特許協力条約に基づいて公開された国際出願

国際公開番号
WO 2009/104413 A1

国際公開日
2009年8月27日(27.08.2009)

国際公開番号
WO 2009/104413 A

公開国際日付
2009年8月27日(27.08.2009)

国際公開日付
WO 2009/104413 A

国際出願番号
WO 2009/104413 A

指定国
JP

出願日
2008年2月21日(21.02.2008)

出願国
(JP)

出願人
特願1030001

出願いの条件
出願国と米国を除く全ての国において、新国家とAIが可能な、TNIKを抑制する薬物を選択すること、又は、TNFとレカテナン/TCF4転写複合体の結合を妨げる薬物を選択することを特徴とする抗腫瘍剤のスクリーニング方法である。

Title: METHOD FOR SCREENING OF ANTI-CANCER AGENT

発明の名称: 抗腫瘍剤のスクリーニング方法

Abstract: The object aims to inhibit the transcriptional activity of TCF/N LEF family to prevent or treat cancer. Disclosed is a method for the screening of an anti-cancer agent, which is characterized by selecting a compound capable of inhibiting the kinase activity of TNIK (TRAF2 and NCK interacting kinase) or selecting a compound capable of inhibiting the binding between TNIK and β-catenin/TCF4 transcription complex.
抗癌剤のスクリーニング方法
技術分野

本発明は、旧カテニンが関与する癌に有効な抗癌剤のスクリーニング方法に関し、更に詳しくは、旧カテニン/TC 4転写複合体の機能を抑制することによって、旧カテニンが「転写複合体の機能を抑制することによって、旧カテニンと結合することによって抑制する作用を有する治療薬等が提案されている（特許文献）

特許文献：国際公開0033号

背景技術

家族性大腸腺腫症の原因遺伝子として同定されたAPC (adenomatous polyposis coli)癌抑制遺伝子の変異は、家族性大腸腺腫症のみならず、散発性大腸癌の発癌過程においても、最も早く発癌に至る変異であり、80%以上の症例でみられる、最も高い頻度で起る遺伝子異常である。

このAPC癌抑制遺伝子の変異は、旧カテニンの細胞内蓄積をもたらし、この旧カテニンは、TC 4L ファミリーの転写因子と結合してその転写活性を誘導することが知られている。大腸癌の多くの症例においては、TC 4L ファミリーのうち、特に、腸上皮の分化の制御に関わるTC細胞因子-4 (TC 4)の転写活性化によって、腸上皮に細胞生物学的な変化が生じる。次いで、これが初期の大腸腺腫を形成し、さらに次期の多段階の遺伝子変異を経て癌化に至るものと考えられている。

また、APCに遺伝子変異のない症例の約半数において旧カテニン遺伝子の変異が見られることがから、旧カテニンとTC 4との転写複合体（旧カテニン TC 4転写複合体）の機能を抑制する化合物が、大腸癌の新規な分子治療薬として有望視されている。

そこで、旧カテニンがTC 4L ファミリーの蛋白質と複合体を形成して引き起こす転写活性化を、旧カテニンと結合することによって抑制する作用を有する治療薬等が提案されている（特許文献1）。

特許文献1：国際公開00/64933号
しかしながら、十分満足のできる有効な化合物は未だ開発されておらず、引き続き、大腸癌に有効な分子治療薬の開発が望まれている。

発明の開示

発明が解決しようとする課題

従って木発明の目的は、旧カテニン/TC 4転写複合体の機能を抑制することによって、旧カテニンが関与する癌に有効な抗癌剤を見出すためのスクリーニング方法を提供することにある。

課題を解決するための手段

本発明者等は、上記の目的を達成するために銳意検討を重ねた結果、TRA 2 and NCK interacting kinase(TNIK)が、既にリ-Cat cell factor-4のリン酸化に係わる酵素であること、及び、この酵素が、旧カテニン/TC 4転写複合体と機能的に相互作用し、大腸癌でみられる既に4の異常な転写活性化に寄与することを見出した。

更に、本発明者等は、TNIIIが有するキナーゼ活性を阻害すること、又は、TNIKと旧カテニン/TC 4転写複合体の結合を妨げることによって、旧カテニン/TC 4転写複合体の機能を抑制し、細胞の発育を阻止することができることを見出すと共に、TNIIIが有するキナーゼ活性を阻害する化合物を選択する、又は、TNIKと旧カテニン/TC 4転写複合体の結合を妨げる化合物を選択することによって、旧カテニンが関与する癌に有効な抗癌剤をスクリーニングすることがでできることを見出し、本発明に到達した。

すなわち木発明は、TNIIIが有するキナーゼ活性を阻害する化合物を選択すること、又は、TNIKと旧カテニン/TC 4転写複合体の結合を妨げる化合物を選択することを特徴とする抗癌剤のスクリーニング方法である(請求項1)。

本発明のスクリーニング方法は、TNIKのATP結合部に、ATPの結合を妨げるように入込込む化合物を選択する工程を含む方法や(請求項2)、TNIIIが有するATP結合部の立体構造に基づいて候補化合物を選択する工程を含む方法であってもよく(請求項3)、候補化合物の存在下でTNIIIのキナーゼ活性を測定し、該候補化合物非存在下におけるTNIIIのキナーゼ活性より、測定した前記キナーゼ
ゼ活性の方が低い薬剤を抗癌剤として選択するものであってもよい(請求項4)。

[0009]また、本発明のスクリーニング方法は、候補化合物の存在下で旧-カテニン/TC 4転写複合体とTNIIIの相互作用の強度を測定し、該候補化合物非存在下における旧-カテニン/TC 4転写複合体とTNIIIの相互作用より、測定した前記相互作用の方が小さい薬剤を抗癌剤として選択するものであってもよい(請求項5)。この場合、上記の該相互作用を、ツーハイブリッド法(請求項6)や、抗原抗体反応(請求項7)を用いて測定することが好ましい。また、本発明のスクリーニング方法においては、旧-カテニン、旧4及びTNIIIを発現する細胞を、候補化合物の存在下で培養し、前記細胞を該候補化合物の非存在下で培養した場合より、細胞増殖が抑制される前記候補化合物を抗癌剤として選択してもよい(請求項8)。

[0010]本発明のスクリーニング方法は、特に大腸癌に有効な抗癌剤をスクリーニングするために有用である(請求項9)。

発明の効果

[0011]本発明によれば、TNIIIが有するキナーゼ活性を阻害する化合物を選択すること、又は、TNIKと旧-カテニン/TC 4転写複合体の結合を妨げる化合物を選択することによって、動物実験の前に、高い確率で旧-カテニンが関与する癌に有効な抗癌剤をスクリーニングすることができる。

図面の簡単な説明

[0012][図1]TRA Σ and NCK interacting kinase(TNIK)と旧-カテニン/TC 4複合体の内因性相互作用を示す図である。
[図2]DLD-1細胞及びHCT-116細胞におけるTNIKと旧4の局在を示す免疫蛻光染色図である。
[図3]TNIIIによる旧-カテニン/TC 4複合体の転写活性の元進を示す図である。
[図4]TNIIIのノックダウンによる旧-カテニン/TC 4複合体の転写活性の抑制を示す図である。
[図5]TNIIIによる大腸癌細胞の増殖亢進を示す図である。
図6のノックダウンによる大腸癌細胞の増殖抑制を示す図である。
図7のATP結合部位変異型TNIK(K54R)の核移行不全を示す図である。
図8のATP結合部位変異型TNIK(K54R)のr4r4の相互作用不全を示す図である。
図9のTNIKによるr4r4のリン酸化を示す図である。
図10のTNIKに対するsiRNA(TNIK-12又はTNIK-13)によって、腫瘍の容積が小さくなって消え失われた様子を示す経時変化のグラフである。
図11のTNIKに対するsiRNA(TNIK-12又はTNIK-13)によって、TNIKmRNAの発現が抑制されたことを示すグラフである。
図12のsiRNA投与「8日後のマウスの外観を示す図である。
図13のsiRNA投与「8日後に切除した腫瘍および腫瘍の平均重量を、各種実験について示した図である。

発明を実施するための最良の形態

以下、本発明の旧－カテニンが関与する癌に有効な抗癌剤のスクリーニング方法について詳細に説明する。

本発明のスクリーニング方法に係る一つの形態は、TNK3が有するキナーゼ活性を阻害する化合物を選択する方法である。

TRA2/NCK相互作用キナーゼ(TRA2 and NCK interacting kinase : TNK)とは、広範なストレス刺激によって、共通に活性化するc-JunをN末端キナーゼ(c-Jun N-terminal kinase : JNK)シグナル経路を活性化するgerminal centerキナーゼ(germinal center kinase : GCK)ファミリーのメンバーとして同定されたリン酸化酵素である(F et al., J Biol Chem. 274 : 30729-30737, 1999)。

このTNK3は、r4r4のリン酸化に係わる酵素であり、旧－カテニンA C 4転写複合体と機能的に相互作用してr4r4の転写を活性化する。従って、このTNK3が有するキナーゼ活性を阻害することができれば、r4r4の転写活性化を抑制することが可能となる。

TNKが有するキナーゼ活性を阻害する化合物の選択に必要とされる膨大なコストや労力等を軽減するために、本発明においては、TNK3が有するキナーゼ
活性を阻害する化合物を、コンピュータ技術を用いて予め抽出することが好ましい。例えば、TNⅢが有するキナーゼ活性を阻害する化合物として、TNKのATP結合部位とATPの結合を妨げるように入る化合物を候補化合物群として、コンピュータ技術を用いて予め抽出する。すなわち、バイオインフォマティクス技術を利用して、TNⅢが有するATP結合部位の立体構造に基づいて、ATP結合部位にATPの結合を妨げることができる可能な化学構造をもつ化合物を、公知の化合物の中から選択し、新しく推定してよい。公知の化合物の中から選択する場合は、自ら築造した化合物ライブラリーや、インターネット等から人手可能な既存の化合物ライブラリーやなどの情報を活用することもできる。
合体のリン酸化の程度を判定することが好ましい。この場合のリン酸化の程度を判定する方法としては、放射性ATP又は非放射性ATPを用いる方法がある。ATPとして\(^{32}\)P放射うベルATPを使用した場合は、基質に取り込まれた\(^{32}\)P放射活性を測定し、非放射性ATPを使用した場合は、リン酸化抗体を用いてウエスタンプロット等を行うことにより、旧-カテニン/TC 4転写複合体のリン酸化の程度を判定することができる。

[0019] 生体内リン酸化反応とは、細胞内において、内因性的酵素又は過剰発現させた酵素による、内因性の基質又は過剰発現させた基質のリン酸化の程度を判定する方法である。

本発明においては、内因性のATPでリン酸化反応を行わせ、基質を免疫沈降等で分離した後、得られた免疫沈降物について、リン酸化抗体を用いてウエスタンプロット等を行うことによりリン酸化の程度を判定することができる。また、培養液中に\(^{32}\)P放射うベルATPを添加して、細胞の培養を行った後、基質を免疫沈降等で分離し、\(^{32}\)P放射活性を測定することによっても測定することが可能である。

[0020] 本発明のスクリーニング方法に係る他の態様は、TNIKと旧-カテニン/TC 4転写複合体の結合を妨げる化合物を選択する、抗癌剤のスクリーニング方法である。

TNIKは、旧-カテニン/TC 4転写複合体と結合し、旧-カテニン/TC 4転写複合体と機能的に相互作用して核 4の転写を活性化する。従って、TNIKと旧-カテニン/TC 4転写複合体との結合を阻害することができれば、核 4の転写活性化を抑制することが可能となる。

[0021] TNIKと旧-カテニン/TC 4転写複合体の結合を妨げる化合物を選択する方法の一態様としては、候補化合物の存在下で旧-カテニン/TC 4転写複合体とNIKの相互作用の強度を測定し、該候補化合物非存在下における旧-カテニンAC 4転写複合体とTNIIIの相互作用より、測定した前記相互作用の方が小さい薬剤を、抗癌剤として選択する方法が挙げられる。

[0022] 旧-カテニン/TC 4転写複合体とTNIIIの相互作用の強度を測定する方法とし
では、その強度を測定することができれば特に制限されることはないが、例えば、レポーターアッセイ、ツーハイブリット法及び抗原抗体反応を用いて測定する方法等が挙げられる。

【0023】ツーハイブリット法とは、転写因子のDNA結合部位と転写活性化部位が別の分子上にあっても、それらが結合すれば転写因子活性が生じるということを利用して、蛋白質間の相互作用を検討する方法であり、出芽酵母又は動物細胞のいずれの細胞を用いても行うことができる。具体的には、転写因子のDNA結合部位に被検蛋白質Aを融合させ、転写活性化部位に被検蛋白質Bを融合させて細胞に導入し、レポーターアッセイを行うと、蛋白質Aと蛋白質Bが細胞内で結合することによってDNA結合性の転写制御因子が再構築される。その結果、レポーター酵素の遺伝子が発現したので、蛋白質A及びBの間の相互作用を検知することができる。

【0024】本発明において実施するツーハイブリット法は、一般的に用いられている方法であればよく、特に制限されることはない。例えば、転写因子のDNA結合部位とTNFとDNA構築物、転写活性化部位と旧－カテニン/TC4転写複合体との結合蛋白を現するcDNA構築物、及び、遺伝子転写活性化部位の作用によってレポーターを発現するcDNA構築物を、同時に細胞内に導入する。TNFと旧－カテニン/TC4転写複合体が結合した場合には、転写活性部位の作用によりレポーター遺伝子が発現するので、レポーター遺伝子の発現によってもたらされた酵素活性を測定することにより、その相互作用の強度を測定することができる。当然のことながら、転写因子のDNA結合部位と旧－カテニン/TC4転写複合体との結合蛋白を現するcDNA構築物と、転写活性化部位とTNFとの結合蛋白を発現するcDNA構築物を用いてもよい。

【0025】レポーター遺伝子」とは、その遺伝子の発現産物を定量的に検出することが可能である遺伝子を意味し、具体的には、遺伝子のヌクレオチド配列及び又はアミノ酸配列が知られている遺伝子、その遺伝子の発現量に応じて強度の異なる信号（蛍光など）を発することのできる遺伝子などが挙げられる。レポーター遺伝子としては、ルシフェラーゼ遺伝子、GAT遺伝子、lacZ遺
伝子などが挙げられ、本発明においては、特に、ホタルルシフェラーゼ遺伝子及びウミシイタケルシフェラーゼ遺伝子などのルシフェラーゼ遺伝子を使用することが好ましい。

[0026] 本発明においては、候補化合物の存在下で、上記のようにして、レポーター遺伝子を導入した細胞を培養してレポーター遺伝子から発現した酵素量を測定し、候補化合物非存在下において同様の方法で測定した酵素量と比較し、前者の酵素量が後者の酵素量より低下する化合物を選択することにより、旧-カテニンが関与する癌に有効な抗癌剤をスクリーニングすることができる。

[0027] 抗原抗体反応を用いて測定する方法は、例えば、TNIK、旧-カテニン及び几Ⅳを発現する細胞の抽出液から、TNⅢに対する抗体を用いて免疫沈降させ、次いで、得られた沈降物について、旧-カテニン及び又は几Ⅳの抗体を用いてイムノプロット分析を行う方法である。このイムノプロット分析によって、TNIK-旧-カテニン又はTNIK-TC Ⅳとの複合体を示すバンドが得られた場合には、そのバンドに含まれる蛋白質の量がこれらの相互作用の強度を示すものとなる。なお、旧-カテニン及び又は几Ⅳの抗体を用いて免疫沈降させた後、TNⅢに対する抗体を用いてイムノプロット分析を行ってもよい。

[0028] 本発明においては、候補化合物の存在下で、遺伝子導入したTNIK、旧-カテニン及び几Ⅳを発現する細胞を培養し、上記の方法により免疫沈降及びイムノプロット分析を行って相互作用の強度を測定し、候補化合物非存在下で測定した相互作用の強度と比較し、それを存在させることによって強度が小さくなる候補化合物を選択することにより、旧-カテニンが関与する癌に有効な抗癌剤を選択することができる。

[0029] 本発明において用いられるTNIK、旧-カテニン及び几Ⅳを発現する細胞としては、ヒトのみならず、マウス、ラットなどの公知の大腸癌細胞等を例示することができるが、旧-カテニンが核内に蓄積しているという観点から、DLD-1、HCT-116、WiDrなどを用いることが好ましい。

[0030] TNIKが有するキナーゼ活性を阻害する化合物、又は、TNIKと旧-カテニン
C 4転写複合体の結合を妨げる化合物を選択する他の態様としては、旧-カテニンN、C 4及びTN IIIを発現する細胞を、候補化合物の存在下で培養し、前記細胞を該候補化合物の非存在下で培養した場合より、細胞増殖が抑制される候補化合物を抗癌剤として選択する方法が挙げられる。

[0031] TN IIIが有するキナーゼ活性を阻害するか、又は、TN IKと旧-カテニン/TG 4転写複合体の結合を妨げることにより、C 4の転写活性を抑制することができる。従って、細胞の増殖が抑制されることを確認することにより、旧-カテニンが関与する癌に有効な抗癌剤を選択することができる。なお、細胞の増殖を抑制する作用を確認する方法は特に制限されるものではないが、例えば、コロニーフォーメーションアッセイ、MTT[3-4,5-Dimethyl thiazol-2-yl]-2,5-Diphenyltetrazolium Bromide]法、又は、細胞数を計測することによって、細胞の増殖を抑制する作用を確認することができる。

上記したMTT法とは、細胞培養中にMTTを添加し、添加したMTTが分解された量を測定することにより、生細胞数を解析する発色検出法である。即ち、培養皿上で増殖した細胞をMTT溶液でインキュベートすると、主にミトコンドリアの酵素活性に依存して、水に不溶なフォルマゼン色素が産生される。このフォルマゼン色素を可溶化した後、分光光度計で測定を行う。得られる吸光度は生細胞数に比例するので、相対的に細胞増殖の程度を比較することがができる。

[0032] 本発明のスクリーニング方法が対象とする旧-カテニンが関与する癌として、例えば、大腸癌、卵巢癌、子宮体癌、小児脳腫瘍（髄芽腫）、肝癌、肝芽腫、胃癌等が挙げられるが、特に本発明は、大腸癌に有効な抗癌剤のスクリーニング方法として有用である。

[0033] 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。

先ず、本発明の実施例で用いた試料、試薬、及び、実験方法について説明するが、各実施例において特に記載がない場合には、以下に記載した方法に従って実験を行なった。
【細胞株】
ヒト大腸癌細胞株DLD-1は、ヒューマンサイエンス研究資源バンク（大阪）より、ヒト大腸癌細胞株HCT-116は、ATCC(American Type Culture Collection)（米国）より分譲を受けた。

【プラスミド】
ヒトTNKの全長cDNAが組み込まれたpClneo-HAベクター(Promega社, Madison WI)と、ATP結合部位にある54番目のリジンをアルギニンに置換した変異体TNK(K54R)が組み込まれたpClneo-HAベクターは、薬谷研究室(琉球大学)(沖縄)より供与された。
ヒトヘル4の全長cDNAは、p EAG-CMV-4ベクター(Sigma-Aldrich社)にサブクローニングして得た(EAG-TC 4)。
これらのcDNAを、HCT-116細胞及びDLD-1細胞に、Lipofectamine 3000(Invitrogen社)を用いて導入した。

【抗体】
抗B-カテニン(clone 14)モノクローナル抗体は、BD Biosciences社(Palo Alto, CA)から購入し、抗E4(6H5-3)モノクローナル抗体は、Upstate社(Charlottesville, VA)から購入した。
抗TNⅢラビットポリクローナル抗体(GTX13141)は、GeneTex社(San Antonio, TX)から購入し、抗TNⅢモノクローナル抗体(3D4)は、Abnova社(Taipei, Taiwan)から購入した。

【免疫沈降】
抗E4(sc-13027)、抗HA[hemagglutinin](sc-805)ラビットポリクローナル抗体、ラビットIgG及びマウスIgGは、Santa Cruz Biotechnology社(Santa Cruz, CA)から購入した。

抗phospho-Serineラビットポリクローナル抗体(ab9332)は、Abcam社(Cambridge, MA)から購入した。

抗HAモノクローナル抗体(12CA5)、及び、抗旧-Actinモノクローナル抗体(A C-74)は、Abgent社(San Diego, CA)から購入した。
下記のLysis Bufferを用いて抽出した細胞抽出物を、抗旧カテニンモノクローナル抗体、抗旧4モノクローナル抗体、抗TNIIIラビットポリクローナル抗体、抗HAモノクローナル抗体、マウスIgG、又は、ラビットIgGと、4℃で一晩インキュベートした後、Dynabeads protein G Dynal Biotech社、Oslo, Norwayと混合し、更に、一時間インキュベートした。その後、磁気により沈降させ、デシル硫酸ナトリウム－ポリアクリルアミドゲル電気泳動(SDS-PAGE)によって分離操作を行った。

Lysis Buffer : 50mM トリス-HIII, pH 7.4, 150mM NaCl, 1mM CaCl₂, 1mM EDTA, 0.5% テリトンX100, 0.05% SDS, 2mM TCEP, 1mM PMSF, 10mM Na破産ase inhibitor cocktail Boehringer Mannheim社, Indianapolis, IN), Phosphatase inhibitor cocktail 1 and 2 Sigma-aldrich社

サンプルのタンパク質をSDS-PAGEにより分離した後、Immobilon-P membranes(Milipore, Billerica MA)に転写した。得られた転写膜を一次抗体と共に4℃で一晩インキュベートし、更に、二次抗体と一時間インキュベートした後、ECL Western blotting detection reagents(Amersham Biosciences, Amersham, UK)を用いて検出した。

蛍光免疫染色法

培養したDLD-1細胞及びHCT-116細胞を、4% パラホルムアルデヒドを用いて10分間処理することによってカバーガラスに固定した後、0.2% Triton X-100を用いて10分間処理することにより、細胞膜の透過性を亢進させた。その後、抗TNIIIラビットポリクローナル抗体又は抗旧4モノクローナル抗体、及び、抗HAラビットポリクローナル抗体と共に、カバーガラス上に固定した前記細胞を、4℃で一時間インキュベートした。得られた細胞を、二次抗体としてのAlexa 594抗マウスIgG抗体及びAlexa 488抗ラビットIgG抗体(Invitrogen社, Carlsbad, CA)と共に一時間インキュベートした後、共焦点レーザ顕微鏡(LSM5 PASCAL社, cc d Zeiss, Jena, Germany)を用いて観察した。
[0042] TGF/Lymphoid enhancer

強制発現系（図3）では24時間後、発現抑制系（図4）では48時間後に、メーカーのプロトコールに従って、キットに付属していたリシス（Ly s is）溶液を用いて細胞を可溶化した。次いで、Dual-luciferase Reporter Assay system Promega社、Madison, WI）を用い、ウミシイタケルシフェラーゼを内部標準として、ホタルルシフェラーゼ活性を測定した。

[0043] RNA干涉

TN1Kに対する2種類の干涉オリゴRNA small interfering ribonuclease acid）であるTNK-12及びTNK-13、並びに、コントロールsiRNAは、Dharmacon社（Chicago, Ill）から購入した。

TNK-12は、センス鎖が5'-CGACAUACCAGACUGAUUU-3' [配列番号1]、アンチセンス鎖が5'-PUAAUGACUGGUAUGUUCG-3' [配列番号2]であり、TNK-13は、センス鎖が5'-GACCGAAGGUCCGUGUACU-3' [配列番号3]、アンチセンス鎖が5'-PGUAACAGCGUCCGUCUU-3' [配列番号4]である。ここで、上記配列中のPはリン酸基を表わす。従って、配列番号2及び配列番号4で表わされるヌクレオチド配列は、その5'末端の残基がリン酸化されている。

[0044] pGeneClipベクターに組み込まれたTNIIIに対する3種類のshort hairpin ribonucleic acid shRNA）プラスミドである、TNK-1、TNK-2及びTNK-3、並びに、コントロールshRNAは、SuperArray Bioscience corporation（Federick, MD）から購入した。TNK-1は、Insert

これらのsiRNA及びshRNAは、DLD-1細胞及びHCT-116細胞中に、lipofectamine 2000（Invitrogen社）を用いて導入された。

[0045] コロニーフォーメーションアッセイ

トランスフェクションを行ったDLD-1細胞の培養液及びHCT-116細胞の培養液に、トランスフェクションから24時間後、それぞれ300μg/ml及び1000μg/mlのジェネチシンG418（Invitrogen社製）を添加し、8日間培養を行った。その後、ギムザ染色（Wako社製）を用いて、染色を行った。

[0046] リアルタイムRT-PCR

全RNAをRNeasy Miniキット（Qiagen, Valencia, CA）により調製し、DNase一処理RNAについて、ランダムプライマー及びSuperscriptII逆転写酵素（Invitrogen）を用いて逆転写反応を行い、cDNAを合成した。一方、TaqManユニバーサルPCRマスターミックス、及び事前設計されたTaqMan遺伝子発現プローブ並びにプライマーセットを、Applied Biosystem社から購入した。PRISM7000 Sequence Detection system（Applied Biosystem社製）を用い、レポーター蛻光の増加として測定された増幅データを集めた。内部コントロール[ヒトの場合は旧-アクチン（ACTB）]に対する相対的なmRNA発現レベルを、比較閾値サイクル（Ct）法（M.Peifer, P.Polakis, Science 287, 1606(2000)）を用いて計算した。

実施例1

[0047] 大腸癌細胞株におけるTNIKと旧-カテニン/TC 4複合体の結合ノ

大腸癌細胞であるDLD-1細胞及びHCT-116細胞の細胞抽出物について、抗TNIKラビットポリクローナル抗体、正常ラビットIgG、抗旧-カテニンモノクローナル抗体、旧-カテニンモノクローナル抗体、又は正常マウスIgG（IgG）を用いて免疫沈降操作を行った。沈降物（IP）及び細胞抽出物（Total）については、抗TNIK
ラビットポリクローナル抗体、抗旧4モノクローナル抗体、及び抗旧-カテゴニ
ンモノクローナル抗体を用いて、イムノプロット分析を行った。

【0048】 イムノプロット分析の結果を図1に示す。TNIIIは、抗旧4抗体によって免疫
沈降するが、コントロールIgGによっては免疫沈降しなかった。また、既知の
旧4結合タンパクである旧-カテゴニの抗体（抗旧-カテゴニ抗体）によっても
、TNIKは免疫沈降した。更に、旧4及びその結合蛋白である旧-カテゴニも、
抗TNIII抗体により免疫沈降することが確認された。これらの結果から、旧4
、旧-カテゴニ及びTNIIIの三者間における相互作用が実証された。

【0049】 次に、DLD-1細胞及びHCT-116細胞におけるTNIKと旧4の細胞内局在につい
て、蛍光免疫染色法により検討を行った。

その結果を図2に示す。TNIIIについては、細胞全体に網目状の染色が認めら
れ（図2, TNIK）、TNIKが細胞全体に存在していることが確認された。これに対
し、旧4の場合には細胞核に染色が認められ（図2, 旧4）、旧4が核に局在し
ていることが確認された。また、TNIKと旧4が共に細胞核に局在しているこ
とが、図2のMergeによっても確認された。

実施例2

【0050】 旧-カテゴニ/TC 4複合体の転写活性の元進ノ

前述したようにTNIIIはリン酸化酵素であり、創薬の標的となり得ることか
ら、旧-カテゴニ/TC 4複合体の転写制御に対するTNIIIの影響について検討を
行った。

ヒトTNIKの全長c DNAを組み込んだpClneo-HA-TNIK、又は、ATP結合部位に
ある54番目のリジンをアルギニンに置換し、リン酸化酵素能を欠損させた変
異体であるK54Rを組み込んだpClneo-HA-TNIII
K54Rを、DLD-1細胞及びHCT-116細胞に導入し、TNIIIによる旧4L レポーター
活性への影響について検討を行った。

【0051】 DLD-1細胞及びHCT-116細胞に、旧4L レシフェラーゼレポーターベクター
（TOP又はFOP）、pClneo-HA-TNIK、pClneo-HA-TNIK K54R、又は、コントロー
ルプラスミド(pClneo-HA)を導入した。次いで、上記したプロトコールに従っ
て、24時間経過後に、ルシフェラーゼ活性を、3回繰り返し実験を行って測定した。

[0052] その結果を図3に示す。図3の下図は、蛋白発現レベルを示した、抗HA及び抗旧-Actin抗体を用いたイムノプロット分析の結果である。TNⅢを制御発現させると、旧FL floレポーターTOP- EASH(黒カラム)のホルタルシフェラーゼ活性が、コントロールペクター(pClneo-HA)に比べて増加することが確認された。しかしながら、TNIK K54Rを発現させた場合には、転写活性の元進は認められなかった。この結果から、TNⅢのキナーゼ活性を阻害することにより、旧-カテニン/TC 4の転写が抑制されることが確認された。

[0053] 更に、旧-カテニン/TC 4複合体の転写制御に対するTNⅢの影響について検討するために、RNA干渉(siRNA)を利用してTNⅢの発現をノックダウンし、旧-カテニン/TC 4の転写活性への影響を調べた。

DLD-1細胞及びHCT-116細胞内に、旧FL flo シフェラーゼレポーターペクター(TOP又はOP)、2種類のTNⅢに対するsiRNA(TNIK-12, TNIK-13)、又は、2種類のコントロールsiRNA(Ⅹ, Ⅻ)を導入した。次いで、上記したプロトコールに従って、前記導入から48時間経過後、ルシフェラーゼ活性を、3回繰り返し実験を行って測定した。

[0054] その結果を図4に示す。図4の下図は、ノックダウンされたTNⅢ及び蛋白質のレベルを示した、抗TNⅢ及び抗旧-Actin抗体を用いたイムノプロット分析の結果である。TNⅢ蛋白の発現がノックダウンされることによって、ルシフェラーゼ活性は約V 3に低下した。このことがTNⅢ蛋白の発現を抑制することにより、旧-カテニン/TC 4の転写を抑制することのできることが確認された。

[0055] 次に、この転写活性による細胞増殖への影響を、コロニーフォーメーションアッセイにより検討した。

DLD-1細胞及びHCT-116細胞に、pClneo-HA-TNIK、pClneo-HA-TNIK K54R、又は、コントロールプラスミド(pClneo-HA)を導入した。24時間経過後にG418を添加し、更に、細胞を8日間培養した。次いで、ギムザ染色することにより
細胞増殖能を可視化した。

その結果を図5に示す。TN III蛋白の過剰発現によって細胞増殖は著しく冗進した。これに対し、K54Rの発現試験では、有意な、細胞増殖の元進は認められなかった。この結果から、TN IIIによるリン酸化能を欠失させることにより、細胞増殖を抑制することが確認された。

更に、RNA干渉（shRNA）を利用してTN III蛋白の発現をノックダウンし、そのノックダウンがもたらす細胞増殖への影響を、コロニーフォーメーションアッセイにより検討した。

DLD-1細胞及びHCT-116細胞に、3種類のTN IIIに対するshRNAプラスミド(TN III-1、TNIK-2及びTNIK-3)、又は、コントロールshRNAを導入した。24時間経過後にG418を添加し、更に細胞を8日間培養した。次いで、ギムザ染色することにより、細胞増殖能を可視化した。

その結果を図6に示す。尚、図6の右図は、抗TN III及び抗α-Act in抗体を用い、ノックダウンされたTN III蛋白及び蛋白質量のレベルを示した、イムノプロット分析の結果である。転写活性の場合と同様に、TN III蛋白の発現抑制により、細胞増殖が著しく低下することが確認された。この結果からも、TN IIIによるα-カテニン/TC 4の転写の抑制により、細胞増殖が抑制されることが確認された。

実施例 3

TNIKと几 4との結合に対するTN IIIによる几 のリン酸化の必要性ノ

リン酸化酵素である野生型TNIKとリン酸化能を欠損した変異体K54Rが、転写及び細胞増殖を、それぞれ逆方向に制御しているので、両者の機能的差異について詳細な検討を行った。

まず、DLD-1細胞に野生型TNIKとK54R変異体を発現させた後、細胞内における局在について、蛻光免疫染色法により検討を行った。

DLD-1細胞にpClneo-HA-TNIK、又は、pClneo-HA-TNIK  K54Rを導入した。川IIIについては、抗HAラビットポリクローナル抗体を用いて、几 4については、抗几 4モノクローナル抗体を用いて、二重免疫蛻光染色を行った。
図7から分かるように、野生型TNⅢを発現させた細胞の場合は、細胞全体にTNⅢの局在が見られ、特に核に強い発現が認められた（図7.上段左）。これに対し、K54Rを発現させた細胞の場合には、核には、K54Rの発現がほとんど認められなかった（図7.下段左図）。

次に、野生型TNIKとK54RをDLD-1細胞及びHCT-116細胞にそれぞれ発現させた。次いでこれらの細胞から抽出した細胞抽出液を用いて、TNIKと凡 4の相互作用を、免疫沈降法により検討した。

DLD-1細胞及びHCT-116細胞に、pClneo-HA-TNIK、pClneo-HA-TNIK K54R、又は、コントロールプラスミド(pClneo-HA)を導入した。その細胞抽出物に対して、抗HAモノクローナル抗体、抗凡 4モノクローナル抗体、あるいは正常マウスIgG（IgG）を用いたときの免疫沈降操作を行った。沈降物（Ab）について、抗HAポリクローナル抗体、抗凡 4ポリクローナル抗体を用いてイムプロット分析を行った。

その結果を図8に示す。尚、図8の下図は、蛋白質のレベル量を示した、抗旧-Actin抗体を用いたときのイムプロット分析の結果である。野生型TNⅢの場合には、コントロールに比べて凡 4と相互に強い結合が認められたが、K54Rの場合には、弱い免疫沈降バンドしか認められなかった。このことから、TNIKのキナーゼ活性が阻害された場合には、TNIKと旧-カテニン/TC 4複合体との結合が起こらないことが推定される。

更に、これらの局在及び相互作用が機能的に働いているかどうかを検討するために、DLD-1細胞に、p EAG-TC 4と、TNⅢの野生型及びK54R変異体を発現させ、その細胞抽出液に対して、抗凡 4抗体を用いて免疫沈降法による評価を行った。
DLD-1細胞に、pEAG-TC4及び、pClneo-HA-TNIK、pClneo-HA-TNIK K54R、又は、コントロールプラスミド(pClneo-HA)を導入した。次いで、その細胞抽出物について抗4モノクローナル抗体(Ab)、又は、正常マウスIgG(IgG)を用いて免疫沈降法による評価を行った。沈降物について、抗phospho-Serineラビットポリクローナル抗体(ab9332)、抗4ラビットポリクローナル抗体(sc-13027)を用いてイムノブロット分析を行った。尚、発現のレベルを示すために、細胞抽出物(Total cell lysate)について、抗4モノクローナル抗体(6H5-3)、抗HAモノクローナル抗体(12CA5)、及び、抗旧-ACTinモノクローナル抗体(AC-74)を用いて、イムノブロット分析を実施した。

その結果を図9に示す。尚、図9の下図に、蛋白質の発現レベルを示した、抗4、抗HA、及び抗旧-ACTin抗体を用いたイムノブロット分析の結果を表す図である。

抗リン酸化セリン及び抗リン酸化スレオニン抗体を用いて几4のリン酸化の程度を検討したところ、野生型TNIIIを発現させた場合には几4のセリンリン酸化バンドが検出された。しかしながら、K54R変異体を発現させた場合には、コントロールに比べて有意な、セリンリン酸化は認められなかった。尚、スレオニンのリン酸化は認められなかった。この結果は、几4蛋白質を基質として、そのアミノ酸配列中の少なくとも1箇所のセリンを、TNIIIがリン酸化することを示している。

実施例4

〈TNIKに対するsiRNAによる大腸癌増殖の抑制〉

0.1mlのPRESに懸濁した5x10⁶HCT-116、DLD1、又はWiDr細胞を、5週齢の雌BALB/c nu/nuヌードマウス(SLC、東京)の脇腹皮下に接種した。「週間後、形成した腫瘍（224.5±8.9mm³）に対して、アテロコラーゲン(Ate loGene；高研、東京)単体投与、2種類のコントロールsiRNA（X又はIX）とアテロコラーゲン（AteloGene；高研、東京）の混合液、及び、TNIIIに対するsiRNA（TNIK-12又はTNIK-13）とアテロコラーゲン（AteloGene；高研、東京）の混合液をそれぞれ投与し、非処理のものと比較検討した。上記投
与に用いたsiRNAおよびアテロコラーゲンの最終濃度は、夫々、30μMおよび0.5％であり、0.2-ml容量の溶液を各腫瘍に直接注入した。HCT-116細胞を用いた場合について、近似式V=A x B^2/6（但し、AおよびBは、夫々、最大および最小の寸法を示す）を用いて、腫瘍の容積を25日間測定した（n＝8）結果は図8に示した通りである。なお、Di-D1又はWiDr細胞を用いた場合にも同様の結果が得られた。

この図から明らかのように、TNIIIに対するsiRNA（TNIK-12又はTNIK-13）によって腫瘍は殆ど完全に消失するから、TNIIIに対するsiRNAによるTNIIIのノックダウンにより、大腸癌の増殖が抑制されることを確認することができる。

実施例5

HCT-116細胞を免疫不全マウス（BALB/c nu/nuヌードマウス）の皮下に接種し、接種1週間後に、TNIIIに対するsiRNA（TNIK-12又はTNIK-13）とアテロコラーゲン（AteloGene；高研、東京）の混合液を、形成した腫瘍（224.5+8.9mm3）に投与した。siRNAを投与した3日に後腫瘍を摘出し、リアルタイムPCRによってTNIKmRNAの発現量を測定し（n＝3）、TNIIIに対するsiRNA（TNIK-12又はTNIK-13）によってTNIKmRNAの発現が抑制されたことを確認した。その結果を図9に示す。

また、上記投与から8日後のマウスの外観（n＝3）、及び切除した腫瘍の平均重量（n＝8）を、それぞれ、図10及び図11に示した。

これらの結果から、TNIIIに対するsiRNAを投与した腫瘍は、非処理（No treat）、アテロコラーゲンのみの単体投与処理（Atelo only）、又はコントロールsiRNA（X、IX）を投与した腫瘍より、有意に小さくなることが実証された。

このように、TNIIが、旧-カテニン/TC 4複合体と相互作用することにより、TNIKの発現や酵素活性に依存して、几7FLとファミリーの転写活性化が亢進されることが判明した。このことから、TNIIIを阻害する化合物、又は、TNIIIと旧-カテニン/TC 4複合体との相互作用を阻害する化合物を用いて、几7FLとファミリーの転写活性を阻害し、癌の予防や治療を行うことが可能になるこ
とが理解される。

[0068] このように、TNIIIがα2-カテニン/TC 4複合体と相互作用することにより、TNIII蛋白の発現や酵素活性に依存して、TC FL ファミリーの転写活性を阻害することが判明した。この知見により、TNIIIが有するキナーゼ活性を阻害する化合物、又は、TNIKとα2-カテニン/TC 4複合体との相互作用を阻害する化合物を用いて、TC FL ファミリーが有する転写活性を阻害し、癌の予防や治療を行うことが可能になることが理解される。

産業上の利用可能性

[0069] 本発明の抗癌剤のスクリーニング方法は、効率よく、副作用の低い癌治療薬を開発するのに有用であり、大腸癌のみならず、α2-カテニンが関与する卵巢癌、子宮体癌等の癌に対する、TC 4の転写活性異常を制御する抗癌剤の開発に寄与することができるので、産業上極めて有用である。
請求の範囲

[1] 旧-カテニンが関与する癌に有効な抗癌剤のスクリーニング方法であって、TN IIIが有するキナーゼ活性を阻害する化合物を選択すること、又は、TNIKと旧-カテニン/TC 4転写複合体の結合を妨げる化合物を選択することを特徴とする、抗癌剤のスクリーニング方法。

[2] 前記スクリーニング方法が、TNIKのATP結合部に、ATPの結合を妨げるように入り込む化合物を選択する工程を含む、請求項1に記載された抗癌剤のスクリーニング方法。

[3] 前記スクリーニング方法が、TN IIIが有するATP結合部の立体構造に基づいて候補化合物を選択する工程を含む、請求項1又は2に記載された抗癌剤のスクリーニング方法。

[4] 前記スクリーニング方法が、候補化合物の存在下でTN IIIのキナーゼ活性を測定し、候補化合物非存在下におけるTN IIIのキナーゼ活性より、測定した前記キナーゼ活性の方が低い薬剤を抗癌剤として選択する方法である、請求項1〜3の何れかに記載された抗癌剤のスクリーニング方法。

[5] 前記スクリーニング方法が、候補化合物の存在下で旧-カテニン/TC 4転写複合体とTN IIIの相互作用の強度を測定し、候補化合物非存在下における旧-カテニン/TC 4転写複合体とTN IIIの相互作用より、測定した前記相互作用の方が小さい薬剤を抗癌剤として選択する方法である、請求項1に記載された抗癌剤のスクリーニング方法。

[6] 前記旧-カテニン/TC 4転写複合体とTN IIIの相互作用を、ツーハイブリッド法を用いて測定する、請求項5に記載された抗癌剤のスクリーニング方法。

[7] 前記旧-カテニン/TC 4転写複合体とTN IIIの相互作用を、抗原抗体反応を用いて測定する、請求項5に記載された抗癌剤のスクリーニング方法。

[8] 前記スクリーニング方法が、旧-カテニン、TC 4及びTN IIIを発現する細胞を、候補化合物の存在下で培養し、前記細胞を該候補化合物の非存在下で培養した場合より、細胞増殖が抑制される候補化合物を抗癌剤として選択する方法である、請求項1に記載された抗癌剤のスクリーニング方法。
前記が、大腸癌である、請求項1～8の何れかに記載された抗癌剤のスクリーニング方法。
TRAF2 and NCK interacting kinase (TNIK)とβ-カテニン/TCF4複合体の内因性相互作用

(a) DLD1  (b) HCT-116

DLD-1及びHCT-116細胞におけるTNIKとTCF4の局在を示す免疫蛍光染色図
[図3]

**TNIKによるβ-カテーテン/TCF4複合体の転写活性の亢進**

(a) DLD1  
(b) HCT-116

[図4]

**TNIKのノックダウンによるβ-カテーテン/TCF4複合体の転写活性の抑制**

(a) DLD1  
(b) HCT-116
TNIKによる大腸癌細胞の増殖亢進

![図5]
TNIKのノックダウンによる大腸癌細胞の増殖抑制

(a) DLD1

(b) HCT-116
ATP結合部位変異型 TNIK（K54R）の核移行不全
ATP 結合部位変異型 TNIK (K54R) の TCF4 の相互作用不全

(a) DLD1
pCneo HA-TNIK

<table>
<thead>
<tr>
<th>IP:</th>
<th>Cont</th>
<th>WT</th>
<th>K54R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-TCF4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-HA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-HA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-TCF4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-β-Actin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) HCT-116

<table>
<thead>
<tr>
<th>IP:</th>
<th>Cont</th>
<th>WT</th>
<th>K54R</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-HA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-TCF4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total cell lysate

[図9]

TNIK による TCF4 のリン酸化

<table>
<thead>
<tr>
<th>IP: Anti-TCF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-pSer</td>
</tr>
<tr>
<td>Anti-TCF4</td>
</tr>
</tbody>
</table>

pFLAG-TCF4 + Cont + WT + K54R

pCneo-HA

TNIK

| Anti-TCF4       |
| Anti-HA (TNIK)  |
| Anti-β-actin    |

<table>
<thead>
<tr>
<th>Cont</th>
<th>WT</th>
<th>K54R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TNIKに対するsiRNA（TNIK-12又はTNIK-13）による
腫瘍の消失を示す経時変化

図10

TNIKに対するsiRNA（TNIK-12又はTNIK-13）による
TNIK mRNAの発現抑制

図11
【図12】

TNFKに対するsiRNA（TNFK-12又はTNFK-13）による
腫瘍の消失
（投与18日後のマウス外観）

【図13】

TNFKに対するsiRNA（TNFK-12又はTNFK-13）による
腫瘍の消失
（投与18日後に切除した腫瘍および腫瘍の平均重量）
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2009/000737

A. CLASSIFICATION OF SUBJECT MATTER

C12N15/09 (2006.01) i, C12Q1/02 (2006.01) i, C12Q1/48 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N15/09, C12Q1/02, C12Q1/48

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2009
Kokai Jitsuyo Shinan Koho 1971-2009
Toroku Jitsuyo Shinan Koho 1994-2009

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CA/BIOSIS/ MEDLINE/WPIDS (STN), ISTPlus/ MEDPlus/ IST7580 (JDreamll ), GenBank/E MBL/DDBJ/GeneSeq, UniProt/GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 00/64933 A1 (Kyowa Hakko Kogyo Co., Ltd.), 02 November, 2000 (02.11.00), Abstract &amp; US 7250488 B1 &amp; EP 1180525 A1</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier application or patent but published on or after the international filing date
  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed
  "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
  "&" document member of the same patent family

Date of the actual completion of the international search 13 April 1, 2009 (13.04.09)

Date of mailing of the international search report 21 April 1, 2009 (21.04.09)

Name and mailing address of the ISA/ Japanese Patent Office

Facsimile No.

A thonzed officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FU CA. et al., TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton, <em>J. Biol. Chem.</em>, 1999.10.22, Vol. 274, No. 43, pp.30729-30737</td>
<td>1-9</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT/JP2009/000737

A． 発明の属する分野の分類（国際特許分類（IPC））
Int Cl C12N15/09 (2006.01)i, C12Q1/02 (2006.01) 1, C12Q1/48 (2006.01) 1

B． 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int Cl C12N15/09, C12Q1/02, C12Q1/48

最小限資料以外の資料を調査を行った分野に含まれるもの

東京都千代田区霞が関4番3号 電話番号 03-3581-1101 内線 3448

様式PCT/SA/210 (第2ページ) (2007年4月)

C． 関連すると認められる文献
引用文献の カテゴリー A
引用文献名 及び一の箇所が関連するタキは、その関連する箇所の表示
関連する 請求項の番号

| A | wo 2004/048542 A2 (EXELIXIS, INC.) 2004.06.10, 要約 | 1-4, 8-9 |

引用文献のカテゴリーや

引用文献のカテゴリーや

国際調査を完了した日 13.04.2009
国際調査報告の発送日 21.04.2009

国際調査機関の名称及びあて先
日本国特許庁 (ISA/JP)
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)
小金井 悟
電話番号 03-3581-1101 内線 3448

様式 PCT/ISA/210 (第2ページ) (2007年4月)
<table>
<thead>
<tr>
<th>引用文献名 及び一部の箇所が関連するとき</th>
<th>関連する箇所の表示</th>
<th>関連する 論文の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>FU C.A. et al., TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton, J. Biol. Chem., 1999.10.22, Vol. 274, No. 43, pp. 30729-30737</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>