VEIL WITH A PVOH FIBRE BINDING AGENT

VOILE A LIANT FIBRE PVOH

The invention relates to a method comprising: a step for dispersion of cut filaments and discontinuous fibres of PVOH in an aqueous process liquor, then a formation step for a bed in a formation device by passage of the dispersion over a formation cloth, through which the aqueous process liquor is drained, the filaments and fibres being retained on said cloth, then a thermal treatment step in a curing device. The PVOH fibres give a degree of resistance to the fibre bed in formation. The method provides a veil with a very high degree of tensile strength for a low level of binding agents.

Le procédé selon l’invention comprend : - une étape de mise en dispersion dans une eau de procédé de filaments coupés et de fibres discontinues de PVOH, puis, - une étape de formation d’un lit dans un dispositif de formation par passage de la dispersion sur une toile de formation à travers laquelle l’eau de procédé est drainée, les filament et les fibres étant retenus sur ladite toile, puis, - une étape de traitement thermique dans un dispositif d’étuvage. Les fibres de PVOH donnent de la solidité au lit de fibres en formation. Ce procédé mène à un voile présentant un niveau de résistance à la traction très élevé pour de faibles taux de liants.
VOILE A LIANT FIBRE PVOH

L’invention concerne un procédé de fabrication d’un voile de fibre dont le liant est issu de fibres d’alcool polyvinylique (PVOH). Le voile fabriqué selon l’invention peut notamment peut être utilisé comme revêtement de surface (« wall covering »). Pour cette application, il peut être collé aux murs par une face à l’aide d’une colle à l’eau et recevoir une peinture (à l’eau ou en solvant organique) sur l’autre face.

On entend par voile (« veil » en anglais) un non-tissé constitué de filaments complètement dispersés. Généralement, un voile présente une masse surfacique allant de 10 à 60 g/m² et plus particulièrement 20 à 40 g/m², par exemple environ 30 g/m².

La fabrication d’un voile en continu implique le passage d’un lit de filaments dispersés par un ensemble de plusieurs dispositifs successifs devant chacun appliquer auxdits filaments un traitement particulier. Le lit de fibres, après sa formation dans un « dispositif de formation », traverse ensuite un « dispositif de dépose de liant » puis un « dispositif d’étuvage ». Le transport du lit au travers de ces dispositifs est réalisé grâce à des tapis défilants, et le lit est généralement amené à passer d’un tapis à l’autre. Pour ce passage d’un dispositif à l’autre par des « sauts de tapis », le voile en formation a tendance à perdre de sa cohésion, ce qui se traduit par des défauts de structure du voile final comme un grammage irrégulier.

Le procédé en continu selon l’invention comprend :

- une étape de mise en dispersion dans une eau de procédé de filaments couplés et de fibres discontinues de PVOH, puis,
- une étape de formation d’un lit dans un dispositif de formation par passage de la dispersion sur une toile de formation à travers laquelle l’eau de procédé est drainée, les filaments et les fibres étant retenus sur ladite toile, puis,
- une étape de traitement thermique dans un dispositif d’étuvage.

L’invention remédie aux problèmes sus-mentionnés. En effet, comme la fibre de PVOH mise au départ joue le rôle de liant du voile, il n’est pas forcément nécessaire d’utiliser un dispositif d’application d’un liant, ce qui implique que le
voile a moins de « sauts de tapis » à réaliser. D’autre part, la demanderesse a découvert que les fibres de PVOH donnaient de la solidité au lit en formation, probablement du fait que la fibre PVOH donne du collant aux différents ingrédients du lit et les maintient. De ce fait le lit est moins endommagé lors des sauts de tapis.

Les filaments utilisables dans le cadre de la présente invention comprennent généralement des filaments de verre et sont plus particulièrement des filaments de verre, pouvant être mis en œuvre lors de la dispersion sous forme de fils coupés. Les filaments peuvent avoir été ensimés lors de leur fabrication, pour être rassemblés le cas échéant sous forme de fils, notamment par des liquides d’ensimage comprenant un organosilane et / ou un agent collant (« film former » en anglais). Il est préférable dans ce cas de ne pas sécher les filaments avant de les mettre en dispersion dans l’eau, de façon à éviter de coller les filaments entre eux, ce qui gênerait leur dispersion à l’état de filaments individuels.

En tant que filaments coupés, en plus des filaments de verre, on peut également utiliser des fibres de cellulose (ou « filaments de cellulose » en tant que synonyme) et/ou des filaments en polyester, notamment en polyéthylène téréphtalate (PET).

Les fibres de cellulose sont généralement obtenues à partir de pulpe de bois. Cette pulpe de bois est généralement obtenues à partir de feuilles commerciales en carton que l’on ramollit avec de l’eau. Cette eau utilisée pour ramollir le carton sert ensuite au transport de la pulpe en direction de l’installation de réalisation de la dispersion. Ce mélange eau / pulpe contient généralement juste l’eau suffisante pour pouvoir véhiculer la pulpe par écoulement. Ce mélange
pulpe / eau avant d’atteindre le milieu de la dispersion contient généralement de 70 à 99 % en poids d’eau et 1 à 30% en poids de cellulose. Les filaments de polyester sont généralement coupés et ont généralement une longueur allant de 3 à 25 mm et ont un diamètre allant de 7 à 20 μm. Comme filaments de polyester utilisables, on peut citer ceux commercialisés sous la référence EP133 par la société Kuraray.

Comme filaments coupés dans le cadre de la présente invention, on utilise plus particulièrement un mélange filaments de verre / fibres de cellulose lorsque l’on recherche une bonne résistance à la déchirure.

Comme filaments coupés dans le cadre de la présente invention, on utilise plus particulièrement un mélange filaments de verre / filaments de polyester lorsque l’on recherche une bonne résistance à la déchire et une amélioration de l’aspect du voile. En effet, les filaments de polyester confèrent un aspect plus régulier au voile.

Les fibres de PVOH sont discontinues et ont généralement une longueur allant de 3 à 15 mm et un diamètre allant de 7 à 20 μm.

Pour la première étape, les filaments coupés et les fibres de PVOH sont mis en dispersion dans l’eau, par exemple dans un pulpeur. La solution aqueuse dans laquelle les filaments coupés et les fibres de PVOH sont dispersés est appelée eau de procédé. Cette mise en dispersion peut être réalisée dans un premier temps dans un pulpeur par exemple avec une proportion de filaments et de fibres telle que la somme de la masse filaments / fibres aille de 0,01% à 0,5% en poids de la somme du poids des filaments, des fibres et de l’eau de procédé.

De préférence, le mélange filaments/fibres/eau de procédé au moment de passer dans l’étape de formation du lit est tel que la somme de la masse filaments + fibres représente 0,01 à 0,5% en poids dudit mélange et de préférence 0,02 à 0,05% dudit mélange. Le mélange peut subir une diminution de concentration en filaments + fibres en passant du pulpeur au dispositif de formation du lit.

On utilise de préférence une quantité de fibres de PVOH représentant 1,5 à 20 % en poids et de manière encore préférée 2,5 à 15 % en poids de la somme de la masse de filaments coupés et de fibres de PVOH.

En tant que filaments coupés, on peut n’utiliser que des filaments de verre.
En tant que filaments coupés, on peut également utiliser un mélange de filaments de verre et de fibres de cellulose, notamment dans le rapport massique verre/cellulose suivant : de 99/1 à 80/20, et de préférence de 95/5 à 90/10, étant entendu que la masse de filaments de verre prend en compte son éventuel ensilage.

En tant que filaments coupés, on peut également utiliser un mélange de filaments de verre et de filaments de polyester, notamment dans le rapport massique verre/polyester suivant : de 99/1 à 70/30, et de préférence de 90/10 à 80/20. L’eau de procédé peut comprendre un épaississant pour faire augmenter la viscosité de l’eau de procédé. Cet épaississant peut être présent à raison de 0 à 0,5% en poids dans l’eau de procédé. Cet épaississant peut par exemple être une hydroxyéthylcellulose (par exemple Natrosol 250HHR de Hercules).

L’eau de procédé peut comprendre un dispersant cationique. Ce dispersant cationique peut être présent à raison de 0 à 0,1% en poids dans l’eau de procédé. Ce dispersant cationique peut être par exemple la guanidine ou une amine à chaîne grasse. On peut notamment utiliser l’aerosol C 61 commercialisé par CYTEC.

On introduit de préférence l’épaississant de façon à ce que l’eau de procédé présente à 20°C une viscosité comprise entre 1 et 20 mPa.s et de préférence comprise entre 5 et 12 mPa.s.

La dispersion eau de procédé/filaments coupés est agitée, puis envoyée sur une toile de formation perméable (pouvant également être appelée tapis) laissant s’écouler l’eau de procédé à travers elle et retenant les filaments coupés et les fibres de PVOH à sa surface. L’eau de procédé peut être aspirée pour améliorer son évacuation. L’eau de procédé peut être recyclée pour être de nouveau mélangée avec des filaments coupés et des fibres PVOH. Les filaments coupés et les fibres PVOH, mélangés, forment ainsi un lit en surface de la toile de formation.

La toile de formation est un tapis défilant, c’est-à-dire en mouvement, et convoyant le lit en direction du dispositif d’étuvage.

Il n’est pas nécessaire de faire passer le lit formé par un dispositif d’application d’un liant, dans la mesure ou la fibre de PVOH utilisée au départ a la fonction de constituer le liant du voile final. Cependant, il n’est pas exclu d’utiliser
un plus faible taux de liant sous la forme de fibres introduites au départ, et de compléter par ajout de liant dans un dispositif d’application de liant placé après le dispositif de formation du lit. On peut donc apporter sous forme de fibres PVOH introduites au départ 25 à 100% du poids total de liant, le reste étant appliqué dans le dispositif d’application du liant.

Le voile final comprend généralement 1,5 à 15% en poids de liant (pouvant être exclusivement du PVOH), et plus généralement 2,5 à 10% en poids de liant (pouvant être exclusivement du PVOH), le reste de la masse du voile étant généralement constitué par la masse des filaments ce qui inclut les éventuels produits d’ensilage qui les recouvrent. Le voile selon l’invention est généralement à base de filaments de verre, c’est-à-dire qu’il comprend généralement au moins 55 % en poids de verre sous la forme de filaments. Ainsi, le voile peut comprendre au moins 80% en poids de verre sous forme de filaments, et ce notamment lorsque seuls des filaments de verre ont été utilisés en tant que filaments coupés.

Si le voile final comprend à la fois des filaments de verre et des fibres de cellulose, ces deux types de composants restent présents dans le voile final dans les proportions de leur introduction et qui a déjà été dite.

Si le voile final comprend à la fois des filaments de verre et des filaments de polyester, ces deux types de composants restent présents dans le voile final dans les proportions de leur introduction et qui a déjà été dite. Si l’on choisit d’appliquer une partie du liant total dans le dispositif d’application d’un liant, on applique généralement celui-ci sous la forme d’une dispersion aqueuse

- soit par trempage entre deux toiles de formation auquel cas le produit maintenu entre les deux toiles est plongé dans un bain par l’intermédiaire de paires de rouleaux,
- soit par dépôt sur le lit de filaments coupés, par une cascade, ce qui signifie que la dispersion aqueuse de liant est coulée sur la nappe de filaments coupés selon un filet perpendiculaire à ladite nappe et perpendiculaire au sens de défilement de ladite nappe.

Le liant peut être du type de ceux habituellement utilisés dans ce genre de réalisation. Notamment il peut s’agir d’acétate de polyvinyle (PVAc) plastifié ou styrène acrylique ou acrylique auto-réticulable ou urée formol ou mélamine formol. L’excès de liant peut être évacué par aspiration à travers la toile de formation.
Le lit doit entrer humide (entre 20 et 70% en poids d’eau, par exemple environ 40% en poids d’eau) dans le dispositif d’étuvage afin de permettre la dissolution de la fibre d’alcool polyvinylque dans l’eau. Cette dissolution se produit sous l’effet de la température, généralement à partir d’environ 60°C. La fibre de PVOH se transforme ainsi en gouttelettes de liant.

L’étape de traitement thermique à pour but d’évaporer l’eau ainsi que réaliser les éventuelles réactions chimiques entre les différents constituants comme par exemple les condensations de groupements –OH. Le traitement thermique peut être réalisé par chauffage entre 140 et 250°C. La durée du traitement thermique va généralement de 2 secondes à 3 minutes. Le voile peut être séché et traité thermiquement en étuve à air chaud à circulation au travers du tapis. A l’issue du traitement thermique, essentiellement toutes les fibres de PVOH se sont transformées en liant PVOH et n’apparaissent plus sous la forme de fibres.

La figure 1 représente schématiquement un procédé de préparation en continu d’un voile selon l’invention. Les filaments coupés et la fibre de PVOH sont mis en dispersion dans un pulpeur 1 en présence d’eau de procédé et sous agitation. Le mélange se déverse ensuite éventuellement dans un bac de stockage 2 à travers la canalisation 3, la fonction du bac de stockage étant de d’augmenter la durée de mélange entre les filaments et l’eau de procédé. Ce bac de stockage est facultatif. Le mélange est ensuite amené à travers la canalisation 4 à la canalisation 5, laquelle rassemble le flux de mélange provenant de la canalisation 4 à un flux d’eau de procédé recyclé et provenant de la caisse de tête 6 à travers la canalisation 7. A ce niveau, la teneur en filaments et fibres dans le mélange filaments/fibres/eau de procédé est fortement abaissée. De l’eau de procédé est drainée en 14 et éventuellement aspirée en 15 à travers la toile de formation 8 et est recyclée par l’intermédiaire de la canalisation 17. Cette eau recyclée est ensuite partagée en 16, par exemple pour environ 10% pour retourner vers le pulpeur à travers la canalisation 10 et pour environ 90% pour retourner vers la caisse de tête 6 à travers les canalisations 9, 7 puis 5. La circulation dans les canalisations est assurée par les pompes 11, 12 et 13. La pompe 11 est appelée pompe principale (« fan pump » en anglais). Le voile en
formation 18 fait ensuite un « saut de tapis » vers le dispositif d’étuvage 19, et le voile final est enroulé en 20.

L'invention mène à un voile présentant un niveau de résistance à la traction très élevé pour de faibles taux de liants, notamment tel que la relation suivante est vérifiée :

\[\frac{R_T}{(L \cdot G)} > 0.03, \text{voire même} > 0.035, \]

dans laquelle \(R_T \) représente la résistance à la traction en daN pour 5 cm, \(L \) représente le taux de liant dans le voile en % en poids, et \(G \) représente le grammage du voile en g/m². Pour la détermination de \(R_T \), on prend la moyenne des deux valeurs obtenus, pour le sens travers (« cross direction » en anglais) d'une part, et pour le sens long (« machine direction » en anglais) d'autre part.

À titre de comparaison, et à taux de liant identique, les résistances à la traction du voile selon l’invention sont le double de celles conférées à un voile classique lié par une urée formol de très bonne caractéristique (voir notamment les exemples).

Le voile selon l’invention est plus particulièrement destiné aux revêtements de murs. Pour ce type d’application, on ne souhaite pas qu’il contienne de résine du type PVC. Le voile selon l’invention est donc généralement tel qu’il ne contient pas de PVC.

Dans les exemples, la résistance à la traction a été mesurée par la norme ISO 3342.
Exemple 1 à 3:
On utilise des fils de verre coupés à une longueur de 18 mm, lesdits fils contenant des filaments de diamètre 13μm, lesdits filaments étant revêtu par un ensimage comprenant un organosilane et présentant un taux d'humidité de 13% en poids. Ces fils sont mis en œuvre dans le procédé de la figure 1. On introduit les fils de verre coupés dans le pulpeur de façon à ce que leur concentration y soit respectivement de 1,95 (exemple 1), 1,9 (exemple 2), 1,8 (exemple 3) grammes par litre. On introduit par ailleurs dans le pulpeur des fibres coupés à 4 mm de PVOH (de marque Kuralon 105-2 commercialisé par la société Kuraray) de façon à ce que leur concentration y soit respectivement de 0,05 (exemple 1), 0,1 (exemple 2), et 0,2 (exemple 3) grammes par litre. La concentration en fils de verre est ensuite diluée par 10 et la concentration en filaments + fibres à l’arrivée sur la toile de formation était de 0,2 g/l. La concentration en fibres de PVOH à l’arrivée sur la toile de formation était respectivement de 0,005, 0,01 et 0,02 g/l. La toile de formation défilait avec une vitesse de 80 m/min, le débit de mélange fils de verre-fibres PVOH-eau de procédé se déversant sur la toile étant de 35 m³/heure. L’eau de procédé contenait 0,1% en poids d’hydroxyéthyle cellulose (Natrosol 250HHR de Hercules) et 0,025 % en poids de dispersant cationique (aérosol C61 de Cytec). Après drainage et aspiration de l’eau excédentaire, la nappe humide contient 35% d’eau. La nappe est ensuite séchée par étuve à air chaud à 180°C pendant 20 secondes. Le voile obtenu est très homogène et présente une masse surfacique de 50g/m². Il contient les quantités de PVOH indiquées sur le tableau 1. Le tableau 1 rassemble les résultats.

Exemples 4 à 9 (comparatifs):
On procède comme pour l’exemple 1 sauf que l’on ne met pas de fibre de PVOH dans le pulpeur, et sauf que l’on ajoute un liant après la toile de formation et avant séchage par déversement d’une cascade d’une solution de PVOH ou d’urée formol sur la nappe défilante. Les voile obtenus présentent tous une masse surfacique de 50g/m². Le tableau 1 rassemble les résultats.
<table>
<thead>
<tr>
<th>Ex n°</th>
<th>Fibres PVOH</th>
<th>PVOH liquide</th>
<th>Urée formol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>% poids liant voile</td>
<td>2,5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Résistance traction (daN/5cm)</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(R_T / (L \cdot G))</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Tableau 1
REVENDICATIONS

1. Procédé de fabrication en continu d'un voile comprenant des filaments de verre, ledit voile étant lié avec un liant comprenant du PVOH, comprenant :
 a. -une étape de formation d'une dispersion dans une eau de procédé de filaments coupés comprenant des filaments de verre, et de fibres discontinues de PVOH, puis,
 b. -une étape de formation d'un lit dans un dispositif de formation par passage de la dispersion sur une toile de formation à travers laquelle l'eau de procédé est drainée, ladite toile étant un tapis défilant, les filaments et les fibres étant retenus sur ladite toile, puis,
 c. -une étape de traitement thermique du lit sur un tapis défilant dans un dispositif d'étuvage.

2. Procédé selon la revendication précédente, caractérisé en ce que le passage du dispositif de formation au dispositif d'étuvage fait réaliser au lit au moins un saut de tapis.

3. Procédé selon l'une des revendications précédentes caractérisé en ce que les filaments coupés en verre sont introduits dans l'eau de procédé sous la forme de fils comprenant 10 à 2000 filaments dispersables.

4. Procédé selon l'une des revendications précédentes caractérisé en ce que la quantité de fibres de PVOH représente 1,5 à 20% en poids de la somme de la masse de filaments coupés et des fibres de PVOH.

5. Procédé selon la revendication précédente caractérisé en ce que la quantité de fibres de PVOH représente 2,5 à 15% en poids de la somme de la masse de filaments coupés et des fibres de PVOH.

6. Procédé selon l'une des revendications précédentes caractérisé en ce que les fibres de PVOH ont une longueur allant de 3 à 15 mm.

7. Procédé selon l'une des revendications précédentes caractérisé en ce que la dispersion au moment de passer dans l'étape de formation du lit est tel que la somme de la masse filaments + fibres représente 0,01 à 0,5% de son poids.

8. Procédé selon la revendication précédente caractérisé en ce que la dispersion au moment de passer dans l'étape de formation du lit est tel que
la somme de la masse filaments + fibres représente 0,02 à 0,05% de son poids.

9. Procédé selon l’une des revendications précédentes caractérisé en ce que l’eau de procédé comprend un épaississant de façon à ce que l’eau de procédé présente à 20°C une viscosité comprise entre 1 et 20 mPa.s.

10. Procédé selon la revendication précédente caractérisé en ce que l’eau de procédé comprend un épaississant de façon à ce que l’eau de procédé présente à 20°C une viscosité comprise entre 5 et 12 mPa.s.

11. Procédé selon l’une des revendications précédentes caractérisé en ce que le voile comprend 1,5 à 15% en poids de liant.

12. Procédé selon la revendication précédente caractérisé en ce que le voile comprend 2,5 à 10% en poids de liant.

13. Procédé selon l’une des revendications précédentes caractérisé en ce que les fibres PVOH introduites au départ sont à l’origine de 25 à 100% du poids total de liant dans le voile.

14. Procédé selon l’une des revendications précédentes caractérisé en ce que le liant est exclusivement du PVOH.

15. Procédé selon l’une des revendications précédentes caractérisé en ce que le voile comprend au moins 80% en poids de verre sous forme de filaments.

16. Voile comprenant des filaments de verre et au moins un liant tel que $R_T / (L \cdot G) > 0,03$

dans laquelle R_T représente la moyenne des résistances à la traction en daN pour 5 cm pour le sens long et le sens travers, L représente le taux de liant en % en poids, et G représente le grammage en g/m².

17. Voile selon la revendication précédente caractérisé en ce que $R_T / (L \cdot G) > 0,035$.

18. Voile selon l’une des revendications de voile précédentes caractérisé en ce qu’il comprend des filaments de verre et de cellulose dans le rapport massique verre / cellulose suivant : 99/1 à 80/20.

19. Voile selon l’une des revendications de voile précédentes caractérisé en ce qu’il comprend des filaments de verre et de polyester dans le rapport massique verre / polyester suivant : 99/1 à 70/30.
20. Voile selon l'une des revendications de voile précédentes caractérisé en ce qu'il comprend au moins 80% en poids de verre sous forme de filaments.

21. Voile selon l'une des revendications de voile précédentes caractérisé en ce qu'il comprend 1,5 à 15% en poids de liant PVOH.

22. Voile selon la revendication précédente caractérisé en ce qu'il comprend 2,5 à 10% en poids de liant PVOH.

23. Voile selon l'une des revendications de voile précédentes caractérisé en ce qu'il ne comprend pas de PVC.