PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/36526
F 17/14 Al
GOGF 17/ (43) International Publication Date: 22 June 2000 (22.06.00)
(21) International Application Number: PCT/S$G99/00024 | (81) Designated States: JP, SG, US, European patent (AT, BE, CH,
CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 26 February 1999 (26.02.99) PT, SE).
(30) Priority Data: Published
PCT/SG98/00102 16 December 1998 (16.12.98) SG With international search report,

(71) Applicant (for all designated States except US): KENT RIDGE
DIGITAL LABS [SG/SG]; 21 Heng Mui Keng Terrace,
Singapore 119613 (SG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NGAIR, Teow, Hin
[SG/SG]; 334 Kang Ching Road #13-254, Singapore
610334 (SG). PANG, Hwee, Hwa [SG/SG]; 19 Shelford
Road #01-42, Singapore 288408 (SG).

(74) Agent: GREENE-KELLY, James, Patrick; Lloyd Wise, Tan-
jong Pagar, P.O. Box 636, Singapore 910816 (SG).

(54) Title: A METHOD OF PROCESSING DIGITAL MATERIAL

AT Server Client ——~J--240

280
J.30.5‘
!) < Browser —
e Web Server 20
J

~N4 Database
I ile) I

AL Hibemacolom [, SSL 3| HibernacalmClient ’\qu
330 ||| Server

(
350
(57) Abstract

A method of processing digital material comprising program code and data is disclosed, the method comprising the steps of: running
the program code on a computing device until a predetermined execution point is reached, and execution state existing at the execution point;
and forming a combined representation of the execution state, data and program code at that execution point, the data, code and execution
state being restorable from said representation so that execution of the material may subsequently be resumed from the execution point
on a remote computing device. Preferably, prior to the execution point, customization information is provided whereby the representation
is customized by the information. The information may include information identifying an intended user of the material, information
identifying an intended machine on which the material is subsequently to be run, information specifying the number of times the digital
material may be run and/or information configuring the digital material. Particular applications for the sale of video and audio files on
demand are disclosed.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CcG
CH
Cl
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JpP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
‘Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

WO 00/36526 PCT/SG99/00024

A METHOD OF PROCESSING DIGITAL MATERIAL

BACKGROUND AND FIELD OF THE INVENTION

This invention relates to a method of processing digital material, more particularly but
not exclusively to a process which allows the generation and distribution of customized

digital material.

The recent exponential growth of Internet usage has provided a corresponding
opportunity for selling digital goods through this medium. Such digital goods include
application programs, images, videos, audio files and other digitized IPR (Intellectual
property rights) material. However, due to security issues, large IPR owners are
hesitant to embrace the Internet for selling their products. The ease by which software
may be duplicated, together with the access to such goods in digital form that
transmission over the Internet requires and which sale of legitimate digital goods would
initially provide, makes the subsequent distribution of counterfeit digital goods much

easier.

This problem has given rise to active research in the field of digital watermarking.
Such technology embeds licence and owner information into the digital goods which
can help to trace the source of counterfeit goods in the event that duplicated copies of
some digital IPR materials are found. Another method is to include access control

information within the digital goods to restrict its usage. One particular problem with

10

15

WO 00/36526 PCT/SG99/00024

2
such techniques is that the licence information needs somehow to be applied to the
digital goods in a cost-effective and secure way. If the information is embedded in the
program code of the digital goods, this will require the program to be recompiled every
time, so that the new licence and owner information can be included in the machine
code, which may be prohibitively costly. Alternatively, if the information is embedded
in the data of the digital goods, the information may be vulnerable, since the program
code that is used to access the data can be rewritten to ignore that part of the data and

thus bypass the access control information.

It is an object of the invention to provide a novel method of processing digital material

which allows such information to be incorporated into digital goods.

SUMMARY OF THE INVENTION

According to the invention in a first aspect there is provided a representation of digital
material, the digital material comprising program code and data and the representation
comprising a combination of the code, data and an execution state existing at a
predetermined execution point when the program code is run. customization
information being provided during running of the program code prior to the execution
point being reached so that said representation is customized by said customization

information.

According to the invention in a second aspect, there is provided a method of

processing digital material, the material comprising program code and data, the method

W

10

15

WO 00/36526 PCT/8G99/00024

3
comprising the steps of: (1) running the program code until a predetermined execution
point is reached, an execution state existing at the execution point; and (2) forming a
combined representation of the execution state, data and program code at that execution
point, the data, code and execution state being restorable from said representation so

that execution of the material may subsequently be resumed from the execution point.

Further features of the invention are recited in the claims appendant hereto.

The term "execution state" means the values and contents of transient parameters such

as the contents of registers, context frames, counters and the like.

In the described embodiment of the invention, a method is disclosed that provides a
flexible mechanism to prevent the possibility of digital material transmitted over a
communication network, in particular digital goods to be marketed, from being
duplicated. Using such a method, any type of digital material can be transmitted by
hiding the information as part of a single representation termed a computing process
in which data, program code and execution state are combined. Such computing
processes can be structured by the IPR providers to include necessary anti-copying
mechanisms and standard security protection like channel privacy, user and machine
authentication, etc. Since the computing processes could be made unique to each IPR
provider and changed frequently independent of the information included in them, it

could render any duplication effort very difficult and costly.

Specific examples of applications of this method disclosed are the protection of video,

10

15

WO 00/36526 PCT/SG99/00024

4

audio and other multimedia material supplied over the Internet or electronically.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the present invention will now be described by way of
example and with reference to the accompanying drawings, in which:

Fig.1 is a general schematic model of an operating environment of a computing
system ;

Fig.2 schematically illustrates a process life-cycle and operations that may be
performed on a process,

Fig.3 is a flow-chart illustrating the operation Hibernaculum Construct(Stack
s, Module m, Data d),

Fig.4 is a flow-chart illustrating operation int Assimilate(Hibernaculum h,
Override Flags f),

Fig.5 is a flow-chart illustrating the operation int Usurp(Hibernaculum h,
Override Flags f),

Fig.6 is a flow-chart illustrating the operation int Bequeath(Hibernaculum h,
Thread threadname, Override Flags f),

Fig.7 is a flow-chart illustrating the operation int Inherit(Hibernaculum h,
Thread threadname, Override Flags f),

Fig.8 is a flow-chart illustrating the operation int Mutate(Stacks, int sFlag,
Module m, int mFlag, Data d, int dFlag),

Fig.9 is a flow-chart illustrating the operation int Checkpoint(Process p1, Target

WO 00/36526 PCT/SG99/00024

(4]

v,
Fig.10 is a flow-chart illustrating the operation int Migrate(Process p1, Machine
m),
Fig. 11 is a schematic diagram of a specific embodiment of the invention for
5 the sale of videos on-line,
Fig. 12 is a view of a login screen of the embodiment of Fig. 11,
Fig. 13 is a view of a video selection screen of the embodiment of Fig. 11, and

Fig. 14 is a view of a download screen of the embodiment of Fig. 11.

10 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiments of the invention to be described rely on a representation of digital
material being generated, termed a process, which comprises a combination of data,
program code and execution state. This general technique will now first described,
15 following which, embodiments of the invention, being specific applications of the

technique will be described.

Figure 1 shows the general model of a computing system. An application program 30
comprises data 10 and program modules 20. The operating system 60, also known as
20 the virtual machine, executes the application 30 by carrying out the instructions in the
program modules 20, which might cause the data 10 to be changed. The execution is
effected by controlling the hardware of the underlying machine 70. The status of the
execution, together with the data and results that the operating system 60 maintains for

the application 30, form its execution state 40.

10

15

WO 00/36526 PCT/SG99/00024

6

Such a model is general to any computing system. It should be noted here that the
present invention starts from the realisation that all the information pertaining to the
application at any time is completely captured by the data 10, program modules 20 and

execution state 40, known collectively as the process 50 of the application 30.

The process 50 can have one or more threads of execution at the same time. Each
thread executes the code of a single program module at any given time. Associated

with the thread is a current context frame, which includes the following components:

1. A set of registers;

2. A program counter, which contains the address of the next instruction to be
executed;

3. Local variables of the module;

4. Input and output parameters of the module;

5. Temporary results of the module.

In any module A, the thread could encounter an instruction to invoke another module
B. In response, the program counter in the current frame is incremented, then a new
context frame is created for the thread before it switches to executing module B. Upon
completing module B, the new context frame is discarded. Following that, the thread
reverts to the previous frame, and resumes execution of the original module A at the
instruction indicated by the program counter, i.e., the instruction immediately after the
module invocation. Since module B could invoke another module. which in turn could

invoke some other module and so on, the number of frames belonging to a thread may

10

15

WO 00/36526 PCT/SG99/00024
7

grow and reduce with module invocations and completions. However, the current frame
of a thread at any given time is always the one that was created last. For this reason.
the context frames of a thread are typically stored in a stack with new frames being
pushed on and popped from the top. The context frames of a thread form its execution
state, and the state of all the threads within the process 50 constitute its execution state
40 in Fig.1.

The data 10 and program modules 20 are shared among all threads. The data area is
preferably implemented as a heap, though this is not essential. The locations of the
data 10 and program modules 20 are summarized in a symbol table. Each entry in the
table gives the name of a datum or a program module, its starting location in the
address space, its size, and possibly other descriptors. Instead of having a single
symbol table, each process may alternatively maintain two symbol tables, one for data
alone and the other for program modules only, or the process could maintain no

symbol table at all.

In a preferred embodiment of the present invention, the data and program code of a
process are stored in a heap and a program area respectively and are shared by all the
threads within the process. In addition the execution state of the process comprises a
stack for each thread, each stack holding context frames, in turn each frame containing
the registers, local variables and temporary results of a program module, as wel] as
addresses for further module invocations and returns. Before describing an embodiment
of the invention in more detail, however, it is first necessary to introduce some
definitions of data types and functions that are used in the embodiment and which will

be referred to further below.

10

15

WO 00/36526 PCT/SG99/00024

In addition to conventional data types such as integers and pointer. four new data types

Data, Module, Stack and Hibernaculum are defined in the present invention:

Data: A variable of this data type holds a set of data references. Members are added
to and removed from the set by means of the following functions;
Int AddDatum(Data d, String dataname) inserts the data item dataname in the

heap of the process as a member of d.
Int DelDatum(Data d, String dataname) removes the data item datandre d

Module: A variable of this data type holds a set of references to program modules.

Members are added to and removed from the set with the following functions;

Int AddModule(Module d, String modulename) inserts the program module

modulename in the program area of the process as a member of d.

Int DelModule(Module d, Stringname modulename) removes the program

module modulename from d.

Stack: A variable of this data type holds a list of ranges of execution frames
from the stack of the threads. The list may contain frame ranges from multiple threads,
however no thread can have more than one range. Variables of this type are

manipulated by the following functions:

10

15

WO 00/36526

PCT/SG99/00024
9

Int OpenFrame(Stack d, Thread threadname) inserts into d a new range for the
thread threadname, beginning with the thread s current execution frame. This function

has no effect if the thread already has a range in d.

Int CloseFrame(Stack d, Thread threadname) ends the open-ended range in d
that belongs to the thread threadname. This function has no effect if the thread does

not currently have an open-ended range in d.

Int PopRange(Stack d, Thread threadname) removes from d the range belonging

to the thread threadname.

Hibernaculum: A variable of this data type is used to hold a suspended process.

As will be explained in more detail below a process may be suspended and
stored in a construct prior to being transferred from one operating environment to

another operating environment and/or may be subject to evolutionary operations:

Hibernaculum Construct(Stack s, Module m, Data d): This operation creates a new
process with the execution state, program table and data heap specified as input
parameters. The process is immediately suspended and then returned in a
hibernaculum. The hibernaculum may be signed by the originating process as
indication of its authenticity. Fig.3 is a flow-chart showing the hibernaculum construct

operation.

10

15

20

WO 00/36526

PCT/SG99/00024
10

A hibernaculum may be sent between operating environments by the following

send and receive functions:

Int Send(Hibernaculum h, Target t) transmits the process contained within h to the

specified target.

Hibernaculum Receive(Source s) receives from the specified source a hibernaculum

containing a process.

A hibernaculum may be subject to the following evolutionary functions:

Int Assimilate(Hibernaculum h, OverrideFlags f) activates the threads of the process
stored within h and runs them as threads within a calling process s operating
environment. Where there is a conflict between the data and/or program modules of
the hibernaculum and the operating environment, the override flags specify which to

preserve. Fig.4 is a flow-chart illustrating the steps of the assimilate operation.

Int Usurp(Hibernaculum h, OverrideFlags f) copies the data and program modules of
the process within h into the calling process s operating environment. Where there is
a conflict between the data and/or program modules of the hibernaculum and the
operating environment, the override flags specify which to preserve. Fig.5 is a

flow-chart illustrating the steps of the usurp operation.

Int Bequeath(Hibernaculum h, Thread threadname, OverrideFlags f). upon threadname

10

15

WO 00/36526 PCT/SG99/00024

11

s termination, activates the threads of the process stored within h and runs them as
threads within the environment of the process containing threadname. Where there is
a conflict between the data and/or program modules of the hibernaculum and the
calling process, the override flags specify which is to be preserved. Fig.6 is a

flow-chart illustrating the steps of the bequeath operation.

Int Inherit(Hibernaculum h, Thread threadname, OverrideFlags f) suspends threadname
and activates the process within h. When the process within h terminates its data and
program modules are added to the process containing threadname before threadname
is reactivated. Where there is a conflict between the data and/or program modules of
the hibernaculum and the process containing threadname, the override flags specify
which is to be preserved. Fig.7 is a flow-chart illustrating the steps of the inherit

operation.

Int Mutate(Stack s, int sFlag, Module m, int mflag, Data d, int dflag) modifies the
execution state, program table and data heap of the calling process. If a thread has an
entry in s, only the range of execution frames specified by this entry is preserved, the
other frames are discarded. Execution stacks belonging to threads without an entry in
s are left untouched. In addition, program modules listed in m and data items listed in
d are kept or discarded depending on the flag status. Fig.8 is a flow-chart illustrating

the steps of the mutate operation.

Int Checkpoint(Process p, Target t) creates a snapshot of p including all of its data,

program modules and execution state. The snapshot is then sent to the specified target.

wh

10

15

WO 00/36526 PCT/SG99/00024
12
Int Migrate(Process p, Machine m) transfers the process p to the specified machine for

p to continue execution there. Al of the data (including file handles and established

sockets), program modules and execution state are preserved in the transfer.

The typical life cycle of a process is depicted in Figure 2. First, an application 210 or
a suspended process 220 stored in a hibernaculum is loaded by the operating system,
then starts running as a process 230. The application 210 may be a program that is
designed to perform some tasks, or it may be a simple loader that is used to start up
other processes, while the suspended process 220 could be either produced locally
earlier or generated on and transferred from another machine. As the process 230 goes
through the application program logic, the process may create new processes, absorb

other processes, mutate, or migrate as explained below.

In particular, the process may be stored in a construct hibernaculum in a suspended
state. In this condition the process may be subject to a number of operations. To begin
with the hibernaculum may be sent to another operating environment. Alternatively the
process may be modified within its own operating environment by the selective
deletion of elements from within the process, or by the selective reloading of elements
into the process. A still further possibility is that the process may receive a suspended
process from another operating environment, and either all or part of this suspended
process may be incorporated into the first process. Alternatively all or part of the {irst
process may be incorporated into the second process. It will also be understood that
all these operations may be combined in many different ways. For example, a process

may be sent from one operating environment to another and then may mutate by

10

15

WO 00/36526 PCT/SG99/00024

13

dropping certain elements and reloading other elements when in the second
environment. In the following description the construction of a hibernaculum, send and
receive functions, and exemplary evolutionary operations will all be described in

greater detail.

New processes are created with the Construct 110 operation. Fig.3 is a flow-chart
showing the steps of this Construct operation. Each invocation of this operation starts
up a controller thread in the process 230. The controller thread freezes all other active
threads in the process 230, then creates a new process with some or all of the
execution state, program modules and/or data of the process 230 except for those
belonging to the controller thread, before resuming the frozen threads. Therefore, the
new process contains no trace of the controller thread. The new process is suspended
immediately and returned in a hibernaculum in the data area of the process 230. As
explained earlier, a hibernaculum is a special data type that serves the sole purpose of
providing a container for a suspended process. Since a process may have several
hibernacula in its data area, it could create a new hibernaculum that contains those
hibernacula, each of which in turn could contain more hibernacula, and so on. When
the new process is activated subsequently, only those threads that were active just
before the Construct 110 operation will begin to execute initially: threads that were
suspended at that time will remain suspended. At the end of the Construct 110
operation, the controller thread resumes those threads that were frozen by it before

terminating itself.

To specify what execution state should go into the new process, the Construct 110

10

15

WO 00/36526 PCT/8G99/00024
14

operation is passed a list of ranges of context frames. The list may include frames from
the state of several threads. No thread is allowed to have more than one range in this
list. A thread can specify that all of its frames at the time of the Construct 110
operation are to be included in the list, by calling the AllFrame function beforehand.
Alternatively, the thread can call the OpenFrame function to register its current frame,
so that all the frames from the registered frame to the current frame at the time of the
Construct 110 operation are included in the list. The thread can also call the
CloseFrame function subsequently, to indicate that only frames from that registered
with OpenFrame to the current frame at the time of calling CloseFrame are to the
included in the list for the Construct 110 operation. An AllFrame or OpenFrame
request for a thread erases any previous AllFrame, OpenFrame and CloseFrame
requests for that thread. A CloseFrame request overrides any earlier CloseFrame
request for the same thread, but the request is invalid if the thread has not already had
an OpenfFrame request. A thread can also make AllFrame, OpenFrame and/or
CloseFrame requests on behalf of another thread by providing the identity of that

thread in the requests; the effect is as if that thread is making those requests itself.

The Construct 110 operation can also be passed a list of program modules that should
go into the newly created process. A thread can specify that all modules of the process
230 are to be included in the list, by calling the AllModules function prior to the
Construct 110 operation. Alternatively, the thread can call the AddModule function to
add a specific module to the list, and the DelModule function to remove a specific
module from the list. The effect of the AllModules, AddModule and DelModule

requests, possibly made by different threads, are cumulative. Hence a DelModule

10

15

WO 00/36526 PCT/SG99/00024

15

request after an AllModules request would leave every module in the list except for
the one removed explicitly, and a DelModule can be negated with an AddModule or
AllModules request. As there could be multiple AddModule requests for the same
module and AllModules could be called multiple times, a program module may be
referenced several times in the list. However, the Construct 110 operation consolidates

the entries in the list, so no program module gets duplicated in the new process.

To copy some or all of the data of the process 230 to the new process, the Construct
110 operation can be passed a data list. This list contains only the name of. or
reference to data that should be copied. The actual data content or values that get
copied to the new process are taken at the time of the Construct 110 operation, not at
the time that each datum is added to the list. To ensure consistency among data that
could be related to each other, all the threads in the process 230 are frozen during the
Construct 110 operation. A thread can specify that all data of the process 230 are to
be included in the list, by calling the AllData function prior to the Construct 110
operation. Alternatively, the thread can call the AddDatum function to add a specific
datum to the list, and the DelDatum function to remove a specific datum from the list.
The effect of the AllData, AddDatum and DelDatum requests. possibly made by
different threads, are cumulative. Hence a DelDatum request after an AllData request
would leave all of the data in the list except for the one removed explicitly, and a
DelDatum can be negated with an AddDatum or AllData request. As there could be
multiple AddDatum requests for the same datum and AllData could be called muitiple
times, a datum may be referenced several times in the list. However, the Construct 110

operation consolidates the entries in the list, so no datum gets duplicated in the new

10

15

20

WO 00/36526 PCT/SG99/00024
16

process.

Since the lists passed to the Construct 110 operation are constructed from the execution
state, program modules and data of the process 230, the new process initially does not
contain any component that is not found in the process 230. Consequently, the symbol
table in the new process is a subset of the symbol table of the process 230. Threads
in the process 230 that do not have any frame in the new process are effectively
dropped from it. For those threads that have frames in the new process, when activated
later, each will begin execution at the instruction indicated by the program counter in
the most recent frame amongst its frames that are copied. By excluding one or more
of the most recent frames from the new process, the associated thread can be forced
to return from the most recent module invocations. An exception is raised to alert the
thread that those modules are not completed normally. Alternatively, the thread can be
made to redo those modules upon activation, by decrementing the program counter in
the most recent frame amongst those frames belonging to that thread that are copied.
Similarly, by excluding one or more of its oldest frames from ;lle new process, a

thread can be forced to terminate directly after completing the frames that are included.

Hibernacula, produced by the Construct 110 operation, can be exchanged between
processes via the Send 120 and Receive 130 operations. The process 230 can send a
hibernaculum in its data area out on an output stream, by invoking the Send 120
operation with the hibernaculum and output stream as parameters. The output stream
could lead to either a disk file, a memory stream, a device stream. or the input stream

of another process, possibly on a different machine. In the former case, the process in

10

15

WO 00/36526 PCT/SG99/00024
17

the hibernaculum is stored away for the time being, whereas in the latter case the

process in the hibernaculum is received directly into the data area of another process.

The process 230 can also acquire other processes via the Receive 130 operation, which
receives from an input stream a hibernaculum containing a suspended process. The
source of the input stream could be a disk file, a memory stream, a device stream. or

the output stream of another process, possibly from a different machine.

The process 230 can absorb the suspended process within a hibernaculum through the
Assimilate 140, Usurp 150, Bequeath 160 and Inherit 170 operations. These operations
can be invoked by any thread in the process 230, or by another process that has
appropriate permissions. The hibernaculum could have been created by the process 230

itself earlier, or received from another process via a disk file or an input stream.

The Assimilate 140 operation accepts a hibernaculum as input. Fig.4 is a flow-chart
showing this operation in detail. The operation starts up a controller thread in the
process 230. The controller thread freezes all other active threads in the process 230,
adds the program modules and data of the process in the hibernaculum to the program
modules and data of the process 230, respectively, and updates its symbol table
accordingly. In case of a name conflict, the program module or data from the
hibernaculum is discarded in favor of the one from the process 230 by default.
However, a flag can be supplied to give preference 1o the hibernaculum. Moreover. the
context frames of the threads within the hibernaculum are added to the execution state

of the process 230, enabling those threads to run within the process. Only those threads

10

15

WO 00/36526 PCT/SG99/00024

18

that were active just before the hibernaculum was created are activated initially; threads
that were suspended at that time remain suspended. Each newly acquired thread begins
execution at the instruction indicated by the program counter in the most recent frame
amongst the context frames that belong to that thread. F inally. all the original threads
in the process 230 that were frozen by the controller thread are resumed before it

terminates itself,

The Usurp 150 operation, which also accepts a hibernaculum as input, enables the
process 230 to take in only program modules and data from a hibernaculum, without
acquiring its threads. Fig.5 is a flow-chart showing this operation in detail. The
operation starts up a controller thread in the process 230. The controller thread freezes
all other active threads in the process 230, adds the program modules and data of the
process in the hibernaculum to the program modules and data of the process 230,
respectively, and updates its symbol table accordingly. In case of a name conflict, the
program module or data from the hibernaculum is discarded in favor of the one from
the process 230 by default. However, a flag can be supplied to give preference to the
hibernaculum. Finally, all the original threads in the process 230 that were frozen by

the controller thread are resumed before it terminates itself.,

The Bequeath 160 operation accepts a hibernaculum and a thread reference as input.
Fig.6 is a flow-chart showing this operation in detail. It starts up a bequeath-thread in
the process 230. The bequeath-thread registers the referenced thread and any existing
bequeath-threads on that thread, then allows them to carry on execution without

change. After all those threads and threads that they in turn activate have terminated,

10

15

20

WO 00/36526 PCT/SG99/00024

19

the bequeath-thread loads in the context frames, program modules and data in the
hibernaculum. In case of a name conflict, the program module or data from the
hibernaculum is discarded in favor of the one from the process 230 by default.
However, a flag can be supplied to give preference to the hibernaculum. Subsequently,
threads within the hibernaculum are activated to run in the process 230 before the
bequeath-thread terminates itself. Only those threads that were active just before the
hibernaculum was created are activated initially; threads that were suspended at that
time remain suspended. Each newly acquired thread begins execution at the instruction
indicated by the program counter in the most recent frame amongst the context frames
that belong to that thread. If multiple Bequeath 160 requests are issued for the same
thread, there will be several bequeath-threads in the process 230. Each bequeath-thread
will wait for all the existing bequeath-threads on the same thread, together with all the
threads that they activate, to terminate before performing its function. As a result, the

Bequeath 160 requests are queued up and serviced in chronological order.

The reverse of Bequeath 160 is the Inherit 170 operation, which also accepts a
hibernaculum and a thread reference as input. The flow-chart for this operation is
shown in Fig.7. This operation starts up an inherit-thread in the process 230. The
inherit-thread freezes the referenced thread in the process 230 together with the
bequeath-threads and any inherit-thread for the referenced thread. adds the program
modules and data in the hibernaculum to the program modules and data of the process
230, respectively, and updates its symbol table accordingly. In case of'a name contlict,
the program module or data from the hibernaculum is discarded in favor of the one

from the process 230 by default. However, a flag can be supplied to give preference

10

15

WO 00/36526 PCT/SG99/00024

20

to the hibernaculum. Moreover, the context frames of the threads within the
hibernaculum are added to the execution state of the process 230, enabling those
threads to run within the process. Only those threads that were active just before the
hibernaculum was created are activated initially; threads that were suspended at that
time remain suspended. Each newly acquired thread begins execution at the instruction
indicated by the program counter in the most recent frame amongst the context frames
that belong to that thread. After all the acquired threads and threads that they in turn
activate have terminated, the inherit-thread resumes those threads that were frozen by
it earlier, before terminating itself. If one of the acquired threads issues an Inherit 170
request, the acquired threads and the current inherit-thread would in turn be suspended,
pending the completion of the latest Inherit operation. If an acquired thread does a
Bequeath 160, the inherit-thread would wait for the Bequeath request to be satisfied

before resuming the threads that were frozen by it.

Besides constructing and absorbing new processes, the process 230 can also modify
any of its components directly by calling the Mutate 180 operation from any thread.
Fig.8 shows the flow-chart for the Mutate operation. The operation starts up a
controller thread in the process 230. The controller thread first freezes all other active
threads in the process 230, then selectively retains or discards its execution state,
program modules and data. A list of context frames, together with a flag, can be passed
to the Mutate 180 operation to retain or discard the frames in the list. Similarly, a
program module list and/or a data list can be provided to indicate program modules
and data of the process 230 that should be retained or discarded. The generation of the

execution state, program module and data lists are the same as for the Construct 110

10

15

20

WO 00/36526 PCT/8G99/00024
21

operation. After mutation, the controller thread resumes the threads that were frozen
by it before terminating itself. Threads that no longer have a context frame in the
process 230 are terminated. Each of the remaining threads resumes execution at the
mstruction indicated by the program counter in the most recent frame amongst the
retained frames belonging to that thread. By discarding one or more of its most recent
frames, a thread can be forced to return from the most recent module invocations. An
exception is raised to alert the thread that those modules are not completed normally.
Similarly, by discarding one or more of its oldest frames, a thread can be forced to
terminate directly after completing the frames that are retained. Space freed up from

the discarded context frames, program modules and data is automatically reclaimed by

a garbage collector.

The process 230 is also capable of suspending and migrating itself. The Checkpoint
190 operation starts up a controller thread in the process 230. Fig.9 is a flow-chart
showing the Checkpoint operation in detail. The controller thread freezes all other
active threads in the process 230, then sends it in the form of a hibernaculum on a
specified output stream that it established earlier. The hibernaculum contains all of the
execution state, program modules, and data of the process 230, except for those
belonging to the controller thread and the output stream used by the Checkpoint 190
operation. The output stream could lead to either a disk file or the input stream of
another process, possibly on a different machine. The controller thread ends by
terminating the process 230. When the process in the hibernaculum is activated
subsequently, only those threads that were active just before the Checkpoint 190

operation will begin to execute initially; threads that were suspended at that time will

10

15

WO 00/36526 PCT/SG99/00024

22
remain suspended. The Checkpoint 190 operation could be invoked by one of the

threads of the process 230, or by another process with appropriate permissions.

The Migrate 200 operation is used to move the process 230 to another machine. Fig.10
is a flow-chart showing the Migrate operation in detail. The operation can be invoked
by one of the threads of the process 230, or by another process with appropriate
permissions. The Migrate 200 operation starts up a first controller thread in the process
230, which carries out the following steps: (a) It freezes all other active threads in the
process 230. (b) It initiates a receiver process on the target machine, which runs a
second controller thread. (¢) The two controller threads establish an output stream in
the process 230 that leads to an input stream in the receiver process. (d) The second
controller thread in the receiver process performs a Receive 130 operation on its input
stream. (e) The first controller thread sends the process 230 in the form of a
hibernaculum on the output stream. The hibernaculum contains all of the execution
state, program modules, and data of the process 230 except for those belonging to the
controller thread and the output stream used for the migration. (f) The first controller
thread ends by terminating the process 230. (g) After receiving the hibernaculum, the
second controller thread activates the process in the hibernaculum before terminating
itself. Only those threads that were active just before the migration are activated

initially; threads that were suspended at that time remain suspended.

To implement the process migration and adaptation system of the present invention in
a Java environment, a package called snapshot is introduced. This package contains the

following classes, each of which defines a data structure that is used in the migration

10

15

WO 00/36526 PCT/SG99/00024

o
Lo

and adaptation operations:

public class Hibernaculum {

o

public class State {

public class Module {

public class Data {

public class Machine {

In addition, the package contains a Snapshot class that defines the migration and

adaptation operations:

WO 00/36526 PCT/SG99/00024

public class Snapshot {
private static native void registerNatives():
static {

registerNatives();

public static native Hibernaculum Construct(State s, Module m, Data d);

public static native int Send(Hibernaculum h, OutputStream o);

public static native Hibernaculum Receive(InputStream i);
10 public static native int Assimilate(Hibernaculum h, int f);

public static native int Usurp(Hibernaculum h, int f);

public static native int Bequeath(Hibernaculum h, int f);

public static native int Inherit(Hibernaculum h, int f);

public static native int Mutate(State s, Module m, int mflag, Data d, int dflag);
15 public static native int Checkpoint(OutputStream o);

public static native int Migrate(Machine m);

/! This class is not to be instantiated
private Snapshot() {

20 }

The methods in the Snapshot class can be invoked from application code. For

example:

WO 00/36526 PCT/$G99/00024

(8]
w

try {
if (snapshot.Snapshot.Construct(s, m, d) != null) {
// hibernaculum has been created
) else {
5 // failed to create hibernaculum
}
catch(snapShot.SnapshotException e) {

// Failed to create hibernaculum

10
The migration and adaptation operations are implemented as native codes that
are added to the Java virtual machine itself, using the Java Native Interface (JNI). To

do that, a Java-to-native table is first defined:

15 #define KSH Ljava/snapshot/Hibernaculum;
#define KSS Ljava/snapshot/State;
#define KSM Ljava/snapshot/Module;

#define KSD Ljava/snapshot/Data;

20 static JNINativeMethod snapshot_Snapshot_native_methods[] = {

{

Construct ,
(KSSKSMKSD) KSH,

(void*)Impl_Snapshot_Construct

WO 00/36526

——
.

10

15

20

26

Send ,

(KSH Ljava/io/OutputStream;)I ,

(void*)Impl_Snapshot_Send

Receive ,
(Ljava/io/InputStream;) KSH,

(void*)Impl_Snapshot_Receive

Assimilate ,
(KSH I,

(void*)Impl_Snapshot_Assimilate

Usurp ,
(KSHI)I,

(void*)Impl_Snapshot_Usurp

Bequeath ,

(KSH I,

PCT/SG99/00024

WO 00/36526

10

15

27

(void*)Impl_Snapshot_Bequeath

Inherit ,
(KSH DI,

(void*)Impl_Snapshot_Inherit

Mutate ,
(KSSKSM 1 KSD DI,

(void*)Impl_Snapshot_Mutate

Checkpoint ,
(Ljava/io/OutputStream;)I ,

(void*)Impl_Snapshot_Checkpoint

Migrate ,
(Ljava/snapshot/Machine;)I ,

(void*)Impl_Snapshot_Migrate

PCT/SG99/00024

WO 00/36526 PCT/SG99/00024
28

After that, the native implementations are registered via the following function:

JNIEXPORT void JNICALL
Java_snapshot_Snapshot_registerNatives(JNIEnv *env, jclass cls) {
5 (*env)->RegisterNatives(env,
cls,
snapshot_Snapshot_native_methods,
sizeof(snapshot_Snapshot_native_methods) /

sizeof(JNINativeMethod));

10)

Besides the above native codes, several functions are added to the Java virtual

machine implementation, each of which realizes one of the migration and adaptation

operations:
15
void* Impl_Snapshot_Construct(..) {
// follow flowchart in Figure 3
}
20

void* Impl_Snapshot_Send(..) {

// send given hibernaculum to specified target

10

15

WO 00/36526

void* Impl_Snapshot_Receive(..) {

// receive a hibernaculum from a specified source

void* Impl_Snapshot_Assimilate(..) {

/! follow flowchart in Figure 4

void* Impl_Snapshot_Usurp(..) {

/1 follow flowchart in Figure 5

void* Impl_Snapshot_Bequeath(..) {

// follow flowchart in Figure 6

void* Impl_Snapshot_Inherit(..) {

// follow flowchart in Figure 7

PCT/SG99/00024

w

10

WO 00/36526 PCT/SG99/00024

void* Impl_Snapshot_Mutate(..) {

// follow flowchart in Figure 8

void* Impl_Snapshot_Checkpoint(..) {

// follow flowchart in Figure 9

void* Impl_Snapshot_Migrate(..) {

/I follow flowchart in Figure 10

As will be apparent from the above, using the computer environment described, it is
possible using the Construct 110 operation to create a hibernaculum of a process in
which the data, program modules and execution state at a particular execution point
when running on a first machine are suspended and stored. That process can then be
transferred as an output stream to another location using the Send 120 operation. for
example a disk file or can be transmitted to a second machine, for example at a remote
location, for execution to be resumed either as a self-standing process or as input to
another process running on the second machine using any one of the Assimilate 140,

Usurp 150, Bequeath 160 or Inherit 170 operations..

10

15

20

WO 00/36526 PCT/5G99/00024

~

31

This feature allows a customized version of software and other digital material to be
provided by running the software to a particular execution point, prior to which
customized features are incorporated, generating the suspended process, which
incorporates the customization, using Construct 110 or Checkpoint 190 and then
supplying the process to a customer as a bespoke product for the customer to use. as

will now be explained.

Essentially, software is written to run in two phases, a customization phase and an

execution phase.

Customization Phase: In the customization phase, the software initializes, loads
the program modules into memory and then takes in a configuration specification,
either through user input or from a configuration file. The specification can include
use control information, watermarks, user's machine identification, a user's
cryptographic token, licence number, software features to enable/disable features,
functions or commands (for example to permit saving of data into files, to allow the
software to run only a limited number of times or to run only on a specific machine)
and content to be supplied (eg an abridged or expanded version of the software). The
software determines from the specification which data files and any further program
modules that might be needed for the configuration are required and loads these into
memory. Similarly, any program modules and data not required can be discarded
using the Mutate 180 operation. A hibernaculum is then generated of the process at
that execution point. The hibernaculum will be a binary code representation of the

process which contains program code, data and execution state. It is preferred that

10

20

WO 00/36526 PCT/SG99/00024

32
configuration information is stored as execution state (e.g. as stack values or in
registers) to make it more difficult for potential hacker to access such information.

These elements can be interleaved or encrypted by any conventional means.

Execution Phase: The customer is provided with a utility which is capable of
resuming execution of the process. Once the representation has been transferred to the
customer, this is loaded into memory, the interleaving and/or encryption is reversed
using the utility and the process resumed allowing the software to run. In order to
prevent potential compromise of the digital goods, a series of representations may be
sent to the customer. The earlier representation can take on the role of reversing the
encryption and interleaving of subsequent representations, thus complicating the task

of an attacker in accessing the digital goods.

It will be appreciated that the software as received by the customer is not the same as
the software prior to the customization step, since it has been modified by the
configuration input and may thus be made unique to that customer. The software
resumes execution to perform all its intended functions. In some applications, the
software can be saved by suspending the process at a subsequent execution point (to
save data, for example) by use of the Checkpoint function by the customer, but the
program will then always resume from that subsequent execution point, so the
customization phase is never re-entered, thus preventing tampering with the

configuration of the software as set by the manufacturer/distributor.

It will further be appreciated that since the representation as passed to the customer as

10

15

WO 00/36526 PCT/SG99/00024
33

a single binary file, embedded data is protected and cannot be easily accessed from

outside the customization process.

A first specific embodiment of protecting videos transmitted over the Internet will now
be explained. The embodiment is implemented using the techniques described above,
in particular using the computing language Java and using Web technology for user
interface. Specifically, using the snapshot package described, the Java language is
extended in conjunction with an extended Java Virtual Machine (JVM). This extended
JVM provides the primitive commands described above to allow the creation of a
hibernaculum of a software process that can be transmitted over a communication

network and subsequently be resumed in another computing environment.

In this embodiment, two machines, server 280 and client 290, are configured as shown
in Fig. 11. The server 280 contains a Web server 300 offering digital video files for
sales over the Internet 305. This machine implements a typical electronic commerce
system that allows users to browse, select and pay for the video files which are stored
on a database 310. The server further includes an extended JVM, snapshot package
and a Server program. The client 290 runs a standard Web browser 320, together with
an extended JVM, snapshot package and a Client program to be used by customers
who wish to purchase/view the video files. The server 280 and client 290 further
include a "hibernaculum server” 330 and "hibernaculum client" 340 which are arranged

to communicate over a secure link 350 as described below.

The user interface is shown in Figs 12-14.

10

15

20

WO 00/36526 PCT/SG99/00024

34
In order to alleviate the problem of use of any video transmitted by those other than
the user who has paid for the video, various means may be employed. One is to assign
or request from each user a userid and password for example using the input screen
shown in Figure 12. Subsequently, some or all of this information is embedded in the
video viewing software prior to the hibernaculum being created to verify subsequently

the authenticity of the user.

After verifying the user information, the browser will show a video-list page in which
the user can select his or her favorite video and the number of video reviews required,
from the screen shown in Figure 13. The latter information is used to configure the
viewing software, prior to the hibernaculum being created, to allow replaying of the

video for a maximum number of times specified.

Once the user confirms the order by clicking the Order! button, the client machine
will launch the Client program. The server then sends two hibernacula to the client,
one being of a process for loading the other, which is a hibernaculum of the video
viewing process. This two-stage process is used for security, the other hibernaculum
being encrypted and the one including a decryption key for the other. The screen
display when the second hibernaculum is being sent is shown in Figure 14. The video
can then be played on the client machine by resuming the process of the second

hibernaculum.

The operation of the server and client machines to provide these functions is as

follows:

10

15

WO 00/36526 PCT/SG99/00024
35

1. After the user has accessed the server's site over the World Wide Web. the

server, under command of the Server program, runs the extended JVM and loads in a

video viewing program having no video file saving capability or having such capability

discarded using the Mutate 180 operation. This program then displays the screen of

Fig. 12 to the user to prompt for userid, password and any other information, such as

client machine serial number, for access control.

2. The server loads the digital video (data) file selected by the user (Fig. 13) into
the video viewing program and sets the userid and password parameters. The viewing
program may optionally apply a video watermarking process to embed user and

licensing information directly into the video file.

3. The server sets the licensing parameters in the video viewing program including

the number of video reviews allowed.

4, The server runs Construct or Checkpoint to create a first hibernaculum of the
video viewing program processb with all the parameters set and video files loaded.

During the construction of the hibernaculum, the server may selectively discard data,
code and execution state that are not needed for the intended use of the hibernaculum.
Specifically, data, code and executing state can be purposely made incomplete to

complicate the task of others intending to misuse the hibernaculum.

5. The server selects a one-time secret key and encrypts the video viewing process

with it.

10

15

WO 00/36526 PCT/SG99/00024
36

6. The server embeds the same secret key into a hibernaculum loading process.
This process may be created on demand or preloaded. The purpose for introducing the
hibernaculum loading process is to make it more difficult to obtain access to the video

through a possibly compromised JVM on the client machine.

7. The server then creates a hibernaculum out of the hibernaculum loading process
and sends it to the Client using either the Migrate operations or a combination of
Construct and Send operations, preceded by a command to the client machine
instructing the user's browser to launch the Client program. The client program is a
simple routine which runs on the JVM of the client machine and uses the snapshot

package to first Receive and then Assimilate an incoming hibernaculum.

8. Upon receiving the hibernaculum, the Client resumes the hibernaculum loading

process with the Assimilate operation.

9. The hibernaculum loading process on the client machine makes a connection
to the server machine and establishes a secure connection (e.g. using SSL) to protect

the privacy and integrity of the network channel.

10. The server sends over the encrypted video viewing hibernaculum (Fig. 14). The
hibernaculum loading process decrypts the video viewing hibernaculum and resumes

the process.

11. The video viewing process prompts the user for password authentication. After

w

10

WO 00/36526 PCT/SG99/00024

37

proper authentication, the user can proceed to play the video file.

12.

After the maximum number of reviews allowed, the video viewing process
stops the viewing capability and terminates itself automatically or awaits further

instruction from the user.

In another specific embodiment of the invention, the first specific embodiment
described above is used for providing audio on-line. The second specific embodiment
is practically the same as the first except that the files selectable by the user are audio
files rather than video files, and instead of a video viewing program, an audio playing

program is used.

Preferably, the hibernaculum loading process is made vendor-specific by being
independently written and by the inclusion of registration and other information. The
essential requirements of the program must be maintained, namely that the program
must be able to decrypt the video viewing hibernaculum and resume the process but
it is preferable for the vendor's hibernaculum loading process to only be able to load
hibernacula from that vendor. Similarly, to prevent simple access to the video via the
system routines for video image display, the video viewing process can use vendor-

specific video playing routine to make such video capturing difficult.

In the specific described embodiment, two hibernacula are generated, one of which is
arranged to resume running of the other. However, any number of hibernacula may

be linked in this way.

WO 00/36526 PCT/SG99/00024
38

The embodiments described above may also be easily adapted to protect other digital

material provided over open networks and can be combined with each other, so that

a single server can transfer video, audio or programs, for example, depending upon

user selection.

The embodiments of the invention described are not be construed as limitative, the

scope of the invention being defined by the scope of the appendant claims.

PCT/SG99/00024

WO 00/36526
39
CLAIMS
1. A representation of digital material, the digital material comprising program

code and data and the representation comprising a combination of the code, data and
5 an execution state existing at a predetermined execution point when the program code
is run, customization information being provided during running of the program code
prior to the execution point being reached so that said representation is customized by

said customization information.

10 2. A representation as claimed in Claim 1 wherein the information comprises

information for the purpose of use control.

3. A representation as claimed in Claim 1 or Claim 2 wherein the customization
information includes information relating to at least one of:
15 information identifying the material
information identifying an intended user of the material;
information identifying an intended machine on which the material is
subsequently to be run;
information specifying the number of times the digital material may be run;

20 information configuring the digital material.

4. A representation as claimed in Claim 2 wherein the information identifying the

material includes a watermark.

10

WO 00/36526 PCT/SG99/00024

40

5. A representation as claimed in Claim 3 or Claim 4 wherein the information

identifying an intended user of the material includes user authentification information.

6. A representation as claimed in Claim 3 wherein the authentification information

includes a cryptographic token.

7. A representation as claimed in any one of Claims 3 to 6 wherein the
information identifying an intended machine on which the material is subsequently to

be run comprises a serial number of the machine.

8. A representation as claimed in any one of Claims 3 to 7 wherein the
information configuring the digital material comprises information specifying program
code and/or data and/or execution state to be selected or discarded prior to the

execution point.

9. A representation as claimed in any one of the preceding Claims wherein said

digital material includes video data.

10. A representation as claimed in Claim 9 wherein the digital material includes a

program to play the video data.

11. A representation as claimed in Claim 9 or Claim 10 wherein the data included
in the representation comprises at least one video recording specified by said

customization information.

10

15

20

WO 00/36526 PCT/SG99/00024

41

12.

A representation as claimed in any one of Claims 1 to 8 wherein said digital

material includes audio data.

13. A representation as claimed in Claim 12 wherein the digital material includes

a program to play the audio data.

14. A representation as claimed in Claim 12 or Claim 13 wherein the data included
in the representation comprises at least one audio recording specified by said

customization information.

15. A representation as claimed in any one of the preceding claims wherein the

representation is encrypted.

16. In combination, a representation as claimed in any one of the preceding claims
and software arranged to use the representation as input for resuming the running of

the program code from the execution point.

17. In combination, a representation of software arranged to use the representation
of Claim 13, as input for resuming the running of the program code from the execution
point, the representation of software comprising program code, data and an execution
state existing at a chosen execution point in running of the software, decryption
information for decrypting the representation of Claim 15 being provided during

running of the software prior to the chosen execution point being reached.

10

15

WO 00/36526 PCT/SG99/00024

42

18. In combination, a plurality of representations as claimed in any one of claims
1 to 15, each representation but one being arranged to resume running of another of

the representations.

19. A method of processing digital material, the material comprising program code
and data, the method comprising the steps of:

(1) running the program code until a predetermined execution point is reached, an
execution state existing at the execution point;and

(2) forming a combined representation of the execution state, data and program code
at that execution point, the data, code and execution state being restorable from said
representation so that execution of the material may subsequently be resumed from the

execution point.

20. A method as claimed in Claim 19 wherein, prior to the execution point,
customization information is provided whereby the representation is customized by the

information.

21. A method as claimed in Claim 20 wherein the information comprises

information for the purpose of use control.

22. A method as claimed in Claim 20 or Claim 21 wherein the customization
information includes information relating to at least one of:
information identifying the material

information identifying an intended user of the material;

10

15

WO 00/36526 PCT/SG99/00024

43
information identifying an intended machine on which the material is
subsequently to be run;

information specifying the number of times the digital material may be run;

information configuring the digital material.

23. A method as claimed in Claim 22 wherein the information identifying the

material includes a watermark.

24, A method as claimed in Claim 22 or Claim 23 wherein the information

identifying an intended user of the material includes user authentification information.

25. A method as claimed in Claim 24 wherein the authentification information

includes a cryptographic token.

26. A method as claimed in any one of claims 22 to 25 wherein the information
identifying an intended machine on which the material is -subsequently to be run

comprises a serial number of the machine.

27. A method as claimed in any one of Claims 22 to 26 wherein the information
configuring the digital material comprises information specifying program code and/or
data and/or execution state to be selected or discarded prior to the representation being

formed.

28. A method as claimed in any one of Claims 20 to 27 further comprising the step

10

15

WO 00/36526 PCT/SG99/00024
14

of encrypting the representation.

29. A method as claimed in any one of Claims 20 to 28 further comprising the step

of storing the representation.

30. A method as claimed in any one of Claims 20 to 29 further comprising the step

of transferring the representation to a remote computing device.

31. A method as claimed in any one of Claims 20 to 30 further comprising the
steps of restoring the data, code and execution state from said representation and

resuming execution of the program code from the execution point.

32. A method as claimed in Claim 31 where dependent on Claim 28 further
comprising the step of decrypting the encrypted representation prior to the restoring

step.

33. A method as claimed in any one of Claims 20 to 32 further comprising the
steps of generating a plurality of representations, each representation but one being
arranged to resume execution of the program code from the execution point of another

of the representations.

WO 00/36526

PCT/SG99/00024

1/12
Process
50
Application
30
Data Program Module
10 20
Execution State
Operating System 40
60
Machine
70

Fig.

1

WO 00/36526

PCT/SG99/00024
2/12
Hibernaculum:
Application Hibemaculum
210 220
[I
Load L | h
A 4
Process Construct 110
230 >
Send 120 » Stream
Receive 130 Strearn
_Assimilate 140 3
Traditional , Usurp 150
Operations N
~_ Bequeath 160 F
. Inherit 170
. Mutate 180
Checkpoint 190 » Stream
Migrate 200 » Machina

Terminate

Fig. 2

WO 00/36526 PCT/SG99/00024

3/12

| Start |
I

Y
| Initiate Controller Thread |

| Freezeall Sther threads]

Y
| Create new processp |

Y
Opy Irames inaicated in s to rocess p
Copy frames indicated ins to p

Y
[Copy modules listed in m to processp |

\ 4
|_Copy datalisted in d to processp |

A 4
| Suspend process p and place it in a hibernaculum h]

\ 4
| Resume frozen threads |

\ 4
|__Terminate controller thread |

A 4
| Retun hibernaculum h I

Y

Fig. 3

WO 00/36526 PCT/SG99/00024

4/12

] START I

y
|_Initiate Controller thread |

A
| Freeze all other threads |

| Load the modules within h |

l

\ 4
| Load the data withinh_ |

Y
| Load the frames within h |

|
Y
| Activate the threads withinh |

Y
| Resume frozen threads |

'
| Terminate controller thread |

|

Fig. 4

WO 00/36526 PCT/SG99/00024

5/12

] START l

Y
LInitiate controller thread |

v
| Freeze all other threads |

Y
|_Load the modules withinh |

|

Y

| Load the data within h |
l
Y
| Resume frozen threads |

Y
| Terminate controller thread |

Y

Fig..S

WO 00/36526 PCT/SG99/00024

6/12

| START l

y
| Initiate bequeath thread |

| Register threadname |

| Register existing bequeath threads waiting on threadname |
| Wait for all registered threads and threads activated by them to terminate |

\
|_Load the modules withinh |

'

| Load the data withinh |

.

| Load the frames within h |

Y
| Activate the threads within h |

Y
|_Terminate bequeath thread |

END

Fig. 6

WO 00/36526 PCT/SG99/00024

7/12

I START l

y
| Initiate inherit th:eadj

|

\ 4
| Freeze threadname |

I

) 4
| Freeze bequeath-threads waiting on threadname |

|

Y .

| Freeze any prior inhenit-thread on threadname |
l
Y
| Load the modules withinh_|
|

Y
| Load the data withinh |

Y
| Load the frames within h |

Y
| Activate the threads within h |

Y
| Wait for newly activated threads, and threads that they in turn activate, to terminate |

Y
| Resume frozen threads |

Y
| Terminate inherit thread |

I

Y

Fig. 7

WO 00/36526 PCT/SG99/00024

8/12

| START]

Y
LInitiate controller thread |

\ 4
| Freeze all other threads |

|
Y
| Discard frames infoutside of s depending on sflag |
|
Y
| Discard modules in/outside of m depending on mflag |
l
Y
| Discard data in/outside of d depending on dflag |

Y
| Resume the frozen threads |

I

Y
| Terminate controller thread |

END

Fig. 8

WO 00/36526 PCT/SG99/00024

9/ 12

! START]

|_Initiate controller thread |

|

\ 4
| Freeze all other threads |

|_Create new process p2 |

| Copy frames in p1 to p2, except thggbelonging to the controller thread |
\ .
| Copy modules in p1 to p2, except those belonging to the controller thread |
|
Y
Copy data in pl to p2, except t and data belonging to the controller thread |-
Py ging

Y
| Suspend p2 and place it in a hibemnaculum h]

Y
[Send hout to target t |

[Delete h l

Y
| Resume frozen threads |

\ 4
LTerminatc controller thread]

END

Fig. 9

WO 00/36526 PCT/SG99/00024

10712

START

Y
| Initiate controller thread cl]
7

Y
| Freeze all other threads |

f
A 4

| Initiate new process on machine m with controller thread c2 |

|
A 4

| Establish output stream from c1 to input stream of c2 |
]

4
| C2 does a Receive on the input stream |

|
Y

| CI creates new processp2 |

v

| Cl copies frames in p1 to p2, except those belonging to ¢l |

|
Y

| Cl copies modules in p1 to p2, except those belonging to cl |

|
Y

|_Cl copies data in p1 to p2, except the output stream and data belonging to cl |

|_CI suspends p2 and places it in a hibernaculum h |

| Cl sends h on output stream to c2 |

| C2 loads the r;llrodules within h |
l

. Y.
|_C2 loads the data withinh |

| C2loads the %rames withinh |
| C2 activates th?threads within h |
| C2 deletes the in‘:'put stream from c1 |
| Terminate the cgntroiler thread c2 |
[CI terminate's"the process Pl |
Ei D

Fig. 10

WO 00/36526 PCT/SG99/00024

11/12

AT Server Client ——~--290

280
j305'

3oo,v\/\/eb Server|¢ >| Browser ~ 230

—~J Database
310

I \J/
| Hibemaculom & SSL 3 Hiberr <lwmClient ’\3,_*’0

233 ||| Server)

350 Figure 11

Check In

® Check in a member session.

MembevrI.d !Idemo

. -
Password AR RARRAAKRARKA AR KT RAAA
l"\

Check Inl Resetl

e Check in a non-member session.
s Discard the existing session.

-Membership Services

. New membership application.
s Change member particulars.
s Change member password.

Figure 12

WO 00/36526

12/12

PCT/SG99/00024

O The

Title An Early Sunoner Towr

Actors Good Boys

Producer : Kent Ridge Digital Labs

Price $50.9S per view

Time(s) B 'Eﬂ]

Title Happy Riding!

Actors UPS Members

Producer : KRDLUPS

Price §51.99 per view

Time(s) 3 ‘M

Title Confession

Actors Javamaniacs

Producer : JavaCarrectness Watch Growp

Price $$0.49 per view

Time(s) h IM
Figure 13

KRDt

You have to pay S$0.50 for playing 2 time(s) of video "bus.mpg”

Snapshot read in ..

Figure 14

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SG 99/00024

A. CLASSIFICATION OF SUBJECT MATTER
IPC’: GO6F 17/14

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPODOC, WP, PAJ

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 5745569 A (MOSKOWITZ) 28 April 1998 (28.04.98), totality. 1-17,19-32

A 18,33

X JP 10-232918 A (CANON) 1998-09-02 (abstract). [online] [retrieved 1-3,22
on 1999-12-17]. Retrieved from EPO PAJ Database.

A WO 9618951 A1 (DUNN) 20 June 1996 (20.06.96), abstract. 1-33

A US 4558176 A (ARNOLD) 10 December 1985 (10.12.85), abstract. 1-33

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

»A™ document defining the general state of the art which is not
considered to be of particular relevance

~E" earlier application or patent but published on or after the international
filing date

,-L** document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

O™ document referring to an oral disclosure, use, exhibition or other
means

T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

»X** document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

..Y* document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

P* document published prior to the international filing date but later than ..&" document member of the same patent family

the priority date claimed

Date of the actual completion of the international search

18 January 2000 (18.01.00)

Date of mailing of the international search report

27 January 2000 (27.01.00)

Name and mailing adress of the ISA/AT
Austrian Patent Office
Kohlmarkt 8-10; A-1014 Vienna
Facsimile No. 1/53424/200

Authorized officer
Fastenbauer

Telephone No. 1/53424/447

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/SG 99/00024

Box [Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

l.D

0

(]

L]

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II

Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

Se

,;J !\)
L] =]

4, [:]

This [nternational Searching Authority found multiple inventions in this international application, as follows:

e extra sheet

As all required additional search fees were timely paid by the applicant, this intemational search report covers all searchable
claims.

As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of
any additional fee.

As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims: it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest.

D No protest accompanied the payment of additional search fees.

Form PCT/

ISA/210 (continuation of first sheet (1)) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SG 99/00024

1 cl. 1,24

A representation of digital material
... information for the purpose of control
... watermark

cl.19-21,
23

A method of processing digital material ...

... running ... until a predetermined execution point ...

- forming a combined reptesentation ... being restorable ... so that
execution ... may be resumed

- representation customized by the information ...

.. information for the purpose of conttol ...

... watermark

W

clh. 3

cl. 22

... customization information

4 cl. 5-6

cl. 24-25| ...

authentfication information
... cryptographic token

5 cl. 7

cl. 26

... serial number of the machine

6 cl. 8

cl. 27

... program code ... to be selected or discarded ...

7 cl. 9-11

... video material
... program to play video material
... video recording specified ...

8 cl. 12-14

... audio data
... program to play audio data
...audio recording specified ...

9 cl. 15,17

cl. 28

... encrypted
... decryption information

10 cl.16

... to use the representation as an input for resuming running the
program

11 cl 18

.. 10 resume running of another of the representations

12

cl. 29

.. storing the representation ...

cl. 30

.. transferring the representation to a remote device ...

cl. 31,32

... restoring the data, code and execution state ...
... further decrypting ...

13

cl. 33

.. further generating a plurality of representations ...

Form PCT/ISA/210 (extra sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Informaton on patent family members

Internanonal apolicauon No.

PCT/SG 99/00024

Patent document cited Publication Patent family Publication
in search report date member(s) date

JP A2 10232918 02-09-1998 none
WO Al 9618951 20-06-1996 AU A0 25/94 12-01-199%5
AU Al 42497/96 03-07-1996
AU B2 695468 13-08-1998

UsS A 4558176 10-12-1985 none
Us A 5745569 28-04-1998 AU Al 18294/97 11-08-1997
WO Al 9726732 24-07-1997

PCT/ISA/210 (patent family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

