HIGH AFFINITY TGF\(\beta\) NUCLEIC ACID LIGANDS AND INHIBITORS

Inventors: Nikos Pagratis, Boulder, CO (US); Michael Lochrie, Louisville, CO (US); Larry Gold, Boulder, CO (US)

Correspondence Address:
SWANSON & BRATSCHUN L.L.C.
1745 SHEA CENTER DRIVE
SUITE 330
HIGHLANDS RANCH, CO 80129 (US)

Appl. No.: 10/812,642
Filed: Mar. 30, 2004

Related U.S. Application Data

Continuation of application No. 09/791,301, filed on Feb. 23, 2001, now Pat. No. 6,713,616, which is a continuation of application No. 09/363,939, filed on Jul. 29, 1999, now Pat. No. 6,346,611, which is a continuation-in-part of application No. 09/046,247, filed on Mar. 23, 1998, now Pat. No. 6,124,449, which is a continuation-in-part of application No. 08/458,424, filed on Jun. 2, 1995, now Pat. No. 5,731,424, which is a continuation-in-part of application No. 07/714,131, filed on Jun. 10, 1991, now Pat. No. 5,475,096, and which is a continuation-in-part of application No. 07/931,473, filed on Aug. 17, 1992, now Pat. No. 5,270,163, and which is a continuation-in-part of application No. 07/964,624, filed on Oct. 21, 1992, now Pat. No. 5,496,938, and which is a continuation-in-part of application No. 08/117,991, filed on Sep. 8, 1993, now abandoned. Said application No. 07/714,131 is a continuation-in-part of application No. 07/536,428, filed on Jun. 11, 1990, now abandoned.

Publication Classification

(51) Int. Cl.\(^7\) .......................... C12Q 1/68; A61K 48/00
(52) U.S. Cl. .............................. 424/78.24; 514/44; 435/6

ABSTRACT

Methods are described for the identification and preparation of high-affinity nucleic acid ligands to TGF\(\beta\)2. Included in the invention are specific RNA ligands to TGF\(\beta\)2 identified by the SELEX method. Also included are RNA ligands that inhibit the interaction of TGF\(\beta\)2 with its receptor.
Fig. 2A

Fig. 2B
Fig. 3
Fig. 4
Fig. 5
Fig. 9
SEQ ID NO:216

Fig. 10
Fig. 11
HIGH AFFINITY TGF\beta NUCLEIC ACID LIGANDS AND INHIBITORS

RELATED APPLICATIONS


FIELD OF THE INVENTION

[0002] Described herein are methods for identifying and preparing high affinity nucleic acid ligands that bind human transforming growth factor \beta 2 (TGF\beta 2). The method utilized herein for identifying such nucleic acid ligands is called SELEX, an acronym for Systematic Evolution of Ligands by Exponential Enrichment. This invention includes high affinity nucleic acid ligands of human TGF\beta 2. Further disclosed are RNA ligands to TGF\beta 2. Also included are oligonucleotides containing nucleotide derivatives modified at the 2’ position of the pyrimidines. Additionally disclosed are ligands to TGF\beta 2 containing 2’-OCH 3 purine modifications that may have higher stability in serum and in animals. This invention also includes high affinity nucleic acid inhibitors of TGF\beta 2. The oligonucleotide ligands of the present invention are useful in any process in which binding to TGF\beta 2 is required. This includes, but is not limited to, their use as pharmaceuticals, diagnostics, imaging agents, and immunohistochemical reagents.

BACKGROUND OF THE INVENTION

[0003] Transforming growth factors betas (TGF\beta s) are part of a superfamily of proteins that includes inhibitors, activins, bone morphogenetic and osteogenic proteins, growth/differentiation factors, Mullerian-inhibiting substance, decapentaplegic and 60A (Drosophila), da-7 and unc-129 (C. elegans), and vg1 (Xenopus) (Schluenwegger and Grutter (1992) Nature 358:430-434). Three TGF\beta isotypes exist in mammals that are called TGF\beta 1, TGF\beta 2, and TGF\beta 3. There is about 80% sequence identity between any pair of mammalian TGF\beta s. TGF\beta s bind to at least 5 receptors, but only 2 or 3 of them (types I, II, and possibly V) are signaling receptors. The intracellular signaling pathways activated by TGF\beta s involve SMAD proteins and are being intensively studied (Pashett et al. (1998) Pharmacol Ther 78:47-52). The signaling receptors are found on a variety of cells. In turn, a variety of cells express TGF\beta s.

[0004] TGF\beta s are synthesized as precursors composed of latency-associated protein (LAP) at the amino terminus and mature TGF\beta at the carboxyl terminus. The precursor is cleaved and assembled as a homodimer. TGF\beta s are secreted from cells bound to LAP and latent TGF\beta binding proteins (LTBP). Latent TGF\beta s are released from LAP and LTBP and become active by a relatively uncharacterized mechanism that may involve proteolysis by plasmin or regulation by thrombospondin (Crawford et al. (1998) Cell 93:1159-70). The mature, released TGF\beta homodimer has a combined molecular weight of ~25000 daltons (112 amino acids per monomer). TGF\beta 1 and TGF\beta 2 bind heparin and there are indications that basic amino acids at position 26 are required for heparin binding (Lyon et al. (1997) Jour. Biol. Chem. 272:18000-18006).

[0005] The structure of TGF\beta 2 has been determined using x-ray crystallography (Daopin et al. (1992) Science 257:369-373; Schluenwegger and Grutter (1992) Nature 358:430-434) and is very similar to the structure of TGF\beta 1. TGF\beta s belong to a structural family of proteins called the “cysteine knot” proteins that includes vascular endothelial growth factor, nerve growth factor, human chorionic gonadotropin, and platelet-derived growth factor. These proteins are structurally homologous, but have only 10-25% primary sequence homology.

expressed antisense RNA (Fakhrai et al. (1996) Proc. Natl. Acad. USA 93:2090-2914) and by exogenous antisense oligonucleotides (Marzo et al. (1997) Cancer Research 57:3200-3207) has been reported to prevent glioma formation in rats.

[0007] The gene for mouse TGFβ2 has been deleted (Sanford et al. (1997) Development 124:2659-2670). Mice lacking TGFβ2 function die near birth and have aberrant epithelial-mesenchymal interactions that lead to developmental defects in the heart, eye, ear, lung, limb, craniofacial area, spinal cord, and urogenital tracts. These defects, for the most part, do not overlap abnormalities that have been observed in TGFβ1 and TGFβ3 knockout mice. TGFβ3 has also been overexpressed in cell lines or transgenic mice (Koli and Arttenga (1996) J. Mammary Gland Biol. and Neoplasia 1:373-380; Bottinger et al. 1997 Kidney Int. 51:1355-1360; Bottinger and Kopp (1998) Miner Electrolyte Metab 24:154-160) with a variety of effects.


[0009] The SELEX method involves selection from a mixture of candidate oligonucleotides and step-wise iterations of binding, partitioning and amplification, using the same general selection theme, to virtually any desired criterion of binding affinity and selectivity. Starting from a mixture of nucleic acids, preferably comprising a segment of randomized sequence, the SELEX method includes steps of contacting the mixture with the target under conditions favorable for binding, partitioning unbound nucleic acids from those nucleic acids which have bound to target molecules, dissociating the nucleic acid-target complexes, amplifying the nucleic acids dissociated from the nucleic acid-target complexes to yield a ligand-enriched mixture of nucleic acids, then reiterating the steps of binding, partitioning, dissociating and amplifying through as many cycles as desired to yield high affinity nucleic acid ligands to the target molecule.


[0011] The SELEX method encompasses the identification of high-affinity nucleic acid ligands containing modified nucleotides conferring improved characteristics on the ligand, such as improved in vivo stability or delivery. Examples of such modifications include chemical substitutions at the ribose and/or phosphate and/or base positions. Specific SELEX-identified nucleic acid ligands containing modified nucleotides are described in U.S. patent application Ser. No. 08/117,991, filed Sep. 8, 1993, entitled “High Affinity Nucleic Acid Ligands Containing Modified Nucleotides,” now abandoned, describes oligonucleotides containing nucleotide derivatives chemically modified at the 5- and 2-positions of pyrimidines, as well as specific RNA ligands to thrombin containing 2-amino modifications (See U.S. Pat. No. 5,660,985). U.S. patent application Ser. No. 08/134,028, supra, describes highly specific nucleic acid ligands containing one or more nucleotides modified with 2-amino (2'-NH2), 2-fluoro (2'-F), and/or 2'-O-methyl (2'-OMe). U.S. patent application Ser. No. 08/264,029, filed Jun. 22, 1994, entitled “Novel Method of Preparation of Known and Novel 2' Modified Nucleosides by Intramolecular Nucleophilic Displacement,” now abandoned, describes oligonucleotides containing various 2'-modified pyrimidines. PCT/US98/00589 (WO 98/18480), filed Jan. 7, 1998, entitled “Bioconjugation of Oligonucleotides” describes a method for identifying biomolecules to a target comprising nucleic acid ligands derivatized with a molecular entity exclusively at the 5'-position of the nucleic acid ligands.

now U.S. Pat. No. 5,683,867, respectively. These applications allow the combination of the broad array of shapes and other properties, and the efficient amplification and replication properties, of oligonucleotides with the desirable properties of other molecules. The full text of the above described patent applications, including but not limited to, all definitions and descriptions of the SELEX process, are specifically incorporated herein by reference in their entirety.

BRIEF SUMMARY OF THE INVENTION

[0013] The present invention includes methods of identifying and producing nucleic acid ligands to transforming growth factor beta (TGFβ2) and the nucleic acid ligands so identified and produced. In particular, RNA sequences are provided that are capable of binding specifically to TGFβ2. Also included are oligonucleotides containing nucleotide derivatives modified at the 2' position of the pyrimidines. Specifically included in the invention are the RNA ligand sequences shown in Tables 5, 7, 8, 11, 13, 14, 16-19 and FIG. 9 (SEQ ID NOS:21-121 and 128-193). Also included in this invention are RNA ligands of TGFβ2 that inhibit the function of TGFβ2. Also described herein are 2'-OMe-modified nucleic acid ligands of TGFβ1, shown in Table 22 (SEQ ID NOS:194-216).

[0014] Further included in this invention is a method of identifying nucleic acid ligands and nucleic acid ligand sequences to TGFβ2, comprising the steps of (a) preparing a candidate mixture of nucleic acids, (b) contacting the candidate mixture of nucleic acids with TGFβ2, (c) partitioning between members of said candidate mixture on the basis of affinity to TGFβ2, and (d) amplifying the selected molecules to yield a mixture of nucleic acids enriched for nucleic acid sequences with a relatively higher affinity for binding to TGFβ2.

[0015] More specifically, the present invention includes the RNA ligands to TGFβ2, identified according to the above-described method, including those ligands shown in Tables 5, 7, 8, 11, 13, 14, 16-19 and FIG. 9 (SEQ ID NOS:21-121 and 128-193). Also included are nucleic acid ligands to TGFβ2 that are substantially homologous to any of the given ligands and that have substantially the same ability to bind TGFβ2 and inhibit the function of TGFβ2. Further included in this invention are nucleic acid ligands to TGFβ2 that have substantially the same structural form as the ligands presented herein and that have substantially the same ability to bind TGFβ2 and inhibit the function of TGFβ2.

[0016] The present invention also includes other modified nucleotide sequences based on the nucleic acid ligands identified herein and mixtures of the same.

BRIEF DESCRIPTION OF THE FIGURES

[0017] FIG. 1 shows a flow chart summarizing the various SELEX experiments done with TGFβ2. The length of the arrowheads corresponds to the round number shown to the left. Connected arrowheads indicate branches in the SELEX experiments where a pool was used to start a new branch. Under each arrowhead the fold improvement in affinity is also shown.

[0018] FIG. 2 shows activity of TGFβ2 following amine coupling on a BIAcore carboxymethylcellulose (CM5) chip.

A CM5 chip was loaded with TGFβ2 using NHS-EDC coupling as described in the Materials and Methods at about 18, 718, and 1692 response units for flow cell (FC) 1, 2, and 3, respectively. FC-4 was left blank as a control and was used to normalize the signals from the other FCs. The chip was then exposed to 10 nM of either (FIG. 2A) latency associated peptide (LAP) or (FIG. 2B) TGFβ soluble receptor III (sRUD) at 201/min in binding buffer. Data were collected for an association and a dissociation phase as shown. The signal from FC-4 was subtracted from the other FCs.

[0019] FIG. 3 shows affinity improvement during the spr SELEX. A CM5 chip was loaded with TGFβ2 using NHS-EDC coupling as described in the Materials and Methods at about 18, 718, and 1692 response units for flow cell (FC) 1, 2, and 3, respectively. FC-4 was left blank as a control and was used to normalize the signals from the other FCs. The chip was then exposed to 1 M of RNA pools from the SELEX round (Rd) as shown at 201/min in binding buffer. Data were collected for an association and a dissociation phase as shown. The signal from FC-4 was subtracted from the other FCs.

[0020] FIG. 4 shows nitrocellulose filter binding curves with pools from the spr SELEX. High specific activity internally labeled RNA was used from rounds (Rd) as shown. Labeled RNA was incubated with various concentrations of TGFβ2 in the presence of ~100,000 fold molar excess unlabelled rRNA. Bound RNA was partitioned by nitrocellulose filtration and quantitated. Data were analyzed as described in the Materials and Methods.

[0021] FIG. 5 shows nitrocellulose filter binding curves with pools from the spr SELEX. High specific activity internally labeled RNA was used from rounds (Rd) as shown. Labeled RNA was incubated with various concentrations of TGFβ2 (no competitor rRNA was used). Bound RNA was partitioned by nitrocellulose filtration and quantitated. Data were analyzed as described in the Materials and Methods.

[0022] FIG. 6 shows specificity of the bioactivity of lead TGFβ1 and TGFβ2 aptamers and comparison with commercial antibody preparations. RNA was either synthesized by phosphoramidite chemistry (NX22283) or by in vitro transcription. Indicator cells (mink lung epithelial cells) were incubated with either TGFβ1, TGFβ2 or TGFβ3 and dilutions of RNA or antibody as described. The extent of cell proliferation was measured by 3H-thymidine incorporation and the data were analyzed as described. The points represent an average of n=2-6 and error bars are standard errors. Symbols designated by TGFβ1, TGFβ2 or TGFβ3 indicate data obtained from cells treated with either TGFβ1, TGFβ2 or TGFβ3, respectively. MAb and pAb designate monoclonal and polyclonal antibodies, respectively. Random, NX22283 and 40-03 designate the use of random RNA, the TGFβ2 or the TGFβ1 lead aptamer, respectively. The aptamer 40-03 was described in the TGFβ1 patent (U.S. Pat. No. 6,124,449, entitled “High-Affinity TGFβ1 Nucleic Acid Ligands and Inhibitors”).

[0023] FIG. 7 shows boundaries of TGFβ2 ligands 14-1, 21-21 and 21-4. RNA aptamers were end labeled at the 5' end (3'B) or at the 3' end (5'B), partially hydrolyzed at high pH, and partitioned for binding to TGFβ2 by nitrocellulose filtration as described in the Materials and Methods. The amounts of TGFβ2 used for binding partitioning is as
shown. Recovered RNA was analyzed on high resolution sequencing gels and visualized by autoradiography. Unselected hydrolyzed RNA was used as a marker (Alk. hydr.) to align the banding pattern to the sequence of each ligand. The observed boundary bands are shown with (*) and their position in the sequence pattern is shown by arrowheads. No protein and input lanes show the background binding to nitrocellulose and the starting unhydrolyzed RNA. The observed boundaries for each ligand is summarized at the bottom of the figure.

[0024] FIG. 8 shows the putative structures of TGFβ2 aptamers. The minimal required sequences were fit into similar structures. Ligand 14i-115-41 and 2la-(4ML-110) were transcribed in vitro and contained extra bases at their 5’ ends (shown in lower case) to allow efficient in vitro transcription. Bold-faced letters indicate positions that are identical to invariant positions of the biased SELEX with the 21-21 sequence.

[0025] FIG. 9 shows the molecular description of NX2232340k PEG. rG = 2’-OH G; rA = 2’-OH A; FU = 2’-FU; FC = 2’-FC.

[0026] FIG. 10 shows the putative structure of lead truncate ligand CD70. Lower case letters indicate positions requiring 2’-OH. ● indicates GU base pairing.

[0027] FIG. 11 shows the pharmacokinetics of TGFβ aptamer in sprague dawley rats.

DETAILED DESCRIPTION OF THE INVENTION


[0029] Certain terms used to described the invention herein are defined as follows:

[0030] “Nucleic Acid Ligand” as used herein is a non-naturally occurring nucleic acid having a desirable action on a target. Nucleic Acid Ligands are also referred to herein as “aptamers.” A desirable action includes, but is not limited to, binding of the target, catalytically changing the target, reacting with the target in a way which modifies/alters the target or the functional activity of the target, covalently attaching to the target as in a suicide inhibitor, and facilitating the reaction between the target and another molecule. In the preferred embodiment, the desirable action is specific binding to a target molecule, such target molecule being a three dimensional chemical structure other than a polynucleotide that binds to the nucleic acid ligand through a mechanism which predominantly depends on Watson-Crick base pairing or triple helix binding, wherein the nucleic acid ligand is not a nucleic acid having the known physiological function of being bound by the target molecule. Nucleic acid ligands include nucleic acids that are identified from a candidate mixture of nucleic acids, said nucleic acid ligand being a ligand of a given target by the method comprising: a) contacting the candidate mixture with the target, wherein nucleic acids having an increased affinity to the target relative to the candidate mixture may be partitioned from the remainder of the candidate mixture; b) partitioning the increased affinity nucleic acids from the remainder of the candidate mixture; and c) amplifying the increased affinity nucleic acids to yield a ligand-enriched mixture of nucleic acids.

[0031] “Candidate Mixture” is a mixture of nucleic acids of differing sequence from which to select a desired ligand. The source of a candidate mixture can be from naturally-occurring nucleic acids or fragments thereof, chemically synthesized nucleic acids, enzymatically synthesized nucleic acids or nucleic acids made by a combination of the foregoing techniques. In a preferred embodiment, each nucleic acid has fixed sequences surrounding a randomized region to facilitate the amplification process.

[0032] “Nucleic Acid” means either DNA, RNA, single-stranded or double-stranded and any chemical modifications thereof. Modifications include, but are not limited to, those which provide other chemical groups that incorporate additional charge, polarizability, hydrogen bonding, electrostatic interaction, and fluxionality to the nucleic acid ligand bases or to the nucleic acid ligand as a whole. Such modifications include, but are not limited to, 2’-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridine, substitution of 5-bromo or 5-iodouracil, backbone modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidine and the like. Modifications can also include 3’ and 5’ modifications such as capping.

[0033] “SELEX” methodology involves the combination of selection of nucleic acid ligands which interact with a target in a desirable manner, for example binding to a protein, with amplification of those selected nucleic acids. Iterative cycling of the selection/amplification steps allows selection of one or a small number of nucleic acids which interact most strongly with the target from a pool which contains a very large number of nucleic acids. Cycling of the selection/amplification procedure is continued until a selected goal is achieved. In the present invention, the SELEX methodology is employed to obtain nucleic acid ligands to TGFβ2. The SELEX methodology is described in the SELEX patent applications.

[0034] “Target” means any compound or molecule of interest for which a ligand is desired. A target can be a protein, peptide, carbohydrate, polysaccharide, glycoprotein, hormone, receptor, antigen, antibody, virus, substrate,
metabolite, transition state analog, cofactor, inhibitor, drug, dye, nutrient, growth factor, etc. without limitation. In this application, the target is TGFβ2.

[0035] In its most basic form, the SELEX process may be defined by the following series of steps:

[0036] 1) A candidate mixture of nucleic acids of differing sequence is prepared. The candidate mixture generally includes regions of fixed sequences (i.e., each of the members of the candidate mixture contains the same sequences in the same location) and regions of randomized sequences. The fixed sequence regions are selected either: (a) to assist in the amplification steps described below, (b) to mimic a sequence known to bind to the target, or (c) to enhance the concentration of a given structural arrangement of the nucleic acids in the candidate mixture. The randomized sequences can be totally randomized (i.e., the probability of finding a base at any position being one in four) or only partially randomized (e.g., the probability of finding a base at any location can be selected at any level between 0 and 100 percent).

[0037] 2) The candidate mixture is contacted with the selected target under conditions favorable for binding between the target and members of the candidate mixture. Under these circumstances, the interaction between the target and the nucleic acids of the candidate mixture can be considered as forming nucleic acid-target pairs between the target and those nucleic acids having the strongest affinity for the target.

[0038] 3) The nucleic acids with the highest affinity for the target are partitioned from those nucleic acids with lesser affinity to the target. Because only an extremely small number of sequences (and possibly only one molecule of nucleic acid) corresponding to the highest affinity nucleic acids exist in the candidate mixture, it is generally desirable to set the partitioning criteria so that a significant amount of the nucleic acids in the candidate mixture (approximately 5-50%) are retained during partitioning.

[0039] 4) Those nucleic acids selected during partitioning as having the relatively higher affinity to the target are then amplified to create a new candidate mixture that is enriched in nucleic acids having a relatively higher affinity for the target.

[0040] 5) By repeating the partitioning and amplifying steps above, the newly formed candidate mixture contains fewer and fewer weakly binding sequences, and the average degree of affinity of the nucleic acids to the target will generally increase. Taken to its extreme, the SELEX process will yield a candidate mixture containing one or a small number of unique nucleic acids representing those nucleic acids from the original candidate mixture having the highest affinity to the target molecule.

[0041] The SELEX patent applications describe and elaborate on this process in great detail. Included are targets that can be used in the process; methods for partitioning nucleic acids within a candidate mixture; and methods for amplifying partitioned nucleic acids to generate enriched candidate mixture. The SELEX patent applications also describe ligands obtained to a number of target species, including both protein targets where the protein is and is not a nucleic acid binding protein.

[0042] The SELEX method further encompasses combining selected nucleic acid ligands with lipopholic or non-immunogenic, high molecular weight compounds in a diagnostic or therapeutic complex as described in U.S. patent application No. 08/434,465, filed May 4, 1995, entitled “Nucleic Acid Ligand Complexes,” now U.S. Pat. No. 6,011,020. VEGF nucleic acid ligands that are associated with a Lipopholic Compound, such as diacetyl glycerol or dialkyl glycerol, in a diagnostic or therapeutic complex are described in U.S. patent application Ser. No. 08/739,109, filed Oct. 25, 1996, entitled “Vascular Endothelial Growth Factor (VEGF) Nucleic Acid Ligand Complexes,” now U.S. Pat. No. 5,859,228. VEGF nucleic acid ligands that are associated with a Lipopholic Compound, such as a glycerol lipid, or a non-immunogenic, high molecular weight Compound, such as polyalkylene glycol, are further described in U.S. patent application Ser. No. 08/897,351, filed Jul. 21, 1997, entitled “Vascular Endothelial Growth Factor (VEGF) Nucleic Acid Ligand Complexes,” now U.S. Pat. No. 6,051,698. VEGF nucleic acid ligands that are associated with a non-immunogenic, high molecular weight compound or lipopholic compound are also further described in PCT/US 97/18944 (WO98/18480), filed Oct. 17, 1997, entitled “Vascular Endothelial Growth Factor (VEGF) Nucleic Acid Ligand Complexes”. Each of the above described patent applications which describe modifications of the basic SELEX procedure are specifically incorporated by reference herein in their entirety.

[0043] In certain embodiments of the present invention it is desirable to provide a complex comprising one or more nucleic acid ligands to TGFβ2 covalently linked with a non-immunogenic, high molecular weight compound or lipopholic compound. A complex as used herein describes the molecular entity formed by the covalent linking of the nucleic acid ligand of TGFβ2 to a non-immunogenic, high molecular weight compound. A non-immunogenic, high molecular weight compound is a compound between approximately 100 Da to 1,000,000 Da, more preferably approximately 1000 Da to 500,000 Da, and most preferably approximately 1000 Da to 200,000 Da, that typically does not generate an immunogenic response. For the purposes of this invention, an immunogenic response is one that causes the organism to make antibody proteins. In an preferred embodiment of the invention, the non-immunogenic, high molecular weight compound is a polyalkylene glycol. In the most preferred embodiment, the polyalkylene glycol is polyethylene glycol (PEG). More preferably, the PEG has a molecular weight of about 10-80K. Most preferably, the PEG has a molecular weight of about 20-45K. In certain embodiments of the invention, the non-immunogenic, high molecular weight compound can also be a nucleic acid ligand.

[0044] In another embodiment of the invention it is desirable to have a complex comprised of a nucleic acid ligand to TGFβ2 and a lipopholic compound. Lipopholic compounds are compounds that have the propensity to associate with or partition into lipid and/or other materials or phases with low dielectric constants, including structures that are comprised substantially of lipophilic components. Lipo-
philic compounds include lipids as well as non-lipid containing compounds that have the propensity to associate with lipid (and/or other materials or phases with low dielectric constants). Cholesterol, phospholipid, and lipid lipids, such as dialkylglycerol, diacylglycerol, and glycerol amide lipids are further examples of lipophilic compounds. In a preferred embodiment, the lipophilic compound is a glycerol lipid.

0045 The non-immunogenic, high molecular weight compound or lipophilic compound may be covalently bound to a variety of positions on the nucleic acid ligand to TGFβ2, such as an exocyclic amino group on the base, the 5-position of a pyrimidine nucleotide, the 8-position of a purine nucleotide, the hydroxyl group of the phosphate, or a hydroxyl group or other group at the 5' or 3' terminus of the nucleic acid ligand to TGFβ2. In embodiments where the lipophilic compound is a glycerol lipid, or the non-immunogenic, high molecular weight compound is polyalkylene glycol or polyethylene glycol, preferably the non-immunogenic, high molecular weight compound is bonded to the 5' or 3' hydroxyl of the phosphate group thereof. In the most preferred embodiment, the lipophilic compound or non-immunogenic, high molecular weight compound is bonded to the 5' hydroxyl of the phosphate group of the nucleic acid ligand. Attachment of the non-immunogenic, high molecular weight compound or lipophilic compound to the nucleic acid ligand of TGFβ can be done directly or with the utilization of linkers or spacers.

0046 A “linker” is a molecular entity that connects two or more molecular entities through covalent bonds or non-covalent interactions, and can allow spatial separation of the molecular entities in a manner that preserves the functional properties of one or more of the molecular entities. A linker can also be known as a “spacer.”

0047 The complex comprising a nucleic acid ligand to TGFβ2 and a non-immunogenic, high molecular weight compound or lipophilic compound can be further associated with a lipid construct. Lipid constructs are structures containing lipids, phospholipids, or derivatives thereof comprising a variety of different structural arrangements which lipids are known to adopt in aqueous suspension. These structures include, but are not limited to, lipid bilayer vesicles, micelles, liposomes, emulsions, lipid ribbons or sheets, and may be complexed with a variety of drugs and components which are known to be pharmaceutically acceptable. In the preferred embodiment, the lipid construct is a liposome. The preferred liposome is unilamellar and has a relative size less than 200 nm. Common additional components in lipid constructs include cholesterol and alphatocopherol, among others. The lipid constructs may be used alone or in any combination which one skilled in the art would appreciate to provide the characteristics desired for a particular application. In addition, the technical aspects of lipid constructs and liposome formation are well known in the art and any of the methods commonly practiced in the field may be used for the present invention.

0048 The SELEX method further comprises identifying bioconjugates to a target. Copending PCT patent application No. PCT/US98/00589 (WO 98/18480), filed Jan. 7, 1998, entitled “Bioconjugates of Oligonucleotides” describes a method for enzymatically synthesizing bioconjugates comprising RNA derivatized exclusively at the 5' position with a molecular entity, and a method for identifying bioconjugates to a target comprising nucleic acid ligands derivatized with a molecular entity exclusively at the 5'-position of the nucleic acid ligands. A bioconjugate as used herein refers to any oligonucleotide which has been derivatized with another molecular entity. In the preferred embodiment, the molecular entity is a macromolecule. As used herein, a macromolecule refers to a large organic molecule. Examples of macromolecules include, but are not limited to, nucleic acids, oligonucleotides, proteins, peptides, carbohydrates, polysaccharides, glycoproteins, lipophilic compounds, such as cholesterol, phospholipids, diacyl glycerols and dialkyl glycerols, hormones, drugs, non-immunogenic high molecular weight compounds, fluorescent, chemiluminescent and bioluminescent marker compounds, antibodies and biotin, etc. without limitation. In certain embodiments, the molecular entity may provide certain desirable characteristics to the nucleic acid ligand, such as increasing RNA hydrophobicity and enhancing binding, membrane partitioning and/or permeability. Additionally, reporter molecules, such as biotin, fluorescein or peptidyl metal chelates for incorporation of diagnostic radionuclides may be added, thus providing a bioconjugate which may be used as a diagnostic agent.

0049 The methods described herein and the nucleic acid ligands identified by such methods are useful for both therapeutic and diagnostic purposes. Therapeutic uses include the treatment or prevention of diseases or medical conditions in human patients. Therapeutic uses may also include veterinary applications.

0050 Diagnostic utilization may include both in vitro and in cell or in vivo diagnostic applications. The SELEX method generally, and the specific adaptations of the SELEX method taught and claimed herein specifically, are particularly suited for diagnostic applications. SELEX identifies nucleic acid ligands that are able to bind targets with high affinity and with surprising specificity. These characteristics are, of course, the desired properties one skilled in the art would seek in a diagnostic ligand.

0051 The nucleic acid ligands of the present invention may be routinely adapted for diagnostic purposes according to any number of techniques employed by those skilled in the art or by the methods described in PCT/US98/00589 (WO 98/18480). Diagnostic agents need only be able to allow the user to identify the presence of a given target at a particular locale or concentration. Simply the ability to form binding pairs with the target may be sufficient to trigger a positive signal for diagnostic purposes. Those skilled in the art would also be able to adapt any nucleic acid ligand by procedures known in the art to incorporate a labeling tag in order to track the presence of such ligand. Such a tag could be used in a number of diagnostic procedures. The nucleic acid ligands to TGFβ2 described herein may specifically be used for identification of the TGFβ2 protein.

0052 SELEX provides high affinity ligands of a target molecule. This represents a singular achievement that is unprecedented in the field of nucleic acids research. The present invention applies the SELEX procedure to the specific target of TGFβ 1. In the Example section below, the experimental parameters used to isolate and identify the nucleic acid ligands to TGFβ2 are described.

0053 In order to produce nucleic acids desirable for use as a pharmaceutical, it is preferred that the nucleic acid
ligand (1) binds to the target in a manner capable of achieving the desired effect on the target; (2) be as small as possible to obtain the desired effect; (3) be as stable as possible; and (4) a specific ligand to the chosen target. In most situations, it is preferred that the nucleic acid ligand have the highest possible affinity to the target.

[0054] In co-pending and commonly assigned U.S. patent application Ser. No. 07/964,624, filed Oct. 21, 1992 (‘624), methods are described for obtaining improved nucleic acid ligands after SELEX has been performed. The ‘624 application, entitled “Nucleic Acid Ligands to HIV-RT and HIV-1 Rev,” now issued as U.S. Pat. No. 5,496,986, is specifically incorporated herein by reference.

[0055] In the present invention, SELEX experiments were performed in order to identify RNA ligands with specific high affinity for TGFβ2 from degenerate libraries containing 33, 34 or 40 random positions (33N, 34N or 40N) (Table 1). This invention includes the specific RNA ligands to TGFβ2 shown in Tables 5, 7, 8, 11, 13, 14, 16-19 and FIG. 9 (SEQ ID NOS:21-121 and 128-193), identified by the methods described in Example 1. This invention further includes RNA ligands to TGFβ2 which inhibit TGFβ2 function, presumably by inhibiting the interaction of TGFβ2 with its receptor. The scope of the ligands covered by this invention extends to all nucleic acid ligands of TGFβ2, modified and unmodified, identified according to the SELEX procedure. More specifically, this invention includes nucleic acid sequences that are substantially homologous to the ligands shown in Tables 5, 7, 8, 11, 13, 14, 16-19 and FIG. 9 (SEQ ID NOS:21-121 and 128-193). By substantially homologous it is meant a degree of primary sequence homology in excess of 70%, most preferably in excess of 80%, and even more preferably in excess of 90%, 95% or 99%. The percentage of homology as described herein is calculated as the percentage of nucleotides found in the smaller of the two sequences which align with identical nucleotide residues in the sequence being compared when 1 gap in a length of 10 nucleotides may be introduced to assist in that alignment. A review of the sequence homologies of the ligands of TGFβ2, shown in Tables 5, 7, 8, 11, 13, 14, 16-19 and FIG. 9 (SEQ ID NOS:21-121 and 128-193) shows that some sequences with little or no primary homology may have substantially the same ability to bind TGFβ2. For these reasons, this invention also includes nucleic acid ligands that have substantially the same structure and ability to bind TGFβ2 as the nucleic acid ligands shown in Tables 5, 7, 8, 11, 13, 14, 16-19 and FIG. 9 (SEQ ID NOS:21-121 and 128-193). Substantially the same ability to bind TGFβ2 means that the affinity is within one or two orders of magnitude of the affinity of the ligands described herein. It is well within the skill of those of ordinary skill in the art to determine whether a given sequence—substantially homologous to those specifically described herein—has substantially the same ability to bind TGFβ2.

[0056] This invention also includes nucleic acid ligands that have substantially the same postulated structure or structural motifs. Substantially the same structure or structural motifs can be postulated by sequence alignment using the Zukerfold program (see Zuker (1989) Science 244:48-52). As would be known in the art, other computer programs can be used for predicting secondary structure and structural motifs. Substantially the same structure or structural motif of nucleic acid ligands in solution or as a bound structure can also be postulated using NMR or other techniques as would be known in the art.

[0057] One potential problem encountered in the therapeutic, prophylactic, and in vivo diagnostic use of nucleic acids is that oligonucleotides in their phosphodiester form may be quickly degraded in body fluids by intracellular and extracellular enzymes such as endonucleases and exonucleases before the desired effect is manifest. Certain chemical modifications of the nucleic acid ligand can be made to increase the in vivo stability of the nucleic acid ligand or to enhance or to mediate the delivery of the nucleic acid ligand. See, e.g., U.S. patent application Ser. No. 08/117,991, filed Sep. 8, 1993, entitled “High Affinity Nucleic Acid Ligands Containing Modified Nucleotides,” now abandoned and U.S. patent application Ser. No. 08/434,465, filed May 4, 1995, entitled “Nucleic Acid Ligand Complexes,” now U.S. Pat. No. 6,011,020, which are specifically incorporated herein by reference. Modifications of the nucleic acid ligands contemplated in this invention include, but are not limited to, those which provide other chemical groups that incorporate additional charge, polarizability, hydrophobicity, hydrogen bonding, electrostatic interaction, and fluxionality to the nucleic acid ligand bases or to the nucleic acid ligand as a whole. Such modifications include, but are not limited to, 2’-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridine, substitution of 5-bromo or 5-iodo-uracil, backbone modifications, phosphorothioate or alkyl phosphate modifications, methylations, unusual base-pairing combinations such as the isobases isocystidine and isoguanidine and the like. Modifications can also include 3’ and 5’ modifications such as capping.

[0058] Where the nucleic acid ligands are derived by the SELEX method, the modifications can be pre- or post-SELEX modifications. Pre-SELEX modifications yield nucleic acid ligands with both specificity for their SELEX Target and improved in vivo stability. Post-SELEX modifications made to 2’-OH nucleic acid ligands can result in improved in vivo stability without adversely affecting the binding capacity of the nucleic acid ligand. The preferred modifications of the nucleic acid ligands of the subject invention are 5’ and 3’ phosphorothiaooate capping and/or 3’3’inverted phosphodiester linkage at the 3’ end. In one preferred embodiment, the preferred modification of the nucleic acid ligand is a 3’3’inverted phosphodiester linkage at the 3’ end. Additional 2’-fluoro (2’-F) and/or 2’a-amino (2’-NH2) and/or 2’-O methyl (2’-OMe) and/or 2’-OCH3 modification of some or all of the nucleotides is preferred. Described herein are nucleic acid ligands that were 2’-F modified and incorporated into the SELEX process. Also described herein are nucleic acid ligands that were 2’-OCH3 modified after the SELEX process was performed.

[0059] Other modifications are known to one of ordinary skill in the art. Such modifications may be made post-SELEX (modification of previously identified unmodified ligands) or by incorporation into the SELEX process.

[0060] As described above, because of their ability to selectively bind TGFβ2, the nucleic acid ligands to TGFβ2 described herein are useful as pharmaceuticals. This invention, therefore, also includes a method for treating TGFβ2-
mediated pathological conditions by administration of a nucleic acid ligand capable of binding to TGFβ2.

[0061] Therapeutic compositions of the nucleic acid ligands may be administered parenterally by injection, although other effective administration forms, such as intraarterial injection, inhalant mists, orally active formulations, transdermal iontophoresis or suppositories, are also envisioned. One preferred carrier is physiological saline solution, but it is contemplated that other pharmaceutically acceptable carriers may also be used. In one preferred embodiment, it is envisioned that the carrier and the ligand constitute a physiologically-compatible, slow release formulation. The primary solvent in such a carrier may be either aqueous or non-aqueous in nature. In addition, the carrier may contain other pharmaceutically-acceptable excipients for modifying or maintaining the pH, osmolarity, viscosity, clarity, color, sterility, stability, rate of dissolution, or odor of the formulation. Similarly, the carrier may contain still other pharmaceutically-acceptable excipients for modifying or maintaining the stability, rate of dissolution, release, or absorption of the ligand. Such excipients are those substances usually and customarily employed to formulate dosages for parenteral administration in either unit dose or multi-dose form.

[0062] Once the therapeutic composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or dehydrated or lyophilized powder. Such formulations may be stored either in a ready to use form or requiring reconstitution immediately prior to administration. The manner of administering formulations containing nucleic acid ligands for systemic delivery may be via subcutaneous, intramuscular, intravenous, intranasal or vaginal or rectal suppository.

[0063] The following Examples are provided to explain and illustrate the present invention and are not intended to be limiting of the invention. Example 1 describes the various materials and experimental procedures used in Examples 2-5. Example 2 describes the isolation and characteristics of Nucleic Acid Ligands that bind human TGFβ2. Example 3 describes the Nucleic Acid Ligands isolated by the SELEX method using a biased round 0 library, the sequences of TGFβ2 Nucleic Acid Ligands isolated from the biased SELEX process, and the binding of Nucleic Acid Ligands isolated from the biased SELEX process. Example 4 describes substitutions of 2'-OH purines with 2'CH₃, purines in NX22284 and NX22285. Example 5 describes the pharmacokinetic properties of NX22323. Example 6 describes 2'-OMe modification of lead TGFβ1 truncate ligand CD70.

EXAMPLES

Example 1

Experimental Procedures

[0064] Materials and Methods

[0065] Monoclonal and polyclonal antibodies that recognize human TGFβ1, TGFβ2 or TGFβ3 were purchased from R&D Systems, Inc. (Minneapolis, Minn.). DNA oligonucleotides were purchased from Operon, Inc. (Alameda, Calif.) or Oligos, Etc. (Redding Center, Conn.). The BiAcore 2000 and 1Asys plus instruments are products of Biacore, Inc. (Paramus, N.J.) and Affinity Sensors, Inc. (Cambridge, U. K.), respectively. Nitrocellulose filters and filtering manifolds were obtained from Millipore (Bedford, Mass.). Mink lung epithelial cells (CCL64) were purchased from the American Type Culture Collection (Rockville, Md.). The cloning vectors pCR-Script and pUC9 were obtained in-house or from Stratagene, Inc. (La Jolla, Calif.) or Life Technologies, Inc. (Gaithersburg, Md.), respectively. E. coli strains were obtained from Stratagene. The QIAprep spin miniprep kit was from QIAgen, Inc. (Chatsworth, Calif.). The Big Dye sequencing kit and model 377 sequencer can be purchased from Applied Biosystems (Foster City, Calif.). T7 RNA polymerase and Thermus aquaticus DNA polymerase were purchased from Enzynco, Inc. (Denver, Colo.) and Perkin Elmer (Norwalk, Conn.), respectively. All restriction enzymes were purchased from New England Biolabs. E. coli RNase H was obtained from Boehringer Mannheim. All synthetic nucleic acids with a name that begins with "NX" were synthesized at Nexcelstar Pharmaceuticals, Inc. (Boulder, Co.) using an ABI model 394 DNA/RNA synthesizer (Applied Biosystems). Yeast tRNA (type X-SA) and porcine intestinal mucosa-derived heparin (molecular weight 5000), were purchased from Sigma (St. Louis, Mo.) and Calbiochem (La Jolla, Calif.), respectively.

[0066] Preparation of Round 0 Nucleic Acid Library

[0067] The initial (round 0) library of ribonucleic acid molecules that was used to isolate TGFβ2 nucleic acid ligands was generated as follows. Two DNA oligonucleotides (40 N7 round 0 DNA template and 5'N7 primer) were annealed and filled in with Klenow to produce a 40 N7 round 0 DNA transcription template (Table 1). This template was transcribed using T7 RNA polymerase, 3 mM 2'-fluoro uridine and cytosine, 1 mM 2'-hydroxyl guanosine and adenine, and a 32P-ATP as described in (Fitzwater and Polsky 1996) Met. Enz. 267:275-301. This resulted in a round 40N7 nucleic acid pool with the following sequence which has 5' and 3' fixed regions and a 40 base long random sequence region:

```
5'-GGGAGGACGAUGCGG-40N-CAGACGACUCGCCGA-3'  round 0 40N7 nucleic acid (SEQ ID NO:1)
5'fixed region random region 3'fixed region
A = 2'-OH A; C = 2'-F C; G = 2'-OH G; U = 2'-F U
```

(Table 1)

[0068] Spot SELEX

[0069] Spot SELEX was performed as described in U.S. patent application No. 08/477,527, filed June 7, 1995, entitled "High Affinity Nucleic Acid Ligands of Cytokines," now U.S. Patent No. 5,972,599, which is hereby incorporated by reference in its entirety, using nucleic acid that was internally labeled using α-32P ATP. The conditions and progress of this SELEX experiment are summarized in Table 3. Briefly, human TGFβ2 (or no protein) was applied to a 13 mm diameter nitrocellulose filter and allowed to absorb but not completely dry. The filter was incubated with RNA in Dulbecco's phosphate-buffered saline, 1 mM MgCl₂, and then washed as summarized in Table 3. Filter-bound and protein-bound nucleic acid was visualized and quantitated on an Instant Imager (Packard Instrument Co., Downers Grove, Ill.) and the protein-bound nucleic acid was eluted in 50% phenol, 4 M urea for 45 minutes at 65° C. Eluted
nucleic acid was ethanol precipitated and then reverse transcribed using avian myeloblastosis virus reverse transcriptase and subjected to the polymerase chain reaction using 5′N7 and 3′N7 primers for 15 cycles. This resulting transcription template was transcribed with T7 RNA polymerase in the presence of 2′-fluoro pyrimidine nucleotides, 2′-OH purine ribonucleotides, and α-32P-ATP and carried to the next spot round. The pool from the first spot round was also transcribed as above in the absence of α-32P-ATP for use in round 2 of the surface plasmon resonance biosensor SELEX.

[0070] Surface Plasmon Resonance Biosensor SELEX

[0071] Rounds 2-spr through 9-spr were done using surface plasmon resonance biosensor technology on a BIAcore model 2000 instrument. For this experiment 1XDPBS, 1 mM MgCl2, 0.005% P2O surfactant (cat#BR-1000-54, Biacore, Inc., Piscataway, N.J.) was used as the running buffer. TGFβ2 was amine coupled onto a CM5 BIACORE chip (Biacore, Inc., Piscataway, N.J.) using the Biacore amine coupling kit (cat#BR-1000-50, Biacore, Inc., Piscataway, N.J.) per manufacturer’s instructions. Briefly, TGFβ2 aliquots (3 μl, in 4 mM HCl at 100 μg/ml) were diluted in 30 μl of 10 mM CH3COONa, pH 5.0 and injected on an EDC-NHS activated chip at 25°C, 5 μl/min, in different volumes to achieve different loading levels, as measured in response units (RU). Following coupling, the chip was washed with 3 M NaCl for about 1.5 min at 10 μl/min. Under these experimental conditions, TGFβ2 loading of 15 RU/μl could be achieved. TGFβ2 was loaded in flow cells 1, 2, and 3, while flow cell 4 was kept blank for control and background subtraction. Before use, the chip was tested for activity by testing binding of LAP and or soluble receptor III (R&D Systems, Minneapolis, Minn.) at 37°C. At the end of each test injections the chip was regenerated using 1 min wash with 10 mM NaOH. For SELEX rounds, RNA pools, generated by in vitro transcription without any labeled nucleotides, were in running buffer and were injected over the TGFβ2 loaded CM5 chips at 5 μl/min at 37°C. The concentration and volume of the RNA pools used at each round are as shown in Table 4. At each round the RNA pools were applied in 40 μl injections and each injection cycle was followed by a dissociation phase where the chip was washed with DPBS, 1 mM MgCl2 at 20 μl/min while three 100 μl fractions (5 min each) were collected. Following the last injection-dissociation cycle, the chip was treated with 0.25% SDS and the eluted RNA was collected as the final fraction. The third fractions of each injection cycle and the SDS elution were pooled and amplified by RT/PCR to generate the template pool for the next SELEX round.

[0072] Resonant Mirror Optical Biosensor SELEX

[0073] Rounds 10-spr through 13-spr were done using an IASYS plus resonant mirror optical biosensor instrument. Round 9-spr from the surface plasmon resonance SELEX was used as the starting material. For this experiment, 1XDPBS, 1 mM MgCl2, 0.005% P2O surfactant (cat#BR-1000-54, Biacore, Inc., Piscataway, N.J.) was used as the running buffer. TGFβ2 was amine coupled onto a CMD IASYS cuvette (Affinity Sensors, Cambridge, UK) according to the manufacturer’s protocol. Briefly, the CMD cuvette was activated with 0.2 M EDC, 0.05 M NHS for 10 minutes, and TGFβ2 was coupled by injection 35 μl of 0.4 μM TGFβ2, 10 mM CH3COONa, pH 5.3 in 35 μl of 10 mM CH3COONa, pH 5.5. The coupling reaction was at 25°C for about 10 minutes and resulted in about 2,000 Arcsec of signal. Unreacted sites were capped by exposing the cuvette in 1 M ethanolamine for 1-2 minutes. Following coupling and capping the cuvette was exposed to 3 M NaCl for 1-2 minutes and was ready for use. The cuvettes were routinely tested for activity by measuring binding of LAP and or soluble receptor III (R&D Systems, Minneapolis, Minn.) at 37°C. At the end of each test injection the chip was regenerated using a 1 minute wash with 50 mM NaCl. For SELEX rounds, RNA pools, generated by in vitro transcription without any labeled nucleotides, were in running buffer. They were injected in the TGFβ2 loaded CMD cuvette and incubated for 2-60 minutes (Table 6) under 100% steering at 37°C. Following binding, the RNA was replaced with buffer and bound RNA was observed to dissociate from the cuvette surface. Dissociation was allowed for 30-150 minutes (Table 6) at 37°C while the buffer was exchanged several times to avoid evaporation. Following dissociation, the remaining RNA was eluted with H2O or 0.25% SDS and the RNA was amplified as above and carried to the next SELEX round.

[0074] SELEX using Filter Partitioning and Polyanion Competition

[0075] For rounds 9b through 22a, SELEX using filter partitioning was performed essentially as described in (Fitzwater and Polisky (1996) Meth. Enz. 267:275-301) except that 1) heparin or yeast tRNA was included to compete off ligands that bind nonspecifically, 2) the binding buffer was HISMK (50 mM HEPES, pH 7.4,140 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 3 mM KCl), 3) extensive efforts were undertaken to reduce filter binding sequences (pseudosorption of nucleic acid onto filters after elution and transcription, blocking of filters with tRNA and bovine serum albumin prior to partitioning, addition of 0.5 M urea to the wash buffer) and 4) the transcripts were initiated with a 5:1 molar mixture of guanosine:2′-fluoro-nucleotides. Initiation with guanosine allows nucleic acids to be used in SELEX or bioactivity assays without radiolabeling and alleviates a phosphatase step if the nucleic acid is to be 5′-end radiolabeled for binding studies.

[0076] Round 8-spr from the surface plasmon resonance SELEX was used as the starting material. From rounds 9b to 14i, the SELEX process was performed using protein-excess conditions. The concentrations of nucleic acid and protein were equimolar in round 15c. Nucleic acid-excess conditions were used from rounds 16a to 22a (Table 2). Competitors (yeast tRNA and heparin) were used from rounds 9b to 14i. Filters were washed with 10-15 ml HISMK buffer from rounds 9b to 12i and increasing amounts (5-50 ml) of HISMK, 0.5 M urea from rounds 13i to 22a.

[0077] Sequencing of Nucleic Acid Ligand Pools

[0078] Nucleic acid pools were sequenced as described in (Fitzwater and Polisky (1996) Meth. Enz. 267:275-301).

[0079] Screening Nucleic Acid Ligand Pools using Ligand-Specific Reverse Transcription-Polymerase Chain Reactions

[0080] Nucleic acids from the various pools was reverse transcribed with clone-specific (ML-85 for ligand 14i-1 and ML-81 for ligand 21a-2) for 12, 15 or 18 cycles. Mixtures of pure nucleic acid ligands and round 0 40N7
nucleic acid that contained 10%, 3%, 1%, 0.3%, or 0.1% ligand were processed in the same manner and served to quantitate signals from RT-PCR of the nucleic acid pools.

[0081] Cloning, Screening and Sequencing of Nucleic Acid Ligands

[0082] Nucleic acid ligands were cloned using two methods. In one method the ligands were directly cloned into pCR-Script according to the manufacturer’s instructions and transformed into E. coli strain XL-1 Blue MR6 Kan. In the other method the double-stranded DNA transcription template was amplified by PCR using primers ML-34 and ML-78, digested with BamHI and EcoRI restriction enzymes, and cloned into BamHI and EcoRI-digested pUC9. The ligation was transformed into E. coli strain DH5α. Colonies were selected on ampicillin plates and screened for inserts by PCR using vector-specific primers (RSP and FSβ2). Typically 90%-1 00% of the clones had inserts. Some colonies or nucleic acid pools were also screened using 141-1, 21a-4 or 21a-21 ligand-specific primers (ML-79, ML-81 and ML-85, respectively) in an attempt to identify clones that were different from those already isolated.

[0083] Plasmid minipreps from the transformants were prepared using the QIAprep spin miniprep kit (QIAGEN, Inc., Valencia, Calif.) or PERFECT prep plasmid DNA kit (5′3′, Inc., Boulder, Co.). Sequencing reactions were performed with the Big Dye kit and a sequencing primer (RSβ2). The sequencing products were analyzed on an ABI model 377 sequencer.

[0084] Nucleic Acid Ligand Boundaries

[0085] The boundaries (5′ and 3′ end) of the smallest ligand that can bind TGFβ2 was determined essentially as described in (Fitzwater and Polisky (1996) Meth. Enz. 267:275-301). The protein concentrations used were 0, 1 nM, and 10 nM and the nucleic acid/protein ratio was 1. The binding buffer used in this experiment was HBSMC. 0.01% HSA. Binding reactions were incubated at 37°C for 30 minutes, filtered through 0.45 mm, nitrocellulose filters (15 mm), and then washed with 15 ml HBSMC. The RNA was recovered by phenol–urea extraction, eluted RNA was ethanol precipitated in the presence of glycerol, resuspended in H2O, supplemented with equal volume 2x formamide dye, and analyzed on 8% acrylamide, 8 M urea sequencing gels. Truncated RNAs that were bound to TGFβ2 were visualized and developed on a FUJIX BAS 1000 phosphorimag (FUJI Medical Systems, USA).

[0086] Nucleic Acid Ligand truncation

[0087] Truncated versions of full length nucleic acid ligands were generated in three ways. In one method, E. coli RNase H and hybrid 2′-OCH3 RNA/DNA oligonucleotides (5′N7 cleave, 3′N7 cleave; Table 1) were used to cleave nucleic acids at a specific site. Truncation SELEX is described in U.S. patent application Ser. No. 09/275,850, filed Mar. 24, 1999, entitled “Truncation SELEX Method,” which is hereby incorporated by reference in its entirety. In a second method, overlapping DNA oligonucleotides encoding the desired ligand sequence were annealed, extended by Klenow DNA polymerase, and then transcribed. In a third method, ligands were chemically synthesized with the desired sequence.

[0088] Binding of Nucleic Acid Ligands to Human TGFβ’s

[0089] The binding activity of individual ligands was determined by measuring the equilibrium dissociation constants using nitrocellulose partitioning of labeled RNA as a function of protein concentration. RNA was body-labeled or guanylated, and then 5′-end labeled with γ-32P ATP and T4 polynucleotide kinase. Binding reactions were set at various protein concentrations (typically varied in either 3-fold or 10-fold increments) while maintaining the labeled RNA concentration constant at less than 0.1 nM, and incubated at 37°C for 10 minutes. Protein-RNA complexes were partitioned away from uncomplexed RNA, by filtering the binding reactions through a nitrocellulose/cellulose acetate mixed matrix (0.45 μm pore size filter disks, type HA; Millipore, Co., Bedford, Mass.). For filtration, the filters were placed onto a vacuum manifold (12-well, Millipore, or 96-well BRL) and wetted by aspirating 1-5 ml of binding buffer. The binding reactions were aspirated through the filters, washed with 1-5 ml of binding buffer and counted in a scintillation counter (Beckmann).

[0090] To obtain the monophasic equilibrium dissociation constants of RNA ligands to hTGFβ2 the binding reaction:

\[
K_D = \frac{[P]_o}{[P]_{total} - [P]_o} = dissociation constant
\]

[0091] \[ K_D \]

[0092] R.P→R+P

[0093] \[ R=RNA \]

[0094] \[ P=Protein \]

[0095] \[ K_D=dissociation constant \]

[0096] \[ q=f(P) \]

\[ q = fraction \ of \ RNA \ bound \]

[0097] \[ P_{total} \]

[0098] \[ P_{total} \]

[0099] \[ R_{protein} \]

[0100] \[ \text{retention efficiency of RNA-protein complexes} \]

[0101] \[ \text{The average retention efficiency for RNA-TGFβ2 complexes on nitrocellulose filters is 0.3-0.8. K}_{D} \] values were obtained by least square fitting of the data points using the software Kaleidagraph (Synergy Software, Reading, Pa.).

[0102] Competition between Ligands

[0103] 32P-labeled test ligands at a concentration of 1 nM were mixed with increasing concentrations of unlabeled NX2283 (SEQ ID NO:114). Then, an amount of TGFβ2 estimated to be near the K_{D} of the test ligands was added (1 nM for NX2283, 1 nM for 21a-21, 3 nM for 21a-4, and 10 nM for 141-1). The reactions were incubated, filtered, washed and counted as for a binding reaction.

[0104] Off-Rate of NX2283

[0105] 1 nM 32P-labeled NX2283 was mixed with 10 nM TGFβ2, incubated for 5 minutes to allow the protein to bind to the nucleic acid, and then a 1000-fold excess (1 μM) of unlabeled NX22283 was added. At various time points the reactions were filtered and washed to measure the amount of 32P-labeled NX22283 that remained bound.
A library of sequences was constructed based on the sequence of the 34-mer truncate (NX22284) of nucleic acid ligand 21a-21. The sequence of the DNA template (34N7.21a-21 (SEQ ID NO:7)) is shown in Table 1. The randomized region is 34 bases long. At each position the randomized region consists of 62.5% of the NX22284 sequence and 12.5% of the other 3 nucleotides. Thus the randomized region is mutated at each position (37.5%), but at the same time is biased toward the sequence of NX22284. The fixed regions (5N7, 3N7) were the same as used for the primary SELEX.

To generate 34N7.21 a-21 round 0 nucleic acid, the DNA template was amplified by PCR using the 5N7 (SEQ ID NO:2) and 3N7 (SEQ ID NO:3) primers (Table 1). This PCR product was transcribed as described above in the filter partitioning SELEX section. This resulted in a 34N7.21a-21 round 0 nucleic acid pool with the sequence shown in Table 1 (SEQ ID NO:10).

Filter partitioning as described above and in Fitzwater and Polinsky (1996) (Meth. Enz. 267:275-301) with no competitors was used to enrich nucleic acids ligands that bound to human TGFβ2 the best. The protein concentration was reduced from 150-300 mM to 50 μM. The nucleic acid concentration was reduced from 1 μM to 1 mM. The nucleic acid/protein ratio ranged from 0.25 to 125. The round 5a pool of ligands was cloned into pUC9 and sequenced as described above.

Biactivity of TGFβ2 Nucleic Acid Ligands

The biactivity of TGFβ2 nucleic acid ligands was measured with mink lung epithelial cells. Proliferation of these cells is inhibited by TGFβ2. Human TGFβ2 was titrated on the cells and 3H-thymidine incorporation was measured. The point at which 3H-thymidine incorporation by the cells was inhibited by 90-100% was determined (typically 1-4 pM). This inhibitory amount of TGFβ2 along with varying amounts of nucleic acid ligand (typically 0.3 or 1 mM in 3 fold increments) was used. Typically, cells were plated at 100,000 in 96-well plates in 10 μM MEM, 10 mM Hepes pH 7.4, 0.2% FBS. Following a 4 hour incubation at 37°C, when cells were well attached to the well surface, TGFβ2 was added at 1-4 pM with or without nucleic acid ligands as follows: the ligands were diluted across the 96 well plate in 3-fold dilution steps and then TGFβ2 was added at 1-4 pM to all wells except controls. The cells were incubated for 16-18 hours prior to addition of 3H-thymidine, and then incubation was continued for 20 additional hours following 3H-thymidine addition at 0.25 μCi per well. After incubation, the cells were lysed with 1% Triton X-100 and harvested onto GF/B filter plates in a Packard 96 well plate harvester. 3H-thymidine incorporation in cellular DNA was quantitated by scintillation counting in MicroSprint (Packard, Meriden, Conn.) in a Packard Top-Count. Data were plotted as % of maximum 3H-thymidine incorporation vs RNA concentration, and were fitted by the software Kaleidagraph (Synergy Software, Reading, Pa.) to the equation m3*(m0+m1+(m2)-(m0+ m1+m2)2)4(m0+m1+m2))+(m0+m1+m2))2(m0+m1+m2))2(m0+m1+m2))2(2(m0+m1+m2)) where m0 is the concentration of competitor RNA; m1 is the IC50, m2 is the concentration of TGFβ2, and m3 is the plateau value of the fraction of maximum 3H-thymidine incorporation. Kf values were determined from IC50 values according to the equation Kf=IC50/(1+([T]/Kf)), where [T] is the molar concentration of TGFβ2 present in the assay and Kf is the concentration of TGFβ2 causing 50% inhibition of MLEC proliferation as determined by TGFβ2 titration experiments. This assay was also used to determine the isotype specificity of RNA ligands where the three TGFβ isotypes were independently used as inhibitors of MLEC replication.

Pharmacokinetic Properties of NX22323

The pharmacokinetic properties of TGFβ2 ligand NX22323 were determined in Sprague-Dawley rats. NX22323 was suspended in sterile PBS and stored at 2 to 8°C. Prior to animal dosing NX22323 was diluted with sterile PBS, to a final concentration of 0.925 mg/ml (18 μM), based on the oligonucleotide molecular weight and the ultraviolet absorption at 260 nm with an extinction coefficient of 0.037 mg of oligo/ml. Sprague-Dawley rats (n=2) were administered a single dose of NX22323 by intravenous bolus injection through the tail vein. Blood samples (approximately 400 μL) were obtained by venipuncture under isoflurane anesthesia and placed in EDTA-containing tubes. The EDTA-treated blood samples were immediately processed by centrifugation to obtain plasma and stored frozen at 2 to 8°C. Time points for blood sample collection ranged from 5 to 2880 minutes.

Standards and quality control samples prepared in blank rat plasma and plasma samples were analyzed by a double hybridization assay. To prepare plasma samples for hybridization analysis, 25 μL of plasma sample (or a dilution in plasma of the sample) was added to 100 μL of 4xSSC, 0.5% sarkosyl. A 25 μL aliquot was then mixed with 25 μL of 4xSSC, 0.5% sarkosyl containing 24 μM capture oligonucleotide conjugated to magnetic beads and 28 μM detect oligonucleotide conjugated to biotin in a covered 96-well microtiter plates. The mixture was added to incubate at 45°C for 1 hour. Unbound oligonucleotide was removed and the plate was washed twice with 200 μL NTT Buffer. The NTT Buffer was removed and replaced with 50 μL DEA buffer (0.02% sodium azide, 1 mM MgCl2, 1% diethanolamine (Tropix, Inc., Bedford, Mass.), pH 10). Then 34 μL/ml 25 mM chemiluminescent substrate for alkaline phosphatase (Tropix, Inc., Bedford, Mass.), and 20% Sapphire chemiluminescence amplifier (Tropix, Inc., Bedford, Mass.) in DEA buffer (50 μL/well) was added. The plate was incubated for 20 minutes at room temperature and read on a luminometer. A standard curve of NX22323 was fit using a variable slope sigmoidal dose response non linear regression equation (PRISM, version 2.00, GraphPad, San Diego, Calif.). Sample and quality control concentrations were extrapolated from the standard curve and corrected for dilution.

The average plasma concentration at each time point was calculated and utilized in the pharmacokinetic analysis. Both noncompartmental and compartmental pharmacokinetic analysis were carried out using WinNonlin
In the noncompartmental analysis, the following parameters were calculated; the maximum concentration extrapolated at zero time (Cmax), the area under the curve from zero to the last time point (AUClast), the area under the curve from zero to infinite time (AUCINF), the terminal phase half life (Beta 1/2), the clearance rate (Cl), the mean residence time calculated from zero to infinite time (MRTINF), the volume of distribution at steady state (Vss), and the volume of distribution during elimination (Vz). In the case of compartmental analysis, the following parameters were calculated based on the minimum number of monoeponential equations to adequately fit the data: the maximum concentration extrapolated at zero time (Cmax), the area under the curve from zero to infinite time (AUCINF), the distribution phase half life (Alpha 1/2terminal), terminal phase half life (Beta 1/2), the exponential constant for the distribution phase (A), the exponential constant for the terminal phase (B), the clearance rate (Cl), the mean residence time calculated from zero to infinite time (MRTINF), and the volume of distribution at steady state (Vss).

**Example 2**

Isolation of Nucleic Acid Ligands that Bind Human TGFβ2

[0116] Several SELEX experiments on TGFβ2 have been attempted as summarized in FIG. 1. Several partitioning methods were applied at various stages of the SELEX process including standard filtration through nitrocellulose, spot, surface plasmon resonance biosensor (BLAcore), resonant mirror biosensor (lasys), polystyrene beads, and polyclamid gel shift. The combination of spot SELEX, surface plasmon resonance biosensor SELEX, and filter partitioning SELEX (with competitors) described here had the best overall improvement in affinity (->1000 fold) and thus is described in detail. In addition, a branch of this SELEX that utilized resonant mirror biosensor technology is also described.

[0117] Spot SELEX Conditions

[0118] Spot SELEX was chosen to initiate the SELEX process on human TGFβ2 because it would allow a large amount of protein and nucleic acid to interact. The conditions used are shown in Table 3. The results of round 1 were acceptable. The background was very low and the signal to noise ratio was 5. At this point the population from the first round was used for the surface plasmon SELEX in addition to continuing with the spot partition method. Ten rounds of spot SELEX were completed as summarized in Table 3 and a modest improvement in the affinity of the pool of about 30 fold was observed. These pools were not analyzed further.

[0119] Surface Plasmon Resonance Biosensor (spr) SELEX

[0120] Surface plasmon resonance biosensors were chosen as a partitioning medium because they provide very low background nucleic acid binding to the sensor, so that higher degrees of enrichment can be obtained. In addition binding and elution of nucleic acid can be monitored and quantitated in real time.

[0121] TGFβ2 was coupled to a BLAcore biosensor using amine coupling chemistry. TGFβ2 coupled in this manner binds latency-associated protein, and recombinant soluble TGFβ receptors. FIG. 2 shows typical sensograms obtained with LAP and recombinant sRIII where we observed kon and koff rates indicative of avid binding. During this SELEX experiment as summarized in Table 4, a binding signal was first observed on the biosensor in round 6, increased up to round 9, and then decreased in rounds 10 and 11. FIG. 3 shows sensograms with 0, 4-spr, 6-spr, 8-spr and 9-spr. FIG. 4 shows typical filter binding curves, in the presence and absence of competitor tRNA, with representative pools from the spr SELEX and from these data it seems that round 9 binds in a biphasic manner with a high affinity and low affinity Kd of 30 and 160 nM, respectively.

[0122] In bioactivity assays the K values for the round 0 pool was about 2.6 μM and the K values for the round 9-spr pool was about 711 nM (see below). Sequence analysis of representative pools indicated that such pools maintained significant complexity up to round 8 while after round 9 such pools were strongly biased towards a single sequence.

[0123] Round 8-spr was cloned and sequenced. A total of 69 clones representing 51 different sequences were analyzed. Four sequences (# 8.2, 8.3, 8.9 and 8.4; see Table 5) were represented more than once and accounted for 21 of the 69 clones. All four of these sequences bound TGFβ2 and were 2 or 3 base variants of a clone (141-1) isolated from the filter SELEX (see below). Twenty three other sequences were nonbinding or filter-binding sequences (see Table 5) and 25 clones were not tested for binding.

[0124] Resonant Mirror (rm) Optical Biosensor SELEX

[0125] Since the affinity of nucleic acid pools selected on the surface plasmon resonance biosensor peaked at round 9-spr, resonant mirror (rm) optical biosensor technology was tested to determine if it could advance the affinity of nucleic acid ligands any further. Resonant mirror optical biosensor technology offers many of the same advantage as surface plasmon biosensor technology, but in addition the binding is done in a cuvette under equilibrium conditions rather than over the surface of a chip under flow conditions. Within the cuvette the binding can be extended for long time periods. Therefore the nucleic acid/protein binding reaction can be more stringent and selective.

[0126] For resonant mirror SELEX, TGFβ2 was coupled to two biosensor cuvettes using amine coupling chemistry. In one cuvette the TGFβ2 was inactivated by SDS denaturation and this cuvette served to assess background. The other cuvette containing active TGFβ2 was used for the SELEX. Beginning with round 9-spr, five rounds were done using resonant mirror optical biosensor technology. The conditions used for and the results of the resonant mirror SELEX are shown in Table 6.

[0127] Biosensor signals were observed for each round. The binding of the nucleic acid pools from rounds 10-rm to 12-rm was assessed (Table 6; FIG. 5). The pool Kd improved modestly up to round 12-rm with no further improvement in the subsequent rounds. The round 12-rm pool binds biphasically with high and low affinity Kd of ~2 nM and ~150 nM, respectively.

[0128] In bioactivity assays the K values for the round 13-rm pool was about 505 nM. Round 13-rm was chosen for subcloning and sequence analysis. Of 15-clones that were sequenced, all
15 (Table 7) were 1 to 5 base variants of a clone (14i-1) which was originally isolated from the filter SELEX (see below).

[0129] Filter Partitioning SELEX

[0130] Round 8-spr was used as the starting material for a filter SELEX. The properties of round 8-spr were studied and it was found that 1) a significant fraction bound to a nitrocellulose filter (10%), 2) significant nucleic acid binding (defined here as signal/noise=2) to TGFβ2 was not detectable using nucleic acid-excess conditions, and 3) in the presence or absence of polyanionic competitors there was a significant decrease in the binding of round 0, but not round 8-spr to TGFβ2. These findings had implications that are addressed below.

[0131] Use of a Competitor

[0132] The binding of round 8-spr nucleic acid to TGFβ2 in the presence of a polyanionic competitor (yeast tRNA) was studied at various ratios of competitor to nucleic acid. It was found that a 75,000-fold excess of tRNA over round 8-spr nucleic acid resulted in 50% inhibition of binding, whereas a 6,000-fold excess of tRNA over the round 0 nucleic acid pool resulted in 50% inhibition of binding. Heparin also competed with RNA for binding to TGFβ2, but about 10-fold more heparin was needed to inhibit RNA binding to TGFβ2 to the same degree as that observed using tRNA. By including a 100,000-fold excess of yeast tRNA over RNA in a TGFβ2/RNA binding experiment, a 100-fold difference in binding between round 0 and round 8-spr was detected, whereas a 3-fold difference was observed in the absence of any competitor. Thus in the presence of an appropriate amount of competitor, the binding of selected nucleic acid pools is unaffected, whereas the binding of round 0 nucleic acid is reduced substantially. When competitors are not included in studying the binding of TGFβ2 to nucleic acid the affinity of nucleic acids selected using the SELEX process can be grossly underestimated. In this regard TGFβ2 is similar to other "professional" nucleic acid binding proteins (e.g., restriction enzymes, polyamines, transcription factors, etc.), in that it possesses both a low affinity, nonspecific and a high affinity, specific nucleic acid binding activity. The difference between these two binding modes can be revealed in the presence of competitors. Competitors are often used in the study of transcription factors. For example, it can be difficult to detect specific binding of a crude extract containing a transcription factor to oligonucleotides representing their cognate site in gel-shift experiments, unless a competitor, such as poly [dI-dC]• poly [dI-dC], is included in the binding reaction.

[0133] Nonspecific binding can involve the binding of multiple proteins per nucleic acid, often at low affinity sites, giving a false appearance of high affinity. A protein can bind at multiple sites on a nucleic acid or protein aggregates may form on a single protein bound to a nucleic acid. TGFβ2 is well known to be "sticky." In the absence of a competitor of nonspecific interactions, TGFβ2 may form large networks and complexes of nucleic acid and protein involving primarily nonspecific interactions. Gel shift analysis of TGFβ2, in the absence of competitor, supports these ideas because TGFβ2 does not form distinct (one to one) complexes with nucleic acid in gels, but instead either remains in the well at the top of a gel or forms smears that may represent large heterogeneous nucleic acid/protein complexes.

[0134] Besides the implications for doing binding curves, the nucleic acid-binding properties of TGFβ2 may have implications for SELEX. For example the high level of nonspecific binding of nucleic acid by TGFβ2 may have interfered with previous SELEXs by obscuring specific interactions or preventing the isolation of nucleic acid/protein complexes that involved only specific binding interactions. That is, if mixtures of specific and nonspecific nucleic acid interactions exist in nucleic acid/TGFβ2 complexes that form, then the selection for specific interactions may be difficult, if the nonspecific interactions are not eliminated. Lack of progress in some previous SELEX experiments may have been due to efficient competition by the large excess (10^{12}-10^{13}) of low affinity nucleic acids that contain nonspecific binding sites with a smaller number (10-1000) of high affinity nucleic acids that contain specific binding sites, especially in early rounds of SELEX.

[0135] Use of Protein-Excess or Nucleic Acid-Excess Conditions

[0136] Given the discussion above, a question arises as to which type of SELEX condition is better for a protein such as TGFβ2, protein-excess or nucleic acid-excess. Protein excess conditions may tend to encourage nonspecific interactions. However as long as the competitor/nucleic acid ratio is high enough to eliminate enough nonspecific interactions, but retain specific interactions, this may not be an issue. One advantage to using protein excess is the bound to background ratios are better and background is lower, which would result in better levels of enrichment.

[0137] Nucleic acid-excess conditions may not discourage nonspecific interactions because within nucleic acid pools used for SELEX the ratio of nonspecific to specific binding nucleic acids (which is what is most important) would be the same no matter what the nucleic acid concentration is. In addition nucleic acid-excess would reduce the competitor/nucleic acid ratio which would tend to increase nonspecific interactions. As discussed above the ratio of tRNA to nucleic acid must be at least 100,000 in early round of the filter SELEX in order for affinity enrichment to be efficient. This can be technically difficult in early rounds of SELEX when the nucleic acid concentration is typically higher. One advantage to using excess nucleic acid is that more members of a given sequence would be represented in a pool. However if there had been enough enrichment (e.g., using a method such as surface plasmon resonance SELEX) prior to filter SELEX there will probably be multiple representatives of a given sequence and this would not be an issue.

[0138] Filter SELEX Conditions

[0139] The conditions used at each round of the filter SELEX are shown in Table 15. Multiple conditions (up to 12) were used in each round varying nucleic acid/protein ratios, competitor/nucleic acid ratios, filter washing buffers, and filter washing volumes. Typically conditions that resulted in the lowest background (<1%) and a significant bound/background ratio (>2) were processed for the next round. Only data for SELEX rounds that were used in the next round are shown in Table 15.

[0140] The SELEX began by using an amount of tRNA competitor (100,000-fold excess) that was determined in the SELEX reaction to inhibit binding of round 8-spr to TGFβ2 by about 60%. SELEX reactions with competitor were done
for round 9b through 14i. The inclusion of tRNA in round 9 also dramatically reduced binding of round 8-spr nucleic acid to nitrocellulose filters from ~10-15% to ~1%. The higher the "background" binding is in a SELEX reaction, the lower the maximum possible enrichment. Thus inclusion of tRNA in the early rounds of the filter SELEX may have had a dual benefit. It not only may have eliminated nonspecific binding of TGFβ2 to nucleic acid, but also allowed more enrichment by reducing background. At round 15c lower affinity competitors were no longer effective at reducing binding of nucleic acid and were not used. This is presumably because the nucleic acid pool bound TGFβ2 with adequate specificity and affinity. Therefore from round 16 to 22, the presumed specific nucleic acids were allowed to compete with each other by using more traditional nucleic acid-excess conditions.

[0141] The background increased to unacceptable levels in rounds 15c and 16a. Gel shift partitioning was investigated as an alternative partitioning procedure at this point but did not work. By modifying the washing conditions the background was reduced to 0.2% in round 17a. After round 18b it was possible to do SELEX rounds at protein concentrations below 1 nM and under nucleic acid-excess conditions. It was also found that nucleic acid concentrations above 1-5 nM also helped to reduce background in some rounds.

[0142] In summary, during the filter SELEX, the concentration of the protein was reduced 30,000-fold, from 300 nM in round 9b to 10 pM in round 22a. The background binding to filters was reduced from 10% to 0.1%. Nucleic acid pools that bound to TGFβ2 only when protein-excess conditions (~100 protein/nucleic acid) were used were selected to bind under high nucleic acid/protein (~1000) or competitor/nucleic acid (~1000)-excess conditions.

[0143] Binding of Nucleic Acid Pools from Filter SELEX

[0144] The binding of TGFβ2 to selected nucleic acid pools improved steadily, but slowly and erratically. There was an improvement in the binding of round 10b (Kₐ=100 nM) compared to the starting pool (round 8-spr; Kₐ=500 nM). The affinity of round 11a was the same as 10b and that of round 12d improved modestly to ~40 nM. Rounds 13i and 15c bound TGFβ2 approximately the same (Kₐ=30), while round 14i may have bound worse (Kₐ=75). Round 16a nucleic acid (Kₐ=10 nM) bound slightly better than round 15c. There was ~2-fold improvement in affinity of the nucleic acid pool from rounds 16a to 17a (Kₐ=5 nM). The Kₐ of round 18a nucleic acid (~5 nM) was equivalent to round 17a nucleic acid. There was another slight increase in affinity from round 18b to 19a (Kₐ=2-3 nM). The affinity of rounds 20a, 21a and 22a plateaued at about 1 nM. The SELEX was stopped at round 22a because the bound to background ratio was below 2 and it would have been technically difficult to reduce the protein concentration to 1-3 pM in round 23.

[0145] In summary the Kₐ improved from ~500 nM in round 9b to ~1 nM in round 21a, resulting in an overall improvement of ~500-fold in the filter SELEX and ~10,000-fold in the entire SELEX. The average improvement per round was only about 1.6-fold. This rate of improvement is slow compared to an average SELEX experiment, which may take ~5 rounds using only surface plasmon resonance technology or ~10 rounds using only filter partitioning.

[0146] Inhibition of Bioactivity by Nucleic Acid Pools

[0147] Rounds 0, 9-spr, 13-rm, 14i, 18b and 19a, and latency-associated protein (LAP) were tested on mink lung epithelial cells for their ability to reverse TGFβ2-mediated inhibition of 3H-thymidine incorporation. The results are that the Kₛ of the round 9-spr pool was about 711 nM. The Kₛ's of the round 14i, 18b, 19a and 21a pools were about 231 nM, 309 nM, 154 nM and 10 nM, respectively. The Kₛ of LAP was about 0.5 nM.

[0148] From these results it can be concluded that inhibitors of TGFβ2 were enriched in the later rounds of the TGFβ2 SELEX. In addition there is a continuous correlation between the affinity measured in vitro and the inhibitory activity measured in vivo.

[0149] LAP-round 19a<round 14i<round 13-rm<round 8-spr<round 0.

[0150] Seqencing of Nucleic Acid Ligand Clones Isolated from Filter SELEX

[0151] Based on several criteria (pool Kₛ, filter-binding background, bound to noise background, inhibitory activity in cell assay, and absence of aberrant products during the RT-PCR steps of SELEX) round 21a was subcloned for sequence analysis. Forty eight clones were sequenced from round 21a (Table 8). Two unique sequences represented by clones 21a-4 and 21a-21 (the first number refers to the SELEX round a clone was initially isolated from and the second number is a clone number) were identified. Several clones were minor variants (1-6 bases different) of clones 21a-4 and 21a-21. One hundred more clones were screened by PCR using primers specific for clones 21a-4 and 21a-21. Of these, 90 were clone 21a-21-like, 9 clone 21a-4-like and 1 was a third unique sequence (21a-48), which was shown to be a nitrocellulose filter-binding sequence. In conclusion, round 21a consists almost entirely of two sequences and variations of those sequences. This was not surprising because round 21a was the second to last round and the bulk affinity of the nucleic acid pools had not improved much from round 19a to 21a.

[0152] Since the sequence diversity of round 21a was restricted, 3 other rounds (14i, 16a, 18a) were also sequenced. Only one more novel sequence (14i-1 and variants) was isolated. Two filter-binding sequences were also isolated (16a-1) and a variant of 21a-48). Therefore, as with rounds 8-spr, 13-rm and 21a, these 3 rounds also did not contain diverse TGFβ2-binding nucleic acid ligands.

[0153] The sequences of 14i-1, 21a-4, and 21a-21 are shown in Table 8. The affinity of the sequences for human TGFβ2 is about 10 nM, 5 nM and 1 nM respectively. Therefore these 3 sequences are ligands that bind human TGFβ2 with high affinity.

[0154] The ligands were tested for inhibitory bioactivity. The Kₛ's of 14i-1, 21a-4 and 21a-21 are about 200 nM, 30 nM and 10 nM respectively. Thus these ligands are also inhibitory ligands. As for the pools the binding affinity correlates well with the inhibitory activity. This is not surprising since it is likely the TGFβ2 ligands bind near the heparin binding site which is very close to the TGFβ receptor binding region. The inhibitory activity of ligand 21a-21 was also compared to that of antibodies.
Clones were isolated and sequenced from six rounds (8-spr, 13-rm, 14i, 16a, 18a and 21a). The number of each type of sequence is summarized in Table 9. Out of 264 clones analyzed by sequencing and 100 clones analyzed by a PCR-based analysis using ligand-specific primers (Table 10), only 3 different TGFβ2 ligand sequences (and minor variants) were obtained. Fifteen sequences were filter binding sequences and 36 were nucleic acids that do not bind well to filters or TGFβ2. The degree of restriction in sequence diversity observed in this SELEX is very unusual. Generally one can isolate dozens of different nucleic acid ligands and usually it is possible to find high affinity rounds where one ligand represents <10% of the population.

Since sequencing and screening of 6 rounds of SELEX that are as much as 13 rounds apart did not result in a diverse set of sequences the properties of the pools were investigated further to determine where the sequence diversity was restricted. Selected nucleic acid pools were sequenced and semi-quantitative RT-PCR on nucleic acid pools using ligand-specific primers was done. The results are shown in (Table 10). Taken together with the sequencing results, it appears that a restriction in sequence diversity during the SELEX process may have occurred near rounds 6-spr or 7-spr.

Clone 14i-1 is first detectable in round 6-spr, becomes most frequent near round 14i, and decreases in frequency in later rounds. Clone 21a-4 is first detectable by sequencing in round 14i, is most abundant in round 16a, and decreases in frequency by round 21a. However 21a-4 may exist in prior rounds (RT-PCR analysis of pools using a primer specific for clone 21a-4 was not done). Clone 21a-21 was rare in round 14i (<1/104 clones by sequencing; estimate <1/200-500 clones by RT-PCR), became more frequent in round 16a, and composes most of round 18b and 21a.

It appears the surface plasmon resonance biosensor SELEX resulted in a high degree of diversity restriction, which has been observed before using this technology. The reason why various later rounds would consist of virtually one sequence is not clear. Perhaps only a very small number of sequences bind TGFβ2 under the selection conditions used. Perhaps a change in selection conditions such as the inclusion of competitors at round 9 or the switch from protein-excess binding reactions to nucleic acid-excess binding reactions at round 16 resulted in the emergence of clone 21a-21 as the predominant clone by round 21a. It seems as though the selection pressures were significant because the predominant ligand in a pool changed in as few as 2 rounds.

The pattern of changes in the population of nucleic acid ligands can be explained by analogy to the theory of natural selection. In an early SELEX round, a variety of sequences will exist. Strong selective pressure may narrow the sequence variation considerably, to the point that a single sequence is predominant. However rare ligands still exist that can be selected in future rounds or during significant changes in selective pressure. This is true in any SELEX experiment, but the TGFβ2 SELEX experiment described here may be an extreme example. In spite of the restriction on sequence diversity, better binding ligands could eventually be isolated. Note that ligand 21a-21 was first identified by sequencing in round 16a. Thus rare, high affinity nucleic acid ligands may exist even in round 22 that would only become predominant under the correct selection conditions. One approach for isolating such rare sequences might be to specifically deplete late rounds of SELEX of known sequences (e.g., by hybrid selection, restriction enzyme digestion of PCR products, site-directed RNase H cleavage of nucleic acid), an approach that this TGFβ2 SELEX is well suited for since essentially only 5 different sequences (3 ligands and 2 filter binding sequences) were present in later rounds. Isolating a sequence that is present in <1/1000 clones might be easy using depletion methods, but would be tedious using sequencing or PCR screening methods.

These results raise questions about when a SELEX is done and how to judge whether it is done. In this SELEX, standard criteria for judging when a SELEX is done such as K<sub>d</sub> improvement, and sequencing of clones or bulk nucleic acid pools may not be good criteria for judging if the SELEX had proceeded as far as it could. Often there are technical limitations (background, reaction volumes, loss of low amounts of protein to large surfaces) that determine when a SELEX must be terminated and these are artificially limiting. Perhaps a “depletion SELEX” round should be done at the end of every SELEX to attempt enrichment of ligands that would be difficult to isolate by currently used methods.

Specificity of Human TGFβ2 Ligands

For nucleic acid ligands to be most useful in the applications claimed herein they should be highly specific for a particular subtype of TGFβ. The specificity of human TGFβ2 ligands was investigated by in several ways.

The specificity of TGFβ2 ligands was examined using the cell culture bioactivity assay where the specificity of the TGFβ2 (described here) and TGFβ1 (see U.S. patent application Ser. No. 09/046,247, filed Mar. 23, 1998, entitled “High Affinity TGFβ Nucleic Acid Ligands and Inhibitors,” now U.S. Pat. No. 6,124,449, which is incorporated herein by reference in its entirety) aptamers was compared to the specificity of antibodies. Two types of antibodies were used namely, monoclonal antibodies and immunopurified polyclonal antibodies. It was found (Fig. 6) that the TGFβ2 ligand NX22283 inhibited TGFβ2 protein bioactivity (K<sub>i</sub> = 10 nM), but not TGFβ1 (K<sub>i</sub> > 1000 nM) or TGFβ3 bioactivity (K<sub>i</sub> > 1000 nM). The TGFβ2 ligand NX22283 inhibits the TGFβ2 bioactivity with a potency equivalent to that of a monoclonal antibody while the most potent inhibitor of TGFβ2 bioactivity in this experiment was an affinity-puriﬁed polyclonal antibody.

The specificity of a TGFβ2 ligand for TGFβ2 compared to TGFβ3 was also analyzed in nucleic acid binding assays. The affinity of round 0 40N7 nucleic acid or the full-length TGFβ2 ligand 21a-21 to human TGFβ2 protein was >10 M or 1 nM, respectively. The affinity of round 0 nucleic acid or ligand 21a-21 to human TGFβ3 protein was >10 μM or >30 μM, respectively. Therefore the TGFβ2 ligand does not bind significantly to TGFβ3.

It was found that the TGFβ1 ligand 40-03 (1 (see U.S. patent application Ser. No. 09/046,247, filed Mar. 23, 1998, entitled “High Affinity TGFβ Nucleic Acid Ligands and Inhibitors,” now U.S. Pat. No. 6,124,449), bound to TGFβ3 although 1000-fold worse. These results indicate there may be one or more amino acids in common between TGFβ1 and TGFβ3 that are not found in TGFβ2 so that a TGFβ1 ligand can bind TGFβ1 and TGFβ3 but not TGFβ2
and so that the TGFβ2 ligand 21a-21 binds TGFβ2 but not TGFβ1 or TGFβ3. Indeed, as shown in Table 12, there are 19 amino acids out of 122 that are found in TGFβ2, but not in TGFβ1 or TGFβ3. Three of these differences (Lys-25, Arg-26, and Lys-94 in TGFβ2) are within a putative heparin binding region and may be important for determining the binding specificity of TGFβ ligands.

**0166** Truncation of Nucleic Acid Ligands

**0167** It is desirable to obtain the smallest “truncate” of a full length nucleic acid ligand so that it can be synthesized efficiently at the least cost. The goal of this study was to obtain ligands that are less than half their original length (<35 bases), yet retain about the same affinity as the full length ligand. Several approaches were used to identify truncates of the three TGFβ2 ligands.

**0168** RNase H and hybrid 2'-OCH₃ RNA/DNA oligonucleotides (5'N7 cleave, 3'N7 cleave; Table 1) were used to remove the 5' and 3' fixed sequences from 2'-F pyrimidine, 2'-OH purine nucleic acid ligands as described in U.S. patent application Ser. No. 09/275,850, filed Mar. 24, 1999, entitled “Truncation SELEX Method,” which is hereby incorporated by reference in its entirety.

**0169** Second, the “boundaries” of the ligands were identified using a previously described method (Fitzwater and Polisky (1996) Met. in Enzymol. 267:275-301). Boundaries define the 5' and 3' ends of the smallest truncate. However boundary determination does not identify internal deletions that can be made. Also because of the nature of the boundary determination method, if a boundary falls within a run of pyrimidines or is too close to either end, then which nucleotide is the boundary must be determined by other methods (e.g., generation of ligands beginning or ending with each candidate boundary position followed by analysis of their binding to TGFβ2).

**0170** A third method used relied on plausible structural motifs to define hypothetical sequence boundaries. Synthetic oligonucleotides corresponding to these boundaries were synthesized and were tested for binding to TGFβ2.

**0171** A fourth approach for identifying TGFβ2 ligand truncates was to look at the location of sequence variations in each ligand. In ligands 21a-4 and 21a-21 the changes that occurred in sequence variants were distributed randomly throughout their sequences. However in ligand 14i-1, the sequence changes in variants were highly localized. It implied that the variable region of ligand 14i-1 could tolerate changes without affecting binding and that the whole variable region may be dispensable.

**0172** A fifth approach was to make internal deletions based on predicted structures. Portions of putative bulges, loops, or base pair(s) within predicted stems can be deleted. The success of this method depends critically on how close the structural model is to the real structure. For 21a-21 the most stable structure was found to be incorrect. Only when a structure closer to the real structure was identified (by using the biased SELEX method) could internal deletions of 21a-21 successfully be made.

**0173** Truncation of Ligand 14i-1

**0174** Using the RNase H truncation method it was determined that ligand 14i-1 requires the 5' but not the 3' fixed sequence (Table 13). Consistent with this result, when both the 5' and 3' fixed sequences were removed, ligand 14i-1 did not bind TGFβ2.

**0175** Conventional boundary experiments defined the 3' end of ligand 14i-1 (FIG. 7) to be within positions 39-45. In the same experiment we failed to observe a clear boundary at the 5' end of this ligand. Of the 60 sequence variants of ligand 14i-1, 54 have nucleotide changes that occur within the last 16 bases at the 3' end of the selected sequence region. Most of the variants have single base changes, but a few have as many as 6 bases changed. Such changes may or may not affect binding. If they affect binding then that region is important for binding. More likely, since there are so many changes in so many clones within that region, those bases were probably not important. It was surmised they may be able to be deleted, possibly along with the adjacent 3' fixed region, without affecting binding. This idea was confirmed by two experiments:

**0176** 1) The binding of 8 sequences that varied within the 16 base region and had different sequence changes was tested. They all bound as well to TGFβ2 as the 14i-1 ligand.

**0177** 2) A 38 base long truncate of 14i-1 (14i-i5-41; Table 13) that lacked the 3' fixed region and the 16 base variable region bound to TGFβ2 as well as the full length (71 base long) ligand.

**0178** Four sequences that removed additional bases from the ends of 14i-1 beyond those removed in 14i-i5-41 were made [(14i-i5-38, 14i-i5-35, 14i-i1 (ML-87), and 14i-i1 (ML-89)]. Also one internal deletion of 14i-i5-41 was made [14i-1 (ML-86)]. None of these bound to TGFβ2 (Table 13). Taken as a whole these experiments showed that the boundaries of ligand 14i-1 fall within positions 5-7 at the 5' end and 39-41 at the 3' end. All these results define truncate for ligand 14i-1 that is 38 bases long (Table 13).

**0179** Truncation of Ligand 21a-4

**0180** Using the RNase H truncation method it was determined that ligand 21a-4 requires the 5' but not the 3' fixed sequence (Table 14). When both the 5' and 3' fixed sequences were removed ligand 21a-4 did not bind TGFβ2.

**0181** The boundaries of ligand 21a-4 (FIG. 7) are at positions U 11 in the 5' fixed region and within positions 52-56 on the 3' end, defining a truncate that is between 42-46 bases long (Table 8). This is consistent with RNase H truncation results which show 21a-4 requires the 5' end but not the 3' end to bind TGFβ2.

**0182** By examining hypothetical structures, the boundaries for 21a-4 were predicted to occur at position G12 at the 5' end and position C48 at the 3' end. These positions agree well with the region defined by the boundary method. A 37 base long truncate of 21a-4 (excluding sequences required to initiate transcription), beginning at position 12 and ending at position 48 [(21a-4 (ML-110); Table 14)], bound as well to TGFβ2 as the full length 21a-4 ligand.

**0183** One sequence that removes 4 additional bases from the 3' end of 21a-4 (ML-11) was made that is called 21a-4 (ML-11). The binding of 21a-4 (ML-11) was reduced 30-fold compared to 21a-4 (ML-110). Also, three internal deletions of 21a-4 (ML-1) 10 were made [21a-4 (ML-92, ML-108, and ML-109)]. None of these bound well to
TGFβ2 (Table 14). A sequence [21a-4(ML-91)] that added 2 bases to the 3′-end of 21a-4(ML111) did not have any improved binding compared to 21a-4(ML110). Thus, the smallest truncate of ligand 21a-4 identified, that retains binding, is 42 bases long.

[0184] Truncation of Ligand 21a-21

[0185] Using the RNase H truncation method it was concluded that ligand 21a-21 requires the 3′ but not the 5′ fixed sequence (Table 11). However, when both the 5′ and 3′ fixed sequences were removed, ligand 21a-21 bound TGFβ2. This seems paradoxical since removal of the 3′ end alone eliminates binding. However, the data can be interpreted to mean that the 3′ deletion folds in a structure that does not bind to TGFβ2, while the truncate that lacks both ends does not fold into a dead end structure. Indeed Mfold structure predictions indicate this may be the case.

[0186] The boundaries of ligand 21a-21 (FIG. 7) are at position G21 on the 5′ end and within positions 50-55 on the 3′ end, defining a truncate that is 30-35 bases long. The results are consistent with RNase H truncation data which shows that 21a-21 requires neither the 5′ nor the 3′ end to bind TGFβ2. The truncate identified by boundaries falls completely within that defined by RNase H truncation.

[0187] Synthetic sequences based on putative structures were also tested as summarized in Table 11. Results from these experiments are in agreement with the RNase H and conventional boundary experiments.

[0188] Several additional end truncates and internal deletions of 21a-21(ML-95) were made (Table 11). The 9 end truncates included 21a-21(ML-96), 21a-21(ML-97), 21a-21(ML-103) 21a-21(ML-104) 21a-21(ML-105), NX22826, NX22831, NX22832, and NX22833. Of these only NX22831, which removes one base at the 5′ end, binds as well as 21a-21(ML-95). Internal deletions included 21a-21(ML-99), 21a-21(ML-101), 21a-21(ML-102), 21a-21(ML-114), 21a-21(ML-115), 21a-21(ML-116), 21a-21(ML-118), 21a-21(ML-120), 21a-21(ML-122), 21a-21(ML-128), 21a-21(ML-132), 21a-21(ML-134), 21a-21(ML-136), and 21a-21(ML-138). Of these 14 internal deletions, only 21a-21(ML-130) bound about as well as 21a-21(ML-95).

[0189] Three sequences [21a-21(ML-94), NX22823, and NX22825], were made that are longer than 21a-21(ML-95). Of these only NX22825 may have bound (marginally) better than 21a-21(ML-95). Thus, the shortest ligand identified that binds TGFβ2 is the 34-mer NX22824.

[0190] NX22823 and NX22824, which are synthetic analogs of the transcribed ligands 21a-21(ML-94) and 21a-21(ML-95), respectively, bound with identical affinity to TGFβ2 (Table 11). The synthetic nucleic acids also have the same inhibitory bioactivity as their transcribed analogs; on the other hand, the short, 30-base long NX22826 and its transcribed analog 21a-21(ML-96) do not bind TGFβ2 and they do not inhibit TGFβ2 bioactivity. Therefore synthetic nucleic acids have the same properties as their transcribed counterparts.

[0191] To summarize, truncated 14i-1, 21a-4, and 21a-21 ligands were identified that bind TGFβ2 as well as the full length ligands and are 38, 37, and 38 bases long, respectively. Twenty four sequences were made in an attempt to shorten the NX22824 truncated ligand (8 single base deletions and 16 multiple base deletions). Only 2 of them, (21a-21(ML-130) and NX22301, bind to TGFβ2. Therefore it appears that the sequence and spacing of structural elements in NX22824 must be maintained for binding to occur.

[0192] Competition Between Ligands for Binding TGFβ2

[0193] Examination of the ability of different ligands to compete with each other for binding to a protein can indicate whether the ligands bind in a similar (or overlapping) or distinctly different regions on the protein.

[0194] The ability of NX22823, a truncate of ligand 21a-21 (Table 14), to compete with 4 ligands (14i-1, 21a-4, 21a-21, and NX22823) was tested. The results were that NX22823 competed best with itself, then with 21a-21, 21a-4, and 14i-1, in decreasing effectiveness. Thus, the ability of NX22823 to compete correlates with how related its sequence is to the sequence of the test ligand. NX22823 is most closely related to itself and competes best with itself. NX22823 is a truncate of 21a-21, and competes with 21a-21 second best. The sequence of 21a-4 may be distantly related to 21a-21 and NX22823 competes with 21a-4 third best. The sequence of ligand 14i-1 is not related to NX22823, and NX22823 is least capable of competing with 14i-1.

[0195] The concentration range of NX22823 required to inhibit 50% of the binding of the other ligands was 10-fold. Since these differences in the amount of NX22823 it took to compete off the other ligands can be attributed to differences in their affinity there is probably only one type of binding region for these ligands on TGFβ2. However, there may be one or more similar sites per homodimer of TGFβ2. If there were two distinct types of nucleic acid binding sites on TGFβ2 (as is the case for the HIV-1 gag protein; Lochrie et al. (1997) Nucleic Acids Res. 25:2902-2910) it should take >1000 times as much competitor (i.e., the difference between the Kd of round 0 nucleic acid and the Kd of NX22823) to compete off a ligand binding at a second distinct site, because presumably a ligand that has high affinity at one site would have low affinity for a distinct site. This was not observed.

[0196] Off-Rate of NX22823

[0197] The half-life for NX22823-TGFβ2 complex was measured in 2 experiments to be 0.5 or 3 minutes. Almost all of the ligand dissociated from TGFβ2 in 60-75 minutes. Although these times may seem short, they are typical of in vitro off-rate measurements for nucleic acid ligands that have been isolated by filter partitioning SELEX.

**Example 3**

**Nucleic Acid Ligands Isolated by the SELEX Method using a Biased Round 0 Library**

[0198] A biased SELEX is one in which the sequences in a nucleic acid pool are altered to bias the result toward a certain outcome. The primary goals of a “biased” SELEX are to obtain ligands that have a higher affinity and to determine what the putative secondary structure of a ligand may be. The starting, round 0 nucleic acid library (called 3N7-21a-21) used for the TGFβ2 biased SELEX had the same 5′ and 3′ fixed regions (5′N7 and 3′N7) as the prior TGFβ2 SELEX (Table 1). It was made as a 2′-F pyrimidine, 2′-OH purine nucleic acid. However, as described in the
“Materials and Methods” section, the random region was 34 bases long. Within the randomized region 62.5% of the nucleotides at each position correspond to the NX22284 sequence. The remaining 37.5% correspond to the other three nucleotides. Thus each position is mutated and the sequence of the pool is biased toward the NX22284 sequence. Selection for ligands that bind to TGFβ2 using such a pool should allow variants of NX22284 to be isolated, some of which may not have been present in the original 30N7 round 0 pool.

[0199] The bulk Kd of the round 0 34N7.21a-21 pool was about 870 nM (Table 15) using protein-excess binding conditions. This is at least 10-fold better than for the unbiased round 0 40N7 pool, as would be expected. This round 0 nucleic acid pool also bound under nucleic acid-excess conditions in small scale SELEX type reactions, although poorer than in protein-excess reactions, as would be expected. The progress of the biased SELEX is shown in Table 15.

[0200] The conditions used in the biased SELEX and the results are shown in Table 15. A total of 9 rounds were done. Attempts were made to obtain higher affinity ligands by using competitors, starting at round 4. Both yeast tRNA (low affinity) and NX22284 (high affinity) were used as competitors. Both are nonamplifiable by the PCR step of SELEX. The “A” series was done without competitors while the “B” series was done with competitors.

[0201] The binding of the nucleic acid pools to TGFβ2 was measured for rounds 0 to 8 (Table 15) and found to improve from ~870 nM for the round 0 nucleic acid library to ~1 nM for the round 5a nucleic acid pool. Competition seemed to have little consistent effect on affinity improvement in this SELEX experiment. Probably competition should have been initiated with NX22284 at round 1. Peak improvement in the pool affinity plateaued in rounds 5, 6 and 7, and 8. Therefore round 5a, the earliest round with the best affinity, was subcloned and sequenced.

[0202] Sequences of TGFβ2 Nucleic Acid Ligands Obtained from a Biased SELEX.

[0203] As shown in Table 16, 25 unique sequences were obtained. One to nine changes from the starting sequence were found. All of the clones were 34 bases long within the selected sequence, consistent with studies (see “truncation of ligand 21a-21” above) where it was difficult to delete any internal bases.

[0204] Covariance between pairs of positions was analyzed by eye and by using the consensus structure matrix program (Davis et al. (1995) Nucleic Acids Research 23:4471-4479). Covariance was observed between different areas implying the existence of 2 stems in the structure. The pattern of covariance suggests the structural model shown in FIG. 8 or a similar variant of that structure (e.g., some base pairing could occur within the loop). This predicted structure is the third most stable structure predicted by the Mfold program (Zuker (1989) Science 244:44-52). A curious example of possible covariance is observed at positions 15 and 25 in the loop region. A15 and G25 were observed to covary to C15 and U25 in 2 clones (#18 and #29). Ligand 21a-4 also has the C/U combination at the bottom of its putative loop.

[0205] Of 34 bases, 11 are “invariant” among these 25 clones (Table 16). All of the invariant positions are predicted to occur in the loop and bulge regions except C34, the last nucleotide. The last base of all 3 truncated TGFβ2 ligands (FIG. 8) is a C. Removal of this C results in loss of binding. If invariant positions indicate regions where TGFβ2 binds the NX22284 ligand, then binding may occur primarily in the bulge and stem loop regions. The stems may be base paired, but can vary in sequence implying that the structure of the stems may be more important than their sequence. The stem may be a structure used to present the bulge, loop and C34 nucleotides in the proper orientation to bind TGFβ2.

[0206] Clone 5a-11 from the biased SELEX is similar to clone 21a-4 from the primary SELEX, particularly at positions that are invariant in clones from the biased SELEX, thus reinforcing the new structural model and the importance of the invariant positions. It has not been possible to fit ligand 14i-1 into a similar structure. Perhaps it represents a second sequence motif capable of binding TGFβ2.

[0207] Binding of Nucleic Acid Ligands Isolated from the Biased SELEX.

[0208] The binding of clones from the biased SELEX was compared to the binding of full length ligand 21a-21. The majority of the clones bound as well to TGFβ2 as 21a-21 (Table 16). One clone (#20) bound about 6-fold worse and one clone (#13) bound about 5-fold better than full length ligand 21a-21. The average Kd of the clones (weighting clones found more than once) is 1.2 nM, which agrees with the round 5a pool Kd of ~1 nM. Thus the ligands that were isolated in this manner were not vastly different in affinity from the starting sequence.

[0209] One would expect there to be an optimal number of changes that results in higher affinity ligands. Clones with only a few changes might be expected to bind about the same as the starting sequence, clones with a threshold number of changes may bind better, and clones with too many changes may bind worse. Indeed there may be a correlation between the number of changes and the affinity. Clones with 1 to 4 changes tend to bind the same or worse than ligand 21a-21. Clones with 5-8 changes tend to bind better than ligand 21a-21. The worst binder (#20) was the one with the most changes (9). The ligand that bound to TGFβ2 the best (clone #13) had 7 changes relative to the starting sequence.

[0210] When the clones that bound better and those that bound worse are aligned (Table 17) it appears that an A at position 5 may be important for higher affinity binding since the ligands that bind to TGFβ2 best all have an A at position 5 and all clones with an A at position 5 bind at least as well as 21a-21. In contrast clones with a U, C or G at position 5 tend to bind worse than 21a-21. With regard to the pattern of base pair changes in the putative stems there is no single change that correlates with better binding. In addition, the better binders do not consistently have GC-rich stems. However the pattern of changes in the stems of the poor binders does not overlap with that seen in the stems of the better binders. Thus, various stem sequences may result in better binding for subtle reasons.

[0211] A point mutant that eliminated binding of the full length 21a-21 transcript (21a-21 (ML-107); Table 11) changes U at position 6 to G. A G was found at position 6 in three clones from the biased SELEX (#4, 9 and 35), one of which (clone #4) has only one other base change while the
others had additional changes. All three clones from the biased SELEX that have a G at position 6 bind TGFβ2. Thus it would seem that the U6G change alone eliminates binding, but this binding defect can be reversed when combined with other sequence changes.

To summarize, some changes (such as A at position 5) may act independently and be able to confer better binding alone, while others changes (e.g. at position 6 and in the stems) may influence binding in a more unpredictable way that depends on what other changes are also present.

Presumably sequences that lack an “invariant” nucleotide would not bind to TGFβ2. Some of the invariant bases have been deleted and others have been changed (Table 1). None of these 10 altered sequences [21a-4 (ML-111); 21a-21 (ML-196, 97, 101, 102, 103, 104, 105, 120, NX22286] bind to TGFβ2.

Example 4

Substitutions of 2'-OH Purines with 2'-OCH₃ Purines in NX22284

Substitutions of 2'-OH purines with 2'-OCH₃ purines sometimes result in nucleic acid ligands that have a longer half-life in serum and in animals. Since the nucleic acid ligands described here are ultimately intended for use as diagnostics, therapeutics, imaging or histochemical reagents the maximum number of 2'-OH purines that could be substituted with 2'-OCH₃ purines in ligand NX22284 was determined. NX22284 is a 34-mer truncate of the 70 base long 21a-21 TGFβ2 ligand (Table 18). NX22284 has 17 2'-OH purines and binds about 2-fold worse than ligand 21a-21.

Initially an all 2'-OCH₃ purine substituted sequence was synthesized (NX22304). Another sequence has all 2'-OH purines substituted with 2'-OCH₃ purines except six purines at its 5' end. Neither bound to TGFβ2 or had measurable bioactivity (Table 18).

Therefore a set of sequences was synthesized (NX22356-NX22360; Table 18) such that groups of 3 or 4 2'-OH purines were substituted with 2'-OCH₃ purines. The binding of NX22357 was reduced about 2-fold and the bioactivity was reduced 10-fold. The binding and bioactivity of NX22356, NX22285 and NX22360 were unaffected. In contrast the binding of NX22356 was reduced over 100-fold and its bioactivity was reduced over 30-fold. Therefore the sequence of NX22359 was “deconvoluted” one base at a time in order to determine which individual purines in NX22359 cannot be 2'-OCH₃ purines. NX22374, NX22375 and NX22376 are deconvolutions of NX22359. All three of these sequences had greatly reduced binding and bioactivity. This suggests that G20, A22, and A24 cannot be 2'-OCH₃ purines.

NX22377 was designed to determine if a sequence with an intermediate number of 2'-OCH₃ purines could bind TGFβ2 and retain bioactivity. NX22377 has 10 2'-OCH₃ purines out of 17 (representing the 2'-OCH₃ purines in NX22356, NX22357 and NX22360). The binding and bioactivity of NX22377 are identical to NX22284.

NX22417 was designed to test the possibility that G20, A22 and A24 must be 2'-OH purines in order to retain binding and bioactivity. In NX22417 G20, A22 and A24 are 2'-OH purines while the other 14 purines are 2'-OCH₃. NX22417 binds to TGFβ2 as well as NX22284, but its bioactivity is reduced about 10 fold. Since substitution of G20 (NX22374) or A24 (NX22376) alone had a less severe effect than substitution of A22 (NX22375), nucleic acids were synthesized that had all 2'-OCH₃ purines except position A22 (see NX22384) or G20 and A22 (see NX22383). NX22383 and NX22384 did not bind or inhibit TGFβ2, again suggesting that at least 3 purines at positions 20, 22 and 24 must be 2'OH to retain binding and bioactivity.

NX22384 was analyzed by mass spectroscopy to ensure its lack of binding and inhibitory activity was not due to incomplete deprotection or an incorrect sequence. The results are that NX22384 may be 0.5-0.9 daltons more than the predicted molecular weight and therefore is very likely to be what it should be.

Since NX22357 bound to TGFβ2 slightly worse than NX22284, but had a 10-fold reduced bioactivity, it was possible that one or more of the three 2'-OCH₃ purines in NX22357 (G5, A8, A11) may also be required for bioactivity. This notion was tested by synthesizing NX22420 and NX22421. NX22421 has all three of these bases (G5, A8 and A11) as 2'-OH purines (along with G20, A22 and A24, which require 2'-OH groups). NX22420 has A8 (along with G20, A22 and A24) as 2'-OH purines. NX22421 has G5, A8, and A11 (along with G20, A22 and A24) as 2'-OH purines. A8 was retained as a 2'-OH purine in both NX22420 and NX22421 because it was invariant among the clones from the biased SELEX and therefore it was inferred that A8 might be less tolerant to change at the 2' ribose position (as was the case for G20, A22 and A24). Indeed both NX22420 and NX22421 had approximately the same binding and inhibitory activity as NX22284. In summary, the NX22284 sequence can retain maximal binding and inhibitory activity when four purines (A8, G20, A22 and A24) are 2'-OH and the other purines are 2'-OCH₃. Note that all four of these positions were invariant among the clones isolated using the biased SELEX method.

While studies were being done on substituting the 2'-OH purines of NX22284, two shorter versions of NX22284 (21a-21 [ML-130] and 21a-21 [ML-134]; Table 11) were dis that bound well to TGFβ2 as transcripts. The 2'-OCH₃ purine substitution pattern of NX22420 was transferred to these sequences. NX22426 is the 2'-OCH₃ purine analog of 21a-21 (ML-134) and NX22427 is the 2'-OCH₃ analog of 21a-21 (ML-130). NX22426 bound well to TGFβ2, but had 25-fold reduced bioactivity. NX22427 may have slightly better binding and inhibitory activity than NX22284.

In summary, the human TGFβ2 ligand isolated by using combined spot, spr and filter SELEX methods which have the best combination of affinity, short length, and inhibitory activity is NX22427, a 32-mer with 12 2'-OCH₃ purines out of a total of 16 purines.

Substitutions of 2'-OH Purines with 2'-OCH₃ Purines in NX22385

Some of the ligands that were isolated using the biased SELEX method (e.g., clone 13) bound better to TGFβ2.

To compare the properties of a truncated clone 13 to truncated 21a-21, NX22385 was synthesized. NX22385
(Table 19) is a 34 base long, 2'-F pyrimidine, 2'-OH purine version of biased SELEX clone #13. It binds about 2.5-fold better than NX22284, the corresponding 34 base long truncate of 21a-21, but its inhibitory activity is about 4-fold worse.

For reasons mentioned in the previous section it was of interest to determine if the properties of a truncated clone 13t when synthesized as a 2'-F pyrimidine, 2'-OCH$_3$ purine nucleic acid. Two 2'-OCH$_3$ purine versions of NX22385 (NX22424 and NX22425; Table 19) were synthesized based on the 2'-OCH$_3$ pattern of NX22420, a truncate of 21a-21. In both nucleic acids A8, G20, A22 and A24 were retained as 2'-OH purines, as in NX22420. In NX22424, the purines that are unique to clone 13 (A5, A6 and G12) are 2'-OH purines. In NX22425, those purines are 2'-OCH$_3$ purines. Analogous NX22424 and NX22425 were also synthesized in which A24 (NX22386) or G20 and A24 (NX22387) are 2'-OCH$_3$ purines. NX22386 and NX22387 were expected to serve as negative controls since 2'-OCH$_3$ G20 or A24 version of NX22284 were inactive. As expected NX22386 and NX22387 did not bind or inhibit TGF$eta$2. NX22424 and NX22425 bound to TGF$eta$2 as well as NX22284, but were reduced 100-fold in bioactivity (Table 19). Therefore, while other sequences that bind as well as NX22284 were isolated, no other sequence was identified that have better bioactivity.

Example 5
Pharmacokinetic Properties of NX22233

NX22233 is a 5'-polyethylene glycol-modified version of NX22284 (see Table 11; Fig. 9). The plasma concentrations of NX22232 were measured in rats over a 48 hour time period and are shown in Fig. 11 with the corresponding pharmacokinetic parameters in Tables 20 and 21. These data demonstrate biphasic clearance of NX22232 from plasma with an initial clearance half life ($\alpha$T$_{1/2}$) of 1 hour and a terminal clearance half life ($\beta$T$_{1/2}$) of 8 hours. The volume of distribution at steady state was approximately 140 mL/kg suggesting only minor distribution of the aptamer with the majority remaining in plasma and extracellular water. The clearance rate determined by compartmental analysis was 0.40 mL/(min*kg). This value was consistent with other aptamers with similar chemical composition (5'-PEG 40K, 3'-3'dT, 2'-F pyrimidine, 2'-OH purine nucleic acid). These data support daily administration of NX22232 for efficacy evaluation.

Example 6
2'-O-Methyl Modification of Lead Truncate Ligand CD70

TGFB1 nucleic acid ligands are disclosed in U.S. patent application Ser. No. 09/275,850, filed Mar. 24, 1999, entitled “Truncation SELEX Method,” which is incorporated herein by reference. A lead aptamer was generated by truncation SELEX by hybridization (see Table 11, Family 4, Ligand #70 in U.S. patent application Ser. No. 09/275,850), herein called CD70. CD70 derivative oligonucleotides were synthesized containing 2'-OMe modifications at various positions as summarized in Table 22 (SEQ ID NO:194-216). The results suggest that 13 out of 16 purines can be substituted with their 2'-OMe counterparts without any loss of activity. The molecule with the maximum 2'-OMe modifications (CD70-m13) is also bioactive (Table 22). Fig. 10 shows a putative structure of CD70-m13 and the positions of that require the presence of 2'-OH nucleotides. Of interest is the A position at the 3' end of the molecule which according to the proposed structure does not participate in a secondary structure. Deletion of this single stranded A affects somewhat the binding activity of the molecule but it completely eliminates its bioactivity (Table 22). The 2'-OH bases and the 3' final A are in close proximity in the proposed structure. This suggests a domain of the molecule responsible for target binding. Under these circumstances, it is expected that the loop shown at the top of the proposed structure (Fig. 10) may not be necessary for binding. This was confirmed by replacing such a loop with a PEG linker and showing that such modified molecules retain binding (Table 22). The PEG linker was conjugated to the aptamer as shown in U.S. patent application Ser. No. 08/991,743, filed Dec. 16, 1997, entitled “Platelet Derived Growth Factor (PDGF) Nucleic Acid Ligand Complexes,” which is hereby incorporated by reference in its entirety. The shortest binding aptamer identified from these experiments is CD70-m22, a 34-mer (including the PEG linker).

**TABLE 1**

<table>
<thead>
<tr>
<th>Sequences used during SELEX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all are shown in a 5' to 3' direction, and separated by a blank every 10 bases)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequences involved in SELEX process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P0; DNA template for round 0 of spot SELEX)</td>
</tr>
<tr>
<td>TGGGGCAGGT COTGTGNNN NNNSNNNNNN NNNSNNNNNN 50 (SEQ ID NO:1)</td>
</tr>
<tr>
<td>NNNNNNNNNCC ATCCCT GCCC C</td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT; N + 25% each of dA, dC, dG, or dT</td>
</tr>
<tr>
<td>(5'U7; primer used in PCR steps of SELEX)</td>
</tr>
<tr>
<td>TAAATAGGT CACCTAGGG AGGAGATGC GG</td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
</tr>
<tr>
<td>(3'U7; primer used in RT and PCR steps of SELEX)</td>
</tr>
<tr>
<td>TGGGGCAGGT COTGTG AGGAGATGC GG</td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
</tr>
</tbody>
</table>

<p>| (Transcription template for round 0 of spot SELEX) |</p>
<table>
<thead>
<tr>
<th>Sequence/Template/Template/control</th>
<th>Length</th>
<th>Ref</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTAACACGACTCACTATAGGGAGAGACATCCGCC-40N-CAGACGCACCCGCAGCC</td>
<td>80 bp</td>
<td>(SEQ ID NO:4)</td>
<td></td>
</tr>
<tr>
<td>ATTATGCAGTATCTCCATCCTGCG-60N-GTGTGCTGACGCCTGCGGGCT</td>
<td></td>
<td>(SEQ ID NO:5)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT; N = 25% each of dA, dC, dG, or dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RG 40N7; nucleic acid library for round 0 of SELEX)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGAGACCA UGCGNHNNN NHNNNHNNNH NHNNNHNNNH NHNNNHNNNNN 50</td>
<td></td>
<td>(SEQ ID NO:6)</td>
<td></td>
</tr>
<tr>
<td>NNNNCGACG GACUGCGCG A</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 2'-OH A; C = 2'-F C; G = 2'-OH G; N = 25% each of 2'-OH A, 2'-F C, 2'-OH G, and 2'-F U; U = 2'-F U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(34NT.21a-21 DNA template for round 0 of biased SELEX)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGAGACCA TGCGHNNNN NHNNNHNNNN NHNNNHNNNN NHNNNHNNNNN 50</td>
<td></td>
<td>(SEQ ID NO:7)</td>
<td></td>
</tr>
<tr>
<td>AGACAGCTCG CCCGA</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT; N = 62.5% NX22284 sequence as DNA and 12.5% of the other 4 nucleotides (dA, dC, dG, or dT) at each position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Transcription template for round 0 of biased SELEX)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTAACACGACTCACTATAGGGAGAGACATCCGCC-40N-CAGACGCACCCGCAGCC</td>
<td>82 bp</td>
<td>(SEQ ID NO:8)</td>
<td></td>
</tr>
<tr>
<td>ATTATGCAGTATCTCCATCCTGCG-60N-GTGTGCTGACGCCTGCGGGCT</td>
<td></td>
<td>(SEQ ID NO:9)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT; N = 62.5% NX22284 sequence as DNA and 12.5% of the other 4 nucleotides (dA, dC, dG, or dT) at each position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(34NT.21a-21 nucleic acid library for round 0, biased SELEX)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGAGACCA UGCGNHNNN NHNNNHNNNH NHNNNHNNNH NHNNNHNNNNN 50</td>
<td></td>
<td>(SEQ ID NO:10)</td>
<td></td>
</tr>
<tr>
<td>AGACAGACCG CCCGA</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A = 2'-OH A; C = 2'-F C; G = 2'-OH G; N = 62.5% NX22284 sequence and 12.5% of other 4 nucleotides (2'-OH A, 2'-F C, 2'-OH G, or 2'-F U) at each position; U = 2'-F U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequences used for subcloning, screening, sequencing ligand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ML-34; used for subcloning)</td>
<td>27</td>
<td>(SEQ ID NO:11)</td>
<td></td>
</tr>
<tr>
<td>GCGCAGGCC TATAAGCCT CACTATA</td>
<td></td>
<td>(ML-34)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ML-78; used for subcloning)</td>
<td>23</td>
<td>(SEQ ID NO:13)</td>
<td></td>
</tr>
<tr>
<td>GCGCAGGCC TCTACTCTY AGTCCGCGCA GTTCTCTG</td>
<td></td>
<td>(ML-78)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RSP1; vector-specific primer used to screen transformants for ligand inserts)</td>
<td>23</td>
<td>(SEQ ID NO:13)</td>
<td></td>
</tr>
<tr>
<td>ACGCGATAAC AATTCACAC AAG</td>
<td></td>
<td>(RSP1)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FSR2; vector-specific primer used to screen transformants for ligand inserts)</td>
<td>23</td>
<td>(SEQ ID NO:14)</td>
<td></td>
</tr>
<tr>
<td>GCGTCCGAG GCCTAAGT TGG</td>
<td></td>
<td>(FSR2)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RSP2; primer for sequencing ligands)</td>
<td>19</td>
<td>(SEQ ID NO:15)</td>
<td></td>
</tr>
<tr>
<td>ACTTTGATGC TGGGGCCTG</td>
<td></td>
<td>(RSP2)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequences used to detect specific ligands (ligand 141-1 specific primer; ML85)</td>
<td>19</td>
<td>(SEQ ID NO:16)</td>
<td></td>
</tr>
<tr>
<td>GGGAGACCA GACAGCGA</td>
<td></td>
<td>(ligand 141-1)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ligand 21a-4 specific primer; ML-79)</td>
<td>18</td>
<td>(SEQ ID NO:17)</td>
<td></td>
</tr>
<tr>
<td>GGGAGACCA GACAGCC</td>
<td></td>
<td>(ligand 21a-4)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ligand 21a-21 specific primer; ML-81)</td>
<td>18</td>
<td>(SEQ ID NO:18)</td>
<td></td>
</tr>
<tr>
<td>GGGAGCAGC CAATACAG</td>
<td></td>
<td>(ligand 21a-21)</td>
<td></td>
</tr>
<tr>
<td>A = dA; C = dC; G = dG; T = dT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1-continued

Sequences used during SELEX.
(all are shown in a 5' to 3' direction, and separated by a blank every 10 bases)

Sequences used for RNase H cleavage

(5'N7 cleave)

\[ \text{CGCGaucucu} \]  
\quad (SEQ ID NO:19)

(3'N7 cleave)

\[ \text{ucggg.cgagu} \]  
\quad (SEQ ID NO:20)

TABLE 2

Conditions and results of filter SELEX

<table>
<thead>
<tr>
<th>Round</th>
<th>RNA</th>
<th>nM</th>
<th>Protein</th>
<th>nM</th>
<th>DNA/protein</th>
<th>[Competitor]</th>
<th>% Bound</th>
<th>% Background</th>
<th>Bound/Background</th>
<th>Kd (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9b</td>
<td>1</td>
<td>100</td>
<td>0.01</td>
<td>100</td>
<td>1.0</td>
<td>1.1</td>
<td>4</td>
<td>100</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10b</td>
<td>1</td>
<td>30</td>
<td>0.03</td>
<td>100</td>
<td>1.0</td>
<td>0.13</td>
<td>33</td>
<td>100</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>30</td>
<td>0.03</td>
<td>100</td>
<td>1.0</td>
<td>0.2</td>
<td>8</td>
<td>75</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12b</td>
<td>0.2</td>
<td>20</td>
<td>0.01</td>
<td>200</td>
<td>2.2</td>
<td>0.8</td>
<td>7</td>
<td>40</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13a</td>
<td>0.4</td>
<td>10</td>
<td>0.04</td>
<td>10</td>
<td>2.6</td>
<td>0.16</td>
<td>16</td>
<td>30</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14b</td>
<td>0.1</td>
<td>10</td>
<td>0.01</td>
<td>10</td>
<td>14.5</td>
<td>0.55</td>
<td>20</td>
<td>75</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15b</td>
<td>10</td>
<td>10</td>
<td>1.0</td>
<td>10</td>
<td>8.8</td>
<td>2.2</td>
<td>4</td>
<td>30</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16a</td>
<td>55</td>
<td>10</td>
<td>5.5</td>
<td>0</td>
<td>9.6</td>
<td>2.1</td>
<td>5</td>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17a</td>
<td>30</td>
<td>3</td>
<td>1.9</td>
<td>0</td>
<td>1.9</td>
<td>0.17</td>
<td>11</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18b</td>
<td>15</td>
<td>3</td>
<td>2.3</td>
<td>0</td>
<td>2.3</td>
<td>0.6</td>
<td>4</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19a</td>
<td>7</td>
<td>0.1</td>
<td>0.17</td>
<td>0</td>
<td>0.17</td>
<td>0.05</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20a</td>
<td>0.33</td>
<td>0.03</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.04</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21a</td>
<td>0.63</td>
<td>0.03</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
<td>0.1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22a</td>
<td>0.07</td>
<td>0.01</td>
<td>0.12</td>
<td>0</td>
<td>0.12</td>
<td>0.09</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

*Number designates the round of SELEX and letter designates the condition used for that round.

**NA, nucleic acid library

Only those rounds that were carried to the next round are shown.

TABLE 3

Conditions and results of Spot SELEX

<table>
<thead>
<tr>
<th>Rd</th>
<th>Protein</th>
<th>RNA</th>
<th>Washes</th>
<th>Signal</th>
<th>Noise</th>
<th>% Input Incubation</th>
<th>Pre-adsorb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*200</td>
<td>2000</td>
<td>2 (500/10)</td>
<td>4.90</td>
<td>ND</td>
<td>4 hours, 20° C.</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>*200</td>
<td>1500</td>
<td>2 (1000/10)</td>
<td>1.80</td>
<td>ND</td>
<td>0.5 hours, 37° C.</td>
<td>5 layers, 0.75 hrs</td>
</tr>
<tr>
<td>3</td>
<td>*200</td>
<td>1500</td>
<td>2 (1000/10)</td>
<td>5.50</td>
<td>ND</td>
<td>1 hour, 37° C.</td>
<td>5 layers, 1 hr</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>1000</td>
<td>2 (1000/10)</td>
<td>11.20</td>
<td>0.18</td>
<td>1 hour, 37° C.</td>
<td>5 layers, 2.5 hrs</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>1000</td>
<td>2 (1000/10)</td>
<td>3.70</td>
<td>0.06</td>
<td>1 hour, 37° C.</td>
<td>5 layers, 2.5 hrs</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>1000</td>
<td>2 (1000/10)</td>
<td>1.58</td>
<td>0.03</td>
<td>1 hour, 37° C.</td>
<td>5 layers, 2.5 hrs</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>100</td>
<td>2 (1000/10)</td>
<td>26.00</td>
<td>1.30</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 0.75 hrs</td>
</tr>
<tr>
<td>8</td>
<td>*22</td>
<td>100</td>
<td>2 (1000/20)</td>
<td>11.00</td>
<td>0.56</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 0.75 hrs</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>100</td>
<td>2 (1000/20)</td>
<td>2.70</td>
<td>0.10</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 0.75 hrs</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>50</td>
<td>2 (1000/20)</td>
<td>20.70</td>
<td>1.00</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 1.5 hrs</td>
</tr>
<tr>
<td>11</td>
<td>*7.3</td>
<td>50</td>
<td>2 (1000/20)</td>
<td>4.00</td>
<td>0.20</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 0.75 hrs</td>
</tr>
<tr>
<td>12</td>
<td>2.4</td>
<td>50</td>
<td>2 (1000/20)</td>
<td>1.20</td>
<td>0.06</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 0.75 hrs</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>3</td>
<td>3 (1000/50)</td>
<td>24.00</td>
<td>1.30</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 1.5 hrs</td>
</tr>
<tr>
<td>14</td>
<td>*7.3</td>
<td>3</td>
<td>3 (1000/50)</td>
<td>7.50</td>
<td>0.40</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 1.5 hrs</td>
</tr>
<tr>
<td>15</td>
<td>2.4</td>
<td>3</td>
<td>2 (1000/60)</td>
<td>8.50</td>
<td>0.04</td>
<td>0.75 hour, 37° C.</td>
<td>10 layers, 1.5 hrs</td>
</tr>
<tr>
<td>16</td>
<td>0.7</td>
<td>3</td>
<td>2 (1000/60)</td>
<td>3.00</td>
<td>ND</td>
<td>0.75 hour, 37° C.</td>
<td>10 layers, 1.5 hrs</td>
</tr>
<tr>
<td>17</td>
<td>*7.3</td>
<td>3</td>
<td>1 (1000/20)</td>
<td>87.00</td>
<td>0.23</td>
<td>1 hour, 37° C.</td>
<td>10 layers, 1.5 hrs</td>
</tr>
</tbody>
</table>
### TABLE 3-continued

<table>
<thead>
<tr>
<th>Protein Rd</th>
<th>RNA Washes&lt;sup&gt;1&lt;/sup&gt;</th>
<th>Signal/Noise</th>
<th>% Input</th>
<th>Incubation</th>
<th>Pre-adsorb&lt;sup&gt;2&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd (pmoles)</td>
<td>(pmoles)</td>
<td>(μl/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>1</td>
<td>2 (1000/20)</td>
<td>4.00</td>
<td>0.01</td>
<td>1 hr, 37° C.</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>2 (1000/20)</td>
<td>2.50</td>
<td>0.006</td>
<td>1 hr, 37° C.</td>
</tr>
<tr>
<td>10</td>
<td>&lt;1 (no tRNA)</td>
<td>2 (1000/20)</td>
<td>13.70</td>
<td>ND</td>
<td>0.5 hr, 37° C.</td>
</tr>
<tr>
<td>7.3</td>
<td>&lt;1 (10&lt;sup&gt;3&lt;/sup&gt; tRNA)&lt;sup&gt;1&lt;/sup&gt;</td>
<td>2 (1000/20)</td>
<td>10.50</td>
<td>ND</td>
<td>0.5 hr, 37° C.</td>
</tr>
<tr>
<td>7.3</td>
<td>&lt;1 (10&lt;sup&gt;3&lt;/sup&gt; tRNA)</td>
<td>2 (1000/20)</td>
<td>5.00</td>
<td>ND</td>
<td>0.5 hr, 37° C.</td>
</tr>
<tr>
<td>7.3</td>
<td>&lt;1 (10&lt;sup&gt;3&lt;/sup&gt; tRNA)</td>
<td>2 (1000/20)</td>
<td>1.80</td>
<td>ND</td>
<td>0.5 hr, 37° C.</td>
</tr>
</tbody>
</table>

<sup>1</sup>pool carried to next round

<sup>2</sup>Number of washes, volumes and duration

<sup>3</sup>Number of filters and duration of incubation during the background counterselection step

<sup>4</sup>ND, not determined

<sup>5</sup>Fold excess tRNA over the aptamer pool

---

### TABLE 4

Conditions and results surface plasmon resonance biosensor (spr) SELEX Progress of BIA SELEX with TGFB2

<table>
<thead>
<tr>
<th>TGFβ2, RU&lt;sup&gt;1&lt;/sup&gt;</th>
<th>[RNA]</th>
<th>Injections</th>
<th>Fractions</th>
<th>Fraction</th>
<th>RU after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd</td>
<td>FC1</td>
<td>FC2</td>
<td>FC3</td>
<td>FC4</td>
<td>μM&lt;sup&gt;2&lt;/sup&gt;</td>
</tr>
<tr>
<td>2</td>
<td>2023</td>
<td>874</td>
<td>294</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1776</td>
<td>1178</td>
<td>1181</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>3010</td>
<td>2037</td>
<td>1767</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5520</td>
<td>5334</td>
<td>4265</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4075</td>
<td>3143</td>
<td>298</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3773</td>
<td>2616</td>
<td>2364</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2574</td>
<td>1842</td>
<td>1461</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3180</td>
<td>2029</td>
<td>1688</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>344</td>
<td>718</td>
<td>1692</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>217</td>
<td>675</td>
<td>386</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

<sup>1</sup>Amount of TGFβ2 immobilized expressed in resonance units where 1RU corresponds to 1 pg of protein per mm². The protein is immobilized in an area of 1.2 mm²

<sup>2</sup>Concentration of RNA pools

<sup>3</sup>Number of injections and volume of each injection

<sup>4</sup>Number and length in min (in parentheses) of each fraction

<sup>5</sup>Fractions carried to the next round

<sup>6</sup>Amount of DNA chelated after SDS treatment expressed in response units FC1, FC2, FC3, and FC4 designate the four flowcells of the BIA chip.

---

### TABLE 5

Sequences isolated from round 8 of surface plasmon resonance SELEX.

<table>
<thead>
<tr>
<th>NAME&lt;sup&gt;1&lt;/sup&gt;</th>
<th>SEQ ID NO.</th>
<th>SEQUENCE&lt;sup&gt;2&lt;/sup&gt;</th>
<th>BINDING&lt;sup&gt;3&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>(1)</td>
<td>21</td>
<td>GGGAGGACGGRUGCCG UCCUCAAG-AUCUU- - - - - - - - - UCCUGUUUAUGCUCCC</td>
</tr>
<tr>
<td>8.2</td>
<td>(1)</td>
<td>22</td>
<td>GGGAGGACGGRUGCCG AGAAUACGUGUUAGUAAAUUUCCUGUUUGCAGAACUGG该公司</td>
</tr>
<tr>
<td>8.3</td>
<td>(14)</td>
<td>23</td>
<td>GGGAGGACGGRUGCCG AGAAUACGUGUUAGUAAAUUUCCUGUUUGCAGAACUGG该公司</td>
</tr>
<tr>
<td>8.4</td>
<td>(1)</td>
<td>24</td>
<td>GGGAGGACGGRUGCCG UCCUCAAG-AUCUU-AUCUU- - - - - - - - - CAGAACUGG该公司</td>
</tr>
<tr>
<td>8.5</td>
<td>(1)</td>
<td>25</td>
<td>GGGAGGACGGRUGCCG --AAACCAAAAGCCGACATCCUAACUCACUGCCUCGCCC</td>
</tr>
<tr>
<td>8.6</td>
<td>(1)</td>
<td>26</td>
<td>GGGAGGACGGRUGCCG AGAAUACGUGUUAGUAAAUUUCCUGUUUGCAGAACUGG该公司</td>
</tr>
<tr>
<td>8.7</td>
<td>(4)</td>
<td>27</td>
<td>GGGAGGACGGRUGCCG AGAAUACGUGUUAGUAAAUUUCCUGUUUGCAGAACUGG该公司</td>
</tr>
<tr>
<td>NAME</td>
<td>SEQ ID NO.</td>
<td>SEQUENCE</td>
<td>BINDING</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>8.11</td>
<td>(1) 28</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.12</td>
<td>(1) 29</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.13</td>
<td>(1) 30</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.15</td>
<td>(2) 31</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.18</td>
<td>(1) 32</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.20</td>
<td>(1) 33</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.21</td>
<td>(1) 34</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.22</td>
<td>(1) 35</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.23</td>
<td>(1) 36</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.24</td>
<td>(1) 37</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.25</td>
<td>(1) 38</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.26</td>
<td>(1) 39</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.28</td>
<td>(1) 40</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.29</td>
<td>(1) 41</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.31</td>
<td>(1) 42</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.33</td>
<td>(1) 43</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.34</td>
<td>(1) 44</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.35</td>
<td>(1) 45</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.36</td>
<td>(1) 46</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.38</td>
<td>(1) 47</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.39</td>
<td>(1) 48</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.40</td>
<td>(1) 49</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.41</td>
<td>(1) 50</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.45</td>
<td>(1) 51</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.46</td>
<td>(1) 52</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.47</td>
<td>(1) 53</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.48</td>
<td>(2) 54</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.49</td>
<td>(1) 55</td>
<td>GGGAGGACGAGCGGC</td>
<td>NONE</td>
</tr>
<tr>
<td>8.51</td>
<td>(1) 56</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.52</td>
<td>(1) 57</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.56</td>
<td>(1) 58</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.57</td>
<td>(1) 59</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.61</td>
<td>(1) 60</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.62</td>
<td>(1) 61</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.64</td>
<td>(1) 62</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
<tr>
<td>8.65</td>
<td>(1) 63</td>
<td>GGGAGGACGAGCGGC</td>
<td>FILTER</td>
</tr>
</tbody>
</table>
### TABLE 5-continued

**Sequences isolated from round 8 of surface plasmon resonance SELEX.**

<table>
<thead>
<tr>
<th>NAME.a</th>
<th>SEQ ID NO.</th>
<th>SEQUENCE.b</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.69 (1) 64</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.69 (1) 64</td>
</tr>
<tr>
<td>8.71 (1) 65</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.71 (1) 65</td>
</tr>
<tr>
<td>8.72 (1) 66</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.72 (1) 66</td>
</tr>
<tr>
<td>8.74 (1) 67</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.74 (1) 67</td>
</tr>
<tr>
<td>8.75 (1) 68</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.75 (1) 68</td>
</tr>
<tr>
<td>8.76 (1) 69</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.76 (1) 69</td>
</tr>
<tr>
<td>8.79 (1) 70</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.79 (1) 70</td>
</tr>
<tr>
<td>8.80 (1) 71</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td>8.80 (1) 71</td>
</tr>
</tbody>
</table>

*a Names are given in the form Round 8, clone number followed by the number of clones that sequence that were isolated in parentheses.

*b Gaps introduced to designate sequences with a different alignment than the sequence. An attempt was made to align such sequences with other sequences but the alignment is not necessarily optimal.

*c Underlined bases are those that differ from the ligand 14i-1 (Table 7). A = 2'OH; A2 = 2'-F; C = 2'OH; G = 2'-OH; U = 2'-F U.

**FILTER, filter-binding sequence; NONE, no binding to TGFB2 or filters, TGFB2, binds to TGFB2 as well as ligand 14i-1.**

### TABLE 6

**Conditions and results of resonant mirror (rm) optical biosensor SELEX.**

<table>
<thead>
<tr>
<th>Trajectory</th>
<th>GIME</th>
<th>AREAS</th>
<th>RNA</th>
<th>Vol</th>
<th>Binding</th>
<th>Disso-</th>
</tr>
</thead>
</table>
| TGFB2, Aresc1 | [RNA] | C1 | C2 | µM | µL2 | (min)- | (min)- | Elution-
| RD | C1 | C2 | µM | µL2 | (min) | (min) | Elution |
| 10 | 1777 | 0 | 1 | 50 | 27 | 29 | water |
| 11 | 1777 | 0 | 10 | 50 | 30 | 60 | water |
| 12 | 1777 | 0 | 10 | 50 | 60 | 150 | water |

*a Amount of TGFB2 immobilized expressed in Aresec where 1 Aresec is 5 pg/mm² protein. The protein is immobilized in an area of 4 mm² in cell 1 (C1).

*b Concentration of RNA solution used.

*c Length of binding phase in min.

*d Length of dissociation phase in min.

*e Elution used.

### TABLE 7

**Sequences isolated from round 13 of resonant mirror SELEX.**

<table>
<thead>
<tr>
<th>NAME.a</th>
<th>SEQ ID NO.</th>
<th>SEQUENCE.b</th>
</tr>
</thead>
<tbody>
<tr>
<td>14i-1</td>
<td>72</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
</tr>
<tr>
<td>13.20 (1) 73</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.22 (2) 74</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.24 (2) 75</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.30 (1) 76</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.32 (1) 77</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.34 (1) 78</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.36 (2) 79</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
<tr>
<td>13.40 (1) 80</td>
<td>GGGAGGACGAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG CAGACGCAUCGCGG</td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 7-continued

| SEQ ID | NAME* | NO. | SEQUENCE$|^2|  
|--------|-------|-----|----------------|
| 13.42 (1) | 81 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG |  
| 13.44 (1) | 82 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG |  
| 13.48 (1) | 83 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG |  
| 13.50 (1) | 84 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG |  
| 13.54 (1) | 85 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG |  

*Names are given in the form Round 13.clone number followed by the number of clones of that sequence that were isolated.

*Underlined bases are those that differ from ligand 14i-1 from the filter SELEX. The sequence of 14i-1 is shown at the top for comparison. A=2'−OH; C=2'−F; G=2'−OH; U=2'−F U.

### TABLE 8

| NAME* | SEQ ID | NO. | SEQUENCE$|^2| Kd (nM) | KI (nM) |
|-------|-------|-----|----------------|--------|---------|
| 14i-1 | 72 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG | 10 | 230 |
| 21a-6 | 86 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG | 3 | 30 |
| 21a-21 | 87 | GGGAGGACGAUCUGCG AGGAACGAGUAAUGAAUUGAGAGGGGGUUGCG | 1 | 10 |

*Names are in the form: round sequence was isolated-clone number.

*Boundaries are underlined. Fixed regions are in bold-faced type. Selected sequences are in plain type. A=2'−OH; C=2'−F; G=2'−OH; U=2'−F U

### TABLE 9-continued

<table>
<thead>
<tr>
<th>Number of sequences isolated using the SELEX process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEX round</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>14i-1 variants</td>
</tr>
<tr>
<td>21a-4 variants</td>
</tr>
<tr>
<td>21a-21</td>
</tr>
</tbody>
</table>

### TABLE 9

<table>
<thead>
<tr>
<th>Number of sequences isolated using the SELEX process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEX round</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>21a-21 variants</td>
</tr>
<tr>
<td>unidentified</td>
</tr>
<tr>
<td>filter-binding</td>
</tr>
</tbody>
</table>

TOTAL | 69 | 15 | 102 | 15 | 15 | 48 | 264 |

### TABLE 10

<table>
<thead>
<tr>
<th>Characteristics of nucleic acid pools isolated using the SELEX method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round*</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>6-spr</td>
</tr>
<tr>
<td>8-spr</td>
</tr>
<tr>
<td>9-spr</td>
</tr>
<tr>
<td>9-rm</td>
</tr>
<tr>
<td>10-rm</td>
</tr>
<tr>
<td>11-rm</td>
</tr>
<tr>
<td>12-rm</td>
</tr>
</tbody>
</table>
TABLE 10-continued

Characteristics of nucleic acid pools isolated using the SELEX method.

<table>
<thead>
<tr>
<th>Round&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Sequence of pool&lt;sup&gt;b&lt;/sup&gt;</th>
<th>% of pool&lt;sup&gt;c&lt;/sup&gt;</th>
<th>% of transformants&lt;sup&gt;d&lt;/sup&gt;</th>
<th>% of clones&lt;sup&gt;e&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-rm</td>
<td>can read variants of ligand 14i-1 sequence</td>
<td>14i-1: 10-100</td>
<td>14i-1: 100</td>
<td></td>
</tr>
<tr>
<td>14i</td>
<td>21a-21: &lt;0.1</td>
<td>14i-1: 93</td>
<td>21a-21: 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21a-21: 0.2-0.5</td>
<td>21a-21: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other: 3</td>
<td>21a-21: 27</td>
<td></td>
</tr>
<tr>
<td>16a</td>
<td>21a-21: 3-100</td>
<td>21a-21: 20</td>
<td>21a-21: 47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other: 6</td>
<td>21a-21: 84</td>
<td></td>
</tr>
<tr>
<td>38b</td>
<td>21a-21: 3-100</td>
<td>21a-21: 90</td>
<td>21a-21: 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other: 1</td>
<td>21a-4: 10</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup>sp, from surface plasmon resonance biosensor SELEX; rm, from resonant mirror optical biosensor SELEX.

<sup>b</sup>Determined by primer extension of bulk nucleic acid pools with 3′N7 primer.

<sup>c</sup>Determined by RFLPCR of bulk nucleic acid pools with a ligand-specific primer.

<sup>d</sup>Determined by PCR of individual transformants with a ligand-specific primer.

<sup>e</sup>Determined by sequencing of clones. Includes sequence variants of ligands.

[0238]

TABLE 11

Truncates of human TGFβ1 nucleic acid ligand 21a-21.

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEQUENCE&lt;sup&gt;b&lt;/sup&gt;</th>
<th>SEQ ID NO</th>
<th>BINDING&lt;sup&gt;c&lt;/sup&gt;</th>
<th>LENGTH&lt;sup&gt;c&lt;/sup&gt;</th>
<th>BIOACTIVITY&lt;sup&gt;d&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>21a-21</td>
<td>GGAGGACCAUGCCGGUCAGGGGAGGUAUGACGACUCUGUAUCUCUCCAGGGACACUCGCCCGA</td>
<td>87</td>
<td>0.5</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>21a-21 (USG)</td>
<td>GGAGGACCAUGCCGGUCAGGGGAGGUAUGACGACUCUGUAUCUCUCCAGGGACACUCGCCCGA</td>
<td>88</td>
<td>250</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>21a-21Δ5′</td>
<td>GGUCAGGGAUGGUAAUGACGACUCUGUAUCUCUCCAGGGACACUCGCCCGA</td>
<td>89</td>
<td>0.5</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>21a-21Δ3′</td>
<td>GGAGGACCAUGCCGGUCAGGGGAGGUAUGACGACUCUGUAUCUCUCCAGGGACACUCGCCCGA</td>
<td>90</td>
<td>100</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>21a-21Δ5′, 3′</td>
<td>GGUCAGGGAUGGUAAUGACGACUCUGUAUCUCUCCAGGGACACUCGCCCGA</td>
<td>91</td>
<td>0.5</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>21a-21 (ML-94)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUAGCUACUCC</td>
<td>92</td>
<td>0.5</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-95)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUACUCC</td>
<td>93</td>
<td>1</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-96)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUAGCUUCUGUA</td>
<td>94</td>
<td>1000</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-97)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUAGCUACUCC</td>
<td>95</td>
<td>1000</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-99)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUAGCUACUCC</td>
<td>96</td>
<td>1000</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-101)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUAGCUACUCC</td>
<td>97</td>
<td>1000</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-102)</td>
<td>GGAGGUAUGGUACGACUCGUAGCUAGCUACUCC</td>
<td>98</td>
<td>1000</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>SEQUENCE*</td>
<td>SEQ ID NO:</td>
<td>BINDING$</td>
<td>LENGTH$</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-103)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUCAC</td>
<td>99</td>
<td>50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-104)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUCU</td>
<td>100</td>
<td>70</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-105)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUAC</td>
<td>101</td>
<td>1000</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-114)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUC</td>
<td>102</td>
<td>1000</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-115)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGU</td>
<td>103</td>
<td>1000</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-116)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>104</td>
<td>1000</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-118)</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUACCU</td>
<td>105</td>
<td>1000</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-120)</td>
<td>GGAGGUAUACAGA UCUGUAUACGUAUACGUACCU</td>
<td>106</td>
<td>1000</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-122)</td>
<td>GGAGGUAUACAGA ACUGUAUACGUAUACGUACCU</td>
<td>107</td>
<td>1000</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-128)</td>
<td>GGAGGUAUACAGA ACUGUAUACGUAUACGUACCU</td>
<td>108</td>
<td>1000</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-130)</td>
<td>GG GUUAAUAACAGAGUCUGUAUACGUAUACGUAC</td>
<td>109</td>
<td>2</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-132)</td>
<td>GGAGGUAUACGAGUACAGACCUCUGUAACGUAC</td>
<td>110</td>
<td>1000</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-134)</td>
<td>GGAGA UAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>111</td>
<td>10</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-136)</td>
<td>GG GUUAAUAACAGAGUCUGUAUACGUAUACGUACAC</td>
<td>112</td>
<td>10000</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21a-21 (ML-138)</td>
<td>GG GUUAAUAAGAGUCUGUAUACGUAC</td>
<td>113</td>
<td>10000</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>NX22283</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>114</td>
<td>0.6</td>
<td>36</td>
<td>0.5</td>
</tr>
<tr>
<td>NX22284</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>115</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22285</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>116</td>
<td>2</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>NX22286</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUA</td>
<td>117</td>
<td>130</td>
<td>30</td>
<td>&gt;20</td>
</tr>
<tr>
<td>NX22301</td>
<td>GGAGGUAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>118</td>
<td>1</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>NX22302</td>
<td>AGGUAAUAACAGAGUCUGUAUACGUAUACGUAC</td>
<td>119</td>
<td>100</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>NX22303</td>
<td>GG GUUAAUAACAGAGUCUGUAUACGUAUACGUAC</td>
<td>120</td>
<td>&gt;100</td>
<td>31</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22323</td>
<td>PEG-GGAGGUAUACAGAGUCUGUAUACGUAUACGUAC</td>
<td>121</td>
<td>nt</td>
<td>34</td>
<td>3</td>
</tr>
</tbody>
</table>

*The fixed regions are indicated by bold-faced letters. The point mutant in 21a-21 (UG0) is underlined and in bold type. A = 2'-OH A; C = 2'-F C; G = 2'-OH G; U = 2'-F U The italicized G at the 5' end of the 5' Rnase H cleavage products indicates that ~50% of the time cleavage leaves 2' G's and 50% of the time one 0 is left. The boundaries in 21a-21 are underlined

$Binding is expressed as the ratio of the Kd of ligand/Kd of NX22284. The Kd of NX22284 is ~2 nM.

$Length is given in bases.

$Bioactivity is expressed as the ratio of the Kc of ligand/Kc of NX22284. The Kc of NX22284 is ~10 nM.
### TABLE 12

ALIGNMENT OF HUMAN TRANSFORMING GROWTH FACTOR \( \beta \) AMINO ACID SEQUENCES

<table>
<thead>
<tr>
<th>Seq ID No.</th>
<th>AA</th>
<th>VQO</th>
<th>L</th>
<th>KR</th>
<th>N</th>
<th>A</th>
<th>A</th>
<th>S</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF( \beta )1</td>
<td>ALDTNYCFSE TEKCCVRQL YIDFRKDLGW KWIHEPKGYH ANFCGLPCPY IM6LD7QYSK 60</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF( \beta )2</td>
<td>ALQGAYCFSE VQDNCLNRLP YIDFRQDLGW KWIHEPKGYH ANFCAGACPY LM697QMRH 60</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF( \beta )2 specific</td>
<td>AA</td>
<td>VQO</td>
<td>L</td>
<td>KR</td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>TGF( \beta )1</td>
<td>VILALYNQHNP GASAAEPCCVQ QALELPVIV YVGRPPVVKQ LSNHMRVSCS 112</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF( \beta )2</td>
<td>VILNYHTNF EASAEPCCSSQ QALEPLTLY YLVGEPVVKQ LSNHMRVSCS 112</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF( \beta )3</td>
<td>VILNYHTNF EASAEPCCSSQ QALEPLTLY YLVGEPVVKQ LSNHMRVSCS 112</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF( \beta )2 specific</td>
<td>S</td>
<td>I</td>
<td>S</td>
<td>I</td>
<td>K</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### TABLE 13

TRUNCATES OF HUMAN TGF\( \beta \)2 NUCLEIC ACID LIGAND 141-1

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEQUENCE*</th>
<th>SEQ ID NO.</th>
<th>BINDING</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-1</td>
<td>gGGA( g )AGCGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>72</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>141-1A5</td>
<td>gGGA( g )AUCGCGAGA( g )AACGUCCUCCGCCGCA</td>
<td>128</td>
<td>&gt;100</td>
<td>56</td>
</tr>
<tr>
<td>141-1A3</td>
<td>gGGA( g )AGCGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>129</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>141-1A5,3</td>
<td>gGGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>130</td>
<td>&gt;100</td>
<td>42</td>
</tr>
<tr>
<td>141-1t5-41</td>
<td>gGGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>131</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>141-1t5-38</td>
<td>gGGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>132</td>
<td>&gt;100</td>
<td>35</td>
</tr>
<tr>
<td>141-1t5-35</td>
<td>gGGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>133</td>
<td>&gt;100</td>
<td>32</td>
</tr>
<tr>
<td>141-1 (ML-86)</td>
<td>gGGA( g )AGCGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>134</td>
<td>&gt;100</td>
<td>33</td>
</tr>
<tr>
<td>141-1 (ML-87)</td>
<td>gGGA( g )AGCGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>135</td>
<td>&gt;100</td>
<td>27</td>
</tr>
<tr>
<td>141-1 (ML-89)</td>
<td>gGGA( g )AGCGA( g )AUCGCGAGA( g )AACGUCGUU( g )GCGGA( g )ACGUCGCCGCA</td>
<td>136</td>
<td>&gt;100</td>
<td>20</td>
</tr>
</tbody>
</table>

*Lowercase letters indicate bases not found at that position in the full length ligand that were added or changed to maintain transcriptional efficiency. Boundaries are underlined. The fixed regions are in bold-faced type. The italicized G at the 5' end of the 5' RNase H cleavage products indicates that 50% of the time cleavage leaves 2 G's and 50% of the time one G is left. A = 2'-OH A; C = 2'-F C; G = 2'-OH G; U = 2'-F U.

*Binding is expressed as the ratio of \( K_d \) (ligand)/\( K_d \) (14i-1). The \( K_d \) of 14i-1 is ~10 nM.

*Length is in bases.

*Produced by RNase H digestion.
### TABLE 14

Truncates of human TGFB2 nucleic acid ligand 21a-4.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence(^a)</th>
<th>SEQ ID NO.</th>
<th>Binding(^b)</th>
<th>Length(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21a-4</td>
<td>GGAGGAGCGGUCGCCGUGGGUGAAGCUAGUAUACAGAUCUCCCGCAGAGACGCAGACUGGCAGGGCGA</td>
<td>86</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>21a-6A5(^d)</td>
<td>GGCGGCGGGUGGGUGAAGCUAGUAUACAGAUCUCCCGCAGAGACGCAGACUGGCAGGGCGA</td>
<td>137</td>
<td>&gt;100</td>
<td>56</td>
</tr>
<tr>
<td>21a-6A3(^d)</td>
<td>GGAGGAGCGGUCGCCGUGGGUGAAGCUAGUAUACAGAUCUCCCGCAGAGACGCAGACUGGCAGGGCGA</td>
<td>138</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>21a-6A5,3(^d)</td>
<td>GGCGGCGGGUGGGUGAAGCUAGUAUACAGAUCUCCCGCAGAGACGCAGACUGGCAGGGCGA</td>
<td>139</td>
<td>&gt;100</td>
<td>42</td>
</tr>
<tr>
<td>21a-4 (ML91)</td>
<td>ggGgGgGCGGCCGUGUGGAAGCUAGUAUACAGAUCGACCGUGU</td>
<td>140</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>21a-6 (ML92)</td>
<td>ggGgGgGCGGCCGUGUGGAAGCUAGUAUACAGAUCGACCGUGU</td>
<td>141</td>
<td>&gt;100</td>
<td>27</td>
</tr>
<tr>
<td>21a-4 (ML108)</td>
<td>ggGgGgGCGGCCGUGUGGAAGCUAGUAUACAGAUCGACCGUGU</td>
<td>142</td>
<td>&gt;100</td>
<td>30</td>
</tr>
<tr>
<td>21a-4 (ML109)</td>
<td>ggGgGgGCGGCCGUGUGGAAGCUAGUAUACAGAUCGACCGUGU</td>
<td>143</td>
<td>&gt;100</td>
<td>33</td>
</tr>
<tr>
<td>21a-4 (ML110)</td>
<td>ggGgGgGCGGCCGUGUGGAAGCUAGUAUACAGAUCGACCGUGU</td>
<td>144</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>21a-4 (ML111)</td>
<td>ggGgGgGCGGCCGUGUGGAAGCUAGUAUACAGAUCGACCGUGU</td>
<td>145</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^a\)Lowercase letters indicate bases not found at that position in the full length ligand. Underlining indicates boundary positions. The fixed region sequences are indicated in bold-faced lettering. The italicized G at the 5’ end of the 5’ RNase H cleavage products indicates that ~50% of the time cleavage leaves 2 Gs and 50% of the time one G is left. A = 2'-O-CH₂-; A; C = 2'-F- C; G = 2'-O-CH₂ G; U = 2'-F U

\(^b\)Binding is expressed as the ratio of Kᵦ (ligand)/Kᵦ (21a-4). The Kᵦ of 21a-4 is ~3 nM.

\(^c\)Length is expressed in bases.

\(^d\)These ligands were generated by RNase H digestion of 21a-4.

---

### TABLE 15

Biased SELEX conditions and results.

<table>
<thead>
<tr>
<th>Round(^a)</th>
<th>[RNA] (^f), nM</th>
<th>[TGFB2] (^c), nM</th>
<th>RNA(^b) protein</th>
<th>[Competitor]</th>
<th>% Bound</th>
<th>% Background</th>
<th>Round/background</th>
<th>Kd (nM)(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3aN7.21a-21</td>
<td>round 0 nucleic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>1000</td>
<td>150</td>
<td>7</td>
<td>0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
<td>395</td>
</tr>
<tr>
<td>2a</td>
<td>450</td>
<td>300</td>
<td>1.5</td>
<td>0</td>
<td>1.7</td>
<td>1.0</td>
<td>1.7</td>
<td>186</td>
</tr>
<tr>
<td>3a</td>
<td>10</td>
<td>50</td>
<td>0.2</td>
<td>0</td>
<td>17.5</td>
<td>1.0</td>
<td>17.5</td>
<td>25</td>
</tr>
<tr>
<td>4a</td>
<td>50</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>11.0</td>
<td>0.9</td>
<td>12.3</td>
<td>17</td>
</tr>
<tr>
<td>4b</td>
<td>50</td>
<td>10</td>
<td>5</td>
<td>333 nM NX22284</td>
<td>2.2</td>
<td>1.3</td>
<td>1.7</td>
<td>8</td>
</tr>
<tr>
<td>5a</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>1.4</td>
<td>0.9</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>5b</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>100 nM NX22284</td>
<td>0.8</td>
<td>0.7</td>
<td>1.1</td>
<td>17</td>
</tr>
<tr>
<td>6a</td>
<td>4</td>
<td>0.5</td>
<td>8</td>
<td>0</td>
<td>2.9</td>
<td>2.9</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>6b</td>
<td>6</td>
<td>0.5</td>
<td>12</td>
<td>100 nM NX22284</td>
<td>1.8</td>
<td>1.3</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>7a</td>
<td>5</td>
<td>0.25</td>
<td>20</td>
<td>0</td>
<td>0.5</td>
<td>0.14</td>
<td>3.4</td>
<td>1</td>
</tr>
<tr>
<td>7b</td>
<td>5</td>
<td>0.25</td>
<td>20</td>
<td>200 nM NX22284</td>
<td>0.15</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td><strong>5 mM RNA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>1</td>
<td>0.05</td>
<td>20</td>
<td>0</td>
<td>1.05</td>
<td>1.1</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>8b</td>
<td>1</td>
<td>0.05</td>
<td>20</td>
<td>100 nM NX22284</td>
<td>0.6</td>
<td>0.5</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>9a</td>
<td>125</td>
<td>1</td>
<td>125</td>
<td>0</td>
<td>0.6</td>
<td>0.5</td>
<td>1.2</td>
<td>nd</td>
</tr>
<tr>
<td>9b</td>
<td>0.9</td>
<td>0.01</td>
<td>90</td>
<td>0</td>
<td>0.15</td>
<td>0.14</td>
<td>1.0</td>
<td>nd</td>
</tr>
</tbody>
</table>

\(^a\)a series, without competitor; b series, with competitors

\(^b\)nucleic acid ligand library

\(^d\)nd, not determined
### TABLE 16

<table>
<thead>
<tr>
<th>Name&lt;sup&gt;a&lt;/sup&gt;</th>
<th>5' Fixed</th>
<th>Selected&lt;sup&gt;b&lt;/sup&gt;</th>
<th>3' Fixed</th>
<th>Seq ID</th>
<th>Changes&lt;sup&gt;c&lt;/sup&gt;</th>
<th>Binding&lt;sup&gt;d&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>putative structural element:</td>
<td>S1</td>
<td>B</td>
<td>S2</td>
<td>L</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>21a-21</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>S1</td>
<td>72</td>
<td>0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>144</td>
<td>4</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>147</td>
<td>7</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>148</td>
<td>2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>149</td>
<td>3</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>150</td>
<td>5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>151</td>
<td>7</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>152</td>
<td>6</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>153</td>
<td>8</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>154</td>
<td>7</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>155</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>156</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>157</td>
<td>8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>158</td>
<td>6</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>159</td>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>160</td>
<td>9</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>161</td>
<td>4</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>162</td>
<td>4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>163</td>
<td>4</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>164</td>
<td>4</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>165</td>
<td>6</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>166</td>
<td>5</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>167</td>
<td>1</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>168</td>
<td>4</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>169</td>
<td>6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36a</td>
<td>GGGAGGACUAUGGCUUAGUUAGCUUGUAGCUUGUCGG</td>
<td>170</td>
<td>4</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

invariant: UAU GUUG AUA C

<sup>a</sup> Number of clones isolated for each sequence is indicated in parentheses.

<sup>b</sup> Nucleotides that differ from the starting sequence are shown in bold-faced lettering. A = 2'-OH Ap; C = 2'-F C; G = 2'-OCH<sub>3</sub> G; U = 2'-F U. Putative structural elements: S1, stem 1; B, bulge; S2, stem 2; L, loop. The sequence of ligand 21a-21 is shown at the top for comparison.

<sup>c</sup> Number of changes from starting sequence.

<sup>d</sup> Binding is expressed as $K_d$ (ligand)/$K_d$ (21a-21). The $K_d$ of ligand 21a-21 is about 1 nM.
## TABLE 17

Highest and lowest affinity TGFβ2 nucleic acid ligands from biased SELEX.

<table>
<thead>
<tr>
<th>NAME</th>
<th>5' FIXED</th>
<th>SELECTED&lt;sup&gt;a&lt;/sup&gt;</th>
<th>3' FIXED</th>
<th>SEQ ID</th>
<th>NO.</th>
<th>BINDING&lt;sup&gt;b&lt;/sup&gt; CHANGES&lt;sup&gt;c&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:</td>
<td>GGGAGGCAUGCGG UUGGAUAUUAGAGUCUGUAUACUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>154</td>
<td>0.2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14:</td>
<td>GGGAGGCAUGCGG GGGGAAUUACGUGUAAUCGAGAUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>155</td>
<td>0.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>21:</td>
<td>GGGAGGCAUGCGG AGGGAAUAAGACAGUCUGUAUACUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>161</td>
<td>0.7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>35:</td>
<td>GGGAGGCAUGCGG GGGGAAUAUUAGAGUCUGUAUACUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>169</td>
<td>0.8</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Putative structural elements:
- S1, B, S2, L, S2, S1

21a-21: GGGAGGCAUGCGG UUGGAUAUUAGAGUCUGUAUACUCUACCC | CAGACGCUCUCCCGA | 72 | 1.0 | 0 |

**HIGHEST AFFINITY LIGANDS:**

<table>
<thead>
<tr>
<th>NAME</th>
<th>5' FIXED</th>
<th>SELECTED&lt;sup&gt;a&lt;/sup&gt;</th>
<th>3' FIXED</th>
<th>SEQ ID</th>
<th>NO.</th>
<th>BINDING&lt;sup&gt;b&lt;/sup&gt; CHANGES&lt;sup&gt;c&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36:</td>
<td>GGGAGGCAUGCGG GGGGAAUUACGUGUAAUCGAGAUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>170</td>
<td>2.0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>30:</td>
<td>GGGAGGCAUGCGG UUGGAUAUUAGAGUCUGUAUACUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>167</td>
<td>2.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26:</td>
<td>GGGAGGCAUGCGG UUGGAUAUUAGAGUCUGUAUACUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>164</td>
<td>3.1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td>GGGAGGCAUGCGG GGGGAAUUACGUGUAAUCGAGAUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>149</td>
<td>3.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20:</td>
<td>GGGAGGCAUGCGG GGGGAAUUACGUGUAAUCGAGAUCUACCC</td>
<td>CAGACGCUCUCCCGA</td>
<td>160</td>
<td>5.7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

**LOWEST AFFINITY LIGANDS:**

Invariant:
- UAU, GU, UAA, C

<sup>a</sup>Nucleotides that differ from the starting sequence are shown in bold-faced lettering. A = 2'-OH A; C = 2'-F C; G = 2'-OH G; U = 2'-F U

<sup>b</sup>Putative structural elements:
- S1, stem1;
- B, bulge;
- S2, stem2;
- L, loop.

<sup>c</sup>Binding is expressed as K<sub>a</sub> (ligand)/K<sub>d</sub> (21a-21). The K<sub>d</sub> of 21a-21 is 1 nM.

<sup>d</sup>Number of changes from staffing sequence.
### TABLE 18

**Substitution of 2'-OH purines with 2'-OCH₃ purines in NX22284 ligand.**

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEQUENCE*</th>
<th>SEQ ID NO.</th>
<th>BINDING⁰</th>
<th>LENGTH⁰</th>
<th>BIOACTIVITY⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX22284</td>
<td>GAGGGUUAUCAGAGCGUACUAGUCUCC[3'T]</td>
<td>115</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22304</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>171</td>
<td>&gt;100</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22355</td>
<td>GGAGGGUAUACagagUGUAGUAGUACUCC[3'T]</td>
<td>172</td>
<td>&gt;100</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22356</td>
<td>ggaggUUUAUCAGAGCGUACUAGUCUCC[3'T]</td>
<td>173</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22357</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>174</td>
<td>2</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>NX22358</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>175</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22359</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>176</td>
<td>&gt;100</td>
<td>34</td>
<td>&gt;30</td>
</tr>
<tr>
<td>NX22360</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>177</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22374</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>178</td>
<td>25</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22375</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>179</td>
<td>&gt;100</td>
<td>34</td>
<td>&gt;300</td>
</tr>
<tr>
<td>NX22376</td>
<td>GGAGGGUAUACAGAGCGUACUAGUCUCC[3'T]</td>
<td>180</td>
<td>50</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22377</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>181</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22383</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>182</td>
<td>500</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22384</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>183</td>
<td>10000</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22417</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>184</td>
<td>1</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>NX22420</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>185</td>
<td>1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22421</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>186</td>
<td>2</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>NX22426</td>
<td>ggaggUUUAACagagUCUAGUAGUACUCC[3'T]</td>
<td>187</td>
<td>1</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>NX22427</td>
<td>gg-ggGUUAUACagagUCUAGUAGUACUCC[3'T]</td>
<td>188</td>
<td>0.3</td>
<td>32</td>
<td>0.7</td>
</tr>
</tbody>
</table>

* A, 2'-OH A; C, 2'-F C; G, 2'-OH G; U, 2'-F U; a, 2'-OCH₃ A; g, 2'-OCH₃ G. [3'T] signifies a 3', 3'-dN cap.

⁰Binding is expressed as the ratio of the Kₐ of ligand/Kₐ of NX22284. The Kₐ of NX22284 is ~1 nM.

¹Bioactivity is expressed as the ratio of the Kₐ of ligand/Kₐ of NX22284. The Kₐ of NX22284 is ~10 nM.

### TABLE 19

**Truncates and 2'-OCH₃ purine modifications of nucleic acid ligand #13 from a biased SELEX.**

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEQUENCE*</th>
<th>SEQ ID NO.</th>
<th>BINDING⁰</th>
<th>LENGTH⁰</th>
<th>BIOACTIVITY⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX22385</td>
<td>UUGUAGUAAUGAGAGUCUGUAAAGUCUCUCC[3'T]</td>
<td>189</td>
<td>0.4</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>NX22386</td>
<td>UgUgAAUAAUgagagUCUGUAAAGUCUCUCC[3'T]</td>
<td>190</td>
<td>3000</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22387</td>
<td>UgUgAAUAAUgagagUCUGUAAAGUCUCUCC[3'T]</td>
<td>191</td>
<td>3000</td>
<td>34</td>
<td>30</td>
</tr>
</tbody>
</table>
TABLE 19-continued
Truncates and 2'-OCH₃ purine modifications of nucleic acid ligand #13 from a biased SELEX.

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEQUENCE**</th>
<th>SEQ ID NO.</th>
<th>BINDING**</th>
<th>LENGTH</th>
<th>BIOACTIVITY†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX22424</td>
<td>UgGgAUAUAggAgCUGUAGAgCUCUCC3'</td>
<td>192</td>
<td>0.6</td>
<td>34</td>
<td>&gt;100</td>
</tr>
<tr>
<td>NX22425</td>
<td>UgGgAUAUAggAgCUGUAGAgCUCUCC3'</td>
<td>193</td>
<td>1.5</td>
<td>34</td>
<td>&gt;100</td>
</tr>
</tbody>
</table>

**A, 2'-OH A; C, 2'-P C; G, 2'-OH G; U, 2'-P U; a, 2'-OCH₃ A; g, 2'-OCH₃ G. [3''] signifies a 3', 3'dT cap.

*Binding is expressed as the ratio of the Kₐ of ligand/Kₐ of NX22284. The Kₐ of NX22284 is 2 nM.

†Length is given in bases.

Bioactivity is expressed as the ratio of the Kₐ of ligand/Kₐ of NX22284. The Kₐ of NX22284 is 10 nM.

---

TABLE 20
Pharmacokinetic properties of NX22323 in rats using a noncompartmental analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax</td>
<td>(µg/mL)</td>
<td>27.1</td>
</tr>
<tr>
<td>AUClast</td>
<td>(µg*min)/mL</td>
<td>3028.0</td>
</tr>
<tr>
<td>AUCINF</td>
<td>(µg*min)/mL</td>
<td>3058.0</td>
</tr>
<tr>
<td>Beta t½</td>
<td>(min)</td>
<td>630.9</td>
</tr>
<tr>
<td>CI</td>
<td>(mL/min*kg)</td>
<td>0.33</td>
</tr>
<tr>
<td>MRTINF</td>
<td>(min)</td>
<td>350.4</td>
</tr>
<tr>
<td>Vss</td>
<td>(mL/kg)</td>
<td>115.0</td>
</tr>
<tr>
<td>Vz</td>
<td>(mL/kg)</td>
<td>298.0</td>
</tr>
</tbody>
</table>

---

TABLE 21
Pharmacokinetic properties of NX22323 in rats using a compartmental analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Estimate</th>
<th>StdError</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax</td>
<td>(µg/mL)</td>
<td>16.3</td>
<td>3.3</td>
<td>20.2</td>
</tr>
<tr>
<td>AUCINF</td>
<td>(µg*min)/mL</td>
<td>2486</td>
<td>274</td>
<td>11.0</td>
</tr>
<tr>
<td>Alpha t½</td>
<td>(min)</td>
<td>63.5</td>
<td>39.1</td>
<td>30.2</td>
</tr>
<tr>
<td>Beta t½</td>
<td>(min)</td>
<td>467.2</td>
<td>83.2</td>
<td>17.8</td>
</tr>
<tr>
<td>A</td>
<td>(µg/mL)</td>
<td>14.63</td>
<td>3.21</td>
<td>21.9</td>
</tr>
<tr>
<td>B</td>
<td>(µg/mL)</td>
<td>1.70</td>
<td>0.84</td>
<td>49.1</td>
</tr>
<tr>
<td>CI</td>
<td>(mL/min*kg)</td>
<td>0.402</td>
<td>0.044</td>
<td>11.0</td>
</tr>
<tr>
<td>MRTINF</td>
<td>(min)</td>
<td>360.3</td>
<td>35.6</td>
<td>9.9</td>
</tr>
<tr>
<td>Vss</td>
<td>(mL/kg)</td>
<td>144.9</td>
<td>23.1</td>
<td>15.9</td>
</tr>
</tbody>
</table>

---

TABLE 22
Binding and inhibitory activity of 2'-O methyl- and Peqyl-modifications of lead TGFβ1 truncate ligand CD70.

<table>
<thead>
<tr>
<th>ChD70</th>
<th>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</th>
<th>216</th>
<th>+++</th>
<th>+++</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChD70-m1</td>
<td>ggggUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>194</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ChD70-m2</td>
<td>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>195</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>ChD70-m3</td>
<td>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>196</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>ChD70-m4</td>
<td>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>197</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>ChD70-m5</td>
<td>ggUGGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>198</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>ChD70-m6</td>
<td>GGGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>199</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>ChD70-m7</td>
<td>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>200</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>ChD70-m8</td>
<td>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>201</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ChD70-m9</td>
<td>GGUGCGUUUGGUUACGUUGUUUGAAACGUUCUGCCA</td>
<td>202</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 22-continued

<table>
<thead>
<tr>
<th>Binding and inhibitory activity of 2'-Omethyl- and Pegyl-modifications of lead TGFB1 truncate ligand CD70</th>
<th>SEQ ID NO.</th>
<th>Binding Bioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chθ70-m10 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>203</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m11 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>204</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m12 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>205</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m13 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>206</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m14 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>207</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m15 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>208</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m16 GGGUGCCUUUUGCCUGUGGaUUUGUAACCUCUCUCGCCA</td>
<td>209</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m17 gggUGGCUUUUGCCUGUGGaUUUGUsACCUCUCUCACC3'-3'U</td>
<td>210</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m18 gggUGGCUUUUGCCUGUGGaUUUGUsACCUCUCUCACC3'-3'U</td>
<td>211</td>
<td>+++</td>
</tr>
<tr>
<td>Chθ70-m19 gggUGGCUUUUGCCUGUGGaUUUGUsACCUCUCUCACC3'-3'U</td>
<td>212</td>
<td>+</td>
</tr>
<tr>
<td>Chθ70-m20 gggUGGCUUUUGCCUGUGGaUUUGUsACCUCUCUCACC3'-3'U</td>
<td>213</td>
<td>+</td>
</tr>
<tr>
<td>Chθ70-m21 gggUGGCUUUUGCCUGUGGaUUUGUsACCUCUCUCACC3'-3'U</td>
<td>214</td>
<td>+</td>
</tr>
<tr>
<td>Chθ70-m22 gggUGGCUUUUGCCUGUGGaUUUGUsACCUCUCUCACC3'-3'U</td>
<td>215</td>
<td>+++</td>
</tr>
</tbody>
</table>

Lower case-bold residues indicate 2'-Omethyl substitutions. The gap shown was occupied by a PEG linker (space 18 Glen Research). Number of (+) indicate extent of binding or inhibition of TGFB1 bioactivity.

[0250]

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 216
<210> SEQ ID NO 1
<211> LENGTH: 71
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1..(71))
<223> OTHER INFORMATION: Feature N at positions 17-56 is A, C, G or T.
<400> SEQUENCE: 1
tgggcggagt cgctctgann nnnnnnnnnnnnnnnnnnnnnnnnnnnnnncnccgo 60
atgcgccctc c 71

<210> SEQ ID NO 2
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 2
ttaaatcagat cactatatgg gaggacgatgc gg
<210> SEQ ID NO 3
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 3
tcggcgat cgtctg
16

<210> SEQ ID NO 4
<211> LENGTH: 88
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 4
ttaaatcagat cactatatgg gagnnnnnnn nnnnnnnnn nnnnnnnnn 60
nnnnnnnn nncagagac ttgocoga 88

<210> SEQ ID NO 5
<211> LENGTH: 88
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 5
atattgctga tgtatatccc ttctgcctac ccnnnnnnnn nnnnnnnnn nnnnnnnnn 60
nnnnnnnn nngttctgctg aaggggtc 88

<210> SEQ ID NO 6
<211> LENGTH: 71
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 6
ggagagaga ugcgnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnncagac 60
gacuugccc a 71

<210> SEQ ID NO 7
<211> LENGTH: 65
<210> SEQ ID NO 8
<211> LENGTH: 82
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(82)
<223> OTHER INFORMATION: Feature N at positions 33-66 is SEQ ID NO: 115 and A, C, G or T.

<400> SEQUENCE: 8
tactacgt actataggg agagctagc ggnnnnnnn nnnnnnnnn nnnnnnnnn 60
nnnnncaga gactgcccc ga 82

<210> SEQ ID NO 9
<211> LENGTH: 65
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(65)
<223> OTHER INFORMATION: Feature N at positions 33-66 is SEQ ID NO: 115 and A, C, G or T.

<400> SEQUENCE: 9
attcgctga tgtactcct tcgtactcg cnnnnnnnn nnnnnnnnn 60
nnnnncgct gtcgccgg ct 82

<210> SEQ ID NO 10
<211> LENGTH: 65
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(65)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; feature N at positions 16-49 is SEQ ID NO: 115 and A, 2'-FC, G or 2'-FU.

<400> SEQUENCE: 10
ggagagcag agcggnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 60
cccc 65
<210> SEQ ID NO 11
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 11

cggcaggatcc ttagctgact cactata

<210> SEQ ID NO 12
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 12

gggcagattc ttcttacttc agtgcggcga gtcgctctg

<210> SEQ ID NO 13
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 13
	agcgcgataac aattcacac agg

<210> SEQ ID NO 14
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 14

gtgcgcaag gcgattaagt tgg

<210> SEQ ID NO 15
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 15

acctttagct tcggtctcq

<210> SEQ ID NO 16
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 16
gccasagcc gggagacag  19

<210> SEQ ID NO 17
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 17

ggggacaag gcaccttag  18

<210> SEQ ID NO 18
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<400> SEQUENCE: 18

gggagtacag ctatacag  18

<210> SEQ ID NO 19
<211> LENGTH: 15
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) . . (15)
<223> OTHER INFORMATION: Bases at positions 5-15 are 2'-OMe.
<400> SEQUENCE: 19

ccgcauguc uccc  15

<210> SEQ ID NO 20
<211> LENGTH: 14
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) . . (12)
<223> OTHER INFORMATION: Bases at positions 1-12 are 2'-OMe.
<400> SEQUENCE: 20

uagggtagu ccg  14

<210> SEQ ID NO 21
<211> LENGTH: 61
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) . . (61)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 21

```
ggagggagcg ugcccguccua auugaucauu ccucuuaau guccocacag gacucoccg a
```
60

<210> SEQ ID NO 22
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 22

```
ggagggagcg ugcccguccua auugaucauu ccucuuaau guccocacag gacucoccg a
```
60

gacucoccg a
71

<210> SEQ ID NO 23
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 23

```
ggagggagcg ugcccguccua auugaucauu ccucuuaau guccocacag gacucoccg a
```
60

gacucoccg a
71

<210> SEQ ID NO 24
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 24

```
ggagggagcg ugcccguccua auugaucauu ccucuuaau guccocacag gacucoccg a
```
60

gacucoccg a
71

<210> SEQ ID NO 25
<211> LENGTH: 69
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(69)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
gaccgacgugcacc aaccaacauuauuccaacc uggucgacgugcacc 60
caggugucgac 69

gggaggagcc uggcggagacc aaccaacauuauuccaacc uggucgacgugcacc 60
gaccgacgugucgac 71

Sequence 27:
gggaggacgugcgcacc aaccaacauuauuccaacc uggucgacgugcacc 60
gaccgacgugucgac 71

Sequence 28:
gggaggacgugcgcacc aaccaacauuauuccaacc uggucgacgugcacc 60
gaccgacgugucgac 71

Sequence 29:
gggaggacgugcgcacc aaccaacauuauuccaacc uggucgacgugcacc 60
gaccgacgugucgac 71
<210> SEQ ID NO 30
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
  <221> NAME/KEY: modified base
  <222> LOCATION: (1) ..(71)
  <223> OTHER INFORMATION: All pyrimidines are 2' F.
<400> SEQUENCE: 30
ggagggacga uggguucau caaauaucu aucauaugu uuuuuccuuc cgccocaagc 60
gacuoccccg a 71

<210> SEQ ID NO 31
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
  <221> NAME/KEY: modified base
  <222> LOCATION: (1) ..(71)
  <223> OTHER INFORMATION: All pyrimidines are 2' F.
<400> SEQUENCE: 31
ggagggacga uggguucau caaauaucu aucauaugu uuuuuccuuc cgccocaagc 60
gacuoccccg a 71

<210> SEQ ID NO 32
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
  <221> NAME/KEY: modified base
  <222> LOCATION: (1) ..(71)
  <223> OTHER INFORMATION: All pyrimidines are 2' F.
<400> SEQUENCE: 32
ggagggacga uggguucau caaauaucu aucauaugu uuuuuccuuc cgccocaagc 60
gacuoccccg g 71

<210> SEQ ID NO 33
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
  <221> NAME/KEY: modified base
  <222> LOCATION: (1) ..(71)
  <223> OTHER INFORMATION: All pyrimidines are 2' F.
<400> SEQUENCE: 33
gggagagcga ugcguuacac agaagaacac ucguuuggagu gcuucacag a 60
gacucgcgc a 71

<210> SEQ ID NO 34
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 34
gggagagcga ugcguuacag uuuccuacag uuuuguuguc uaaauucugu guccacacag a 60
gacucgcgc a 71

<210> SEQ ID NO 35
<211> LENGTH: 61
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (61)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 35
gggagagcga ugcagacgcg auuaauacag uguacucucuu guccacag a 60
gacucgcgc a 61

<210> SEQ ID NO 36
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 36
gggagagcga ugcagagacac auuuagucgu caaguuacua guccacacag a 60
gacucgcgc a 71

<210> SEQ ID NO 37
<211> LENGTH: 69
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (69)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 37

```
gggaggacga ugccguccu uauaagcgaq cuuuaauccu uauuuuccg coccacagc 60
cuccoccacg 69
```

<210> SEQ ID NO: 38
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 38

```
gggaggacga ugccguccac agggauugau gacauauacu aacuguau ucuccacagc 60
gcuocuccag a 71
```

<210> SEQ ID NO: 39
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 39

```
gggaggacga ugccguaccua ucuuuccucc aggcusaug uuuacuccc gcccacagc 60
cucucuccag a 71
```

<210> SEQ ID NO: 40
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 40

```
gggaggacga ugccgaugag accuaauccau cguccgcua ucuuaaccu cacccacagc 60
gcucuccag a 71
```

<210> SEQ ID NO: 41
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 41

```
gggaggacga ugcgggccuc agacaaacau uucuuaacu uuccuuuaac uggcccgac
```

71

<210> SEQ ID NO 42
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(70)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 42

```
gggaggacga ugcgggccga uucuuaacu ugcacuuuuu uuccuuucu gggccgac
```

70

<210> SEQ ID NO 43
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 43

```
gggaggacga ugcgguccuc uucuuaacu uucuucuaa uuccuuuuu ugcggagac
```

70

<210> SEQ ID NO 44
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 44

```
gggaggacga ugcggaacuc uucuuaacq uucuucuaa ucuacuuuu ugcggcagac
```

70

<210> SEQ ID NO 45
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 45
gggagggacga ugcugauuc guuaacauuuaaa uuaauuucugc cgcoccaagc

gacucgcccg a

<210> SEQ ID NO 46
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(70)
<223> OTHER INFORMATION: All pyrimidines are 2' F.

<400> SEQUENCE: 46
gggagggacga ugcuguuuca ucaucuacuc ucuuucucac uuuuuucaac ucocccagc
acucgcccg

<210> SEQ ID NO 47
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(71)
<223> OTHER INFORMATION: All pyrimidines are 2' F.

<400> SEQUENCE: 47
gggagggacga ugcugguuua uacauuacuc ucuuucucac uuuuuucaac ucocccagc

gacucgcccg a

<210> SEQ ID NO 48
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(71)
<223> OTHER INFORMATION: All pyrimidines are 2' F.

<400> SEQUENCE: 48
gggagggacga ugcugguuua uacauuacuc ucuuucucac uuuuuucaac ucocccagc

gacucgcccg a

<210> SEQ ID NO 49
<211> LENGTH: 61
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(61)
<223> OTHER INFORMATION: All pyrimidines are 2' F.
<400> SEQUENCE: 49

```
sggagggagcga ugcgggcacau uaguuccau uagucuccug ugcoccaac gacuogcccg
```

60

```
a
```

61

<210> SEQ ID NO 50
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) ..(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 50

```
sggagggagcga ugcgggcaucu uaguuccau uuguuaucu ccgoccaac gacuogcccg
```

60

gacuogcccg a

71

<210> SEQ ID NO 51
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) ..(70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 51

```
sggagggagcga ugcgggcaucu uaguuccau uuguuaucu ccgoccaac uucoccaac gacuogcccg
```

60

acuogcccg

70

<210> SEQ ID NO 52
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) ..(70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 52

```
sggagggagcga ugcggguccc aucuuccucu caguuacgca uucagccuug uccccacagc gacuogcccg
```

60

acuogcccg

70

<210> SEQ ID NO 53
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) ..(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 53

```
gggagagacga uggcguuucu uggcguuucu uggcguuucu uggcguuucu uggcguuucu ggcgccccaga 60
gacucgcg a 71
```

<210> SEQ ID NO 54
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) .. (70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 54

```
gggagagacga uggcguuucu acguugacgu uggcguuucu uggcguuucu uggcguuucu ggcgccccaga 60
gacucgcg a 70
```

<210> SEQ ID NO 55
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) .. (70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 55

```
gggagagacga uggcguuucu uggcguuucu uggcguuucu uggcguuucu uggcguuucu ggcgccccaga 60
gacucgcg a 70
```

<210> SEQ ID NO 56
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 56

```
gggagagacga uggcguuucu uggcguuucu uggcguuucu uggcguuucu uggcguuucu ggcgccccaga 60
gacucgcg a 71
```

<210> SEQ ID NO 57
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
-continued

<400> SEQUENCE: 57

```
gggaggacga ugcggauag cuaauaaguc ugguuugag ucaaugcgg ugcccocagac 60
gacuoccccg a 71
```

<210> SEQ ID NO 58
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 58

```
gggaggacga ugcggauag guacucacu uccuaauag gcccocgu gucccocagac 60
gacuoccccg a 71
```

<210> SEQ ID NO 59
<211> LENGTH: 61
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(61)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 59

```
gggaggacga ugcggucuc guacucacu uucuuccuu ucccccacac gacuoccccg a 61
```

<210> SEQ ID NO 60
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 60

```
gggaggacga ugcgguccuc cccuuauagc uuuuguuuc ucuuguguu ugcocccac 60
gacuoccccg a 71
```

<210> SEQ ID NO 61
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 61
gggaggagca ugcgggoacaa uuauuuccuc uacuuccacg uauuuuccug uuccocagac 60
acuogccga 70

<210> SEQ ID NO 62
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(71)
<223> OTHER INFORMATION: All pyrimidines are 2' F.

<400> SEQUENCE: 62
gggaggagca ugcggguuccu uuauuucuuc uacuuccucu ugcocagac 60
gacuogccga 71

<210> SEQ ID NO 63
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(71)
<223> OTHER INFORMATION: All pyrimidines are 2' F.

<400> SEQUENCE: 63
gggaggagca ugcggugug ugcuuacaa gggauacgua guaguuug guccocagac 60
gacuogccga 71

<210> SEQ ID NO 64
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(71)
<223> OTHER INFORMATION: All pyrimidines are 2' F.

<400> SEQUENCE: 64
gggaggagca ugcggusacu uuucuacgau acacuuuauu uuccuucccu guccocagac 60
gacuogccga 71

<210> SEQ ID NO 65
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(71)
<223> OTHER INFORMATION: All pyrimidines are 2' F.
<200> SEQUENCE: 65
gggaggacga ugcggagcga caguauagguuaguacucagcucuaguagcu guccogacag 60
  gcucgcugu 71

<210> SEQ ID NO 66
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) (71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 66
gggaggacga ugcggacuc ccauuaucag cuacucgcgu auucacggugu cacccacag 60
  gcucgcugu 71

<210> SEQ ID NO 67
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) (71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 67
gggaggacga ugcggcgcu acuucuguuc ucuuuugauucuucucu ugcccacag 60
  gcucgcugu 71

<210> SEQ ID NO 68
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) (71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 68
gggaggacga ugcggaccc aacacucac cuuaacacuauuucucuc ugcacacag 60
  gcucgcugu 71

<210> SEQ ID NO 69
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1) (65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 69
gggaggaagga ugcggagaaua augagacgc gugauuuaag augccgccg agagcgcacg 60
cgcga 65

<210> SEQ ID NO 70
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 70
gggaggaagga ugcgguuucu cuauuucucu auuucguau uggccccg ugcggacac 60
gcuucgccg a 71

<210> SEQ ID NO 71
<211> LENGTH: 60
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(60)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 71
gggaggaagga ugcgguuucu cuauuucucu auuucguau uggccccg acucgcccga 60

gcuucgccg a 71

<210> SEQ ID NO 72
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 72
gggaggaagga ugcggagaua aguauuagcu cuuugggcua uuggcgac 60
gcuucgccg a 71

<210> SEQ ID NO 73
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)..<(70)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 73
-continued

gggaggacga ugccgaagau acggauuuau aaaaaucguu cucucguuau uggcagacg

acucgcocgca

30

<210> SEQ ID NO 74
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 74

gggaggacga ugccgaagau acggauuuau aaaaaucguu cucucguuau uggcagacg

gacucgcocgca

37

<210> SEQ ID NO 75
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 75

gggaggacga ugccgaagau acggauuuau aaaaaucguu cucucguuau uggcagacg

acucgcocgca

34

<210> SEQ ID NO 76
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (70)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 76

gggaggacgau ggggaagau acggauuuau aaaaaucguu cucucguuau uggcagacg

acucgcocgca

31

<210> SEQ ID NO 77
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (71)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 77

gggaggacgau ggggaagau acggauuuau aaaaaucguu cucucguuau uggcagacg

acucgcocgca
-continued

```
<210> SEQ ID NO 78
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(70)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 78

ggaggacga ugcgaagau acaaauuacg gucucugcu uuggcagac
60
gacucggcgg a
71

<210> SEQ ID NO 79
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 79

ggaggacga ugcgaagau acaaauuacg gucucugcu uuggcagc
60
gacucggcga
70

<210> SEQ ID NO 80
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(70)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 80

ggaggacga ugcgaagau acaaauuacg gucucugcu uuggcagc
60
gacucggcga
71

<210> SEQ ID NO 81
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 81

agcucggcga
70
```
gaggacga acguuasaguu aaccuucguu ccuucggggu uuggccagac 60
gacuogccg a 71

<210> SEQ ID NO 82
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’ F.
<400> SEQUENCE: 82
gaggacga acguuasaguu aaccuucguu ccuucggggu uuggccagac 60
gacuogccg a 71

<210> SEQ ID NO 83
<211> LENGTH: 71
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(71)
<223> OTHER INFORMATION: All pyrimidines are 2’ F.
<400> SEQUENCE: 83
gaggacga acguuasaguu aaccuucguu ccuucggggu uuggccagac 60
gacuogccg a 71

<210> SEQ ID NO 84
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(70)
<223> OTHER INFORMATION: All pyrimidines are 2’ F.
<400> SEQUENCE: 84
gaggacga acguuasaguu aaccuucguu ccuucggggu uuggccagac 60
acucgcggc 70

<210> SEQ ID NO 85
<211> LENGTH: 70
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(70)
<223> OTHER INFORMATION: All pyrimidines are 2’ F.
<400> SEQUENCE: 85
acucgcggc 70
<210> SEQ ID NO 90
<211> LENGTH: 56
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<222> LOCATION: (1)..<(56)
<223> OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 90

gggaggacga ugCggulucag gaggululaulua cagaglucug ulaulag Cugua CuccCC 56

<210> SEQ ID NO 91
<211> LENGTH: 43
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<222> LOCATION: (1)..<(43)
<223> OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 91

gggaggacga ugCggulucag gaggululaulua cagaglucug ulaulag Cugua Cucc 43

<210> SEQ ID NO 92
<211> LENGTH: 36
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<222> LOCATION: (1)..<(36)
<223> OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 92

gggagggugaa ucaagug gugguag ucc ucc 36

<210> SEQ ID NO 93
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<222> LOCATION: (1)..<(34)
<223> OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 93

gggagggugaa ucaagug gugguag ucc 34

<210> SEQ ID NO 94
<211> LENGTH: 30
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (30)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 94

ggagguauu acacaguuc guaguacua

<210> SEQ ID NO 95
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (26)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 95

ggagguauu acacaguuc guaguacua

<210> SEQ ID NO 96
<211> LENGTH: 30
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (30)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 96

ggagguauu acacaguuc guaguacucc

<210> SEQ ID NO 97
<211> LENGTH: 30
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (30)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 97

ggagguauu acacaguuc guaguacucc

<210> SEQ ID NO 98
<211> LENGTH: 26
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1) .. (26)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 98
ggaggguuuu agacacucua gccucc

SEQ ID NO 99
LENGTH: 33
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
NAME/KEY: modified_base
LOCATION: (1) .. (33)
OTHER INFORMATION: All pyrimidines are 2'F.
SEQUENCE: 99

ggaggguuuu acacacucua ucuacuca cu

SEQ ID NO 100
LENGTH: 32
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
NAME/KEY: modified_base
LOCATION: (1) .. (32)
OTHER INFORMATION: All pyrimidines are 2'F.
SEQUENCE: 100

ggaggguuuu acacacucua ucuacuc a

SEQ ID NO 101
LENGTH: 31
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
NAME/KEY: modified_base
LOCATION: (1) .. (31)
OTHER INFORMATION: All pyrimidines are 2'F.
SEQUENCE: 101

ggaggguuuu acacacucua ucuacuc a

SEQ ID NO 102
LENGTH: 33
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
NAME/KEY: modified_base
LOCATION: (1) .. (33)
OTHER INFORMATION: All pyrimidines are 2'F.
SEQUENCE: 102

ggaggguuuu acacacucua ucuacuc a ucc

SEQ ID NO 103
LENGTH: 33
TYPE: RNA
ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(33)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 103

gagguauu acagagcug uaaaucguc ucc

<210> SEQ ID NO 104
<211> LENGTH: 32
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(32)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 104

gagguauu acagagcug uaaaucu cc

<210> SEQ ID NO 105
<211> LENGTH: 33
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(33)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 105

gagguauu acagagcug uaaucguac ucc

<210> SEQ ID NO 106
<211> LENGTH: 33
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(33)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 106

gagguauu acagagcug uaaucguac ucc

<210> SEQ ID NO 107
<211> LENGTH: 32
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(32)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 107

ggagguuauu acaagugua uagcuguacu cc

<210> SEQ ID NO 108
<211> LENGTH: 33
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(33)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 108

ggagguuauu acaaguguu aagcuguac ucc

<210> SEQ ID NO 109
<211> LENGTH: 32
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(32)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 109

ggagguuauu acaagucugu uagcuguac cc

<210> SEQ ID NO 110
<211> LENGTH: 32
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(32)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 110

ggagguuauu acaagucugu uagcuguacu cc

<210> SEQ ID NO 111
<211> LENGTH: 33
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(33)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 111

ggagguuauu acaagucugu uagcuguac ucc

<210> SEQ ID NO 112
<211> LENGTH: 30
<212> TYPE: RNA
ORGANISM: Artificial Sequence

OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

NAME/KEY: modified_base
LOCATION: (1) ...(30)
OTHER INFORMATION: All pyrimidines are 2'F.

SEQUENCE: 112

gggguauuc agagcugua uacugaccc 30

gagguauua uacagcguag uacgcucuc 36

gagguauua uacagcguag uacgcucu 34
<400> SEQUENCE: 116

ggagguauu aaagagcucg uauagcugua cuucucua 37

<210> SEQ ID NO 117
<211> LENGTH: 30
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(30)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 117

ggagguauu aaagagcucg uauagcugua 30

<210> SEQ ID NO 118
<211> LENGTH: 33
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(33)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 118

ggaggucucu uagcucuguac ucc 33

<210> SEQ ID NO 119
<211> LENGTH: 32
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(32)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 119

agguauuuc aagcucugua uagcucuac cc 32

<210> SEQ ID NO 120
<211> LENGTH: 31
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(31)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 120

gguauuuc aagcucugua agcucuac uc 31

<210> SEQ ID NO 121
<211> LENGTH: 34
<210> SEQ ID NO 122
<211> LENGTH: 60
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

Ala Leu Asp Thr Asn Tyr Cys Phe Ser Ser Thr Glu Asn Cys Cys
1  5  10  15
Val Arg Gln Leu Tyr Ile Asp Phe Arg Lys Asp Leu Gly Trp Lys Trp
20 25 30
Ile His Glu Pro Lys Gly Tyr His Ala Asn Phe Cys Leu Gly Pro Cys
35 40 45
Pro Tyr Ile Trp Ser Leu Asp Thr Gln Tyr Ser Lys
50 55 60

<210> SEQ ID NO 123
<211> LENGTH: 60
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

Ala Leu Asp Ala Ala Tyr Cys Phe Arg Asn Val Gln Asp Asn Cys Cys
1  5  10  15
Leu Arg Pro Leu Tyr Ile Asp Phe Lys Arg Asp Leu Gly Trp Lys Trp
20 25 30
Ile His Glu Pro Lys Gly Tyr Asn Ala Asn Phe Cys Ala Gly Ala Cys
35 40 45
Pro Tyr Leu Trp Ser Ser Asp Thr Gln His Ser Arg
50 55 60

<210> SEQ ID NO 124
<211> LENGTH: 60
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

Ala Leu Asp Thr Asn Tyr Cys Phe Arg Asn Leu Glu Glu Asn Cys Cys
1  5  10  15
Val Arg Pro Leu Tyr Ile Asp Phe Gln Asp Leu Gly Trp Lys Trp
20 25 30
Val His Glu Pro Lys Gly Tyr Tyr Ala Asn Phe Cys Ser Gly Pro Cys
35 40 45

Pro Tyr Leu Arg Ser Ala Asp Thr Thr His Ser Thr
50 55 60

SEQ ID NO 125
LENGTH: 52
TYPE: PRO
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQ ID NO 126
LENGTH: 52
TYPE: PRO
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQ ID NO 127
LENGTH: 52
TYPE: PRO
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<210> SEQ ID NO 128
<211> LENGTH: 58
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(58)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 128
ggagauacg uguagguac agauuguacu cuuguauuug gccagacgac ugcucga

<210> SEQ ID NO 129
<211> LENGTH: 57
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(57)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 129
ggagagacga uggagaauag aauuguac ucuaucugcu uuggcga

<210> SEQ ID NO 130
<211> LENGTH: 44
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(44)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 130
ggagauacg uggagauac aauuguac ucuaucugcu uuggcga

<210> SEQ ID NO 131
<211> LENGTH: 38
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(38)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 131
ggagagagc ggagacg uggagauac aauuguac

<210> SEQ ID NO 132
<211> LENGTH: 35
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
SEQ ID NO 132 LENGTH 32 TYPE RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQ ID NO 133 LENGTH 32 TYPE RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQ ID NO 134 LENGTH 33 TYPE RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQ ID NO 135 LENGTH 27 TYPE RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQ ID NO 136 LENGTH 20 TYPE RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<210> SEQ ID NO 137
<211> LENGTH: 58
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(58)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 137

ggcguuguuu agucguuag uuuauauag uccguuguc cocagac gac g

<210> SEQ ID NO 138
<211> LENGTH: 57
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(57)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 138

gggaggcga ucgggcguug uuuagucguu uguuauauag cuccguu guccca

<210> SEQ ID NO 139
<211> LENGTH: 44
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(44)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 139

ggcguuguuu agucguuag uuuauauag uccguuguc coco

<210> SEQ ID NO 140
<211> LENGTH: 44
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(44)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 140

gggaggcgc guguuauu uguuauauag uccguuguc gcuu

<210> SEQ ID NO 141
<211> LENGTH: 28
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
Sequence

FEATURE:

NAME/KEY: modified_base
LOCATION: (1) . . (29)
OTHER INFORMATION: All pyrimidines are 2'F.

SEQUENCE: 141
gggagcgcc guuguugaa aguccgcuu

SEQ ID NO 142
LENGTH: 38
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:

NAME/KEY: modified_base
LOCATION: (1) . . (33)
OTHER INFORMATION: All pyrimidines are 2'F.

SEQUENCE: 143
gggagcgcc guuguuuaug uauguaua auggccgcuu

SEQ ID NO 144
LENGTH: 42
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:

NAME/KEY: modified_base
LOCATION: (1) . . (38)
OTHER INFORMATION: All pyrimidines are 2'F.

SEQUENCE: 145
gggagcgcc guuguuaug cguuguaua uacuauag gc

SEQ ID NO 146
LENGTH: 38
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:

NAME/KEY: modified_base
LOCATION: (1) . . (38)
OTHER INFORMATION: All pyrimidines are 2'F.
<210> SEQ ID NO 146
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (l). . . (65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 146

<210> SEQ ID NO 147
<211> LENGTH: 64
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (l). . . (64)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 147

<210> SEQ ID NO 148
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (l). . . (65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 148

<210> SEQ ID NO 149
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (l). . . (65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 149
<210> SEQ ID NO 150
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 150
ggagagggga uggugggagga uuauuauaagaa cuuuuccc caagagacug

<210> SEQ ID NO 151
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 151
ggagagggga uggugggagga uuauuauaagaa cuuuuccc caagagacug

<210> SEQ ID NO 152
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 152
ggagagggga ugguggggca uuauuaucacaa cuuuuccc caagagacug

<210> SEQ ID NO 153
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 153
ggagagggga ugguggccgga uuauucacaa guuuuggacct caagagacug

<210> SEQ ID NO 154
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 154
ggagagggga ugguggccgga uuauucacaa guuuuggacct caagagacug
<210> SEQ ID NO 154
LENGTH: 65
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) (65)
OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 154
<br>g gagacga ugcgugug uauaagag aacuguua acaacccc aagacucg 60
<br>cccga 65

<210> SEQ ID NO 155
LENGTH: 65
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) (65)
OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 155
<br>g gagacga ugcgacgug uauaagag aacuguua acaacccc aagacucg 60
<br>cccga 65

<210> SEQ ID NO 156
LENGTH: 65
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) (65)
OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 156
<br>g gagacga ugcgugug uauaagag aacuguua acaacccc aagacucg 60
<br>cccga 65

<210> SEQ ID NO 157
LENGTH: 65
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) (65)
OTHER INFORMATION: All pyrimidines are 2’F.
<400> SEQUENCE: 157
<br>g gagacga ugcgugug uauaagag aacuguua acaacccc aagacucg 60
<210> SEQ ID NO 158
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 158
gggaggacga ugcgggugsa uuauuacaag gucuguusau cuguacocc agacgacucg

ccoa  65

<210> SEQ ID NO 159
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 159
gggaggacga ugcggggcgag uuauuacaag gucuguusag cuguacggc agacgacucg

ccoa  65

<210> SEQ ID NO 160
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 160
gggaggacga ugcggggugag uuauuacaag gucuguusag cugugcccc agacgacucg

ccoa  65

<210> SEQ ID NO 161
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.
<400> SEQUENCE: 161
gggaggacga ugcgggagag uuauuacaag gucuguusag cuguacccag agacgacucg

ccoa  65
<210> SEQ ID NO 162
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 162

ggagagagga uggagggaga uuucaaca guucuacuc guauacaccc agacacucg 60

<210> SEQ ID NO 163
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 163

ggagagagga uggaggggcc uuucaaca guucuacuc guauacaccc agacacucg 60

<210> SEQ ID NO 164
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 164

ggagagagga uggaggggag uuucaacca guuagucuc guuacaccc agacacucg 60

<210> SEQ ID NO 165
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 165

ggagagagga uggagggaga uuucaaca guuagucuc guuacaccc agacacucg 60
<210> SEQ ID NO 166
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 166

ccgca gcgccggag uuuacacgc gcuucuau cguacccc agagacucg

60
ccgca

<210> SEQ ID NO 167
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 167

ccgca gcgccggag uuuacacgc gcuucuau cguacccc agagacucg

60
ccgca

<210> SEQ ID NO 168
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 168

ccgca gcgccggag uuuacacgc gcuucuau cguacccc agagacucg

60
ccgca

<210> SEQ ID NO 169
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<(65)
<223> OTHER INFORMATION: All pyrimidines are 2'F.

<400> SEQUENCE: 169

ccgca gcgccggag uuuacacgc gcuucuau cguacccc agagacucg

60
<210> SEQ ID NO 170
<211> LENGTH: 65
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<65)
<223> OTHER INFORMATION: All pyrimidines are 2’F.

<400> SEQUENCE: 170
ggagggagga gugcggagg uauuauga gucguauac cuauacccc agaagacucg

<210> SEQ ID NO 171
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<34)
<223> OTHER INFORMATION: All pyrimidines are 2’F; a’s and g’s at positions 1-5, 8, 11, 13-16, 20, 22, 24-25, 28 and 30 are 2’OCH3; linkage at positions 34 and 35 is 3’-3’.

<400> SEQUENCE: 171
ggagguauu cacaagucuc uauacguaua cuucc

<210> SEQ ID NO 172
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<34)
<223> OTHER INFORMATION: All pyrimidines are 2’F; a’s and g’s at positions 11, 13-16, 20, 22, 24-25, 28 and 30 are 2’OCH3; linkage at positions 34 and 35 is 3’-3’.

<400> SEQUENCE: 172
ggagguauu cacaagucuc uauacguaua cuucc

<210> SEQ ID NO 173
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..<34)
<223> OTHER INFORMATION: All pyrimidines are 2’F; a’s and g’s at positions 1-4 are 2’OCH3; linkage at positions 34 and 35 is 3’-3’.

<400> SEQUENCE: 173
ggagguuau aucaaguguc uuauagugua cucc

<210> SEQ ID NO 174
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a's and g's at positions 5, 8, and 11 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 174

ggagguuau aucaaguguc uuauagugua cucc

<210> SEQ ID NO 175
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a' and g' at positions 13-16 are 2'--OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 175

ggagguuau aucaaguguc uuauagugua cucc

<210> SEQ ID NO 176
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a's and g's at positions 20, 22 and 24 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 176

ggagguuau aucaaguguc uuauagugua cucc

<210> SEQ ID NO 177
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a's and g's at positions 25, 28 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 177
GGAGGGUGUAAA UCAAUCUGUACUCAUU CUC

<210> SEQ ID NO 178
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; g at position 20 is 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 178
GGAGGGUGUAAA UCAAUCUGUACUCAUU CUC

<210> SEQ ID NO 179
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a at position 22 is 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 179
GGAGGGUGUAAA UCAAUCUGUACUCAUU CUC

<210> SEQ ID NO 180
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a at position 24 is 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 180
GGAGGGUGUAAA UCAAUCUGUACUCAUU CUC

<210> SEQ ID NO 181
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (1)...(34)
<223> OTHER INFORMATION: All pyrimidines are 2'-F; a's and g's at positions 1-5, 8, 11, 25 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 181
GGAGGGUGUAAA UCAAUCUGUACUCAUU CUC
SEQ ID NO 182
LENGTH: 34
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (34)
OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-5, 8, 11, 13-16, 24-25, 28 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

SEQUENCE: 182

SEQ ID NO 183
LENGTH: 34
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (34)
OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-5, 8, 11, 13-16, 20, 24-25, 28 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

SEQUENCE: 183

SEQ ID NO 184
LENGTH: 34
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (34)
OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-5, 8, 11, 13-16, 25, 28 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

SEQUENCE: 184

SEQ ID NO 185
LENGTH: 34
TYPE: RNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (34)
OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-5, 11, 13-16, 25, 28, and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

SEQUENCE: 185
<210> SEQ ID NO 186
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
  <222> LOCATION: (1)..<(34)
  <223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-4, 13-16, 25, 28 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 186

ggagguaauu acaagacug uuaagcugua cuuc

34

<210> SEQ ID NO 187
<211> LENGTH: 33
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
  <222> LOCATION: (1)..<(33)
  <223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-5, 10, 12-15, 24, 27 and 29 are 2'-OCH3; linkage at positions 33 and 34 is 3'-3'.

<400> SEQUENCE: 187

ggagaauuu acaagacug uuaagcuguac ucc

33

<210> SEQ ID NO 188
<211> LENGTH: 32
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
  <222> LOCATION: (1)..<(32)
  <223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 1-4, 10, 12-15, 24, 27 and 29 are 2'-OCH3; linkage at positions 32 and 33 is 3'-3'.

<400> SEQUENCE: 188

ggggauuuu acaagacug uuaagcuguac cc

32

<210> SEQ ID NO 189
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
  <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
  <222> LOCATION: (1)..<(34)
  <223> OTHER INFORMATION: All pyrimidines are 2'F; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 189

ugugaaauu acaagacug uuaagcugua cccc

34

<210> SEQ ID NO 190
Continued...

<210> SEQ ID NO 190
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 2, 4-5, 8, 11, 13-16, 24-25 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 190
ugugaaauu aagaagucug usaugcucua cccc

<210> SEQ ID NO 191
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 2, 4-6, 8, 11-16, 20, 24-25, and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 191
ugugaaauu aagaagucug usaugcucua cccc

<210> SEQ ID NO 192
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 2, 4, 11, 13-16, 25 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 192
ugugaaauu aagaagucug usaugcucua cccc

<210> SEQ ID NO 193
<211> LENGTH: 34
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)..(34)
<223> OTHER INFORMATION: All pyrimidines are 2'F; a's and g's at positions 2, 4-6, 11-16, 25 and 30 are 2'-OCH3; linkage at positions 34 and 35 is 3'-3'.

<400> SEQUENCE: 193
ugugaaauu aagaagucug usaugcucua cccc

<210> SEQ ID NO 194
---continued---

**SEQ ID NO 194**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name/Key</th>
<th>Location</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified base</td>
<td></td>
<td>(1) . . (42)</td>
<td>A's and g's at positions 1-3 and 5 are 2'-OMe.</td>
</tr>
</tbody>
</table>

**Description of Artificial Sequence:** Synthetic Sequence

**SEQ ID NO 195**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name/Key</th>
<th>Location</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified base</td>
<td></td>
<td>(1) . . (42)</td>
<td>A's and g's at positions 12 and 16-18 are 2'-OMe.</td>
</tr>
</tbody>
</table>

**Description of Artificial Sequence:** Synthetic Sequence

**SEQ ID NO 196**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name/Key</th>
<th>Location</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified base</td>
<td></td>
<td>(1) . . (42)</td>
<td>A's and g's at positions 21, 23-24 and 28 are 2'-OMe.</td>
</tr>
</tbody>
</table>

**Description of Artificial Sequence:** Synthetic Sequence

**SEQ ID NO 197**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name/Key</th>
<th>Location</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified base</td>
<td></td>
<td>(1) . . (42)</td>
<td>A's and g's at positions 30-31, 38 and 42 are 2'-OMe.</td>
</tr>
</tbody>
</table>

**Description of Artificial Sequence:** Synthetic Sequence

**SEQ ID NO 198**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name/Key</th>
<th>Location</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified base</td>
<td></td>
<td>(1) . . (42)</td>
<td></td>
</tr>
</tbody>
</table>
**OTHER INFORMATION:** A's and g's at positions 1, 21, 23-24 and 28 are 2'-OMe.

**FEATURE:**

**OTHER INFORMATION:** Description of Artificial Sequence: Synthetic Sequence

**SEQUENCE:** 198

gggugccuuu ugcguagguu guguuuugaaccc uccc cc ca 42

**FEATURE:**

**OTHER INFORMATION:** Description of Artificial Sequence: Synthetic Sequence

**SEQUENCE:** 199

gggugccuuu ugcguagguu guguuuugaaccc uccc cc ca 42

**FEATURE:**

**OTHER INFORMATION:** Description of Artificial Sequence: Synthetic Sequence

**SEQUENCE:** 200

gggugccuuu ugcguagguu guguuuugaaccc uccc cc ca 42

**FEATURE:**

**OTHER INFORMATION:** Description of Artificial Sequence: Synthetic Sequence

**SEQUENCE:** 201

gggugccuuu ugcguagguu guguuuugaaccc uccc cc ca 42
<400> SEQUENCE: 202

ggguugcuccu uggcuagggu guguuugua accuucgcc ca 42

<210> SEQ ID NO 203
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(42)
<223> OTHER INFORMATION: A's and g's at positions 16, 21, 23-24 and 28 are 2'-OMe.

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 203

<210> SEQ ID NO 204
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(42)
<223> OTHER INFORMATION: A's and g's at positions 17, 21, 23-24 and 28 are 2'-OMe.

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 204

<210> SEQ ID NO 205
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(42)
<223> OTHER INFORMATION: A's and g's at positions 18, 21, 23-24, and 28 are 2'-OMe.

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 205

<210> SEQ ID NO 206
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (1)...(42)
<223> OTHER INFORMATION: A's and g's at positions 21, 23-24, 28 and 30 are 2'-OMe.

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 206
--continued--

```
<210> SEQ ID NO 207
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
   <221> NAME/KEY: modified.base
   <222> LOCATION: (1)..<(42)
   <223> OTHER INFORMATION: A's and g's at positions 21, 23-24, 28 and 31 are 2'-OMe.
<220> FEATURE:
   <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 207

ggugccuuu ugccagggg auuguuua gcuucucgc ca
```

```
<210> SEQ ID NO 208
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
   <221> NAME/KEY: modified.base
   <222> LOCATION: (1)..<(42)
   <223> OTHER INFORMATION: A's and g's at positions 21, 23-24, 28 and 38 are 2'-OMe.
<220> FEATURE:
   <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 208

ggugccuuu ugccagggg auuguuua gcuucucgc ca
```

```
<210> SEQ ID NO 209
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
   <221> NAME/KEY: modified.base
   <222> LOCATION: (1)..<(42)
   <223> OTHER INFORMATION: A's and g's at positions 21, 23-24, 28 and 42 are 2'-OMe.
<220> FEATURE:
   <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 209

ggugccuuu ugccagggg auuguuua gcuucucgc ca
```

```
<210> SEQ ID NO 210
<211> LENGTH: 42
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
   <221> NAME/KEY: modified.base
   <222> LOCATION: (1)..<(42)
   <223> OTHER INFORMATION: A's and g's at positions 1-3, 16-18, 21, 23-24, 28, 30-31 and 42 are 2'-OMe; linkage at positions 42 and 43 is 3'-3'.
<220> FEATURE:
   <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

<400> SEQUENCE: 210

ggugccuuu ugccagggg auuguuua gcuucucgc ca
```
SEQ ID NO 211
LENGTH: 42
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (42)
OTHER INFORMATION: A's and g's at positions 1-3, 16-18, 21, 23-24, 28, 30 and 42 are 2'-OMe; linkage at positions 42 and 43 is 3'-3'.

FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQUENCE: 211

gggugccuuu ugccauaggu guguaugugua accuucucca c

SEQ ID NO 212
LENGTH: 41
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (41)
OTHER INFORMATION: A's and g's at positions 1-3, 16-18, 21, 23-24, 28 and 30-31 are 2'-OMe; linkage at positions 41 and 42 are 3'-3'.

FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQUENCE: 212

gggugccuuu ugccauaggu guguaugugua accuucucca c

SEQ ID NO 213
LENGTH: 37
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (37)
OTHER INFORMATION: A's and g's at positions 1-3, 16-18, 21, 23, 25-26 and 37 are 2'-OMe; linkage at positions 37 and 38 is 3'-3'.

FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQUENCE: 213

gggugccuuu ugccauaggu guguaaccu ucugcaca

SEQ ID NO 214
LENGTH: 35
TYPE: RNA
ORGANISM: Artificial Sequence

FEATURE:
NAME/KEY: modified_base
LOCATION: (1) .. (35)
OTHER INFORMATION: A's and g's at positions 1-3, 16-18, 21, 23-24 and 35 are 2'-OMe; linkage at positions 35 and 36 is 3'-3'.

FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic Sequence

SEQUENCE: 214

gggugccuuu ugccauaggu guguaaccu gcucca

SEQ ID NO 215
What is claimed is:

1. A method of inhibiting a transforming growth factor β2 (TGFβ2) comprising contacting said TGFβ2 with a nucleic acid ligand of TGFβ2.

2. The method of claim 1, wherein the nucleic acid ligand of TGFβ2 is a ligand comprising a ligand having a nucleotide sequence selected from the group consisting of SEQ ID NO: 21-87, 89, 91-93, 109, 111, 114-116, 118-121, 129, 131, 138, 140, 144, 146-181, 184-189, 192, and 193.

3. The method of claim 1 wherein said nucleic acid ligand is conjugated to polyethylene glycol (PEG).

4. The method of claim 3 wherein said PEG has a molecular weight of about between 10-80 K.

5. The method of claim 3 wherein said PEG has a molecular weight of about 20-45 K.

6. The method of claim 1 wherein said ligand is

\[ X \text{--PEG, and} \]

LIGAND=GrGrAtGrGrU/UrArU/UrAtAfAtAr-
GrArUfUfUfUfUfUfUfUfCfAfAfArAfAr(
C-3'-3'-dT (SEQ ID NO 115)), wherein rG is 2'OH G, rA is
2'OH A, fU is 2'F U and fC is 2'F C.

7. A method for targeting a nucleic acid ligand to a site in a patient comprising TGFβ2 comprising:

covalently linking said nucleic acid ligand to a Non-
Immunogenic, High Molecular Weight Compound or Lipophilic Compound to form a Complex, and
administering said Complex to said patient, whereby said nucleic acid ligand is targeted to a site in a patient comprising TGFβ2.

8. The method of claim 7, wherein the nucleic acid ligand of TGFβ2 is a ligand comprising a ligand having a nucleotide sequence selected from the group consisting of SEQ ID NO: 21-87, 89, 91-93, 109, 111, 114-116, 118-121, 129, 131, 138, 140, 144, 146-181, 184-189, 192, and 193.

9. The method of claim 7 wherein said nucleic acid ligand is conjugated to polyethylene glycol (PEG).

10. The method of claim 9 wherein said PEG has a molecular weight of about between 10-80 K.

11. The method of claim 9 wherein said PEG has a molecular weight of about 20-45 K.

12. The method of claim 7 wherein said ligand is

\[ X \text{--PEG, and} \]

wherein

X=PEG, and
13. A method for treating a TGFβ2-mediated pathological conditions comprising administering a nucleic acid ligand capable of binding to TGFβ2 to a patient in need thereof.

14. The method of claim 13, wherein the nucleic acid ligand of TGFβ2 is a ligand comprising a ligand having a nucleotide sequence selected from the group consisting of SEQ ID NOs: 21-87, 89, 91-93, 109, 111, 114-116, 118-121, 129, 131, 138, 140, 144, 146-181, 184-189, 192, and 193.

15. The method of claim 13 wherein said nucleic acid ligand is conjugated to polyethylene glycol (PEG).

16. The method of claim 15 wherein said PEG has a molecular weight of about between 10-80 K.

17. The method of claim 15 wherein said PEG has a molecular weight of about 20-45 K.

18. The method of claim 13 wherein said ligand is