PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GOG6F 19/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/02836

22 January 1998 (22.01.98)

(21) International Application Number:

(22) International Filing Date: 11 July 1997 (11.07.97)

(30) Priority Data:
60/021,614
60/021,615

12 July 1996 (12.07.96) us
12 July 1996 (12.07.96) uUs

(71)(72) Applicant and Inventor: 1LIFF, Edwin, C. [US/US]; 8258
Prestwick Drive, La Jolla, CA 92037-2046 (US).

(74) Agent: CARSON, John, M.; Knobbe, Martens, Olson and Bear, | Published

16th floor, 620 Newport Center Drive, Newport Beach, CA
92660 (US).

PCT/US97/12025 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, T™M, TR,
TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE,
LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG).

Without international search report and to be republished
upon receipt of that report.

(54) Title: COMPUTERIZED MEDICAL DIAGNOSTIC SYSTEM UTILIZING LIST-BASED PROCESSING

(57) Abstract

A system and method for providing computerized, knowledge-
based medical diagnostic advice. The medical advice is provided to the
general public over a network, such as a telephone network with the
use of a telephone or the Internet with the use of an Internet access
device. Alternatively, the medical advice can be provided to a patient in
a stand-alone mode by use of a computer. The invention utilizes a list-
based processing method of generating and executing diagnostic scripts.
For the purpose of diagnosing a health problem of a patient, medical
knowledge is organized into a list of the diseases to be considered. Each
disease on the disease list includes a list of symptoms that is checked in
a patient. Each symptom on the symptom list is then further described
as a response to a list of one or more questions asked of the patient about
the symptom. This triply-nested list structure is converted by suitable
data structure transformations into a script that is stored. When a patient
requires diagnosis, the script is played back as a sequence of questions.
The responses of the patient are analyzed and converted into symptoms.
The symptoms are accumulated into diseases. Finally the discases are
selected and reported as a diagnosis.

210
\\ SOFTWARE STRUCTURE S

ASSISTFD LOGIN ~ -
-} Reod/ <_/

PATIENT AND
ASSISTANT

ENROLLMENT
OATABASE

[|ASSETAN LaGw

PATIENT LOGIN
PROCESS

212 ASSISVD
\ REGISTRATION
ASSISTANT
REGISTRATION

Write
PATIENT —

REGISTRATION Ty ez
PROCESS ONSULTATION s
HISTORY

240

DIRGNOSTIC / ,
FROCESS Reod, -
Write e aad
PATIENT
SCRIPT RESPONSE
ENGINE Weile i

—
250
wite 7
R s i Sl YA
- 246 | TREATMENY TABLE

-
H

OBUF
FIFUTORE 1 | Reod ™ —
[PATIENT _aRee
6 —Ressy MEDICATION e
wrile ol

”_MST'H
T 252
—_— PENDING FILE |7
[SOER J /w,m,/{‘,____.

¥ PATIENT UEDICAL |~ 257
I " Reot/ HISTORY
Write

g ‘—’j - 256
UE] Roud—@ DATABASE

[]'m‘c'n e =
7777777 o _[IMAGING WODAUTY |~ 258
i T Reod OF CROICE
Ussa —_— -
.. '\ =
— -
N2 Reod LABORATORY TESY | 260
Z0 Of CHOICE

Codes used to identify States party to thc PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Auvstria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Ceniral African Republic
Congo
Switzerland
Cote d’lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
Fi
FR
GA
GB
GE
GH
GN
GR
HU

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsracl

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LY
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

S
SK
SN
Sz
™
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United Siates of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 98/02836 PCT/US97/12025
1.

COMPUTERIZED MEDICAL DIAGNOSTIC SYSTEM UTILIZING LIST-BASED PROCESSING
Background of the Invention

Field of the Invention

The present invention relates to computerized medical diagnostic systems. More specifically, the invention is
directed to a computerized system for time-based diagnosis of a patient's complaint by use of dynamic data structures.
Description ot the Related Technology

Health care costs currently represent a significant portion of the United States Gross National Product and are
rising faster than any other component of the Consumer Price Index. Moreover, usually because of an inability to pay
for medical services, many people are deprived of access to even the most basic medical care and information,

Many pecple delay in obtaining, or are prevented from seeking, medical attention because of cost, time
constraints, or inconvenience. If the public had universal, unrestricted, and easy access to medical information, many
diseases could be prevented. Likewise, the early detection and treatment of numerous diseases could keep many patients
from reaching the advanced stages of illness, the treatment of which is a significant part of the financial burden
attributed to our nation’s health care system. It is obvious that the United States is facing health-related issues of
enormous proportions and that present solutions are not robust.

Previous attempts at tackling the health care problem have involved various forms of automation. Some of these
attempts have been in the form of a diakin library of answers to medical questions. Other attempts have targeted
providing doctors with computerized aids for use during a patient examination. These methods involve static procedures
or algorithms. What is desired is an automated way of providing to a patient medical advice and diagnosis that is quick,
efficient and accurate. Such a medical advice system should be modular to allow expansion for new types of medical
problems or methods of detection.

One way of conducting an interview of a patient includes medical diagnostic scripts. What is needed is an
efficient method of representing the medical knowledge of experts in their specialties in a script format. The scripts
should utilize dynamic structures to quickly and efficiently reach a diagnosis of the patient.

Summary of the Invention

List-Based Processing is a method of diagnosing diseases that works by arranging diseases, symptoms, and
questions into a set of nested Disease, Symptom, and Question (DSQ) fists in such a way that the fists can be processed
to generate a dialogue with a patient. Each question to the patient generates one of a set of defined responses, and
each response generates one of a set of defined questions. This establishes a dialogue that elicits symptoms from the
patient. The symptoms are processed and weighted to rule diseases in or out. The set of ruled-in diseases establishes
the diagnosis. A List-Based Processing system organizes medical knowledge into formal, structured lists or arrays, and
then applies a special algorithm to those lists to automatically sefect the next question. The responses to the questions

lead to more questions and ultimately to a diagnasis.

10

15

20

25

30

WO 98/02836 PCT/US97/12025
2.

In one embodiment of the invention, there is a computerized diagnostic method, comprising the steps of providing
to a computer a list of diseases, each disease associated with a list of symptoms, and each symptom associated with
a list of questions; repetitively asking questions to elicit responses, the responses establishing symptoms, each established
symptom contributing a weight to a disease; and determining whether the accumulated weights for a disease reach or
pass a threshold so as to declare a diagnosis.

The medical advice system also includes a geographic-based list of differential diagnoses in the population in
which the patient resides, which, when processed by the list-based processor, is turned into a patient specific differential
diagnosis. The system, also includes a table in which the frequency of the diseases is kept to allow the system to
evaluate the patient using the probabilities or incidence of diseases in the population in which the patient resides. The
system may also give patient specific and context sensitive recommendation(s) for the laboratory test(s) of choice and
the imaging modality of choice to further help define a diagnosis. The system may invoke a "re-enter” function to aliow
for the laboratory test(s) of choice and the imaging modality of choice to be performed and then the results to be
conveyed to the patient, the patient’s health-care giver(s) andfor any other desired entity. The system may invoke the
“re-enter” function to allow a patient to perform physical examination maneuvers (on self or via an assistant) and re-
consult the system to further refine the diapnosis.

Brief Description of the Drawings

Figure 1a is a block diagram illustrating components of a presently preferred embodiment of the computerized
medical diagnostic and treatment advice (MDATA) system of the present invention;

Figure 1b is a block diagram illustrating components of the user/patient computer of the MDATA system shown
on Figure 1a;

Figure 2 is a block diagram illustrating a set of processes, files, and databases utilized by the system of Figure
1a;

Figure 3a is a diagram of an off-line medical diagnosis script (MDS) generation process used in producing a script
file for the MDS database shown in Figure 2;

Figure 3b is a diagram illustrating a possible hierarchy of the DSQ lists for a script at two different time
intervals;

Figure 4a is a flow diagram of an assign diseases portion of the “collect and organize medical knowledge"
process shown in Figure 3a;

Figure 4b is a flow diagram of a capture disease knowledge portion of the “collect and organize medical
knowledge process” shown in Figure 3a;

Figure 5 is a flow diagram of the "script compiler” process shown in Figure 3a;

Figure Ba is a block diagram showing a configuration used during operation of the diagnostic script engine;

10

15

20

25

30

WO 98/02836 PCT/US97/12025
-3

Figure Bb is a block diagram showing a set of structures and inputs used during operation of the script engine
and the outputs produced by the MDATA system;

Figure 7 is a top-leve! flow diagram of a user process for the MDATA system of Figure 1;

Figure Ba is a flow diagram of the "diagnostic script engine™ process used in performing the on-line interview
process shown in Figure 7;

Figure 8b is a flow diagram of the "distribute advice" process shown in Figure 8a;

Figure 9 is a flow diagram of portions of the "DSAQ fist script engine™ process shown in Figure 8a for list-based
processing;

Figure 10 is a block diagram showing a partion of the lists utilized during operation of the DSQ list script engine
shown in Figure 8a;

Figure 11 is another flow diagram of the "DSQ list script engine™ process shown in Figure 8a;

Figure 12 is a flow diagram of the "select symptom" (select symptom to be considered) process identified in
Figure 11;

Figure 13 is a flow diagram of the "handle response” (process response from the user) process identified in
Figure 11;

Figure 14 is a flow diagram of the "update diseass lists" (update scores in disease temp list based on updated
symptom list and eliminate diseases ruled-in or ruled-out) process identified in Figure 11; and

Figure 15 is a high-level flow diagram of an alternative embodiment for generating medical advice or a diagnosis

in the MDATA system of Figure 1a.
Detailed Description of the Preferred Embodiment

The following detailed description of the preferred embodiment presents a description of certain specific
embodiments of the present invention. However, the present invention can be embadied in a multitude of different ways
as defined and covered by the claims. In this description, reference is made to the drawings wherein like parts are
designated with like numerals throughout.

For convenience, the discussion of the preferred embodiment will be organized into the following principal
sections: System Overview, Medical Diagnostic Scripts, Knowledge Capture Details, Script Generation Details, Script
Execution Details, and Advantages of List-Based Processing.

I. System QOverview
A Medical Diagnostic and Treatment Advice (MDATA) system is a computer system that conducts autemated
interviews of patients for the purpose of establishing a medical diagnosis. To conduct the interviews, MDATA uses a
database of Medical Diagnostic Scripts (MDS). Each MDS contains the data and commands needed to interview a patient
for a specific medical condition and to output a diagnosis. Scripts are supported by other MDATA databases of diseases,

symptoms, treatments, medications, specialists - in short, all information required for medical diagnosis and advice.

10

15

20

25

30

WO 98/02836 PCT/US97/12025
4.
Symptoms can be defined as a piece of historical information, a piece of information elicited from a physical examination,
e.g., physical signs usually from a self-examination, the results of a laboratory test, or the results of an imaging modality
of choice.

Referring to Figure 1a, a block diagram of a presently preferred embodiment of the MDATA system 100 will
be described. The MDATA system 100 includes a network “cloud” 102, which may represent a local area network (LAN),
a wide area network (WAN), the Internet, or another connection service.

The MDATA programs and databases preferably reside on a group of servers 108 that are preferably
interconnected by a LAN 106 and a gateway 104 to the network 102. Alternatively, the MDATA programs and
databases reside on a single server 110 that utilizes network interface hardware and software 112. The MDATA servers
108/110 store the disease/symptom/question {DSQ) lists described hereinbelow.

The network 102 may connect to a user computer 116, for example, by use of a modem or by use of a
network interface card. A user 114 at computer 116 may utilize a browser 120 to remotely access the MDATA
programs using a keyboard and/or pointing device and a visual display, such as monitor 118. Alternatively, the browser
120 is not utilized when the MDATA programs are executed in a local mode on computer 116. A video camera 122 may
be optionally connected to the computer 116 to provide visual input, such as visual symptoms.

Various other devices may be used to communicate with the MDATA servers 108/110. If the servers are
equipped with voice recognition or DTMF hardware, the user can communicate with the MDATA program by use of a
telephone 124. A telephonic embodiment is described in Applicant's copending application entitled “Computerized
Medical Diagnostic and Treatment Advice System,” U.S. Serial No. 08/176,041, which is hereby incorporated by
reference. Other connection devices for communicating with the MDATA servers 108/110 include a portable personal
computer with a modem or wireless connection interface, a cable interface device 128 connected to a visual display 130,
or a satellite dish 132 connected to a satellite receiver 134 and a television 136. Other ways of allowing communication
between the user 114 and the MDATA servers 108/110 are envisioned.

Referring to Figure 1b, a diagram of a presently preferred user/patient computer shows several possible
interconnections to the network. To “play” a script, a special program called a Script Engine is used, which reads a MDS
file and uses its codes to perform interview actions, such as outputting a question to a patient and inputting an answer.
The scripts also collect the answers from the patient, evaluate the answers, issue a diagnasis, and update the patient’s
medical record. The script engine preferably resides in the user computer. The script engine may be stored on the hard
drive or CD-ROM, and is loaded into the main memory or a cache for execution.

The components of a presently preferred computer 116, utilized by a user 114 of the computerized MDATA
system 100 of the present invention, are shown in Figure 1b. Alternatively, other devices for conducting a medical

interview, such as those shown in Figure 1a, can be utilized in place of the computer 116.

10

15

20

25

30

WO 98/02836 PCT/US97/12025

5.

The computer 102 includes a plurality of components within an enclasure 1186. A telephone line 106 interfaces
the public telephone network 158 to the computer 116 via a modem 160. The telephone network 158 may connect to
the network 102, which has connections with the MDATA system server(s) 108/110. Alternatively, the user may
connect to the network 102 by use of a network interface card 164.

Throughout this document, the words user and patient are used interchangeably. However, it will be understood
that the user may be acting as a proxy for the patient. If this is the case, the user is registered as an assistant for
the patient.

The hardware and system software are assembled with two basic concepts in mind: portability to other
operating systems and the use of industry standard companents. In this way, the system can be more flexible and will
allow free market competition to continually improve the product, while, at the same time, decreasing costs. While
specific hardware and software may be referenced, it will be understood that a panoply of different components could
be used in the present system.

The computer 116 preferably is a personal computer with an Intel Pentium microprocessor 170. Other
computers, such as an Apple Macintosh, an Amiga, a Digital Equipment Corporation VAX, or an IBM mainframe, could
also be utilized. The modem 160 or the network interface card 164 connect to an industry standard architecture (ISA)
or a peripheral component interconnect (PCI) bus 162. The bus 162 interconnects the microprocessor 170 with a
plurality of peripherals through controller circuits (chips or boards).

The computer bus 162 has a plurality of peripherals connected to it through adapters or controllers. A video
adapter board 172, preferably at SVGA or better resolution, interconnects to a video monitor 118. A serial
communication circuit 176 interfaces with a pointing device, such as a2 mouse 178. A parallel communication circuit may
be used in place of circuit 176 in another embodiment. A keyboard controller circuit 180 interfaces with a keyboard
182. A 500 Mb or greater hard disk drive 184 and an optional CD-ROM drive 186 are preferably attached to the bus
162. The hard disk 184 stores database files such as the patient files, other MDATA files, and binary support files.
The CD-ROM drive 186 also stores database files, such as files for the patients using the computer 116, and hinary
support files. ‘

A main memory 190 connects to the microprocessor 170. In the presently preferred embodiment, the computer
116 preferably operates under the Windows 95 aperating system 192. The memory 190 executes a diagnostic script
engine 194 and a disease/symptom/question (DSQ) list script engine 196. The script engine software is written in
Borland Delphi Pascal, version i,

Referring to Figure 2, a set of processes, files, and databases utilized by the MDATA system 100 will be
described. Except for the script engine process, the MDS database, the Imaging Modality database, and the Laboratory

Test database, which are described hereinbelow, these processes, files, and databases were described in Applicant's

10

15

20

25

30

WO 98/02836 PCT/US97/12025
6

. copending application entitled “Computerized Medical Diagnostic and Treatment Advice System,” U.S. Serial No.

08/176,041.

The MDATA system 100 utilizes several principal processes and related databases. A set of patient login
processes 210 is used by the system 100 to identify a patient who has previously registered into the system in one of
three ways: 1) by prompting for a patient identification number (PIN); 2) identify an assistant who has previously
registered into the system by prompting for an assistant identification number (AIN); 3) identify a patient, having an
assistant, who has previously registered into the system by prompting for the patient identification number. A set of
processes 212 are used to register a patient or assistant. |f the user is the patient, a patient registration process is
used by the system to register new or first-time patients. If the user is not the patient, an assistant registration process
is used by the system to register new or first-time assistants. Then, if the patient is not already registered, an assisted
patient registration process is used by the system to register the patient.

Once a user has logged in or registered, the system provides a choice of processes. The primary process of
concern in the current embodiment is the Diagnostic process 220 that performs a patient diagnosis. The evaluation
process 220 accesses a laboratory test of choice and imaging modality of choice database to recommend the appropriate
tests in this patient at this point in time and a treatment table 250 to obtain current treatment information for a
particular disease or diagnesis. In another embodiment, other choices are added to access other medical information
processes.

Associated with these processes are a patient and assistant enroliment database 240, a consultation history
database 242, a patient response database 244, a medical history objects database 246, a patient medication database
248, a pending database 252, a patient medical history database 254, a medical diagnostic scripts (MDS) database 256,
an imaging modality database 258, and a laboratory test database 260.

. Medical Diagnostic Scripts

A Medical Diagnostic Script (MDS) is a programmed dialogue with a patient for the purpose of generating one
or more diagnoses of the patient’s condition. Developing an MDS involves several steps such as capturing the medical
diagnostic knowledge, expressing it in terms that a patient can understand, arranging it into a useful sequence, compiling '
it into a playable script, testing it, configuring it for a specific communication medium, embedding it into a collection of
other scripts and support databases, and packaging it for use by the patient.

"Writing a script" is considered to mean the early steps of capturing the medical knowledge and processing it
into a logical question stream that ultimately leads to a diagnostic conclusion. Obviously, only a physician experienced
in diagnosing a specific set of diseases can perform these steps, and the MDATA system has developed several
automated methods to support them.

The invention preferably utilizes one particular method, called "list-based processing,” which begins with fsts

of diseases, symptoms, and questions. These lfists are then processed into a playable script using a list-based script

10

15

20

25

30

WO 98/02836 PCT/US97/12025
.7

development tool. Using the script development tool, the author can write and edit the source script, compile it into a
playable script file, play the script back, and set various script options to exercise, evaluate, and fine-tune the script.

A list-based script consists of a specially formatted text file in which the author provides the elements of the
script in the form of several lists. The top list is a list of diseases which the script will consider. For each disease,
the script lists the symptoms and their weights. For each symptom, the author provides a list of questions and their
weights that will elicit the symptom. For each question, the author provides multiple text objects, including a preamble
text that introduces the question. After all of the lists have been prepared for a script, the next step is to “compile”
the script, i.e. to convert it into a specially encoded script file that can be played back, or “run,” for a patient. To run
a script in the development phase, the script development tool selects a suitable next disease and a suitable next
symptom for that disease. It displays the question text and waits for a reply from the patient. Based on the patient’s
response, the script development tool updates the disease scores and continues with the next symptom. The script stops
when some condition (set by the author) is reached, such as the first disease being ruled in as a diagnosis, or all diseases
having been considered.

During the development phase, the script author can set various “options” that will change the way the script
selects the next disease and the next symptom, and how long the script will run. This option feature lets the author
experiment with the script to find the best settings.

The three main phases of a script, therefare, are: 1) knowledge capture, 2) script generation and 3) script
execution. The script author utilizes all three phases in the creation and testing of a script. A patient utilizes the script
execution phase during run-time use of the MDATA system 100.

PHASES OF A SCRIPT
1. Knowledge Capture

The knowledge capture phase includes all of the tasks needed to extract from a medical expert the knowledge
about diagnosing a given disease and reducing that knowledge to some form useful in generating a script. The phase
typically begins with a director of script development expressing a need for a script for diagnosing a disease such as
Malaria. It continues with tasks such as defining the scope of the script, researching medical texts, interviewing authors ‘
and other experts, formatting the question and response sets, establishing the question sequence, and, if an automated
knowledge capturing tool is used, running the question flow in a test setting. This phase ends with a set of source
documents, possibly automated, that (at least) contains all of the information needed to write a script that can correctly
diagnose the disease, e.g., Malaria/Not Malaria when it is fed test responses for a patient that does/not have Malaria.
Nothing is known at this point about the uitimate form of the script, the platform on which it will run, or even the
natural language it will be using to communicate with the patient.

2. Script Generation

10

15

20

25

30

WO 98/02836 8 PCT/US97/12025

In the script generation phase, the script is generated as a relatively small diagnostic algorithm captured in
software. In this phase, the goal is to let the script be an automated representation of the author's approach to
diagnosing a disease or other medical problem, such as Malaria. The script contains data and processes to produce a
good first question, to weigh the response, to use the response to generate another guestion, and so on until the script
can finally tell its caller that the responses indicate Malaria or Not Malaria, and the associated level of confidence.

Note that a script is not a stand alone program that can be run for a real patient. The script preferably only
knows about a single chief complaint, such as Malaria, and does not diagnose other medical problems such as Gout or
Asthma.

This script is destined to become one of approximately 40,000 scripts in the Script Database, in much different
form and format. The script now has to be translated into the appropriate human language (German, Spanish),
supplemented with appropriate error handling mechanisms, generated into the appropriate programming language (C + +,
Java, HTML), formatted for the appropriate target medium (PC, Mac, Telephone, LAN, WAN, Internet), and linked to the
Support System (databases, meta functions, patient records, session logging).

Next, the script undergoes extensive testing in a testbed that feeds the script various canned sets of patient
responses, with known acceptable diagnoses, to verify that the script does generate the appropriate output.

Finally, the script is ready to be installed into a production system. It may be stored into a massive Script
Database, or packaged into a set of scripts to be written to a CO ROM or shipped via the Internet to a hospital.
Whatever the form of the script library used, the script will have to be indexed and registered will be with the Script
Manager software. At the end of this phase, the script is at last part of an official, running medical diagnostic system
that can be used on real patients for real diagnoses of real problems.

3. Script Execution

In the script execution phase, the script is actually executed, sooner or Jater. Of course, a session with a
patient does not start with a diagnostic script on Malaria. A medical diagnestic system open to the genera! public
obviously has a number of administrative tasks to perform before it gets down to any medical diagnosis. First of all,
it does not want a patient acutely deteriorating while we ask for a password and Social Security Number. So the
system most likely first runs the Emergency Room (ER) subsystem for anyone who logs on to the MDATA system. The |
ER subsystem consists of a few dozen scripts that determine whether the patient has any life threatening condition that
needs immediate "first aid" therapy or advice. "ls this a medical emergency?”, "Does the patient have an airway?", "Is
the patient bleeding?" are some of the questions the ER subsystem asks.

After the system weeds out the emergency cases, the system can slow down to identify the patient and
determine the Chief Complaint(s). Then the system invokes the Script Routing subsystem, whose job is to determine the
patient’s general problem area. Based on this information, the Script Routing system next selects a sequence of top-level

scripts that are appropriate to the patient’s Chief Complaint. For example, for fever, after the more obvious scripts for

10

15

20

25

30

WO 98/02836 o PCT/US97/12025
Appendicitis, Intestinal Flu, Food Poisoning have indicated “No Diagnosis,” the Routing script may finally decide to try
Malaria. Now, at last, the sample Malaria script we have developed in this document is played.

Scripts are not programs that run themselves. Scripts are data streams that are run by a "script engine” that
searches the script for the next question to ask of the patient, and formats the question for transmission (to a screen,
a telephone line, or an Internet site). The patient responses are also captured by the script engine, formatted for the
script, and used to select the next question from the script. This interplay of the script and its script engine may
consider the patient’s medical record, the information provided so far during this session, and even some meta functions
to determine the next question. At the end of the script, the process returns control to the Tropical Disease Routing
Script and says, in effect, "this patient’s responses indicate Malaria Falciparum with a weight of 1350 out of 1000,"
or "this patient’s responses only add up to 420 out of 1000, so I rule out Malaria.” The Routing script that called the
Malaria script in the first place may now decide to access another diagnostic script, or may decide to return to its caller
some response such as “the patient's responses indicate only a 275 / 1000 likelihood of having any tropical disease.”
SCRIPT FEATURES
Time-Based Diagnostic Scripts

The Time-Based Diagnostic Script concept extends the DSQ diagnostic scripts in the time dimension. Instead
of just one diagnostic script, the script author now submits several scripts, e.g., one for each hour into the disease
process. Scripts are generated at an elapsed time from the beginning of symptoms, according to the best judgment of
the author. For example, a myocardial infarction script would use one hour or less as an interval, while malaria would
not. At run time, the diagnostic system uses the diagnostic script closest to the patient's case. The script has implied
symptoms that add extra weight to diseases that match the predicted pattern.

The system asks the patient when the Symptoms started, and, partially based on that information, selects the
appropriate script from the time-based set of scripts. Once the right script is selected, the script is executed. That is,
each script of a set of time-based scripts may have somewhat different symptoms and weights, so that the author sets
up time-based symptoms with extra weights for those diseases whose time-pattern matches the patient’s. These weights
are automatically added by the script engine as it runs. Note that these time-based symptoms will be Implied Symptoms,
described hereinbelow.

Each algorithm author must compose, assign, or calculate the questions and the appropriate values at (for
instance) each hour as the disease progresses. Then, when the patient consults the system, one of the first questions
to ask is "When (or how long ago) did your symptoms begin?" Then that patient will interact with the script that is
closest to the lapsed time since the symptoms(s) began.

Implied Symptoms
Note that a "symptom" is defined as any data item known about a patient, directly or indirectly, including name,

age, gender, and so forth. An Implied Symptom is a symptom that is established based on the presence or.absence of

10

15

20

25

30

WO 98/02836 10 PCT/US97/12025

one or more other symptoms The Implied Symptom concepts allows the script author to tell the script engine that any
given symptom (or set of symptoms) implies or denies one or more other symptoms. This lets the author embody real
world relationships into the List-Based script, which, in turn, lets the LB Engine make logical inferences that eliminate
superfluous questions from the list and make the script more focused.

As an obvious example, a patient who is a man does not have to be asked questions related to the female
reproductive system. A human doctor knows this implicitly, but the script engine needs to be told. The script author
simply makes a list of symptoms in the form:

IF Symptom A THEN Symptom B.

For example:

"patient is male" implies "patient is NOT female,” and

"patient had Appendectomy” implies "patient has no Appendix.”

Using the logical operators such as AND, OR or NOT, it is possible to build quite complicated symptom relationships that
are triggered by relatively few questions.

Implied Symptoms are listed in the source script as a table of “IF A THEN B" type statements. Whenever the
engine receives a new symptom from the patient, it also checks the Implied Symptom table to see if any other symptoms
are implied.

Synergistic Symptoms

Synergistic Symptoms are symptoms that indicate that, in any given patient, a certain set of other symptoms
is present that have special diagnostic significance when they occur together. In a DSQ List-Based source script, each
symptom has a certain specific weight toward diagnosing a disease, but the presence of a certain set may lend extra
weight toward a diagnosis. For example, Malaria is classically diagnosed starting with the presence of Chills, Fever, and
Sweating (which are caused as the Malaria-causing agent goes through its reproductive cycle in the blood). The presence
of Chills or Fever or Sweating separately would probably not necessarily suggest pursuing Malaria as a diagnosis in a
patient, but the assertion of all three of these symptoms should trigger an inquiry about Malaria. The concept of
Synergistic Symptoms supports this internal trigger with a statement such as:

"has Chills” AND "has Fever" AND "has Sweating" implies "Possible Malaria.” Synergistic Symptoms also have an |
important use in defining a Syndrome, i.e., particular collections of symptoms that occur together so often that, to the
lay public, they have their own name, such as AIDS. The script author can use Synergistic Symptoms to define a
Syndrome that is important ta himjher.

1Hl. Knowledge Capture Details

The initial task of knowledge capture for a script is identifying the diseases to be included in the script,

assigning a priority to each disease, and assigning medical specialists to develop the portions of the script for their

10

15

20

25

30

WO 98/02836 1 PCT/US97/12025

assigned diseases. Each medical specialist then generates the appropriate lists needed for the diseases. This can be

summarized as follows:

® define the scope of diseases to be covered;

o list the diseases and their symptoms;

° assign rankings, priorities, and weights to diseases and symptoms;

] design properly worded and weighted questions that will elicit the symptoms;

format the disease, symptom, and question fists;

pre-test the lists, using test tools specially developed for the purpose; and

write the lists as text files, using any ASCll-capable word processor.

The list-based processing method begins with a set of coordinated fists that captures the elements of diagnosing
a particular health problem. In this phase, medical experts record their diagnostic skills and techniques in the form of
several lists. To do this, the experts preferably can use any commercially available word processor software that is
capable of generating an ASCIl output file.

The ASCH lists for a script consist of three types of lists that are nested as follows:

L one Disease List that identifies all the diseases the script will consider, and ranks them in the order

they should be considered for diagnosis;

° one Symptom List for each disease that identifies the symptoms and assigns a weight to each

symptom to define the contribution it makes to diagnosing the disease;

o one Question List for each symptom that identifies one or more weighted questions that will elicit the

symptom from a patient.

For the purpose of automated medical diagnoses, medical diagnosis data is organized into a hierarchical
classification that is based on the general concept that diseases have symptoms, and symptoms are elicited from the
patient by guestions.

A “disease” is a health condition that requires treatment or attention such as illness, ailment, affliction,
condition, state, problem, obstruction, malfunction, and so forth. To diagnose a patient with a given complaint, the
MDATA system begins with a list of possible diseases that exhibit the complaint and reduces this to a list of diagnoses,‘ »
based on the patient’s answers.

A “symptom” is any information that the MDATA system has about the patient. This includes:

. patient identification (e.g., name, address, HMO, age, sex);

. patient history (e.g., prior illnesses, parental health information, recent trave! to foreign countries);
L previous accesses to MDATA (e.g., history of patient complaints and progress);

. physical signs (e.g., vital signs) and the results of self- or assisted- physical examination maneuvers;

. lab and test results;

10

15

20

25

30

WO 98/02836 12 PCT/US97/12025

] signs, manifestations, presentations, aspects, and so forth.

‘ For each disease, a list of symptoms is prepared. Each symptom is assigned a weight, which represents a likelihood that

the patient has the disease, given the symptom. To simplify calculations, the MDATA system uses a ruled-in threshold
value of 1,000 to declare a disease as diagnosed, although other thresholds may be used. The system also utilizes a
ruled-out threshold to officially declare that the patient does not have the disease. Both the ruled-in threshold and the
ruled-out threshold may be modified by a sensitivity factor set. This permits customized threshold levels, for example,
for individual patients. The sensitivity factor set will be further discussed hereinbelow.

In practice, the weight is a measure of the diagnosing physician's willingness to rule the disease in, given the
symptom. The weight can also be used as a Conditional Probability that the patient has the disease, given the symptom.
This can be used, if convenient, to apply a Bayesian Probability analysis to the symptoms.

A symptom is elicited by a set of one or more questions, often interlaced with information and instructions on
how to answer the question. The set of nodes needed to elicit a symptom is called a “flow” because it typically involves
a branching flow of questions, often drawn on a small flowchart, that describes how a dialogue with the patient might
proceed.

To enter the diagnostic data developed by the medical expert into the MDATA system, the data must be
organized and formatted. For this purpose, a text file is used and a text file format was developed. The ASCII character
code is preferably utilized, but any well-defined text-character code, such as EBCDIC, could be used.

A script consists of several segments or data groups as follows:

A. DISEASES to be diagnosed in terms of weighted symptoms;

SYMPTOMS to be elicited by flows or implied by other symptoms;
IMPLICATIONS that logically connect symptoms;

B

¢

D. FLOWS consisting of paths through nodes;

E PATHS that visit question nodes;

F TEXTS that inform andlor advise the patient;

G QUESTIONS that ask the patient for 8 response;

H. KEYS that signal a specific response from the patient.
These segments are part of the following sections of a script "source” or text file:
Header Section

The Header section contains data that applies to the entire script, such as script format, and the set of
symptoms comprising the patient’s chief complaint.
Diseases Section

The Diseases section lists the diseases that can be diagnosed by this script, their symptoms, and the

symptoms’ weight toward a diagnosis. When the script runs during the script development phase, the script

10

15

20

25

30

WO 98/02836 PCT/US97/12025
13
development tool selects one of the diseases to consider next, and then selects one of that disease's symptoms to be
considered next. Which disease and symptom is selected next depends on the Run Options that are selected by the
author. The default sequence is the order in which the diseases and their symptoms are fisted in this section.
DISEASE NAME

The disease name is a unique label for a disease, used to identify the disease. It is only used internally and

will never be seen by the patient.
ICD-8 CODE

A special code used by the medical profession to identify the disease.
FORMAL_TITLE

The formal title of the disease. The “formal” title is used here because common names for the disease, or
acronyms, may be added in future formats.
SYMPTOM NAME

The name of a symptom that is part of the diagnostic picture or “fingerprint” of the disease. The symptom
is defined in detail in the Symptoms Section. In the DSQ list context, a “symptom” is a specific, detailed fact about
the patient that has been assumed, asserted, elicited, or inferred. The author is free to define any data item(s) as a
symptom. If it is useful to the author, symptoms may include non-medical facts such as name, rank, and serial number
of the patient. The intent here is to give the author freedom to express his/her medical experience by defining elementary
symptoms and grouping them in any convenient way.

To design a symptom, an author may imagine a set of weighted questions that would uniquely assert or deny
the symptom. If this is no probiem, the author defines the symptom (in the Symptom Section) in terms of its questions
and answers. If the symptom turns out to be too complex, the author may break the symptom into parts, treat each
part as a symptom, and ask questions about the part. The author may let the patient establish each part separately,
and then use the inference mechanism of the Inference Section to establish the main symptom.

SYMPTOM_WEIGHT

The amount that this symptom adds to the disease’s total score. Technically, the amount can be any number . .
from -10,000 to +10,000; realistically it tends to be a small positive integer. As written, the script enging treats
weights as a way to “score” a disease. When a symptom is established as being present in the patient, the script engine
adds the weight of the symptom to the total score of the disease. When the disease score preferably reaches 1,000,
the script engine rules the disease “in.”

Simple arithmetic addition of weights may not express the specific way a symptom contributes or “indicates”
the presence of disease. One solution for the author is to make a first guess of the weights, run the script, observe

how the disease scores change with each question and answer, and then go back to “rebalance” the symptoms.

10

15

20

25

30

WO 98/02836 PCT/US97/12025
14

A “synerpgistic symptoms” technique may be useful to the author in developing a strategy for the weights. If
there are two symptoms A and B that, if present together in a patient, carry more weight than each separately, then
an artificial third symptom C can be defined that is /mplied by both A and B and adds extra weight to the disease.
Symptom C has no associated questions; it is an internal “ghost” symptom that can be used only to add or subtract
weights based on the presence or absence of other symptoms.

Symptoms Section

The Symptoms section lists and describes all of the symptoms mentioned in other parts of the script. For each
symptom, this section identifies the Flow of questions used to elicit the symptom.
SYMPTOM _NAME

The symptom name is a unique label for a symptom, and is used to identify the symptom in other parts of the
script. The name is only used internally, and will never be seen by the patient.
FLOW NAME

The word “flow” is used to describe a specific set of weighted questions, asked in a specified sequence that
can be drawn as a flowchart. Thus, a flow represents a single group of questions. Since one flow can elicit one of
several symptoms, several symptoms will typically specify the same question flow to be used. Some symptoms {e.g.,
chief complaint symptoms) have ne associated question flow.

Implications Section

The Implications section lists the logical inferences among symptoms, so that the script engine knows which
symptoms imply other symptoms. Each line of the section specifies one or more symptoms that tfogether imply another
symptom. That is, each line gives the parameters for a logic formula of the form:

if symptom A and symptom 8 and symptom C then symptom D.

Symptom implications can be chained, so that one implied symptom can imply another symptom, alone or in conjunction
with others.

One use of this section could be to establish “syndrome” symptoms, so that a specific set of symptoms in a
patient would automatically assert a single, collective symptom. This combination symptom could also be used to add
(or subtract) extra weight if a specific set of symptoms is present, i.e., to allow for the “synergy” of several symptoms
present in the patient at the same time.

Flows Section

The Flows Section lists all flows in the script, and defines the sequence of questions and the symptoms that
can be elicited by the flow. A “flow” is short for “a question flowchart”. It can be thought of as a complex question
that will establish one of several symptoms. Readers familiar with branch-based scripts will recognize that the flow can

serve to contain or call an entire branch-based script that returns one of several response codes.

10

15

20

25

30

WO 98/02836 PCT/US97/12025

.15.

It is quite common that one needs to ask a patient several questions to elicit one specific symptom from the
patient. For example, some preliminary questions {“Have you ever smoked?”) may be needed to set the stage, followed
by quite specific questions (“What is the total time, in years, that you smoked?) to define the patient’s symptom
precisely. One entire flow may contain 20 questions about smoking and may elicit one of several symptoms such as:
has never smoked; is a casual smoker; has smoked 20-pack years and still smokes; and smoked 10-pack years, then quit
10 years ago.

Every node in a flowchart is encoded according to the path from node one of the flow taken to get to the node.
These paths are used to identify what action should be taken at each node.
Questions Section

The Questions section defines the details of the questions mentioned by name in the Flows section. The details
include the Preamble, the actual Question, the keys that can be pressed by the patient (on a telephone keypad), and (for
graphic interfaces) the button fabel to be used for each answer.
PREAMBLE TEXT

The Preamble is the text spoken or displayed to the patient before the question itself is asked. It may continue
after a previous question, introduce a new subject, define some terms, and inform the patient why a question is about
to be asked, and how to answer it. Only the name of the text is given here; the actual text is given in the Texts
Section. [f there is no preamble for a question, this is indicated with the digit zero as a place holder.
QUESTION TEXT

The Question text is the actual question. Whereas the preamble may be 10 or 100 lines long, the question is
typically short, to the point, and calls for a very specific answer that can be indicated by pressing or clicking one of the
keys. Only the name of the question text is given here; the actual text is given in the Texts Section.
VALIDKEYS

A set of Valid Keys tells the script engine which keys the patient can press or click.
KEYT ... KEYN

These are key labels, used only in graphic display versions of the script. They tell the engine how to label each . .
button, for example YES, NO, and NOT SURE.
Texts Section

The Texts section lists the actual text of all text items referenced by name in other sections, such as
Preambles, Key Labels, and Question Texts. By giving each text a unique name, and fisting the text in the Texts section,
the author can use the same text in several places.

Having all of the text that is intended for the patient in one place also simplifies automated processing of the

script, such as recording the text for use in a telephone network or formatting the text for display on a screen. A script

10

15

20

25

30

WO 98/02836 PCT/US97/12025
-16-
could be translated into a foreign language, by replacing its Texts saction text with the equivalent text in another
language.
DESCRIPTION OF KNOWLEDGE CAPTURE DRAWINGS

Referring to Figure 3a, an off-line process 280 for generating a DSQ script will now be described. Beginning
at a process 284, medical knowledge is collected and organized into kist files. The data for the list files is collected for
one or more medical authors 282. Process 284 has two portions. A first portion is typically performed by a script
coordinator or supervising author for assigning diseases, and a second portion for capturing the disease knowledge for
each disease in the script. The portion for capturing the disease knowledge is typically performed by a plurality of
medical experts in their respective fields. The assigned diseases portion of process 284 will be further described in
conjunction with Figure 4a, and the captured disease knowledge portion of process 284 will be further described in
conjunction with Figure 4b. The output of process 284 is electronic text, such as an ASCII file. This electronic text
is in the form of DSQ lists such as disease, symptom, and question lists 286. The Appendix includes an exemplary script
for malaria. The script is one representation of a DSQ list.

A graphical example of time-based DSQ lists for a script is shown in Figure 3b. An exemplary script 320 for
a time T, and a script 322 for a time T, are shown. Each of these two scripts includes a list of diseases 324, a fist
of symptoms 326, and a list of questions 328. This figure is intended to show the hierarchy of the disease, symptoms
and guestion list, and is only exemplary. Note that a disease may refer to symptoms that are defined in other diseases,
and a symptom may refer to questions that are defined in other symptoms. Thus, symptoms and their associated
questions can be reused by the various medical authors,

Returning now to Figure 3a, process 280 moves to state 290, which takes the DSQ lists in electronic text
format and processes them by use of a script data development tool. A script compiler 292 works closely with the
script data development tool to generate an MDS file. The process 280 may utilize the script data development tool and
the script compiler in an iterative fashion to generate a final MDS file. At state 294, the MDS file is written to an MDS
database 300 by an MDS database manager utility 238. The MDS file 296 is preferably in a binary format. In an
exemplary representation of the MDS file shown in Figure 32 at 296°, the MDS preferably includes a header data section,
a master disease list section, a master system list section, a master flows section, a master question list section, and
a master text list section. In another embodiment, the medical authors may write the scripts in a medical authoring
language or as nodes and branches, as shown at state 302. Other script tools, which may include compilers, are shown
at state 304 to generate an MDS 296.

Referring now to Figure 4a, the assign diseases process 350 of the collect and organize medical knowledge
process 284 will now be described. Process 350 will typically be performed by a script coordinator, although other
medical professionals utilized by the MDATA system may perform these tasks. Process 350 preferably is not performed

by a computer but by the script coordinator, whe may utilize the computer to assist in the completion of the following

10

15

20

25

30

WO 98/02836 PCT/US97/12028
17-

steps. Beginning at a start state 352, process 350 moves to a state 354, wherein the chief complaint associated with
the current script is defined. The chief complaint includes the symptoms that a patient might initially pravide to the
system when describing the main problem that they are consulting for. Proceeding to state 356, the script coordinator
determines a list of the diseases that are to be diagnosed by the current script. These diseases should provide a
diagnosis of the chief complaint. included in the list are the disease name, a descriptor, and an International
Classification of Diseases (ICD-9) code for the disease. Advancing to state 358, the diseases are then ranked by
probability of occurrence in the general population that the patient is in, e.g., country or region of a country. Moving
to state 360, the script coordinator assigns priorities to the diseases based on urgency andjor seriousness of the disease.
Based on the assigned priorities, the script engine may be directed to check first the diseases that have an urgent or
serious indication assigned to them. Continuing at state 362, the script coordinator then partitions or assigns the
diseases for the current script to one or more medical specialists for further development. Using a computer network,
such as the Internet, and a DSQ lists database, multiple scripts can be developed in parallel. The disease authors can
work in paralie! by making questions and instructions available to all the other authors via the database and the network.
This capability allows rapid development of the scripts. Process 350 ends at an end state 364,

Referring now to Figure 4b, the capture disease knowledge portion 380 of the collect and erganize medical
knowledge process 284 will now be described. Process 380 is also not typically performed by a computer, but is
performed by a medical specialist or expert who may employ the use of a computer to actually capture the disease
knowledge for a particular disease. The following steps are performed by the disease specialist, as assigned by the script
coordinator at state 362 in Figure 4a.

Beginning at a start state 382, process 380 moves to a decision state 384, wherein the medical specialist
determines if the script is best captured as a time-based script. That s, a plurality of scripts at sequential time intervals,
forming a script family, are to be generated to track the diseases over time. If it is determined to be a time-based script,
process 380 moves to state 386, wherein the time interval between scripts in the script family is determined. For
example, the script author may decide to generate a script for every two hours for a 48-hour time period. At the
completion of determining the time interval for the script family, or if the script is best shown as a single script, process .
380 continues at state 388, wherein the medical specialist identifies a ruling-in threshold score and a ruling-out threshold
score for each disease that is assigned to him or her. Moving to state 390, the medica! specialist identifies a set of
relevant symptoms for each disease assigned to them. The symptom list includes the symptom name, a descriptor, and
at least one weight as described hereinbelow. Continuing at state 392, the medical specialist identifies any relevant post-
response relationships and symptoms identified by these relationships. The post-response relationships may include
simultaneous or synergistic relationships where two or more symptoms occurring together may have more weight toward
diagnosing a disease than the sum of the weights for the symptoms occurring separately. A sequential relationship is

where the symptoms occur one after the other, which may produce more weight toward diagnosing a disease then the

10

15

20

25

30

WO 98/02836 PCT/US97/12025
18-

sum of the weights of the individual symptoms accurring separately. A variation of the sequential relationship is wherein
the sequence of the onset or ending of the symptoms produces a different weight than the symptoms do alone. Implied
relationships are wherein the presence of one symptom implies the presence of another symptom. The medical author
may also define relationships over time for the asserted symptoms and further post-response processed symptoms. The
post-response relationships may also involve symptom clarification processing, PORST array analysis, or a symptom
severity clarification. The PORST array is an N-dimensional array with different attributes or aspects of the symptom
of pain assigned to one dimension. For example, the PQRST array may have twenty-two dimensions.

Proceeding to state 394, the medical specialist assigns a weight for each disease symptom. For symptoms
having an associated range, such as a severity of pain or other type of symptom severity, the medical specialist may
assign a range of weights associated with the severity of the symptom. Symptom weights are accumulated into a score
for each disease having the symptom. Weights can be either positive or negative, which contributes to the production
of a positive or negative score. Moving to state 396, for each symptom, the medical specialist defines a flow of
question nodes to elicit or determine the symptom. Some symptoms can be determined by a single question, but most
symptoms may require a8 number of questions to elicit the symptom. For the symptoms requiring a plurality of questions,
weights are assigned to the possible responses of the questions at state 397. Thus, this type of symptom may have
a range of associated weights. Advancing to state 398, for each question node of the question flow, the medical
specialist writes text objects for the question node so as to provide an introduction or an explanation, instructions, advice
and the actual questions for the patient. The instructions may define the range of values that are requested (an answer
set) or other ways of formatting the expected responses. The introductions and explanations are to help the patient
understand what the question is about, why the question is being asked, and sets the stage for the possible responses.

For each symptom the author will compose a question flow that is used to elicit the symptom. The guestion
flow that the author uses may be another physician’s question flow. For example, let’s say the symptom is depression.
To establish the symptom of depression, one doctor may ask, "Are you depressed?". This might be called
depression_question_1. Let's say that the author does not like it. It is too terse and really does not capture what is
wanted. So the author looks further in the question database. The author may find and look at.
depression_question_flow_2. This question flow is much more elaborate. In this flow, to answer the question, "Are
you depressed?”, this doctor has devised a 10-point list of questions. The sub-questions may even be other questions
in the database. In this question flow, the patient is asked ten questions. Each question is weighted differently and,
after answering all of the questions, the score is totalled, and if it reaches a threshold defined by the guestion's author,
then this physician will say that the patient has the symptom of depression.

In another example, say an author wants to ask a guestion about nausea for migraine. The author examines
the question bank. The author may find fifty different questions on nausea. One question says, “Are you nauseated?”.

This question is not acceptable to the migraine author. Another author has a question flow that contains ten weighted

10

15

20

25

30

WO 98/02836 PCT/US97/12025

-18-

sub-questions. If their score reaches that authar's pre-defined threshold, that doctor calls his patient nauseated. The
migraine author likes it almost as is, but wants to change one of the weights of one of the weighted sub-questions.
In this situation, the migraine author saves the new question with the revised weight as nausea_question_n+1. Now
when the migraine author uses the new version or another version of nausea, it will of course be weighted differently
in defining different diseases.

If questions of different weights are not allowed in the question flows, then all the questions will be, by
definition, weighted the same. But when a disease authar, trying to see if, say, abdominal tenderness is present, will
ask the patient to do a series of maneuvers such as: “Please cough. Does that make your abdomen hurt?" If the
patient says "yes", the disease author may then ask the patient to press on his abdomen and ask if that hurts. The
disease author usually asks or requests the patient to perform many such maneuvers to establish the "symptom” of
abdominal tenderness. However, these questions are not all of equal importance in defining abdominal tenderness. If
a patient hurts when his abdomen is pushed, that is much more significant than the coughing maneuver.

After the question nodes have been completed at state 398, a medical specialist determines at a decision state
400 if another time interval for a time-based script is required. If another interval is not required or if the present script
is not a time-based script, process 380 ends at a return state 402. However, if another interval is required in a time-
based script, process 380 moves back to 388 to rerun the set of steps 388 to 400 for another time interval in the script
family.

IV. Script Generation Details

Internal to the MDATA system, list-based medical diagnosis data is stored as scripts. These files are the
diagnostic interface between the human doctor and the patient being interviewed. At run time, a MDS file “runs” by
driving a script engine, which is a generic program that loads MDS files and runs the script based on the data and
instructions encoded in the file. Diagnostic data are stored in the form of disease, symptom, question, and text node
lists.

The contents of a list-oriented MDS file mirrors the contents of the ASCII list file. The major difference
between them is that the text file data is stored as segments of text lines of character strings, whereas the MDS file
data is packed into lists of binary integers. A second difference is that the MDS file data is arranged and cross-
referenced to support on-line access to the data.

The MDS file is preferably formatted as one very large array of 32-bit binary integers. This large array is then
allocated into blocks of varying length that contain data. Since the location of a block in the file is itself a number, it
can be used as a data item that connects one block to another block. Physically, these blocks are independent of any
programming language or operating system and can be transported to any computer hardware that is capable of storing

files of 32-bit numbers. Logically, these blocks can be nested and connected in arbitrary ways to form data structures

10

15

20

25

30

WO 98/02836 PCT/US97/12025

.20-

such as linked lists, stacks, queues, trees, and networks. The MDS file is formatted as several segment blocks called

“master lists” as follows:

. Header Data,

. Master Disease List,
. Master Flow List,

] Master Question List,
. Master Symptom List,
. Master Text List.

To prepare a MDS file, the ASCII list file is read and converted into a MDS file by the script compiler. This
process consists of reading the ASCII text file line-by-line, compiling the appropriate segment of the corresponding MDS
output file, and generating cross-reference lists to speed searches. Since some symbels may be used before they are
defined, the conversion program must make two passes through the file. During the first pass, all fines are read in,
converted into MDS file blocks, and their symbols are saved in a table. During the second pass, symbols are replaced
by their actual block addresses. Of course, other methods of compilation may be used.

The conversion program can, of course, perform any number of quality and consistency checks, such as
detecting invalid formats, missing segments, duplicate symbols, unused symbols, typographical errars and so on, Coupled
with a simple text editor, the conversion program can let the script author make corrections in the ASCII list file and
then rerun the conversion program again until it accepts the file. This editing cycle serves to catch fundamental source
errors and typographical errors early.

After the script is compiled, the script author tests the script to determine whether it functions as intended.
If not, the script author may, for example, adjust symptom/question weights, fine-tune words and phrases for the question
nodes, and fix any logical and medical errors. The script author will then recompile and rerun the script until it runs as
intended.

Referring to Figure 5, the script compiler 292 will now be described. The DSQ fists that are in an electronic
text format, such as ASCII, are collected by use of the script data development tool and then processed by the script -
compiler 292. Beginning at a start state 420, the script compiler processes the source script for completeness,
consistency and uniformity. Syntax errors are identified at this state. After any problem areas are corrected, the
compiler proceeds to state 424 and converts the script from the source format to the stored file format, which is a
binary format. Continuing at state 426, the script compiler 292 augments the script for access to the various MBDATA
databases, shown in Figure 2, and the MDATA infrastructure or support system. The script compiler completes at a
return state 428.

V. Script Execution Details

Overview

10

15

20

25

30

WO 98/02836 PCT/US97/12025
.21

When a patient accesses the MDATA system 100 for a diagnosis, the system manages the initial contact with
the patient, identifies the patient, decides which service the patient needs, selects the correct MDS file, and starts up
the script engine. The script engine loads the MDS file and begins to obey its coded directions, one by one. The effect
of obeying the coded directions is an interview with the patient. At the end of the interview, the script directs the
engine to perform appropriate terminal actions {updating databases, closind files, logging the session) and ultimately
returns computer control to the MDATA system 100.

Using an MDS file to drive a script engine to conduct an on-line interview is described hereinbelow. The
supporting operations required to access database files, output information to the patient, input the patient’s responses,
and print reports, is performed by the underlying operating system on which the script engine is running.

The run-time mode of the List-Based Processing method generates a MDS file that is list-oriented. That means
that, at each step, the disease, symptom, and question lists must be searched to determine the next guestion or action
of the script. The script engine has to do more work using the list-based method than a branch-based method.

The MDS file is, in essence, a medical encyclopedia of human diseases, stored in top-down erder from a high-
level list of diseases down to a single question that elicits one aspect of a symptom of one disease. To run such a data
structure as a script requires that the structure be “inverted,” i.e., presented as a sequential question stream to the
patient. To do this in the run-time mode, the script engine first searches the master disease list of the MDS file to
select the next disease to be considered. Then the engine searches the list of symptoms of the selected disease to select
the next symptom to ask about. Then the engine searches the question set for the selected symptom to select the next
question to be asked. The engine poses the question to the patient, obtains the answer, updates the various weighted
lists, and repeats the process until it reaches a diagnosis or runs out of diseases. The overall effect is to generate a
diagnostic conversation between the script and the patient that concludes with a diagnasis.

As the script runs, the script maintains the patient’s symptom set as a temporary dynamic list called a “temp”
list. Every new symptom is recorded in this set, and is used to update the list of diseases being considered. The
patient’s responses thus build a health profile that is used to select the next disease and symptom and question. The

profile serves a number of uses:

. it is used to update all diseases being considered, to aid in selecting the next disease;
. it can be used to make statistical comparisons of cases;
. it allows the MDATA system to dynamically alter the question stream based on a specific patient’s

health state;

. it allows the MDATA system to interrupt a script and to continue it later, by storing the profile and
reloading it at a later time to continue the script.

When the script engine begins, it is given an on-line patient and a script (i.e., a MDS file). The engine opens

the MDS file to establish access to the coded lists of diseases, symptoms, and questions. It also opens the patient

10

15

20

25

30

WO 98/02836 PCT/US97/12025

.22
record to obtain the patient’s medical history and the results of past sessions, if any, with the patient. From
hereinforward, the MDS file drives the interview by directing the engine to a next interview step. At the end of the
interview, the script directs the engine to perform appropriate terminal actions (updating databases, closing files, logging
the session) and ultimately returns computer control to the MDATA system.

The aspect of interest for this explanation of List-Based Processing is the algorithm used to question the patient
and to build up a set of symptoms toward a diagnosis. This algorithm consists of a main loop that analyzes and updates
a set of patient symptoms until it reaches some condition that terminates the loop. The main loop includes the following

general steps:

. analyze the patient’s set of symptoms,

] select the disease to be considered next,

. select the symptom to be considered next,

® select the guestion to be presented next,

. present the question to the patient and process the response,
. update the symptom set based on the response,

. perform post-response processing of the symptom set,

. loop to analyze the patient’s set of symptoms.

This main loop continues until the script terminates with some exit action such as forming a diagnosis, giving treatment
advice, or forwarding the patient to another script.
Description of the Script Execution Drawings

Referring now to Figure 6a, a general configuration of the MDATA system for operating the diagnostic script
engine 190 will now be described. The diagnostic script engine 190 interfaces with a MDATA support system 440 so
as to get access to a plurality of databases 442 of the MDATA system and to have input and output capabilities with
the various entities in the medical community. The MDATA support system 440 includes the processes shown in Figure
2, including the login process 210, the registration process 212, and the diagnostic process 220. Also included in the
MDATA support system 440 are processes for performing input and output to and from the physician 444, the patient .
114, and health organizations 446, such as a health maintenance organization (HMO). The MDATA support system 440
utilizes the communication network 102, previously shown in Figures 1a and 1b. The databases 442 shown in Figure
Ba include the databases previously shown in Figure 2 and also include other databases such as for human diseases, |
drugs and drug interactions, human anatomy, a regulatory ratchet table, and a geographic distribution of frequency of
diseases. The regulatory ratchet table is a table of regulatory and legal "rules” that let the system know how much
information can be revealed to a patient.

Referring now to Figure 6b, the structures and inputs and outputs utilized during the operation of the diagnostic

script engine will now be described. Based on input from user 460, records from the patient medical history database

10

15

20

25

30

WO 98/02836 PCT/US97/12025

.23

254 and other information available from the central MDATA databases 442, a MDS 296 is selected from the MDS
database 300. Alternatively, if the diagnostic script engine 190 is run on a patient’s personal computer, local user data
storage 184 may be accessed in place of the MDATA databases stored at a central location, However, it is more
practical to keep the patient medical history at a central database for several reasons: safety of the records, health care
providers anywhere in the world have access as necessary for analysis, matching a diagnesis to any new treatments so
that a patient can be quickly notified by the system, and so forth.

The MDS 296 is made available for the diagnostic script engine 190, which performs the patient interview.
The script engine 180 may write information received during the patient interview to either the central patient medical
history database 254 or to the local user data storage 184. At the conclusion of the current script, or if additional
scripts are run, medical diagnosis or advice 462 may be generated. This diagnosis or advice is preferably reported to
the physician 464, output to the user 466 and stored in the central MDATA databases or the local user data storage
184. Other reports 468 may be generated as necessary. As will be described later, there are situations where the
diagnosis may not be reported directly to the user, but may be sent instead to the physician for further reporting to the
user at a later time.

Referring to Figure 7, a general top level process 480 for a user in a session with the MDATA system 100 will
now be described. Process 480 begins at a start state 481 and moves to state 482 to identify an emergency situation.
A set of initial “hard-coded” screening questions are utilized to identify the emergency situation. If an emergency
situation is identified, appropriate advice, such as calling 911, is provided to the user. State 482 and subsequent states
484, 486 and 488 are substantially described in Applicant's copending application entitled "COMPUTERIZED MEDICAL
DIAGNOSTIC AND TREATMENT ADVICE SYSTEM,” U.S. Serial No. 08/176,041. If process 480 determines that there
is no emergency situation, the process continues at state 484 and securely identifies the user. As described in
Applicant’s copending application, the user may be the patient or an assistant for the patient. Passwords, identification
numbers, voice prints or other types of identification methods may be utilized. I the patient has logged in properly,
process 480 continues at a state 486 to perform any necessary administrative tasks. Proceeding to state 488, process
480 access the MDATA medical databases (Figure 2) and the system files and software. Proceeding to process 490, .
an on-line interview with the user is conducted. The on-line interview preferably is performed by the diagnostic script
engine process 490. However, other ways of performing the an-line interview may be utilized, such as running a program
or executing a script. The user process 480 completes at an end state 492.

Referring now to Figure Ba, the diagnostic script engine process 490 will be described. Beginning at a start
state 492, the script engine process 490 proceeds to state 494 to perform a script router function. The script router
selects an appropriate DSQ script based on input parameters such as: a patient’s chief complaint symptoms, the time
since the symptoms started, the patient's past medical history, results from any other scripts, or the results from the

current script family from a prior time. Identification of the patient's chief complaint is algorithmic. The chief complaints

10

15

20

25

30

WO 98/02836 PCT/US97/12025
.24.

can be categorized into the following classifications: an anatomic system involved, a cause of the patient's problem, e.g.,
trauma or infection, an alphabetic list of chief complaints, an ICD-8 number for their complaint, or a MDATA catalog
number of their chief complaint. After the appropriate DSQ script has been selected, process 490 continues at state
496 to retrieve the selected script from the script database 300 (Figure 6b). At this time, the diagnostic script engine
process 490 invokes a DSQ list script engine 500 to utilize the DSQ lists in performing the interview with the patient.
The DSAQ list script engine 500 will be further described in conjunction with Figures 9 and 11.

The diagnostic script engine process 490 post-processes the results of the DSQ script engine at state 502.
Various types of processing are performed at state 502, as exemplified by states 506 through 526 described hereinbelow.
One action that may be performed at state 502 includes determining a degree of certainty for diseases in the ruled-in
disease list and in the ruled-out disease list. The degree of certainty for some or all the diagnoses in the ruled-in and
ruled-out disease lists may be reported to the patient andfor physician. The diagnoses from the ruled-in and ruled-out
disease lists and the associated degrees of certainty are compifed into a differential diagnosis fist. Various ways of
determining the degree of certainty for a diagnosis include, for example, a degree of certainty look-up table or a
sensitivity factor set. Sensitivity factors were previously described in Applicant’s issued patent, U.S. Patent No.
5,594,638, entited "COMPUTERIZED MEDICAL DIAGNOSTIC SYSTEM INCLUDING RE-ENTER FUNCTION AND
SENSITIVITY FACTORS.” The next action performed by process 490 is dependent on the result type as determined at
a decision state 504. Various exemplary result types will now be described. At state 506, the diagnostic script engine
process 430 refers the patient to another script, which is selected at state 494, as previously described. At state 508,
process 490 generates appropriate medical diagnosis or advice. Moving to function 510, the advice is distributed to the
appropriate party. Function 510 will be further described in conjunction with Figure 8b. After the advice is distributed,
process 490 ends at an end state 512.

At state 514, process 490 performs a special meta analysis. The diagnostic script engine studies how a
specific symptom changes or grows over time in a given disease. At state 516, process 490 stores the results
accumulated during the script into the patient’s records. At state 518, process 490 forwards the patient to access a
medical information library that is part of the MDATA system 100. At state 520, process 490 schedules a later
continuation of a script that was adjourned temporarily. Typically, this occurs when a patient is not able to complete
the entire script during a session. In a situation where no disease has reached a rule-in threshold, the diagnostic script
engine has the capability of providing a list of diseases that have the most weight in decreasing levels of probability to
the patient. In such a situation, at state 522, the process 490 could schedule a re-enter session to allow a length of
time to pass and see if a diagnosis could be reached at a later time. The re-enter feature is described in Applicant's
copending application entitled "COMPUTERIZED MEDICAL DIAGNOSTIC AND TREATMENT ADVICE SYSTEM." At state
524, process 490 requests the patient to have tests performed and to consult the system again. These tests may

include self-exam maneuvers, imaging modality tests (258, Figure 2) or laboratory tests (260, Figure 2). At state 526,

10

15

20

25

30

WO 98/02836 PCT/US97/12025
: -25-
process 490 forwards any urgent results to a health care provider for immediate action. Process 490 ends at the end
state 512. |

Referring to Figure 8b, the distribute diagnosis or advice function 510 will now be described. Beginning at a
start state 511, function 510 proceeds to state 512 wherein the results of the various lists are collated due to one or
more diseases or diagnoses reaching threshold. Proceeding to state 515, function 510 checks the treatment table for
the appropriate and current treatment for the diagnoses made by the system. Proceeding to state 517, function 510
determines who should be the recipient of the diagnosis or advice. This is partially accomplished by consulting a
regulatory ratchet table 519. The regulatory ratchet table determines the type of information that can be told to the
patient depending on various factors, such as what country the patient lives in. As a result of consulting the regulatory
ratchet table 519, advice or a diagnosis is communicated to the patient 114, a physician 444, a managed care
organization 446 or other entity 521 that legally may have access or has a need to know the medical information. There
is much information that could be shared with the patient and should be shared with the patient’s physician. For
example, what is ruled in and what is ruled out, and what is the patient’s specific differential diagnosis? That is, after
the patient answers all of the questions, the scores for all of the different diseases can be ranked. This is very helpful
to the physician. The regulatory ratchet table 518 utifizes information available in the patient's record, such as the
patient’s zip code or telephone area code to identify their location.

Referring to Figure 8, the DSQ script engine process 500 will now be described. Beginning at a start state
530, the process 500 proceeds to state 532 to access the selected DSQ list file passed to it by the diagnostic script
engine. Proceeding to state 534, process 500 initializes the temp lists utilized by the script engine. Referring temporarily
to Figure 10, process 500 initializes the symptom temp list 552 to be cleared and initializes the disease temp list 550
to have all of the diseases of the master disease list 324. At this point, process 500 selects one of the diseases to
be processed and then selects a symptom to be asserted in the disease. To determine the presence or absence of the
symptom in the patient, process 500 continues at state 536 to select the first question of the symptom to be asked
of the patient. At state 538, process 500 asks the question of the patient. Moving to state 540, process 500 receives
the patient's response and checks for correctness of their response according to the asked question. The patient's
response is used then to update the DSQ temp lists at state 542.

Proceeding to a decision state 544, process 500 determines if a diagnasis or a terminus of the script has been
reached. If it has not, process 500 proceeds to state 546 to select either the next question in the current symptom,
or, if all the questions for the current symptom have been asked, to proceed to the next symptom for the current disease.
It all the questions in the current disease have been asked, process 500 moves to the next disease and asks the
questions necessary for that disease. Process 500 loops at states 538 through 546 until the end of the script is
reached, a diagnosis is achieved, the user requests the script to be adjourned, or the script engine determines that the

script should be terminated. When the diagnosis or terminus has been reached, process 500 either returns the diagnosis

10

15

20

25

30

WO 98/02836 % PCT/US97/12025
at state 541, refers the patient to a ditferent script at state 543, adjourns the current script at state 545, or terminates
the current script at state 547. Process 500 completes at a return state 548.

Referring now to Figure 10, a portion of the lists utilized during run-time operation of the DSQ list script engine
500 will be described. Based on user input 460 and the time since the symptoms have begun, the script router 494
(Figure 8a) of the diagnastic script engine 490 identifies a script to be passed to the DSQ list script engine 500. The
records of the current patient from the patient medical history 254 are also used by the script router 494. Using the
medical diagnestic scfipt received from the script router, the DSQ list script engine 500 accesses the master disease list
324. The diseases in the master disease list are copied to a disease temp list 550. At the appropriate time during
operation of the DSQ list script engine 500, symptoms from the master symptom list 326 of the current disease are
selectively copied to the symptom temp list 552, as will be described in conjunction with Figure 12. As symptoms are
asserted during the patient interview, symptom weights andlor question weights for the symptoms will be added to the
score for the current disease in the disease temp list 550. When a score for a particular disease reaches a ruled-in
threshold, the disease is moved to the ruled-in disease list 554. Alternatively, if the scare for the current disease reaches
the ruled-out disease threshold, the disease is moved to the ruled-out disease list 556. Asserted symptoms, ruled-in
diseases, ruled-out diseases, and diseases neither ruled-in nor ruled-out may all be stored in the patient medical history
254. At the completion of a script or at a terminus or checkpoint during the script, diseases left in the disease temp
list 550 may also be written to the patient medical history 254. Alternatively, the patient symptom and disease
information may be written to the local user data storage 184 {Figure 6b) instead of the central patient medical history
254

Referring now to Figure 11, the operation of the DSQ list script engine 500 will be described. This description
will provide more detail than the overview of the script engine process provided in conjunction with Figure 9. Beginning
at a start state 580, the script engine process 500 proceeds to state 582, wherein the disease temp list 550 is initialized
from the script master disease list 324 (Figure 10). Moving to state 584, the script engine process accesses patient
data from current and/or previous patient sessions. The script engine process 500 utilizes the MDATA support system
440 (Figure 6a) and the databases 442 to get the patient data and any other data necessary. Alternatively, the patient
data may be retrieved from the local user data storage 184 (Figure 6b).

Advancing to state 586, the script engine process 500 selects the diseass to be considered. Various methods
may be utilized in selecting the order of the diseases to be considered. For example, the most urgent diseases may be
considered first, followed by the serious diseases and then the common diseases. Alternatively, or in conjunction with
the urgent/serious model, the first diseases to be considered may be the most prevalent in the population that the patient
is in. The script engine process may utilize the telephone number, postal zip code, or other sources of location
information from the patient’s history to identify the population group or location that the patient is in. An alternative

for selecting the disease order once the process has started is to use the disease with the highest total of symptom

10

15

20

25

30

WO 98/02836 97 PCT/US97/12025

weights, i.e., the disease which is nearest to being diagnosed. Preferably, the script coordinator arranges the diseases
for the current script in the order they are to be considered. After the current disease to be considered is determined,
the script engine process 500 proceeds to the "select symptom to be considered” process 588. Process 588 determines
the symptoms to be considered for the current disease and will be further described in conjunction with Figure 12,

Script engine process 500 checks to see if a selected symptom null flag, which may be set during process 588,
is asserted at decision state 590. If the selected symptom flag is null for the current disease, process 500 advances
to a decision state 616 to determine if there are more diseases to consider. However, if the selected symptom flag is
not null, script engine process 500 proceeds to state 592 to select the question flow to be presented to the patient.
Associated with each symptom is a question logic flow that can elicit the symptom. A logic flow can be thought of as
a “complex question,” i.e., a question that consists of several questions and can produce one of several answers.
Preferably, the question flow which contains, i.e., can generate as a response, the symptom which currently has the
highest chance of ruling in the disease under consideration should be selected. Advancing to state 594, script engine
process 500 then executes the current flow node. Proceeding to state 596, script engine process 500 presents the
question part of the flow node to the user. Every guestion preferably consists of a set of information text, instruction
text, and a question. To present the question, the script first outputs the information text to the patient, then the
instruction text, and finally the question text. The question text indicates to the patient that a response is expected at
the present time.

Continuing at a handle response process 598, the script engine processes the response from the user. Process
598 will be further described in conjunction with Figure 13. The flow node preferably is one of three types: symptom,
question, or program. Script engine process 500 determines the flow node type at a decision state 600. If the node
type is question or program, script engine process 500 moves to state 594 (question loop Q) to execute the next flow
node. However, if the flow node type is of the symptom type, process 500 proceeds to state 602 to update the
symptom temp list 552 (Figure 10), based on the received response from the patient. Based on the response, a weight
is assigned for the current symptom. Alternatively, if the current symptom utilizes multiple guestions, some of which
have associated weights, the weight (if present) for the current question is accumulated for the current symptom.

When the DSQ script has obtained a symptom, it updates all diseases that have the symptom. That is, a single
answer from the patient can change the symptom weighing of all diseases being considered. This “promotes” one or
more diseases to being closer to the diagnostic thresholds.

Proceeding to a function 604, the script engine process 500 performs post-response processing to further update
the symptom temp list 552. Examples of post-response processing include if-then relationships, simultaneous relationships,
sequencing relationships and other similar types of relationships. For example, if a symptom severity value is 8, then
a weight of 75 might be added to the diagnosis of biliary colic, and a weight of 50 might be subtracted from the

diagnosis of appendicitis. Other post-response relationships were previously discussed in conjunction with Figure 4b

10

15

20

25

30

WO 98/02836 PCT/US97/12025
.28

(capture disease knowledge). After the post-response processing has been completed, the script engine process 500
proceeds to the update disease lists process 606. At process 606, the script engine updates the scores in the disease
temp lists based on the updated symptom temp list 552 and eliminates ruled-in or ruled-out diseases. The update disease
list process 606 will be further described in conjunction with Figure 14,

At the completion of process 606, some diseases may be ruled in or ruled out, thereby reducing the length of
the disease temp list 550 (Figure 10). However, if either the ruled-in threshold or the ruled-out threshold has not been
reached, the disease is not removed from the disease temp list. Thus, at state 608, an updated disease temp list and
an updated symptom temp fist are left for the next iteration of checking symptoms for diseases. Moving to a decision
state 610, the script engine process 500 determines if there are more symptoms in the symptom temp list 552 for the
current disease. If so, the script engine process 500 selects the symptom with the largest weight, based on absolute
value, associated with it at state 612 and then proceeds to state 532 (symptom loop S) to select the question flow for
that new symptom. However, if there are no additional symptoms in the symptom temp list 552, as determined at
decision state 610, the script engine process 500 proceeds to state 614 to delete the current disease from the disease
temp list 550.

Proceeding to the decision state 616, the script engine process 500 determines if the disease temp list 550
for the current script is empty. |f it is not, the script engine process 500 moves to state 586 (disease loop D) to
consider the next disease in the script. If the disease temp list 550 for the current script is empty, the script engine
process 500 proceeds to a decision state 618 to determine the type of result of the script. At state 620, one of the
possible results is that one or more diseases have been ruled in or have been ruled out. At state 622, another type of
result is that the script engine has determined to reference another script or another service. The script engine process
500 completes at a return state 624 and returns to the diagnostic process 490 (Figure 8a).

Referring to Figure 12, the select symptom process 588, referenced in Figure 11, will now be described.
Beginning at a start state 640, the select symptom process 588 proceeds to state 642 to clear the symptom temp list
552 (Figure 10). Proceeding to state 644, the select symptom process 588 accesses the current disease in the script
master disease list 324 (Figure 10). Advancing to state 646, process 588 identifies the next symptom of the current
disease. Continuing at a decision state 648, process 588 determines if the symptom’s question flow has praviously been -
executed for this patient. For example, the symptom may have been determined in another disease or even in another
script for this patient. |f the question flow has not been previously executed, process 588 proceeds to state 650 and
adds the symptom to the symptom temp list. After adding the symptom to the symptom temp list, or if the symptom's
question flow has been previously executed, process 588 moves to a decision state 652, At decision state 652, process
588 determines if there are more symptoms for the current disease. if so, process 588 moves back to state 646 ta

identify the next symptom of the current disease.

10

15

20

25

30

WO 98/02836 29 PCT/US97/12025

If there are no more symptoms for the current disease, as determined at state 652, process 588 continues at
a decision state 654 to determine if the symptom temp list 552 is empty. If it is, select symptom process 588 moves
to state 656 to delete the current disease from the disease temp list 550. This would happen, for example, if all the
symptoms for the disease had been previously considered at an earlier time in this or another script. In this situation,
the select symptom process 588 returns at state 658 will a null symptom flag. Returning to decision state 654, if the
select symptom process 588 determines that the symptom temp list is not empty, execution continues at state 660
wherein the symptom temp list is sorted by the absolute value of the weight. Proceeding to state 662, process 588
selects the symptom with the largest absolute value of the weight. The select symptom process 588 returns at state
664 to process 500 {Figure 11) with the selected symptom.

Referring to Figure 13, the handle response process 598, referenced in Figure 11, will now be described.
Beginning at a start state 630, process 598 proceeds to state 692 to check the validity of a user response. Praceeding
to a decision state 694, process 598 determines if the response is valid. If the response is not valid, process 598
proceeds to state 636 to repeat the output of the question text to the user and then moves back to state 692 to check
the validity of the user response. A check for a time-out situation occurs during the handle response process 598. The
time-out is evaluated to see if it could mean a possible loss of consciousness or a change in mental status. If so, a
mental status subroutine could be invoked or emergency medical personnel may be called, for example.

If the response is determined to be valid at the decision state 694, process 598 proceeds to a decision state
698 to determine the type of node currently being processed by the DSQ script engine 500. If the node type is a
symptom node, process 598 proceeds to state 700 to select the symptom value associated with the current flow node.
A symptom node returns the symptom as the answer to the complex question. The symptom value is then returned at
state 702 to the symptom script engine process 500 (Figure 11). If the node type is a question node, process 598
proceeds to state 704 to convert the response to a path digit. Advancing to state 706, process 598 appends the path
digit to the current flow node path name. State 704 and 706 are used to identify the next question node to be
executed. Returning to decision state 698, if the node type is determined to be a program node, process 598 proceeds
to state 710. At state 710, process 598 executes the program indicated by the current node and gets a return digit.
Continuing at state 712, process 598 appends the return digit to the current flow node path name. State 710 and 712
are used to identify the next question node to be executed. The program executed at state 710 may be a sub-script
or other function or subroutine needed to elicit additional medical information from the patient. At the completion of
either state 706 or 712, process 598 returns at return state 708 to the DSQ script engine pracess 500 (Figure 11).

Referring to Figure 14, the update disease lists process 606, referred to in Figure 11, will now be described.
Beginning at a start state 730, process 606 proceeds to state 732 to access the disease temp list 550 (Figure 10).
Continuing at a decision state 734, process 606 determines if there are more diseases in the disease temp list 550.

It not, pracess 606 returas at a return state 736 to the DSQ script engine process 500 (Figure 11). However, if there

10

15

20

25

30

WO 98/02836 30 PCT/US97/12025

are more diseases in the temp list, process 606 proceeds to state 738 to access the next disease in the disease temp
list 550. Proceeding to a decision state 740, process 606 determines if the current disease contains the symptom just
answered by the patient or any of its post-response processed symptoms, such as determined at function 604 {Figure
11). If so, process 606 moves to state 742 and adds the weight of the symptom just answered or the post-response
process symptom to the score of the current disease. Proceeding to a decision state 744, process 606 determines if
there are additional symptoms having weights that need to be added to the current disease score. This typically would
happen if there are multiple post-response process symptoms. If so, process 606 moves back to state 742 1o add the
weight of these additional symptoms to the disease score. If there are no more symptoms that need to be pracessed,
as determined at state 744, process 606 proceeds to a decision state 746.

At decision state 746, process 606 determines if the disease score has reached or passed the ruled-in threshold.
The ruled-in threshold preferably has a value of 1,000, but other ruled-in threshold scores could be utilized. If 50, process
806 proceeds to state 748 to add the current disease to the ruled-in disease list 554 (Figure 10). Moving to state 750,
process 606 deletes the current disease from the disease temp list 550 (Figure 10) and then moves back to decision
state 734 to determine if there are more diseases in the temp list 550.

Returning to decision state 746, if the score has been determined to not reach or pass the ruled-in threshold,
process 606 proceeds to a decision state 752. At decision state 752, process 606 determines if the disease score has
passed or has reached the ruled-out threshold. If so, process 606 moves to state 754 to add the current disease to the
ruled-out disease list 556 (Figure 10). Advancing to state 750, process 606 deletes the disease from the disease temp
list 550 and moves back to decision state 734 to check for additional diseases in the disease temp list 550.

Returning to decision state 752, if the disease score is not less than or equal to the ruled-out threshald, process
606 moves back to decision state 734 to check for additional diseases in the temp list 550. Returning to decision state
740, if the current disease does not contain the symptom just answered or any of its post-response processed symptoms,
process 606 moves back to decision state 734 to check for additional diseases in the temp list 550.

The use of the ruled-in threshold and the ruled out threshold has certain implications as follows:

the weight of a symptom can be given as a positive or negative number;

two running scores are kept for each disease: one positive and one negative;

positive weights are added to the positive score and negative weights to the negative score;

weights are not subtracted;

two threshold are used, a positive one (e.g. 1000 or 10000) to rule diseases in and a negative one {e.g. -1000

or -10000 to rule diseases out;

when the positive score reaches or exceeds the positive threshold, the disease is ruled-in;

when the negative score reaches or exceeds the negative threshold, the disease is ruled-out;

10

15

20

25

WO 98/02836 3 PCT/US97/12025

if a disease reaches neither threshold by the end of the script, it is left in an "undecided” fist of diseases,

which can be stored in the patient medical history.

Referring to Figure 15, an alternative embodiment for generating medical advice or a diagnosis using branch-
based scripts will now be described. Beginning at a start state 782, the branch-based script process 780 proceeds to
state 784 to open a branch-based medical diagnostic script file. Proceeding to state 786, process 780 sets up the
patient data from either current and/or previous sessions with the patient. Script process 780 proceeds to state 788
and starts at a first question in the script. Advancing to state 790, script process 780 presents the current guestion
to the user. Continuing at state 792, script process 780 waits for a valid user response. Moving to state 794, script
process 780 records the user response. At state 796, script process 780 goes to the node corresponding with the user
respanse. Continuing at a decision state 798, script process 780 determines if the next node is an exit node. if not,
process 780 continues at state 790 and presents the next question to the user. The script process 780 loops on states
780 through 798 according to the sequence of the predetermined script nodes until an exit node is reached. When the
exit node is reached, script process 780 moves to a decision state 800 to determine the type of result of the script.
The branch-based script 780 may return a diagnosis at a return state 802, advice at a return state 804, or a reference
to another script at a return state 806.

VI. Advantages of List-Based Processing

The List-Based Processing system provides advantages of speed, precision and completeness over other methods
of medical diagnoses. Specifically, the List-Based Processing approach:

organizes medical knowledge into lists that others can process;

presents diagnosis in a way that can be checked for correctness and completeness;

_ generates better scripts than humans can write using branch-based scripts;
simplifies updating scripts as medical knowledge changes;
allows testing by automated means;
can be used as a callable function from branch-based scripts;
is computer platform-, medium-, and language-independent;
allows scripts to be more easily translated into other human languages;

reflects the way doctors actually diagnese.

WO 98/02836 12 PCT/US97/12025

APPENDIX
EXEMPLARY DSQ LIST-BASED SCRIPT
This listing shows a more extensive sample of an ASCII file that contains lists used as the starting point for
List-Based Processing. The list is intended only to show formats and relationships. It may not convey correct or

complete medical information. The chief complaint for this exemplary script is “malaise”.

’ MALARIA.TXT

DEF H
h_format 5
h_complaint s_malaise

END H

DEF D

d_falc "084.0" "Falciparum Malaria"

s_tropics 200
s_lethargic 100
s_fever 200
s_chills 200
s_nochills -100
§_sweats 200
s_nosweats -100
s_cfsinorder 200

s_cfsnotinorder 100
s_2bouts_other 250

s_3bouts_other 250

10

15

20

25

WO 98/02836

s_pnotest
s_pnegative
s_pfalcip
s_pvivax
s_povale
s_pmalar

s_pmixed

-700

700

~-700

-700

-700

-700

d_vivax "084.1" "Vivax

s_tropics
s_lethargic
s_fever
s_chills
s_nochills
s_sweats
S_nosweats
s_cfsinorder
s_cfsnotinorder
s_2bouts_48
s_3bouts_48
S_pnotest
S_pnegative
s_pfalcip
s_pvivax
s_povale

s_pmalar

200

100

200

200

-100

200

-100

200

100

350

450

5

~-700

-700

700

-700

-700

Malaria"

-33-

PCT/US97/12025

10

15

20

25

WO 98/02836

s_pmixed

d_quartan "084.2"
s_tropics
s_lethargic
s_fever
s_chills
s_nochills
s_sweats
s_nosweats
s_cfsinorder
s_cfsnotinorder
s_2bouts_72
s_3bouts_72
s_pnotest
s_pnegative
s_pfalcip
s_pvivax
s_povale
s_pmalar

s_pmixed

-700

"Quartan Malaria"

200

100

200

200

-100

200

-100

200

100

350

450

5

-700

-700

-700

-700

700

-700

d_ovale "084.3" "Ovale

s_tropics
s_lethargic

s _fever

200

100

200

Malaria"

PCT/US97/12025

10

15

20

25

WO 98/02836

s_chills
s_nochills
s_sweats
S_nosweats

s_cfsinorder

200

-100

200

-100

200

s_cfsnotinorder 100

5_2bouts_other
s_3bouts_other
s_pnotest
S_pnegative
s_pfalcip
s_pvivax
S_povale
s_pmalar

s_pmixed

d_mixed "084.5"
s_tropics
s_lethargic
s_fever
s_chills
s_nochills
S_sweats
S_nosweats

s_cfsinorder

250

350

-700

-700

-700

700

-700

-700

"Mixed Malaria"

200

100

200

200

-100

200

-100

200

s_cfsnotinorder 100

.35.

PCT/US97/12025

10

15

20

25

WO 98/02836
s_1lbout_23days 200
s_1lbout_other 200
s_2bouts_other 200
s_3bouts_other 300
s_pnotest 5
s_pnegative -700
s_pfalcip -700
s_pvivax -700
s_povale -700
s_pmalar -700
s_pmixed 700

d_unspec "084.6" "Malaria,
s_tropics 200
s_lethargic 100
s_fever 200
s_chills 200
s_nochills -100
s_sweats 200
S_nosweats -100
s_cfsinorder 200
s_cfsnotinorder 100
s_pnotest 100

d_notmal "-" "Not Malaria"
s_nofever 100

-36-

unspec"

PCT/US97/12025

10

15

20

25

WO 98/02836

s_nochills
S_nosweats
s_nocfts
s_cfsnotinorder
S_pnegative
s_pfalcip
s_pvivax
s_povale
s_pmalar
s_pmixed

END D

DEF S
s_malaise
s_tropics
8_nottropics
s_lethargic
5_notlethargic
s_fever
s_nofever
s_chills
s_nochills
s_sweats
S_nosweats
s_nocfs

s_cfsinorder

300
300
700
300
1000
-600
-600
-600
-600

-600

0

f_tropics
f_tropics
f_lethargic
f_lethargic
£_fever

£ fever
f_chills

f chills
f_sweats
f_sweats
f_cfs

f_cfs

.37-

PCT/US97/12025

"general ill feeling"

"recently in tropics®

"not

"has

"not

"has

"has

"has

"has

"has

"has

vdid

"had

recently in tropics®
been tired/lethargic"
tired/lethargic"
fever"

no fever"

chills"®

no chillg"

sweating"

no sweating"

not have CFg"

CFs*

10

15

20

25

WO 98/02836
s_cfsnotinorder f_cfs
s_pnotest f_ptest
s_pnegative f _ptest
s_pfalcip f _ptest
s_pvivax f_ptest
s_povale f _ptest
s_pmalar f_ptest
s_pmixed f_ptest
s_1lbout_lday f cfs
s_lbout_23days f cfs
s_1lbout_other f cfs
5_2bouts_48 f _cfs
s_2bouts_72 f_cfs
5_2bouts_other f_cfs
s_3bouts_48 f_cfs
s_3bouts_72 f_ctfs
s_3bouts_other f _cfs
END S
DEF I
s_nochills
s_nofever
S_nosweats
s_chills s_fever s_sweats
END I

.38-

"had CFS, but

PCT/US97/12025

not in ordert

"not tested for Plasmodia"

"plasm test negative"

"test+ for P.

"test+ for P.

"test+ for P.

"test+ for P.

falciparum®
vivax"
ovale®

malariae®

"test+ for mixed Plasmodia®

"1l CFS bout lasting 1 day"

"1 CFS bout lasting 2-3 days"

"1 cfs bout of unk duration®

"2 CFS bouts,
"2 CFS bouts,
"2 CFS bouts;
"3+ CFS bouts
"3+ CFS bouts

"3+ CFS bouts

s_nocfs
s_nocfs
s_nocfs

s_cfs

48h apart"

72h apart"
unknown interval®"
every 48 hours"®
every 72 hours"

of unk intervaln

10

15

20

25

WO 98/02836

DEF F

f_tropics

'llll

"11"

L1} 12 "

q_tropics
s_tropics

s_nottropics

f _lethargic

nqm
wypw
nygw

f_fever
nyw
wyign

ll12 "

£ chills

lllll

o 11 n

n 12 n

f sweats

wyn
wypw
wyiom

f_cfs
oy
nyow
wyqn

"112"

q_lethargic
s_lethargic

s_notlethargic

q_fever
s_fever

s_nofever

g _chills
s_chills

5_nochills

q_sweats
s_sweats

§_nosweats

q_cfs

s_nocfs
q_cfsorder

s_cfsnotinorder

.39.

PCT/US97/12025

WO 98/02836

"111" q_cfsbouts
"i1110" s_nocfs
*i1iii" q_dibout
"11111" s_1lbout_lday

5 "11112" s_1lbout_23days
"11113" s_lbout_other
"1112" g_d2bouts
"11121" s_2bouts_48
"11122" s_2bouts_72

10 "11123" s_2bouts_other
"1113" g_d3bouts
"11131" s_3bouts_48
"11132" s_3bouts_72
"11133" s_3bouts_other

15 f_ptest
nyw
nygm
mygw
n110"

20 "111"
n112"
n113 "
"1i4m
“115"

25 END F

g_ptest

s_pnotest
q_pfound
S_pnegative
s_pfalcip
s_pvivax
s_povale
s_pmalar

s_pmixed

-40-

PCT/US97/12025

10

15

20

25

WO 98/02836
DEF Q
g_tropics
g_lethargic
q_fever
g_chills
q_sweats

g_cfs

g_cfsorder
q_ptest

q pfound
g_cfsbouts
g_dlbout
g_d2bouts
g_d3bouts

END Q

DEF T
t_falc
t_mal
t_mix
t_ov

t_viv

t_k23days
t_k3plus

t_k48hours

0

0

0

0

0

0

0

0

0

0

0]

0

t_gtropics
t_glethargic
t_gfever
t_gchills
t_dgsweats
t_gcfs
t_gcfsorder

t_gptest

12

12

12

12

12

12

12

12

A1

t_kyes
t_kyes
t_kyes
t_kyes
t_kyes
t_kyes
t_kyes

t_kyes

PCT/US97/12025

t_kno
t_kno
t_kno
t_kno
t_kno
t_kno
t_kno

t_kno

t_gpfound 012345 t_knone t_falc t_viv t_ov t_mal t_mix

t_gcfsbouts
t_gdibout
t_gd2bouts

t_qgd3bouts

FALCIPARUM
MALARIAE
MIXED
OVALE

VIVAX

2-3 DAYS
THREE+

48 HOURS

0123 t_knone
123
123

123

t_kone t_ktwo t_k3plus

t_kuplday t_k23days t_kother

t_k48hours t_k72hours t_kother

t_k48hours t_k72hours t_kother

10

15

20

25

WO 98/02836

t_k72hours
t_kno
t_knone
t_kone
t_kother
t_ktwo
t_kuplday

t_kyes

t_qgcfs
t_gcfsbouts
t_gcfsorder
t_gchills
t_gdlbout
t_gdzbouts
t_gd3bouts
t_gfever
t_glethargic
t_gpfound
t_gptest
t_gsweats

t_gtropics

END T

PCT/US97/12025

-42-
72 HOURS
NO
NONE
ONE
OTHER
TWO
UP TO ONE DAY

YES

Did you have Chills, Fever, and Sweating?
How many bouts of C-F-S did you have?
Did you have C-F-S in that order?

Do you have chills?

How long did that 1 bout last?

What was the time between those 2 bouts?
How far apart were these bouts?

Do you have fever?

Have you been tired or lethargic?

What Plasmodia were found in blood?

Did you have a blood test for Plasmodia?
Do you have sweating?

Have you been in the tropics recently?

10

15

20

25

WO 98/02836 PCT/US97/12025

.43
WHAT IS CLAIMED iS:
1. A computerized diagnestic method, comprising the steps of:

providing to a computer a list of diseases, each disease associated with a list of symptoms, and each

symptom associated with a list of questions;

repetitively asking questions to elicit responses, the responses establishing symptoms, each established

symptom contributing a weight to a disease; and

determining whether the accumulated weights for a disease reach or pass a threshold so as to declare

a diagnosis.

2. The method defined in Claim 1, wherein the symptom is established based on the presence or absence

of one or mare other symptoms.

3. The method defined in Claim 1, wherein the presence of a selected set of symptoms adds additional

weight to a diagnosis.

4. The method defined in Claim 1, wherein a symptom at a first selected time of the diagnostic process

is weighted differently than the symptem at a second selected time of the process.

5. The method defined in Claim 1, wherein the weight of a symptom reported at a first severity is

different than the weight of the symptom reported at a second severity.

6. The method defined in Claim 1, wherein a selected set of symptoms occurring in a specified sequenbe
over time lends a different accumulated weight to the diagnosis than the accumulation of the individual weights of the

selected set of symptoms not occurring in the specified sequence.

7. The method defined in Claim 1, wherein a sequence of an onset or ending of a selected set of
symptoms lends a different weight to the diagnosis than the accumulated individual weights of the selected symptoms |

alone.

8. The method defined in Claim 1, wherein the disease is ruled-in for further diagnostic inquiry based on

the accumulated weight.

8. The method defined in Claim 1, wherein the disease is ruled-out for further diagnostic inquiry based

on the accumulated weight.

10

WO 98/02836 44. PCT/US97/12025

10. The method defined in Claim 1, wherein questions for diseases deemed urgent are asked before

questions for non-urgent diseases.

11. The method defined in Claim 1, additionally comprising the step of determining whether the

accumulated weights for a disease are less than a rule-out threshold so as to eliminate a possible diagnosis.

12. The method defined in Claim 8, wherein a degree of certainty of ruling-in the disease is provided.
13. The method defined in Claim 9, wherein a degree of certainty of ruling-out the disease is provided.
14. The method defined in Claim 1, wherein a plurality of diagnoses, each diagnosis having a degree of

certainty, are accumulated into a differential diagnosis list.

PCT/US97/12025

WO 98/02836

120

o/ b1/

&0/

IJHYMLE0S NOISIAZ3L HJOLINOW
JOV4NILINI
MHOMLIN @&Q
”~
p / v 22 INOHJIT3L
! ! 2d =
174 i Xo8g I X089 318D
I o 3maws L 318v.1d0d ’

m (s W Y. LN ard
rd
L] suanaas T TR TS) gt gz
5 / / ’
/
! Y ; _\\Fzm:<a\mum3
_ 0 CE/ /
“ , \ \\ VH3IWVD 0O3AIA
C] | \ / \\
90/~ N _ ! 2 /
1 / / /
| / / /
I / ‘
\\ \\ ol
/ \\ \\\
/ \\ \\\‘\
204 NOILDINNOD [== -~
MHOMLIN —T /]
YMILYS NOILD3INNOD —" o7/
MHOMIAN | yIASMONE
zo! b _ _
97/ 8// —
SOLINOW

A

oo/

NOILVHINOIINOD MHOMIIN

SUBSTITUTE SHEET (RULE 26)

PCT/US97/12025

WO 98/02836

2/20

744

O/
mwvx .L\\ | auvoaa3y 3ISNON HOLINOW [\
c&/ &1/
_1 lllllllllllllll 26/~ NOWIN NN | T~ R ;“
(S374 A¥VNIG
_ mwwyw “wqﬂﬂm ‘ST VIVON NILSAS ONILVY34O \“wm\ |
| NOY~0 ‘ST INIUVE) | e — — — —] |
_ d AN Q¥VH |
_ LdI¥DS 1dI¥9S _
| PN 78/ 1SN 0S@ OILSONOVIa
ayvos ayvos _
| — ~ ¥3ITIONINOD NNOD ¥itdvay | |
| 96/ MW r6/ QivoaAIN VIN3S 03QIA _
| |
_ | 40SSIO0UONIIN 7%///
“ o/l 081~ w1 o1 |
U 8
| N |
K& SIERSVRE >
| M“w N, MHH _
| |
. i
JOVANIUNI
LT Sgomian I\ 4y NION |
[S |
“ 09/~ _
Ll o __
P SaNI wwwzm
95/ MYOMLIN
MYOMLIN By INOHd4313L dw
0/ £ 24

SUBSTITUTE SHEET (RULE 26)

WO 98/02836
\\ ASSISTED LOGIN
] |ASSBTANT LOGIN
PATIENT LOGIN Read/
PROCESS Write
PATIENT AND
ASSISTANT
272 ASSISTED ENROLLMENT
REGISTRATION DATABASE

CONSULTATION
HISTORY

PATIENT
RESPONSE

e

MEDICAL HISTORY
OBJECTS

PATIENT

PCT/US97/12025

SOFTWARE STRUCTURES

240

244

MEDICATION

T
w
PATIENT MEDICAL

HISTORY
v

-

MDS DATABASE
V

IMAGING MODALITY

ASSISTANT
REGISTRATION
Write
PATIENT
REGISTRATION
PROCESS
DIAGNOSTIC
PROCESS
SCRIPT /
ENGINE Write
META /
Read
M FUTURE!
Read/
MSE Write
SDER %'
PMH Im'
Write
PSE
Read
PMC
Read
SSA
'k
\220

PENDING FILE " 252

| — 254

| _-256

255

OF CHOICE
N~

>

LABORATORY TEST

260

OF CHOICE
\—d_’_,./

SUBSTITUTE SHEET (RULE 26)

£79.2

PCT/US97/12025

WO 98/02836

4/20

of b/

1S 1X3L ¥31SWVN

1S NOILSIND ¥3LSYA

ST MOT4 Y3ILSVA

1S17T WOLWAS ¥3LSVW

1SIT 3SV3SiA ¥3LSVA

vivg d3QV3H

1di¥OS SISONOVIA TvOIQ3n
a3asva-1sh bsa

7%%:\\

\\

osc

NOILVH3IN3IO LdIMOS Q3Sv8—1SIT 0ST 3INN-440

173

3Svaviva Saw

ALMEN
7 J3IOVNYIN
3Svaviva Saw

g6

S700L 1dI¥oS
43HLO

%

SIHONVNE #
SIAON SV ¥O IFOVNONYI
ONIMOHLNY TvOIQ3N

NI 1did0S 311dm

-

c&c

AHYVNIE

SHOHLNY

IVOIQ3N

P6C
N

ERIE
SAW 3Ligm

*

d3TINOD
1dI¥0s

i

1001
IN3Wd0T13A30
Vviva 1di4os

A

|]

WOLdWAS
‘Isv3sia
“9'3 ‘slsn bsa

1X31 OIN

Om._.ow.,_u*

S3N4 1S OiNI
J90ITIMONM
VOId3n
3ZINVYOHO
GNVY 1037100

/ V274

SUBSTITUTE SHEET (RULE 26)

WO 98/02836

520
JZO

SCRIPT I - TIME: T,

SYMPTOM
324 26 /
SYM PTOM
SYMPTOM
\ SYM PTOM

DISEASE A

DISEASE B

SYMPTOM

SYMPTOM

DISEASE x

SYMPTOM

TIME — BASED DSQ

PCT/US97/12025

’/ J25

LISTS QUESTION

QUESTION

QUESTION

QUESTION
QUESTION

QUESTION
QUESTION

QUESTION
QUESTION

Al

/W

>
N

A

o
—

QUESTION
QUESTION

QUESTION
QUESTION

°

QUESTION
QUESTION

QUESTION

(=]
~

>
—t

Xy

Ala
Alb

Alz

A2a
A2b

A2z
Aya

Ayz
Bia

B1z
Bya

Byz
xla

x1z
xya

xyz

JZZ
SCRIPT I — TIME: T, SYMPTOM

DISEASE A
SYMPTOM
[J

SYMPTOM
DISEASE B \ SYMPTOM
SYMPTOM

SYMPTOM

DISEASE x

£16. 55

SYMPTOM

QUESTION
QUESTION

QUESTION

QUESTION
QUESTION

o

QUESTION
QUESTION

o
QUESTION
QUESTION

(]

QUESTION
QUESTION

=

A

>
N

>
~

=]
Py

(=]
~

QUESTION
QUESTION

QUESTION
QUESTION

QUESTION

x
-—

x
~

X

SUBSTITUTE SHEET (RULE 26)

Ala’
Alb

A1z’

A2a
A2b’

A2z
Aya

Ayz
Bia

Biz
Bya

Byz
xia’'

x1z'
xya

xyz

WO 98/02836

E20

ASSIGN DISEASES

START
ASSIGNMENT OF
DISEASES

PCT/US97/12025

—— 350

I52

p

DEFINE CHIEF COMPLAINT
FOR THIS SCRIPT

!

— 356

DETERMINE LIST OF
DISEASES DIAGNOSED BY
THIS SCRIPT

¢ =355

RANK DISEASES BY
PROBABILITY

'

J60

ASSIGN PRIORITIES
BASED ON URGENCY AND
SERIOUSNESS OF
DISEASE

‘ 362

ASSIGN DISEASES FOR
SCRIPT TO ONE OR MORE
MEDICAL SPECIALISTS
FOR FURTHER
DEVELOPMENT

J64
END

FIG Lo

SUBSTITUTE SHEET (RULE 26)

WO 98/02836 PCT/US97/12025
720

START

CAPTURE DISEASE) —J82

35”*\\\‘ KNOWLEDGE

CAOPTURE DISEASE KNOWLEDGE

356
7
DETERMINE
TIME INTERVAL
FOR CRIPT
FAMILY

FOR EACH DISEASE, IDENTIFY | —-%¢
RULING—IN AND RULING-OUT
THRESHOLD SCORES

!

FOR EACH DISEASE, IDENTIFY
RELEVANT SYMPTOMS

!

FOR EACH DISEASE, IDENTIFY | %%
POST—RESPONSE RELATIONSHIPS
AND ASSOCIATED SYMPTOMS

!

FOR EACH DISEASE SYMPTOM,
ASSIGN A WEIGHT

!

FOR EACH SYMPTOM, DEFINE A
FLOW OF QUESTION NODES TO
ELICIT THE SYMPTOM

!

FOR EACH QUESTION NODE, |} 797
ASSIGN A WEIGHT

!

FOR EACH QUESTION NODE, DEFINE |79
TEXTS PROVIDING INTRODUCTIONS,
EXPLANATIONS, INSTRUCTIONS,
ADVICE AND QUESTIONS

— 380

~—396

400

e 402

s
F/G 4O

TIME-BASED
SCRIPT &
ANOTHER
INTERVAL

SUBSTITUTE SHEET (RULE 26)

WO 98/02836 PCT/US97/12025

E20

COMPILE SOURCE SCRIPT

420
START
COMPILE SCRIPT
P

PROCESS SOURCE SCRIPT
FOR COMPLETENESS,
CONSISTENCY &
UNIFORMITY

|

CONVERT SCRIPT FROM |~ <7
SOURCE TO STORED FILE
FORMAT

|

AUGMENT SCRIPT FOR
ACCESS TO MDATA
DATABASES AND
INFRASTRUCTURE

RETURN

/"‘ HL2E

4285

FIG 5

SUBSTITUTE SHEET (RULE 26)

PCT/US97/12025

WO 98/02836

o9 IS

T ANOLYNY NYIAH

'SONYJ
‘SISVISIA NVWNH
‘SAY003Y IN3IILVJ

‘S1dI¥OS JILSONOVIQ
“b9 ‘S3SVEVIVA

NOILVIINNWAQD

MHOML3IN NOILYZINVO YO
HLIV3IH

IN3ILVd

NVIJISAHd)

N7 \ opp—"

N
N

b]

/
w\\\

W3LSAS L¥0ddNS VLIVAW

06/ —"

INION3 LdI¥OS
SISONOVIQ
IVOIQ3aN

INIONT 1dI¥OS JILSONODVIA 40 NOILVYILO IVYINID

SUBSTITUTE SHEET (RULE 26)

PCT/US97/12025

WO 98/02836

S.NVIDISAHd

disSn Ol
1LNdLNo

G9r \

cor

14043y

7020

NQV\

.N.VV(\\

#cZ —

[

ANIONT 1dIy¥3S

JILSON

OVIQ 40 NOILVY¥3dO

/SISON9VIJ

P4
/ &/

IIVHOLS VLIVQ ,
MWWMmum: 4<UOMWWWM/, 79 D

IJIANAY

ANIONT LdI¥OS

SISONOVIJ
VOIQ3IN

\

—

T
Vivad 1d40d4dNS

T

N

S3ASvav.iva IvIOIaan
VIVAAN ¥3HLO

-

~

<~

~

T
AJOLSIH
IVOId3INW LN3iLvd

——

o6/ \

SAN
96

\1
o 90%¢
o ©0%0

N
T T

\ }
(35v8vLVa SN

SUBSTITUTE SHEET (RULE 26)

WO 98/02836

77720

MDATA USER PROCESS

— 487

START

PCT/US97/12025

IDENTIFY EMERGENCY
SITUATION AND PROVIDE
APPROPRIATE ADVICE

!

SECURELY IDENTIFY THE
USER /PATIENT

¢

PERFORM
ADMINISTRATIVE TASKS

'

ACCESS MDATA MEDICAL
DATABASES AND SYSTEM
FILES /SOF TWARE

:

CONDUCT AN
ON-LINE
INTERVIEW WITH
THE USER

492
END

FIG 7

SUBSTITUTE SHEET (RULE 26)

486

— 4585

490

WO 98/02836

490
AR\

7220
DIAGNOSTIC SCRIPT ENGINE PROCESS

492
{ START)

Y

494

SELECT APPROPRIATE DSQ SCRIPT BASED ON
INPUT PARAMETERS SUCH AS:
PATIENT'S CHIEF COMPLAINT— SYMPTOMS,
TIME SINCE SYMPTOMS STARTED,
PATIENT'S PAST MEDICAL HISTORY,

ANY PREVIOUS SCRIPT RESULTS,
CURRENT SCRIPT FAMILY RESULTS FROM
PRIOR TIME
(SCRIPT ROUTER)

! 496
RETRIEVE SELECTED SCRIPT
FROM SCRIPT DATABASE

Y 500
DSQ LIST SCRIPT ENGINE

* 502
POST PROCESS THE RESULTS

PCT/US97/12025

FIG o

S70

DISTRIBUTE

ADVICE

—504
RESULT
TYPE
506 2
-— REFER PATIENT TO ANOTHER SCRIPT |
.50 ’_\\
AN
- GENERATE MEDICAL DIAGNOSIS /ADVICE
57 e
- PERFORM SPECIAL META ANALYSIS
576
- STORE RESULTS IN PATIENT RECORDS
58—~
- FORWARD PATIENT TO THE MEDICAL
INFORMATION LIBRARY
520-
~| SCHEDULE A LATER CONTINUATION OF SCRIPT
520-
TN
- SCHEDULE A RE—ENTER SESSION
524
N REQUEST PATIENT TO HAVE TESTS
™| PERFORMED AND CONSULT SYSTEM AGAIN
526 —_
AN
FORWARD URGENT RESULTS TO HEALTHCARE
PROVIDER

SUBSTITUTE SHEET (RULE 26)

WO 98/02836

PCT/US97/12025

7320
DISTRIBUTE DIAGNOSIS /ADVICE

—~577 570
{ Vs

START
DISTRIBUTE
DIAGNOSIS

" /"“575

COLLATE RESULTS

] /—575

CHECH TREATMENT
TABLE

I

DETERMINE
RECIPIENT

‘ /’_\5/.9

REGULATORY
RATCHET

l

l Y l

PATIENT

MANAGED
PHYSICIAN CARE OTHER

774

ORGANIZATION
444/

44E 527 /

FIG. b

SUBSTITUTE SHEET (RULE 26)

WO 98/02836 PCT/US97/12025
7420
DSQ SCRIPT ENGINE PROCESS

—530
START , 500
8z

ACCESS THE SELECTED DSQ

LIST +FILE /[76: 9

554
INITIALIZE THE TEMP LISTS

SELECT THE FIRST QUESTION
FOR THE PATIENT

-
* 555

ASK THE QUESTION
i 540

INPUT AND PROCESS THE
PATIENT RESPONSE
* 542

UPDATE THE DSQ TEMP LISTS
BASED ON THE RESPONSE

SLE ~_

DIAGNQOSIS

OR TERMINUS

REACHED
?

YES

SELECT NEXT QUESTION

—547

RETURN DIAGNOSIS

'

/\54.5

= REFER TO DIFFERENT SCRIPT

~ 545

> ADJOURN CURRENT SCRIPT
o —5485

N i
' TERMINATE CURRENT SCRIPT RETURN

SUBSTITUTE SHEET (RULE 26)

RN

a—

PCT/US97/12025

WO 98/02836

| 3NIN3 Lamos 1smosd T T T TT TS

7520

|
|

|

| LSIT dn3L |

" WOLJWAS |

|

“ b\ ooe

| | LSIT "

9s5s . WOLJWAS |

| T 4ILSYA _

| A |

“ pri ol S R, Ry

_

| Py LS dW3L | 1SN 3Sv3sIA | |

_ ISV 3SIa HIALSYI |

| 1S 3sv3sia | /// “

| NI=a31NY #EE

_ ol LdI¥0S |

o0s

d31N0Y LdI¥OS

W%V\

SUBSTITUTE SHEET (RULE 26)

AYOLSIH SWOLJWAS
IVIIQ3IN LNIILVd /SLNIVIINOD
e — Q3SvE—3nIL ¥3sN
=

JAOWN FNIL—NNY /
#SZ o9 —

PCT/US97/12025

WO 98/02836
7620
580 DIAGNOSTIC LOOP /DSQ LIST SCRIFT ENGINE
START
<éAGN0$ﬂc LO&E) o
552 * BO4
INITIALIZE DISEASE TEMP LIST POST RESPONSE
FROM SCRIPT MASTER DISEASE PROCESSING TO UPDATE
LiST SYMPTOM TEMP LIST
606 *
BEL Y
— UPDATE SCORES IN
SET UP PATIENT DATA (FROM DISEASE TEMP LIST
CURRENT AND PREVIOUS BASED ON UPDATED
SESSIONS) SYMPTOM TEMP LIST AND
oo ELIMINATE DISEASES
. ‘ RULED~IN OR RULED—OUT
SELECT THE DISEASE TO BE A (FIG. 14)
CONSIDERED o8~ !
a5 LEAVE UPDATED DISEASE AND SYPTOM
Y TEMP LISTS FOR THE NEXT ITERATION
SELECT SYMPTOM TO BE
CONSIDERED (FIG. 12) 5
S80
IS
SELECTED “_vES
SYMPTON NULL S
? 672~
SELECT SYMPTOM
NO L4
592 - > WITH LARGEST
RN] ABSOLUTE WEIGHT i
SELECT THE QUESTION FLOW
TO BE PRESENTED DELETE CURRENT DISEASE FROM
— DISEASE TEMP LIST
594 —] N\
5 -
EXECUTE THE CURRENT r
FLOW NODE e
596 * NO DISEASE TEMP
LIST EMPTY
PRESENT THE QUESTION
TO THE USER
X * E7E
PROCESS RESPONSE CONDITION REFERENCE
FROM THE USER TYPE OF »
RESULT
(FIG. 13) Ny ' 1
600 CONDITION(S) REFERENCE TO
QUESTION OR RULED IN/OUT OTHER SCRIPT(S)/
PROGRAM SERVICES(S)

SYMPTOM

602
\

UPDATE SYMPTOM TEMP LIST

624
RETURN

BASED ON THE RESPONSE

FIG T7

SUBSTITUTE SHEET (RULE 26)

WO 98/02836

640
N

START
SELECT SYMPTOM

CLEAR SYMPTOM
TEMP LIST

544\ 1

ACCESS CURRENT

DISEASE IN SCRIPT

MASTER DISEASE
LIST

Py
-

546 |

IDENTIFY NEXT
SYMPTOM OF
CURRENT DISEASE

642

64E

HAS SYMPTOM'S
QUESTION FLOW
EXECUTED

ADD SYMPTOM TO
SYMPTOM TEMP
LIST

P
-

Y

652

MORE
SYMPTOMS FOR N\NO
CURRENT
DISEASE

7720

SELECT SYMPTOM

——5EE

y

EMPTY
?

—B5E
Y

DELETE CURRENT
DISEASE FROM

TEMP LIST

PCT/US97/12025

60
e

SORT SYMPTOM
TEMP LIST BY
WEIGHT

— 662

|/

DISEASE TEMP
LIST

SELECT SYMPTOM
WITH LARGEST
WEIGHT

6585

Y

RETURN
(NULL

SYMPTOM)

G T2

SUBSTITUTE SHEET (RULE 26)

"RETURN
(SELECTED
SYMPTOM)

WO 98/02836 PCT/US97/12025

7820
HANDLE RESPONSE 598
690
START
HANDLE RESPONSE
697 i
RN Y
CHECK VALIDITY OF
USER RESPONSE
696
EGHL— /
NO | REPEAT OUTPUT OF
RESPONSE QUESTION TEXT TO
USER
895~ 98
SYMPTOM NODE PROGRAM
TYPE
? 770
//’Z%7 704\\ QUESTION 1 //’
EXECUTE
SELE?JAangTOM CONVERT PROGRAM
RESPONSE INDICATED BY
AgagggxﬁI;Jgiﬁ TO PATH NODE AND GET
DIGIT RETURNED DIGIT
NODE
06
poran
! N l
APPEND APPEND RETURNED
PATH DIGIT
DIGIT TO
TO CURRENT CURRENT
FLOW NODE FLOW NODE
PATH NAME
PATH NAME
02 Tt I
Y + 708
RETURN RETURN
(UPDATE SYMPTOM (EXECUTE CURRENT
TEMP LIST) FLOW NODE)

SUBSTITUTE SHEET (RULE 26)

WO 98/02836 PCT/US97/12025
7920

730
START
UPDATE DISEASE LISTS UPDATE DISEASE LIST

3z
\ ,/— 606

ACCESS DISEASE TEMP LIST

734

736
MORE /

DISEASES IN
JEMP LIST

DISEASE CONTAIN
SYMPTOM JUST ANSWERED
OR ANY OF ITS POST
RESPONSE PROCESSES
SYMPTOMS

?
- YES 742
Y /“

ADD WEIGHT OF SYMPTOM OR
POST—RESPONSE PROCESSES
SYMPTOM TO DISEASE SCORE

T

MOR

Y
ES SYMPTOMS

DOES
SCORE REACH OR
PASS THE RULED-IN
THRESHOLD

REACH OR PASS
THE RULED-OUT
THRESHOLD

? 2
ADD DISEASE TO ADD DISEASE TO
RULED—IN DISEASE LIST RULE—-OUT DISEASE LIST
l et J
Y 750

DELETE DISEASE
FROM DISEASE
/:/G: /4 TEMP LIST

SUBSTITUTE SHEET (RULE 26)

WO 98/02836 PCT/US97/12025

BRANCH-BASED SCRIPT

780
////—752 ,///’_
START
BRANCH—BAASED SCRIPT

Y B4
OPEN MDS FILE
\ L EE
SET UP PATIENT DATA
(FROM CURRENT AND
PREVIOUS SESSIONS)
START AT A FIRST o8
QUESTION
, L N0, EXIT NODE
88— | 7 REACHED
PRESENT THE CURRENT '
QUESTION TO THE
USER
o0 v
TYPE OF
WAIT FOR VALID USER RESULT
RESPONSE
o2 | ! !
RECORD THE USER RETURN RETURN RETURN
RESPONSE DIAGNOSIS) (ADVICE) (REFERENCE)
i Y 504 5wu
GO TO THE NODE FOR]]

THE USER RESPONSSE

- -/

FIG. TS

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

