
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0233636A1

Crawford

US 2003O233636A1

(43) Pub. Date: Dec. 18, 2003

(54)

(75)

(73)

(21)

(22)

(51)
(52)

DEBUGGER CAUSALITY SYSTEMAND
METHODS

Brian Robert Crawford, Seattle, WA
(US)

Inventor:

Correspondence Address:
WOODCOCKWASHIBURN LLP
ONE LIBERTY PLACE, 46TH FLOOR
1650 MARKET STREET
PHILADELPHIA, PA 19103 (US)

Assignee: Microsoft Corporation

Appl. No.: 10/174,359

Filed: Jun. 18, 2002

Publication Classification

Int. Cl. G06F 9/44; G06F 9/00
U.S. Cl. .. 717/130; 709/108

400

is there a Call ?

Execute Call on
Local Thread, Leave
Local Thread For
Remote Thread if

Required

Return to Local
Thread and
Complete
Processing

460

(57) ABSTRACT

A debugger causality feature is provided. Debugger causal
ity is the ability of a cooperating debugger to associate an
ordered Set of causally related physical threads, possibly
originating from different processes, as a logical thread of
execution. In an illustrative implementation, Systems and
methods are provided allowing for the execution and man
agement of debugger causality within a computing environ
ment. In the contemplated implementation causality hooks
are provided for integration with calls found in Software
operating in a computing environment. The hooks help
attach a cooperating debugger to be able to Step through a
the call executing in the computing environment. The cau
Sality hooks provide the ability to Step between logically
related physical threads executing in a given computing
environment. The physical threads ranging from Single
process, multi-threaded applications to multi-machine,
multi-process Systems. Furthermore, debugger causality
provides the ability to show the relationship between physi
cal threads executing in a given computing environment.

410
420

430 / 440

Enter Remote
Thread, Process
Remote Portion of

Thread

Leave Remote
Thread and Pass
Control to Local

Thread

450

Dec. 18, 2003 Sheet 1 of 5 US 2003/0233636A1 Patent Application Publication

Patent Application Publication Dec. 18, 2003. Sheet 2 of 5 US 2003/0233636A1

Omputing
Application

180a

11Ob

110a - -- - - - - 11 Oc

D Client Computer
Client Computer

Communications
Network 14

10b

Server Computer Server Computer

Computing \
Application

18Ob

Computing
Application

180C

Patent Application Publication Dec. 18, 2003 Sheet 3 of 5

300

320

340

OnSyncCallOut

About To Leave
Controlls

Local Thread
Context

Local
Thread/
Process

OnSyncCallReturn

Control Has
Entered Local
Thread Context

Thread

Remote
Thread/
Process

OnSyncCallEnter

Control Has
Entered Remote

and is About To
Execute User

Code

US 2003/0233636A1

330

Context

310

OnSyncExit

Controlls
About To
Leave
Remote
Thread
Context

Fig

350

ure 3

Patent Application Publication Dec. 18, 2003 Sheet 4 of 5 US 2003/0233636A1

400 1 410
/- 420

is there a Call ? End

430 440

Execute Call on
Local Thread, Leave

local Thread For
Remote Thread if

Required

Enter Remote
Thread, Process
Remote Portion of

Thread

Leave Remote 1 450
Thread and Pass
Control to Local

Thread

Return to Local
Thread and
Complete
Processing

Figure 4

Patent Application Publication Dec. 18, 2003 Sheet 5 of 5 US 2003/0233636A1

500 - -

1° 580 - 530 r 540

Track Local Call Out
For Physical Thread

Enter Thread Pn

More
Threads 2

/ 550 Track Remote Call
Enter For Next

Thread

Track Remote Call
Out for Thread of

Block 450

560

Figure 5

US 2003/0233636A1

DEBUGGER CAUSALITY SYSTEMAND
METHODS

FIELD OF THE INVENTION

0001. This invention relates in general to the field of
causality between logically related points of a computing
environment. More particularly, this invention relates to
identifying and managing causality between various ele
ments of a computing environment when debugging.

BACKGROUND OF THE INVENTION

0002 Efforts surrounding the development of computer
Software are often met with Significant obstacles including
the identification and correction of Software “bugs” (e.g.
errant software code). These “bugs” effect the operation and
intended function(s) of the computer Software and require
Significant expenditure of resources (e.g. time and labor) to
find a correct. The practice of finding “bugs” is known as
Software “debugging”. Debugging takes on many forms,
from the Simple or facile, Such as, manually reviewing
Software code in an effort to find the errant code, to the
complex and automated, wherein another computer appli
cation, known as a debugger, operates on and executes
Software code in a “step by Step’ basis to assist developer in
identifying the bugs.
0003 Currently, debugging applications are equipped to
execute process threads. In operation, the Steps of the
processes are executed on a step-basis So that the proceSS
execution may be observed and subsequently modified if the
proceSS is not executing properly or the process is not
performing the intended function(s)/operations(s). In the
context of a computing environment executing one thread,
current practices are adequate to assist in the detection of
bugs and Serve developerS and administrators, alike, in
correcting outstanding execution, function, and/or operation
problems.
0004. However, current practices do not generally allow
for the debugging of logically related processing threads that
range from Single process, multi-thread applications to
multi-machine, multi-process Systems. Specifically, current
practices do not contemplate Stepping between logically
related physical threads and/or do not provide the ability to
show the relationship (e.g. in the form of the call Stack)
between physical threads. With these added abilities, more
complicated multi-process, multi-thread environments may
be more easily debugged.
0005 From the foregoing, it is appreciated that there
exists a need for a System and methods that ameliorate the
Shortcomings of existing practices.

SUMMARY

0006 The system and methods of the present invention
disclose an implementation of debugger causality, that is, the
ability to track causal relationships between physical threads
of execution in a running System. In an illustrative imple
mentation, pre-defined code Segments known as "hooks' are
attached throughout Software code to identify when one or
more portions of the Software code perform a call (e.g. a
function call, an API call, Server query, etc.). In the con
templated implementation the hooks are provided as a pair
Such that there is a beginning hook and an ending hook. The

Dec. 18, 2003

beginning hook identifies the portion or portions of Software
code that initiate a given call and the ending hook identifies
where in the Software code the destination of the given call.
Furthermore, the hooks are Seamlessly integrated within the
Software code to not affect the underlying operation of the
Software code itself.

0007. In operation, Software code is populated with
debugger causality hooks at the appropriate portion or
portions acroSS one or more processing threads. During
debugging, a cooperating debugger tracking the execution of
the Software code (e.g. Software code may be executed by a
computing environment operating System, interpreter, Vir
tual machine, runtime, etc.) recognizes the causality hooks
and proceeds to execute the call along the process thread to
indicate to whomever is debugging the exact nature and
location of each call. Further, in the contemplated imple
mentation of the Systems and methods described herein, the
execution causality hooks may be tracked and logged by a
cooperating debugger as part of debugging in an effort to
identify the problematic area or areas of the process
thread(s).
0008 Another aspect of the invention contemplates the
use of causality hooks to visualize the logical chain of
execution acroSS a thread boundary. This ability assists
developerS and administrators to determine if one or more
intended functions and/or operations are being realized by
the Software/System.

0009 Additional features and advantages of the inven
tion will be made apparent from the following detailed
description of illustrative embodiments that proceeds with
reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The foregoing summary, as well as the following
detailed description of preferred embodiments, is better
understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there
is shown in the drawings exemplary constructions of the
invention; however, the invention is not limited to the
Specific methods and instrumentalities disclosed. In the
drawings:

0011 FIG. 1 is a block diagram showing an exemplary
computing environment for use by the Systems and methods
described herein;

0012 FIG. 2 is a block diagram showing an exemplary
computer network environment for use by the Systems and
methods described herein;

0013 FIG. 3 is a block diagram showing the interaction
of exemplary components operating in a an exemplary
computer network environment;

0014 FIG. 4 is a flow diagram showing the processing
performed when performing debugging causality; and

0015 FIG. 5 is a flow diagram showing the processing
performed when showing the call Stack between cooperating
elements of an exemplary Software application.

US 2003/0233636A1

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE IMPLEMENTATION

0016 Overview
0017 Generally, debugger causality is the ability to track
the causal relationships between physical threads of execu
tion in a running System. These relationships allow the
“debugger” (e.g. Software developer, debugging computing
application) to show the logical thread of execution across
physical threads, processes, and machines. Furthermore,
debugger causality allows the reconstruction of the call Stack
(e.g. function calls in a computer Software application) of
that logical thread at any given point in the threads lifetime.
In operation, debugger causality allows for the Stepping
between logically related physical threads by providing
hooks for remoting Services. In operation, when the hook is
notified that an outgoing call is occurring, and the partici
pating user operating a debugger has indicated to Step the
call, the debugger causality of the Systems and methods
described herein provides enough information to the remot
ing Service to piggy-back with the call to attach the debugger
to the receiver of the call and Step to the receiving function.
0.018 Debugger causality also provides the ability to
show the relationship between physical threads by building
transition notification to track and Store the relationships
between physical threads. Each logical thread of execution
is assigned a causality identifier that is used for all its
transitions acroSS physical threads. This causality identifier
along with the order of each transition and Some Stack
information, is used to collect all causally related physical
threads, order them, and extract the relevant parts of each
physical threads call Stack to provide a logical call Stack.
0.019 Exemplary Computing Environment
0020 FIG. 1 illustrates an example of a suitable com
puting system environment 100 in which the invention may
be implemented. The computing system environment 100 is
only one example of a Suitable computing environment and
is not intended to Suggest any limitation as to the Scope of
use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary operating
environment 100.

0021. The invention is operational with numerous other
general purpose or Special purpose computing System envi
ronments or configurations. Examples of well known com
puting Systems, environments, and/or configurations that
may be suitable for use with the invention include, but are
not limited to, personal computers, Server computers, hand
held or laptop devices, multiprocessor Systems, micropro
ceSSor-based Systems, Set top boxes, programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above Systems or devices, and the like.
0022. The invention may be described in the general
context of computer-executable instructions, Such as pro
gram modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data Structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that

Dec. 18, 2003

are linked through a communications network or other data
transmission medium. In a distributed computing environ
ment, program modules and other data may be located in
both local and remote computer Storage media including
memory Storage devices.

0023. With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a computer 110. Compo
nents of computer 110 may include, but are not limited to,
a processing unit 120, a System memory 130, and a System
buS 121 that couples various System components including
the System memory to the processing unit 120. The System
bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec
tures. By way of example, and not limitation, Such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus).
0024 Computer 110 typically includes a variety of com
puter readable media. Computer readable media can be any
available media that can be accessed by computer 110 and
includes both volatile and non-volatile media, removable
and non-removable media. By way of example, and not
limitation, computer readable media may comprise com
puter Storage media and communication media. Computer
storage media includes both volatile and non-volatile,
removable and non-removable media implemented in any
method or technology for Storage of information Such as
computer readable instructions, data Structures, program
modules or other data. Computer Storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk Storage or other magnetic
Storage devices, or any other medium which can be used to
Store the desired information and which can accessed by
computer 110. Communication media typically embodies
computer readable instructions, data Structures, program
modules or other data in a modulated data Signal Such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term "modulated data Sig
nal” means a Signal that has one or more of its characteristics
Set or changed in Such a manner as to encode information in
the Signal. By way of example, and not limitation, commu
nication media includes wired media Such as a wired net
work or direct-wired connection, and wireleSS media Such as
acoustic, RF, infrared and other wireleSS media. Combina
tions of any of the above should also be included within the
Scope of computer readable media.

0025 The system memory 130 includes computer stor
age media in the form of Volatile and/or non-volatile
memory such as ROM 131 and RAM 132. A basic input/
output system 133 (BIOS), containing the basic routines that
help to transfer information between elements within com
puter 110, such as during start-up, is typically stored in ROM
131. RAM 132 typically contains data and/or program
modules that are immediately accessible to and/or presently
being operated on by processing unit 120. By way of
example, and not limitation, FIG. 1 illustrates operating

US 2003/0233636A1

System 134, application programs 135, other program mod
ules 136, and program data 137.

0026. The computer 110 may also include other remov
able/non-removable, Volatile/non-volatile computer Storage
media. By way of example only, FIG. 1 illustrates a hard
disk drive 140 that reads from or writes to non-removable,
non-volatile magnetic media, a magnetic disk drive 151 that
reads from or writes to a removable, non-volatile magnetic
disk 152, and an optical disk drive 155 that reads from or
writes to a removable, non-volatile optical disk 156, such as
a CD-ROM or other optical media. Other removable/non
removable, Volatile/non-volatile computer Storage media
that can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital Video tape,
Solid state RAM, Solid state ROM, and the like. The hard
disk drive 141 is typically connected to the system bus 121
through a non-removable memory interface Such as interface
140, and magnetic disk drive 151 and optical disk drive 155
are typically connected to the System buS 121 by a remov
able memory interface, such as interface 150.

0027. The drives and their associated computer storage
media, discussed above and illustrated in FIG. 1, provide
Storage of computer readable instructions, data Structures,
program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is illustrated as
Storing operating System 144, application programs 145,
other program modules 146, and program data 147. Note
that these components can either be the same as or different
from operating System 134, application programs 135, other
program modules 136, and program data 137. Operating
System 144, application programs 145, other program mod
ules 146, and program data 147 are given different numbers
here to illustrate that, at a minimum, they are different
copies. A user may enter commands and information into the
computer 20 through input devices such as a keyboard 162
and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, Satellite dish,
Scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input
interface 160 that is coupled to the system bus, but may be
connected by other interface and bus structures, Such as a
parallel port, game port or a universal Serial bus (USB). A
monitor 191 or other type of display device is also connected
to the System buS 121 via an interface, Such as a video
interface 190. In addition to the monitor, computers may
also include other peripheral output devices Such as Speakers
197 and printer 196, which may be connected through an
output peripheral interface 190.

0028. The computer 110 may operate in a networked
environment using logical connections to one or more
remote computers, Such as a remote computer 180. The
remote computer 180 may be a personal computer, a Server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 110,
although only a memory Storage device 181 has been
illustrated in FIG. 1. The logical connections depicted
include a local area network (LAN) 171 and a wide area
network (WAN) 173, but may also include other networks.

Dec. 18, 2003

Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Inter
net.

0029 When used in a LAN networking environment, the
computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, Such as the Internet.
The modem 172, which may be internal or external, may be
connected to the System buS 121 via the user input interface
160, or other appropriate mechanism. In a networked envi
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory Storage device. By way of example, and not limi
tation, FIG. 1 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computerS may be used.
0030 The present invention pertains to any computer
System having any number of memory or Storage units, and
any number of applications and processes occurring acroSS
any number of Storage units or Volumes. The present inven
tion may apply to an environment with Server computers and
client computerS deployed in a network environment, having
remote or local Storage. The present invention may also
apply to a Standalone computing device, having access to
appropriate classification data.
0031 FIG. 2 illustrates an exemplary network environ
ment, with a server in communication with client computers
via a network, in which the present invention may be
employed. As shown, a number of servers 10a, 10b, etc., are
interconnected via a communications network 14, which
may be a LAN, WAN, intranet, the Internet, etc., with a
number of client or remote computing devices 110a, 110b,
110c, etc., Such as a portable computer, handheld computer
17, mobile telephone 15, thin client, networked appliance, or
other device, Such as a VCR, TV, and the like in accordance
with the present invention. It is thus contemplated that the
present invention may apply to any computing device in
connection with which it is desirable to provide classifica
tion Services for different types of content Such as music,
Video, other audio, etc. In a network environment in which
the communications network 14 is the Internet, for example,
the servers 10 can be Web servers with which the clients
110a, 110b, 110c, etc. communicate via any of a number of
known protocols Such as hypertext transfer protocol
(HTTP). Communications may be wired or wireless, where
appropriate. Client devices 110 may or may not communi
cate via communications network 14, and may have inde
pendent communications associated therewith. For example,
in the case of a TV or VCR, there may or may not be a
networked aspect to the control thereof. Each client com
puter 110 and server computer 10 may be equipped with
various application program modules 180 and with connec
tions or access to various types of Storage elements or
objects, acroSS which files may be Stored or to which
portion(s) of files may be downloaded or migrated. Any
server 10a, 10b, etc. may be responsible for the maintenance
and updating of a database (not shown) in accordance with
the Systems and methods described herein, Such as a data
base (not shown) for storing classification information,

US 2003/0233636A1

music and/or Software incident thereto. Thus, the present
invention can be utilized in a computer network environ
ment having client computers 110a, 110b, etc. for accessing
and interacting with a communications network 14 and
server computers 10a, 10b, etc. for interacting with client
computers 110a, 110b, etc. and other devices 15 and 17 and
databases (not shown).
0.032 Generally, communications network 14 comprises
any of a wireless LAN, a fixed wire LAN, a wireless WAN,
a fixed wire WAN, a wireless intranet, a fixed wire intranet,
a wireleSS eXtranet, a fixed wire extranet, a wireleSS peer
to-peer communications network, a fixed wire peer-to-peer
communications network, the wireleSS Internet, and the
Internet.

0.033 Exemplary Distributed Computing Frameworks or
Architectures

0034 Various distributed computing frameworks have
been and are being developed in light of the convergence of
personal computing and the Internet. Individuals and busi
neSS users alike are provided with a Seamlessly interoperable
and web-enabled interface for applications and computing
devices, making computing activities increasingly web
browser or network-oriented.

0035). For example, MICROSOFT(R)'s .NET platform
includes Servers, building-block Services, Such as Web
based data Storage and downloadable device Software. Gen
erally speaking, the .NET platform provides (1) the ability to
make the entire range of computing devices work together
and to have user information automatically updated and
Synchronized on all of them, (2) increased interactive capa
bility for Web sites, enabled by greater use of XML rather
than HTML, (3) online services that feature customized
access and delivery of products and Services to the user from
a central Starting point for the management of various
applications, Such as e-mail, for example, or Software, Such
as Office .NET, (4) centralized data storage, which will
increase efficiency and ease of access to information, as well
as Synchronization of information among users and devices,
(5) the ability to integrate various communications media,
Such as e-mail, faxes, and telephones, (6) for developers, the
ability to create reusable modules, thereby increasing pro
ductivity and reducing the number of programming errors,
and (7) many other cross-platform integration features as
well.

0.036 While exemplary embodiments herein are
described in connection with Software residing on a com
puting device, one or more portions of the invention may
also be implemented via an operating System, application
programming interface (API) or a "middle man” object
between a coprocessor and requesting object, Such that
Services may be performed by, Supported in, or accessed via
all of .NET's languages and Services, and in other distrib
uted computing frameworks as well.
0037 Debugger Causality Implementation
0.038 Generally, debugger causality is the ability to track
the causal relationships between physical threads, possibly
from different processes, of execution in a running System.
In operation, debugger causality may be divided into various
levels of causality. For example, a first level may contem
plate the ability to auto-attach and Step in. In this imple
mentation, the causality provides no logical Stack between

Dec. 18, 2003

physical threads, processes, or machines, but does provide
the ability to Step from one physical thread into another and
auto-attach a cooperating debugger to the destination pro
ceSS, if the cooperating debugger is not already attached. A
Second level may contemplate the ability to track the cau
Sality on a Step in. Building on the previously described
level, the System tracks the causal relationship when Step
ping acroSS physical threads, processes, or machines and
provides a logical call Stack of these relationships. A third
level may contemplate tracking causality acroSS all compo
nents in the debugging Session. Where the Second described
level only provides causality when Stepping, the third level
provides causality for all transitions between components
that are part of the debugging Session. Whenever the debug
ger Stops at a breakpoint or exception, the debugger can
provide a logical thread and call Stack within the compo
nents being debugged. A fourth level contemplates to track
causality acroSS all components in the running System. At the
highest level of causality, every transition between every
component of the running System (whether or not it's being
debugged) would be tracked. At any point, a debugger can
be attached to any part of the running System and a logical
thread call Stack view can be obtained acroSS all components
in the running System.

0039. It is appreciated that although four levels of cau
Sality are herein described, that the inventive concepts of the
Systems and methods described herein are not exclusively
limited to these levels as they are merely offered as illus
trations of varying implementations of the present invention.

0040. In an illustrative implementation, debugger causal
ity operation places a requirement that a remoting Service to
notify the debugger of transitions that occur between com
ponents. In the contemplated implementation, there may be
four transitions that a cooperating debugger requires for
tracking causality. These transitions include but are not
limited to when the call leaves the local thread; when the call
enters a remote thread; when the call returns from the remote
thread; and when the call returns back to the local thread.
Additionally, in a particular implementation it might be
required that the remoting Service to allow the debugger to
piggy-back information on the calls between the local and
remote threads (e.g. client and server).
0041. The implementation of the notifications from the
remoting Service to the cooperating debugger occurs as
follows. First, the remoting service instantiates the Notify
Connection coclass and gets an INotifyConnection2 inter
face. It then calls
INotifyConnection2::RegisterNotifySource to get an INoti
fySink2 interface where it can notify the cooperating debug
ger of the four transitions. When each of the transitions
occur, the remoting Service calls the appropriate method on
INotifySink2 to notify the debugger of the transition:
OnSyncCallOut, OnSyncCallenter, OnSyncCallixit, and
OnSyncCallReturn. When either OnSyncCallOut or OnSyn
cCallBXit is called, the cooperating debugger can provide a
buffer of data to be piggy-backed along with the call. When
either OnSyncCallenter or OnSyncCallReturn is called, the
remoting Service passes the buffer of data from the call to the
debugger.

0042. Once the cooperating debugger is notified of the
four transition points between client and Server, it can
proceed to perform the operations of debugger causality:

US 2003/0233636A1

Stepping between logically related physical threads, and
displaying the logical call Stack for these related threads.
0043. As shown in FIG. 3, debugger causality may be
performed across two process/threads (local thread 300 and
remote thread 310) operating remotely from each other. To
perform Stepping between logically related physical threads,
the remoting Service and debugger perform the following
operations. Before the outgoing call leaves the client, the
remoting service calls the debugger via OnSyncCallOut 320.
The debugger creates a buffer that describes the source of the
call, a causality identifier (if this is the first outgoing call
made on this thread, then a new causality identifier is
created; otherwise, the causality identifier received from a
previous OnSyncCallenter 330 is used), and some informa
tion about the current user action (i.e. whether the user is
stepping the call or not). The buffer is returned to the
remoting Service and the remoting Service piggy-backs the
buffer along with the call to the server. Before the remote
thread dispatches the call, the remoting Service will call
OnSyncCallenter 330 and pass the buffer to the debugger.
The cooperating debugger will use the information in the
buffer to attach to the remote process, if not already attached
and determine if the user action was to Step the call and
perform a step into the call on the remote process. This
process of Stepping from local thread to remote thread can
be chained together (e.g. an exemplary client A can call
exemplary server B, exemplary client (that was the exem
plary server B) B can call exemplary server C, etc.). Step
ping back from remote threads to local threads is performed
in a similar manner. The remoting Service will call OnSyn
cCallexit 350 before the call returns back to the client.
Again, the cooperating debugger will create a buffer that
describes the Source of the returning call, the causality
identifier, and information about the current user action. The
remoting Service will piggy-back this buffer on the returning
call and call OnSyncCallReturn (giving the debugger the
buffer) before dispatching the returning call in the client.
The debugger will use the information in the buffer to
complete the Step in the client.
0044) Comparatively, to build and display a logical call
Stack that shows the relationship between causally related
physical threads, the cooperating debugger performs the
following operations. AS the remoting Service notifies the
cooperating debugger of each transition, the cooperating
debugger maintains a Stack of “causality packets' for each
logical thread that describe the transitions between physical
threads and information Such as the type of the transition
point, context about the physical thread (thread, process,
machine, etc.), and call Stack information. Causality packets
are pushed and popped from this Stack depending on the type
of transitions that occur on the physical threads that make up
this logical thread. Specifically, OnSyncCallOut 320 and
OnSyncCallEnter 330 push causality packets (not shown) on
the stack; OnSyncCallExit 350 and OnSyncCallReturn 360
pop causality packets (not shown) from the Stack. New
causality identifiers are only ever created when OnSync
CallOut 320 is received by the cooperating debugger. The
decision about whether to create a new causality identifier or
use an existing one (stated differently, when a new logical
thread is created or added to) is made using the following
exemplary algorithm.
0.045 Specifically, a new causality identifier is assigned

(i.e. a new logical thread is created) when the physical thread

Dec. 18, 2003

identified in OnSyncCallOut 320 is not part of an OnSyn
cCallEnter 330 causality packet (not shown) on the top of
any of the logical threads causality Stacks. The causality
identifier is maintained when the physical thread identified
in OnSyncCallOut 320 is part of an OnSyncCallEnter 330
causality packet on the top of one of the logical threads
causality Stacks. To build and display a logical call Stack, the
cooperating debugger Simply traverses the causality Stack
for a particular logical thread, extracts the portion of each
physical thread's call Stack identified by each causality
packet and merges the results together in the order from the
causality Stack.

0046. It is understood that although an exemplary process
has been described to realize the call Stack tracking opera
tion of debugger causality, that Such proceSS is merely
exemplary and the inventive concepts described herein are
not limited by Such example. Rather, the present invention
contemplates various processes having modifiable Steps for
performing call Stack tracking.

0047 FIG. 4 shows the processing performed when
performing the Stepping operation of debugger causality. AS
shown, processing begins at block 400 and proceeds to block
410 where a check is performed to see if a call by a thread
has been made. If there is not call processing terminates at
block 420. However if at block 410 it is determined that a
call has been made, processing proceeds to block 430 where
the call is executed on the local thread and the local thread
is left if one ore more operations on a remote thread is
required. From there, processing proceeds to block 440
where the remote thread is entered and the remote thread
portions are executed. Processing then proceeds to block
450 where the remote thread is left and control is passed
back to the local thread. From there, processing proceeds to
block 460 where the local thread is returned to and process
ing of the local thread is completed. Processing then reverts
to block 410 and proceeds there from.
0048 FIG. 5 shows the processing performed when
performing the call Stack display of debugger causality. AS
shown, processing begins at block 500 and proceeds to block
510 where a check is performed to determine if a call has
been made. If a call has not been made processing terminates
at block 580. If however, it is determined at block 510 that
a call has been made, processing proceeds to block 530
where the first thread is entered into (e.g. the thread of an
exemplary client computer A is entered). Processing pro
ceeds to block 540 where the local thread to a remote thread
is tracked. Subsequently, the remote thread entering event is
tracked at block 550 and the calling out of the remote thread
is tracked at block 560. A check is then performed at block
570 to determine if any additional threads/processes need to
be tracked. If there are processing reverts to block 540 and
proceeds there from. However, if no more threads/processes
requiring tracking processing terminates at block 580.

0049. As mentioned above, while illustrative implemen
tations of the Systems and methods described herein have
been described in connection with various computing
devices and network architectures, the underlying concepts
may be applied to any computing device or System in which
it is desirable to perform and execute debugger causality.
Thus, the techniques for debugger causality in accordance
with the systems and methods described herein may be
applied to a variety of applications and devices. While

US 2003/0233636A1

exemplary programming languages, names and examples
are chosen herein as representative of various choices, these
languages, names and examples are not intended to be
limiting.

0050. The various techniques described herein may be
implemented in connection with hardware or Software or,
where appropriate, with a combination of both. Thus, the
methods and apparatus of the present invention, or certain
aspects or portions thereof, may take the form of program
code (i.e., instructions) embodied in tangible media, Such as
floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable Storage medium, wherein, when the pro
gram code is loaded into and executed by a machine, Such
as a computer, the machine becomes an apparatus for
practicing the invention. In the case of program code execu
tion on programmable computers, the computing device will
generally include a processor, and a storage medium read
able by the processor (including volatile and non-volatile
memory and/or storage elements). One or more programs
that may utilize the web page content protection aspects of
the present invention, e.g., through the use of a data pro
cessing API or the like, are preferably implemented in a high
level procedural or object oriented programming language to
communicate with a computer System. However, the pro
gram(s) can be implemented in assembly or machine lan
guage, if desired. In any case, the language may be a
compiled or interpreted language, and combined with hard
ware implementations.
0051. The methods and apparatus of the present invention
may also be practiced via communications embodied in the
form of program code that is transmitted over Some trans
mission medium, Such as over electrical wiring or cabling,
through fiber optics, or via any other form of transmission,
wherein, when the program code is received and loaded into
and executed by a machine, Such as an EPROM, a gate array,
a programmable logic device (PLD), a client computer, a
Video recorder or the like, or a receiving machine having the
content protection capabilities as described in exemplary
embodiments above becomes an apparatus for practicing the
invention. When implemented on a general-purpose proces
Sor, the program code combines with the processor to
provide a unique apparatus that operates to invoke the
functionality of the present invention. Additionally, any
Storage techniques used in connection with the present
invention may invariably be a combination of hardware and
Software.

0.052 While the present invention has been described in
connection with the illustrative implementations of the Vari
ous figures, it is to be understood that other similar imple
mentations may be used or modifications and additions may
be made to the described embodiment for performing the
Same function of the present invention without deviating
therefrom. For example, while exemplary network environi
ments of the invention are described in the context of a
networked environment, Such as a peer to peer networked
environment, one skilled in the art will recognize that the
present invention is not limited thereto, and that the meth
ods, as described in the present application may apply to any
computing device or environment, Such as a gaming con
Sole, handheld computer, portable computer, etc., whether
wired or wireless, and may be applied to any number of Such
computing devices connected via a communications net
work, and interacting acroSS the network. Furthermore, it

Dec. 18, 2003

should be emphasized that a variety of computer platforms,
including handheld device operating Systems and other
application Specific operating Systems are contemplated,
especially as the number of wireleSS networked devices
continues to proliferate. Still further, the Systems and meth
ods described herein may be implemented in or acroSS a
plurality of processing chips or devices, and Storage may
similarly be effected across a plurality of devices. Therefore,
the systems and methods described herein should not be
limited to any Single implementation, but rather should be
construed in breadth and Scope in accordance with the
appended claims.

What is claimed is:
1. A System providing debugging causality operating in a

computing environment comprising,
at least two Software hooks, Said Software hooks operating

on calls within Software code that indicate the origina
tion of the call and the call destination; and

a means for interpreting Said Software hooks at run time
of Said Software to Step through Said calls irrespective
of where the calls originate and terminate in Said
computing environment.

2. The System as recited in claim 1, wherein Said Software
hooks provide data comprising any of the origination of the
call, the destination of the call, Steps to perform to jump back
and forth between the origination of the call and the desti
nation of the call.

3. The System as recited in claim 1, wherein said means
for interpreting Said Software comprises a debugger com
puting application.

4. The System as recited in claim 1, wherein Said Software
hooks are integrated within Said Software code.

5. The system as recited in claim 4, wherein said software
hooks do not interfere with the operations of said software
code.

6. The System as recited in claim 1, wherein Said Software
hooks comprise Software code.

7. The system as recited in claim 1, wherein said software
code comprises any of a single proceSS-multi-threaded com
puting application and multi-machine-multi-proceSS com
puting application.

8. The System as recited in claim 7, wherein Said debugger
causality provides Stepping between logically related physi
cal threads and/or showing the relationship between physical
threads.

9. The system as recited in claim 1, wherein said hooks
cooperate with remoting Services operating in remote com
puting environments using a communications network.

10. A method to follow calls between logically related
physical threads, comprising the Steps of,

providing hooks for remoting Services, Said hooks pro
viding information to cooperating debuggerS as to the
manner of attaching to at least one call of Said logically
related physical threads, and

interpreting and executing Said hooks by Said cooperating
debuggers to Step through Said at least one call of Said
logically related physical threads.

11. The method as recited in claim 10, further comprising
integrating Said hooks with Said at least one call of Said
logically related physical threads.

US 2003/0233636A1

12. A computer readable medium having computer read
able instructions to instruct a computer to perform the
method of claim 10.

13. A method to illustrate the logical connection of
physical threads of a computing environment comprising the
Steps of,

providing hooks for remoting Services, Said hooks pro
Viding information to cooperating debuggerS as to the
manner of attaching to at least one call of Said logically
related physical threads,

interpreting and executing Said hooks by Said cooperating
debuggers to Step through Said at least one call;

asSociating a causality identifier that indicated the transi
tion of at least one call acroSS one more physical
threads, and

track the causality identifiers when debugging Said at least
one call by Said cooperating debuggers to provide a
logical call Stack.

14. A computer readable medium having computer read
able instructions to instruct a computer to perform the
method of claim 13.

15. A method providing debugger causality for calls
executing acroSS a plurality of physical process threads
comprising the Steps of,

notifying a cooperating debugger of call transitions,
wherein call transitions comprise any of when a call
leaves an originating thread, when call enters a desti
nation thread, when the call returns from the destina
tion thread, and when the call returns back to the
originating thread;

creating a buffer to describe the Source of the call, a
causality identifier, and the function of the cooperating
debugger,

passing the created buffer to a remoting Service which
piggy-backs the buffer and the call to the destination
thread; and

passing the buffer to the cooperating debugger, wherein
the debugger uses the information in the buffer to attach
the destination thread and to execute the portions of the
originating and destination threads.

16. The method as recited in claim 15, further comprising
creating a Second buffer for use by the debugger when
returning from the destination thread to the originating
thread.

Dec. 18, 2003

17. The method as recited in claim 15, wherein the
remoting Service monitors the passing back and forth of
control from origination points and destination points of the
call, wherein Said origination points of the call originating
on a client computing device, and Said destination points of
the call operating on at least one Server computing device.

18. A method to build a logical stack showing the rela
tionship between causally related physical threads compris
ing the Steps of,

monitoring transitions from a remoting Service by a
debugger application, wherein Said transitions are
offered by following hooks associated with at least one
call operating between a plurality of physical threads,

Storing causality packet Stacks by the debugger for each
logical thread, wherein Said Stack comprises informa
tion indicative of any of descriptions about the tran
Sitions between physical threads, transition point infor
mation, context about the physical thread, and Stack
information; and

updating the causality packet Stacks by adding or deleting
causality packets dependent on the transitions.

19. The method as recited in claim 18, further comprising
displaying the causality packets by the debugger to partici
pating users.

20. A computer readable medium having computer read
able instructions to instruct a computer to perform the
method of claim 18.

21. A computer readable medium having computer read
able instructions to instruct a computer to perform the Steps
of,

integrating hooks with Software code for association to at
least one call, Said hook providing information indica
tive of the calls origination and destination; and

executing a debugger computing application on Said Soft
ware code, Said debugger computing application inter
preting and processing Said hooks to Show the logical
connection between points of the call.

22. The computer readable medium as recited in claim 21,
further comprising Storing information about the logical
connection of the points of the call at run time.

