Abstract: The present disclosure provides devices and methods for the treatment of ophthalmological conditions such as dry eye. Among the devices provided are punctal plugs and devices for inserting punctal plugs. The punctal plugs may be shaped for insertion in the punctum and/or the canaliculus. They may also be coated with a bioadhesive. Methods for inserting the punctal plugs are provided, as well as methods for preparing bioadhesive-coated punctal plugs. A method is also provided to treat dry-eye using a bioadhesive without use of a punctal plug.
PUNCTAL PLUG AND BIOADHESIVES

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/239,006, filed October 8, 2015, the contents of which are fully incorporated by reference herein.

BACKGROUND OF THE INVENTION

The invention concerns devices for intubation of the lacrimal duct of an eye for treatment of any of various disorders of the eye, including in particular "dry eye", also known as sicca syndrome.

As shown in FIG. 1, the lacrimal gland secretes tears which drain into the inferior nasal meatus via the lacrimal duct after moistening the ocular surface having the cornea and conjunctiva. The lacrimal duct consists of the upper punctum, lower punctum, vertical portion of the upper punctum, vertical portion of the lower punctum, boundary portion between the upper vertical and horizontal portions, boundary portion between the lower vertical and horizontal portions, upper horizontal portion, lower horizontal portion, common canaliculus, lacrimal sac, and nasolacrimal duct. The lower end of the nasolacrimal duct opens into the inferior nasal meatus.

Patients with dry eye have a deficiency of tears, which are very important for function and comfort of the eye. Dry eye symptoms include asthenopia, waking irritation, grittiness, foreign body sensation, scratchiness, soreness, difficulty to open the eyes in an air conditioned room, injection, burning, etc. In dry eye, tears drain away from the eye, more quickly than they should, via the lacrimal duct.

To suppress tear drainage, the upper punctum can be occluded using a punctal plug (sometimes referred to as a punctum plug, lacrimal punctum plug, or lacrimal insert) inserted into the upper punctum, and/or the lower punctum can be occluded using a punctal plug inserted into the lower punctum.

By blocking the upper punctum and lower punctum like this, tears are accumulated in the conjunctival sac, and in many cases dry eye symptoms improve.

Punctal plugs in current use are either "temporary" or "permanent". So-called temporary punctal plugs typically are simple tubular structures made of collagen or synthetic collagen, and they are designed to last for about ten days to about three months, over which time they dissolve or fall out. So-called permanent punctal plugs typically are
more complex, contoured devices usually made of silicone, and, while they do not dissolve, they can cause irritation and frequently fall out. Examples of punctal plugs are described in U.S. Patent No. 3,949,750 to Freeman; U.S. Patent No. 5,283,063 to Freeman; U.S. Patent No. 5,417,651 to Guena et al.; U.S. Patent No. 6,027,470 to Mendius; U.S. Patent No. 6,238,363 to Kurihashi; U.S. Patent No. 6,290,684 to Herrick; U.S. Patent No. 7,785,285 to Kurihashi; U.S. Patent No. 8,439,865 to Lust et al.; U.S. Patent No. 8,628,792 to Utthede et al.; U.S. Patent No. 8,795,711 to de Juan, Jr. et al.; and U.S. Patent No. 8,821,457 to Beeley et al., the entire contents of all of which are incorporated herein by reference.

SUMMARY OF THE INVENTION

An aspect of the invention is a punctal plug comprising a body comprising a biodegradable polymer, wherein said biodegradable polymer is not collagen or synthetic collagen.

An aspect of the invention is a punctal plug comprising a body comprising a biocompatible elastic polymer, wherein said biocompatible elastic polymer is not silicone.

An aspect of the invention is an insertion device suitable for use in inserting or removing a punctal plug of the invention.

An aspect of the invention is a method of using a punctal plug, comprising the steps of applying a bioadhesive to a tissue-contacting outer surface of a punctal plug, thereby forming a bioadhesive-coated punctal plug; and inserting the bioadhesive-coated punctal plug into a punctum of an eye.

An aspect of the invention is a method of treating dry eye, comprising installing into a punctum opening of an eye of a subject in need thereof a punctal plug of the invention.

An aspect of the invention is a punctal plug, comprising a bioadhesive disposed on a surface oriented to contact tissue of a subject.

An aspect of the invention is a kit comprising a punctal plug and a bioadhesive. In certain embodiments, the punctal plug may be a punctal plug as described above.

An aspect of the invention is a method of treating an ophthalmological condition such as dry-eye, comprising inserting a bioadhesive into the punctum or the canaliculus.

An aspect of the invention is a kit comprising a bioadhesive and an applicator suitable for inserting the bioadhesive into the punctum or the canaliculus, or both.
Figure 1 depicts eye tear system anatomy. Indicated are (a), tear/lacrimal gland; (b), superior lacrimal punctum; (c), superior lacrimal canal; (d), tear/lacrimal sac; (e), inferior lacrimal punctum; (f), inferior lacrimal canal; (g), nasolacrimal canal.

The invention provides a longer lasting version of a temporary punctal plug. Currently, temporary punctal plugs are made out of collagen or synthetic collagen. In accordance with the invention, a temporary plug with a longer useful life is constructed using a longer lasting biodegradable polymer.

So-called "permanent" punctal plugs are currently made out of silicone. In accordance with the invention, a permanent plug is made using another material such as a biocompatible polymer, preferably a biocompatible elastic polymer.

The invention further provides a punctal plug with a thin, contoured exposed edge possibly using silicone or another biocompatible polymer with malleable property that can mold to punctal anatomy. This punctal plug may or may not have bioadhesive attached.

A feature of certain embodiments of the invention is the use of a bioadhesive to keep the plug in place. This adhesive may be synthetic or natural.

In certain embodiments, the punctal plug has textured surface to promote its staying in place, e.g. a "shark skin" surface or a gecko setae-like surface.

The invention further provides a punctal plug with intracanalicular extension. The plug portion has any of the possible attributes just described. The intracanalicular extension can be a liquid-like, gelatinous, or semi-solid material that becomes more formed and mold to the canaliculus. It may or may not have a bioadhesive on its surface or within its structure. Existing expandable "smart plugs", which are strictly intracanalicular, have been plagued with problems because they migrate into the lacrimal sac and cause infections. In contrast, in this embodiment of the invention, the punctal plug portion keeps the intracanalicular portion from migrating into the lacrimal sac, and the canalicular portion helps prevent the plug from extruding from the punctum.
An aspect of the invention is a punctal plug comprising a body comprising a biodegradable polymer, wherein said biodegradable polymer is not collagen or synthetic collagen.

In certain embodiments, the biodegradable polymer is selected from poly(alpha-esters); polyglycolide; polylactide; polylactide-co-glycolide; polyhydroxyalkanoates; polycaprolactone; polypropylene fumarate; polyanhydrides; polyacetals; polyortho esters; polycarbonates; polyurethanes; polyphosphazenes; polyphosphoesters; polyester-ester; polyamide-ester; polyhydridester; enzymatically degradable polymers; synthetic polyethers; polyethylene glycol (PEG); polypropylene glycol (PPG); PEGdiacrylate (PEGDA); PEGdimethacrylate (PEGDMA); PEGDA and PEGDMA with other acrylates and methacrylate; degradable polymer proteins and poly(amino acids) selected from elastin, elastin-like polypeptides, albumin, natural poly(amino acids), poly(y-glutamic acid), poly L-lysine, poly L-glutamic acid, poly aspartic acid, polysaccharides, hyaluronic acid methacrylate, hyaluronic acid chondroitin sulfate, and chitosan alginate; and any combination thereof. In certain embodiments, the biodegradable polymer excludes any one or more of poly(alpha-esters); polyglycolide; polylactide; polylactide-co-glycolide; polyhydroxyalkanoates; polycaprolactone; polypropylene fumarate; polyanhydrides; polyacetals; polyortho esters; polycarbonates; polyurethanes; polyphosphazenes; polyphosphoesters; polyester-ester; polyamide-ester; polyhydridester; enzymatically degradable polymers; synthetic polyethers; polyethylene glycol (PEG); polypropylene glycol (PPG); PEGdiacrylate (PEGDA); PEGdimethacrylate (PEGDMA); PEGDA and PEGDMA with other acrylates and methacrylate; degradable polymer proteins and poly(amino acids) selected from elastin, elastin-like polypeptides, albumin, natural poly (amino acids), poly(y-glutamic acid), poly L-lysine, poly L-glutamic acid, poly aspartic acid, polysaccharides, hyaluronic acid methacrylate, hyaluronic acid chondroitin sulfate, and chitosan alginate.

An aspect of the invention is a punctal plug comprising a body comprising a biocompatible elastic polymer, wherein said biocompatible elastic polymer is not silicone.

In certain embodiments, the biocompatible elastic polymer is selected from Acrysof (copolymer of phenylethyl acrylate and phenylethyl methacrylate cross linked with butanediol diacrylate); natural and synthetic forms of amniotic membrane; degradable polymer proteins and poly(amino acids) selected from elastin, elastin-like polypeptides,
albumin, natural poly(amino acids), poly(y-glutamic acid), poly L-lysine, poly L-glutamic acid, poly aspartic acid, polysaccharides, hyaluronic acid methacrylate, hyaluronic acid chondroitin sulfate, and chitosan alginate; Dow Corning elastomers; enzymatically degradable polymers; ester-based thermoplastic polyurethane elastomer (TPUR) compounds; ether-based thermoplastic polyurethane elastomer (TPUR) compounds; Hoya (cross linked copolymer of phenylethyl methacrylate and n-butyl acrylate, fluoroalkyl methacrylate); hydrogels; hydrophilic acrylics; hydrophobic acrylics (foldable and non-foldable); hydroxyethylmethacrylate (HEMA) hydrophilic polymer; methyl methacrylate; nylon; PEGDA and PEGDMA with other acrylates and methacrylate; PEGdiacrylate (PEGDA); PEGdimethacrylate (PEGDMA); poliglecaprone suture; poly(alpha-esters); polyacetals; polyamide-esters; polyamides; polyanhydride-esters; polyamides; polyesters; polyether-ester block copolymer thermoplastic elastomer (TEEE) compounds; polyethylene glycol (PEG); polyethylenes; polyglyctin 910 suture; polyglycolic acid suture; polyglycolides; polyhydroxyalkanoates; polylactides; polylactide-co-glycolides; polymethylmethacrylate (PMMA); polyortho esters; polyphosphazenes; polyphosphoesters; polypropylene fumarate; polypropylene glycol (PPG); polypropylene oxide; polylactides; polylactide-co-glycolides; polymethylmethacrylate (PMMA); polyethylene glycol dimethacrylate); thermoplastic polyolefin elastomer (TEO) compounds; and thermoplastic vulcanizate (TPV) compounds.

In certain embodiments, the biocompatible elastic polymer excludes any one or more of Acrysof (copolymer of phenylethyl acrylate and phenylethyl methacrylate cross linked with butanediol diacrylate); natural and synthetic forms of amniotic membrane; degradable polymer proteins and poly(amino acids) selected from elastin, elastin-like polypeptides, albumin, natural poly(amino acids), poly(y-glutamic acid), poly L-lysine, poly L-glutamic acid, poly aspartic acid, polysaccharides, hyaluronic acid methacrylate, hyaluronic acid chondroitin sulfate, and chitosan alginate; Dow Corning elastomers; enzymatically degradable polymers; ester-based thermoplastic polyurethane elastomer (TPUR) compounds; ether-based thermoplastic polyurethane elastomer (TPUR) compounds; and thermoplastic vulcanizate (TPV) compounds.
compounds; Hoya (cross linked copolymer of phenylethyl methacrylate and n-butyl acrylate, fluoroalkyl methacrylate); hydrogels; hydrophilic acrylics; hydrophobic acrylics (foldable and non-foldable); hydroxyethylmethacrylate (HEMA) hydrophilic polymer; methyl methacrylate; nylon; PEGDA and PEGDMA with other acrylates and methacrylate; PEGdiacrylate (PEGDA); PEGdimethacrylate (PEGDMA); poliglecaprone suture; poly(alpha-esters); polyacetals; polyamide-esters; polyamides; polyanhydride-esters; polyanhydrides; polycaprolactones; polycarbonates; polydioxanones; polyether urethanes; polyesters; polyether-polyester copolymers; polyether urethanes; polyether-ester block copolymer thermoplastic elastomer (TEEE) compounds; polyethylene glycol (PEG); polyethylenes; polyglactin 910 suture; polyglycolic acid suture; polyglycolides; polyhydroxyalkanoates; polyactides; poly(lactide-co-glycolides); polymethylmethacrylate (PMMA); polyortho esters; polyphosphazenes; polyphosphoesters; polypropylenes; polypropylene fumarate; polypropylene glycol (PPG); polypropylene oxide; polytetrafluoroethylene (Teflon); polyurethanes; RTP Co. thermoplastic elastomers; saturated styrenic block copolymer thermoplastic elastomers; SILASTIC® (medical adhesive silicone, Dow Corning); silicone hydrogels; silk; synthetic polyethers; Tecnis acrylic (copolymer of ethyl acrylate ethyl methacrylate, 2,2,2-trifluorethy methacrylate, cross linked with ethylene glycol dimethacrylate); thermoplastic polyolefin elastomer (TEO) compounds; and thermoplastic vulcanizate (TPV) compounds.

In accordance with any of the foregoing aspects and embodiments, in certain embodiments the body comprises a flared proximal end.

In accordance with any of the foregoing aspects and embodiments, in certain embodiments the body comprises a flared midsection.

In accordance with any of the foregoing aspects and embodiments, in certain embodiments the body comprises a flared distal end.

In accordance with any of the foregoing aspects and embodiments, in certain embodiments the body comprises a valve or septum through which a material can be injected or introduced into the punctal plug.

In accordance with any of the foregoing aspects and embodiments, in certain embodiments the punctal plug further comprises a bioadhesive disposed on a surface oriented to contact tissue of a subject.
An aspect of the invention is a punctal plug, comprising a bioadhesive disposed on a surface oriented to contact tissue of a subject. The punctal plug may be a punctal plug as described above, or may be any other punctal plug known to those of skill in the art. In certain embodiments, the punctal plug comprises a body and a bioadhesive, wherein the bioadhesive is disposed on a tissue-contacting outer surface of the body. In certain embodiments, the punctal plug comprises a body comprising a biodegradable polymer, wherein said biodegradable polymer is collagen or synthetic collagen. In certain embodiments, the punctal plug comprises a body comprising a biodegradable polymer, wherein said biodegradable polymer is not collagen or synthetic collagen. In certain embodiments, the punctal plug comprises a body comprising a biocompatible elastic polymer, wherein said biocompatible elastic polymer is silicone. In certain embodiments, the punctal plug comprises a body comprising a biocompatible elastic polymer is not silicone.

In certain embodiments, the bioadhesive is selected from the bioadhesives described herein, such as spider web-based bioadhesive, gecko lizard-based bioadhesive, fibrin glue, gelatin-based glue, gelatin-resorcinol-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL®), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), and any combination thereof. In certain embodiments, the bioadhesive can exclude any one or more bioadhesives selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), and citrate-enabled mussel-inspired bioadhesives (iCMBA).

In certain embodiments, the bioadhesive is a mussel adhesive protein (MAP), synthetic MAP, or a MAP-inspired polymer such as are described in US Patent No. 8,673,286 to Messersmith et al., and WO 2013/123946 to Aarhus Universitet, the entire contents of which are incorporated herein by reference. As disclosed in Messersmith et al.,
MAPs are remarkable underwater adhesive materials secreted by certain marine organisms which form tenacious bonds to the substrates upon which they reside. During the process of attachment to a substrate, MAPs are secreted as adhesive fluid precursors that undergo a crosslinking or hardening reaction which leads to the formation of a solid adhesive plaque. One of the unique features of MAPs is the presence of L-3,4-dihydroxyphenylalanine (DOPA), an unusual amino acid which is believed to be responsible for adhesion to substrates through several mechanisms that are not yet fully understood. The observation that mussels adhere to a variety of surfaces in nature (metal, metal oxide, polymer) led to a hypothesis that DOPA-containing peptides can be employed as the key components of synthetic medical adhesives. Messersmith et al. specifically discloses DOPA (and related multihydroxyphenyl derivatives)-functionalized polyalkylene oxide materials that are useful as adhesives.

In certain embodiments, the bioadhesive is biodegradable. For example, the bioadhesive may be selected from natural and synthetic forms of amniotic membrane, fibrin glue, MAP, synthetic MAP, or synthetic MAP coated by DOPA-functionalized PEG and PCL. In other embodiments, the bioadhesive may be an isocyanatoethylmethacrylate-based bioadhesive (as described in Ferreira et al., Int J Pharm, 2008 Mar 20;352(1-2):172-81); a biodegradable urethane-based bioadhesive (as described in J Mater Sci Mater Med. 2008 Jan; 19(1): 111-20); or a poly-dihydroacetate-based bioadhesive (as described in Singh et al., J Am Col Surgeons, September 2008 Volume 207, Issue 3, Supplement, Page S64).

In certain embodiments, the bioadhesive comprises a textured surface, e.g. a "shark skin" surface or a gecko setae-like surface. In certain embodiments, the bioadhesive imparts a textured surface, e.g. a "shark skin" surface or a gecko setae-like surface.

In certain embodiments, the bioadhesive is applied to the punctal plug at the time of installation of the plug into a subject.

In accordance with any of the foregoing aspects and embodiments, the punctal plug further comprises a core or reservoir at least partially within the body of the punctal plug, wherein the core or reservoir comprises a therapeutic agent.

An aspect of the invention is an insertion device suitable for use in inserting or removing a punctal plug of the invention. In certain embodiments, the punctal plug comprises an opening or blind hole constructed and arranged so as to accept an insertion device. The insertion device is constructed and arranged so as to releasably engage the
punctal plug for purposes of inserting the punctal plug into a punctum opening of an eye. The insertion device can be constructed and arranged so as to releasably engage the punctal plug for purposes of removing the punctal plug from a punctum opening of an eye.

An aspect of the invention is a kit comprising a punctal plug and a bioadhesive. In certain embodiments, the punctal plug may be a punctal plug as described above.

In certain embodiments, the bioadhesive is selected from the bioadhesives described herein, such as spider web-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcinol-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), MAP-inspired polymers, and any combination thereof. In certain embodiments, the bioadhesive can exclude any one or more bioadhesives selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), and MAP-inspired polymers.

In certain embodiments, the bioadhesive is biodegradable. For example, the bioadhesive may be selected from natural and synthetic forms of amniotic membrane, fibrin glue, MAP, synthetic MAP, or synthetic MAP coated by DOPA-functionalized PEG and PCL. In other embodiments, the bioadhesive may be an isocyanatoethylmethacrylate-based bioadhesive (as described in Ferreira et al., Int J Pharm, 2008 Mar 20;352(1-2):172-81); a biodegradable urethane-based bioadhesive (as described in J Mater Sci Mater Med. 2008 Jan; 19(1): 111-20); or a poly-dihydroacetate-based bioadhesive (as described in Singh et al., J Am. Col. Surgeons, September 2008 Volume 207, Issue 3, Supplement, Page S64).

The punctal plug may be any suitable punctal plug known to those of skill in the art. Preferably, the punctal plug is a punctal plug of the invention.
An aspect of the invention is a method of using a punctal plug, comprising the steps of applying a bioadhesive to a tissue-contacting outer surface of a punctal plug, thereby forming a bioadhesive-coated punctal plug; and inserting the bioadhesive-coated punctal plug into a punctum of an eye.

In certain embodiments, the bioadhesive is selected from the bioadhesives described herein, such as spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcinol-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), MAP-inspired polymers, and any combination thereof. In certain embodiments, the bioadhesive can exclude any one or more bioadhesives selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcinol-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), and MAP-inspired polymers.

In certain embodiments, the bioadhesive is biodegradable. For example, the bioadhesive may be selected from natural and synthetic forms of amniotic membrane, fibrin glue, MAP, synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and PCL, or MAP-inspired polymers. In other embodiments, the bioadhesive may be an isocyanatoethylmethacrylate-based bioadhesive (as described in Ferreira et al., Int J Pharm, 2008 Mar 20;352(1-2): 172-81); a biodegradable urethane-based bioadhesive (as described in J Mater Sci Mater Med. 2008 Jan; 19(1): 111-20); or a poly-dihydroacetate-based bioadhesive (as described in Singh et al., J Am. Col. Surgeons, September 2008 Volume 207, Issue 3, Supplement, Page S64).

In certain embodiments, the punctal plug is a punctal plug of the invention.
In certain embodiments, the punctal plug is a prior art punctal plug.

An aspect of the invention is a method of treating an ophthalmological condition such as dry-eye, comprising inserting a bioadhesive into the punctum or the canaliculus. As a result, fluid flow through the punctum or the canaliculus is blocked. This technique allows treatment of dry eye without using a physical punctal plug. The punctum or canaliculus, or both, can be directly glued shut. This avoids the need to manufacture and sterilize the plug itself, and avoids the risk of the plug falling out.

The bioadhesive may be inserted into the punctum or canaliculus by any suitable method. In some embodiments, the bioadhesive is applied to an applicator, and the applicator is then used to insert the bioadhesive into the punctum or canaliculus. In some embodiments, the bioadhesive is contained within a syringe or squeeze ampule, which is used to insert the bioadhesive into the punctum or canaliculus. If the bioadhesive is contained within a syringe or other similar device, it may be prefilled or filled just prior to insertion.

In some embodiments, the bioadhesive may be selected from the bioadhesives described herein, such as spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcinol-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), MAP-inspired polymers, and any combination thereof. In certain embodiments, the bioadhesive can exclude any one or more bioadhesives selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcinol-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), and MAP-inspired polymers.
In certain embodiments, the bioadhesive is biodegradable. For example, the bioadhesive may be selected from natural and synthetic forms of amniotic membrane, fibrin glue, MAP, synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and PCL, or MAP-inspired polymers. In other embodiments, the bioadhesive may be an isocyanatoethylmethacrylate-based bioadhesive (as described in Ferreira et al., Int J. Pharm, 2008 Mar 20;352(1-2): 172-81; a biodegradable urethane-based bioadhesive (as described in J Mater Sci Mater Med. 2008 Jan; 19(1): 111-20); or a poly-dihydroacetate-based bioadhesive (as described in Singh et al., J. Am. Col. Surgeons, September 2008 Volume 207, Issue 3, Supplement, Page S64).

An aspect of the invention is a kit comprising a bioadhesive and an applicator suitable for inserting the bioadhesive into the punctum or the canaliculus, or both. In certain embodiments, the bioadhesive is a bioadhesive as described above. In certain embodiments, the bioadhesive is biodegradable, and may be selected from the biodegradable bioadhesives described above. In certain embodiments, the kit comprises two applicators: one suitable for inserting the bioadhesive into the punctum and one suitable for inserting the bioadhesive into the canaliculus.

EXAMPLES

Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included herewith for purposes of illustration only and are not intended to be limiting of the invention.

Example 1

A punctal plug is manufactured out of a biomaterial substantially as described herein. In one embodiment, the punctal plug is a "temporary" punctal plug. In one embodiment, the punctal plug is a "permanent" punctal plug.

Example 2

A punctal plug of Example 1 is coated with a bioadhesive substantially as described herein prior to insertion of the punctal plug into a punctum opening of an eye. The bioadhesive coating is applied by any one or more of painting, dipping or submerging, rolling, or the like, with or in the bioadhesive. The punctal plug is optionally held in place
by the operator long enough for the bioadhesive to cure or adhere to tissue sufficiently to stabilize the plug in place. Preferably the time required for such curing or adhering is about 15 seconds to about 5 minutes.

Example 3

A prior art punctal plug is coated with a bioadhesive substantially as described herein prior to insertion of the punctal plug into a punctum opening of an eye. The bioadhesive coating is applied by any one or more of painting, dipping or submerging, rolling, or the like, with or in the bioadhesive. The punctal plug is optionally held in place by the operator long enough for the bioadhesive to cure or adhere to tissue sufficiently to stabilize the plug in place. Preferably the time required for such curing or adhering is about 15 seconds to about 5 minutes.

Example 4

A syringe is pre-filled with a bioadhesive substantially as described herein. The syringe is used to insert the bioadhesive into the punctum and canaliculus of a patient's eye, thereby sealing the punctum and the canaliculus. Preferably the bioadhesive cures, such that fluid transmission through the punctum and canaliculus is blocked, within about 15 seconds to about 5 minutes.

INCORPORATION BY REFERENCE

All patents and published patent applications mentioned in the description above are incorporated by reference herein in their entirety.

EQUIVALENTS

Having now fully described the present invention in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious to one of ordinary skill in the art that the same can be performed by modifying or changing the invention within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any specific embodiment thereof, and that such modifications or changes are intended to be encompassed within the scope of the appended claims.
CLAIMS

1. A punctal plug comprising a body comprising a biodegradable polymer, wherein said biodegradable polymer is not collagen or synthetic collagen.

2. The punctal plug of claim 1, wherein the biodegradable polymer is selected from poly(alpha-esters); polyglycolide; polylactide; polylactide-co-glycolide; polyhydroxyalkanoates; polycaprolactone; polypropylene fumarate; polyanhydrides; polycetals; polyortho esters; polycarbonates; polyurethanes; polyphosphazenes; polyphosphoesters; polyester-ester; polyamide-ester; polyanhydride-ester; enzymatically degradable polymers; synthetic polyethers; polyethylene glycol (PEG); polypropylene glycol (PPG); PEGdiacrylate (PEGDA); PEGdimethacrylate (PEGDMA); PEGDA and PEGDMA with other acrylates and methacrylate; degradable polymer proteins and poly(amo acid)s selected from elastin, elastin-like polypeptides, albumin, natural poly(y-glutamic acid), poly L-lysine, poly L-glutamic acid, poly aspartic acid, polysaccharides, hyaluronic acid methacrylate, hyaluronic acid chondroitin sulfate, and chitosan alginate; and any combination thereof.

3. A punctal plug comprising a body comprising a biocompatible elastic polymer, wherein said biocompatible elastic polymer is not silicone.

4. The punctal plug of claim 1, wherein the biocompatible elastic polymer is selected from Acrysof (copolymer of phenylethyl acrylate and phenylethyl methacrylate cross linked with butanediol diacrylate); natural and synthetic forms of amniotic membrane; degradable polymer proteins and poly(amo acid)s selected from elastin, elastin-like polypeptides, albumin, natural poly(y-glutamic acid), poly L-lysine, poly L-glutamic acid, poly aspartic acid, polysaccharides, hyaluronic acid methacrylate, hyaluronic acid chondroitin sulfate, and chitosan alginate; Dow Corning elastomers; enzymatically degradable polymers; ester-based thermoplastic polyurethane elastomer (TPUR) compounds; ether-based thermoplastic polyurethane elastomer (TPUR) compounds; Hoya (cross linked copolymer of phenylethyl methacrylate and n-butyl acrylate, fluoroalkyl methacrylate); hydrogels; hydrophilic acrylics; hydrophobic acrylics (foldable and non-foldable); hydroxyethylmethacrylate (HEMA) hydrophilic polymer; methyl methacrylate; nylon; PEGDA and PEGDMA with other acrylates and methacrylate; PEGdiacrylate (PEGDA); PEGdimethacrylate (PEGDMA); poliglecaprone suture; poly(alpha-esters);
polyacetals; polyamide-esters; polyamides; polyanhydride-esters; polyanhydrides; polycaprolactones; polycarbonates; polydioxanones; polyester urethanes; polyesters; polyetherester polyesters; polyether polyesters; polyetherurethanes; polyether-ester block copolymer thermoplastic elastomer (TEEE) compounds; polyethylene glycol (PEG); polyethylenes; polyglactin 910 suture; polyglycolic acid suture; polyglycolides; polyhydroxyalkanoates; polylactides; polylactide-co-glycolides; polymethylmethacrylate (PMMA); polyortho esters; polyphosphazenes; polyphosphoesters; polypropylenes; polypropylene fumarate; polypropylene glycol (PPG); polypropylene oxide; polytetrafluoroethylene (Teflon); polyurethanes; RTP Co. thermoplastic elastomers; saturated styrenic block copolymer thermoplastic elastomers; SILASTIC® (medical adhesive silicone, Dow Corning); silicone hydrogels; silk; synthetic polyethers; Tecnis acrylic (co polymer of ethyl acrylate ethyl methacrylate, 2,2,2-trifluorethyl methacrylate, cross linked with ethylene glycol dimethacrylate); thermoplastic polyolefin elastomer (TEO) compounds; and thermoplastic vulcanizate (TPV) compounds.

5. The punctal plug of any one of claims 1-4, wherein the body comprises a flared proximal end.

6. The punctal plug of any one of claims 1-5, wherein the body comprises a flared midsection.

7. The punctal plug of any one of claims 1-6, wherein the body comprises a flared distal end.

8. The punctal plug of any one of claims 1-7, wherein the punctal plug further comprises a bioadhesive disposed on a surface oriented to contact tissue of a subject.

9. The punctal plug of claim 8, wherein the bioadhesive is selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMB A), and any combination thereof.
10. The punctal plug of any one of claims 8-9, wherein the bioadhesive is biodegradable.

11. The punctal plug of any one of claims 8-10, wherein the bioadhesive is applied to the punctal plug at the time of installation of the plug into a subject.

12. The punctal plug of any one of claims 1-11, further comprising a core or reservoir at least partially within the body of the punctal plug, wherein the core or reservoir comprises a therapeutic agent.

13. An insertion device suitable for use in inserting or removing the punctal plug of any one of claims 1-12.

14. A punctal plug comprising a body and a bioadhesive, wherein the bioadhesive is disposed on a tissue-contacting outer surface of the body.

15. The punctal plug of claim 14, wherein the bioadhesive is selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMB), and any combination thereof.

16. The punctal plug of any one of claims 14-15, wherein the bioadhesive is biodegradable.

17. The punctal plug of any one of claims 14-16, wherein the bioadhesive is applied to the punctal plug at the time of installation of the plug into a subject.

18. The punctal plug of any one of claims 14-18, further comprising a core or reservoir at least partially within the body of the punctal plug, wherein the core or reservoir comprises a therapeutic agent.

19. A kit comprising a punctal plug and a bioadhesive.
20. The kit of claim 19, wherein the bioadhesive is selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octyl-cyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), and any combination thereof.

21. The kit of any one of claims 19-20, wherein the bioadhesive is biodegradable.

22. The kit of any one of claims 19-21, wherein the punctal plug is the punctal plug of any one of claims 1-12 or 14-18.

23. A method of using a punctal plug, comprising
 applying a bioadhesive to a tissue-contacting outer surface of a punctal plug, thereby
 forming a bioadhesive-coated punctal plug; and
 inserting the bioadhesive-coated punctal plug into a punctum of an eye.

24. The method of claim 23, wherein the bioadhesive is selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octyl-cyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMBA), and any combination thereof.

25. The method of any one of claims 23-24, wherein the bioadhesive is biodegradable.

26. The method of any one of claims 23-25, wherein the punctal plug is the punctal plug of any one of claims 1-12 or 14-18.

27. A method of treating dry-eye comprising inserting a bioadhesive into the punctum or the canaliculus.
28. The method of claim 27, wherein the bioadhesive is selected from spider web-based bioadhesive, gecko lizard-based bioadhesive, natural and synthetic forms of amniotic membrane, fibrin glue, gelatin-based glue, gelatin-resorcin-formaldehyde/glutaraldehyde (GRF or GRFG), glutaraldehyde glyoxal, albumin-glutaraldehyde, cyanoacrylate, 2-octylcyanoacrylate, n-butyl-2-cyanoacrylate (INDERMIL), polyethylene glycol (PEG)-based hydrogel sealant, urethane-based adhesive, mussel adhesive protein (MAP), synthetic MAP, synthetic MAP coated by DOPA-functionalized PEG and polycaprolactone (PCL), citrate-enabled mussel-inspired bioadhesives (iCMB A), and any combination thereof.

29. The method of any one of claims 27 or 28, comprising inserting the bioadhesive into the punctum and the canaliculus.

30. The method of any one of claims 27 or 28, comprising inserting the bioadhesive into the punctum alone.

31. The method of any one of claims 27 or 28, comprising inserting the bioadhesive into the canaliculus alone.

32. The method of any one of claims 27-31, wherein the bioadhesive is biodegradable.

33. The method of any one of claims 27-32, wherein inserting the bioadhesive into the punctum or the canaliculus comprises using a syringe, ampoule, or applicator to insert the bioadhesive into the punctum or the canaliculus.
A. CLASSIFICATION OF SUBJECT MATTER

\[A61F \ 9/007 \ (2006.01) \]
\[A61F \ 2/14 \ (2006.01) \]
\[A61L \ 31/04 \ (2006.01) \]

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

\[A61F \ 9/007, \ 2/14, \ A61K \ 31/15-3 \ 1/80, \ G08G \ 65/00-65/48, \ C09J \ 171/00, \ A61L \ 31/04 \]

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EAPATIS, Patsearch (RUPTO internal), Espacenet, PubMed, Google, Elibrary.ru

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

" Special categories of cited documents:

- \(^* \) later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- \(^A \) document defining the general state of the art which is not considered to be of particular relevance
- \(^E \) earlier document but published on or after the international filing date
- \(^L \) document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \(^O \) document referring to an oral disclosure, use, exhibition or other means
- \(^P \) document published prior to the international filing date but later than the priority date claimed
- \(^T \) document member of the same patent family

Date of the actual completion of the international search

07 December 2016 (07.12.2016)

Date of mailing of the international search report

22 December 2016 (22.12.2016)

Name and mailing address of the ISA/ RU:

Federal Institute of Industrial Property, Berezhkovskaya nab., 30-1, Moscow, G-59, GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer

E. Vinogradova

Telephone No. (495) 531-64-81

Form PCT/ISA/210 (second sheet) (January 2015)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☒ Claims Nos.: 6-12, 17, 18, 22, 26, 32, 33
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

<table>
<thead>
<tr>
<th></th>
<th>The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.</td>
</tr>
<tr>
<td>☐</td>
<td>No protest accompanied the payment of additional search fees.</td>
</tr>
</tbody>
</table>