(54) 发明名称
一种基于光学图像重构的尖刃金刚石刀具旋转对心方法

(57) 摘要
一种基于光学图像重构的尖刃金刚石刀具旋转对心方法，涉及超精密切削加工方法，解决了目前缺少对金刚石刀具的刀尖无损伤的旋转对心方法的问题，它包括具体步骤如下：步骤一、将 CCD 光学成像装置设置在尖刃金刚石刀具的正上方，CCD 光学成像装置放大倍数为 15～25 倍；步骤二、CCD 光学成像装置对尖刃金刚石刀具的刀尖区域进行成像。对获得的光学图像建立坐标系 X0Z，A 点处的坐标 (x₁, z₁)，轴心为 P(x, z) 点；步骤三、获得 B 点处的坐标 (x₂, z₂)；步骤四、根据步骤二和步骤三获得的两幅光学图像获得坐标差值：Δ₁ = x₂ - x₁, Δ₂ = z₂ - z₁；步骤五调整刀具靠近 P 点。用于金刚石刀具的刀尖无损伤对心。
1. 一种基于光学图像重构的尖刀金刚石刀具旋转对心方法，其特征是它包括具体步骤如下：

步骤一，将 CCD 光学成像装置（7）设置在尖刀金刚石刀具（8）的正上方，所述尖刀金刚石刀具（8）通过刀具夹具（9）固定在四轴联动超精密车削机床上的旋转工作台（6）上，CCD 光学成像装置（7）至少有两种放大倍数，其中一种放大倍数为 15 ～ 25 倍，另一种放大倍数为 200 倍以上，CCD 光学成像装置（7）放大倍数为 15 ～ 25 倍；

步骤二，CCD 光学成像装置（7）对尖刀金刚石刀具（8）的刀尖区域进行成像，在获得的光学图像上建立二维平面坐标系 ñ O x ñ z ，获得图像中刀尖所在位置 A 点处的坐标为 (x1, z1) ，设旋转工作台（6）的轴心 P 点的坐标为 (x, z) ；

步骤三，使旋转工作台（6）沿顺时针方向旋转角度 α，CCD 光学成像装置（7）对尖刀金刚石刀具（8）的刀尖区域再次成像，获得光学图像中刀尖所在位置 B 点处的坐标 (x2, z2) ；

步骤四，根据步骤二和步骤三获得的两幅光学图像获得的 A 点和 B 点的坐标，求得 P 点坐标值；由 B 点与 P 点的坐标值相减，最终得到当前尖刀金刚石刀具（8）的刀尖点位置 B 与旋转轴心 P 之间的坐标差值：Δ1 = x2 - x，Δ2 = z2 - z ；

步骤五，根据步骤四获得的坐标差值，通过刀具夹具（9）调整尖刀金刚石刀具（8）的位置使其靠近旋转轴心 P ，完成对心操作。

2. 根据权利要求 1 所述一种基于光学图像重构的尖刀金刚石刀具旋转对心方法，其特征在于所述基于光学图像重构的尖刀金刚石刀具旋转对心方法还包括以下步骤：将 CCD 光学成像装置（7）调为 200 倍以上的放大倍数，重复步骤二、步骤三和步骤四，再一次调整尖刀金刚石刀具（8）的位置，完成对心操作。

3. 根据权利要求 1 所述一种基于光学图像重构的尖刀金刚石刀具旋转对心方法，其特征在于步骤四所述的求得 P 点坐标值的具体过程为：以旋转轴心 P 点向直线段 AB 作垂线，垂足为 C 点，通过旋转偏差所形成的几何关系，可得：

\[
\begin{align*}
 r^2 &= (x_1 - x)^2 + (z_1 - z)^2 \quad (1-1) \\
 r'^2 &= (x_2 - x)^2 + (z_2 - z)^2 \quad (1-2) \\
 l^2 &= (x_1 - x_2)^2 + (z_1 - z_2)^2 \quad (1-3) \\
 \sin \frac{\alpha}{2} &= \frac{l}{2r} \quad (1-4)
\end{align*}
\]

式中 r 是尖刀金刚石刀具（8）随旋转工作台（6）旋转摆动的半径，l 是直线段 AB 长度，解上述方程组获得 P 点坐标值 (x, z) 。

4. 根据权利要求 1 所述一种基于光学图像重构的尖刀金刚石刀具旋转对心方法，其特征在于：步骤五中通过刀具夹具（9）调整尖刀金刚石刀具（8）的位置使其靠近旋转轴心 P 的过程为：根据坐标差 Δ1 在 X 轴方向调整尖刀金刚石刀具（8），再根据坐标差 Δ2 在 Z 轴方向调整尖刀金刚石刀具（8）。
一种基于光学图像重构的尖刃金刚石刀具旋转对心方法

技术领域
[0001] 本发明涉及超精密切削加工方法。

背景技术
[0002] 目前先进的四轴联动超精密切削机床还集成有旋转工作台6，如图1中所示的X导轨2、主轴4、旋转工作台6及Z导轨10等，机床主轴4安装在主轴座3上，在X导轨2的带动下使得机床主轴4和加工工件5沿着垂直于主轴轴线的方向运动。在Z导轨10的带动下，安装在其上面的旋转工作台6，尖刃金刚石刀具8以及刀具夹具9沿着平行于主轴轴线的方向靠近或者远离工件移动，旋转工作台6带动刀具在XZ平面内旋转，主轴4在加工时可实现自由旋转，同时也可实现一定角度定位。
[0003] 刀具刀尖需处于旋转工作台的正确位置上，即要求尖刃金刚石刀具8的刀尖点与旋转工作台6的轴心重合。因此，除了机床导轨运动误差、刀具磨损和工件材料特性等影响因素，刀具对心误差是零件加工误差的重要来源之一。
[0004] 我们有必要对尖刃刀具的刀尖点与旋转工作台轴心对齐的精准“对心”方法进行深入研究。目前可采用的“对心”方法有如下两种：
[0005] 方法一：试车削对心方法
[0006] 在安装旋转工作台时，可对旋转工作台的轴心进行标识，在安装尖刃刀具时，可人工用眼睛对尖刃刀具的刀尖点与旋转工作台的轴心标识进行粗对心。然后使得旋转工作台旋转摆动一定的角度，同时转动主轴，对安装在主轴上的加工试件先进行一次试车削，并对试件的加工表面形状变化规律进行检测，根据检测结果即可判定是否完成对心。若试件的加工表面呈凸状或者凹状，则可认为对心存在一些偏差，尚需进行进一步的微调。若试件的加工表面为平面，则可判定对心已经完成。此方法对于精密与超精密加工的对心来说过于粗糙，且检测较繁琐，检测结果准确度偏低，调节也有些困难，且切削深度的变化对尖刃刀具的刀尖也会造成一定程度损伤。但此方法的对心成本较低，在节约成本方面具有优势。
[0007] 方法二：接触式探针对心方法
[0008] 这是尖刃刀具的刀尖点与旋转工作台轴心对齐操作常用的、且精度较高的一种方法，通常采用高分辨率接触式探针对刀具检测，例如线性变压器。在对心过程中，接触式探针对刀具需抵住尖刃刀具的刀尖点处，并且安装在旋转工作台上的尖刃金刚石刀具做一定角度的旋转运动。如果尖刃刀具的刀尖点与旋转工作台的轴心处于对齐或者重合状态，则抵住尖刃刀具刀尖点处的探针读数将不会发生改变，如果尖刃刀具的刀尖点与旋转工作台的轴心没有对齐，则随着旋转工作台的旋转，探针读数将发生变化。虽然接触式探针对心方法的对心精度相对较高，但也有一些缺陷，如对心过程中探针与尖刃金刚石刀具的刀尖相接触。由于尖刃金刚石刀具的刀尖微小且脆弱，较小的接触力就会造成刀尖损伤。虽然在对心过程中可以减小接触力，或减弱刀尖与检测探针的碰撞，但金刚石晶体的硬度脆性使刀尖处的损伤很难避免。
[0009] 目前缺少对金刚石刀具的刀尖无损伤的旋转对心方法。
发明内容

【0010】本发明的目的是为了解决现有对金刚石刀具的刀尖的旋转对心过程中存在的容易损伤金刚石刀具刀尖的问题，提供一种基于光学图像重构的尖刃金刚石刀具旋转对心方法。

【0011】一种基于光学图像重构的尖刃金刚石刀具旋转对心方法，它包括具体步骤如下：

【0012】步骤一、将 CCD 光学成像装置设置在尖刃金刚石刀具的正上方，所述尖刃金刚石刀具通过刀具夹具固定在四轴联动超精密车削机床上的旋转工作台上，CCD 光学成像装置至少有两种放大倍数，其中一种放大倍数为 15～25 倍，另一种放大倍数为 200 倍以上，CCD 光学成像装置放大倍数调为 15～25 倍；

【0013】步骤二、CCD 光学成像装置对尖刃金刚石刀具的刀尖区域进行成像，在获得的光学图像上建立二维平面坐标系 X0z，获得图像中刀尖所在位置 A 点处的坐标为 (x₁, z₁)，设旋转工作台的轴心 P 点的坐标为 (x, z)；

【0014】步骤三、使旋转工作台沿顺时针方向旋转角度 a，CCD 光学成像装置对尖刃金刚石刀具的刀尖区域再次成像，获得光学图像中刀尖所在位置 B 点处的坐标 (x₂, z₂)；

【0015】步骤四、根据步骤二和步骤三获得的两幅光学图像获得的 A 点和 B 点的坐标，求得 P 点坐标值：由 B 点与 P 点的坐标值相减，最终得到当前尖刃金刚石刀具的刀尖点位置 B 与旋转轴心 P 之间的坐标差值：Δ1 = x₂ - x，Δ2 = z₂ - z；

【0016】步骤五、根据步骤四获得的坐标差值，通过刀具夹具调整尖刃金刚石刀具的位置使其靠近旋转轴心 P，完成对心操作。

【0017】本发明中，步骤二中建立的平面坐标系中的 X 轴和 Z 轴分别平行于四轴联动超精密车削机床上的 X 导轨 2 和 Z 导轨 10。

【0018】本发明为基于光学图像重构的尖刃金刚石刀具旋转对心方法，对心过程不会对金刚石刀具的刀尖有任何触碰，对心精度与 CCD 光学成像系统分辨率密切相关：当 CCD（Charge-coupled Device，简称电荷耦合器件）光学成像范围为 781.9 μm × 585.8 μm 时，对应的放大倍数为 250 倍放大倍数，像素点阵 1600×1200，可实现优于 0.5 μm 的对心精度。

附图说明

【0019】附图 1 为装有 CCD 光学成像装置的四轴联动的超精密车削机床示意图，附图 2 是尖刃金刚石刀具在旋转工作台的带动下摆动前后的成像与几何关系示意图，附图 3 是尖刃金刚石刀具的对心操作过程示意图，附图 4 为尖刃金刚石刀具的示意图，β 为刀尖夹角。

具体实施方式

【0020】具体实施方式一：结合附图 1、附图 2 和附图 3 说明本实施方式，本实施方式所述的一种基于光学图像重构的尖刃金刚石刀具旋转对心方法包括具体步骤如下：

【0021】步骤一、将 CCD 光学成像装置 7 设置在尖刃金刚石刀具 8 的正上方，所述尖刃金刚石刀具 8 通过刀具夹具 9 固定在四轴联动超精密车削机床上的旋转工作台 6 上，CCD 光学成像装置 7 至少有两种放大倍数，其中一种放大倍数为 15～25 倍，另一种放大倍数为 200 倍以上，CCD 光学成像装置 7 放大倍数调为 15～25 倍；
步骤二，CCD光学成像装置7对尖刃金刚石刀具8的刀尖区域进行成像，在获得的光学图像上建立二维平面坐标系XOZ。获得图像中刀尖所在位置A点处的坐标为（x₁，z₁），设旋转工作台6的轴心P点的坐标为（x₂，z₂）。

步骤三，使旋转工作台6沿顺时针方向旋转角度α，CCD光学成像装置7对尖刃金刚石刀具8的刀尖区域再次成像，获得图像中刀尖所在位置B点处的坐标（x₂，z₂）。求得P点坐标值：由B点与P点的坐标值相减，最终得到当前尖刃金刚石刀具8的刀尖点位置B与旋转轴心P之间的坐标差值：\(\Delta 1 = x₂ - x₁\)，\(\Delta 2 = z₂ - z₁\)。

步骤四，根据步骤二和步骤三获得的两幅光学图像获得的A点和B点的坐标，求得P点坐标值：由B点与P点的坐标值相减，最终得到当前尖刃金刚石刀具8的刀尖点位置B与旋转轴心P之间的坐标差值：\(\Delta 1 = x₂ - x₁\)，\(\Delta 2 = z₂ - z₁\)。

步骤五，根据步骤四获得的坐标差值，通过刀具夹具9调整尖刃金刚石刀具8的位置，使其靠近旋转轴心P，完成对心操作。

CCD光学成像装置7在机床坐标系中的位置无需固定，比如固定式监测成像更便捷。基于CCD光学成像装置7，利用通过旋转工作台6带动尖刃金刚石刀具摆动形成偏差的原理，得到刀尖点与旋转工作台6轴心之间的差值，以此实现精准对心。

对心距离及角度：图1中所示的尖刃金刚石刀具8安装在刀具夹具9上，并固定在旋转工作台6上，给尖刃金刚石刀具在旋转工作台6的带动下可实现一定角度的摆动或定位。首先，尖刃金刚石刀具旋转至如图2中所示的刀具位置W1处，具体的角度可不作限制。假设刀尖点为A，采用CCD光学成像装置7对此时的刀具刀尖区域进行成像，并在计算机上对光学图像建立如图2中左右角所示的坐标系，并测出刀尖A点处的X与Z方向坐标值。然后，假设旋转工作台6的轴心如图2中的P点所示，使尖刃金刚石刀具沿着图2中所示的旋转轴方向旋转一定角度α，此角度大小已知，亦即刀具旋转至如图2所示的位置W2处，此时尖刃金刚石刀具的对称线处于竖直状态，假设刀尖点为B，然后同样采用CCD光学成像装置对此时的刀尖区域进行成像，并在计算机上对光学图像建立如图2中左右角所示的坐标系，并测出刀尖B点处的X，Z方向坐标值。最后，基于旋转前后的刀具刀尖区域的两幅光学图像，可建立图2中所示的几何关系，即刀具的旋转角度α与图中∠APB相等。因此，只要采集出A，B两点在相同图片大小（或相同放大倍数及相同分辨率）下的同一坐标系内的具体坐标值，以及刀具旋转的具体角度和刀尖夹角β，便可重构出尖刃金刚石刀具在摆动前后的几何图像，并可根据摆动前后的几何关系求得摆动轴心P点的坐标值。

实施方式：本实施方式所述的一种基于光学图像重构的尖刃金刚石刀具旋转对心方法与实施方式一不同的是，所述对心方法还包括以下步骤：将CCD光学成像装置7调整为200倍以上的放大倍数，重复步骤二，步骤三和步骤四，再一次调整尖刃金刚石刀具8的位置，完成对心操作。

本实施方式增加的步骤，是在实施方式一所述的对心操作完成之后，增加CCD光学成像装置7的成像放大倍数，然后再进行一次对心操作，提高对心的精度。

本实施方式的优点在于：进行一次尖刃金刚石刀具刀尖点与旋转轴心的粗对心，能够保证当采用高倍数的成像放大倍数进行刀尖区域成像时，旋转后不至于偏出成像范围；再按上述步骤进行对心，以达到尖刃刀具刀尖点与旋转工作台轴心的精准对心。若想实现较高度的对心，可采用高倍数下的成像装置按照对心方案进行多次对心，以反复验证精度对心的结果。结果显示：当成像范围为781.9 μm×585.8 μm时，对应250倍放大
倍数、像素点阵 1600×1200，精准对心精度优于 $0.5 \mu m$。若 CCD 光学成像装置的分辨率、放大倍数以及图像处理精度进一步提高，精准对心的精度亦能更高。

【0031】具体实施方式三：结合图 2 说明实施方式二步骤四中所述的求得 P 点坐标值的具体过程为：令 0 点为原点，A 点坐标为 (x_1, z_1)，B 点坐标为 (x_2, z_2)，设未知点 P 的坐标为 (x, z)，以旋转轴心 P 点向直线段 AB 作垂线，垂足为 C 点，通过旋转偏差所形成几何关系，可得：

$$r^2 = (x_1 - x)^2 + (z_1 - z)^2$$ (1-1)

$$r^2 = (x_2 - x)^2 + (z_2 - z)^2$$ (1-2)

$$t^2 = (x_1 - x_2)^2 + (z_1 - z_2)^2$$ (1-3)

$$\sin \alpha = \frac{t}{2r}$$ (1-4)

【0032】式中 r——尖刃金刚石刀具 8 随旋转工作台 6 旋转摆动的半径，l——直线段 AB 长度，α——顺时针旋转角度，把 A 点坐标 (x_1, z_1)，B 点坐标 (x_2, z_2) 以及顺时针旋转角度 α 同时代入式 (1-1) 至 (1-4)，解方程得 P 点坐标值 (x, z)。

【0033】具体实施方式四：实施方式二步骤五中通过刀具夹具 9 调整尖刃金刚石刀具 8 的位置使其靠近旋转轴心 P 的过程为：根据坐标差 $\Delta 1$ 在 X 轴方向调整尖刃金刚石刀具 8，再根据坐标差 $\Delta 2$ 在 Z 轴方向调整尖刃金刚石刀具 8。
图 4