2 的硫酸氢盐的不同的结晶多晶型物。

[0076] 表 3

化合物 2 的形式 2 的 PXRD 峰位置

<table>
<thead>
<tr>
<th>2θ 角 (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.36</td>
</tr>
<tr>
<td>10.22</td>
</tr>
<tr>
<td>10.72</td>
</tr>
<tr>
<td>12.92</td>
</tr>
<tr>
<td>13.38</td>
</tr>
<tr>
<td>15.02</td>
</tr>
<tr>
<td>16.67</td>
</tr>
<tr>
<td>19.16</td>
</tr>
<tr>
<td>19.72</td>
</tr>
<tr>
<td>21.14</td>
</tr>
<tr>
<td>21.79</td>
</tr>
<tr>
<td>23.06</td>
</tr>
<tr>
<td>24.89</td>
</tr>
<tr>
<td>26.60</td>
</tr>
<tr>
<td>27.02</td>
</tr>
<tr>
<td>28.24</td>
</tr>
<tr>
<td>29.67</td>
</tr>
<tr>
<td>30.70</td>
</tr>
<tr>
<td>33.92</td>
</tr>
<tr>
<td>34.71</td>
</tr>
</tbody>
</table>

[0079] 本领域技术人员将意识到相同化合物的给定结晶形式的 PXRD 峰位置的测量将在误差幅度内变动。在美国申请号 10/449,650 中，用一致的样品制备技术和有限数目的分析仪器得到的所有峰位置之间最大样品—样品 2-sigma 值为 0.4。用于仪器以收集这些数据的校准技术在工业标准范围之内，但是不必如本领域技术状态那么严格。考虑到样品制备技术可以改变并且可以用其他分析仪器测量峰位置的误差，所以可能在数据应用中 ±0.5 度 2θ 的误差幅度。标准样品制备技术、相同分析仪器的使用和该仪器的精度精确的校准可以增加可重复性到 ±0.3 度 2θ 或更小。

[0080] 差示扫描量热法

[0081] 用于测试多晶型物样品的 DSC 仪器是 TA Instruments® model 2920（2001 年生产），其装备有冷藏的冷却系统。将 DSC 小室 / 样品室用 40ml/ 分钟超高纯度的氮气清洗。用高纯度阀校准该仪器。用该方法测量的样品温度的准确度为约 ±1℃，且可以在约 ±5％的相对误差内测量熔化热。将样品置于带有盖子的标准铝 DSC 盘中，该盖子含有两个针孔用以允许释放压力。将约 2mg 样品粉末置于盘的底部并轻轻地拍下以使得与盘接触。准确测量样品的重量并且记录到 1/100 毫克。该仪器使用空的参照盘。对仪器编程以在开始 2℃ / 分钟动态加热直线上升到约 250℃前，将样品在约 0℃平衡约 1 分钟，调节率为每 40 秒 ±1℃。
[0082] 将通过样品重量计一化的热导率对测量的样品温度作图。数据以法拉 / 克 ("W/
"g") 单位报告。用指向下的吸热峰进行作图。评价吸热熔化峰以确定该分析中外推的开
始和结束 (outset) 温度, 峰温度和熔化热。
[0083] 化合物 2 的形式 1 的 DSC 图在图 3 中显示。图 3 表明在约 200.6°C 开始熔化, 且熔
化吸热为约 206.4°C。熔化热为约 52.3 焦耳 / 克 ("J/g")。熔化温度和熔化热组合可以
用于区分该形式与其他形式。
[0084] 硫酸氢盐的合成
[0085] 在方案 1 中描绘了硫酸氢盐——下面的化合物 2 的制备。该方案使用下面的缩写 :
Me 为甲基, Et 为乙基, F 为氟原子。
[0086] 方案 1 : 化合物 2 的一般合成
[0087] 化合物 2 的制备优选在有机溶剂中完成, 所述有机溶剂选自醇 (例如, 甲醇、乙醇、
异丙醇)、腈 (例如, 乙腈)、酯 (例如, 乙酸乙酯)、酮 (例如, 丙酮)、醚 (例如, 四氢呋喃)
和它们的混合物。
[0088] 通常, 将化合物 1 置于溶剂或溶剂混合物中并对其加热 (如果必要) 直到化合物 1
溶解到溶液中。应用的热可以依赖于溶剂中化合物 1 的浓度而变 (例如, 足够升高溶剂温
度到约 40~80°C 的热)。形成溶液后, 继续应用热以保持温度。缓慢加入溶于相同溶剂中的
硫酸溶液。在加入硫酸溶液期间可以从溶液析出晶体。备选地, 可以将化合物 1 与溶剂以
悬浮液或者其他混合物接触而不用溶解。
[0089] 发现异丙醇、丙酮、乙腈、乙酸乙酯、乙酸异丙酯和四氢呋喃作为上述方法中的溶
剂的使用都产生形式 1 的结晶多晶型物。
[0090] 还优选在反应溶剂中接合化合物 2 的饱和溶液以控制结晶和最小化和 / 或防止壁
上产物结壳。产物的结壳将导致产量减小和溶剂截留在分离的结晶产物物质中。甚至在长
时间干燥后, 截留的溶剂通常也不能降低到优选水平。优选将化合物 2 溶液用少量结晶化
合物 2 (例如, 约 0.1% w/w 到约 0.2% w/w) 接种以避免产物结壳的可能。
[0091] 一般的合成步骤如下。将约 5g 化合物 1 溶解在约 25ml 乙醇中。搅拌溶液约 10
分钟然后加热到约 50°C。向加热的反应混合物加入约 6ml 2M 硫酸溶于乙醇中的溶液。在
加入硫酸的乙醇溶液期间沉淀出化合物 2。加入硫酸溶液后, 搅拌反应混合物 1 小时后冷却
到室温。过滤沉淀的固体并将其用 30ml 乙醇洗涤。室温下真空干燥潮湿固体 1 小时, 然后
在 80°C 下干燥约 12 小时, 以得到约 5g 晶体形式的化合物 2。得率为约 85%。然后将产物
进行 PXRD 和 DSC 分析，所述分析得到分别在图 1 和 3 中所示的图，反应了它是形式 1 多晶体物这一事实。

【0093】化合物适性、药物组合物和使用方法

【0094】在一个实施方案中，本发明包含化合物 2 的形式 1、其药物组合物、制备化合物 2 的方法、和使用化合物 2 或者其药物组合物治疗多种病症、症状和疾病的方法。化合物 2 显示了作为凝血酶受体拮抗剂的活性，其可以用于治疗与血栓形成、动脉粥样硬化、再狭窄、高血圧、心绞痛、无节律性、心力衰竭、脑缺血、中风、神经变性疾病和癌症相关的疾病。凝血酶受体拮抗剂还知为蛋白酶激活受体 (PAR) 拮抗剂。化合物 2 作为成员的这类化合物还通常结合大麻素 (CB2) 受体并且可以用于治疗类风湿性关节炎、系统性红斑狼疮、多发性硬化、糖尿病、骨质疏松症、肾出血、脑中风、脑出血、肾炎、肺和胃肠道的炎性疾病，和呼吸道病症，如可逆的气道堵塞、慢性哮喘和支气管炎。

【0095】制剂和给药

【0096】为了从本发明描述的化合物制备药物组合物，适性的可药用载体可以是固体或者液体。固体形式制剂包括粉末、片剂、可分散的颗粒、胶囊、片剂 (cachet) 和栓剂。粉末和片剂可以包含约 0.1 到约 95% 活性成分。适宜的固体载体是本领域已知的，例如，微晶纤维素、糖或者乳糖。片剂、粉末、片剂和胶囊可以用作用于经口施用的固体剂型。可药用载体的实例和多种组合物的生产方法可以见 A. Gennaro (ed.), The Science and Practice of Pharmacy, 20th Edition, Lippincott Williams & Wilkins, Baltimore, MD, (2000)。

【0097】液体形式制剂包含溶液、悬浮液和乳剂。可以作为实例提及的是用于肠胃外注射或者水 - 丙二醇溶液或者加入用于经口溶液、悬浮液和乳剂的增溶剂和遮光剂。液体形式制剂也可以用于经皮施用的溶液。

【0098】适于吸入的气溶胶制剂可以包括溶液和粉末形式的固体，其可以与可药用载体，如惰性压缩气体，例如，氮气组合。

【0099】还包括固体形式的制剂，其将在临近使用前转化成液体形式用于经口或者肠胃外施用。此类液体形式包括溶液、悬浮液和乳剂。

【0100】本发明的化合物还可以经皮递送。经皮组合物可以为乳膏、洗剂、气溶胶和 / 或乳剂的形式，并且可以包括在如本领域通常用于该目的的基质或者贮囊剂型的经皮贴剂中。

【0101】优选地，化合物 2 的形式 1 经口施用。优选地，药物制剂为单位剂型。在这种形式中，将制剂分成适当大小的单位剂量，其含有适当量的活性组分，例如，有效量，以实现所希望的目的。

【0102】用于治疗上面引用的疾病或状况的化合物 2 的形式 1 的日剂量为约 0.001 到约 100mg/kg 体重 / 天，优选约 0.001 到约 10mg/kg 体重 / 天。对于 70kg 的平均体重，剂量水平因此为约 0.1 到约 700mg 药物 / 天，以单剂或者 2-4 次分开的剂次施用。

【0103】化合物 2 的形式 1 的施用量和频率根据主治临床医生的判断进行调节，该医生考虑诸如患者的年龄、状况和大小以及正治疗的症状的严重性等因素。

【0104】本发明的其他实施方案包括施用化合物 2 的形式 1 与至少一种额外的治疗有效性试剂。预期的额外的治疗有效性试剂是内原子组成或者排列上都与化合物 2 不同的试剂。可以与本发明的药物组合物组合使用的治疗有效性试剂包括已知的并且用于治疗炎症、风湿病、哮喘、肾小球肾炎、骨质疏松症、神经病和 / 或恶性肿瘤、血管生成相关的病症、癌症、肝
脏、肾和肺的病症、黑素瘤、肾细胞癌、肾脏病、急性肾功能衰竭、慢性肾功能衰竭、肾脏血管
体内稳态。肾小球肾炎、慢性肾小球肾炎、糖尿病性肾病、神经变性的和 / 或神经毒性疾病的产物或
损伤。放射性纤维化、内皮功能障碍、牙周病和创伤的药物。可以与化合物 2 组合使用的治
疗有效性试剂的其他实例包括肿瘤细胞对化疗药物的抗性因子和正常肌细胞、内皮细胞、成
纤维细胞、肾细胞、骨细胞、肉瘤细胞、肌细胞等和 / 或神经胶质细胞的增殖抑制剂。治疗
有效性试剂可以是血管生成剂。
[0105] 可以与本发明的新化合物组合使用的心血管生成剂包括具有抗血栓形成、抗血小板
聚集、抗动脉粥样硬化、抗再狭窄和 / 或抗凝血活性的药物。此类药物可以用于治疗血栓
形成相关的疾病，包括血栓形成、动脉粥样硬化、再狭窄、高血压、心绞痛、无节律性、心力衰
竭、心肌梗死、肾小球肾炎、血栓形成性血栓栓塞性中风、外周血管疾病、其他心血管疾病、脑
缺血、炎性病症和癌症，以及其中凝血酶和它的受体起病理作用的其他病症。适宜的心
血管生成剂选自血栓烷 A2 生物合成抑制剂，如阿司匹林；血栓烷拮抗剂，如骨钙素、他
磺酸和雷马曲班 (ramatroban)；腺苷二磷酸抑制剂，如氯吡格雷；环氧化酶抑制剂，如阿司匹
林、美洛昔康、非类固醇类抗炎药；血管紧张肽拮抗剂，如缬沙坦、培哚普利、依
贝沙坦、氯沙坦和依普沙坦；内皮素肽拮抗剂，如钙拮抗剂 (tezosentan)；磷酸二酯
酶抑制剂，如米力农 (milrinone) 和依诺昔酮；血管紧张肽转化酶 (ACE) 抑制剂，如卡托普
利、依那普利、依那普利纳 (enalioprilat)、螺普利、奥美拉唑、贝那普利、雷米普利、福辛普
利、群多普利、赖诺普利、莫西普利和贝那普利；中性内肽酶抑制剂，如坎地沙坦和依
曲它尔 (ecadotril)；抗凝剂，如肝素、依诺肝素、直接凝血酶抑制剂；和 GP IIb/IIIa 拮抗剂。
[0106] 与化合物 2 的形式 1 组合使用的优选类型的药物是血栓烷 A2 生物合成抑制剂、环
加氧酶抑制剂和 ADP 拮抗剂。尤其优选的组合使用的是阿司匹林和氯吡格雷硫氢酸盐。
[0107] 本发明的其他实施方案包括使用化合物 2 的形式 1 与一种以上的额外的治疗有效
性试剂。在这些实施方案中，额外的治疗有效性试剂可以是或不是用于治疗相同状况的
试剂。例如，化合物 2 的形式 1 可以与两种心血管生成剂使用。备选地，化合物 2 的形式 1 可
以与心血管生成剂和用于治疗炎症的治疗有效性试剂一起使用。
[0108] 本发明包含化合物 2 的形式 1 与一种或多种其他治疗有效性试剂的组合时，两
种或更多种活性组分可以同时或顺序共同使用，或者可以使用包含可用药载体中化合物
2 的形式 1 和其他治疗有效性试剂的一种药物组合物。该组合的组分可以单独或者一起
以任意常规的剂型使用，所述剂型为诸如胶囊、片剂、粉末、软胶囊、悬浮液、溶液、栓剂、鼻
喷雾剂等等。其他治疗活性剂的剂量可以从出版的材料确定，并且可以为每剂 1 到 1000mg。
[0109] 在该说明书中，术语“一种或多种额外的心血管试剂”是指一种或三种额外药物可
以与化合物 2 的形式 1 组合使用；优选的，一种额外化合物与化合物 2 的形式 1 组合使用。
额外的心血管试剂可以关于化合物 2 的形式 1 顺序或同时使用。
[0110] 全身递送的速率可以由本领域技术人员通过操作下面的任一项或多项而满意地
控制：
[0111] (a) 适当的活性成分；
[0112] (b) 可药用赋形剂或者载体，只要变量不干扰所选特定活性成分的活性；
(c) 药片剂或载体的类型，和相拌的赋形剂或载体的所希望的纯度和透性（膨胀性质）；

(d) 赋形剂或载体的依赖时间的条件；

(e) 活性成分的颗粒大小；和

(f) 赋形剂或载体的依赖 pH 的条件。

可药用赋形剂或载体包含调味剂、药物级染料或者色素、溶剂、共溶剂、缓冲系统、表面活性剂、防腐剂、增粘剂、粘性剂、充填剂、润滑剂、助流剂、崩解剂、粘合剂和树脂。

可以使用常规调味剂，如 Remington’s Pharmaceutical Sciences, 18th Ed., Mack Publishing Co., 1288–1300 (1990) 中描述的那些，将该文献引入本文作为参考。本发明的药物组合物通常包含 0% 到约 2% 调味剂。

可以使用常规染料和 / 或色素，如 Handbook of Pharmaceutical Excipients，by the American Pharmaceutical Association & the Pharmaceutical Society of Great Britain, 81-90 (1986) 中描述的那些，将该文献引入本文作为参考。本发明的药物组合物通常包含 0% 到约 2% 染料和 / 或色素。

本发明的药物组合物通常包含约 0.1% 到约 99.9% 溶剂。优选的溶剂是水。优选的共溶剂包含乙醇、甘油、丙二醇、聚乙二醇等等。本发明的药物组合物可以包含 0% 到约 50% 共溶剂。

优选的缓冲系统包含乙酸、硼酸、磷酸、琥珀酸、苹果酸、酒石酸、柠檬酸、乙酸、苯甲酸、乳酸、甘油酸、葡萄酸、戊二酸和谷氨酸和它们的钠、钾和铵盐。特别优选的缓冲液是磷酸、酒石酸、柠檬酸和乙酸和其盐。本发明的药物组合物通常包含 0% 到约 5% 缓冲液。

优选的表面活性剂包含聚氧乙烯山梨糖醇酯脂肪酸酯、聚氧乙烯单烷基醚、蔗糖单酯和羊毛脂酯和醚、脂肪酸的烷基硫酸盐和钠、钾和铵盐。本发明的药物组合物通常包含 0% 到约 2% 表面活性剂。

优选的防腐剂包含苯酚、对羟基苯甲酸的烷基酯、邻苯基苯酚苯甲酸和其盐、硼酸和其盐、山梨酸和其盐、氯代丁醇、卡醇、硫柳汞、乙酸苯汞和硝酸苯汞、硝甲酚汞、苯扎氯铵、西氯羟胺、对羟基苯甲酸甲酯和对羟基苯甲酸丙酯。特别优选的防腐剂是苯甲酸的钠、西氯羟胺、对羟基苯甲酸甲酯和对羟基苯甲酸丙酯。本发明的药物组合物通常包含 0% 到约 2% 防腐剂。

优选的增甜剂包含蔗糖、葡萄糖、糖精、山梨糖醇、甘露糖醇和阿斯巴甜。特别优选的增甜剂是蔗糖和糖精。本发明的药物组合物通常包含 0% 到约 5% 增甜剂。

优选的粘性剂包含甲基纤维素、羧甲基纤维素钠、羟丙基甲基纤维素、羟丙基纤维素、藻酸钠、卡波姆、聚乙烯吡咯酮、阿拉伯胶、瓜耳胶、黄原胶和西黄蓍胶。特别优选的粘性剂是甲基纤维素、卡波姆、黄原胶、瓜耳胶、聚乙烯吡咯酮、羧甲基纤维素钠和硅酸铝镁。本发明的药物组合物通常包含 0% 到约 5% 粘性剂。

优选的充填剂包含乳糖、甘露糖醇、山梨糖醇、三氯磷酸钙、二氯磷酸钙，可压缩的糖、淀粉、硫酸钙、石质的（dextro）和微晶纤维素。本发明的药物组合物通常包含 0% 到约 90% 充填剂。
包含 0% 到 7%，优选约 1% 到约 5% 润滑剂 / 助流剂。

【0128】优选的崩解剂包含淀粉、羟基乙酸淀粉钠、聚乙烯聚吡咯烷酮和交联甲基纤维素（croscarmelose）钠和微晶纤维素。本发明的药物组合物通常包含 0% 到约 20%，优选约 4% 到约 15% 崩解剂。

【0129】优选的粘合剂包含阿拉伯胶、西黄蓍胶、羟丙基纤维素、预胶凝淀粉、明胶、聚乙烯吡咯烷酮、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、糖溶液（如蔗糖和山梨糖醇）和乙基纤维素。本发明的药物组合物通常包含 0% 到约 12%，优选约 1% 到约 10% 粘合剂。

【0130】配方设计师公知的额外试剂可以与本发明化合物组合以产生单一剂型。备选地，额外试剂可以作为多次剂型的部分单独施用于哺乳动物。

【0131】药物组合物通常包含约 0.1% 到约 99.9%（按重量或体积计，优选地，w/w）活性成分（化合物 2 的形式 1），优选约 5% 到约 95%，更优选约 20% 到约 80%。对于制备包含化合物 2 的形式 1 的药物组合物，惰性的可药用赋形剂或者载体可以是固体或者液体。固体形式制剂包含粉末、片剂、可分散的颗粒、胶囊、粘胶剂和栓剂。适宜的固体赋形剂或者载体是本领域已知的，例如：碳酸镁、硬脂酸镁、滑石、糖和乳糖。片剂、粉末、粘胶剂和胶囊可以用作适于经口施用的固体剂型。可药用赋形剂或载体的实例和生产多种组合物的方法可以见 Remington’s Pharmaceutical Sciences, 18th Ed., Mack PublishingCo. (1990)，将其完整引入本文作为参考。

【0132】液体形式制剂包含溶液、悬浮液和乳剂。通常的液体形式制剂包含用于肠胃外注射的水和丙二醇溶液或者加入用于经口溶液、悬浮液和乳剂的增甜剂和遮光剂。液体形式制剂还可以包含用于鼻内施用的溶液。

【0133】单剂制剂中化合物 2 的形式 1 的量可以根据具体应用改变或者调整，为约 0.01mg 到约 4,000mg，优选约 0.02mg 到约 2,000mg，更优选约 0.03mg 到约 1000mg，甚至更优选约 0.04mg 到约 500mg，且最优选约 0.05mg 到约 250mg。经口施用的推荐日剂量可以为约 0.02mg 到约 2,000mg/天，以两次或四次分开的剂次。为了方便，如需要，总日剂量可以在当天中分开并按份施用。通常，本发明的药物组合物将从约每天 1 次到约每天 5 次施用，或者备选地，作为连续输注施用。此类施用可以用作慢性或急性治疗。

【0134】与本发明的化合物结合使用的可药用赋形剂或者载体以足够为剂量关系提供实际大小的浓度使用。可药用赋形剂或者载体总体可以占本发明药物组合物的约 0.1% 到约 99.9%（按重量或者体积计，优选 w/w），优选按重量计约 5% 到约 95%，更优选按重量计约 20% 到约 80%。

【0135】在改善患者的状况后，如果希望或者认为适当，可以施用本发明的化合物、组合物或组合的维持剂量。随后，施用的剂量或者频率或者它们两者可以作为症状的函数减小到保持改善的状况的水平。当症状已经减小到希望的水平时，应该停止治疗。然而，在任何疾病症状复发后，患者可以要求进行长期间歇性治疗。

【0136】任何具体患者的具体剂量和治疗方案可以改变并且将依赖于多种因素，包括所用的特定化合物的活性、患者的年龄、体重、一般健康状态、性别和饮食、施用时间、排泄速率、特定药物组合、正常的临床试验的严重性和过程、患者对正治疗的状况的倾向和治疗医生的判断。确定特定情况的适当剂量方案在本领域技术范围之内。化合物 2 的形式 1 或者其药物组合物的施用量和频率可以根据主治临床医生基于上面引用的因素的判断来调节。如技
术人员将理解的，可能需要比上述引用的剂量更低或更高的剂量。

[0137] 例如，通常情况是适当的剂量水平基于患者体重。例如，约0.01mg/kg到约100mg/kg体重/天，优选约0.5mg/kg到约75mg/kg体重/天，且更优选约1mg/kg到约50mg/kg体重/天的本发明化合物和本文描述的组合物的剂量水平可以在治疗上用于治疗多种生物学病症，具体为血栓形成和其他心血管状况。在具有不同体重并且所有其他方面都相同的两名患者之间，对较重的患者将使用较高剂量。

[0138] 多晶型物纯度

[0139] 优选地，化合物2的结晶多晶型物形式1基本上无化学杂质（例如，在化合物2的制备期间产生的副产物）和其他多晶型结晶形式。对于本发明，“基本上无”化学杂质是指小于或者等于约5% w/w化学杂质，优选小于或者等于约3% w/w化学杂质，更优选小于或者等于约2% w/w化学杂质，且甚至更优选小于或者等于约1% w/w化学杂质。术语化合物的“纯化的”或者“纯化的形式”指从本文描述或者技术人员公知的一种或多种纯化方法得到后所述化合物的物理状态，其具有足够的纯度而可以通过本文描述或者技术人员公知的标准分析技术进行表征。化合物2的结晶多晶型物形式1的纯化的形式基本上无化学杂质。

[0140] 除在操作实施例或者另外指出的以外，说明书和权利要求书中所用的表达成分的量、反应条件等等的所有数字在所有情况中都理解成由术语“约”修饰。上面的描述不意在详述本发明的所有修改和变形。本领域技术人员将理解可以对上述实施方案进行改变而不背离发明概念。因此，应理解本发明不限于上述具体实施方案，而是意在覆盖本发明精神和范围内的修饰，如通过下面的权利要求书的文字所限定的。
图3