An electronically active sheet includes a bottom substrate having a bottom electrically conductive surface. A top substrate having a top electrically conductive surface is disposed facing the bottom electrically conductive surface. An electrical insulator separates the bottom electrically conductive surface from the top electrically conductive surface. At least one bare die electronic element is provided having a top conductive side and a bottom conductive side. Each bare die electronic element is disposed so that the top conductive side is in electrical communication with the top electrically conductive surface and so that the bottom conductive side is in electrical communication with the bottom electrically conductive surface.
A) patterning light source
B) chip supply hopper
C) adhesive applicator

can be multiple electrostatic drums (like color laser printer)

conductive ink conductive adhesive

electrostatic drum

take-up reel of completed light sheet

can be multiple electrostatic drums (like color laser printer)

bottom substrate

patterned charge source

4) top substrate is adhered in place (heated pressure rollers may be used)

1) conductive leads are printed
2) conductive adhesive is printed
3) chips are electrostatically transferred to conductive adhesive

Figure 1
Figure 2

Conductive adhesive

electrostatic drum

Can be multiple electrostatic drums (like color laser printer) or inkjet or other printers can be used for the various layers

top substrate

take-up reel of completed light sheet

Bottom substrate

Substrate

1) Conductive adhesive layer

Substrate

2) LED chip layer

Substrate

3) Insulator layer

Substrate

4) Top substrate is adhered in place
Figure 3

1) conductive adhesive layer

2) red LED chips patterned and adhered

3) green LED chips patterned and adhered

4) blue LED chips patterned and adhered

5) top substrate is adhered in place

Substrate

take-up reel of completed light sheet

top substrate

bottom substrate

patterned charge source

conductive
Figure 4

Substrate

ITO approx. 10 mil ITO

Conductive adhesive

Figure 5

PET

two color light sheet e.g., red and white light

Metal Foil

Figure 6

Substrate

Particulate additives

Substrate
Figure 7: ITO | Substrate | ITO

Figure 8: ITO | Substrate | ITO

Figure 9: ITO | Substrate | ITO

- **Figure 7**: Substrate with ITO and solid state electrolyte.
- **Figure 8**: Substrate with ITO and charge transport carrier.
- **Figure 9**: Substrate with ITO, solid state conductor adhesive, CTC, SSE, and insulator (polymer, etc.).
solid state conductor adhesive, CTC, SSE
RGB pattern
structure can include conductive adhesives, non-conductive adhesives, combinations

Figure 10

convex lens system

Figure 11

concave lens system

Figure 12
Figure 13

top substrate (e.g., ITO-coated PET)

deposited formation of LED chips

hotmelt mesh

bottom substrate (e.g., ITO-coated PET)

Figure 14

heat roller
cold hotmelt mesh
top substrate (e.g., ITO-coated PET)

LED chips

heat roller

melted mesh

bottom substrate (e.g., ITO-coated PET)

Figure 15

bottom substrate with chip dimples

Figure 16

adhesive chip dimple
substrate

Figure 17
- Top substrate (e.g., ITO-coated PET)
- Deposited formation of LED chips
- Adhesive droplets
- Bottom substrate (e.g., ITO-coated PET)

Figure 18
- Top substrate (aluminized mylar)
- Deposited formation of LED chips
- Conductive grid pattern (to reduce ITO resistance issues)
- Bottom substrate (e.g., ITO-coated PET)
Figure 20

magnetically attractive chip electrode

Figure 21

opto-magnetic coating

Figure 22

opto-electric coating

electrostatic charge source

magnetic field source
<table>
<thead>
<tr>
<th>top substrate</th>
<th>anode</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>emissive additives</td>
</tr>
<tr>
<td>bottom substrate</td>
<td>cathode</td>
</tr>
</tbody>
</table>

Figure 32

Figure 33
1) doctor blade the particle/matrix

Figure 34

2) apply top substrate

Figure 35

3) polymerize matrix

Figure 36
4) trim to remove edge effects

Figure 37

5) completed panel

Figure 38

Figure 39
Figure 40
1) cut out desired shape

Figure 41
2) mount on backing board

Figure 42
3) light it up

driving voltage

Stop & Shop

Figure 43
In a square cm, 400 chips are arranged in formation. Each chip's output is 10 mW/chip at 4 volts. The total output of the formation is 4 W/cmsq.
Figure 51

Figure 52

Continuous UV Light Device

direction of substrate motion

uncured UV-curable adhesive
continuous high intensity UV cure zone
cured UV-curable adhesive
Figure 53
substrate optical surface has geometry that focuses light emission

Figure 54
roll-to-roll flat thin LED chip/matrix light panel

Figure 55
focal point

Figure 56
flexible light panel curved into predetermined optical geometry
(held in a fixture - not shown)
Figure 57

curved continuous light sheet

primary optics

secondary optics
chips aligned, oriented and positioned in front of optics.

Curvature of substrate can be altered.

Emissive surface area, and thus output intensity, can be increased by changing the shape of the curved light panel.

Figures 58, 59, 60, and 61 are shown.
Table 1

<table>
<thead>
<tr>
<th>Top Substrate</th>
<th>Anode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Emissive Particulate</td>
</tr>
<tr>
<td></td>
<td>Additives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottom Substrate</th>
<th>Cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Substrate/Anode:</td>
<td>ITO coated polyester</td>
</tr>
<tr>
<td>Bottom Substrate/Cathode:</td>
<td>Aluminum foil adhered to mylar or metalized mylar with adhesive removed</td>
</tr>
<tr>
<td>Matrix:</td>
<td>PEO-based electrolyte*</td>
</tr>
<tr>
<td>Emissive Particulate:</td>
<td>Tynitek AlGaAs/AlGaAs Red Chip-TK 112UR</td>
</tr>
</tbody>
</table>

* Transparent, good conductivity, photopolymerizable

Figure 62

Figure 63

<table>
<thead>
<tr>
<th>Top Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO matrix</td>
</tr>
<tr>
<td>UV emissive particulate</td>
</tr>
<tr>
<td>Re-emitter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottom Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Substrate/Anode:</td>
</tr>
<tr>
<td>Anode Material:</td>
</tr>
<tr>
<td>Bottom Substrate/Cathode:</td>
</tr>
<tr>
<td>Matrix:</td>
</tr>
<tr>
<td>Emissive Particulate:</td>
</tr>
<tr>
<td>Additives:</td>
</tr>
</tbody>
</table>

* Fluroethylenepropylene: high UV transmission available from Adtech Polymer Engineering

**see, Low-Cost Deposition of Highly-Conductive Indium-Tin-Oxide Transparent Films by Chemical Process; Spray CVD and Dip Coating
Figure 64

<table>
<thead>
<tr>
<th>top substrate</th>
<th>anode</th>
<th>substrate coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>emissive particulate</td>
<td>additives</td>
</tr>
<tr>
<td>bottom substrate</td>
<td>cathode</td>
<td></td>
</tr>
</tbody>
</table>

top substrate/anode: ITO coated polyester
substrate coating: light diffuser/re-emitter (e.g., phosphors)
bottom substrate/cathode: examples, aluminum foil adhered to mylar or metalized mylar or silver coated PET

matrix: PEO-based solid polymer electrolyte (or new SPE that does is transmissive to UV)
emissive particulate: Cree C405-MB290-S0100 or other UV LED Chip additive: YAG (Yttrium Aluminum Garnet) phosphor

emissive particulate: red LED chips
 green LED chips
 blue LED chips

Figure 65

<table>
<thead>
<tr>
<th>top substrate</th>
<th>anode</th>
<th>YAG layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>blue and yellow</td>
<td>light diffusers</td>
</tr>
<tr>
<td>emissive particulate</td>
<td>cathode</td>
<td></td>
</tr>
<tr>
<td>bottom substrate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 66 Prior Art

Figure 67 Prior Art

Figure 68

Figure 69
Figure 76

Figure 77

Figure 78

Figure 79

Figure 80(a)

Figure 80(b)

Figure 80(c)
LED chips "as is" on stretch release substrate

release substrate stretched to separate the chips to desired spacing

Figure 81

Teflon release layer

Figure 82

hotmelt adhesive

Figure 83(a) embedded LED chips

Figure 83(b) hotmelt adhesive

Release Layer
Stretch Substrate
embedded LED chips
Figure 91

Transparent Substrate

ITO

insulative tape

conductive tape

Substrate

Figure 93

Transparent Substrate

conductive tape

insulative tape

Substrate

Figure 92

top substrate (e.g., ITO-coated PET)

LED chips

through-holes

insulative tape

bottom substrate

Figure 94

top substrate (e.g., PET)

conductive tape

LED chips

through-holes

insulative tape

bottom substrate
Figure 115

charge whiskers

Figure 116

charge whiskers

Figure 117

charge whiskers

Figure 118

adhesive transfer substrate
Fig. 122: Conductive pattern, conductive portion, conductive surface, embedded n-p-n semiconductor devices.

Fig. 123: Conductive pattern (x-grid), conductive portion, conductive surface (y-grid), embedded n-p-n semiconductor devices.

Fig. 124(a): Transparent substrate, transparent conductor, insulator, led die, power, resistor, ground, input.

Fig. 124(b): Transparent substrate, transparent conductor, insulator, led die, power, ground, resistor, input.

Fig. 124(c): Transparent substrate, transparent conductor, insulator, capacitor, led die, power, ground, resistor, input.
Figure 124(d)

Figure 125

Figure 126

Figure 127
Figure 128 (a)

Figure 128 (b)
ITO coated PET substrates
hotmelt sheet with embedded LED die

Figure 128 (c)

Figure 128 (d)
assembly passing through heat laminator

Figure 128 (e)
lights up yellow with one polarity

Figure 128 (f)
lights up red with other polarity
Single layer RGGB variable color light sheet for backlighting displays

[Diagram of voltage waveforms for blue/red and green AC driving voltages]

Figure 129(a)

silver ink electrode printed ITO pad

Figure 130

comb electrode pattern

[Diagram of RGGB LED elements and driving circuits]

Figure 131
front substrate insulator

ARTICULUX

front substrate printed text
Figure 139

Figure 140

Figure 141

Figure 142

Figure 143

Figure 144
as assembled x-y grid electrodes for notebook computer backlight

Figure 145

x grid electrodes for notebook computer backlight

Figure 146

y grid electrodes for notebook computer backlight

Figure 147
Figure 153

Transparent Substrate

Conductive line

Top emitting LED bare die

Conductive substrate

Index of refraction matching adhesive

Figure 152
Accommodating different chip heights

Figure 161
Separate strips of Red, Green and Blue

Figure 162
Same bottom substrate, different adhesive thickness

Figure 163
Thickness increasing material (solder bump, conductive adhesive, additional semiconductor substrate, etc)
Figure 164

Figure 165
substrate - Collector wiring line

TRANSISTOR BARE DIE collector electrode - base electrode - emitter electrode

Figure 168

hotmelt adhesive

emitter wiring line - substrate - base wiring line

Figure 169

substrate - collector wiring line - collector electrode - base electrode - emitter electrode - emitter wiring line
Figure 171 prior art

Top down view of conventional LED chip

Figure 172

Top down view of inventive LED chip

Figure 173

Transparent Substrate

- electron injection facilitating material
- LED bare die without gold electrode
- insulative hotmelt adhesive

Figure 174

Transparent Substrate

- conductive line
- Side emitter LED bare die
- insulative hotmelt adhesive
Figure 175

- Overlayer (lamination film)
- Wire
- Crimp connection

Figure 176

- Patterned Solar Cell
- Battery cathode material (patterned or transparent)
- Electrolyte
- Battery anode material
- Substrate

Figure 177

- Release substrate
- Top conductor
- LED bare die
- Insulative hotmelt adhesive
- Bottom conductor
- Top conductor
- LED bare die
- Insulative hotmelt adhesive
- Bottom conductor
Figure 178

connection header

wires

crimp-on terminal

LEDs

light strip

top substrate connection

Figure 179

bottom substrate connection

LEDs

light strip

over coating (e.g., silicone, lamination sheet or pouch, etc.)

Figure 180
Figure 186

bottom substrate strips (copper)

PSA/support substrate (PET)

LED die

through-holes

Figure 187

top substrate strips (PEN/ITO)

through-holes
12 Volt Device Structure

Figure 188

Figure 189

Figure 190
Figure 191

Figure 192

Figure 193

camouflaged housing can be translucent, opaque, include light guides, etc
Figure 203

Figure 204
Varying the polarity, on/off, and voltage of each buss (1-4) determines which chips (a-h) turn on and intensity.

```
1 2 3 4 = a c e h
1 2 3 4 = a d f h
1 2 3 4 = a c f h
1 2 3 4 = b c e g
1 2 3 4 = b d e g
1 2 3 4 = b d f g
1 2 3 4 = a d e h
1 2 3 4 = b c f g
1 2 3 4 = a f
1 2 3 4 = b c g
```

ETC...

Figure 223
displacement pin

vacuum chuck

LED release substrate

LED chips

hotmelt adhesive

bottom substrate

heating element

Figure 224

machine vision QA

hotmelt adhesive

bottom substrate

heating element (may not be needed)

Figure 225

chip embedder

non-stick

hotmelt adhesive

bottom substrate

heating element

Figure 226
Figure 227

Figure 228

Figure 229
registration hole
ITO/PET
silver ink pattern

Top Substrate

registration hole
hotmelt adhesive
LED die

Hotmelt with Pre-Embedded LED Die

registration hole
PET
silver ink pattern

Bottom Substrate

Figure 230

completed Lightstrip

Figure 231
Figure 232
Top Substrate

ITO/PET

silver ink pattern

registration hole

Light Active Strips

RED LED die
GREEN LED die
BLUE LED die

Hotmelt Shim Layer

Figure 233

Bottom Substrate

registration hole

PET

silver ink pattern
Figure 240

Figure 241

Figure 242
Top Substrate

Bare die

Electronically Active layer

Hotmelt adhesive patch

Bare Die Height Accomdating Patches

Bottom Substrate
SOLID STATE LIGHT SHEET AND ENCAPSULATED BARE DIE SEMICONDUCTOR CIRCUITS

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] The present invention pertains to bare die semiconductor roll-to-roll and batch manufacturing methods and devices. More particularly, the present invention pertains to an inorganic light emitting diode light sheet that can be used as a photo-illumination source for applications including, but not limited to, general illumination, architectural lighting, novelty lighting, display backlighting, heads-up displays, commercial and roadway signage, monochromatic and full-color static and video displays, a radiation-source for photo-curable materials, patterned light emissive images, scrolling displays, friend or foe identification, and the like. Further, the present invention pertains more particularly to an inorganic light active sheet that can be used as a light-to-energy device for converting photo-radiation to electrical energy for applications including, but not limited to, solar panels, CCD-type cameras, photo-sensors, and the like. Further, the present invention pertains more particularly, to methods for mass-producing the inventive light active sheet at relatively low cost.

[0003] Inorganic light emitting diodes (LED) are based on elements of the periodic table of a vast variety. They come out of semiconductor technology, and indeed, a semiconductor diode such as a silicon diode, or a germanium diode were among the first semiconductor devices. These were made by doping the silicon or the germanium with a small amount of impurity to make n-type (excess electrons) or p-type (excess holes) in the material. LEDs emit light because of the materials selected so that the light is emitted in the ultra-violet, visible, or infrared ranges of the spectrum. The types of materials used are made from vapor deposition of materials on semiconductor wafers and cut into dice (a single one is a die). Typically, the die, or LED dice, are about 12 mil sq. The composition of the dice depends on the color, for example some red dice are AlInGaAs and some blue dice are InGaN. The variations are typically “three-five” variations, so-called because they vary based on the third and fifth period of the periodic table to provide the n- and p-type materials.

[0004] The conversion of an LED die into an LED lamp is a costly process, involving very precise handling and placement of the tiny LED die. The LED dice are most simply prepared as 3 mm LED lamps. The die is robotically placed in a split cup with electrodes on each side. The entire structure is encased in a plastic lens that attempts to focus the beam more narrowly. High brightness dice may also be surface mounted with current-driving and voltage limiting circuits, and elaborate heat sink and heat removal schemes. Connection is by soldering or solderless ultrasonic wire bond methods. The result is a discrete point source of light. The LED lamp has a pair of leads, which can then be soldered to a printed circuit board. The cost of forming the lamp and then soldering the lamp to a printed circuit board is a relatively expensive process. Accordingly, there is a need to reduce the cost of forming a light emitting device based on the LED die.

[0005] As an example application of LED lamps, it has recently been shown that ultraviolet LED lamps can be used to cure photo-polymerizable organic materials (see, for example, Loctite® 7700 Hand Held LED Light Source, Henkel-Loctite Corporation, Rocky Hill, Conn.).

[0006] Photo-polymerizable organic materials are well known and are used for applications such as adhesives, binders and product manufacturing. Photo-polymerization occurs in monomer and polymer materials by the cross-linking of polymeric material. Typically, these materials are polymerized using radiation emitted from sources of light including intensity flood systems, high intensity wands, chambers, conveyors and unshielded light sources.

[0007] As an example use of photo-polymerizable organic materials, precision optical bonding and mounting of glass, plastics and fiber optics can be obtained with photo-polymerizable adhesives. These materials can be used for opto-mechanical assembly, fiber optic bonding and splicing, lens bonding and the attachment of ceramic, glass, quartz, metal and plastic components.

[0008] Among the drawbacks of the conventional systems that utilize photo-polymerizable organic materials is the requirement of a high intensity photo-radiation source. Typically, light sources, such as mercury vapor lamps, have been used to generate the radiation needed for photo-polymerization. However, these light sources are an inefficient radiation source because most of the energy put in to drive the lamp is wasted as heat. This heat must be removed from the system, increasing the overall bulk and cost. Also, the lamps have relatively short service life-times, typically around 1000 hours, and are very costly to replace. The light that is output from these light sources usually covers a much broader spectrum than the photo-radiation wavelengths that are needed for photo-polymerization. Much of the light output is wasted. Also, although the material can be formulated to be hardened at other wavelengths, the typical photo-polymerizable organic material is hardened at one of the peak output wavelengths of the mercury vapor lamp, to increase the polymerization efficiency. This peak output wavelength is in the UV region of the radiation spectrum. This UV radiation is harmful to humans, and additional shielding and protective precautions such as UV-filtering goggles are needed to protect the operators of such equipment.

[0009] FIG. 66 is a side view of an inorganic LED die available. A conventional inorganic LED die is available
from many manufacturers, typically has a relatively narrow radiation emission spectrum, is relatively energy efficient, has a long service life and is solid-state and durable. The die shown is an example of an AlGaAs/AlGaAs red die, obtained from Tyntek Corporation, Taiwan. These dice have dimensions roughly 12 mil x 12 mil x 8 mil, making them very small point light sources. As shown in FIG. 67, in a conventional LED lamp, this die is held in a metal cup so that one electrode of the die (e.g., the anode) is in contact with the base of the cup. The metal cup is part of an anode lead. The other electrode of the die (e.g., the cathode) has a very thin wire soldered or wire bonded to it, with the other end of the wire soldered or wire bonded to an anode lead. The cup, die, wire and portions of the anode and cathode leads are encased in a plastic lens with the anode and cathode leads protruding from the lens base. These leads are typically solder or wire bonded to a circuit board to selectively provide power to the die and cause it to emit light. It is very difficult to manufacture these conventional lamps due to the very small size of the die, and the need to solder or wire bond such a small wire to such a small die electrode.

Further, the plastic lens material is a poor heat conductor and the cup provides little heat sink capacity. As the die heats up its efficiency is reduced, limiting the service conditions, power efficiency and light output potential of the lamp. The bulkiness of the plastic lens material and the need to solder or wire bond the lamp leads to an electrical power source limits emissive source packing density and the potential output intensity per surface area.

[0010] There is a need for a photo-radiation source that is energy efficient, generates less heat, is low cost and that has a narrow, broad and/or variable spectrum of radiation emission wavelength and intensity. A typical LED consists of a sub-millimeter sized die of light emitting material that is electrically connected to an anode lead and a cathode lead. The die is encased within a plastic lens material. However, the processing that takes the LED dice and turns it into an LED lamp is tedious and sophisticated, mostly due to the very small size of the LED die. It is very difficult to solder or wire bond directly to the die, and so it is common practice to use LED lamps that are then solder or wire bonded onto a circuit board. Conventionally, LED lamps have been solder or wire bonded onto a circuit board in a formation to create a source of photo-radiation for photo-polymerizable organic materials.

[0011] This solution is far from optimum, since the relatively high cost of the LED lamps keeps the overall cost of the photo-radiation source high. There is a need for a photo-radiation source that can use the LED dice directly, without the need for the lamp construction or a direct solder or wire bonded connection between the anode and cathode of the die. Such a system would have an efficient die packing density, enabling a high-intensity photo-radiation source having a narrow emission band.

[0012] Wantanabe et al., published patent application US2004/0195576A1, teaches a device and method for forming a transparent electrode over the light-emitting portion of an LED die. This reference is concerned with overcoming the difficulty of forming an electrode accurately at the light output surface of a minute LED device (10 square microns).

A conventional LED is 300 square microns. The reference states that forming a transparent electrode on a semiconductor device so as not to shield emitted light is already known.

The crux of the Wantanabe invention is to form a transparent electrode directly and specifically over the light output face of a tiny LED device, or an array of such devices, instead of the conventional bonding or soldering of an opaque wire to connect the LED device to a power supply line or lead. To form the transparent electrode on such a small device, this reference teaches the use of semiconductor and/or printed circuit board techniques.

[0013] An example of the steps of forming the Wantanabe device consist of:

1) Providing a substrate
2) Forming p-side wiring on the substrate
3) Transferring a light emitting diode onto the substrate so the p side of the diode is connected to the wiring
4) Forming an insulation resin layer to cover the substrate, wiring and diode
5) Selectively removing the insulation resin to expose the n-side surfaces of the diode
6) Forming n-side wiring on the surface of the insulation resin
7) Forming a transparent electrode connecting the n-side of the diode to the n-side wiring

[0014] The steps for forming the transparent electrode are:

7a) Forming a resist film to cover the insulation resin and the exposed n-side surfaces
7b) Selectively removing the resist layer to form an opening portion defining the light output surface of the diode and the n-side wiring
7c) Applying an electrode paste to the opening portion and the resist film
7d) Removing the electrode paste from the resist film to leave electrode paste only where the opening portion is so that the light output surface of the diode and the n-side wiring are connected.

[0015] There are variations disclosed to the various steps and materials used, but in essence, the same cumbersome PCB-type processes are described in each of the examples. This reference shows that it is known to form a transparent electrode using PCB techniques on the light output surface of a diode to reduce the shielding of light emitted from the diode. But, replacing the conventionally-used opaque wire with a transparent electrode film is not new and is in the public domain (see, Lawrence et al, U.S. Pat. No. 4,495,514).

[0016] Oberman, U.S. Pat. No. 5,925,897, teaches using a diode powder between conductive contacts, forming a conductor/semi-conductive layer/conductor device structure. The diode powder consists of crystal particles 10-100 microns in size. The diode powder is formed by heating a mixture of In and Ga in a crucible and flowing nitrogen gas over the heated mixture. This powder now contains all n-type material. The powder is adhered to a glass plate that is coated with an appropriate contact metal. A p-type dopant is diffused into the powder crystals to form a p-region and the p-n diode configuration. A top substrate with a transparent conductive surface is placed on the powder and the entire structure thermally annealed to enhance the adhesion of the powder to
the upper contact. Oberman states that the conventional LED is typically fabricated by connecting electrical contacts to the p and n regions of individual dies, and enclosing the entire LED die in a plastic package. Oberman’s diode powder is specifically based on an observation that surfaces, interfaces and dislocations appear to not adversely affect the light emitting properties of III-V nitrides. This reference says that the state-of-the-art nitride LED is grown on a sapphire substrate, and since sapphire is non-conducting, both electrical contacts are made from the top of the structure.

[0017] Wickenden et al., U.S. Pat. No. 4,335,501, teaches a method for manufacturing a monolithic LED array. The individual LEDs are formed by cutting isolation channels through a slice of n-type material. The channels are cut in two steps, a first step is cutting a gap into the back of the slice of n-type material and then this gap is filled with glass. Then, in a second step the front of the slice is cut to complete the channel and the front cut is also filled with glass. Once the isolation channels have been formed, the tops of the remaining blocks of n-type material are doped to become p-type and the n-p junction of each LED formed. Beam leads are formed connecting the p-regions of the LEDs.

[0018] Nath et al., WO92/06144 and U.S. Pat. No. 5,273,608, teaches a method for laminating thin film photovoltaic devices with a protective sheet. The method provides the encapsulation of thin-film devices such as flexible solar cells within a top insulating substrate and a bottom insulating substrate. Nath’s description of the relevant prior art shows that encapsulating thin film devices between insulating sheets is not new. This reference teaches that the use of a heated roller is undesirable. Nath’s invention is to a specific method that heats a whole roll of composite material all at once to avoid the use of heated rollers. Nath teaches a new method for protecting and encapsulating thin film devices. Encapsulating thin film devices between insulating sheets is not new, but Nath teaches a specific method that avoids the use of heated rollers.

SUMMARY OF THE INVENTION

[0019] The present invention is intended to overcome the drawbacks of the prior art. It is an object of the present invention to provide methods for manufacturing solid-state light active devices. It is another object of the present invention to provide device structures for solid-state light active devices. It is yet another object of the present invention to provide a method of making a light sheet material. It is yet another object of the present invention to provide a method of manufacturing an encapsulated semiconductor circuit using a roll-to-roll fabrication process. It is yet another object of the present invention to provide a flat panel (e.g. LCD) display back light. It is yet another object of the present invention to provide a solid state general illumination source. It is yet another object of the present invention to provide a thin, flexible, durable, addressable display. It is yet another object of the present invention to provide a thin, flexible, durable, solid state bare die electronic circuit.

[0020] An electronically active sheet includes a bottom substrate having a bottom electrically conductive surface. A top substrate having a top electrically conductive surface is disposed facing the bottom electrically conductive surface. An electrical insulator separates the bottom electrically conductive surface from the top electrically conductive surface. At least one bare die electronic element is provided having a top conductive side and a bottom conductive side. Each bare die electronic element is disposed so that the top conductive side is in electrical communication with the top electrically conductive surface and so that the bottom conductive side is in electrical communication with the bottom electrically conductive surface.

[0021] The electrical insulator may comprise a hotmelt adhesive. Each bare die electronic element is embedded in the hot melt electrical insulator with the top conductive side and the bottom conductive side left uncovered by the electrical insulator. The electrical insulator binds the top substrate to the bottom substrate with the top conductive side of the bare die electronic element in electrical communication with the top electrically conductive pattern of the top substrate, and so that the bottom conductive side of the bare die electronic element is in electrical communication with the bottom conductive pattern of the bottom substrate. At least one electronic element may comprise a solid state semiconductor light emitting diode bare die.

[0022] The bare die electronic element can include a first conductor and a second conductor both disposed on either the top conductive side and the bottom conductive side, and wherein said bare die electronic element is disposed so that the first conductor and the second conductor are in electrical communication with respective wiring lines formed on either the top substrate and the bottom substrate.

[0023] The bare die electronic element may be plurality of individual bare die LED elements. The bottom electrically conductive surface and the top electrically conductive surface are formed as a respective x and y wiring grid for selectively addressing the individual bare die LED elements for forming a display.

[0024] A phosphor or other re-emitter can be provided in or on at least one of the top substrate and the bottom substrate (or adjacent thereto), or formed in the electrical insulator. The phosphor or other re-emitter is optically stimulated by a radiation emission of a first wavelength from the light active semiconductor element to emit light of a second wavelength. Alternatively, the phosphor can be disposed between the top and bottom conductive surfaces and electrically stimulated to emit light. In this construction electronic circuit elements, such as LED bare die, can be incorporated into a light sheet integrally formed with an electroluminescent (EL) phosphor light element.

[0025] In accordance with the present invention, a bare die semiconductor electronic circuit is provided comprising a first substrate having a bottom side surface having at least a first and a second conductive line. A second substrate is disposed adjacent to the first substrate. The second substrate has a top side surface having a third conductive line. At least one bare die semiconductor electronic circuit element having a first electrode and a second electrode disposed on an obverse side and a third electrode disposed on a reverse side is provided. An adhesive adheres the first substrate to the second substrate and binds the bare die semiconductor electronic circuit element to the first substrate and to the second substrate. The adhesive maintains the first electrode in electrical communication with the first conductive line, the second electrode in electrical communication with the second conductive line, and the third electrode in electri-
cal communication with the third conductive line. At least one of the first and the second substrate may be a flexible plastic sheet, such as PET, PEN, Kapton, polycarbonate, vinyl, and the like. At least one of the first, second and third wiring line can be formed from a printed conductive ink, such as through silk screen, inkjet, gravure, donor sheet, electrostatic or other printing methods. Alternatively, the conductive lines can be formed by etching. The adhesive may be at least one of a hot melt and thermosetting adhesive. Alternatively, the adhesive may be at least one of a thermally active adhesive, a catalyst active adhesive, a solvent evaporation active adhesive and a radiation active adhesive.

[0026] In accordance with the present invention, a first substrate is provided having bottom side surface having at least a first and a second conductive line. A bare die semiconductor electronic circuit element is provided having a first electrode and a second electrode disposed on an obverse side. An adhesive encapsulates and adheres the bare die semiconductor electronic circuit element to the first substrate so that the first electrode is in electrical communication with the first conductive line and the second electrode is in electrical communication with the second conductive line. A second substrate can be disposed adjacent to the first substrate and bound to the first substrate by the adhesive.

[0027] The second substrate can include a top side surface having a third conductive line. The bare die semiconductor electronic circuit element includes a third electrode disposed on its reverse side. The adhesive encapsulates and adheres the bare die semiconductor electronic circuit element to the second substrate so that said third electrode is in electrical communication with the third conductive line.

[0028] An electrically conductive through-hole can be disposed in either the first substrate and/or the second substrate for electrically connecting the bare die semiconductor electronic circuit element to a conductive element disposed on a top side surface of the first substrate and/or on a bottom side surface of the second substrate.

[0029] A second bare die semiconductor electronic circuit element can be provided having at least one electrode. The adhesive encapsulates and adheres the second bare die semiconductor electronic circuit element to the first substrate so that the electrode of the second bare die semiconductor electronic circuit element is in electrical communication with at least one of the first electrode and the second electrode through the respective first and second conductive line.

[0030] In accordance with another aspect of the invention, an ultra-thin electronically active sheet is provided. At least one bare die electronic element is embedded in an electrical insulator: The bare die electronic element has at least a first conductive feature and a second conductive feature left uncovered by the electrical insulator. A first conductive structure disposed on the electrical insulator is electrically connected to the first conductive feature. A second conductive structure disposed on the electrical insulator and electrically connected with the second conductive feature.

[0031] An active and passive radiation emitting device for identifying personnel, locations or goods includes a first substrate having a first conductive surface. A pattern of active radiation emitting semiconductor elements are in electrical communication with the conductive surface so that when the conductive surface is energized the radiation emitting semiconductor elements emit radiation of at least a first wavelength. A second substrate is provided and an adhesive encapsulates and adheres the bare radiation emitting semiconductor elements to the first substrate and securing the second substrate to the first substrate. At least one of a passive radiation reflecting surface and an active thermal radiation source are fixed to at least one the first substrate and the second substrate. The passive radiation reflecting surface reflects radiation from an external radiation source and the active thermal radiation source provides a detectable thermal or far IR emission.

[0032] A light emitting device includes a first bottom substrate having an electrically conductive surface. A second bottom substrate having an electrically conductive surface is provided adjacent to but electrically isolated from the first bottom substrate. A first bare die light emitting diode device having a top p junction conductor and a bottom n junction conductor is provided in electrical communication with the electrically conductive surface of the first bottom conductor. A second bare die light emitting diode device having a top n junction conductor and a bottom p junction conductor is provided in electrical communication with the electrically conductive surface of the second bottom conductor. The p/n junctions of the diodes may be reversed. A top substrate has a conductive surface in electrical communication with both the top p junction conductor of the first bare die light emitting diode device and the top n junction conductor of the second bare die light emitting diode device. The electrically conductive surface of the top substrate is effective for putting the first bare die light emitting diode device and the second bare die light emitting diode device into a series electrical connection.

[0033] The electrically conductive surface can be provided with a predetermined resistance value effective to create the equivalent of a ballast resistor within a desired resistance range in series with the first bare die light emitting diode device and the second bare die light emitting diode device. This equivalent ballast resistor enables the bare die light emitting diode devices to be driven at a desired current level for a given voltage applied to the first and the second bottom substrates. The equivalent ballast resistor can be adjusted, through the selection of materials or geometry, so that the first and the second bare die light emitting diode devices can be connected in series even if they do not have the same electrical characteristics.

[0034] Subsequent bottom substrates and top substrates can be provided so that multiple series devices are connected. Depending on the chosen materials, geometry and LED bare die chips, an AC driven variable intensity, variable color 110V (or 220V) source lighting device can be provided. Other voltages and wavelength emissions are also possible using this inventive construction.

[0035] A light emitting device, comprising a first bottom substrate having an electrically conductive surface. A second bottom substrate is provided having an electrically conductive surface. A first bare die light emitting diode device having a top p junction conductor and a bottom n junction conductor is provided. The bottom n junction conductor is in electrical communication with the electrically conductive surface of the first bottom conductor. A second bare die light
emitting diode device is provided having a top n junction conductor and a bottom p junction conductor. The bottom p junction conductor is in electrical communication with the electrically conductive surface of the second bottom conductor. A top substrate having a conductive surface is provided with the conductive surface in electrical communication with both the top p junction conductor of the first bare die light emitting diode device and the top n junction conductor of the second bare die light emitting diode device. The electrically conductive surface of the top substrate completes an electrical circuit with the first bare die light emitting diode device and the second bare die light emitting diode device in a series electrical connection. When a voltage of the correct polarity is applied to the first and the second bottom substrates, the light emitting diodes light up. When a voltage of opposite polarity is applied to the first and second bottom substrates, the series connected light emitting diode block electron flow. Other circuit elements can also be connected in parallel or series with the bare die light emitting diodes.

[0036] The electrically conductive surface of at least the first bottom substrate, the second bottom substrate and the top substrate has a predetermined resistance value effective to create a ballast resistor in series with the first bare die light emitting diode device and the second bare die light emitting diode device. In accordance with this aspect of the present invention, conventionally required discrete resistors are not needed. By selecting the proper materials, it is thus possible to create a light emitting device that can be connected to a predetermined voltage source, such as a 12 volt system of an automobile, truck or boat.

[0037] At least one subsequent bottom substrate can be provided having subsequent electrically conductive surface. Subsequent bare die light emitting diodes can be provided with opposite polarities in electrical communication with the subsequent electrically conductive surface. At least one subsequent top substrate having a subsequent top conductive surface in electrical communication with the subsequent bare die light emitting diodes is provided so that the subsequent bare die light emitting diodes are connected in series.

[0038] Opposite polarity bare die light emitting diode devices can be electrically connected in a respective opposite polarity to and along with the first bare die light emitting diode device and the second bare die light emitting diode device to form a light emitting device that emits light when driven with an AC voltage.

[0039] An adhesive adheres the top substrate to the first bottom substrate and to the second bottom substrate. The adhesive also encapsulating the first bare die light emitting diode device and the second bare die light emitting diode device. The adhesive adheres the first bare die light emitting diode device to the first bottom substrate and to the top substrate while maintaining the electrical communication between the top p junction conductor of the first bare die light emitting diode device to the conductive surface of the first bottom substrate. The adhesive also maintains the electrical communication between the bottom n junction conductor of the first bare die light emitting diode device to the conductive surface of the top substrate. The adhesive adheres the second bare die light emitting diode device to the second bottom substrate and to the top substrate while maintaining the electrical communication between the bottom p junction conductor of the second bare die light emitting diode device to the conductive surface of the second bottom substrate. The adhesive also maintaining the electrical communication between the top n junction conductor of the second bare die light emitting diode device to the conductive surface of the top substrate. The adhesive may comprise at least one of a thermally active adhesive, a catalytic active adhesive, a solvent evaporation active adhesive and a radiation active adhesive.

[0040] The first and the second bare die light emitting diode devices are embedded in the adhesive with respective top conductive side and the bottom conductive side left at least partially uncovered by the adhesive. This allows the adhesive to bind the first bottom substrate and the second bottom substrate to the top substrate with the first and the second bare die light emitting diode devices in electrical communication with the respective conductive surfaces.

[0041] A bare die semiconductor circuit includes a first substrate having an electrically conductive surface. A second substrate is provided having an electrically conductive surface. A first bare die semiconductor circuit element has a first conductor and a second conductor. The second conductor of the first bare die semiconductor circuit element is in electrical communication with the electrically conductive surface of the first substrate. A second bare die semiconductor circuit element has a first conductor and a second conductor. The second conductor of the second bare die semiconductor circuit element is in electrical communication with the electrically conductive surface of the second substrate. A series connecting substrate has a conductive surface. The conductive surface of the series connecting substrate is in electrical communication with both the first conductor of the first bare die semiconductor circuit element and the first conductor of the second bare die semiconductor circuit element. The electrically conductive surface of the series connecting substrate is effective for putting the first bare die semiconductor circuit element and the second bare die semiconductor circuit element into a series electrical connection.

[0042] The present invention pertains to a solid state light emitting device having series connected bare die light emitting diode devices for forming a higher voltage light emitting device. A first substrate is provided having an electrically conductive surface. A second substrate also has an electrically conductive surface. A first bare die light emitting diode device is provided having a first junction of a first polarity and a second junction of a second polarity. The second junction of the first bare die light emitting diode device is in electrical communication with the electrically conductive surface of the first substrate. A second bare die light emitting diode device is provided having a first junction of the second polarity and a second junction of the first polarity. The second junction of the second bare die light emitting diode device is in electrical communication with the electrically conductive surface of the second substrate. A series connecting substrate is provided having a conductive surface. The conductive surface of the series connecting substrate is in electrical communication with both the first junction of the first bare die light emitting diode device and the first junction of the second bare die light emitting diode device. The electrically conductive surface of the series connecting substrate being effective for putting the first bare
die light emitting diode device and the second bare die light emitting diode device into a series electrical connection.

[0043] The present invention pertains to a method of making a light active sheet. A bottom substrate having an electrically conductive surface is provided. A hotmelt adhesive sheet is provided. Light active semiconductor elements, such as LED dies, are embedded in the hotmelt adhesive sheet. The LED die each has a top electrode and a bottom electrode. A top transparent substrate is provided having a transparent conductive layer. The hotmelt adhesive sheet with the embedded LED die is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The lamination is run through a heated pressure roller system to melt the hotmelt adhesive sheet and electrically insulate and bind the top substrate to the bottom substrate. As the hotmelt sheet is softened, the LED die breakthrough so that the top electrode comes into electrical contact with the transparent conductive layer of the top substrate and the bottom electrode comes into electrical contact with the electrically conductive surface of the bottom substrate. Thus, the p and n sides of each LED die are automatically connected to the top conductive layer and the bottom conductive surface. Each LED die is encapsulated and secured between the substrates in the flexible, hotmelt adhesive sheet layer. The bottom substrate, the hotmelt adhesive (with the embedded LED die) and the top substrate can be provided as rolls of material. The rolls are brought together in a continuous roll fabrication process, resulting in a flexible sheet of lighting material.

[0044] This simple device architecture is readily adaptable to a high yield, low cost, roll-to-roll fabrication process. Applicants have proven the device architecture and method are effective by making many proof-of-concept prototypes. FIG. 119 shows photographs of working prototypes constructed in accordance with the inventive method for manufacturing an inorganic light sheet. FIG. 128(a) is a photograph showing a step of the proof-of-concept prototype construction, this photo shows an active layer sheet comprised of LED die embedded in a sheet of hotmelt adhesive, the LED die being red emitting and yellow emitting. FIG. 128(b) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the three constituent layers—active layer sheet (LED die embedded in a sheet of hotmelt adhesive), a top substrate (ITO coated PET) and a bottom substrate (ITO coated PET). FIG. 128(c) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the three constituent layers with the active layer between the substrates to form an assembly. FIG. 128(d) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the assembled lamination being passed through a heat laminator to activate the hotmelt sheet by melting between pressure rollers.

[0045] Applicants have discovered that as the hotmelt sheet is softened, the LED dice breakthrough the adhesive so that the top electrode comes into electrical contact with the transparent conductive layer of the top substrate and the bottom electrode comes into electrical contact with the electrically conductive surface of the bottom substrate. Thus, the p and n sides of each LED die are automatically connected to the top conductive layer and the bottom conductive surface. Each LED die is completely encapsulated within the hotmelt adhesive and the substrates. In addition, the LED dice are each permanently secured between the substrates in the flexible, hotmelt adhesive sheet layer. FIG. 128(e) is a photograph showing the just constructed proof-of-concept prototype being applied a voltage of a polarity and lighting up the yellow LED die. FIG. 128(f) is a photograph showing the just constructed proof-of-concept prototype being applied a voltage of the opposite polarity and lighting up the red LED die.

[0046] In accordance with an aspect of the present invention, a method of making a light active sheet is provided. A bottom substrate having an electrically conductive surface is provided. An electrically insulative adhesive is provided. Light active semiconductor elements, such as LED die, are fixed to the electrically insulative adhesive. The light active semiconductor elements each have an n-side and a p-side. A top transparent substrate is provided having a transparent conductive layer.

[0047] The electrically insulative adhesive having the light active semiconductor elements fixed thereon is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The electrically insulative adhesive is activated to electrically insulate and bind the top substrate to the bottom substrate. The device structure is thus formed so that either the n-side or the p-side of the light active semiconductor elements are in electrical communication with the transparent conductive layer of the top substrate, and so that the other of the n-side or the p-side of each the light active semiconductor elements are in electrical communication with the electrically conductive surface of the bottom substrate to form a light active device. In accordance with the present invention, p and n sides of each LED die are automatically connected and maintained to the respective top and bottom conductor, completely securing each LED die between the substrates in a flexible, hotmelt adhesive sheet layer.

[0048] The bottom substrate, the electrically insulative adhesive and the top substrate can be provided as respective rolls of material. This enables the bottom substrate, the electrically insulative adhesive (with the LED die embedded therein) and the top substrate together in a continuous roll fabrication process. It is noted that these three rolls are all that are necessary for forming the most basic working device structure in accordance with the present invention. This simple and uncomplicated structure is inherently adaptable to a high yield, continuous, roll-to-roll fabrication techniques that is not obtainable using prior art techniques.

[0049] In a preferred embodiment, the electrically insulative adhesive comprises a hotmelt material. The step of activating comprises applying heat and pressure to the lamination to soften the hotmelt material. At least one of the heat and pressure are provided by rollers. Alternatively, the adhesive may be composed so that activating it comprises at least one of solvent action (e.g., silicone adhesive), catalytic reaction (e.g., epoxy and hardener) and radiation curing (e.g., UV curable polymer adhesive).

[0050] The light active semiconductor elements can be light emitting diode die such as is readily commercially available from semiconductor foundries. The light active semiconductor elements may alternatively or additionally be light-to-energy devices, such as solar cell devices. To make white light, a first portion of the light active semiconductor elements emit a first wavelength of radiation and second
portion of the light active semiconductor elements emit a second wavelength of radiation. Alternatively, yellow light emitting LED die and blue light emitting LED die can be provided in proper proportions to create a desired white light appearance. Diffusers can be included within the adhesive, substrates or as a coating on the substrates and/or the adhesive to create a more uniform glowing surface.

[0051] The electronically insulative adhesive can be a hot-melt sheet material, such as that available from Bemis Associates, Shirley, Mass. The light active semiconductor elements can be pre-embedded into the hotmelt sheet before the step of inserting the adhesive sheet between the substrates. In this way, the hotmelt sheet can have the semiconductor devices embedded off-line so that multiple embedding lines can supply a roll-to-roll fabrication line. A predetermined pattern of the light active semiconductor elements can be formed embedded in the hotmelt sheet. The predetermined pattern can be formed by electrostatically attracting a plurality of light active semiconductor elements on a transfer member, similar to a laser printer electrostatic drum, and transferring the predetermined pattern onto the insulative adhesive.

[0052] The predetermined pattern of the light active semiconductor elements can be formed by magnetically attracting a plurality of light active semiconductor elements on a transfer member, such as an optomagnetically coated drum, and transferring the predetermined pattern onto the insulative adhesive. The predetermined pattern of the light active semiconductor elements can be formed using conventional pick and place machines. Or, an adhesive transfer method, described in detail herein, can be employed. In this case, the predetermined pattern is formed by transferring the semiconductor elements from a relatively lower tack adhesive to a relatively higher tack adhesive.

[0053] The transparent conductive layer can be formed by printing a transparent conductive material, such as ITO particles in a polymer binder, to form conductive light transmissive connecting lands. Each land is provided for connecting with a respective light active semiconductor. A relatively higher conducting line pattern can be formed on at least one of the top substrate and the bottom substrate for providing a relatively lower path of resistance from a power supply source to each light active semiconductor element.

[0054] The electrically conductive surface and the electrically conductive pattern may comprise a respective x and y wiring grid for selectively addressing individual light active semiconductor elements for forming a display.

[0055] Color light can be provided by including LED capable of emitting different wavelengths of light. For example, a red emitting LED combined with a yellow emitting LED when driven together and located near each other will be perceived by the human eye as generating an orange light. White light can be generated by combining yellow and blue LED dice, or red, green and blue dice. A phosphor can be provided in the lamination. The phosphor is optically stimulated by a radiation emission of a first wavelength (e.g., blue) from the light active semiconductor element (e.g., LED die) to emit light of a second wavelength (e.g., yellow).

[0056] In accordance with another aspect of the present invention, a method is provided for making an electronically active sheet. The electronically active sheet has a very thin and highly flexible form factor. It can be manufactured using the low cost, high yield continuous roll-to-roll fabrication method described herein. The electronically active sheet can be used for making a lighting device, a display, a light-to-energy device, a flexible electronic circuit, and many other electronic devices. The semiconductor elements can include resistors, transistors, diodes, and any other semiconductor element having a top and bottom electrode format. Other electronic elements can be provided in combination or separately and employed as components of the fabricated flexible electronic circuit. The inventive steps for forming the electronically active sheet include providing a bottom planar substrate having an electrically conductive surface.

[0057] An adhesive is provided and at least one semiconductor element is fixed to the adhesive. Each semiconductor element has a top conductor and a bottom conductor. A top substrate is provided having an electrically conductive pattern disposed thereon. The adhesive with semiconductor element fixed thereto is inserted between the electrically conductive surface and the electrically conductive pattern to form a lamination. The adhesive is activated to bind the top substrate to the bottom substrate so that one of top conductor and bottom conductor of semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive pattern of the top substrate and so that the other of the top conductor and the bottom conductor of each semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive surface of the bottom substrate to form an electrically active sheet. In accordance with another aspect of the present invention, a method is provided for making an encapsulated semiconductor device. A bottom substrate is provided having an electrically conductive surface. An adhesive layer is provided on the electrically conductive surface. A predetermined pattern of semiconductor elements are fixed to the adhesive. The semiconductor elements each having a top device conductor and a bottom device conductor. A top substrate having a conductive pattern disposed thereon. A lamination is formed comprising the bottom substrate, the adhesive layer (with the semiconductor elements) and the top substrate. The lamination is formed so that the adhesive electrically insulates and binds the top substrate to the bottom substrate. In so doing, one of the top device conductor and bottom device conductor of the semiconductor elements is in electrical communication with the conductive pattern of the top substrate and the other of the top device conductor and bottom device conductor of each semiconductor element is in electrical communication with the electrically conductive layer of the bottom substrate. In this manner, each semiconductor element is automatically connected to the top and bottom conductors that are preformed on the top and bottom substrates. There is no need for wirebonding, solder, lead wires, or other electrical connection elements or steps.

[0058] In accordance with another aspect of the present invention, at least one the semiconductor elements is provided with a middle conductor region between the top conductor and the bottom conductor. For example, the semiconductor can be an npn or pnp transistor. The adhesive comprises at least one electrically conductive portion for making an electrical connection with the middle conductor region.
The inventive light active sheet consists of a bottom substrate flexible sheet having an electrically conductive surface. A top transparent substrate flexible sheet has a transparent conductive layer disposed on it. An electrically insulative adhesive flexible sheet has light active semiconductor elements fixed to it. The light active semiconductor elements each have an n-side and a p-side. The electrically insulative adhesive sheet having the light active semiconductor elements fixed to it is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The adhesive sheet is activated so that the electrically insulative adhesive electrically insulates and binds the top substrate sheet to the bottom substrate sheet. When the adhesive sheet is activated, one of the n-side or the p-side of the light active semiconductor elements is automatically brought into electrical communication with the transparent conductive layer of the top substrate sheet. The other of the n-side or the p-side is automatically brought into electrical communication with the electrically conductive surface of the bottom substrate sheet to form a light active device.

Due to the automatic assembly nature of the inventive light sheet, the bottom substrate, the electrically insulative adhesive and the top substrate can be provided as respective rolls of material. The electrically insulative adhesive can have the semiconductor elements pre-embedded into it and re-rolled, or the embedding of the semiconductor elements can be performed in line during the fabrication process. The adhesive is inserted between the substrates by bringing the bottom substrate, the electrically insulative adhesive and the top substrate together in a continuous roll fabrication process.

The electrically insulative adhesive preferably comprises a hotmelt material activatable by applying heat and pressure to the lamination to soften the hotmelt material. Alternatively, or additionally, the adhesive may be activatable by at least one of solvent action, evaporation, catalytic reaction and radiation curing.

The light active semiconductor elements can be light emitting diode die, or other semiconductor and circuit elements, such as transistors, resistors, conductors, etc. They can be connected in an electronic circuit through the inventive hotmelt lamination method described herein. Further, the light active semiconductor elements can be light-to-energy devices, such as diodes effective for converting sunlight to electrical energy.

In the case of light emitting diodes, a first portion of the light active semiconductor elements can emit a first wavelength of radiation and a second portion of the light active semiconductor elements emit a second wavelength of radiation. With this construction, the light active sheet can be effective for generating multiple colors and white light.

The electrically insulative adhesive can comprise a hotmelt sheet material, and the light active semiconductor elements can be pre-embedded into the hotmelt sheet before forming the lamination. The light active semiconductor elements can be formed into a predetermined pattern. The predetermined pattern can be formed by electrostatically attracting a plurality of light active semiconductor elements on a transfer member and transferring the predetermined pattern onto the insulative adhesive. Alternatively, or additionally, the light active semiconductor elements can be formed into the predetermined pattern by magnetically attracting the plurality of light active semiconductor elements on a transfer member and transferring the predetermined pattern onto the insulative adhesive.

The transparent conductive layer may comprise a transparent conductive material formed as conductive light transmissive connecting lands, each land for connecting with a respective light active semiconductor. A relatively higher conducting line pattern can be formed on at least one of the top substrate and the bottom substrate for providing a relatively lower path of resistance from a power supply source to each light active semiconductor element.

The electrically conductive surface and the electrically conductive pattern can comprise a respective x and y wiring grid for selectively addressing individual light active semiconductor elements for forming a display.

A phosphor can be provided in the lamination. The phosphor is optically stimulated by a radiation emission of a first wavelength from the light active semiconductor element to emit light of a second wavelength. With this construction, white light can be generated using a blue emitting LED and yellow emitting phosphors.

In accordance with another aspect of the present invention, an electronically active sheet comprises a bottom planar substrate having an electrically conductive surface. A top substrate having an electrically conductive pattern disposed thereon is also included. At least one semiconductor element having a top conductor and a bottom conductor is embedded in an adhesive sheet. The adhesive sheet is disposed between the electrically conductive surface and the electrically conductive pattern to form a lamination. The adhesive is activatable to bind the top substrate to the bottom substrate so that either the top conductor or the bottom conductor of the semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive pattern of the top substrate. The other of the top conductor and the bottom conductor of each semiconductor element is also automatically brought into and maintained in electrical communication with the electrically conductive surface of the bottom substrate to form an electronically active sheet.

With this construction, an electronically active sheet is formable using a high yield roll-to-roll fabrication method. In this case, the bottom substrate, the adhesive and the top substrate are all provided as respective rolls of material. The bottom substrate, the adhesive and the top substrate are brought together in a continuous roll fabrication process. The adhesive may comprise a hotmelt sheet material activatable by applying heat and pressure to the lamination to soften the hotmelt material. Alternatively, the adhesive may be activatable by at least one of solvent action, evaporation, catalytic reaction and radiation curing of the adhesive. In any case, the adhesive can be provided as a sheet, and have the semiconductor elements pre-embedded into the sheet in a predetermined pattern before forming the lamination. Or, the adhesive can be printed, coated, or otherwise applied onto one of the substrates, and then the semiconductor elements disposed thereon.

The predetermined pattern of the semiconductor elements can be formed by electrostatically attracting a plurality of the semiconductor elements on a transfer mem-
ber and transferring the predetermined pattern onto the adhesive. The predetermined pattern of the semiconductor elements can be formed by magnetically attracting a plurality of the semiconductor elements on a transfer member and transferring the predetermined pattern onto the adhesive. The predetermined pattern of the semiconductor elements can be formed using a pick and place device.

[0071] In accordance with another aspect of the invention, an encapsulated semiconductor device includes a bottom substrate having an electrically conductive surface. A top substrate has an electrically conductive pattern disposed thereon, the conductive pattern can be formed by coating, sputtering, printing, photolithography or other pattern forming method. A predetermined pattern of semiconductor elements, each semiconductor element having a top device conductor and a bottom device conductor is fixed to an adhesive. The adhesive is disposed between the electrically conductive surface and the electrically conductive pattern to form a lamination. The adhesive is activated to bind the top substrate to the bottom substrate so that either the top conductor or the bottom conductor of each semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive pattern of the top substrate. Also, the other of the top conductor or the bottom conductor of each semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive surface of the bottom substrate to form an electronically active sheet.

[0072] In accordance with the present invention, the semiconductor elements includes a middle conductor region between the top conductor and the bottom conductor, for example, an n-p-n transistor element. The adhesive can comprise at least one electrically conductive portion for making an electrical connection with the middle conductor region.

[0073] The bottom substrate, the adhesive and the top substrate can be provided as respective rolls of material and the lamination formed by bringing the bottom substrate, the electrically insulative adhesive and the top substrate together in a continuous roll fabrication process.

[0074] The adhesive can be a hotmelt sheet material activatable by applying heat and pressure to the lamination to soften the hotmelt material. The pattern of semiconductor elements can be pre-embedded into the hotmelt sheet before forming the lamination. The predetermined pattern of the semiconductor elements can be formed by electrostatically attracting a plurality of semiconductor elements on a transfer member and transferring the predetermined pattern onto the adhesive. The predetermined pattern of the semiconductor elements can be formed by magnetically attracting the plurality of semiconductor elements on a transfer member and transferring the predetermined pattern onto the adhesive. The predetermined pattern of the semiconductor elements can be formed using a pick and place device. The predetermined pattern of the semiconductor elements can also be formed by transferring the semiconductor elements from a relatively lower tack adhesive to a relatively higher tack adhesive.

[0075] In accordance with the present invention, substrate sheets are provided with a precoated transparent conductor film. The p and n sides of each LED die are automatically connected to the respective top and bottom conductor, completely securing each LED die between the substrates in a flexible, hotmelt adhesive sheet layer. There are no resist films to form, pattern and etch away. The transparent electrode is not necessarily formed only on each emissive device using elaborate semiconductor patterning and etching techniques.

[0076] In accordance with the present invention, LED die cut from a semiconductor wafer are utilized as light sources. The die are typically 300 microns square by 200 microns high. The inventive device includes conventional LED die between sheets of conductive substrates.

[0077] In accordance with the present invention, a conductor/ emissive layer/conductor device structure has an emissive layer made from an array of commercially available conventional LED die. A thin sheet of light is formed using a continuous roll-to-roll manufacturing method, and using conventional LED die that are commercially available from many sources.

[0078] In accordance with the inventive system, an unexpected result is obtained wherein an LED die array can be pre-embedded into a hotmelt sheet adhesive layer, forming the active layer of the device. This active layer is disposed between top and bottom sheet substrates. When the hotmelt is heated, the entire structure fuses together, locking in the LED die between the substrates. There is solid and flexible adhesive completely surrounding and securing each die, except at the contact surfaces with the planar electrode, and permanently securing the top substrate to the bottom substrate.

[0079] Apparently the hotmelt material does not wet the surface of the LED die and so when the hotmelt material is melted, the p surface and the n surface of the die become exposed and make electrical contact with the conductive surfaces of the top and bottom substrates. When the hotmelt adhesive cools and hardens, the intimate electrical contact between the LED die and the conductive surfaces is secured, making an extremely thin, easily formed, extremely robust and highly flexible light sheet device.

[0080] The resulting device structure is easily manufactured in a continuous roll-to-roll process, there are no resist layers to form, pattern and remove, there is no doping in-place of the emissive elements, there are no alignment issues for making contact with the p and n surfaces of the die. In the inventive system, these p and n surfaces automatically make contact with the respective conductive surfaces when the hotmelt is in its plastic or softened state and the lamination is placed between pressure rollers. Then, when the hotmelt hardens, the entire structure is fused into one coherent laminated composite sheet, with each die securely locked in electrical contact with the planar conductors of the top and bottom substrates. The entire device consists of just three sheet layers (the two substrates and the hotmelt/dice active layer) that can each be prepared off-line and put into rolls.

[0081] The present invention is provided for making sheets of inorganic LED lighting material. Substrate sheets may be utilized with precoated conductive films, or the conductive films can be printed and patterned directly onto the substrates. One film is a transparent conductor. The conductive films provide each of a plurality of LED die with
a direct, face-to-face electrical connection, device-protecting resistance, and an optically transparent window for emitting light. In accordance with the present invention, when a hotmelt sheet melts under the pressure of a heated pressure roller, the LED die are squeezed between the substrate sheets and the top and/or bottom face of each die breaks through the hotmelt adhesive sheet and comes in face-to-face contact with the precoated conductive films. This enables each die to be automatically connected to the top and bottom conductor.

[0082] In accordance with another aspect of the invention, a method is provided for forming a sheet of light active material. A first substrate is provided having a transparent first conductive layer. A pattern of light active semiconductor elements are formed. The light active semiconductor elements have an n-side and a p-side. Each light active semiconductor element has either of the n-side or the p-side in electrical communication with the transparent conductive layer. A second substrate having a second conductive layer is provided. The second substrate is secured to the first substrate so that the other of the n-side or the p-side of each light active semiconductor element in electrical communication with the second conductive layer. Thus, a solid-state sheet of light active material is formed.

[0083] The transparent first conductive layer may comprise a transparent coating preformed on the first substrate. The transparent coating can be applied as a conductive ink or conductive adhesive.

[0084] The pattern of light active semiconductor elements can be formed by electrostatically attracting the light active semiconductor elements to a transfer member. Then, transferring the attracted light active semiconductor elements from the transfer member to the first substrate. The transfer member may include an opto-electric coating effective for holding a patterned electrostatic charge. The patterned electrostatic charge is effective for electrostatically attracting the light active semiconductor elements and forming the pattern of light active semiconductor elements. The optical patterning of the opto-electric coating can be done, for example, using a scanned laser beam and an LED light source, similar to the process used by laser or LED printers. Thus, the transfer member may comprise a drum.

[0085] An adhesive pattern can be formed on the first substrate for adhering the pattern of light active semiconductor elements to the first substrate. Alternatively, or additionally, an adhesive pattern can also be formed on the first substrate for adhering the second substrate to the first substrate.

[0086] A pattern of light active semiconductor elements can be formed by forming a first pattern of light active semiconductor elements and forming a second pattern of light active semiconductor elements. The first light active semiconductor elements emit light having a first color and the second light active semiconductor elements emit light having a second color. Alternatively, the first light active semiconductor elements emit light and the second light active semiconductor elements convert light to electrical energy.

[0087] The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer formed as a grid of y-electrodes, so that each respective light active semiconductor element is addressable for forming a sheet of light active material capable of functioning as a pixelated display component.

[0088] The pattern of light active semiconductor elements can be formed by forming a first pattern of first color light emitting semiconductor elements, forming a second pattern of second color light emitting semiconductor elements and forming a third pattern of third color light emitting semiconductor element. The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer formed as a grid of y-electrodes, so that each respective light active semiconductor is addressable for forming a sheet of light active material capable of functioning as a full-color pixelated display component.

[0089] In accordance with another aspect of the invention, a method is provided for forming a light-emitting device. A first substrate is provided. A first conductive surface is formed on the first substrate. A pattern of LED dice is formed on the conductive pattern. Each LED die has an anode and a cathode side. A second substrate is provided. A second conductive surface is formed on the second substrate. The first substrate is fixed to the second substrate so that either of the anode and the cathode side of the LED die is in electrical communication with the first conductive surface, and the other of the anode and the cathode side of the LED die is in electrical communication with the second conductive surface.

[0090] The first conductive surface may be formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink and a conductive adhesive. At least one of the first and the second conductive surface is a transparent conductor. At least one of the first and the second conductive surface is preformed on the respective first and second substrate. The first conductive surface can be formed using a printing method. The printing method may comprise at least one of an inkjet printing method, a laser printing method, a silk-screen printing method, a gravure printing method and a donor transfer sheet printing method.

[0091] An adhesive layer may be formed between the top substrate and the bottom substrate. The adhesive layer may comprise at least one of a conductive adhesive, a semiconductor adhesive, an insulative adhesive, a conductive polymer, a semi-conductive polymer, and an insulative polymer. A function-enhancing layer can be formed between the top substrate layer and the bottom substrate layer. The function-enhancing layer includes at least one of a re-emitter, a light-scatterer, an adhesive, and a conductor.

[0092] The pattern of LED dice can be formed by electrostatically attracting the LED dice to a transfer member, and then transferring the attracted LED dice from the transfer member to the first conductive surface. The transfer member may include an opto-electric coating effective for holding a patterned electrostatic charge, the patterned electrostatic charge being effective for electrostatically attracting and forming the pattern of LED dice. The opto-electric coating can be patterned using at least one of a scanned laser beam and an LED light source. The transfer member may be a drum, a flat planar member, or other shape.

[0093] In accordance with another aspect of the invention, a method is provided for forming a light-to-energy device. A first substrate is provided. A first conductive surface is
formed on the first substrate. A pattern of semiconductor elements is formed on the conductive pattern. Each semiconductor element comprises a charge donor side and a charge acceptor side. A second substrate is provided. A second conductive surface is formed on the second substrate. The first substrate is fixed to the second substrate so that either of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the first conductive surface and the other of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the second conductive surface.

[0094] The first conductive surface is formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink and a conductive adhesive. At least one of the first and the second conductive surface is a transparent conductor. At least one of the first and the second conductive surface is preformed on the respective first and second substrate. The first conductive surface may be formed using a printing method. The printing method may comprise at least one of an inkjet printing method, a laser printing method, a silk-screen printing method, a gravure printing method and a donor transfer sheet printing method.

[0095] An adhesive layer can be formed between the top substrate and the bottom substrate. The adhesive layer may comprise at least one of a conductive adhesive, a semiconductor adhesive, an insulative adhesive, a conductive polymer, a semi-conductive polymer, and an insulative polymer. A function-enhancing layer can be formed between the top substrate layer and the bottom substrate layer, wherein the function-enhancing layer includes at least one of a re-emitter, a light-scatterer, an adhesive, and a conductor.

[0096] The pattern of LED dice can be formed by electrostatically attracting the LED dice to a transfer member, and then transferring the attracted LED dice from the transfer member to the first conductive surface. The transfer member may include an opto-electric coating effective for holding a patterned electrostatic charge, the patterned electrostatic charge being effective for electrostatically attracting and forming the pattern of LED dice. The opto-electric coating can be patterned using at least one of a scanned laser beam and an LED light source. The transfer member may be shaped as a drum, a flat planar member, or other shape.

[0097] In accordance with another aspect of the invention, device structures are provided for sheets of light active material. A first substrate has a transparent first conductive layer. A pattern of light active semiconductor elements fixed to the first substrate. The light active semiconductor elements have an n-side and a p-side. Each light active semiconductor element has either of the n-side or the p-side in electrical communication with the transparent conductive layer. A second substrate has a second conductive layer. An adhesive secures the second substrate to the first substrate so that the other of the n-side or the p-side of each light active semiconductor element is in electrical communication with the second conductive layer. Thus, a solid-state light active device is formed.

[0098] The transparent first conductive layer may comprise a transparent coating preformed on the first substrate. The transparent coating can be a conductive ink or conductive adhesive. An adhesive pattern may be formed on the first substrate for adhering the pattern of light active semi-conductor elements to the first substrate. Alternatively, or additionally, an adhesive pattern may be formed on the first substrate for adhering the second substrate to the first substrate.

[0099] The pattern of light active semiconductor elements may comprise a first pattern of light active semiconductor elements and a second pattern of light active semiconductor elements. The first light active semiconductor elements may emit light having a first color and the second light active semiconductor elements emit light having a second color. Alternatively, the first light active semiconductor elements may emit light and the second light active semiconductor elements convert light to electrical energy.

[0100] The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer formed as a grid of y-electrodes. Each respective light active semiconductor element is disposed at the respective intersections of the x and y grid and are thus addressable for forming a sheet of light active material capable of functioning as a pixelated display component.

[0101] The pattern of light active semiconductor elements may comprise a first pattern of first color light emitting semiconductor elements, a second pattern of second color light emitting semiconductor elements and a third pattern of third color light emitting semiconductor element. The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer being formed as a grid of y-electrodes. The respective first, second and third color light emitting elements may be disposed at the intersections of the x and y grid so that each respective light active semiconductor is addressable. Thus, a sheet of light active material is formed capable of functioning as a full-color pixelated display component.

[0102] In accordance with another aspect of the invention, a light-emitting device comprises a first substrate. A first conductive surface is formed on the first substrate. A pattern of LED dice is formed on the conductive pattern. Each LED die has an anode and a cathode side. A second substrate has a second conductive surface formed on it. An adhesive fixes the first substrate to the second substrate so that either of the anode and the cathode side of the LED die is in electrical communication with the first conductive surface, and the other of the anode and the cathode side of the LED die is in electrical communication with the second conductive surface.

[0103] The first conductive surface can be formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink and a conductive adhesive. At least one of the first and the second conductive surface is a transparent conductor. At least one of the first and the second conductive surface can be preformed on the respective first and second substrate. The first conductive surface can be formed using a printing method. The printing method may comprise at least one of an inkjet printing method, a laser printing method, a silk-screen printing method, a gravure printing method and a donor transfer sheet printing method.

[0104] The adhesive layer is provided between the top substrate and the bottom substrate. The adhesive layer can comprise at least one of a conductive adhesive, a semiconductor adhesive, an insulative adhesive, a conductive
polymer, a semi-conductive polymer, and an insulative polymer. A function-enhancing layer can be formed between the top substrate layer and the bottom substrate layer. The function-enhancing layer may include at least one of a re-emitter, a light-scatterer, an adhesive, and a conductor.

[0105] In accordance with another aspect of the invention, a light-to-energy device comprises a first substrate. A first conductive surface is formed on the first substrate. A pattern of semiconductor elements is formed on the conductive pattern. Each semiconductor element includes a charge donor layer side and a charge acceptor side. A second substrate is provided having a second conductive surface formed on it. An adhesive fixes the first substrate to the second substrate so that either of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the first conductive surface, and the other of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the second conductive surface.

[0106] The first conductive surface may be formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink and a conductive adhesive. At least one of the first and the second conductive surface is a transparent conductor. At least one of the first and the second conductive surface may be preformed on the respective first and second substrate. The adhesive may comprise at least one of the top substrate and the bottom substrate. The adhesive layer may comprise at least one of a conductive adhesive, a semi-conductive adhesive, an insulative adhesive, a conductive polymer, a semi-conductive polymer, and an insulative polymer.

[0107] In accordance with another aspect of the present invention, the photo-radiation source includes a first electrode with a second electrode disposed adjacent to the first electrode, and defining a gap therebetween. A photo-radiation emission layer is disposed in the gap. The photo-radiation emission layer includes a charge-transport matrix material and an emissive particulate dispersed within the charge-transport matrix material. The emissive particulate receives electrical energy through the charge-transport matrix material applied as a voltage to the first electrode and the second electrode photo-radiation. The emissive particulate generates photo-radiation in response to the applied voltage. This photo-radiation is effective for the selective polymerization of photo-radiation curable organic material.

[0108] The charge-transport matrix material may be an ionic transport material, such as a fluid electrolyte or a solid electrolyte, including a solid polymer electrolyte (SPE). The solid polymer electrolyte may be a polymer electrolyte including at least one of a polyethylene glycol, a polyethylene oxide, and a polymer sulfide. Alternatively or additionally, the charge-transport matrix material may be an intrinsically conductive polymer. The intrinsically conductive polymer may include aromatic repeat units in a polymer backbone. The intrinsically conductive polymer may be, for example, a polythiophene.

[0109] In accordance with another aspect of the present invention, a photo-radiation source is provided for the selective polymerization of photo-radiation curable organic material. A plurality of light emitting diode dice generate a photo-radiation spectrum effective for the selective polymerization of photo-radiation curable organic material. Each die has an anode and a cathode. A first electrode is in contact with each anode of the respective light emitting diode dice. A second electrode is in contact with each cathode of the respective light emitting diode dice. At least one of the first electrode and the second electrode comprises a transparent conductor. The plurality of dice are permanently fixed in a formation by being squeezed between the first electrode and the second electrode without the use of solder or wire bonding. The plurality of dice are permanently fixed in a formation by being adhered to at least one of the first electrode and the second electrode using a conductive adhesive, for example, the conductive adhesive can be a metallic/polymeric paste, an intrinsically conductive polymer, or other suitable material. The intrinsically conductive polymer may comprise a benzene derivative. The intrinsically conductive polymer may comprise a polythiophene. In accordance with this embodiment of the invention, the ultra-high die packing density is obtained without the need for solder or wire bonding each individual die.

[0110] In accordance with the present invention, a method of making a photo-radiation source is provided. A first planar conductor is provided and a formation of light emitting dice is formed on the first planar conductor. Each die has a cathode and an anode. One of the cathode and anode of each die is in contact with the first planar conductor. A second planar conductor is disposed on top of the formation of light emitting dice, so that the second planar conductor is in contact with the other of the cathode and anode of each die. The first planar conductor is bound to the second planar conductor to permanently maintain the formation of light emitting dice. In accordance with the present invention, the formation is maintained, and the electrical contact with the conductors is obtained, without the use of solder or wire bonding for making an electrical and mechanical contact between the dice and either of the first planar conductor and the second planar conductor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0111] FIG. 1 illustrates the inventive method for manufacturing a patterned light active sheet;

[0112] FIG. 2 illustrates another inventive method for manufacturing a light active sheet;

[0113] FIG. 3 illustrates another inventive method for manufacturing a light active sheet having two or more different types of light active semiconductor elements;

[0114] FIG. 4 is a cross-sectional view of an inventive light active sheet having a conductive adhesive for fixing the substrates and/or the light active semiconductor elements in place;

[0115] FIG. 5 is a cross-sectional view of an inventive light active sheet having two different types of light active semiconductor elements oriented to be driven with opposite polarity electrical energy;

[0116] FIG. 6 is a cross-sectional view of an inventive light active sheet having additives included between the substrates to improve the desired light active sheet properties;

[0117] FIG. 7 is a cross-sectional view of an inventive light active sheet having the light active semiconductor elements disposed within a solid-state electrolyte;
FIG. 8 is a cross-section view of an inventive light active sheet having the light active semiconductor elements disposed within a solid-state charge transport carrier;

FIG. 9 is a cross-section view of an inventive light active sheet having an insulator material disposed between the top and bottom substrates;

FIG. 10 is a cross-sectional view of the inventive light active sheet having an RGB semiconductor element pattern for forming a full-color light emissive display;

FIG. 11 is a cross-sectional view of the inventive light active sheet having a transparent substrate with a convex lens system;

FIG. 12 is a cross-sectional view of the inventive light active sheet having a transparent substrate with a concave lens system;

FIG. 13 is an exploded view of the inventive light active sheet having a melt adhesive mesh;

FIG. 14 is a schematic view of a method of manufacturing a light active sheet utilizing the melt adhesive mesh;

FIG. 15 is an exploded view of the inventive light active sheet comprising a substrate having position-facilitating die dimples;

FIG. 16 is a cross-sectional view of the inventive light active sheet showing the position-facilitating die dimples;

FIG. 17 is an exploded view of the light active sheet having adhesive droplets for fixing the semiconductor elements (dice) to the substrate and/or for adhering the top substrate to the bottom substrate;

FIG. 18 is an exploded view of the light active sheet having an electrical resistance-reducing conductive grid pattern;

FIG. 19 is a schematic view of an inventive method of manufacturing a light active sheet wherein a hole-and-sprocket system is employed to ensure registration of the constituent parts of the inventive light sheet during the manufacturing process;

FIG. 20 is an isolated view of an inventive semiconductor element (e.g., LED die) having a magnetically-attractive element to facilitate die orientation and transfer;

FIG. 21 illustrates the use of a magnetic drum and electrostatic charge source for orienting and transferring a pattern of semiconductor elements onto a substrate;

FIG. 22 illustrates the use of an electrostatic drum and magnetic attraction source for orienting and transferring a pattern of semiconductor elements onto a substrate;

FIG. 23 illustrates an inventive light active sheet thermoformed into a three-dimensional article;

FIG. 24(a) illustrates an inventive light active sheet fabricated into a lampshade form-factor having a voltage conditioner for conditioning available electrical current;

FIG. 24(b) illustrates an inventive light active sheet fabricated into a light-bulb form-factor having a voltage conditioner for conditioning available electrical current;

FIG. 25 is a cross-sectional view of an inventive light sheet employed in the light bulb form factor shown in FIG. 24;

FIG. 26(a) illustrates an inventive light sheet configured as a heads-up-display (HUD) installed as an element of a vehicle windshield;

FIG. 26(b) is a block diagram showing a driving circuit for an inventive HUD with a collision avoidance system;

FIG. 27 is an exploded view of an inventive light sheet utilized as a thin, bright, flexible, energy efficient backlight component for an LCD display system;

FIG. 28 schematically illustrates an embodiment of the inventive photo-radiation source showing a semiconductor particulate randomly dispersed within a conductive carrier matrix;

FIG. 29 illustrates an embodiment of the inventive photo-radiation source showing the semiconductor particulate aligned between electrodes;

FIG. 30 illustrates an embodiment of the inventive photo-radiation source showing semiconductor particulate and other performance enhancing particulate randomly dispersed within the conductive carrier matrix material;

FIG. 31 illustrates an embodiment of the inventive photo-radiation source showing different species of organic light active particulate dispersed within a carrier matrix material;

FIG. 32 schematically illustrates the cross-section of an embodiment of the inventive photo-radiation source;

FIG. 33 illustrates a step in an embodiment of the inventive method of making a photo-radiation source, showing the step of the addition of an emissive particulate/matrix mixture onto a bottom substrate with bottom electrode;

FIG. 34 illustrates a step in the inventive method of making a photo-radiation source, showing the step of uniformly spreading the emissive particulate/matrix mixture onto the bottom electrode;

FIG. 35 illustrates a step in the inventive method of making a photo-radiation source, showing the addition of a transparent top substrate with transparent top electrode over the emissive particulate/matrix mixture;

FIG. 36 illustrates a step in the inventive method of making a photo-radiation source, showing the step of photo-curing the matrix to form a solid-state emissive particulate/hardened matrix on the bottom substrate;

FIG. 37 illustrates a step in the inventive method of making a photo-radiation source, showing the step of trimming the solid-state photo-radiation source sheet;

FIG. 38 illustrates the completed solid-state photo-radiation source sheet;

FIG. 39 illustrates the completed solid-state photo-radiation source sheet being driven with a driving voltage to light up;

FIG. 40 illustrates an embodiment of the inventive light sheet being cut, stamped or otherwise shaped into a desired configuration.
FIG. 41 illustrates a cut configuration of the inventive light sheet mounted on a backing board;

FIG. 42 illustrates the cut configuration of the inventive light sheet lighting up when voltage is applied;

FIG. 43 illustrates the cut configuration of the inventive light sheet employed for light emissive signage;

FIG. 44 shows an example of a roll-to-roll manufacturing process utilizing the inventive photo-radiation source for curing a photo-polymerizable organic material disposed between two continuous sheets of top and bottom substrates;

FIG. 45 shows an example of a conveyor continuous processing system utilizing a curing booth having the inventive photo-radiation source;

FIG. 46 shows an example of a light-pipe photo-polymerization system having an embodiment of the inventive photo-radiation source;

FIG. 47 shows an example of a three-dimensional scanned curing system having an embodiment of the inventive photo-radiation source;

FIG. 48 illustrates a conventional inorganic light emitting diode die;

FIG. 49 illustrates an inventive photo-radiation (light active) source or sensor having a formation of light emitting diode dice connected without solder or wire bonding to a common anode and cathode;

FIG. 50 illustrates the high packing density of the formation of light emitting diode dice obtainable in accordance with an embodiment of the inventive photo-radiation source;

FIG. 51 is an embodiment of the inventive photo-radiation source showing a heat sink electrode base having cooling channels;

FIG. 52 illustrates an embodiment of the inventive photo-radiation source having a geometry and optical system for concentrating the light output for photo-curing an organic material in a continuous fabrication method;

FIG. 53 shows an isolated view of a substrate with an optical surface for controlling the focus of light emitted from an embodiment of the inventive photo-radiation source;

FIG. 54 shows an embodiment of the inventive photo-radiation source having a flat light sheet construction with a top substrate with an optical surface;

FIG. 55 shows the inventive photo-radiation source having a curved light sheet construction shaped with a light emission enhancing curvature;

FIG. 56 is a schematic side view of the curved light sheet construction illustrating the focal point of light emission;

FIG. 57 is a view of the curved light sheet construction having a secondary optical system for controlling the focus of light emission;

FIG. 58 is a schematic side view showing light emitting diode dice disposed adjacent to respective optical lenses;

FIG. 59 is a schematic side view showing how the light output intensity can be increased by changing the shape of the curved light sheet construction;

FIG. 60 is a schematic side view showing two curved light sheets having a common light emission focal point;

FIG. 61 is a schematic side view showing three curved light sheets having a common light emission focal point;

FIG. 62 is a cross-sectional block diagram showing the constituent parts of the inventive light active sheet;

FIG. 63 is a cross-section block diagram of an embodiment of the inventive light active sheet having a cross-linked polymer (e.g., polysiloxane-g-oligophenylene oxide) matrix, UV semiconductor elements, and phosphor re-emitter;

FIG. 64 is a cross-sectional block diagram of an embodiment of the inventive light active sheet having a light diffusive and/or re-emitter coating on a transparent substrate;

FIG. 65 is a cross-sectional block diagram of an embodiment of the inventive light active sheet having blue and yellow semiconductor elements, and light diffusers (e.g., glass beads) within the matrix;

FIG. 66 is a side view of a commercially available inorganic LED die;

FIG. 67 is a cross-sectional view of a conventional LED lamp;

FIG. 68 is a cross-sectional view of an experimental prototype of the inventive photo-radiation source having a gap between the N electrode of an LED die and an ITO cathode;

FIG. 69 is a cross-sectional view of the experimental prototype of the inventive photo-radiation source having a drop of quinoline as a conductive matrix material completing the electrical contact between the N electrode of the LED die and the ITO cathode;

FIG. 70 is a photograph of an experiment prototype demonstrating a light active particle (LED die) connected to a top and/or bottom electrode through a charge transport material (quinoline);

FIG. 71 is a photograph of an experimental prototype demonstrating a free-floating light emissive particulate (miniature LED lamps) dispersed within a conductive fluid carrier (salt-doped polyethylene oxide);

FIG. 72 is a photograph of an experiment prototype demonstrating an 8x4 element grid of light active semiconductor elements (LED die) disposed between ITO-coated glass substrates;

FIG. 73 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process;

FIG. 74 is a top view of an inventive light active sheet showing transparent conductor windows and highly conductive leads;
FIG. 75 is a cross sectional schematic view of the inventive light active sheet showing transparent conductor windows and highly conductive leads;

FIG. 76 is an isolated top view of a pair of LED devices connected to a highly conductive lead line through a more resistive transparent conductive window;

FIG. 77 is an equivalent electrical circuit diagram of the inventive semiconductor device circuit;

FIG. 78 is a cross sectional view of the light active sheet showing a transparent conductor layer on a transparent top substrate, LED dice embedded in a hotmelt adhesive layer, and a conductive bottom substrate;

FIG. 79 is an exploded view of the component layers of the inventive light active sheet;

FIG. 80(a) is a top view of a transparent substrate sheet;

FIG. 80(b) is a top view of the transparent substrate sheet having transparent conductive windows formed on it;

FIG. 80(c) is a top view of the transparent substrate sheet having transparent conductive windows, highly conductive lead lines and a conductive buss formed on it;

FIG. 81 shows a two-part step for stretching a release substrate to create a desired spacing between semiconductor elements diced from a wafer;

FIG. 82 is an exploded view of the sheet components used to embed the semiconductor elements into an adhesive hotmelt sheet;

FIG. 83(a) is a cross sectional view of the hotmelt sheet with embedded semiconductor elements prior to removing the semiconductor elements from the release stretch substrate;

FIG. 83(b) is a cross sectional view of the hotmelt sheet with embedded semiconductor elements after removing the semiconductor elements from the release stretch substrate;

FIG. 84 is a top view of the inventive light sheet material configured with addressable LED elements;

FIG. 85 is a cross sectional view of the inventive light sheet configured with addressable LED elements;

FIG. 86(a) is a top view of a bottom substrate sheet having a grid of x-electrodes;

FIG. 86(b) is a top view of an adhesive hotmelt sheet having embedded LED dice;

FIG. 86(c) is a top view of a transparent substrate sheet having a grid of y-electrodes;

FIG. 87 shows an inventive method for manufacturing a multi-colored light active sheet using a roll-to-roll fabrication process, this multi-color light sheet has RGB sub-pixels composed of individual LED die, and may be driven as a display, white light sheet, variable color sheet, etc., depending on the conductive lead pattern and driving scheme;

FIG. 88 is a cross sectional view of an embodiment of the inventive light sheet configured as a full-color display pixel;

FIG. 89 is an exploded view showing the main constituent components of an embodiment of the inventive light sheet configured as a full-color display;

FIG. 90 is an exploded view showing the main constituent components of an embodiment of the inventive light sheet configured as an egress EXIT sign;

FIG. 91 is a cross sectional view of another embodiment of the present invention utilizing a double-faced insulative adhesive tape and a bottom conductive adhesive tape structure;

FIG. 92 is an exploded view of the main constituent components of the embodiment shown in FIG. 91;

FIG. 93 is a cross sectional view of another embodiment of the present invention utilizing a top conductive adhesive tape, double-faced insulative adhesive tape and a bottom conductive adhesive tape structure;

FIG. 94 is an exploded view of the main constituent components of the embodiment shown in FIG. 93;

FIG. 95 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process and utilizing a double-faced insulative adhesive tape and a bottom conductive adhesive tape structure;

FIG. 96 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt sheet and a bottom conductive adhesive tape structure;

FIG. 97 is an exploded view of the main constituent components of the embodiment shown in FIG. 96;

FIG. 98 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt adhesive and a bottom conductive hotmelt adhesive structure;

FIG. 99 is an exploded view of the main constituent components of the embodiment shown in FIG. 98;

FIG. 100 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process and utilizing a top conductive adhesive tape, double-faced insulative adhesive tape and a bottom conductive adhesive tape structure;

FIG. 101 is a cross sectional view of another embodiment of the present invention utilizing a top conductive hotmelt adhesive, double-faced insulative adhesive tape and a bottom conductive hotmelt adhesive structure;

FIG. 102 is an exploded view of the main constituent components of the embodiment shown in FIG. 101;

FIG. 103 is a cross sectional view of another embodiment of the present invention utilizing a top conductive hotmelt adhesive, double-faced insulative adhesive tape and a bottom conductive hotmelt adhesive structure;

FIG. 104 is an exploded view of the main constituent components of the embodiment shown in FIG. 103;

FIG. 105 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process, wherein a conductive coating is formed on the top and bottom substrate using slot-die coating stages;
FIG. 106 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt adhesive strips and conductive adhesive tape structure;

FIG. 107 is an exploded view of the main constituent components of the embodiment shown in FIG. 106;

FIG. 108 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt adhesive strips, top conductive strips and bottom conductive adhesive tape structure;

FIG. 109 is an exploded view of the main constituent components of the embodiment shown in FIG. 108;

FIG. 110 illustrates an inventive method for manufacturing a light active sheet using conductive strips and adhesive strips in a roll-to-roll manufacturing process;

FIG. 111 illustrates an inventive method of making the active layer of the inventive light active sheet using an electrostatic drum transfer system for orienting and patterning LED dice on a hotmelt sheet;

FIG. 112 shows a first step of an inventive adhesive transfer method for fixing semiconductor elements onto an adhesive transfer substrate;

FIG. 113 shows a second step of the inventive adhesive transfer method for fixing semiconductor elements onto the adhesive transfer substrate;

FIG. 114 shows a third step of the inventive adhesive transfer method for fixing semiconductor elements onto the adhesive transfer substrate;

FIG. 115 shows a first step of an electrostatic attraction transfer method for fixing semiconductor elements onto an adhesive transfer substrate;

FIG. 116 shows a second step of the electrostatic attraction transfer method for fixing semiconductor elements onto the adhesive transfer substrate;

FIG. 117 shows a third step of the electrostatic attraction transfer method for fixing semiconductor elements onto the adhesive transfer substrate;

FIG. 118 shows a fourth step of the electrostatic attraction transfer method for fixing semiconductor elements onto the adhesive transfer substrate;

FIG. 119 shows photographs of working prototypes constructed in accordance with the inventive method for manufacturing an inorganic light sheet;

FIG. 120 is a photograph demonstrating a LED die electrostatically attracted to a charged needle;

FIG. 121 is a photograph demonstrating three LED dice electrostatically attracted to a charged needle;

FIG. 122 is a cross sectional view of an inventive encapsulated semiconductor device wherein the semiconductor elements are npn-type devices, with an addressable middle p-layer;

FIG. 123 is a cross sectional view of an inventive encapsulated semiconductor device wherein the semiconductor elements are npn-type devices, with an addressable top n-layer;

FIG. 124(a) is a cross sectional view of an inventive encapsulated device electronic circuit, wherein an LED die, npn transistor, resistor and conductors are connected in an electronic circuit forming a pixel for a display device;

FIG. 124(b) is a cross sectional view of an alternative of the inventive encapsulated device electronic circuit shown in FIG. 124(a);

FIG. 124(c) is a cross sectional view of another alternative of the inventive encapsulated device electronic circuit shown in FIG. 124(a);

FIG. 124(d) is a cross sectional view of an alternative of the inventive encapsulated device electronic circuit shown in FIG. 124(a);

FIG. 125 is a circuit diagram illustrating the sub-pixel circuit shown in FIG. 124;

FIG. 126 is a cross sectional view of a pixel from an inventive display device, the pixel includes red, green and blue sub-pixel circuit and an optical lens element formed in the top substrate;

FIG. 127 is an exploded view of the inventive encapsulated semiconductor device showing a conductive sheet layer between insulative hotmelt adhesive layers;

FIG. 128(a) is a photograph showing a step of the proof-of-concept prototype construction, this photo shows an active layer sheet comprised of LED die embedded in a sheet of hotmelt adhesive, the LED die being red emitting and yellow emitting;

FIG. 128(b) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the three constituent layers—active layer sheet (LED die embedded in a sheet of hotmelt adhesive) a top substrate (ITO coated PET) and a bottom substrate (ITO coated PET);

FIG. 128(c) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the three constituent layers with the active layer between the substrates to form an assembly;

FIG. 128(d) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the assembled laminating being passed through a heat laminator to activate the hotmelt sheet by melting between pressure rollers;

FIG. 128(e) is a photograph showing the just constructed proof-of-concept prototype being applied a voltage of a polarity and lighting up the yellow LED die;

FIG. 128(f) is a photograph showing the just constructed proof-of-concept prototype being applied a voltage of the opposite polarity and lighting up the red LED die;

FIG. 129(a) is a graph illustrating an AC driving voltage applied to red and blue LED devices having opposite polarity in accordance with an embodiment of the inventive RGBG variable color light sheet;

FIG. 129(b) is a graph illustrating an AC driving voltage applied to green LED devices in accordance with an embodiment of the inventive RGBG variable color light sheet;
FIG. 130 shows a comb electrode pattern having printed silver ink electrodes and printed transparent conductor pads;

FIG. 131 illustrates the driving of two RGGB pixel elements in accordance with the embodiment of the inventive RGGB variable color light sheet;

FIG. 132 illustrates driving the inventive RGGB variable color light sheet as a lower resolution variable color intensity back light for an LCD display;

FIG. 133 shows an example of the higher resolution LCD image that is back lit by the variable color intensity back light shown in FIG. 5;

FIG. 134 is a back substrate silver ink pattern for a thin, flexible pixilated display tile;

FIG. 135 is a front substrate silver ink pattern for the thin, flexible pixilated display tile;

FIG. 136 is a front substrate transparent conductor (e.g., printed A-ITO) pattern for the thin, flexible pixilated display tile;

FIG. 137 is a front substrate insulation pattern for the thin, flexible pixilated display tile, the insulation pattern being provided to reduce cross-talk;

FIG. 138 is a front substrate printed signage pattern for the thin, flexible pixilated display tile;

FIG. 139 illustrates the cross-section of the back (bottom) substrate silver ink pattern for a thin, flexible pixilated display tile;

FIG. 140 illustrates the cross-section of the front substrate silver ink pattern for the thin, flexible pixilated display tile;

FIG. 141 illustrates the cross-section of the front substrate transparent conductor (e.g., printed-A-ITO) pattern formed on the front substrate silver ink pattern for the thin, flexible pixilated display tile;

FIG. 142 illustrates the cross-section of the front substrate insulation pattern formed on the silver ink and transparent conductor patterns for the thin, flexible pixilated display tile, the insulation pattern being provided to reduce cross-talk;

FIG. 143 illustrates the cross-section of the inventive thin, flexible pixilated display tile with a printed signage graphic;

FIG. 144 illustrates a first printed conductive line formed under an insulating layer formed under a second crossing printed conductive line in accordance with an embodiment of the inventive electronic bare die circuit;

FIG. 145 illustrates an assembled x (bottom substrate) and y (top substrate) conductive pattern for a bare die LED backlight for a notebook computer;

FIG. 146 illustrates the x (bottom substrate) conductive pattern for the bare die LED backlight for a notebook computer;

FIG. 147 illustrates the y (top substrate) conductive pattern for a bare die LED backlight for a notebook computer;

FIG. 148 is a cross section unassembled view showing a top conductive surface on a top release sheet, a melt adhesive with embedded bare dies middle layer, and a bottom conductive surface on a bottom release sheet in accordance with an ultra-thin LED light sheet;

FIG. 149 is a cross section assembled after lamination view showing the top conductive surface on a top release sheet, the melt adhesive with embedded bare dies middle layer, and the bottom conductive surface on a bottom release sheet in accordance with the ultra-thin LED light sheet;

FIG. 150 is a cross section assembled view showing the peeling off of the top release sheet from the top conductive surface and the bottom release sheet from the bottom conductive surface in accordance with the ultra-thin LED light sheet;

FIG. 151 is a cross section showing the resulting ultra-thin LED light sheet;

FIG. 152 shows a conductive pattern of an embodiment of the inventive light sheet that does not require a transparent conductive window for letting light emit from a top emitting LED die, and a close up view of a conductively patterned window for electrically connecting the conductive pattern to the top electrode of a top emitting LED die;

FIG. 153 is a cross section showing a top emitting LED die electrically connected to the conductively patterned window of the embodiment of the inventive light sheet that does not require a transparent conductive window;

FIG. 154 illustrates individual RGBY light strips for an embodiment of the variable color and intensity light sheet;

FIG. 155 shows the light strips assembled for an RGBYG variable color and intensity light sheet;

FIG. 156 shows an alternative assembled RGBG variable color and intensity light sheet;

FIG. 157 illustrates the pattern of the alternative assembled RGBG variable color and intensity light sheet shown in FIG. 156;

FIG. 158 illustrates the G (green emitting LED die) pattern;

FIG. 159 illustrates the B (blue emitting LED die) pattern;

FIG. 160 illustrates the R (red emitting LED die) pattern;

FIG. 161 shows the cross sections of the individual color strips of RGBG light strips showing the differences in bare die height;

FIG. 162 illustrates the use of different adhesive thicknesses to accommodate the difference in bare die height;

FIG. 163 illustrates the use of a thickness increasing material to accommodate the difference in bare die height;

FIG. 164 illustrates a method of placing LED bare dies or electronic circuit semiconductor elements directly from a wafer tape into a melt adhesive;
[0291] FIG. 165 shows the construction of a light tape that can be cut to length;

[0292] FIG. 166 is an exploded cross sectional view showing a bare die transistor element connected with a connection enhancing material to a thin, flexible, encapsulated electronic circuit in accordance with the present invention;

[0293] FIG. 167 is an assembled cross sectional view showing the bare die transistor element connected with the connection enhancing material to the thin, flexible, encapsulated electronic circuit;

[0294] FIG. 168 is an exploded cross sectional view showing a bare die transistor element connected directly to wiring lines of a thin, flexible, encapsulated electronic circuit in accordance with the present invention;

[0295] FIG. 169 is an assembled cross sectional view showing the bare die transistor element connected directly to wiring lines of the thin, flexible, encapsulated circuit;

[0296] FIG. 170 is a schematic view illustrating a roll laminator for manufacturing an encapsulated electronic bare die circuit in accordance with the present invention;

[0297] FIG. 171 is a top down view of a conventional LED bare die showing a metal bonding pad electrode formed on the top emitting face of the conventional LED bare die where it blocks the emission of light;

[0298] FIG. 172 is a top down view of an inventive LED bare die showing a top emissive face without a metal bonding pad electrode enabling unblocked emission of light;

[0299] FIG. 173 is a cross section of a light sheet having an inventive LED bare die as shown in FIG. 172 including electron injection facilitating material for connecting to the bare LED emissive face;

[0300] FIG. 174 is a cross sectional view of a light sheet having a side emitter LED bare die connected to a conductive line formed on a transparent substrate;

[0301] FIG. 175 is a cross section of a light sheet having a protective overlayer (e.g., conventional lamination sheet used for sign making, etc) formed over the light sheet to further encapsulate and protect the light sheet, particularly near the edges and at the terminals;

[0302] FIG. 176 is a cross sectional view of an inventive self-contained battery and solar cell integrally formed with the inventive light sheet;

[0303] FIG. 177 is a cross section of an ultra-thin construction of the inventive light sheet;

[0304] FIG. 178 illustrates a light sheet construction for making multiple devices cut from a single light sheet;

[0305] FIG. 179 shows a light strip cut from the single light sheet shown in FIG. 178 showing a crimp-on terminal connector;

[0306] FIG. 180 shows a multiple-strip light strip cut from the single light sheet shown in FIG. 179;

[0307] FIG. 181 shows an inventive method of forming an electrical connection to bare die electrodes of a flip-chip style bare die semiconductor device;

[0308] FIG. 182 shows an electronic circuit formed using the inventive bare die electronic circuit manufacturing method for connecting a bare die capacitor, a bare die transistor and a bare die LED;

[0309] FIG. 183 shows an electronic circuit with a height compensating wiring line formed on a substrate for compensating a difference in heights of a horizontal electrode structure LED bare die;

[0310] FIG. 184(a) is a cross sectional view of a higher voltage light sheet utilizing opposite polarity LED bare die for forming a series connection resulting in a higher device voltage;

[0311] FIG. 184(b) is a top view of the higher voltage light sheet cut from a multiple module light sheet;

[0312] FIG. 185 shows multiple higher voltage light sheet devices formed as a single light sheet (or in a roll-to-roll process) and constructed so that each higher voltage device is connected in series with the other higher voltage devices on the sheet or roll resulting in successively higher operating voltages depending on the numbers of series connected devices;

[0313] FIG. 186 is a top view of assembled elements of a light sheet constructed in accordance with the higher voltage light sheet;

[0314] FIG. 187 is a top view of top transparent substrate strips for completing the light sheet construction shown in FIG. 18;

[0315] FIG. 188 is a cross sectional view of an alternative construction of a higher voltage light sheet;

[0316] FIG. 189 is a top view of a top substrate for the alternative construction of a higher voltage light sheet shown in FIG. 188;

[0317] FIG. 190 is a top view of a bottom substrate for the alternative construction of a higher voltage light sheet shown in FIG. 188;

[0318] FIG. 191 shows an exploded view of an inventive construction of the light sheet utilizing a coin cell battery with LED bare die having appropriate polarity fixed directly to the positive and negative sides of the battery;

[0319] FIG. 192 shows an assembled view of the inventive construction of the light sheet shown in FIG. 191;

[0320] FIG. 193 is an alternate construction of the light sheet showing only the metal substrates connected to a coin cell battery;

[0321] FIG. 194 shows a camouflaged housing for the inventive light sheet mimicking the color, size and texture of a rock;

[0322] FIG. 195 shows an exploded view of an alternate construction of the light sheet showing a hot melt spacer for forming a battery pouch between the top and bottom substrates;

[0323] FIG. 196 is a cross sectional assembled view of the light sheet construction shown in FIG. 195;

[0324] FIG. 197 is a top view of an alternative construction of the light sheet;
[0325] FIG. 198 is an exploded view of a coin battery light sheet construction on a metal substrate;

[0326] FIG. 199 is a cross sectional view of the alternative construction shown in FIG. 198;

[0327] FIG. 200 is an assembled view of the coin battery light sheet construction shown in FIG. 199;

[0328] FIG. 201 is a view of the coin battery light sheet construction shown in FIG. 198 after forming;

[0329] FIG. 202 is an assembled and formed view of the inventive coin battery light sheet construction shown in FIG. 199;

[0330] FIG. 203 is a cross sectional view of a multiple radiation emitter light sheet for emitting radiation of different wavelengths;

[0331] FIG. 204 is an exploded view of a light sheet construction having patterned LED bare die and patterned thermal energy emitters;

[0332] FIG. 205 is a cross sectional view of a light sheet construction having a conductive line for connecting with a side emitting LED bare die;

[0333] FIG. 206 is a side view and block diagram showing a construction of the light sheet including a first wavelength emitter and a second wavelength emitter, at least the second wavelength emitter being driven by a pulse generator, and a remotely located detector for detecting at least one of the first and second emitted wavelengths, as well as for detecting a pulse;

[0334] FIG. 207 is a photograph showing a higher voltage device being driven at about 50 volts AC and constructed along the lines of the light sheet shown in FIGS. 185(a) through 187, two series connected devices being capable of connecting directly to a conventional 110VAC wall plug;

[0335] FIG. 208 is a photograph showing a higher voltage device cut from the device shown in FIG. 207 and constructed to be driven at 12 volts DC when connected in either polarity (top device) compared with a conventionally constructed printed circuit board having conventionally packaged LED lamp, resistors, and rectifying diodes soldered to a conventional PCB (bottom device);

[0336] FIG. 209 is a photograph showing a notebook computer keyboard light constructed along the lines of FIGS. 145 to 147;

[0337] FIG. 210 is a photograph showing the notebook computer keyboard light shown in FIG. 209 lighting up a notebook computer keyboard;

[0338] FIG. 211 shows a thin, lightweight, flexible pixilated scrolling message display constructed along the lines of FIG. 130;

[0339] FIG. 212 is a photograph showing a large format, thin, lightweight, flexible display having assembled display tiles making up individual display pixels;

[0340] FIG. 213 is a photograph of a coin battery light sheet constructed along the lines shown in FIGS. 198 through 203 before being formed and showing the forming die;

[0341] FIG. 214 is a photograph of the coin battery light sheet shown in FIG. 213 after being formed and with a coin battery inserted;

[0342] FIG. 215 shows a light sheet being used to light up a cup holder;

[0343] FIG. 216 shows a light sheet having multiple light sheet strips constructed along the lines shown in FIGS. 178-180 for being used as a fishing lure;

[0344] FIG. 217 shows a thin, flexible light sheet constructed on a half-hard copper back substrate and having a size of about 8 inches square;

[0345] FIG. 218 shows an infrared light sheet for providing identification through the emission of a wavelength that is invisible to human vision;

[0346] FIG. 219 is an exploded view of an inventive Lightstrip construction comprised of light active regions formed as light active regions fixed to parallel bottom substrate conductors;

[0347] FIG. 220 is an exploded view of the assembled parallel conductor light strip with top and bottom over layer protective lamination films and a pressure sensitive adhesive layer for forming a Light-tape;

[0348] FIG. 221 is an assembled view of the inventive Light-tape;

[0349] FIG. 222 shows the inventive Light-tape used to carry audio and/or video or other data signals along with powering the LED bare die emitters;

[0350] FIG. 223 is a cross-sectional view of a multiple parallel conductor Lightstrip construction for generating various colors and intensities of light;

[0351] FIG. 224 is an isolated view of an inventive direct insertion method for placing bare die LEDs or other electronic components;

[0352] FIG. 225 is an isolated view of a machine vision quality assurance station for determining the proper orientation and positioning of an LED chip;

[0353] FIG. 226 is an isolated view of a chip embedding operation during an inventive construction method of the Lightsheet;

[0354] FIG. 227 is an isolated view of an chip function quality assurance station for checking the operation of an embedded LED;

[0355] FIG. 228 is an isolated view of a nip roller station for laminating the top and bottom substrates together;

[0356] FIG. 229 is an isolated view of the completed Lightstrip formed, for example, using the inventive steps of the Lightsheet construction method shown in FIG. 224 through 228;

[0357] FIG. 230 is an exploded view showing a multiple-up Lightstrip construction formed using LED bare die that is pre-embedded within an insulative adhesive layer;

[0358] FIG. 231 shows a completed Lightstrip cut from the multiple-up Lightstrip construction shown in FIG. 230;
FIG. 232 is an exploded view showing an alternative construction of the multiple-up Lightstrip formed using a chip height accommodating shim adhesive layer.

FIG. 233 is an exploded view showing another alternative construction of a Lightsheet where cut strips of LED bare die pre-embodied in an insulative adhesive are fixed to conductive surfaces of top and bottom electrodes with pre-printed conductive patterns.

FIG. 234 is a cross-sectional view of an alternative construction of the inventive Lightstrip having parallel bottom conductors.

FIG. 235 shows the parallel bottom conductors of the alternative construction of the inventive Lightstrip shown in FIG. 234.

FIG. 236 is a cross-sectional view of another alternative construction of the Lightstrip.

FIG. 237 is a cross-sectional view showing an alternative construction of the inventive Lightsheet.

FIG. 238 is a cross-sectional view showing an alternative construction of the inventive Lightsheet.

FIG. 239 is a cross-sectional view showing an alternative construction of the inventive Lightsheet.

FIG. 240 shows a bare die capacitor, resistor, transistor and LED used as electronically active components in an inventive electrical circuit construction.

FIG. 241 show an electronic circuit diagram comprised of bare die capacitor, resistor R1, transistor and LED, along with a power supply and a printed resistor R2.

FIG. 242 illustrates a printable conductive ink or adhesive comprised of a phosphor re-emitter, conductive elements and a binder.

FIG. 243 is an isolated view of an electronic circuit along the lines of the circuit diagram shown in FIG. 241 comprised of bare die electronic components, printed conductive pads and lines and a printed conductive ink pad along the lines of the printable conductive ink shown in FIG. 242.

FIG. 244 is an isolated exploded view of the electronic circuit shown in FIG. 243; and FIG. 245 shows the inventive method for forming an electronic circuit using bare die electronic components, printed conductive structures on flexible substrates and printable conductive pads.

DETAILED DESCRIPTION OF THE INVENTION

For purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, there being contemplated such alterations and modifications of the illustrated device, and such further applications of the principles of the invention as disclosed herein, as would normally occur to one skilled in the art to which the invention pertains.

FIG. 1 illustrates the inventive method for manufacturing a patterned light active sheet. In accordance with the present invention, a solid-state light active sheet, and a method for manufacturing the same, is provided. The solid-state light active sheet is effective for applications such as flexible solar panels and light sensors, as well as high efficiency lighting and display products. The inventive light sheet utilizes semiconductor elements, such as commercially available LED dice, to create a totally new form of solar panel, lighting, signage and display devices. The light sheet can be constructed to provide an even, diffuse solid-state lighting device that is ultra-thin, flexible and highly robust. An embodiment of the inventive manufacturing method is based on the well-known physics and mechanical and electrical components found in a conventional desktop laser printer. In essence, in accordance with this inventive embodiment, LED dice replace the toner of a laser printer. The result is a unique light sheet form factor adaptable to an extraordinarily broad range of applications. These applications range from interior tent lighting, to display backlighting, to commercial and municipal signage and traffic control signals to replacements for incandescent and fluorescent source lighting.

The inventive manufacturing process starts with a roll of flexible, plastic substrate. (1) A conductive electrode pattern is formed on the substrate through a variety of well-known printing techniques, such as inkjet printing. This electrode pattern is used to bring power to the dice. (2) Next, a conductive adhesive is printed at locations where the LED dice will be patterned. (3) Then, using an electrostatic drum and charge patterning mechanism similar to a laser printer engine, LED dice are patterned onto the electrostatic drum. The die pattern is then transferred to the adhesive areas that have been formed on the substrate. (4) A top substrate coated with a conductor is then brought in to complete the solid-state, ultra thin, flexible light sheet laminations. (5) Finally, the completed light sheet is rolled up on a take-up reel. This light sheet material can then be cut, stamped, thermoformed, bent and packaged into a wide range of new and useful solid-state lighting products.

In accordance with the invention, a method is provided for forming a sheet of light active material. A first substrate (bottom substrate, shown in FIG. 1) is provided having a transparent first conductive layer. The first substrate may be, for example, glass, flexible glass (available from Corning), PET, PAN, or other suitable polymer, Barrix (available from Vitrex) or other transparent or semi-transparent substrate material. The transparent first conductive layer may be, for example, sputter coated indium-tin-oxide (ITO), a conductive polymer, a thin metal film, or the like.

A pattern of light active semiconductor elements are formed. The light active semiconductor elements may be, for example, LED dice having an n-side and a p-side and/or light-to-energy semiconductor layered particles wherein the n- and p-side correspond to charge donor and charge acceptor layers. Each light active semiconductor element has either of the n-side or the p-side in electrical communication with the transparent conductive layer. The electrical communication may be direct (i.e., surface to surface contact) or indirect (i.e., through a conductive or semi-conductive medium). A second substrate having a second conductive layer is provided. The second substrate may be, for example, a metal foil, a metal coated polymer sheet, a conductive polymer coated metal foil or polymer sheet, or the like. The second substrate is secured to the first
substrate so that the other of the n-side or said p-side of each the light active semiconductor element in electrical commu-
nication with the second conductive layer. Again, the elec-
trical communication can be direct or indirect. Thus, in
accordance with the present invention, a solid-state sheet of
light active material is formed.

[0377] The transparent first conductive layer may com-
prise a transparent coating preformed on the first substrate.
For example, the substrate may be a sheet or roll of a
polymer film, such as PET or PAN, with a sputter coated
conductor comprised of ITO. Alternatively, as shown in FIG.
1, the transparent coating can be applied as a conductive ink
or conductive adhesive.

[0378] The pattern of light active semiconductor elements
can be formed by electrostatically attracting the light active
semiconductor elements to a transfer member. Then, the
attracted light active semiconductor elements are transferred
from the transfer member to the first substrate. The transfer
member may include an opto-electric coating effective for
holding a patterned electrostatic charge. The patterned elec-
 trostatic charge is effective for electrostatically attracting
the light active semiconductor elements and forming the pattern
of light active semiconductor elements. The optical pattern-
ing of the opto-electric coating can be done, for example,
using a scanned laser beam and an LED light source, similar
to the process used by laser or LED printers. Thus, the
transfer member may comprise an opto-electric coated
drum, and the patterning mechanism may be similar to the
well-known mechanism employed for patterning toner in a
laser or LED printer.

[0379] An adhesive pattern can be formed on the first
substrate for adhering the pattern of light active semicon-
ductor elements to the first substrate. Alternatively, or addi-
tionally, an adhesive pattern can also be formed on the
first substrate for adhering the second substrate to the first
substrate.

[0380] A pattern of light active semiconductor elements
can be formed by forming a first pattern of first light active
semiconductor elements and forming a second pattern of
second light active semiconductor elements. The first light
active semiconductor elements emit light having a first color
and the second light active semiconductor elements emit
light having a second color. Alternatively, the first light
active semiconductor elements emit light and the second
light active semiconductor elements convert light to elec-
trical energy.

[0381] The first conductive layer may be formed as a grid
of x-electrodes, and the second conductive layer formed as
a grid of y-electrodes, so that each respective light active
semiconductor element is addressable for forming a sheet of
light active material capable of functioning as a pixelated
display component.

[0382] The pattern of light active semiconductor elements
can be formed by forming a first pattern of first color light
emitting semiconductor elements, forming a second pattern of
second color light emitting semiconductor elements and
forming a third pattern of third color light emitting semi-
 conductor element. The first conductive layer may be
formed as a grid of x-electrodes, and the second conductive
layer formed as a grid of y-electrodes, so that each respective
light active semiconductor is addressable for forming a
sheet of light active material capable of functioning as a
full-color pixelated display component.

[0383] FIG. 2 illustrates another inventive method for
manufacturing a light active sheet. In each example of the
mechanism employed for forming the inventive light active
sheet, the components and processes can be mixed in a
number of iterations. The examples herein depict a selection
of such iterations, but represent just a few of the possible
process and material combinations contemplated by the
inventive methods and device structures. As shown in FIG.
2, a first substrate is provided. A first conductive surface is
formed on the first substrate. A pattern of LED dice is
formed on the conductive surface. In the example shown, the
conductive surface is provided as a conductive adhesive.
However, the conductive surface may be, for example an
ITO coating pre-formed on the bottom substrate. Each LED
die has an anode and a cathode side. A second substrate is
provided. A second conductive surface is formed on the
second substrate. The first substrate is fixed to the second
substrate so that either of the anode and the cathode side of
the LED die is in electrical communication with the first
conductive surface, and the other of the anode and the
cathode side of the LED die in electrical communication
with the second conductive surface. As shown, the LED dice
may be encased within a conductive adhesive applied to the
top and bottom substrate, with an insulator adhesive applied
between the dice. Alternatively, only an insulator adhesive
may be applied between the dice for fixing the top and
bottom substrate together. The dice are then held in electrical
contact with the top and bottom substrate conductive sur-
faces through the clamping force applied by the insulator
adhesive. As other alternatives, only one or both of the
substrates may have a conductive or non-conductive adhesive
applied to it (through inkjet, silk-screen, doctor blade,
slot-die coating, electrostatic coating, etc.), and the dice
adhered directly or clamped between the substrates.

[0384] The first conductive surface may be formed as a
conductive pattern comprised of at least one of a conductive
coating, a conductive ink and a conductive adhesive. At least
one of the first and the second conductive surface is a
transparent conductor. At least one of the first and the
second conductive surface is preformed on the respective first
and second substrate. The first conductive surface can be formed
using a printing method. The printing method may comprise
at least one of an inkjet printing method, a laser printing
method, a silk-screen printing method, a gravure printing
method and a donor transfer sheet printing method.

[0385] An adhesive layer may be formed between the top
substrate and the bottom substrate. The adhesive layer
may comprise at least one of a conductive adhesive, a semi-
conducting adhesive, an insulating adhesive, a conductive
polymer, a semi-conductive polymer, and an insulating
polymer. A function-enhancing layer can be formed between
the top substrate layer and the bottom substrate layer. The
function-enhancing layer includes at least one of a re-
mitter, a light-scatterer, an adhesive, and a conductor.

[0386] The pattern of LED dice can be formed by elec-
 trostatically attracting the LED dice to a transfer member,
and then transferring the attracted LED dice from the
transfer member to the first conductive surface. The transfer
member may include an opto-electric coating effective for
holding a patterned electrostatic charge, the patterned elec-
trostatic charge being effective for electrostatically attracting and forming the pattern of LED dice.

[0387] The opto-electric coating can be patterned using at least one of a scanned laser beam and an LED light source. The transfer member may be a drum, a flat planar member, or other shape. The method of transferring the dice may also include a pick-and-place robotic method, or simple sprinkling of the semiconductor elements (i.e., the dice) onto an adhesive surface applied to the substrate.

[0388] FIG. 3 illustrates another inventive method for manufacturing a light active sheet having two or more different types of light active semiconductor elements. A pattern of light active semiconductor elements can be formed by forming a first pattern of first light active semiconductor elements and forming a second pattern of second light active semiconductor elements. The first light active semiconductor elements emit light having a first color and the second light active semiconductor elements emit light having a second color. Alternatively, the first light active semiconductor elements emit light and the second light active semiconductor elements convert light to electrical energy.

[0389] The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer formed as a grid of y-electrodes, so that each respective light active semiconductor element is addressable for forming a sheet of light active material capable of functioning as a pixelated display component.

[0390] The pattern of light active semiconductor elements can be formed by forming a first pattern of first color light emitting semiconductor elements, forming a second pattern of second color light emitting semiconductor elements and forming a third pattern of third color light emitting semiconductor element. The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer formed as a grid of y-electrodes, so that each respective light active semiconductor is addressable for forming a sheet of light active material capable of functioning as a full-color pixelated display component.

[0391] The inventive methods shown by way of example in FIGS. 1-3 can be employed for creating a roll-to-roll or sheet manufacturing process for making light emitting sheet material or light-to-energy sheet material. In accordance with another aspect of the invention, a method is provided for forming a light-to-energy device. A first substrate is provided. A first conductive surface is formed on the first substrate. A pattern of semiconductor elements is formed on the conductive pattern. Each semiconductor element comprises a charge donor side and a charge acceptor side. For example, the semiconductor elements may comprise a crystalline silicone-based solar panel-type semiconductor layered structure. Alternatively, other semiconductor layered structures can be used for the semiconductor elements, including but not limited to, various thin film amorphous silicon semiconductor systems known in the art that have been partularized.

[0392] In accordance with the inventive method, a second conductive surface is formed on a second substrate. The first substrate is fixed to the second substrate so that either of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the first conductive surface and the other of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the second conductive surface.

[0393] The first conductive surface is formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink and a conductive adhesive. At least one of the first and the second conductive surface is a transparent conductor. At least one of the first and the second conductive surface is preformed on the respective first and second substrate. The first conductive surface may be formed using a printing method. The printing method may comprise at least one of an inkjet printing method, a laser printing method, a silk-screen printing method, a gravure printing method and a donor transfer sheet printing method.

[0394] An adhesive layer can be formed between the top substrate and the bottom substrate. The adhesive layer may comprise at least one of a conductive adhesive, a semiconductor adhesive, an insulative adhesive, a conductive polymer, a semi-conductive polymer, and an insulative polymer. A function-enhancing layer can be formed between the top substrate layer and the bottom substrate layer, wherein the function-enhancing layer includes at least one of a re-emitter, a light-scatterer, an adhesive, and a conductor.

[0395] The pattern of LED dice can be formed by electrostatically attracting the LED dice to a transfer member, and then transferring the attracted LED dice from the transfer member to the first conductive surface. The transfer member may include an opto-electric coating effective for holding a patterned electrostatic charge, the patterned electrostatic charge being effective for electrostatically attracting and forming the pattern of LED dice. The opto-electric coating can be patterned using at least one of a scanned laser beam and an LED light source. The transfer member may be shaped as a drum, a flat planar member, or other shape.

[0396] FIG. 4 is a cross-sectional view of an inventive light active sheet having a conductive adhesive for fixing the substrates and/or the light active semiconductor elements in place. In accordance with this aspect of the invention, device structures are provided for sheets of light active material. The examples shown herein are illustrative of various iterations of the device structure, and constituent parts in each example can be mixed in additional iterations not specifically described herein.

[0397] A first substrate has a transparent first conductive layer. A pattern of light active semiconductor elements fixed to the first substrate. The light active semiconductor elements have an n-side and a p-side. Each light active semiconductor element has either of the n-side or the p-side in electrical communication with the transparent conductive layer. A second substrate has a second conductive layer. An adhesive secures the second substrate to the first substrate so that the other of the n-side or said p-side of each light active semiconductor element is in electrical communication with the second conductive layer. Thus, a solid-state light active device is formed.

[0398] The transparent first conductive layer may comprise a transparent coating preformed on the first substrate. The transparent coating can be a conductive ink or conductive adhesive. An adhesive pattern may be formed on the first substrate for adhering the pattern of light active semi-
conductor elements to the first substrate. Alternatively, or additionally, an adhesive pattern may be formed on the first substrate for adhering the second substrate to the first substrate.

[0399] FIG. 5 is a cross-sectional view of an inventive light active sheet having two different types of light active semiconductor elements oriented to be driven with opposite polarity electrical energy. The pattern of light active semiconductor elements may comprise a first pattern of light active semiconductor elements and a second pattern of second light active semiconductor elements. The first light active semiconductor elements may emit light having a first color and the second light active semiconductor elements emit light having a second color. Alternatively, the first light active semiconductor elements may emit light and the second light active semiconductor elements convert light to electrical energy.

[0400] FIG. 6 is a cross-sectional view of an inventive light active sheet having additives included between the substrates to improve the desired light active sheet properties. The inventive light-emitting device comprises a first substrate. A first conductive surface is formed on the first substrate. A pattern of LED die is formed on the conductive pattern. Each LED die has an anode and a cathode side. A second substrate has a second conductive surface formed on it. An adhesive fixes the first substrate to the second substrate so that either of the anode and the cathode side of the LED die is in electrical communication with the first conductive surface, and the other of the anode and the cathode side of the LED die is in electrical communication with the second conductive surface.

[0401] The first conductive surface can be formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink and a conductive adhesive. At least one of the first and the second conductive surface is a transparent conductor. At least one of the first and the second conductive surface can be preformed on the respective first and second substrate. The first conductive surface can be formed using a printing method. The printing method may comprise at least one of an inkjet printing method, a laser printing method, a silk-screen printing method, a gravure printing method and a donor transfer sheet printing method.

[0402] The adhesive layer can comprise at least one of the top substrate and the bottom substrate. The adhesive layer can comprise at least one of a conductive adhesive, a semi-conductive adhesive, an insulative adhesive, a conductive polymer, a semi-conductive polymer, and an insulative polymer. A function-enhancing layer can be formed between the top substrate layer and the bottom substrate layer. The function-enhancing layer may include at least one of a re-emitter, a light-scatterer, an adhesive, and a conductor.

[0403] FIG. 7 is a cross-sectional view of an inventive light active sheet having the light active semiconductor elements disposed within a solid-state electrolyte. In accordance with an embodiment of the inventive light active sheet, a top PET substrate has a coating of ITO, acting as the top electrode. A bottom PET substrate can be ITO PET, metal foil, metalized mylar, etc., depending on the intended application of the light sheet (e.g., transparent HUD element, light source, solar panel, etc.). The matrix (carrier) material may be a transparent photosensitive solid polymer electrolyte (SPE) based on cross-linked polysiloxane-g-oligoethylene oxide (see, for example, Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical properties, Journal of Power Sources 119-121 (2003) 448-453, which is incorporated by reference herein). The emissive particulate may be commercially available LED die, such as an AlGaAs/AlGaAs Red LED Die—TK 112UR, available from Tyntek, Taiwan). Alternatively, the particulate may be comprised of light-to-energy particles, having charge donor and charge acceptor semiconductor layers, such as found in typical silicon-based solar panels. In the case of an energy-to-light device (i.e., a light sheet), it may be preferable for the matrix material to be less electrically conductive than the semiconductor elements so that the preferred path of electrical conductivity is through the light emitting elements. In the case of a light-to-energy device (i.e., a solar panel), it may be preferable for the matrix material to be more electrically conductive than the semiconductor element so that charges separated at the donor/acceptor interface effectively migrate to the top and bottom substrate electrodes.

[0404] FIG. 8 is a cross-section view of an inventive light active sheet having the light active semiconductor elements disposed within a solid-state charge transport carrier. As an example of a candidate solid-state charge transport carrier, an intrinsically conductive polymer, Poly(thieno[3,4-b] thiophene), has been shown to exhibit the necessary electronic, optical and mechanical properties. (see, for example, Poly(thieno[3,4-b]thiophene): A p- and n-Dopable Polystyrene Exhibiting High Optical Transparency in the Semiconducting State, Gregory A. Sotzing and Kyunghoon Lee, 7281 Macromolecules 2002, 35, 7281-7286, which is incorporated by reference herein).

[0405] FIG. 9 is a cross-section view of an inventive light active sheet having an insulator material disposed between the top and bottom substrates. The insulator may be an adhesive, such as an epoxy, heat-meltable polymer, etc. As shown, the semiconductor elements (e.g., LED die) are fixed to the top and bottom substrates through a solid-state conductive adhesive, charge transport carrier or solid-state electrolyte. Alternatively, the semiconductor elements may be in direct contact with the top and bottom conductors disposed on the top and bottom substrates, and the adhesive provided between the LED die to secure the top and substrates together and clamp the dice in electrical contact with the top and bottom conductors.

[0406] FIG. 10 is a cross-sectional view of the inventive light active sheet having an RGB semiconductor element pattern for forming a full-color light emissive display. The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer formed as a grid of y-electrodes. Each respective light active semiconductor element is disposed at the respective intersections of the x and y grid and are thus addressable for forming a sheet of light active material capable of functioning as a pixelated display component.

[0407] The pattern of light active semiconductor elements may comprise a first pattern of first color light emitting semiconductor elements, a second pattern of second color light emitting semiconductor elements and a third pattern of third color light emitting semiconductor element. The first conductive layer may be formed as a grid of x-electrodes, and the second conductive layer being formed as a grid of
y-electrodes. The respective first, second and third color light emitting elements may be disposed at the intersections of the x and y grid so that each respective light active semiconductor is addressable. Thus, a sheet of light active material is formed capable of functioning as a full-color pixelated display component.

[0408] FIG. 11 is a cross-sectional view of the inventive light active sheet having a transparent substrate with a convex lens system. The substrate may be formed having a lens element disposed adjacent to each point-source light emitter (LED die), or an additional lens layer or fixed to the substrate. The lens system may be concave for concentrating the light output from each emitter (as shown in FIG. 11) or convex for creating a more diffuse emission from the inventive light sheet (as shown in FIG. 12).

[0409] The devices shown, for example, in FIG. 4-12, illustrate various configurations of a light emitting sheet material. The LED dice shown are typical dice having top and bottom metal electrodes. However, in accordance with the present invention, the proper selection of materials (conductive adhesives, charge transport materials, electrolytes, conductors, etc.) may enable LED dice to be employed that do not require either or both the top and bottom metal electrodes. In this case, since the metal electrode in a typical device blocks the light output, the avoidance of the metal electrodes will effectively increase the device efficiency.

[0410] These devices may also be configured as a light to energy device. In this case, a first conductive surface is formed on the first substrate. A pattern of semiconductor elements is formed on the conductive pattern. Each semiconductor element includes a charge donor layer side and a charge acceptor side. A second substrate is provided having a second conductive surface formed on it. An adhesive Fixes the first substrate to the second substrate so that either of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the first conductive surface, and the other of the charge donor and the charge acceptor side of the semiconductor elements is in electrical communication with the second conductive surface.

[0411] The first conductive surface may be formed as a conductive pattern comprised of at least one of a conductive coating, a conductive ink or conductive adhesive. At least one of the first and the second conductive surfaces is a transparent conductor. At least one of the first and the second conductive surfaces may be preformed on the respective first and second substrate. The adhesive may comprise at least one of the top substrate and the bottom substrate. The adhesive layer may comprise at least one of a conductive adhesive, a semi-conductive adhesive, an insulative adhesive, a conductive polymer, a semi-conductive polymer, and an insulative polymer.

[0412] FIG. 13 is an exploded view of the inventive light active sheet having a melt adhesive mesh. The melt adhesive sheet may be incorporated during the manufacture of the light active sheet at any suitable point. For example, it may be preformed on the bottom substrate before the LED dice are transferred, and then after the dice are transferred to the spaces between the mesh, the top substrate applied. FIG. 14 is a schematic view of a method of manufacturing a light active sheet utilizing the melt adhesive mesh. In this case, heated pressure rollers melt the melt adhesive mesh and compress the top and bottom substrates together to effectively claim the LED dice into electrical contact with the substrate conductor. Conductive adhesives, electrolytes, charge transport materials, etc., as described herein may or may not be necessary, depending on the desired functional properties of the fabricated light active sheet.

[0413] FIG. 15 is an exploded view of the inventive light active sheet comprising a substrate having position-facilitating die dimples. FIG. 16 is a cross-sectional view of the inventive light active sheet showing the position-facilitating die dimples. In this case, the position-facilitating die dimples may be provided to help locate and maintain the positioning of the semiconductor elements.

[0414] FIG. 17 is an exploded view of the light active sheet having adhesive droplets for fixing the semiconductor elements (dice) to the substrate and/or for adhering the top substrate to the bottom substrate. The adhesive droplets can be preformed on the substrate(s) and may be heatt adhesive, epoxy, pressure sensitive adhesive, or the like. Alternatively, the adhesive droplets may be formed during the roll-to-roll or sheet fabrication process using, for example, inkjet print heads, silk screen printing, or the like. The adhesive droplets are provided to hold the dice in place, and/or to secure the top substrate and the bottom substrate together.

[0415] FIG. 18 is an exploded view of the light active sheet having an electrical resistance-reducing conductive grid pattern. The conductive grid pattern can be provided to reduce sheet resistance and improve the electrical characteristics of the fabricated light active sheet material.

[0416] FIG. 19 is a schematic view of an inventive method of manufacturing a light active sheet wherein a hole-and-sprocket system is employed to ensure registration of the constituent parts of the inventive light sheet during the manufacturing process. The holes in the substrates (or a transfer sheet carrying the substrates) line up with the sprockets that may either be driven to move the substrates, and/or that may be driven by the movement of the substrates. In either case, rotational position detection of the sprockets is used to control the various active elements of the manufacturing system to ensure accurate registration between the constituent parts of the inventive light active sheet material.

[0417] FIG. 20 is an isolated view of an inventive semiconductor element (e.g., LED die) having a magnetically-attractive element to facilitate die orientation and transfer. The dice may include a magnetically active electrode component, or an additional magnetically active component. The magnetically active component enables the dice to be positioned and oriented in response to an applied magnetic field. FIG. 21 illustrates the use of a magnetic drum and electrostatic charge source for orienting and transferring a pattern of semiconductor elements onto a substrate. FIG. 22 illustrates the use of an electrostatic drum and magnetic attraction source for orienting and transferring a pattern of semiconductor elements onto a substrate.

[0418] The inventive light sheet can be configured into a wide range of applications. FIG. 23 illustrates an inventive light active sheet thermoformed into a three-dimensional article. FIG. 24(a) illustrates an inventive light active sheet fabricated into a lampshade form-factor having a voltage conditioner for conditioning available electrical current.
FIG. 24(b) illustrates an inventive light active sheet fabricated into a light-bulb form-factor having a voltage conditioner for conditioning available electrical current. FIG. 25 is a cross-sectional view of an inventive light sheet employed in the light bulb and lampshade form factor shown in FIGS. 24(a) and (b). FIG. 26(a) illustrates an inventive light sheet configured as a heads-up-display (HUD) installed as an element of a vehicle windshield. FIG. 26(b) is a block diagram showing a driving circuit for an inventive HUD with a collision avoidance system. FIG. 27 is an exploded view of an inventive light sheet utilized as a thin, bright, flexible, energy efficient backlight component for an LCD display system.

[0419] FIG. 28 illustrates an embodiment of the inventive photo-radiation source showing a semiconductor particulate randomly dispersed within a conductive carrier matrix. A light active device includes a semiconductor particulate dispersed within a carrier matrix material.

[0420] The carrier matrix material may be conductive, insulative or semiconductor and allows charges to move through it to the semiconductor particulate. The charges of opposite polarity moving into the semiconductor material combine to form charge carrier matrix pairs. The charge carrier matrix pairs decay with the emission of photons, so that light radiation is emitted from the semiconductor material. Alternatively, the semiconductor material and other components of the inventive light source may be selected so that light received in the semiconductor particulate generates a flow of electrons. In this case, the photo-radiation source acts as a light sensor.

[0421] A first contact layer or first electrode is provided so that on application of an electric field charge carrier matrix having a polarity are injected into the semiconductor particulate through the conductive carrier matrix material. A second contact layer or second electrode is provided so that on application of the electric field to the second contact layer charge carrier matrix having an opposite polarity are injected into the semiconductor particulate through the conductive carrier matrix material. To form a display device, the first contact layer and the second contact layer can be arranged to form an array of pixel electrodes. Each pixel includes a portion of the semiconductor particulate dispersed within the conductive carrier matrix material. Each pixel is selectively addressable by applying a driving voltage to the appropriate first contact electrode and the second contact electrode.

[0422] The semiconductor particulate comprises at least one of an organic and an inorganic semiconductor. The semiconductor particulate can be, for example, a doped inorganic particle, such as the emissive component of a conventional LED. The semiconductor particulate can be, for another example, an organic light emitting diode particle. The semiconductor particulate may also comprise a combination of organic and inorganic materials to impart characteristics such as voltage control emission, aligning field attractiveness, emission color, emission efficiency, and the like.

[0423] The electrodes can be made from any suitable conductive material including electrode materials that may be metals, degenerate semiconductors, and conducting polymers. Examples of such materials include a wide variety of conducting materials including, but not limited to, indium-tin-oxide (ITO), metals such as gold, aluminum, calcium, silver, copper, indium and magnesium, alloys such as magnesium-silver, conducting fibers such as carbon fibers, and highly-conducting organic polymers such as highly-conducting doped polyaniline, highly-conducting doped polypyrrole, or polyvinyl alcohol (such as PAN-CSA) or other polyaniline-containing polymer, such as polyvinylidene. Other examples may include materials that would allow the devices to be constructed as hybrid devices through the use of semiconductor materials, such as n-doped silicon, n-doped polyacetylene or n-doped poly(paraphenylene).

[0424] As shown in FIG. 29, an embodiment of the inventive photo-radiation source may have the semiconductor particulate aligned between electrodes. The emissive particulate acts as point light sources within the carrier matrix material when holes and electrons are injected and recombine forming excitons. The excitons decay with the emission of radiation, such as light energy. In accordance with the present invention, the emissive particulate can be automatically aligned so that a significant majority of the point light sources are properly oriented and disposed between the electrodes (or array of electrodes in a display). This maximizes the light output from the device, greatly reduces cross-talk between pixels, and creates a protected emissive structure within the water, oxygen and contamination boundary provided by the hardened carrier matrix material.

[0425] In this case, the mixture disposed within the gap between the top and bottom electrodes includes a field reactive OLED particulate that is randomly dispersed within a fluid carrier matrix. An aligning field is applied between the top electrode and the bottom electrode. The field reactive OLED particulate moves within the carrier matrix material under the influence of the aligning field. Depending on the particulate composition, carrier matrix material and aligning field, the OLED particulates form chains between the electrodes (similar to the particulate in an electrical or magnetic rheological fluid in an electric or magnetic field), or otherwise becomes oriented in the aligning field. The aligning field is applied to form a desired orientation of the field reactive OLED particulate within the fluid carrier matrix. The fluid carrier matrix comprises a hardenable material. It can be organic or inorganic. While the desired orientation of the field reactive OLED particulate is maintained by the aligning field, the carrier matrix is hardened to form a hardened support structure which is locked in position the aligned OLED particulate.

[0426] FIG. 30 illustrates an embodiment of the inventive photo-radiation source showing semiconductor particulate and other performance enhancing particulate randomly dispersed within the conductive carrier matrix material. The semiconductor particulate may comprise an organic light active particulate that includes at least one conjugated polymer. The conjugated polymers having a sufficiently low concentration of extrinsic charge carrier matrix. An electric field applied between the first and second contact layers causes holes and electrons to be injected into the semiconductor particulate through the conductive carrier matrix material. For example, the second contact layer becomes positive relative to the first contact layer and charge carrier matrix of opposite polarity is injected into the semiconductor particulate. The opposite polarity charge carrier matrix
combine to form in the conjugated polymer charge carrier matrix pairs or excitons, which emit radiation in the form of light energy.

[0427] Depending on the desired mechanical, chemical, electrical and optical characteristics of the photo-radiation source, the conductive carrier matrix can be a binder material with one or more characteristic controlling additives. For example, the binder material may be a cross-linkable monomer, or an epoxy, or other material into which the semiconductor particulate can be dispersed. The characteristic controlling additives may be in a particulate and/or a fluid state within the binder. The characteristic controlling additives may include, for example, a desiccant, a scavenger, a conductive phase, a semiconductor phase, an insulative phase, a mechanical strength enhancing phase, an adhesive enhancing phase, a hole injecting material, an electron injecting material, a low work metal, a blocking material, and an emission enhancing material. A particulate, such as an ITO particulate, or a conductive metal, semiconductor, doped inorganic, doped organic, conjugated polymer, or the like can be added to control the conductivity and other electrical, mechanical and optical characteristics. Color absorbing dyes can be included to control the output color from the device. Fluorescent and phosphorescent components can be incorporated. Reflective material or diffusive material can be included to enhance the absorption of received light (in the case, for example, of a display or photodetector) or enhance the emitted light qualities. In the case of a solar collector, the random dispersal orientation of the particulate may be preferred because it will enable a solar cell to have light receiving particulate that are randomly oriented and the cell can receive light from the sun efficiently as it passes over head. The orientation of the particulate may also be controlled in a solar cell to provide a bias for preferred direction of captured light.

[0428] The characteristic controlling additives may also include materials that act as heat sinks to improve the thermal stability of the OLED materials. The low work metal additives can be used so that more efficient materials can be used as the electrodes. The characteristic controlling additives can also be used to improve the mobility of the carrier matrix in the organic materials and help improve the light efficiency of the light-emitting device.

[0429] FIG. 31 illustrates an embodiment of the inventive photo-radiation source showing different species of organic light active particulate dispersed within a carrier matrix material. This structure has significant advantages over other full color or multicolor light devices, and can also be configured as a wide spectrum photodetector for applications such as cameras. The organic light active particulate can include organic and inorganic particle constituents including at least one of hole transport material, organic emitters, electron transport material, magnetic and electrostatic material, insulators, semiconductors, conductors, and the like. As is described herein, a multi-layered organic light active particulate can be formed so that its optical, chemical, mechanical and electrical properties are controlled by the various particle constituents.

[0430] FIG. 32 schematically illustrates the cross-section of an embodiment of the inventive photo-radiation source. The inventive photo-radiation source for the selective polymerization of photo-radiation-curable organic material includes a first electrode, and a second electrode disposed adjacent to the first electrode and defining a gap therebetween. The electrodes are disposed on top and bottom substrates, respectively. The substrates may be a flexible material, such as polyester, PAN, or the like. One substrate may be transparent while the other is reflective.

[0431] A photo-radiation emission layer is disposed in the gap. The photo-radiation emission layer includes a charge-transport matrix material and an emissive particulate dispersed within the charge-transport matrix material. The emissive particulate receives electrical energy through the charge-transport matrix material. The energy is applied as a voltage to the first electrode, which may be an anode, and the second electrode, which may be a cathode. The emissive particulate generates photo-radiation in response to the applied voltage. This photo-radiation is effective for the selective polymerization of photo-radiation-curable organic material.

[0432] In accordance with the present invention, a photo-radiation source is obtained that is effective for the photo-polymerization of a polymerizable organic material. The charge-transport matrix material may be an ionic transport material, such as a fluid electrolyte or a solid electrolyte, including a solid polymer electrolyte (SPE). The solid polymer electrolyte may be a polymer electrolyte including at least one of a polyethylene glycol, a polyethylene oxide, and a polyethylene sulfide. Alternatively or additionally, the charge-transport matrix material may be an intrinsically conductive polymer. The intrinsically conductive polymer may include aromatic repeat units in a polymer backbone. The intrinsically conductive polymer may be, for example, a polythiophene.

[0433] The charge-transport matrix material can be transparent to photo-radiation in a photo-radiation spectrum effective for the selective polymerization of photo-radiation-curable organic material. The photo-radiation spectrum may comprise a range between and including UV and blue light. The photo-radiation spectrum may include a range between and including 365 and 405 nm. In a specific embodiment of the invention, the photo-radiation spectrum emitted from the photo-radiation source is in a range centered at around 420 nm.

[0434] The charge transport material transports electrical charges to the emissive particulate when a voltage is applied to the first electrode and the second electrode. These charges cause the emission of photo-radiation from the emissive particulate, this photo-radiation being effective for the selective polymerization of photo-radiation-curable organic material.

[0435] The emissive particulate is capable of emitting photo-radiation in a photo-spectrum radiation spectrum effective for the selective polymerization of photo-radiation-curable organic material. The photo-radiation spectrum may comprise a range between and including UV and blue light. The photo-radiation spectrum may include a range between and including 365 and 405 nm. In a specific embodiment of the invention, the photo-radiation spectrum emitted from the emissive particulate is in a range centered at around 420 nm.

[0436] One of the first and the second electrode can be transparent to at least a portion of photo-radiation emitted by the emissive particulate and the other of the first and the
second electrode can be reflective of at least a portion of the photo-radiation emitted by the emissive particulate.

[0437] The emissive particulate may comprise a semiconductor material, such as an organic and/or an inorganic multilayered semiconductor material. The semiconductor particulate can include an organic light active particulate including at least one conjugated polymer. The conjugated polymer has a sufficiently low concentration of extrinsic charge carriers so that on applying an electric field between the first and second contact layers to the semiconductor particulate through the conductive carrier material the second contact layer becomes positive relative to the first contact layer and charge carriers of first and second types are injected into the semiconductor particulate. The charge carriers combine to form in the conjugated polymer charge carrier pairs which decay radiatively so that radiation is emitted from the conjugated polymer. The organic light active particulate may comprise particles including at least one of hole transport material, organic emitters, and electron transport material.

[0438] The organic light active particulate may comprise particles including a polymer blend, the polymer blend including an organic emitter blended with at least one of a hole transport material, an electron transport material and a blocking material. The organic light active particulate may comprise microcapsules including a polymer shell encapsulating an internal phase comprised of a polymer blend including an organic emitter blended with at least one of a hole transport material, an electron transport material and a blocking material.

[0439] The conductive carrier material may comprise a binder material with one or more characteristic controlling additives. The characteristic controlling additives are at least one of a particulate and a fluid include a desiccant; a conductive phase, a semiconductor phase, an insulator phase, a mechanical strength enhancing phase, an adhesive enhancing phase, a hole injecting material, an electron injecting material, a low work metal, a blocking material, and an emission enhancing material.

[0440] FIG. 33 illustrates a step in an embodiment of the inventive method of making a photo-radiation source. In this step, an emissive particulate/matrix mixture is applied onto a bottom substrate with bottom electrode. The particulate/matrix mixture can be applied onto the surface of the bottom electrode through a slot-die coating stage, or as shown herein, using a glass rod. At least one of the first electrode and the second electrode may be transparent to the photo-radiation in a photo-radiation spectrum effective for the selective polymerization of photo-radiation-curable organic material. The first electrode and the second electrode can be planar and disposed on flexible substrates.

[0441] FIG. 34 illustrates a step in the inventive method of making a photo-radiation source, showing the step of uniformly spreading the emissive particulate/matrix mixture onto the bottom electrode. In this case, the glass rod is pulled across the surface of the bottom electrode to spread a uniformly thick layer of the emissive particulate/matrix material. Spacers may be provided along the edges of the bottom electrode to promote the uniformity of the spread mixture layer.

[0442] FIG. 35 illustrates a step in the inventive method of making a photo-radiation source, showing the addition of a transparent top substrate with transparent top electrode over the emissive particulate/matrix mixture. At least one of the first electrode and the second electrode may be transparent to the photo-radiation in a photo-radiation spectrum effective for the selective polymerization of photo-radiation-curable organic material. The first electrode and the second electrode can be planar and disposed on flexible substrates. The top substrate and the top electrode may be transparent, with the electrode material being indium tin oxide, a conjugated polymer, or other transparent conductor. The top substrate material can be polyester, glass or other transparent substrate material.

[0443] FIG. 36 illustrates a step in the inventive method of making a photo-radiation source, showing the step of photocuring the matrix to form a solid-state emissive particulate/hardened matrix on the bottom substrate. Once the top substrate and top electrode are in place the matrix material can be hardened to form a solid-state device. The matrix material can be a photo-polymerizable organic material, a two-part system such as a two-part epoxy, a thermally hardenable material, or the like.

[0444] FIG. 37 illustrates a step in the inventive method of making a photo-radiation source, showing the step of trimming the solid-state photo-radiation source sheet. Once the solid-state device structure has been obtained, the ends and edges can be trimmed as necessary or desired. FIG. 38 illustrates the completed solid-state photo-radiation source sheet and FIG. 39 illustrates the completed solid-state photo-radiation source sheet being driven with a driving voltage to light up.

[0445] FIG. 44 shows an example of a roll-to-roll manufacturing process utilizing the inventive photo-radiation source for curing a photo-polymerizable organic material disposed between two continuous sheets of top and bottom substrates. FIG. 45 shows an example of a conveyor continuous processing system utilizing a curing booth having the inventive photo-radiation source. FIG. 46 shows an example of a light-pipe photo-polymerization system having an embodiment of the inventive photo-radiation source.

[0446] FIG. 47 shows an example of a three-dimensional scanned curing system having an embodiment of the inventive photo-radiation source. In this case, the inventive photo-radiation source is used to create a focused beam of light. Mirrors are used to scan the light beam over the surface of a pool of light-polymerizable organic material. As the light is scanned over the surface, the organic material that is impinged by the scanned light beam hardens. With each successive two-dimensional scan, the stage is lowered. Over multiple successive beam scanning and stage lowering passes, a three-dimensional solid object is built up.

[0447] FIG. 48 illustrates a conventional inorganic light emitting diode die. A conventional inorganic light emitting diode die consists of semiconductor layers disposed between a cathode and an anode. When a voltage is applied to the cathode and anode, electrons and holes combine within the semiconductor layers and decay radiatively to produce light.

[0448] In accordance with the present invention, a photo-radiation source is provided for the selective polymerization of photo-radiation-curable organic material. FIG. 49 illustrates an inventive photo-radiation source having a formation of light emitting diode die connected without solder or
wire bonding to a common anode and cathode. A plurality of light emitting diode dice generates a photo-radiation spectrum effective for the selective polymerization of photo-radiation-curable organic material. Each dice has an anode and a cathode. A first electrode is in contact with each anode of the respective light emitting diode dice. A second electrode is in contact with each cathode of the respective light emitting diode dice. At least one of the first electrode and the second electrode comprises a transparent conductor. FIG. 50 illustrates the high packing density of the formation of light emitting diode dice obtainable in accordance with an embodiment of the inventive photo-radiation source. The plurality of dice can be permanently fixed in a formation by being squeezed between the first electrode and the second electrode without the use of solder or wire bonding. The plurality of dice can be permanently fixed in a formation by being adhered to at least one of the first electrode and the second electrode using an intrinsically conductive polymer. The intrinsically conductive polymer may comprise a benzene derivative. The intrinsically conductive polymer may comprise a polythiophene.

[0449] FIG. 51 is an embodiment of the inventive photo-radiation source showing a heat sink electrode base having cooling channels. In accordance with this embodiment of the present invention, the bottom electrode can be constructed of a metal, such as aluminum. A cooling system, such as cooling fans can be provided to dissipate heat that is generated when driving the tightly packed formation of inorganic light emitting diode dice. The system can be cooling channels through which a fluid material, such as forced air, water, or other liquid flows. The heated liquid can be passed through a radiator or other system for removing heat from it, and the cooling system can be a self-contained, closed apparatus. By this construction, an extremely high die packing density is obtained allowing for very high light intensity to be emitted. This very high light intensity enables the effective photo-polymerization of a photo-polymerizable organic material.

[0450] The photo-radiation spectrum emitted by the dice may be in a range between and including UV and blue light. The photo-radiation spectrum may include a range between and including 365 and 405 nm. In a specific embodiment of the invention, the photo-radiation spectrum emitted from the dice is in a range centered at around 420 nm.

[0451] In accordance with the present invention, a method of making a photo-radiation source is provided. A first planar conductor is provided and a formation of light emitting dice formed on the first planar conductor. Each die has a cathode and an anode. One of the cathode and anode of each die is in contact with the first planar conductor. A second planar conductor is disposed on top of the formation of light emitting dice, so that the second planar conductor is in contact with the other of the cathode and anode of each die. The first planar conductor is bound to the second planar conductor to permanently maintain the formation of light emitting dice. In accordance with the present invention, the formation is maintained, and the electrical contact with the conductors is obtained, without the use of solder or wire bonding for making an electrical and mechanical contact between the dice and either of the first planar conductor and the second planar conductor.

[0452] At least one of the first planar electrode and the second planar electrode is transparent. The first planar electrode and the second planar electrode can be bound together by an adhesive disposed between the first and second electrode. The formation of light emitting dice can be fixed to at least one of the first planar electrode and the second planar electrode by a binder material. This binder material may be an intrinsically conductive polymer. The first planar electrode and the second planar electrode can be bound together by the binder material that also fixes the formation of light emitting dice. In accordance with this embodiment of the invention, ultra-high die packing density is obtained without the need for solder or wire bonding each individual die.

[0453] FIG. 52 illustrates an embodiment of the inventive photo-radiation source having a geometry and optical system for concentrating the light output for photo-curing an organic material in a continuous fabrication method. The curved geometry is obtained by forming the substrates, the first electrode and the second electrode as being planar and flexible. The flexible substrates can thus be shaped into an optical geometry effective for controlling light emitted from the plurality of light emitting diode dice, or for controlling the light emitted from the radiation source light sheet described above.

[0454] FIG. 53 shows an isolated view of a substrate with an optical surface for controlling the focus of light emitted from an embodiment of the inventive photo-radiation source. FIG. 54 shows an embodiment of the inventive photo-radiation source having a flat light sheet construction with a top substrate with an optical surface. FIG. 55 shows the inventive photo-radiation source having a curved light sheet construction shaped with a light emission enhancing curvature. FIG. 56 is a schematic side view of the curved light sheet construction illustrating the focal point of light emission. FIG. 57 is a view of the curved light sheet construction having a secondary optical system for controlling the focus of light emission. FIG. 58 is a schematic side view showing light emitting diode dice disposed adjacent to respective optical lenses. FIG. 59 is a schematic side view showing how the light output intensity can be increased by changing the shape of the curved light sheet construction. FIG. 60 is a schematic side view showing two curved light sheets having a common light emission focal point. FIG. 61 is a schematic side view showing three curved light sheets having a common light emission focal point. As shown in these drawings, at least one of the flexible substrates can include a first optical system associated with it for controlling light emitted from the plurality of light emitting diode dice. A second optical system can be disposed adjacent to one of the substrates for controlling light emitted from the plurality of light emitting diode dice.

[0455] FIG. 62 is a cross-sectional block diagram showing the constituent parts of the inventive light active sheet. In accordance with an embodiment of the inventive light active sheet, a top PET substrate has a coating of TTO, acting as the top electrode. A bottom PET substrate can be ITO PET, metal foil, metalized mylar, etc., depending on the intended application of the light sheet (e.g., transparent HUD element, light source, solar panel, etc.). The matrix (carrier) material may be a transparent photopolymerizable solid polymer electrolyte (SPE) based on cross-linked polysiloxane-g-oligoethylene oxide (see, for example, Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide). Ionic conductivity and electrochemical prop-
Fig. 63 is a cross-section block diagram of an embodiment of the inventive light active sheet having a cross-linked polymer (e.g., polysilsesquioxane-g-oligoethylene oxide) matrix, UV semiconductor elements, and phosphor re-emitter. In this case, a white-light solid-state light sheet is obtained through the stimulated re-emission of light in the visible spectrum via UV stimulation of a phosphor re-emitter additive dispersed in the matrix between the substrates. In this case, the UV semiconductor elements may be LED dice (for example, UV LED dice C405-MB290-S0100, available from Cree of North Carolina) and the phosphor may be a YAG (yttrium aluminum garnet) phosphor.

Fig. 64 is a cross-sectional block diagram of an embodiment of the inventive light active sheet having a light diffusive and/or re-emitter coating on a transparent substrate. In accordance with this embodiment, the additives in the matrix may be, for example, light diffusers, adhesive enhancers, matrix conductivity enhancers, etc. The re-emitter coating can be a YAG phosphor coating (with a multi-layered substrate). Further, the light diffusion can be obtained through the substrate composition or through substrate surface effects, such as calendaring and/or embossing.

Fig. 65 is a cross-sectional block diagram of an embodiment of the inventive light active sheet having blue and yellow semiconductor elements, and light diffusers (e.g., glass beads) within the matrix. The blue and yellow semiconductor elements can be LED dice that are selected to create a white light emission, or an RGB combination.

Fig. 66 is a side view of a commercially available inorganic LED die. A conventional inorganic LED die is available from many manufacturers, typically has a relatively narrow radiation emission spectrum, is relatively energy efficient, has a long service life, and is solid-state and durable. The die shown is an example of an AlGaAs/AlGaAs red die, obtained from Tantek Corporation, Taiwan. These dies have dimensions roughly 12 mil x 12 mil x 8 mil, making them very small point light sources. As shown in Fig. 67, in a conventional LED lamp, this die is held in a metal cup so that electrode of the die (e.g., the anode) is in contact with the base of the cup. The metal cup is part of an anode lead. The other electrode of the die (e.g., the cathode) has a very thin wire solder or wire bonded to it, with the other end of the wire solder or wire bonded to an anode lead. The cup, die, wire, and portions of the anode and cathode leads are encased in a plastic lens with the anode and cathode leads protruding from the lens base. These leads are typically solder or wire bonded to a circuit board to selectively provide power to the die and cause it to emit light. It is very difficult to manufacture these conventional lamps due to the very small size of the die, and the need to solder or wire bond such a small wire to such a small die electrode. Further, the plastic lens material is a poor heat conductor and the cup provides little heat sink capacity. As the die heats up its efficiency is reduced, limiting the service conditions, power efficiency and light output potential of the lamp. The bulkiness of the plastic lens material and the need to solder or wire bond the lamp leads to an electrical power source limits emissive source packing density and the potential output intensity per surface area.

Fig. 68 is a cross-sectional view of an experimental prototype of the inventive photo-radiation source having a gap between the N electrode of an LED die and an ITO cathode. When voltage is applied to the aluminum anode and the ITO cathode, the die gap between the N electrode and the ITO prevents electricity from getting to the die.

Fig. 69 is a cross-sectional view of the experimental prototype of the inventive photo-radiation source having a drop of quinoline as a conductive matrix material completing the electrical contact between the N electrode of the LED die and the ITO cathode. When voltage is applied to the aluminum anode and the ITO cathode, the quinoline completes the electrical connection, and the die lights up brightly. This inventive device structure allows a connection that does not require solder or wire bonding between the die and the current source from the anode and cathode electrodes (the ITO and the aluminum). The aluminum block acts as an effective heat sink, and the quinoline surrounding the die provides very efficient heat transfer from the die to the aluminum block. The result is that the die can be driven at higher voltage and brightness intensity. Also, since the connection to the die does not require a tedious and expensive solder or wire bonding operation, it is much easier to fabricate the inventive structure than the conventional LED lamp construction (shown, for example, in Fig. 67). Further, the avoidance of solder or wire bonding connections directly to the die, and the heat transfer and dissipation provided by the conductive medium and the metallic heat sink, allows for extremely high die packing densities to be realized (as shown, for example, in Fig. 51). The result is an effective photo-radiation source having superior irradiation intensity, durability, lifetime, cost and spectrum as compared with any of the conventional art.

Fig. 70 is a photograph of an experiment prototype demonstrating a light active particle (LED die) connected to a top and/or bottom electrode through a charge transport material (quinoline). This photograph shows a conventional LED die suspended in a drop of quinoline, a benzene derivative. The quinoline drop and LED die are disposed between a top and bottom conductive substrate comprised of ITO-coated float glass. When voltage is applied to the respective top and bottom conductors (the ITO), the electrical connection to the die is made through the quinoline, and the die brightly lights up.

Fig. 71 is a photograph of an experimental prototype demonstrating a free-floating light emissive particulate (miniature LED lamps) dispersed within a conductive fluid carrier (sulf-doped polyethylene oxide). An emissive par-
The present invention pertains to a method of making a light active sheet. The inventive roll-to-roll fabrication process starts with a supply roll of bottom substrate material having an electrically conductive surface (stage 1). As shown in stage 2, a supply roll of a hotmelt adhesive sheet is brought into contact with the electrically conductive surface of the bottom substrate. Light active semiconductor elements, such as LED die, are embedded in the hotmelt adhesive sheet. The LED die each has a top electrode and a bottom electrode. The LED die (or other semiconductor or electronic circuit elements) can be pre-embedded into the hotmelt adhesive sheet off-line in a separate operation, or in-line as described elsewhere herein. A warm tacky pressure roller system can be used to soften the hotmelt adhesive and secure it to the bottom substrate. The hotmelt adhesive sheet can include a release sheet that protects the embedded semiconductor elements and keeps the adhesive from sticking to itself in the roll. At stage 3, a top transparent substrate having a transparent conductive layer is provided. The hotmelt adhesive sheet with the embedded LED die is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The lamination is run through hot-fusing pressure rollers to melt the hotmelt adhesive sheet and electrically insulate and bind the top substrate to the bottom substrate. The rollers may be heated, or separate heating zones can be provided for heat activating the adhesive.

Applicants have discovered that as the hotmelt sheet is softened, the LED die breakthrough the adhesive so that the top electrode comes into electrical contact with the transparent conductive layer of the top substrate and the bottom electrode comes into electrical contact with the electrically conductive surface of the bottom substrate. Thus, the p and n sides of each LED die are automatically connected to the top conductive layer and the bottom conductive surface. Each LED die is encapsulated and secured between the substrates in the flexible, hotmelt adhesive sheet layer. The bottom substrate, the hotmelt adhesive (with the embedded LED die) and the top substrate can be provided as rolls of material. The rolls are brought together in a continuous roll fabrication process, resulting in a flexible sheet of lighting material.

FIG. 74 is a top view of an inventive light active sheet showing transparent conductor windows and highly conductive leads. In this embodiment, the transparent conductor windows are applied to a transparent substrate, such as PET, through a screen printing, sputtered through a mask, inkjet, gravure, offset, or other coating or printing process. The transparent conductive windows allow light generated by the LEDs to be emitted. In accordance with the present invention, conventional wirebonding or soldering of the LED die is not necessary. Instead, when the hotmelt sheet melts, the LED die automatically make face-to-face electrically conductive contact with the top and bottom conductive surfaces on the substrates, and that contact is permanently maintained when the hotmelt sheet cools. This device architecture is readily adaptable to high yield manufacturing, and may avoid the need for metallic conductive pads formed on the LED die emitting face. The avoidance of the metallic conductive pad results in more effective light emission from the LED die, since the metallic conductive pads conventionally required for soldering or wirebonding are
also light blocking. Thus, in addition to providing a lower manufacturing cost and unique very thin form factor, the inventive light sheet may also be a more energy efficient device.

[0471] FIG. 75 is a cross sectional schematic view of the inventive light active sheet showing transparent conductor windows and highly conductive leads. The inventive light active sheet consists of a bottom substrate flexible sheet having an electrically conductive surface. A top transparent substrate flexible sheet has a transparent conductive layer disposed on it. An electrically insulative adhesive flexible sheet has light active semiconductor elements fixed to it. The light active semiconductor elements each have an n-side and a p-side. The electrically insulative adhesive sheet having the light active semiconductor elements fixed to it is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The adhesive sheet is activated so that the electrically insulative adhesive electrically insulates and binds the top substrate sheet to the bottom substrate sheet. When the adhesive sheet is activated, one of the n-side or the p-side of the light active semiconductor elements is automatically brought into electrical communication with the transparent conductive layer of the top substrate sheet. The other of the n-side or the p-side is automatically brought into electrical communication with the electrically conductive surface of the bottom substrate sheet to form a light active device.

[0472] FIG. 76 is an isolated top view of a pair of LED devices connected to a highly conductive lead line through a more resistive transparent conductive window. FIG. 77 is an equivalent electrical circuit diagram of the inventive semiconductor device circuit. The transparent windows are composed of a conductive material that is not as conductive as a metal conductor, such as copper wire. Therefore, each transparent window acts as a resistor in series electrical connection with each respective LED die. This resistor protects the LED die from burning due to too much electrical energy. Further, highly conductive leads are connected to each transparent window, and each highly conductive lead is connected to a highly conductive bus. Power is supplied to this bus, and each LED die is energized with the same electrical power so that a consistent light is generated across the entire light sheet.

[0473] FIG. 78 is a cross sectional view of the light active sheet showing a transparent conductor layer on a transparent top substrate, LED dice embedded in a hotmelt adhesive layer, and a conductive bottom substrate. FIG. 79 is an exploded view of the component layers of the inventive light active sheet. In accordance with an aspect of the present invention, a method of making a light active sheet is provided. A bottom substrate having an electrically conductive surface is provided. An electrically insulative adhesive is provided. Light active semiconductor elements, such as LED die, are fixed to the electrically insulative adhesive. The light active semiconductor elements each have an n-side and a p-side. A top transparent substrate is provided having a transparent conductive layer.

[0474] The electrically insulative adhesive having the light active semiconductor elements fixed thereon is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The electrically insulative adhesive is activated to electrically insulate and bind the top substrate to the bottom substrate. The device structure is thus formed so that either the n-side or the p-side of the light active semiconductor elements are in electrical communication with the transparent conductive layer of the top substrate, and so that the other of the n-side or the p-side of each the light active semiconductor elements are in electrical communication with the electrically conductive surface of the bottom substrate to form a light active device. In accordance with the present invention, p and n sides of each LED die are automatically connected and maintained to the respective top and bottom conductor, completely securing each LED die between the substrates in a flexible, hotmelt adhesive sheet layer.

[0475] The bottom substrate, the electrically insulative adhesive and the top substrate can be provided as respective rolls of material. This enables the bottom substrate, the electrically insulative adhesive (with the LED die embedded therein) and the top substrate together in a continuous roll fabrication process. It is noted that these three rolls are all that are necessary for forming the most basic working device structure in accordance with the present invention. This simple and uncomplicated structure makes it inherently adaptable to a high yield, continuous, roll-to-roll fabrication techniques that is not obtainable using prior art techniques. As shown in FIG. 78, the transparent conductor on the bottom substrate can be formed as a continuous surface, such as ITO (indium tin oxide), conductive polymer, or a thin metallic layer.

[0476] FIG. 80(a) is a top view of a transparent substrate sheet. FIG. 80(b) is a top view of the transparent substrate sheet having transparent conductive windows formed on it. FIG. 80(c) is a top view of the transparent substrate sheet having transparent conductive windows, highly conductive lead lines and a conductive buss formed on it. In this case, the transparent conductive windows can be performed off-line on the top substrate and the substrate re-rolled, or the conductive windows can be in-line during the fabrication of the inventive light sheet or semiconductor device. The windows can be formed by inkjet, coating through a mask, screen printing or other technique. The transparent material can be a conductive paste, a conductive polymer, a sputtered layer, or other suitable material that enables light to be transmitted from the LED die.

[0477] FIG. 81 shows a two-part step for stretching a release substrate to create a desired spacing between semiconductor elements diced from a wafer. A predetermined pattern of the light active semiconductor elements can be formed using conventional pick and place machines. Also, in accordance with an inventive adhesive transfer method, the stretched substrate is used to create a desired spacing. The dice are provided from the foundry on an adhesive sheet that can be stretched for the pick and place equipment to remove the dice. In accordance with the present invention, a regular array can be formed by spreading the sheet to make an array of the right spacing and transfer it directly to the melt adhesive. There may need to be an intermediate step that transfers to a linear tape and then the linear tape is applied at a controlled rate to make wider or closer spacing, and with machine vision to identify the holes in the foundry sheet caused by the inspection and removal of defect dice.

[0478] FIG. 82 is an exploded view of the sheet components used to embed the semiconductor elements into an
adhesive hotmelt sheet. A hotmelt sheet is placed on top of the stretched LED dice, and a Teflon release layer placed on top of the hotmelt sheet. The hotmelt sheet is heated, and pressure applied to embed the LED dice in the hotmelt sheet. When cooled, the hotmelt sheet can be removed from the stretch release substrate and the embedded LED dice lifted along with the hotmelt sheet. FIG. 83(a) is a cross sectional view of the hotmelt sheet with embedded semiconductor elements prior to removing the semiconductor elements from the release stretch substrate. FIG. 83(b) is a cross sectional view of the hotmelt sheet with embedded semiconductor elements after removing the semiconductor elements from the release stretch substrate.

[0479] In addition to lifting the LED dice from the release sheet in formation or using a pick and place machine, other inventive methods can be employed for forming a predetermined pattern of the light active semiconductor elements including the electrostatic, optomagnetic and adhesive transfer methods described herein.

[0480] FIG. 84 is a top view of the inventive light sheet material configured with addressable LED elements. FIG. 85 is a cross sectional view of the inventive light sheet configured with addressable LED elements. FIG. 86(a) is a top view of a bottom substrate sheet having a grid of x-electrodes. FIG. 86(b) is a top view of an adhesive hotmelt sheet having embedded LED dice. FIG. 86(c) is a top view of a transparent substrate sheet having a grid of y-electrodes. The transparent conductive layer can be formed by printing a transparent conductive material, such as ITO particles in a polymer binder, to form conductive light transmissive connecting lands. Each land is provided for connecting with a respective light active semiconductor. A relatively higher conducting line pattern can be formed on at least one of the top substrate and the bottom substrate for providing a relatively lower path of resistance from a power supply source to each light active semiconductor element. The electrically conductive surface and the electrically conductive pattern comprise a respective x and y wiring grid for selectively addressing individual light active semiconductor elements for forming a display.

[0481] FIG. 87 shows an inventive method for manufacturing a multi-colored light active sheet using a roll-to-roll fabrication process, this multi-color light sheet has RGB sub-pixels composed of individual LED die, and may be driven as a display, white light sheet, variable color sheet, etc., depending on the conductive lead pattern and driving scheme. FIG. 88 is a cross sectional view of an embodiment of the inventive light sheet configured as a full-color display pixel.

[0482] In accordance with the present invention, a method is provided for making an electronically active sheet. The electronically active sheet has a very thin and highly flexible form factor, and can be used to form an active display having a plurality of emissive pixels. Each pixel includes red, green and blue subpixel elements. It can be manufactured using the low cost, high yield continuous roll-to-roll fabrication method described herein. The electronically active sheet can also be used for making a lighting device, a light-to-energy device, a flexible electronic circuit, and many other electronic devices. The semiconductor elements can include resistors, transistors, diodes, and any other semiconductor element having a top and bottom electrode format. Other electronic elements can be provided in combination or separately and employed as components of the fabricated flexible electronic circuit.

[0483] The inventive steps for forming the electronically active sheet include providing a bottom planar substrate (stage 1) and forming an electrically conductive lines on the bottom substrate (stage 2). An adhesive is provided (stage 3) and at least one semiconductor element is fixed to the adhesive. Each semiconductor element has a top conductor and a bottom conductor. In the case of a display device, or multi-colored device, LED dice that are capable of being driven to emit different colors (e.g., RGB) can be applied to the adhesive (stages 4-5), thus forming separately addressable sub-pixel elements of a completed display. A top substrate is provided having an electrically conductive pattern disposed thereon (stage 6). The adhesive with the semiconductor element fixed thereto is inserted between the electrically conductive surface and the electrically conductive pattern to form a lamination. The adhesive is activated (stage 7) to bind the top substrate to the bottom substrate so that one of the top conductor and the bottom conductor of the semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive pattern of the top substrate and so that the other of the top conductor and the bottom conductor of each semiconductor element is automatically brought into and maintained in electrical communication with the electrically conductive surface of the bottom substrate. Thus, the invention can be used to fabricate a thin, flexible, emissive display using roll-to-roll fabrication methods.

[0484] As shown, in a preferred embodiment, the electrically insulative adhesive comprises a hotmelt material. The step of activating comprises applying heat and pressure to the lamination to soften the hotmelt material. At least one of the heat and pressure are provided by rollers. Alternatively, the adhesive may be composed so that activating it comprises at least one of solvent action (e.g., silicone adhesive), catalytic reaction (e.g., epoxy and hardener) and radiation curing (e.g., UV curable polymer adhesive).

[0485] The light active semiconductor elements can be light emitting diode die such as is readily commercially available from semiconductor foundries. The light active semiconductor elements may alternatively or additionally be light-to-energy devices, such as solar cell devices. To make white light, a first portion of the light active semiconductor elements emit a first wavelength of radiation and second portion of the light active semiconductor elements emit a second wavelength of radiation. Alternatively, yellow light emitting LED die and blue light emitting LED die can be provided in proper proportions to create a desired white light appearance. Diffusers can be included within the adhesive, substrates or as a coating on the substrates and/or the adhesive to create a more uniform glowing surface.

[0486] FIG. 89 is an exploded view showing the main constituent components of an embodiment of the inventive light sheet configured as a full-color display. The electrically insulative adhesive can be a hotmelt sheet material, such as that available from Bemis Associates. The light active semiconductor elements can be pre-embedded into the hotmelt sheet before the step of inserting the adhesive sheet between the substrates. In this way, the hotmelt sheet can have the semiconductor devices embedded off-line so that
multiple embedding lines can supply a roll-to-roll fabrication line. A predetermined pattern of the light active semiconductor elements can be formed embedded in the hotmelt sheet. As shown in stages 4-6 of FIG. 87, the predetermined pattern can be formed by electrostatically attracting a plurality of light active semiconductor elements on a transfer member, similar to a laser printer electrostatic drum, and transferring the predetermined pattern onto the insulative adhesive.

[0487] FIG. 90 is an exploded view showing the main constituent components of an embodiment of the inventive light sheet configured as an egress EXIT sign. In this case, the light emitting elements can be formed as a predetermined pattern either off-line or in-line prior to the hotmelt sheet being inserted between the substrates.

[0488] Color light can be provided by including LED capable of emitting different wavelengths of light. For example, a red emitting LED combined with a yellow emitting LED when driven together and located near each other will be perceived by the human eye as generating an orange light. White light can be generated by combining yellow and blue LED dice, or red, green and blue dice. A phosphor can be provided in the lamination. The phosphor is optically stimulated by a radiation emission of a first wavelength (e.g., blue) from the light active semiconductor element (e.g., LED die) to emit light of a second wavelength (e.g., yellow).

[0489] Alternative methods and device architectures can be employed that add components such as double sided electrically conductive tape or conductive adhesive to connect the LED die or semiconductor devices. These elements can also be employed in addition to the other inventive methods and device architectures described herein to connect other electronic components and form more complex device sheets. FIG. 91 is a cross sectional view of another embodiment of the present invention utilizing a double-faced insulative adhesive tape and a bottom conductive adhesive tape structure. FIG. 92 is an exploded view of the main constituent components of the embodiment shown in FIG. 91. FIG. 93 is a cross sectional view of another embodiment of the present invention utilizing a top conductive adhesive tape, double-faced insulative adhesive tape and a bottom conductive adhesive tape structure. FIG. 94 is an exploded view of the main constituent components of the embodiment shown in FIG. 93. FIG. 95 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process and utilizing a double-faced insulative adhesive tape and a bottom conductive adhesive tape structure. FIG. 96 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt sheet and a bottom conductive adhesive tape structure. FIG. 97 is an exploded view of the main constituent components of the embodiment shown in FIG. 96. FIG. 98 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt adhesive and a bottom conductive hotmelt adhesive structure. FIG. 99 is an exploded view of the main constituent components of the embodiment shown in FIG. 98. FIG. 100 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process and utilizing a top conductive adhesive tape, double-faced insulative adhesive tape and a bottom conductive adhesive tape structure. FIG. 101 is a cross sectional view of another embodiment of the present invention utilizing a top conductive adhesive tape, double-faced insulative adhesive tape and a bottom conductive hotmelt adhesive structure. FIG. 102 is an exploded view of the main constituent components of the embodiment shown in FIG. 101. FIG. 103 is a cross sectional view of another embodiment of the present invention utilizing a top conductive hotmelt adhesive, double-faced insulative adhesive tape and a bottom conductive hotmelt adhesive structure. FIG. 104 is an exploded view of the main constituent components of the embodiment shown in FIG. 103. FIG. 105 illustrates an inventive method for manufacturing a light active sheet using a roll-to-roll fabrication process, wherein a conductive coating is formed on the top and bottom substrate using slot-die coating stages. FIG. 106 is a cross sectional view of another embodiment of the present invention utilizing insulative hotmelt adhesive strips and conductive adhesive tape structure. FIG. 107 is an exploded view of the main constituent components of the embodiment shown in FIG. 106. FIG. 108 is a cross sectional view of another embodiment of the present invention utilizing an insulative hotmelt adhesive strips, top conductive strips and bottom conductive adhesive tape structure. FIG. 109 is an exploded view of the main constituent components of the embodiment shown in FIG. 108. FIG. 110 illustrates an inventive method for manufacturing a light active sheet using conductive strips and adhesive strips in a roll-to-roll manufacturing process.

[0490] In accordance with the present invention, a bright light panel is obtained using a grid of LED dice fixed between sheets of flexible conductive substrates. The panels are extremely lightweight, flexible, long-lived (100,000 hours based on the LED lifetime), and easily deployed. Thinner than a credit card, the lights are so rugged that they can be nailed or cut without affecting performance. The light is bright and diffuse at low power and compatible with photovoltaic sources. In accordance with another aspect of the present invention, a two-color lighting panel is provided, having, for example white light for general illumination, and red-light for a command and control situation or as a night vision aid. In an embodiment of the present invention, to change the color, only the polarity of the electrical source is switched.

[0491] The features of the inventive lighting system include:

[0492] 1. Low power, highly efficient, evenly diffuse solid state lighting that can be dimmed

[0493] 2. Single- or two-color illumination

[0494] 3. Easily repaired, amenable to low-voltage battery, direct photovoltaic source or charging system

[0495] 4. Rugged, flexible, thin light sheet and fixture format—unbreakable
5. Unique solid-state technology robust against shock and vibration

6. Low cost at high volume when manufactured roll-to-roll

The inventive device structure imbeds LED dice (chips) between two conductive layers, at least one of which is transparent. For example Indium Tin Oxide (ITO)—coated poly(ethylene terephthalate) (PET) has been successfully used in prototype devices. The other substrate could also be ITO/PET or for a higher level of conductivity (and brighter light), made of a reflective, metallized PET for flexibility and toughness, or a metal foil. The transparent electrode can also have a fine pattern of conductive ink printed on it to even out the current to the individual dies in a regular array for even lighting, or patterned for a signage application. The inventive structure is fabricated from prepared materials according to the manufacturing process described herein. In accordance with an embodiment of the present invention, the manufacturing process comprises a simple lamination that can be used for producing sheet lighting material.

The inventive process requires the preparation of the roll of hot-melt adhesive to make a hot-melt active layer for the final lamination. In accordance with embodiments of the present invention, methods are provided to accurately orient the LED dice (dies) for the adhesive layer, and place them in the right place. The inventive fabrication of the hot-melt active layer may be a two-step process. First the dice are oriented and placed accurately on a tacky adhesive to hold them in place in a pattern of holes formed in a silicone-coated release layer template. Then the hot melt adhesive is warmed to soften and pick up the dice from the template. The template may be reused. A manual orientation and placement of the dice may be used, or to increase the economic benefits of this inexpensive solid-state light source, one of the following inventive placement methods, or others, may be employed.

Pick and Place Method. The current method for placing dice on printed circuit boards, or for fabricating individual LED lamps involves robotics orientation and placement using machine vision. Conventional pick and place equipment can be adapted for the placement of dice on a continuous hotmelt sheet web.

FIG. 112 shows a first step of an inventive adhesive transfer method for fixing semiconductor elements onto an adhesive transfer substrate. In this case, the predetermined pattern is formed by transferring the semiconductor elements from a relatively lower tack adhesive to a relatively higher tack adhesive. FIG. 113 shows a second step of the inventive adhesive transfer method for fixing semiconductor elements onto the adhesive transfer substrate. FIG. 114 shows a third step of the inventive adhesive transfer method for fixing semiconductor elements onto the adhesive transfer substrate.

Electrostatic Transfer Method. An electrostatic printing method can be used to orient and place the dice on the hot melt adhesive. In this approach, in effect the dice become the toner in a low-resolution device that prints on a continuous web of the hot melt adhesive. Applicants have demonstrated the electrostatic attraction of the dice and have used an electrostatic field to orient the dice. FIG. 120 is a photograph demonstrating a LED die electrostatically attracted to a charged needle. FIG. 121 is a photograph demonstrating three LED dice electrostatically attracted to a charged needle. As long as current doesn’t flow, the LEDs are not damaged and continue to operate. An array of charged whiskers can be used to selectively pick up and place the semiconductor elements on an adhesive transfer substrate. The placement can be as an evenly spaced array, or by selectively charging the whiskers, a pattern of semiconductor elements can be formed. FIG. 115 shows a first step of an electrostatic attraction transfer method for fixing semiconductor elements onto an adhesive transfer substrate. FIG. 116 shows a second step of the electrostatic attraction transfer method for fixing semiconductor elements onto the adhesive transfer substrate. FIG. 117 shows a third step of the electrostatic attraction transfer method for fixing semiconductor elements onto the adhesive transfer substrate. FIG. 118 shows a fourth step of the electrostatic attraction transfer method for fixing semiconductor elements onto the adhesive transfer substrate. Multiple passes or several stages in line enable several colors to be placed for red, green and blue (RGB) synthesis of white light from several dice accurately placed on printed electrodes.

FIG. 111 illustrates an inventive method of making the active layer of the inventive light active sheet using an electrostatic drum transfer system for orienting and patterning LED dice on a hotmelt sheet. In order to write the dice into a hot melt array, the dice are used as toner in a laser printer. The analogous steps of the process are: 1) A transfer drum is charged with a positive (+) charge. 2) The laser writes a negative image on the photosensitive drum under the PCL or Postscript control of the laser printer. 3) The developer role is negatively charged to attract the positively charged LED dice. 4) The positively charged dice transfer to more negatively charged (“write black”) regions of the transfer drum. 5) The even more highly negatively charged hot melt adhesive accepts the dice from the transfer drum and as it passes, the detac corona strip removes the charge. 6) In a hot zone, the melt adhesive is softened slightly to hold the dice in place. 7) The active array of dice in the hot melt is re-rolled at the end.

As an alternative, or in addition to, charging the developer role, it may be coated with a sulfide-based material like cadmium sulfide or something more benign like iron sulfide. Organic sulfides might also be used, or even vulcanized rubber. Gold attracts to sulfide better than most anything else, so there might be a preference for the gold electrode side of the dice to prefer the sulfide-coated developer roller. In Step 3 above, the attraction of gold to sulfur may be used instead of, or in addition to, the electrostatics to align the dice, and then the charge on the transfer roll used to position the dice according to a desired pattern. The dice are then oriented with the gold electrode facing toward the developer roller with the light-emitting electrode oriented towards the transfer drum, then transferred to the hot melt adhesive gold electrode base down with the transparent electrode facing up.

The image to be printed can be written on a commercially available laser printer. First the transfer drum is covered with a positive charge. Then the photosensitive drum is written on (“write black”) with the laser under the control of the laser print engine, translating computer PCT or Postscript commands to the laser/mirror control unit
accurately write on the drum. The photoactive layer ejects electrons to cancel the positive charge in those areas and with the intensity of the laser, converts that latent (neutral) image to a negatively-charged image on the transfer drum. This is the normal operation of the laser printer.

[0506] The die-printing operation utilizes a relatively low resolution electrostatic laser “printer” with roughly 0.012” x 0.12” dice replacing the usual toner. Alternatively, the dice can be fabricated having a magnetically attractive electrode, in which case, the developer roller and/or the drum can be magnetic systems, and may employ a optomagnetic coating for patterning.

[0507] Only the negative areas written by the laser should receive dice from the developer roller. To implement this cleanly, the charge balance between the source and destination is adjusted so that the transfer takes place accurately and completely without disturbing the die orientation.

[0508] The hot melt adhesive sheet (still solid) receives a negative charge and attracts the dice from the weaker charged transfer drum. A so-called “detac corona” removes the charge from the hot melt sheet.

[0509] The next step is similar to the fuser step in the commercial laser printer process except it is the substrate and not the toner that will soften. The proper selection of the hot melt softening temperature, or an adjustment of the fuser temperature and rate of motion or all of the above are used to get an optimum adhesion of the dice to the substrate. Rapid cooling with an air stream may be used for cooling the substrate. The resulting active layer made of hot melt adhesive with imbedded dice is then rolled up in a continuous process, or stacked as individual sheets.

[0510] FIG. 122 is a cross sectional view of an inventive encapsulated semiconductor device wherein the semiconductor elements are npn-type devices, with an addressable middle p-layer. FIG. 123 is a cross sectional view of an inventive encapsulated semiconductor device wherein the semiconductor elements are npn-type devices, with an addressable top n-layer. FIG. 124(a) is a cross sectional view of an inventive encapsulated device electronic circuit, wherein an LED die, npn transistor, resistor and conductors are connected in an electronic circuit forming a pixel for a display device. FIG. 124(b) is a cross sectional view of an alternative of the inventive encapsulated device electronic circuit shown in FIG. 124(a). In this case, the transparent conductor acts as both an electrical connection and a resistor element for connecting the LED element to ground through the npn transistor element. FIG. 124(c) is a cross sectional view of another alternative of the inventive encapsulated device electronic circuit shown in FIG. 124(a). In this case, a capacitor element is provided. FIG. 124(d) is a cross sectional view of an alternative of the inventive encapsulated device electronic circuit shown in FIG. 124(a). In this case, the capacitor element is energized in response to a signal received by another circuit element, such as a flip-flop or the like (shown schematically connected). These variations are only intended to be examples, more and less complex circuits can be formed in accordance with the present invention. Other semiconductor and well-known electronic circuit elements can be included within the system.

[0511] FIG. 125 is a circuit diagram illustrating the sub-pixel circuit shown in FIG. 124(a). FIG. 126 is a cross sectional view of a pixel from an inventive display device, the pixel includes red, green and blue sub-pixel circuit and an optical lens element formed in the top substrate. FIG. 127 is an exploded view of the inventive encapsulated semiconductor device showing a conductive sheet layer between insulative hotmelt adhesive layers.

[0512] In accordance with another aspect of the present invention, as shown in FIG. 122-127, a method is provided for making an encapsulated semiconductor device. A bottom substrate is provided having an electrically conductive surface. An adhesive layer is provided on the electrically conductive surface. A predetermined pattern of semiconductor elements are fixed to the adhesive. The semiconductor elements each having a top device conductor and a bottom device conductor. A top substrate having a conductive pattern disposed thereon. A lamination is formed comprising the bottom substrate, the adhesive layer (with the semiconductor elements) and the top substrate. The lamination is formed so that the adhesive electrically insulates and binds the top substrate to the bottom substrate. In so doing, one of the top device conductor and bottom device conductor of the semiconductor elements is in electrical communication with the conductive pattern of the top substrate and the other of the top device conductor and bottom device conductor of each semiconductor element is in electrical communication with the electrically conductive layer of the bottom substrate. In this manner, each semiconductor element is automatically connected to the top and bottom conductors that are preformed on the top and bottom substrates. There is no need for wirebonding, solder, lead wires, or other electrical connection elements or steps.

[0513] In accordance with the present invention, at least one the semiconductor elements is provided with a middle conductor region between the top conductor and the bottom conductor. For example, the semiconductor can be an npn or pnp transistor. The adhesive comprises at least one electrically conductive portion for making an electrical connection with the middle conductor region. Additional electronic circuit components can also be included, such as resistors and conductors, and other semiconductor elements. Some of the electronic elements do not have a top and bottom conductor, but rather have a top of bottom conductor that extends into the middle conductor region.

[0514] The semiconductor elements can be light emitting diode die, or other semiconductor and circuit elements, such as transistors, resistors, conductors, etc. They can be connected in an electronic circuit through the inventive hotmelt lamination method described herein. Further, the light active semiconductor elements can be light-to-energy devices, such as diodes effective for converting sunlight to electrical energy.

[0515] FIG. 128(a) is a photograph showing a step of the proof-of-concept prototype construction, this photo shows an active layer sheet comprised of LED die embedded in a sheet of hotmelt adhesive, the LED die being red emitting and yellow emitting. FIG. 128(b) is a photograph showing another step of the proof-of-concept prototype construction, this photo shows the three constituent layers—active layer sheet (LED die embedded in a sheet of hotmelt adhesive) a top substrate (ITO coated PET) and a bottom substrate (ITO coated PET).

[0516] FIG. 129(a) is a graph illustrating an AC driving voltage applied to red and blue LED devices having opposite
polarity in accordance with an embodiment of the inventive RGGGB variable color light sheet. FIG. 129(b) is a graph illustrating an AC driving voltage applied to green LED devices in accordance with an embodiment of the inventive RGGGB variable color light sheet. FIG. 130 shows a comb electrode pattern having printed silver ink electrodes and printed transparent conductor pads. FIG. 131 illustrates the driving of two RGGGB pixel elements in accordance with the embodiment of the inventive RGGGB variable color light sheet.

[0517] FIGS. 129(a)-131 shows a single layer RGGGB light sheet constructed so that the relative intensities of each color LED bare die can be controlled. This construction allows a light sheet to produce any color visible light including white. The bare dies are selected so that Blue and Red are opposite polarity, Blue and Red are on the same comb electrode pattern (i.e., blue bare die and red bare die on the same ITO pad). Green is on the other comb electrode pattern. The electrodes are driven with AC voltage, both comb electrodes may be in phase but driven with variable voltages. The amplitude of each leg of the blue/red AC driving voltage is adjustable to separately control the intensity of the blue and red emitting LEDs. The amplitude of the driving leg of the green AC driving voltage is adjustable to separately control the intensity of the green emitting LEDs. The electrode pattern can be an x and y grid enabling addressable RGB elements.

[0518] FIG. 132 illustrates driving the inventive RGGGB variable color light sheet as a lower resolution variable color intensity back light for an LCD display. FIG. 133 shows an example of the higher resolution LCD image that is back lit by the variable color intensity back light show in FIG. 132. FIGS. 132 and 133 show an inventive display backlight. A conventional backlight generates a uniform color, e.g., white light, for backlighting a pixelated image display, such as an LCD filter. In accordance with the present invention, the backlight may be controlled to provide a lower resolution color source that matches the color of the image that is to be displayed through the LCD filter. In this example, the backlight area that is illuminating the yellow sun is controlled so that the appropriate backlight LED elements produce a relatively higher intensity yellow light. While, the backlight area that is illuminating the sky is controlled so that the appropriate backlight LED elements produce a relatively higher intensity blue light. The backlight is controlled in response to the image information (e.g., a television signal) that is applied for controlling the higher resolution LCD filter array. By thus controlling the backlight, a more energy efficient, higher fidelity, improved image is displayed using, for example, an LCD video display.

[0519] FIG. 134 is a back substrate silver ink pattern for a thin, flexible pixilated display tile. FIG. 135 is a front substrate silver ink pattern for the thin, flexible pixilated display tile. FIG. 136 is a front substrate transparent conductor (e.g., printed A:ITO) pattern for the thin, flexible pixilated display tile. FIG. 137 is a front substrate insulation pattern for the thin, flexible pixilated display tile, the insulation pattern being provided to reduce cross-talk. FIG. 138 is a front substrate printed signage pattern for the thin, flexible pixilated display tile. FIG. 139 illustrates the cross-section of the back (bottom) substrate silver ink pattern for a thin, flexible pixilated display tile. FIG. 140 illustrates the cross-section of the front substrate silver ink pattern for the thin, flexible pixilated display tile. FIG. 141 illustrates the cross-section of the front substrate transparent conductor (e.g., printed A:ITO) pattern formed on the front substrate silver ink pattern for the thin, flexible pixilated display tile. FIG. 142 illustrates the cross-section of the front substrate insulation pattern formed on the silver ink and transparent conductor patterns for the thin, flexible pixilated display tile, the insulation pattern being provided to reduce cross-talk. FIG. 143 illustrates the cross-section of the inventive thin, flexible pixilated display tile with a printed signage graphic.

[0520] FIG. 144 illustrates a first printed conductive line formed under an insulating layer formed under a second crossing printed conductive line in accordance with an embodiment of the inventive electronic bare die circuit. FIG. 144 shows insulating material printed in a pattern that allows wiring lines to cross over without connection (insulation in between conductive lines), and to cross over with connection (no insulation between conductive lines). This feature enables complex electronic bare die and/or packaged die circuits.

[0521] FIG. 145 illustrates an assembled x (bottom substrate) and y (top substrate) conductive pattern for a bare die LED backlight for a notebook computer. FIG. 146 illustrates the x (bottom substrate) conductive pattern for the bare die LED backlight for a notebook computer. FIG. 147 illustrates the y (top substrate) conductive pattern for a bare die LED backlight for a notebook computer. FIG. 145-147 shows a construction of the inventive light sheet that enables the keys of an electronic device keyboard to be individually lit up using something like a passive matrix driving circuit. An addressable keyboard light allows additional functionality to be provided for conveying information or entertaining a user. For example, keyboard shortcuts can be lit up and controlled by different software applications, e.g., the active keys for a software game can be lit. The keys can be controlled in response to music being played through the computer speakers, etc. Variable colors can be obtained by providing two or more bare dies driven to produce a desired color pattern. Additional bus lines, windows and pads can be provided to create a full-color RGB light. This version enables the keys or groups of keys to be lit up with any selected color.

[0522] FIG. 148 is a cross section unassembled view showing a top conductive surface on a top release sheet, a melt adhesive with embedded bare dies middle layer, and a bottom conductive surface on a bottom release sheet in accordance with an ultra-thin LED light sheet. FIG. 149 is a cross section assembly after lamination view showing the top conductive surface on a top release sheet, the melt adhesive with embedded bare dies middle layer, and the bottom conductive surface on a bottom release sheet in accordance with the ultra-thin LED light sheet. FIG. 150 is a cross section assembly view showing the peeling off of the top release sheet from the top conductive surface and the bottom release sheet from the bottom conductive surface in accordance with the ultra-thin LED light sheet. FIG. 151 is a cross section showing the resulting ultra-thin LED light sheet.

[0523] In accordance with this aspect of the invention, an ultra-thin electronically active sheet is provided. At least one bare die electronic element is embedded in an electrical insulator. The bare die electronic element has at least a first
 conductive feature and a second conductive feature left uncovered by the electrical insulator. A first conductive structure disposed on the electrical insulator is electrically connected to the first conductive feature. A second conductive structure disposed on the electrical insulator and electrically connected with the second conductive feature. This ultra-thin light sheet can be used, for example, for keyboard backlighting for mobile phones, PDAs and other devices where thickness and/or flexibility are particularly important.

[0524] FIG. 152 shows a conductive pattern of an embodiment of the inventive light sheet that does not require a transparent conductive window for letting light emit from a top emitting LED die. FIG. 153 is a close up view of a conductively patterned window for electrically connecting the conductive pattern to the top electrode of a top emitting LED die. FIGS. 152-153 shows a light sheet construction that does not require a transparent conductor. A transmissive window is provided with thin conductive lines connected with thicker buss lines. The LED die is connected to the thin lines and light emitted from the LED is transmitted through the transmissive window. Alternatively, the transmissive window may be slightly smaller (at least in one dimension) than the edges of the bare die so that the bare die makes contact with the thicker buss lines. The conductive pattern enables light from bare die to emit through clear windows while the bare die is electrically connected with the patterned conductive lines.

[0525] FIG. 154 illustrates individual RGBY light strips for an embodiment of the variable color and intensity light sheet. FIG. 155 shows the light strips assembled for an RGBY variable color and intensity light sheet. FIG. 156 shows an alternative assembled RGBY variable color and intensity light sheet. FIG. 157 illustrates the pattern of the alternative assembled RGBY variable color and intensity light sheet shown in FIG. 154. FIG. 158 illustrates the G (green emitting LED die) pattern. FIG. 159 illustrates the B (blue emitting LED die) pattern. FIG. 160 illustrates the R (red emitting LED die) pattern. FIGS. 154-160 show a white light (e.g. display backlight) formed by separate light strips for each color. This construction enables fine tuning of the materials and processes for each particular bare die type.

[0526] FIG. 161 shows the cross sections of the individual color strips of RGBY light strips showing the differences in bare die height. FIG. 162 illustrates the use of different adhesive thicknesses to accommodate the difference in bare die height. FIG. 163 illustrates the use of a thickness increasing material to accommodate the difference in bare die height. For example, bare die heights vary depending on color, foundry and recipe. Bare die LEDs can have a vertical (top bottom) or horizontal (top electrode) pattern. The inventive construction enables the correct thickness and formula adhesive, conductive lines, and substrates used to optimize the light output for each bare die type used to construct the inventive

[0527] FIG. 164 illustrates a method of placing LED bare dies or electronic circuit semiconductor elements directly from a wafer tape into a melt adhesive. FIG. 165 shows the construction of a light tape that can be cut to length. FIGS. 164 and 165 show a light strip made by providing electrical contact with the conductive surface of the top substrate, so that a connection can be made through the buss to the conductive surface and to the LED die. The buss and the conductive bottom substrate provide a conductive pathway to each LED such that the light strip can be cut anywhere along its length. An electrical connection to the buss and the conductive bottom substrate of each cut strip energizes the LEDs and generates light.

[0528] FIG. 166 is an exploded cross sectional view showing a bare die transistor element connected with a connection enhancing material to a thin, flexible, encapsulated electronic circuit in accordance with the present invention.

[0529] FIG. 167 is an assembled cross sectional view showing the bare die transistor element connected with the connection enhancing material to the thin, flexible, encapsulated electronic circuit.

[0530] FIG. 168 is an exploded cross sectional view showing a bare die transistor element connected directly to wiring lines of a thin, flexible, encapsulated electronic circuit in accordance with the present invention. FIG. 169 is an assembled cross sectional view showing the bare die transistor element connected directly to wiring lines of the thin, flexible, encapsulated electronic circuit. FIGS. 166 and 167 show a connection enhancing material which can be conductive adhesive, such as a z-axis conductor, or a low temperature alloy that softens or melts during the lamination process or during a connection-making heat and pressure process. A printable ink may be used that includes low melt conductive particles in a binder. Additional conductivity enhancing materials can be included in the ink as well. The connection enhancing material provides a mechanical and electrical connection to the electrodes of the bare die device. In a connection step, the connection enhancing elements (e.g., round balls) are compressed and may be deformed into interconnecting elements (e.g., platelets) to secure a good electrical connection between the electrodes of the bare die device and the wiring lines.

[0531] In accordance with the present invention, a bare die semiconductor electronic circuit is provided comprising a first substrate having a bottom side surface having at least a first and a second conductive line. A second substrate is disposed adjacent to the first substrate. The second substrate has a top side surface having a third conductive line. At least one bare die semiconductor electronic circuit element having a first electrode and a second electrode disposed on an obverse side and a third electrode disposed on a reverse side is provided. As shown in FIG. 169, a bare die transistor circuit element can be connected directly to wiring lines or lands printed on flexible substrates. An adhesive adheres the first substrate to the second substrate and binds the bare die semiconductor electronic circuit element to the first substrate and to the second substrate. The adhesive maintains the first electrode in electrical communication with the first conductive line, the second electrode in electrical communication with the second conductive line, and the third electrode is in electrical communication with the third conductive line. At least one of the first and the second substrate may be a flexible plastic sheet, such as PET, PEN, Kapton, polycarbonate, vinyl, and the like. At least one of the first, second and third wiring line can formed from a printed conductive ink, such as through silk screen, inkjet, gravure, donor sheet, electrostatic or other printing methods. Alternatively, the conductive lines can be formed by etching. The adhesive may be at least one of a hot melt and
thermosetting adhesive. Alternatively, the adhesive may be at least one of a thermally active adhesive, a catalyst active adhesive, a solvent evaporation active adhesive and a radiation active adhesive.

[0532] FIG. 170 is a schematic view illustrating a roll laminator for manufacturing an encapsulated electronic bare die circuit in accordance with the present invention. FIG. 170 shows a laminator for manufacturing the inventive light sheet. A pre-heating zone raises the thermal energy of the laminate sandwich. The heat shoes heat the conveyor belts and the heated rollers (which may be separately heated). The conveyor belts maintain positive pressure on the laminate package as it cools. The cooling rollers may be provided to add pressure and speed cooling of the laminate to lock in the electrical connections between the electrically conductive element as the hot melt adhesive cools. Fans and chill rollers may be provided to further take heat from the laminate package.

[0533] FIG. 171 is a top down view of a conventional LED bare die showing a metal bonding pad electrode formed on the top emitting face of the conventional LED bare die where it blocks the emission of light. FIG. 172 is a top down view of an inventive LED bare die showing a top emissive face without a metal bonding pad electrode enabling unblocked emission of light. FIG. 173 is a cross section of a light sheet having an inventive LED bare die as shown in FIG. 172 including electron injection facilitating material for connecting to the bare LED emissive face. FIG. 174 is a cross sectional view of a light sheet having a side emitter LED bare die connected to a conductive line formed on a transparent substrate.

[0534] FIG. 175 is a cross section of a light sheet having a protective overlayer (e.g., conventional lamination sheet used for sign making, etc) formed over the light sheet to further encapsulate and protect the light sheet, particularly near the edges. Further, the connections terminals (in this case, crimp connectors shown in block form) are provided for making electrical contact with the top and bottom conductive surfaces of the top and bottom substrates. The protective overlayer encapsulates the light sheet and protects the connection terminals from environmental attack as well as provides strain relief.

[0535] In accordance with this aspect of the invention, an electronically active sheet includes a bottom substrate having a top electrically conductive surface. A top substrate having a top electrically conductive surface is disposed facing the bottom electrically conductive surface. An electrical insulator separates the bottom electrically conductive surface from the top electrically conductive surface. At least one bare die electronic element is disposed having a top conductive side and a bottom conductive side. Each bare die electronic element is disposed so that the top conductive side is in electrical communication with the top electrically conductive surface and so that the bottom conductive side is in electrical communication with the bottom electrically conductive surface.

[0536] The electrical insulator may comprise a hotmelt adhesive. Each bare die electronic element is embedded in the hot melt electrical insulator with the top conductive side and the bottom conductive side left uncovered by the electrical insulator. The electrical insulator binds the top substrate to the bottom substrate with the top conductive side of the bare die electronic element in electrical communication with the top electrically conductive pattern of the top substrate, and so that the bottom conductive side of the bare die electronic element is in electrical communication with the bottom conductive pattern of the bottom substrate. At least one electronic element may comprise a solid state semiconductor light emitting diode bare die.

[0537] As shown, for example, in FIGS. 39 through 42, the bare die electronic element can include a first conductor and a second conductor both disposed on either the top conductive side and the bottom conductive side, and wherein said bare die electronic element is disposed so that the first conductor and the second conductor are in electrical communication with respective wiring lines formed on either the top substrate and the bottom substrate.

[0538] As shown, for example, in FIG. 134 through 16, the top and bottom conductive patterns formed on the top and bottom substrates can be printed, etched, or otherwise electrically isolated and patterned to form electrode grids. The bare die electronic element may be plurality of individual bare die LED elements. The top electrically conductive surface and the bottom electrically conductive surface can thus be formed as a respective x and y wiring grid for selectively addressing the individual bare die LED elements for forming a display.

[0539] A phosphor or other re-emitter can be provided in or on at least one of the top substrate and the bottom substrate (or adjacent thereto), or formed in the electrical insulator. The phosphor or other re-emitter is optically stimulated by a radiation emission of a first wavelength from the light active semiconductor element to emit light of a second wavelength. Alternatively, the phosphor can be disposed between the top and bottom conductive surfaces and electrically stimulated to emit light. In this construction electronic circuit elements, such as LED bare die, can be incorporated into a light sheet integrally formed with an electroluminescent (EL) phosphor light element.

[0540] FIG. 176 is a cross sectional view of an inventive self-contained battery and solar cell integrally formed with the inventive light sheet. FIG. 176 shows a light sheet construction wherein a battery cathode may be, for example, film of lithium metal. The battery anode material can be a carbon material component of a conventional Li battery. A solar cell, patterned to allow light to escape, can be provided to charge the battery. A light sensitive switch circuit can be provided so that the LEDs turn on at a certain ambient darkness. Elements of the light sensitive switch circuit can be provided as bare die connected within the light sheet. The result is a very thin, flexible, self-charging, automatic turn-on light sheet system. The system may be used, for example, as an IR emissive sheet for military use, to mark streets with visible light patterns, to provide decorative or architectural lighting, etc.

[0541] FIG. 177 is a cross section of an ultra-thin construction of the inventive light sheet. A release substrate is coated with a top conductor and a bottom conductor. When release sheet is removed, the adhesive holds the device components together resulting in ultra-thin light sheet. Applications include mobile phone keypads, backlights, etc.

[0542] FIG. 178 illustrates a light sheet construction for making multiple devices cut from a single light sheet. FIG.
179 shows a light strip cut from the single light sheet shown in FIG. 178 showing a crimp-on terminal connector. FIG. 180 shows a multiple-strip light strip cut from the single light sheet shown in FIG. 178. FIG. 178-180 shows hole punches and knife slices through substrate(s) can be used to create control line patterns before and/or after the lamination process. The hole punches and knife slices are used to cut wiring lines to provide desired circuit constructions.

[0543] FIG. 181 shows an inventive method of forming an electrical connection to bare die electrodes of a flip-chip style bare die semiconductor device. A flip-chip style die is placed directly onto a hot melt adhesive layer formed on a substrate. A top substrate is provided having electrode land patterns corresponding to the electrodes of the flip-chip style die. Other circuit elements and conductive lines can be included (not shown). The top substrate is registered (through alignment pins (not shown) etc.) to the bottom substrate so that the chip electrodes and the respective electrode lands come into face-to-face electrical contact. The thus-formed lamination sandwich is laminated through a roll or press lamination process so that the flip-chip style die are pressed into and encapsulated by the hot melt adhesive. The flip-chip style die are completely encapsulated by the top and bottom substrate, and the hot melt adhesive. The hot melt adhesive also securely fixes the two substrates together forming a durable, flexible, protected electronic circuit.

[0544] FIG. 182 shows an electronic circuit formed using the inventive bare die electronic circuit manufacturing method for connecting a bare die capacitor, a bare die transistor and a bare die LED. FIG. 183 shows an electronic circuit similar to FIG. 182 with a height compensating wiring line formed on a substrate for compensating a difference in heights of a horizontal electrode structure LED bare die. FIGS. 182-183 show a bare die pixel matrix. When a signal is applied to capacitor, the transistor passes current through the LED bare die for the duration of the capacitor discharge. Other elements and other constructions are possible, using bare die or hybrid of bare die and conventional packaged electronic elements. The height compensating wiring line enables uneven electrodes to be connected. The height compensating wiring lines can also be used to allow chips of different heights to be provided on the same device.

[0545] In accordance with this aspect of the invention, a first substrate is provided having bottom side surface having at least a first and a second conductive line. A bare die semiconductor electronic circuit element is provided having a first electrode and a second electrode disposed on an obverse side. An adhesive encapsulates and adheres the bare die semiconductor electronic circuit element to the first substrate so that the first electrode is in electrical communication with the first conductive line and the second electrode is in electrical communication with the second conductive line. A second substrate can be disposed adjacent to the first substrate and bound to the first substrate by the adhesive.

[0546] The second substrate can include a top side surface having a third conductive line. The bare die semiconductor electronic circuit element includes a third electrode disposed on its reverse side. The adhesive encapsulates and adheres the bare die semiconductor electronic circuit element to the second substrate so that said third electrode is in electrical communication with the third conductive line.

[0547] An electrically conductive through-hole can be disposed in either the first substrate and/or the second substrate for electrically connecting the bare die semiconductor electronic circuit element to a conductive element disposed on a top side surface of the first substrate and/or on a bottom side surface of the second substrate.

[0548] A second bare die semiconductor electronic circuit element can be provided having at least one electrode. The adhesive encapsulates and adheres the second bare die semiconductor electronic circuit element to the first substrate so that the electrode of the second bare die semiconductor electronic circuit element is in electrical communication with at least one of the first electrode and the second electrode through the respective first and second conductive line.

[0549] FIG. 184(a) is a cross sectional view of a higher voltage light sheet utilizing opposite polarity LED bare die for forming a series connection resulting in a higher device voltage. As shown, copper strips or slugs are provided as conductive bottom substrates and heat sinks. The copper strips may be fixed together by a pressure sensitive adhesive and supported on a supports substrate, such as PET, forming a bottom composite substrate. A hot melt adhesive layer is adhered to the bottom composite substrate. LED die of a first polarity are encapsulated in the adhesive on a first copper strip and LED die of a second polarity are encapsulated in the adhesive on a second copper strip. The bottom conductor of the LED die are in electrical communication with the respective first and second copper strips. A conductive top substrate is provided in electrical contact with the top conductors of both LED die. A lens may be provided on top of or integrally formed with the top substrate to enhance the beam pattern produced by the LED die. Since the LED die are of opposite polarity, a completed circuit is formed when a voltage of a first polarity is applied to the first copper strip and a voltage of a second polarity is applied to the second copper strip. The resistance value of the conductive top substrate can be selected to provide an in-series ballast resistor so that the voltage applied at the copper strips can be tailored for specific applications, such as a 12 volt automobile power source.

[0550] This construction can be used to create a light sheet that can be plugged directly into a household current. The resistance values can be minimized to create a high efficiency solid state lighting system that can be driven with a constant current power supply. This construction is adaptable to a roll-to-roll or sheet fabrication process, with daughter modules of desired driving voltage being cut from a mother board-type sheet or roll. This construction can be used for source lighting, display backlighting, transportation signal, interior and exterior lighting and many other applications.

[0551] FIG. 184(b) is a top view of the higher voltage light sheet shown in FIG. 184(a) and cut from a multiple module light sheet constructed along the lines shown in FIGS. 185 through 187. A light emitting device includes a first bottom substrate having an electrically conductive surface. A second bottom substrate having an electrically conductive surface is provided adjacent to but electrically isolated from the first bottom substrate. A first bare die light emitting diode device having a top p junction conductor and a bottom n junction conductor is provided in electrical communication with the
electrical conductive surface of the first bottom conductor. A second bare die light emitting diode device having a top n junction conductor and a bottom p junction conductor is provided in electrical communication with the electrically conductive surface of the second bottom conductor. The p/n junctions of the diodes may be reversed. A top substrate has a conductive surface in electrical communication with both the top p junction conductor of the first bare die light emitting diode device and the top n junction conductor of the second bare die light emitting diode device. The electrically conductive surface of the top substrate is effective for putting the first bare die light emitting diode device and the second bare die light emitting diode device into a series electrical connection.

[0552] The electrically conductive surface can be provided with a predetermined resistance value effective to create the equivalent of a ballast resistor within a desired resistance range in series with the first bare die light emitting diode device and the second bare die light emitting diode device. This equivalent ballast resistor enables the bare die light emitting diode devices to be driven at a desired current level for a given voltage applied to the first and the second bottom substrates. The equivalent ballast resistor can be adjusted, through the selection of materials or geometry, so that the first and the second bare die light emitting diode devices can be connected in series even if they do not have the same electrical characteristics.

[0553] Subsequent bottom substrates and top substrates can be provided so that multiple series devices are connected. Depending on the chosen materials, geometry and LED bare die chips, an AC driven variable intensity, variable color 110V (or 220V) source lighting device can be provided. Other voltages and wavelength emissions are also possible using this inventive construction.

[0554] To form higher voltage devices, a third bare die light emitting diode device having a top p junction conductor and a bottom n junction conductor is provided. The bottom n junction conductor is in electrical communication with the electrically conductive surface of the second bottom conductor. At least one subsequent bottom substrate is provided with a subsequent electrically conductive surface. Subsequent bare die light emitting diodes are provided in electrical communication with the subsequent electrically conductive surface. At least one subsequent top substrate having a subsequent top conductive surface in electrical communication with the third bare die light emitting diode and the subsequent bare die light emitting diodes so that the subsequent bare die light emitting diodes are connected in series. To make higher voltage devices, and/or for forming daughter modules that can be cut from a mother sheet, additional subsequent series connection substrates as needed are provided having a subsequent series connecting conductive surface in electrical communication with remaining subsequent bare die light emitting diode devices so that the subsequent bare die light emitting diodes on the subsequent substrates are connected in series.

[0555] That is, to form higher voltage device, at least one subsequent bottom substrates having subsequent electrically conductive surfaces. Bare die light emitting diodes with opposite polarity are provided in electrical communication with the subsequent electrically conductive surfaces. At least one subsequent top substrate having a subsequent top conductive surface is in electrical communication with the subsequent bare die light emitting diodes so that the subsequent bare die light emitting diodes are connected in series. Thus, as more elements are added in series, the driving voltage of the light sheet increase. In accordance with the present invention, the light sheet can be constructed so that it emits light when connected with either polarity DC voltage. The opposite polarity bare die light emitting diode devices are electrically connected with the electrically conductive surface and the top substrate and electrically conductive surface of the first and second bottom substrates. The opposite polarity bare die light emitting diode devices are electrically connected in respective opposite polarity to and along with the first bare die light emitting diode device and the second bare die light emitting diode device. This construction also enables the device to be driven so that it will emit light when driven with an AC voltage. The LED die are of opposite polarity within each series connected portion of the light sheet circuit, and connected such that they will be emitting light or blocking electron flow depending on the polarity of the AC voltage leg.

[0556] FIG. 185 shows multiple higher voltage light sheet devices formed as a single light sheet (or in a roll-to-roll process) and constructed so that each higher voltage device is connected in series with the other higher voltage devices on the sheet or roll resulting in successively higher operating voltages depending on the numbers of series connected devices. FIG. 186 is a top view of assembled elements of a light sheet constructed in accordance with the higher voltage light sheet construction. FIG. 187 is a top view of top transparent substrate strips for completing the light sheet construction shown in FIG. 185. By building up successive in-series devices, higher and higher source voltages can be accommodated. Also, by placing chips of opposite polarity on each copper strip, an AC circuit can be created. This construction also provides through holes that can be used during the manufacturing processes for alignment of the components as well as to provide solder, crimp or clamp connection points directly on the copper strips. Thus, the more difficult electrical terminal connection to the thin flexible plastic substrate is avoided.

[0557] FIG. 188 is a cross sectional view of an alternative construction of a higher voltage light sheet. FIG. 189 is a top view of a top substrate for the alternative construction of a higher voltage light sheet shown in FIG. 188. FIG. 190 is a top view of a bottom substrate for the alternative construction of a higher voltage light sheet shown in FIG. 188.

[0558] FIG. 191 shows an exploded view of an inventive construction of the light sheet utilizing a coin cell battery with LED bare die having appropriate polarity fixed directly to the positive and negative sides of the battery. FIG. 192 shows an assembled view of the inventive construction of the light sheet shown in FIG. 191. FIG. 193 is an alternate construction of the light sheet showing only the metal substrates connected to a coin cell battery. In this case, a light sheet can be connected to the metal substrates or the metal substrates can be provided as at least one of the light sheet substrates. FIG. 194 shows a camouflaged housing for the inventive light sheet mimicking the color, size and texture of a rock.

[0559] FIG. 195 shows an exploded view of an alternate construction of the light sheet showing a hot melt spacer for
forming a battery pouch between the top and bottom substrates. FIG. 196 is a cross sectional assembled view of the light sheet construction shown in FIG. 195. FIG. 197 is a top view of an alternative construction of the light sheet. This construction enables a very low cost device to be manufactured without the conventionally required etched and drilled printed circuit board, soldered packaged LED lamps, diodes and resistors, battery connection schemes, etc.

[0560] FIG. 198 is an exploded view of a coin battery light sheet construction on a metal substrate. FIG. 199 is a cross sectional view of the alternative construction shown in FIG. 198. FIG. 200 is an assembled view of the coin battery light sheet construction shown in FIG. 198. FIG. 201 is a view of the coin battery light sheet construction shown in FIG. 198 after forming. FIG. 202 is an assembled and formed view of the inventive coin battery light sheet construction shown in FIG. 198. This construction enables a completed light emitting device to be formed very inexpensively from just bare LED die, substrates, conductive tape, ink or foil, and adhesive. Because the device is formed with a metal substrate, it can be die-formed into a shape that accommodates and securely connects a coin battery. The result is a small, inexpensive light emitting device with a replaceable battery.

[0561] FIG. 203 is a cross sectional view of a multiple radiation emitter light sheet for emitting radiation of different wavelengths. FIG. 204 is an exploded view of a light sheet construction having patterned LED bare die and patterned thermal energy emitters. The multiple wavelengths emitted can be in the visible and invisible ranges. Also, a passive reflector can be provided to the device to cause it to act as a passive and active signal emitter. The radiation emitters can be patterned for identification and to improve the radiation emissive quality.

[0562] FIG. 205 is a cross sectional view of a light sheet construction having a conductive line for connecting with a side emitting LED bare die. Side emitting LED bare die are available that emit the majority of their light through the sides rather than through the top face of the die. These emitters can be used to provide a more uniform light from the light sheet when desired by reducing the hot spots of the bare die emitter. The adhesive and substrates can be selected to closely match the index of refraction of the LED die to further enhance light output. Also, additives can be provided within the adhesive to assist in light diffusion, wavelength conversion (e.g., phosphors for white light from blue or UV emission), selective blocking and light channeling, etc.

[0563] FIG. 206 is a side view and block diagram showing a construction of the light sheet including a first wavelength emitter and a second wavelength emitter, at least the second wavelength emitter being driven by a pulse generator, and a remotely located detector for detecting at least one of the first and second emitted wavelengths, as well as for detecting a pulse. For example, the first wavelength can be near-IR radiation and the second wavelength can be further into the IR spectrum and pulsed to distinguish the wavelength emission from a warm body.

[0564] In accordance with this aspect of the invention, an active and passive radiation emitting device for identifying personnel, locations or goods includes a first substrate having a first conductive surface. A pattern of active radiation emitting semiconductor elements are in electrical communication with the conductive surface so that when the conductive surface is energized the radiation emitting semiconductor elements emit radiation of at least a first wavelength. A second substrate is provided and an adhesive encapsulates and adheres the bare radiation emitting semiconductor elements to the first substrate and securing the second substrate to the first substrate. At least one of a passive radiation reflecting surface and an active thermal radiation source are fixed to at least one of the first substrate and the second substrate. The passive radiation reflecting surface reflects radiation from an external radiation source and the active thermal radiation source provides a detectable thermal or far IR emission.

[0565] FIG. 207 is a photograph showing a higher voltage device being driven at about 50 volts AC and constructed along the lines of the light sheet constructions shown in FIGS. 185(a) to 187. Two series connected devices being capable of connecting directly to a conventional 110VAC wall plug. Alternative constructions of this device include a maximum efficiency device where there is little or no ballast resistor associated with the LED bare die (such as the side emitter construction shown in FIG. 205 and/or the transparent window construction shown in FIGS. 152 and 153). In this case, the device can be enhanced by driving it using a limited current source to prevent damage to the LED die. By combining this construction with other constructions such as those using multiple emitting LED die with RGB, RGBY, BY and B (phosphor) patterns, a source lighting device can be provided that is variable in both color and intensity.

[0566] FIG. 208 is a photograph showing a higher voltage device cut from the device shown in FIG. 207 and constructed to be driven at 12 volts DC when connected in either polarity (top device) compared with a conventionally constructed printed circuit board having conventionally packaged LED lamp, resistors, and rectifying diodes soldered to a conventional PCB (bottom device). FIG. 209 is a photograph showing a notebook computer keyboard light constructed along the lines of FIGS. 145 to 147. FIG. 210 is a photograph showing the notebook computer keyboard light shown in FIG. 209 lighting up a notebook computer keyboard. FIG. 211 shows a thin, lightweight, flexible, pixelated scrolling message display constructed along the lines of FIG. 130. FIG. 212 is a photograph showing a large format, thin, lightweight, flexible display having assembled display tiles making up individual display pixels. FIG. 213 is a photograph of a coin battery light sheet constructed along the lines shown in FIGS. 198 through 203 before being formed and showing the forming die. FIG. 214 is a photograph of the coin battery light sheet shown in FIG. 213 after being formed and with a coin battery inserted. FIG. 215 shows a light sheet being used to light up a cup holder. FIG. 216 shows a light sheet having multiple light sheet strips constructed along the lines shown in FIGS. 178-180 for being used as a fishing lure. FIG. 217 shows a thin, flexible light sheet constructed on a half-hard copper back substrate and having a size of about 8 inches square. FIG. 218 shows an infra-red light sheet for providing identification through the emission of a wavelength that is invisible to human vision.

[0567] FIG. 219 is an exploded view of an inventive Lightstrip construction comprised of light active regions formed as patches fixed to parallel bottom substrate conductors. FIG. 220 is an exploded view of the assembled parallel conductor light strip with top and bottom over layer
protective lamination films and a pressure sensitive adhesive layer for forming a Light-tape. FIG. 221 is an assembled view of the inventive Light-tape. FIG. 222 shows the inventive Light-tape used to carry audio and/or video or other data signals along with powering the LED bare die emitters. Audio and/or video can be carried on the same flat buss that acts as parallel conductors to energize the LED bare die emitters. The system can include a sound to light generator for controlling the LEDs in synchronization to music, etc. Multiple color lights can be included and controlled in accordance with the sound frequency.

[0568] FIG. 223 is a cross-sectional view of a multiple parallel conductor Lightstrip construction for generating various colors and intensities of light depending on a polarity applied to the multiple parallel conductors, along with a table representing some of the polarity/chip activation combinations dependent on the applied polarities. Multiple buses (top and or bottom) can be used to construct LED lamps that vary in intensity and color depending on which chips a-h are turned on (depending on polarity or lack of polarity applied to the busses).

[0569] FIG. 224 is an isolated view of an inventive direct insertion method for placing bare die LEDs or other electronic components from, for example, blue wafer tape, during the inventive construction method. This inventive direct insertion method provides an alternative to the conventional pick and place machines. In accordance with this aspect of the invention, bare die electronic components can be inserted directly from wafer tape or other carrier mediums to an adhesive layer. The adhesive layer ultimately provides an insulator and a binder for fixing the embedded bare die to top and/or bottom conductors.

[0570] FIG. 225 is an isolated view of a machine vision quality assurance station for determining the proper orientation and positioning of an LED chip during an inventive construction method of the Lightsheet. The machine vision provides a means for quickly checking to see that each chip that is inserted into the hotmelt adhesive is properly positioned either before or after it is embedded into the adhesive.

[0571] FIG. 226 is an isolated view of a chip embedding operation during the an inventive construction method of the Lightsheet. The embedding operation pushing the bare die LED (or other electronic device) into the adhesive. It can be controlled to push the bare die all the way until it becomes electrically connected with the bottom conductor (if present during this operation) or stop the embedding of the bare die before it reaches the bottom of the adhesive.

[0572] FIG. 227 is an isolated view of a chip function quality assurance station for checking the operation of an embedded LED prior to the addition of the top conductor or top conductive substrate. If the bare die has been embedded until it makes contact with a bottom conductor, an electrical probe can be used to verify that each bare die electronic component operates as intended. If a defect is determined, the bare die component can be reworked or replaced prior to the completion of the lamination process.

[0573] FIG. 228 is an isolated view of a nip roller station for laminating the top and bottom substrates together through the activation of the hotmelt adhesive layer for connecting the embedded LED die to the top and bottom conductors. Once the bare die has been embedded and tested, a top substrate is provided (as with other materials, in sheet form or roll). The lamination process activates the adhesive and puts the bare die into electrical contact with the top and/or bottom conductor (depending on the die construction).

[0574] FIG. 229 is an isolated view of the completed Lightstrip formed, for example, using the inventive steps of the Lightsheet construction method shown in FIG. 224 through 228. This Lightstrip can be formed in a continuous roll-to-roll process, or in segments, or sheets.

[0575] FIG. 230 is an exploded view showing a multiple-up Lightstrip construction formed using LED bare die that is pre-embedded within an insulative adhesive layer. Many Lightstrips can be formed simultaneously and cut into individual units using a conventional stamping or cutting process. FIG. 231 shows a completed Lightstrip cut from the multiple-up Lightstrip construction shown in FIG. 230.

[0576] FIG. 232 is an exploded view showing an alternative construction of the multiple-up Lightstrip formed using LED bare die that is pre-embedded within an insulative adhesive layer, showing a chip height accommodating shim adhesive layer. A hotmelt adhesive shim is provided to compensate for the underthick adhesive of the light active layer. The shim layer can be on top or bottom of the light active layer. The composition of the shim layer can provide adhesive matching capabilities, and provide other enhancements such as light dispersion, re-emitters, scavengers and desiccants for moisture and oxygen control, etc. The Light Active layer can be an electronically active layer containing embedded bare die and packaged electronic circuit components. The shims can also allow devices of different heights to be accommodated.

[0577] FIG. 233 is an exploded view showing another alternative construction of a Lightsheet where cut strips of LED bare die pre-embedded in an insulative adhesive are fixed to conductive surfaces of top and bottom electrodes with pre-printed conductive patterns. The Light Active layers can be cut into light active strips. Light active strips of various color/intensity/polarity LED die can be applied to a common top and/or bottom substrate. The bottom and/or top substrate can have a electrical pattern forming addressable LED die, or an electrical circuit. The electrical circuit can include other bare die and package electronic components, some or all of which are electrically connected to the top and/or bottom substrate along the lines described for connecting the LED bare die or other electronic circuit components. Flip chip, IC, sensors, light-to-energy (solar cell, CCD, etc), and other electronically active components can be incorporated on and/or within the substrates and/or embedded in the adhesive. Light and electronic enhancing compositions can be included on and/or within the substrates and/or embedded in the adhesive, for example, phosphors, light extraction and dispersion elements, etc. Other layers can be included within the multilayered structure also having light and/or electronic function enhancing materials. The top or bottom substrate can be patterned to form a grid of conductors or a more complex electronic circuit pattern. The light strips and/or other electronic circuit element strips can be applied.

[0578] FIG. 234 is a cross-sectional view of an alternative construction of the inventive Lightstrip having parallel bot-
tom conductors, where one of the bottom conductors is connected to the top substrate conductive surface through a conductive wire embedded in an insulative adhesive and the other bottom conductor is connected to the top substrate conductive surface through an electrically active semiconductor bare die, such as a bare die LED. For example, copper wire is embedded in hotmelt and connected with first copper slug. The copper wire connects the first copper slug to the ITO so that the light strip can be cut to any length.

[0579] FIG. 235 shows the parallel bottom conductors of the alternative construction of the inventive Lightstrip shown in FIG. 234. The die polarity (positive up and negative up—that is, opposite polarity chips) can be alternated to provide reverse polarity, color, ac drive, transient protection.

[0580] FIG. 236 is a cross-sectional view of another alternative construction of the Lightstrip where one of the parallel bottom conductors is connected to the top substrate conductive surface through indents preformed in the bottom conductor. For example, a copper strip can be indented to form raised structures for connecting with the ITO.

[0581] FIG. 237 is a cross-sectional view showing an alternative construction of the inventive Lightsheet where a phosphor re-emitter is a composition included in at least one of the adhesive, the bottom substrate, the top substrate and a molded lens or lamination film over layer. The re-emitter can be phosphor (organic or inorganic) that is an additive in adhesive substrate and or lens.

[0582] FIG. 238 is a cross-sectional view showing an alternative construction of the inventive Lightsheet where a phosphor re-emitter is formed as a coating disposed on at least one of the top substrate, the adhesive, the bottom substrate, or a molded lens or lamination film overlaying.

[0583] FIG. 239 is a cross-sectional view showing an alternative construction of the inventive Lightsheet where a phosphor re-emitter is formed as a coating disposed on at least the sidewall of a cup structure formed in the bottom substrate for directing useful light emitted from the LED bare die in a desired direction. The re-emitter can be coated on surfaces of reflecting cups formed in bottom substrate.

[0584] FIG. 240 shows a bare die capacitor, resistor, transistor and LED used as electronically active components in an inventive electrical circuit construction.

[0585] FIG. 241 shows an electronic circuit diagram
comprised of bare die capacitor, resistor R1, transistor and LED, along with a power supply and a printed resistor R2.

[0586] FIG. 242 illustrates a printable conductive ink or adhesive comprised of a phosphor re-emitter, conductive elements and a binder. The inventive conductive/re-emitter printable ink or adhesive is composed of conductive elements and re-emitting elements in a binder. The binder can be, for example, an epoxy or UV curable composition. The conductive elements can be, for example, a metal (e.g., silver), organic conductor (e.g., PDOT:PPV), ascercular ITO, nanoparticle ITO, carbon nanotubes, or other organic and/or inorganic conductive material. The re-emitting elements can be, for example, an organic and/or inorganic phosphor. Additional components can be added to enhance the mechanical, optical or electrical characteristics of the printable ink.

[0587] FIG. 243 is an isolated view of an electronic circuit along the lines of the circuit diagram shown in FIG. 241 comprised of bare die electronic components, printed conductive pads and lines and a printed conductive ink pad along the lines of the printable conductive ink shown in FIG. 242. FIG. 244 is an isolated exploded view of the electronic circuit shown in FIG. 243. FIG. 245 shows the inventive method for forming an electronic circuit using bare die electronic components, printed conductive structures on flexible substrates and printable conductive pads for providing controlled resistance, upconversion of electromagnetic radiation (e.g., blue light emission upconverted to white light), and light transmission. A hotmelt adhesive shim is provided to compensate for the underthick adhesive of the light active layer. The shim layer can be on top or bottom of the light active layer. The composition of the shim layer can provide adhesive matching capabilities, and provide other enhancements such as light dispersion, re-emitters, scavengers and desiccants for moisture and oxygen control, etc. The Light Active layer can be an electronically active layer containing embedded bare die and packaged electronic circuit components. The shims can also allow devices of different heights to be accommodated.

[0588] The various elements making up each embodiment of the inventive devices and the various steps performed in the inventive methods can be interchanged in a variety of iterations, not all of which are provided as specific embodiments or examples herein. For example, function-enhancing components, such as phosphors, described in one embodiment may be employed, although not specifically described, in an alternative construction of another embodiment. Such iterations are specifically included within the scope of the inventions described herein.

[0589] With respect to the above description, it is realized that the optimum dimensional relationships for parts of the invention, including variations in size, materials, shape, form, function, and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art. All equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.

[0590] Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. Accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

1. An electronically active sheet, comprising: a bottom substrate having a bottom electrically conductive surface; a top substrate having a top electrically conductive surface disposed facing the bottom electrically conductive surface; an electrical insulator separating the bottom electrically conductive surface from the top electrically conductive surface; at least one bare die electronic element having a top conductive side and a bottom conductive side, said at least one bare die electric electronic element disposed so that the top conductive side is in electrical communication with the top electrically conductive surface and so that the bottom conductive side is in electrical communication with the bottom electrically conductive surface.
2. An electronically active sheet according to claim 1; wherein the electrical insulator comprises a hotmelt adhesive.

3. An electronically active sheet according to claim 1; wherein said at least one bare die electronic element is embedded in the electrical insulator with the top conductive side and the bottom conductive side left uncovered by the electrical insulator so that the electrical insulator binds the top substrate to the bottom substrate with the top conductive side of said at least one bare die electronic element in electrical communication with the top electrically conductive pattern of the top substrate and so that the bottom conductive side of said at least one bare die electronic element is in electrical communication with the bottom conductive pattern of the bottom substrate.

4. An electronically active sheet according to claim 1; wherein said at least one electronic element comprises a solid state semiconductor light emitting diode bare die.

5. An electronically active sheet according to claim 1; wherein said at least one bare die electronic element includes a first conductor and a second conductor both disposed on either the top conductive side and the bottom conductive side, and wherein said bare die electronic element is disposed so that the first conductor and the second conductor are in electrical communication with respective wiring lines formed on either the top substrate and the bottom substrate.

6. An electronically active sheet according to claim 1; wherein the bare die electronic element comprises a plurality of individual bare die LED elements; and the bottom electrically conductive surface and the top electrically conductive surface comprise a respective x and y wiring grid for selectively addressing said individual bare die LED elements for forming addressable display elements.

7. An electronically active sheet according to claim 6; wherein the plurality of individual bare die LED elements include different types of bare die having different electrical and light emitting characteristics so that when an AC voltage is applied to the top conductive pattern and the bottom conductive pattern the intensity of light emission can be controlled for the different types of bare die to control the intensity and color of emitted light.

8. An electronically active sheet according to claim 7; wherein the plurality of individual bare die LED elements form a backlight for a liquid crystal display, and wherein the plurality of different types of bare die are addressably controlled to vary the intensity and color of emitted light at locations of the backlight depending on an image being displayed on the liquid crystal display.

9. An electronically active sheet according to claim 6; wherein the top conductive pattern includes more highly conductive, more opaque printed lines and less highly conductive, more transparent windows printed on the top substrate.

10. An electronically active sheet according to claim 9; further comprising: an electrically insulative coating applied on at least portions of the more highly conductive, more opaque printed lines to reduce cross talk between the addressable display elements.

11. An electronically active sheet according to claim 1; further comprising a phosphor provided in or on at least one of the top substrate and the bottom substrate, or formed in the electrical insulator, said phosphor being optically stimulated by a radiation emission of a first wavelength from the light active semiconductor element to emit light of a second wavelength.

12. An encapsulated bare die semiconductor electronic circuit comprising: a first substrate having bottom side surface having at least a first and a second conductive line; a bare die semiconductor electronic circuit element having a first electrode and a second electrode disposed on an obverse side; an adhesive encapsulating and adhering said bare die semiconductor electronic circuit element to said first substrate so that said first electrode is in electrical communication with said first conductive line and said second electrode in electrical communication with said second conductive line.

13. An encapsulated bare die semiconductor electronic circuit according to claim 12; further comprising a second substrate disposed adjacent to the first substrate and bound to the first substrate by the adhesive.

14. An encapsulated bare die semiconductor electronic circuit according to claim 13; wherein said second substrate includes a top side surface having a third conductive line; said bare die semiconductor electronic circuit element includes a third electrode disposed on a reverse side; and wherein said adhesive encapsulates and adheres said bare die semiconductor electronic circuit element to said second substrate so that said third electrode is in electrical communication with said third conductive line.

15. An encapsulated bare die semiconductor electronic circuit according to claim 12; further comprising, an electrically conductive through-hole disposed in either said first substrate and said second substrate for electrically connecting said bare die semiconductor electronic circuit element to a conductive element disposed on a top side surface of the first substrate or on a bottom side surface of the second substrate.

16. An encapsulated bare die semiconductor electronic circuit according to claim 12; further comprising a second bare die semiconductor electronic circuit element having at least one electrode; and wherein said adhesive encapsulates and adheres said second bare die semiconductor electronic circuit element to said first substrate so that said at least one electrode is in electrical communication with at least one of the first electrode and the second electrode through the respective first and second conductive line.

17. A bare die semiconductor electronic circuit comprising: a first substrate having a bottom side surface having at least a first and a second conductive line; a second substrate disposed adjacent to the first substrate, the second substrate having a top side surface having a third conductive line; at least one bare die semiconductor electronic circuit element having a first electrode and a second electrode disposed on an obverse side and a third electrode disposed on a reverse side; an adhesive adhering the first substrate to the second substrate and binding the bare die semiconductor electronic circuit element to the first substrate and to the second substrate so that the first electrode is in electrical communication with the first conductive line, the second electrode in electrical communication with the second conductive line, and the third electrode is in electrical communication with the third conductive line.
18. A bare die semiconductor electronic circuit according to claim 17; wherein at least one of the first and the second substrate comprises a flexible plastic sheet.

19. A bare die semiconductor electronic circuit according to claim 18; wherein at least one of the first, second and third wiring line is formed from a printed conductive ink.

20. A bare die semiconductor electronic circuit according to claim 19; wherein the adhesive comprises at least one of a hot melt and thermosetting adhesive.