发明名称
具有整体式过滤器的饮用吸管

摘要
一种用于当载液通过所述吸管被吸入时逐渐地将活性组分添加到载液的饮用吸管。吸管包括大体上伸长的管状主体，所述管状主体具有内部孔和侧壁。管包括第一过滤装置和第二过滤装置，所述第一过滤装置和第二过滤装置被布置在管的相应第一端部和相应第二端部处。第一过滤装置和第二过滤装置一起将一定量的可溶解活性组分保持在管的孔中，同时允许载液通过吸管被吸入。活性组分采用多个固体颗粒的形式。每个过滤装置都在相应的端部处或与相应的端部相邻处，通过阻塞、封闭或收缩该管被形成，并且提供至少一个孔，所述孔尺寸设计为充分地小到将颗粒保持在管中并且充分地大到允许液体通过。
1. 一种制造饮用吸管的方法，所述饮用吸管适于逐渐地将活性组分添加到载液，所述载液通过所述吸管被吸入，所述方法包括步骤：
 提供大体伸长的管，所述管具有限定内部孔的侧壁以及第一开口端部和第二开口端部；
 提供与所述管的第一端部相邻的第一过滤装置；
 放置多个颗粒，所述颗粒包括通过所述第二端部进入到管中的一定量的可溶解活性组分；以及
 提供与所述管的第二端部相邻的第二过滤装置，
 其中，所述第一过滤装置和第二过滤装置将颗粒完全保持在管中同时允许载液通过管被口吸吸入，并且其中至少一个所述过滤装置是通过将与管的相应的端部相邻的侧壁形成过滤装置而提供的。

2. 根据权利要求1的所述的方法，其中形成过滤装置的步骤包括：
 至少部分地阻塞所述相应的端部；以及
 在相应的端部处提供穿孔部分，包括将至少一个孔的尺寸设计为充分地小到将颗粒保持在管中并且充分地大到允许液体相应于口吸而穿过吸管。

3. 根据权利要求1或2所述的方法，其中提供第一过滤装置和第二过滤装置的步骤包括如下步骤：
 至少部分地阻塞相应的开口端部；以及
 在相应的端部处提供穿孔部分，包括将至少一个孔的尺寸设计为充分地小到将颗粒保持在管中并且充分地大到允许液体相应于口吸而穿过吸管。

4. 根据权利要求2或3所述的方法，其中管的开口端部通过夹紧管的相对侧面并将所述相对侧面结合一起被至少部分地阻塞，所述管的相对侧面与所述端部相邻。

5. 根据权利要求4所述的方法，其中结合所述侧壁形成大体上横过所述管延伸的接缝。
6. 根据权利要求5所述的方法，其中，所述接缝基本是新月形的并且部分地沿着所述管的相对侧面向下延伸。

7. 根据权利要求5或6所述的方法，其中，所述接缝限定所述管的端部，并且通过修整被成型从而去除尖锐拐角。

8. 根据权利要求5-7之一所述的方法，其中，通过热塑性焊接实现所述结合。

9. 根据权利要求2-8之一所述的方法，其中，所述穿孔部分包括多个所述的孔。

10. 根据权利要求9所述的方法，其中，所述孔被形成在规则的阵列中。

11. 根据权利要求9或10所述的方法，其中，所述孔被形成在所述管的相对侧面上。

12. 根据权利要求2-11之一所述的方法，其中，所述孔是狭槽。

13. 根据权利要求2-12之一所述的方法，其中，穿孔部分通过对所述管的外部侧壁冲孔而形成。

14. 根据权利要求2-12之一所述的方法，其中，穿孔部分通过刺穿所述管的外部侧壁而形成。

15. 根据前述权利要求之一所述的方法，包括修剪所述管的端部以去除尖锐拐角的步骤。

16. 一种适于逐渐地将活性组分添加到载液中的饮用吸管，所述载液通过所述吸管被吸入，所述吸管根据上述权利要求之一限定的方法制造。

17. 一种适于逐渐地将活性组分添加到载液中的饮用吸管，所述载液通过所述吸管被吸入，所述吸管包括：
 大体伸长的管，该管具有限定内部孔的侧壁以及第一开口端部和第二开口端部；
 包括一定量度的可溶解活性组分的多个颗粒；
 由与所述的第一端部相邻的侧壁形成的第一过滤装置，所述第一过滤装置将颗粒完全保持在管中同时允许载液通过所述管被吸吸
入；以及
与所述第一端部相邻的第二过滤装置，所述第二过滤装置将颗粒
完全保持在管中同时允许载液通过所述管被口吸吸入。

18. 根据权利要求 17 所述的饮用吸管，其中，所述第二过滤装置
由与所述第二端部相邻的侧壁形成。

19. 根据权利要求 17 和 18 所述的饮用吸管，其中，每个所述过
滤装置都包括至少一个相应的孔，所述孔的尺寸设计为充分地小到将
颗粒保持在管中并且充分地大到允许液体通过。

20. 根据权利要求 19 所述的饮用吸管，其中，所述第一过滤装置
包括横向的接缝，其中侧壁的相对侧面被结合在一起，因而封闭所述
第一开口端部，并且其中至少一个孔被形成在与所述接缝相邻的侧壁
中。

21. 根据权利要求 20 所述的饮用吸管，其中，所述第一侧壁通过
热塑性焊接被结合在一起。

22. 根据权利要求 20 或 21 所述的饮用吸管，其中所述第一过滤
装置包括具有多个孔的穿孔部分，所述多个孔的尺寸设计为充分地小
do 将颗粒保持在管中并且充分地大到允许液体相应于口吸而穿过吸
管。

23. 根据权利要求 20 至 22 之一所述的引用吸管，其中所述接缝
限定所述管的端部，并且包括圆整的轮廓。
具有整体式过滤器的饮用吸管

技术领域

本发明总体上涉及即将耗用的时候用于向载液添加可溶解的试剂或组分的方法和设备，通过一种吸管用于口服。

本发明已经被发展首先用于涉及诸如牛奶的预先包装的饮料或瓶装的饮料的调味剂，并且将参照本应用说明本发明。然而，将意识到本发明没有用于所述特殊的使用，并且也可能被用于向其它饮料提供调味剂或染料，或用于口服可溶解的营养的试剂、药物的试剂、健康试剂或能量增强试剂。

背景技术

下述的现有技术作为技术背景被提供，使本发明的特征和益处能够在适当的技术背景中被完全懂得。然而，任何涉及的现有技术不应该作为明确的或暗指的陈述被采用，所述陈述是这种技术在本领域中被广泛地了解或形成公知常识的一部分。

已知在本技术领域中使用在以吸管形式的伸长的管状主体中被穿孔的端帽保持的可溶解的颗粒或小颗粒，即将耗用的时候，逐渐地使调味剂或其它组分分散在载液中，所述载液通过所述吸管被口吸吸入。申请WO98/15187公开了一种装置。然而，这种吸管不必要地复杂并且太昂贵而不能生产，尤其以可任意使用的形式。

本发明的一个目的是克服或基本改善一个或更多现有技术的限制，或至少提供一种有用的替代方案。

发明内容

因此，第一方面，本发明提供一种制造饮用吸管的方法，所述饮用吸管适于逐渐地将活性组分添加到载液，所述载液通过所述吸管被
吸入，所述方法包括步骤：

提供大体上伸长的管，所述管具有限定内部孔的侧壁和第一开口端部和第二开口端部；

提供与所述管的第一端部相邻的第一过滤装置；

放置多个颗粒，包括通过所述第二端部进入到管中的一定量度的可溶解活性组分；以及

提供与所述管的第二端部相邻的第二过滤装置，

其中所述第一过滤装置和第二过滤装置将颗粒完全保持在管中同时允许载液通过管被口吸吸入，并且其中至少一个所述过滤装置是通过将与管的相应的端部相邻的侧壁形成过滤器装置而被提供的。

这里被使用的词语“溶解的”、“可溶解的”和类似词语意在被广泛地解释以不但包含严格化学意义上的溶解物，而且包含悬浮液和与载液混合的混合物。

将意识到，以上提出的步骤不必按列举的顺序执行。此外，术语“第一端部”和“第二端部”完全是任意的，且只不过被应用于区别吸管的端部，而不是执行的步骤的顺序。

优选地，所述管是大体上为圆形的横截面。

优选地，所述方法包括将与吸管的两个端部相邻的侧壁形成过滤装置。

优选地，将每个相应的开口端部都形成过滤装置的步骤包括：至少部分地阻塞相应的端部以及在阻塞的端部中形成穿孔的其它步骤。

更优选地，管的每个开口端部都通过夹紧管的相对侧壁，和将所述侧壁结合在一起被阻塞，所述管的相对侧壁与端部相邻。优选地，结合的步骤形成大体上横过管延伸的接缝。优选地，每个结合通过热塑性焊接的方法被形成。

优选地，每个接缝是基本新月形的并部分地沿着管的相应侧面向下延伸。优选地，接缝限定管的相应的端部，所述管的相应的端部通过修整或圆整处理而除去尖锐拐角。

优选地，每个管的端部处的穿孔都被形成在部分中，并且每个部
分都包括多个孔，所述孔尺寸设计为充分地小到将颗粒保持在管中并且充分地大到允许液体通过适于口吸的吸管。更优选地，所述孔采用在管的相对侧面上伸长的狭缝的形式。

优选地，穿孔的部分通过将管的侧壁冲孔而成形。

优选地，颗粒是预定的尺寸和形式。优选地，所述颗粒包括预定量度的可溶解的活性组分。

另一方面，本发明提供一种适于逐渐地将活性组分添加到载液中的饮用吸管，所述载液通过吸管被吸入，所述吸管包括：

具有限定内部孔的侧壁和第一开口端部和第二开口端部的大体上伸长的管；

包括一定量度的可溶解活性组分的多个颗粒；

从与第一端部相邻的侧壁形成的第一过滤装置，所述第一过滤装置在管中基本保持颗粒同时允许载液通过所述管被口吸吸入；以及

与第一端部相邻的第二过滤装置，所述第二过滤装置在管中基本保持颗粒同时允许载液通过所述管被口吸吸入。

优选地，每个所述过滤装置都包括至少一个孔，所述孔尺寸设计为充分地小到将颗粒保持在管中并且充分地大到允许液体相对地无障碍通过。

优选地，每个过滤装置包括在管的相应端部处或与管的相应端部相邻处的管的阻塞部或封闭部。所述阻塞部或封闭部优选地通过管的相对侧面被夹紧并被结合在一起而形成。

附图说明

参照附图，仅作为示例，现在将说明本发明的优选的实施例，在附图中：

图 1 是根据本发明的包含可溶解的活性组分的饮用吸管的透视图；

图 2A 根据本发明的具有可伸缩部分的饮用吸管的另一个实施例的透视图；
图2B是图2A中示出的引用吸管在一种弯曲结构中的透视图；
图3A是根据本发明的被用于形成所述吸管的管的视图；
图3B和图3C是示出可伸缩部分被形成在其中的管的视图；
图3D是描绘在所述管的第一端部处的第一过滤器的形成的视图；
图3E是示出所述活性组分被添加到管中的视图；
图3F是示出在所述吸管的第二端部处的第二过滤器的形成的视图；
图4是是根据本发明的示出管的端部的放大图，包括一个简单横向焊接部；
图5是图1中示出的吸管的端部的放大图；
图6和7是根据本发明的吸管的可替代实施例的端部的放大图；
以及
图8至图12是根据本发明的可替代实施例的管的端部的放大图。

具体实施方式

参照附图，本发明提供一种用于逐层地将活性组分添加到载体的引用吸管，所述载体作为液体通过该吸管被吸入。将意识到，图1、2A和2B示出作为不确定的长度的吸管。

c. 典型地，载体是诸如牛奶或水的普通的饮料，并且活性组分是调味剂和/或染料。然而，应该意识到，其它活性组分，例如药物补充物、维他命补充物和矿物补充物、抗氧化剂、草药的药物或益生菌液（probiotics）和其它载体，可以另外的或可替代的被使用。

在图1中可以看到，吸管1包括适于用作吸管的具有内部孔3和侧壁4的通常为伸长的管状主体2。管2包括第一过滤器5和第二过滤器6，所述第一过滤器5和第二过滤器6被布置在该管的相应第一端部7和相应的第二端部8。当允许载体通过该吸管被吸入的同时，第一过滤器和第二过滤器一起在管2的孔中保持预定量度的可溶解的活性组分。活性组分，优选地为调味剂，采用多个固体的颗粒9的形式。虽然通常是球形的，在一些形式中，所述颗粒可以是被轻微
地伸长或圆柱形的。

过滤器 5 和过滤器 6 从管的相应的端部被一体地形成并且同样地不要求任何额外的部件或组件。更具体地说，在相应的端部处或与相应的端部相邻处，通过阻塞、封闭或收缩该管并提供至少一个孔形成每个过滤器，所述孔尺寸设计为充分地以保持颗粒在管中同时充分地大以允许液体的通过。

在优选的实施例中，管的每个开口端部都通过夹紧使其变平被阻塞，以便使相对侧面被组合在一起。一旦相互接触，侧面被结合在一起，因而有效地封闭管的端部。所述孔采用管的穿孔部分 10 的形式。每个穿孔部分 10 包括在管的每一个侧面上成阵列布置的多个孔 11。

本发明也延伸到制造该引用吸管的方法。用非常概括的术语来说，该方法包括如下步骤：形成预定长度和尺寸的管，将管的第一端部形成第一过滤器；在管中放置预定数量的颗粒形式的活性组分；以及将管的另一端即第二端部形成第二过滤器，从而在管中封装颗粒。将意识到，在上述的本发明的实施例中，穿孔可以在添加颗粒之前形成或者在添加颗粒之后形成。在管中也可以设有可伸缩部分。

以下是吸管的一个特别实施例的更详细的说明和它的优选的制造方法。

如图 3A 中示出，用于形成吸管的管是理想的养料-等级的热固性塑料的圆柱形的挤制件。优选地，该管具有基本圆形的横截面，当然也可以使用其它挤制部分，例如卵形的椭圆体或多边形部分。此外，该塑料是透明的或部分地透明的，以允许使用者在视觉上监控吸管的内部。在本实施例中，使用聚丙烯，因为聚丙烯是无毒的，可以被容易地加热焊接并用作为透明的形式。然而应认识到：代替聚丙烯，任何其它形式的塑料材料，或任何其它适当的材料诸如蜡纸、金属箔或类似物，可以被使用以形成吸管。

在本实施例中，圆形的挤制件具有大约 5.5mm 的内径和大约 6.0mm 的外径，大约 0.25mm 的壁厚。该挤制件被切开成大约 200mm 的长度。然而，将意识到，本发明不限于这些特定尺寸的吸管。例如，
在一个替代方案中，更长的型式为，该挤制件具有大约 10mm 的内径和 11mm 的外径，0.5mm 的壁厚并且吸管具有 20mm 的长度。

参照图 3B 和 3C，将管转变成引用吸管的第一步骤是在管的侧壁中形成可伸缩部分 12。可伸缩部分 12 包括形成在锯齿形轮廓中的成列周向肋 13，所述成列的周向肋 13 允许吸管被延伸或被弯曲同时保持内部孔的连续性。

将意识到，可伸缩部分的形成是完全可选择的。吸管的内含物允许吸管弯曲以对符合人类工程学引用的吸管端部的斜度进行调节。另外，吸管的内含物使吸管具有能够被向后弯超过 90°而使吸管的总长度变短的能力。在一个应用中该结构是有利的，所述一个应用是吸管被包装在固定尺寸的容器的侧面上，因为这样允许包装比该容器长的吸管。然而，在本技术领域中该优点连同形成可伸缩部分的方法一起是众所周知的。

其次，如图 3D 中示出，在一种三级的程序中，管 2 的第一端部 7 被形成第一过滤器 5。管的端部 7 被夹紧变平并且管的侧壁通过加热焊接热固性塑料的侧壁被结合在一起。穿孔部分通过在管的侧壁中朝向相应的端部冲孔或刺穿孔形成。吸管的端部然后绕焊接部被修整或另外被弄光滑以使吸管成形并消除任何尖锐拐角或突出，所述尖锐拐角或突出能潜在地引起使用者的口部的不适。这三个步骤可以被基本同时地执行，或按照几乎任何顺序执行。例如，可能在将侧壁结合一起之前首先夹紧管，冲孔洞并修整拐角。

在一种简单的形式中，如图 4 中示出，焊接部 14 基本是直的，在垂直于纵向管的轴线的方向上延伸而横过管的端部。当吸管用于被包装在纸盒的类型中方式载液时，以这种方式阻塞管具有优点，所述纸盒的类型包括脆弱的薄膜，所述脆弱的薄膜在纸盒上设置且其尺寸被设计为被相应尺寸的引用吸管刺穿并容纳所述引用吸管。在本文中使用的传统的吸管被斜切，从而设有适于容易刺穿纸盒薄膜的削尖的端部。然而，代替削尖的端部，本发明提供端部具有结合的双层侧壁材料的吸管。该双层形成相对坚硬的边缘 15，该边缘 15 能很好地刺穿
纸盒的脆弱的薄膜。

如在图 4 中可以被看到，以下述方式夹紧管并焊接管，导致在端部处增加管的宽度而使该宽度近似地增大 π/2 倍，或比最初的直径要大大约 50%。宽度上的增加既有优点也有缺点。一方面，增加的宽度可以导致吸管的端部太宽而不容易地配合并通过围绕纸盒薄膜的圆形孔，所述圆形孔通常根据吸管的标称直径来确定尺寸和定形。另一方面，如果提供在脆弱的区域的边缘中配合的更宽的端部，因为该更宽的端部在孔的在两侧上都趋向于打开一对裂缝延伸，更宽的端部则具有优势，所述孔是通过刺穿脆弱的薄膜的吸管形成的。这些裂缝提供通气孔，从而当流体被去除时以允许空气进入纸盒。

另外，夹紧并焊接管的端部导致相对尖锐的拐角 16 和 17 的形成，所述尖锐拐角 16 和 17 当被放置在使用者的嘴中时可以引起不适。

因为这个原因，图 5 中示出的本发明的实施例中，拐角 16 和 17 被修整和圆整处理以消除尖锐拐角并减少管的端部的宽度。选择修整的程度以平衡用于减少的吸管宽度的需要，所述减少的吸管宽度具有以上提及的通气孔形成的优势。

作为进一步的变形，如图 5 中示出，焊接部 18 不是直接地横过吸管延伸，而可以被形成倒置的 U 或新月形，所述倒置的 U 或新月形部分地沿着吸管的外缘平行于纵向轴线延伸。新月形焊接部 18 密封吸管的边缘，否则所述吸管的边缘由于拐角被修整可以被打开，并且另外，新月形焊接部 18 为吸管端部提供了增强的稳定性和结构整体性，这在刺穿该脆弱的纸盒薄膜时是有利的。

当然吸管的端部的焊接和修剪不限于图 4 和 5 中示出的形式。图 6 和 7 中示出代替的形式，所述代替的形式提供与图 5 中示出的吸管相同的优点，但是分别具有带尖角的端部 19 或圆整的端部 20，以进一步辅助刺穿纸盒的薄膜。

也可以应用几个其它替代方案或附加物。例如，除了加热焊接之外的多种方法可以被用于将管的侧壁结合起来，包括使用粘合剂、使用塑性焊接、使用超声波焊接或任何其它适当的方法。
另外，可以使用封闭管的端部的代替的方法，而不是夹紧和焊接的方法。例如，管可以通过碾压、皱缩、折叠被阻塞，管可以通过切开管的端部以产生许多的翼片并继而将薄片折叠在一起被阻塞，或管可以通过任何其它的适当的方法或组合被阻塞。

图8至图12示出了用于密封管的端部的一些可能的替代方法的选择。

图8中，管的端部被夹持并在四个侧面而不是两个侧面焊接在一起。这形成星形的端部21，所述星形的端部21可以被修整以去除尖锐拐角。

图9中，四个周向地间隔的纵向的狭长切口22被制成在管的端部中。这些狭长切口将管的端部分成四个翼片23，所述四个翼片23可以被向内地折叠并被密封在一起，因而封闭或部分地封闭开口并给定管的端部正方形的轮廓。

图10中示出了实施例中已经采用一种类似的方法。这里，多个狭长切口24被用于将管的端部分成多个被向内地折叠的翼片25。而更复杂，这种方法比图9中示出的实施例的方法提供了管的端部的更圆的轮廓。

图11中，已经在管的端部切开一排V形槽口26。这些槽口将管的端部分成三角形的翼片27，所述三角形的翼片27被向内折叠以沿着相邻的相应边缘接合。

在图12中管的端部被加热并向内地皱缩以形成圆整的或半球形的管端部28。

仍然在其它实施例中，管的端部没有完全地被阻塞但是被限制。即，端部仅被部分地封闭，使得一个或更多的孔保留在吸管的端部中。这可通过提供没有完全地延伸过吸管或不连续地横过吸管的密封部或焊接部实现。例如，将注意到，中心孔29保留在图10至图12中示出的实施例中。总之，由管的端部的部分收缩产生的开口的任何孔的尺寸和形状被设置成将颗粒保留在吸管中，同时允许相应的液体的无障碍通过。这些收缩类型的孔可以提供通过相应的过滤器的唯一流体通
道，或除此之外，其与如上所述通过刺穿、穿孔或其它方法而在管的侧壁中形成的孔接合使用。在这点上，形成穿孔部分 10 的孔 11 可以是图中示出的圆形孔，或任何其它适当的形状，包括孔、狭长切口或狭槽的任意组合。将意识到，孔的形状和尺寸将通过颗粒的形状和尺寸而被规定大小的量度。

例如，提供与球形颗粒相结合的伸长狭槽的一个优点是，形状中的不同趋向于当颗粒溶解时防止颗粒阻塞或堵塞有槽的孔。相反，当颗粒溶解到预定的适当的小直径时，它们能够通过有槽的孔并离开吸管，以安全地被消费者咽下。这趋向于减少过滤器的阻塞的可能性，并且因此总能保持流体流动，也避免过早的消耗粗糙的调味料微粒。孔可以被设置在管的任一侧面的离散的阵列中，如图中描述，或在管的端部处或与管的端部相邻处被设置在任何其它规则的或不规则的布置中。

在所述的本发明的实施例中，用阳模和相应的阴模，在吸管被夹紧的同时，通过对吸管的两个侧壁进行冲制而冲出孔。本操作可以随同修整操作和结合操作一起被执行。或者，可以通过用矛状器具刺穿侧壁形成孔。矛状器具可以被加热以熔化塑料侧壁。

回到图 3E，一旦吸管的第一过滤器 5 被形成在管的第一端部 7 处，则添加颗粒 9。管 2 被支撑在大体上竖立的方向，以便使第一过滤器被设置在管的开口端部 8 的下面。颗粒可以经由该顶部开口端部被添加到管。填充可以真空辅助。

包含在管中的颗粒 9 的预定的体积被计算以充分用于饮料的体积，所述饮料带着吸管意在被出售或被使用。该特殊的吸管已经被构造用于例如 WO 98/15187 中示出的液体体积更小的液体体积。然而，如上所述，在可替代的实施例中，吸管可以被制造为更大的尺寸或甚至更小的尺寸，从而根据需要而具有相应体积的活性组分。在包括药物或维他命补充物的实例中，使用的颗粒的体积通过活性组分的浓度和要求的剂量而确定。

一旦已将预定体积的颗粒添加到管中，管的第二端部 8 被形成第
二过滤器 6。第二过滤器 6 的形成可以用上述的关于形成第一过滤器 5 的同样的方法实现。

在其它实施例中，吸管的每一个端部的过滤器都可以被不同地形成。例如，管的仅一个端部可以被形成整体式过滤器，而管的另一个端部的过滤器可以通过附加不连续的过滤器部件而形成，例如 WO 98/15187 中所述。

离开吸管的液体中的活性组分的浓度依据：吸管中使用的颗粒的大小、形状和数量；吸管中的“停留时间”；颗粒中的活性组分的浓度和每个颗粒的有效溶解速度，以及外部的影响；温度；湿度和载液的特性、成分和粘性。

从可控制的特性来说，球形的颗粒是有利的，因为它不仅提供可推定的和稳定的溶解速度，也提高了较大体积的颗粒的流动性，所述颗粒采用较大体积是为了在生产期间便于充填吸管。此外，球形对碾压和破碎有抗力因而减少吸管中产生大量粉末，所述粉末可能会过早地溶解或被使用者咽下。

然而，在一些实例中，球形的颗粒制造成本较高，因此，在可替代的实施例中，颗粒可以是非球形的，例如伸长的、扁长的球体、圆柱的或药片形式或胶囊形式。例如在一个特殊的实施例中，颗粒被挤压形成导致颗粒具有大体上规则的棱柱形或圆柱形，而其横截面可以是圆形的、卵形的或别的形式。

颗粒的尺寸不但改变表面积而且也影响液体在吸管中的停留时间。大颗粒将提供更宽松的包装且在颗粒之间给定更大的空间和用于液体通过吸管的更直接的路线。因此，更大的颗粒通常导致减少的停留时间和在给定的吸入压力下的增加的流量。然而，如果颗粒被制作得相对于吸管的内径太大，它们能大致或完全地阻塞通道，或者提供在适当的表面区域中。

因此，颗粒的尺寸被设计成对吸管的横截面的宽度和形状进行补充。一般地，对于给定的圆形的吸管和球形的颗粒，所述颗粒具有在吸管的内径的 10% 和大约 80% 之间的直径，更优选地在吸管的内径的
15％和70％之间，并最优选地在吸管的内径的20％和50％之间，但是理想地不大于内径的一半。通过对这种组合的艰苦的发展和测试已经发现：颗粒具有适当的组合的表面区域以确保适当的调味剂浸入，并且被保留基本溶解，而没有导致过滤器的堵塞。将意识到，在真实世界情况下形成完美的球形颗粒是不可能的。在这种实例中，所给出的上述尺寸只是作为在本技术领域的范围中进行解释的指导。

在以前公开的非球形的颗粒和管的实例中，应该根据管的直径来适当选择颗粒的尺寸。然而，作为一个通常的规则，在密封包装时，颗粒的体积与空隙体积之比应该不超过4.5比1并且优选地小于3.5比1并且更优选地小于3比1。

影响离开吸管的载液中活性组分的浓度的两个其它问题重要的因素是颗粒中的活性组分的浓度和颗粒本身的溶解速度。高度浓缩的颗粒将给予载液更高的活性组分的浓度。同样地，溶解更容易的颗粒也将为离开的活性组分提供更高的浓度，所有的其它变量是相等的。在这方面，吸管意在是一次性的、单独的使用产品。颗粒的溶解速度被选择以匹配牛奶或其他饮料的特定体积，以便使得一旦规定的体积已经通过吸管，颗粒则已经完全地溶解或溶解达到如下程度，即，颗粒足够小到通过过滤器中的孔并离开吸管。在此阶段，吸管的透明的壁将允许使用者确定吸管缺少颗粒并即将吸管丢弃。在一个特殊实施例中，本发明的球形的颗粒理想地是以“独特的”的球的形式，所述“独特的”的球与其它形式和制造方法比较能够实现对上述变量的接近控制。

独特的球是通过在“种子”上累积多个层而形成的。典型地，该种子将是糖晶体。然而，可以使用任何其它适当的核子。独特的球的形成允许颗粒的尺寸被控制并且确保形式大体是球形。此外，颗粒的成分可以一层接着一层被调节。包括调味剂、增甜剂或糖、染料、淀粉和药物和维他命以及矿物的活性组分的多个层可以按要求以任何顺序被改变。

这使活性组分的浓度和溶解速度能够贯穿球的横截面被变化。例如，通过提供具有朝向中心的高的调味剂的浓度的颗粒，甚至当颗粒
逐渐地减小尺寸并且当它的表面区域变小时，可以得到相对均衡的浸入速度。

此外，以示例的方式，也可以混合或改变调味剂以便使最初一种调味剂被添加到饮料，并且当颗粒溶解时被另一种调味剂基本替代。调味剂的改变伴随有颗粒的颜色的改变，并且使用者可以通过吸管的透明的或半透明的侧壁确定该改变。当饮料或载液通过吸管时，人造的增甜剂也可以被使用而使饮料或载液变甜。也将意识到，通过提供不同的成分的颗粒混合物，可以同时地而不是顺序地浸入大量的调味剂或其它活性组分的混合。

虽然，本发明的吸管作为单独的产品或多件的形式可以被包装并被出售，也可展望，吸管随同例如牛奶或矿泉水的饮料的纸盒、容器或瓶一起被出售。吸管固定到纸盒的外面，与传统的吸管同样地被使用，所述吸管最初被包装在包围着的卫生密封的一次性的包装材料（未示出）中。该方法方便地将吸管和饮料包装一起。使用者在即将耗用的时候分离吸管，从包装材料去除吸管并且使用一个端部刺穿纸盒上的脆弱的薄膜。吸管然后通过所产生的开口插入纸盒中，并且饮料可以继而通过吸管被消费掉。

将意识到，为了向饮料添加调味剂，本发明的特殊的实施例已经被发展，所述饮料例如为牛奶、豆奶、矿泉水和苏打水、汽水、软饮料、奶昔、提神饮料、果汁、酒精饮料和类似物，然而，本发明可以同等地被应用于向液体中添加用于摄取的增甜剂补充物、维他命补充物、营养的添加剂、草药的添加剂、药物的添加剂、保健和能量添加剂。在这种实例中，吸管的透明的侧壁尤其有利于估计恰当的试剂的剂量已经被处理。通过空的吸管可以表明或，在颗粒中的看得见的颜色或可辨别的调味剂改变，对于可能难处理的孩子们作为鼓励。

或者，本发明给使用者提供对味道的强度进行一定程度的控制，即，根据通过吸管吮吸的液体的速度和因此吸管中的液体的停留时间进行控制。也已经发现，通过仅部分地用调味剂颗粒填充吸管，产生的自由空间提供用于增强的颗粒的搅动并因此增进混合。当搅动的颗
粒执行搅拌作用时，这样又导致饮料中的调味剂的更均衡的分配。

或者，因为活性组分仅以干燥的形式被密封，产品通常具有明显良好的保存寿命，组分以液体形式保存在产品中。例如，在调味剂的实例中，本发明允许相对便宜的无调味剂饮料和与吸管结合的有效的调味剂一起出售，可预见到，零售商能够获得比当前出售有调味剂饮料和无调味剂饮料（特别是牛奶）显著提高的利润率。消费者被提供更多种味道选择，随意地包括许多的不同的调味剂的组合，并且应用调味剂在任何要求的浓度的可能性。同样，因为饮料的调味剂成分将通常地具有更长的保存期，尤其在牛奶的实例中，如果不用的产品需要被丢弃，调味剂成分的浪费至少可以被避免。此外，因为零售商可以在商用的冰箱空间中有选择地库存相对大量的普通的饮料，调味剂容器被贮存在别处，库存和存货控制可以是非常简化。

类似的益处应用于诸如药物补充物和保健补充物和营养补充物的其它的活性组分。

本发明也尤其有利于向年纪小的孩子和上了年纪的老人给与可溶解的口服的药物和其它医疗，所述年纪小的孩子和上了年纪的老人吞咽这种传统的药片形式或胶囊形式的药物经常有困难。

此外，将意识到，本发明提供生产饮用吸管的比较低成本的方法，与WO 98/15187 中描述的内容相比较，所述饮用吸管包括可溶解的试剂。通过消除需要从多样的成分组合吸管得到该优点，每个所述多样的成分必须被分别地制造，得到该优点是可能的因为过滤部件从吸管的管状主体被一体地形成。在这些和其它方面中，本发明说明了不同于现有技术的特别的并且商业上重要的改进。

虽然本发明已经参照具体示例被说明，本领域的技术人员将意识到，本发明可以以许多其它形式被实施。