
(19) United States
US 20100205244A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0205244 A1
Todorov et al. (43) Pub. Date: Aug. 12, 2010

(54) INDUSTRIAL PROCESS CONTROL DATA
ACCESS SERVER SUPPORTING MULTIPLE
CLIENT DATA EXCHANGE PROTOCOLS

(75) Inventors: Ivan A. Todorov, Aliso Viejo, CA
(US); Louis D. Ross, Corvallis, OR
(US); Michael Hadrich, Munchen
(DE); Rainer Hessmer, Margarita,
CA (US)

Correspondence Address:
LEYDIG VOIT & MAYER, LTD
TWO PRUDENTIAL PLAZA, SUITE 4900, 180
NORTH STETSONAVENUE
CHICAGO, IL 60601-6731 (US)

(73) Assignee: Invensys Systems, Inc., Foxboro,
MA (US)

(21) Appl. No.: 12/6S2,562

(22) Filed: Jan. 5, 2010

- :

- i. Installation

Related U.S. Application Data
(63) Continuation of application No. 09/954,508, filed on

Sep. 14, 2001, now Pat. No. 7,644,120.
(60) Provisional application No. 60/232,731, filed on Sep.

15, 2000.
Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/203
(57) ABSTRACT

A method and process control data server system architecture
are disclosed for providing process data to a variety of client
applications via a plurality of differing data sharing stan
dards. The system architecture incorporates a ready platform
for Subsequently added client application data exchange pro
tocols. In an exemplary embodiment, a set of Standard inter
face definitions between client application data exchange
protocol-specific plugins and a data access server engine
Supports incorporating new client application data exchange
protocols by means of plugins designed to interface with the
data access server engine according to the standard interface
definitions.

Client Protocol: Plugin

system 1OO :
Enge / "Launch" >

"Select desired
options" 4

> 1O

/ "Deploy upgrade code"
102 3

i "Register" "Protocol

: T. Enable
| <

r

|| 106
:

: 108

Add a new Client Protocol Plugin to a Data Access Server

US 2010/0205244 A1

ES

Aug. 12, 2010 Sheet 1 of 7

Historian

FIG. 1

Control Processors

Patent Application Publication

Patent Application Publication Aug. 12, 2010 Sheet 2 of 7 US 2010/0205244 A1

Data
AcceSS
Server Physical

Devices

56
Vendor Specific
Logic 58

50

SL 80
Plugin :

Standard Interfaces 82

DAS Engine 90

Device Protocol 96

Patent Application Publication Aug. 12, 2010 Sheet 3 of 7 US 2010/0205244 A1

FIG. 4

~, —-
II. Installation Client Protocol: Plugin

system 100
Engineer / "Launch"
H Gel "Select desired

options"
- I

|

"Register" > Erie
: Ena e."

| <
l

T 106 i :
|

108

Add a new Client Protocol Plugin to a Data Access Server

US 2010/0205244 A1 Patent Application Publication Aug. 12, 2010 Sheet 4 of 7

ZOZ00Z
| | | |

US 2010/0205244 A1 Patent Application Publication

9 914

US 2010/0205244 A1 Patent Application Publication

Patent Application Publication Aug. 12, 2010 Sheet 7 of 7 US 2010/0205244 A1

500- IioPiData
502 - IioPlugin

FIG. 8 (Plugin Interfaces)

600- IiotDbServer
602- IiotDemand
604- IiotGroupStateMgt

---, ------------------ir-i

606 - IliottemMgt

FIG. 9 (DAS Engine Interfaces)

US 2010/0205244 A1

INDUSTRAL PROCESS CONTROL DATA
ACCESS SERVER SUPPORTING MULTIPLE
CLIENT DATA EXCHANGE PROTOCOLS

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application claims priority of Todorov et al.
U.S. provisional application Ser. No. 60/232,731 filed on Sep.
15, 2000, entitled “Remote Multiple Client Protocol Sup
port, the contents of which are expressly incorporated herein
by reference in their entirety including the contents and teach
ings of any references contained therein.

FIELD OF THE INVENTION

0002 The present invention generally relates to the field of
computerized process control networks. More particularly,
the present invention relates to data access server systems
providing access by Supervisory level client applications to
process control information.

BACKGROUND OF THE INVENTION

0003. Significant advances in industrial process control
technology have vastly improved all aspects of factory and
plant operation. Before the introduction of today's modern
industrial process control systems, industrial processes were
operated/controlled by humans and rudimentary mechanical
controls. As a consequence, the complexity and degree of
control over a process was limited by the speed with which
one or more people could ascertain a present status of various
process state variables, compare the current status to a desired
operating level, calculate a corrective action (if needed), and
implement a change to a control point to affect a change to a
state variable.
0004 Improvements to process control technology have
enabled vastly larger and more complex industrial processes
to be controlled via programmed control processors. Control
processors execute control programs that read process status
variables, execute control algorithms based upon the status
variable data and desired set point information to render
output values for the control points in industrial processes.
Such control processors and programs supporta Substantially
self-running industrial process (once set points are estab
lished).
0005. Notwithstanding the ability of industrial processes
to operate under the control of programmed process control
lers at previously established set points without intervention,
Supervisory control and monitoring of control processors and
their associated processes is desirable. Such oversight is pro
vided by both humans and higher-level control programs at an
application/human interface layer of a multilevel process
control network. Such oversight is generally desired to verify
proper execution of the controlled process under the lower
level process controllers and to configure the set points of the
controlled process.
0006 Data access servers facilitate placing process con

trol data within reach of a variety of higher-level monitoring/
control client applications. During the course of operation,
process controllers generate status and control information
concerning associated processes. The controllers process
status and control information is stored within process control
databases and/or distributed to a number of locations within
the process control network. Other process information is
generated/stored within field devices (e.g., intelligent trans

Aug. 12, 2010

mitters) having digital data communication capabilities. The
process information is retrieved from the databases and field
devices by data servers for further processing/use by the
process control system. For example, the data access servers
provide the retrieved information to a variety of client appli
cations providing high-level control and monitoring (both
human and computerized) services.
0007 Proper operation of the high-level control and moni
toring applications relies upon proper data interfaces between
the process control/field device levels of a process control
system and the higher-level Supervisory/monitoring levels.
The raw data at the control/field device levels of a process
control system is stored in a variety of formats depending
upon standards incorporated into the process control systems.
Likewise, the client applications associated with, for
example, the Supervisory and monitoring level of a process
control system potentially receive data from the data access
servers according to any one (or more) of multiple existing
(and future) application data interface protocols.
0008. There are presently many different supervisory
level client applications that rely upon data provided by lower
level components of a process control system. The Supervi
sory-level client applications access/share the process data
via known industry standard protocols such as dynamic data
exchange (DDE), SuiteLink (transport protocol of Wonder
Ware Corporation, 100 Technology Dr. Irvine, Calif.), and
OPC (OLE for Process Control). The known supervisory
level client applications not only encapsulate the logic/pro
cesses involved in extracting the process data from field
devices, but also the implementation of the client communi
cation for retrieving/receiving the data. This relatively static,
limiting approach to client application implementation leads
to duplication/replication of effort (a distinct version of client
application for extracting device data is created for each com
munication standard that may be used to retrieve that data).
This approach also creates an inability of data access server
developers to leverage prior server versions. Users were slow
in migrating from existing client applications to new client
applications incorporating more effective protocols devel
oped over the years due to incompatibilities with existing data
provider communication protocols.
0009. In view of the limitations of known data access
servers, especially with regard to extensibility to provide data
according to new, or previously unsupported, client applica
tion data access protocols, a more easily extended/modified
data access server is desired.

SUMMARY OF THE INVENTION

0010. The present invention offers a new degree of exten
sibility to client application interfaces in a process control
system. Enhanced extensibility/flexibility is achieved in a
data access server by decoupling data access server engine
functionality from the client data exchange protocols used by
client applications to request data from a data access server.
The present invention achieves Such decoupling by abstract
ing client application data communication protocols in a set
of user installable/selectable/replaceable program modules
Such as, for example plugins. These program modules are
installed on the data access server to facilitate presentation of
data to the client applications according to a variety of pro
tocols utilized by the client applications. After installation,
the program modules provide a protocol-specific interface to
client applications and communicate with the data access
server engine via standardized universal set of interfaces.

US 2010/0205244 A1

Thus, extension of a data access server incorporating the
present invention is accomplished by providing and installing
a new data exchange protocol module on the data access
server. Previously existing Software on the data access server,
including the data access server engine and the previously
installed protocol-specific protocol modules, need not be
modified to include the new data exchange protocol module
in the data access server system.
0011. The present invention is directed to an extensible
architecture for a data access server. The extensible architec
ture facilitates extending the set of client application data
exchange protocols supported by the data access server—
even a Substantial period of time after installing the data
access server. In particular, the present invention comprises a
data access server that includes a set of components that are
separately programmed and installable, yet run as an inte
grated system. The integrated components include a set of
client data exchange protocol modules that provide data
exchange protocol-specific interfaces between the data
access server and client applications. The data access server
also includes a data access server engine that executes a set of
core functions. The core functions execute (i.e., process and
respond to) client application requests for data Supplied by a
process control system. Communication between the set of
client data exchange protocol modules and the data access
server engine is carried out according to a standardized set of
interfaces. The standardized set of interfaces provides an
abstraction layer between the client data exchange protocols
and the engine functions that acquire and provide process data
to requesting client applications. The abstraction layer insu
lates the data access server from changes to client data
exchange protocols supported by the data access server. Con
versely, the DAS engine can be modified/replaced without
impact upon the client protocol modules—assuming that the
previous abstraction layer/interface is Supported by any
changes to the DAS engine or the DAS engine's replacement.
0012. The present invention also comprises a unique set of
StepS/stages carried out by a data access server to provide
process control system data to client applications via an
extensible, multi-client data exchange protocol interface. The
method includes intermediate steps performed at the abstrac
tion layer by client protocol-specific modules and the data
access server engine. The client-specific modules Supply
requests to the data access server engine according to an
abstraction layer interface specification, the data access
server engine acquires the requested information from the
process control system, and the data access server engine
generates responses to the client data exchange protocol mod
ules via the abstraction layer interface specification.
0013. A benefit of the process data server embodying the
present invention is extensibility. The process data server
Supports incorporating additional protocols in Support of new
client applications, and continues to Support existing data
sharing/passing protocols associated with legacy clients, after
the process data server is deployed on a process control net
work. A vendor of a process data access server incorporating
the present invention can now deploy a reusable, extensible,
optimized (e.g., only install needed protocols) process data
access server to communicate to the data source.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. The appended claims set forth the features of the
present invention with particularity. The invention, together
with its objects and advantages, may be best understood from

Aug. 12, 2010

the following detailed description taken in conjunction with
the accompanying drawings of which:
0015 FIG. 1 is a schematic drawing depicting an exem
plary process control environment for the present invention
wherein a process data access server retrieves/receives pro
cess control information and provides such information to a
variety of client applications residing at a monitoring/super
visory layer of a process control network;
0016 FIG. 2 is a schematic drawing summarizing the gen
eral interface arrangement for an exemplary data access
server embodying the present invention;
0017 FIG.3 is a schematic drawing depicting the software
architecture of an exemplary data access server incorporating
the present invention;
0018 FIG. 4 is a sequence diagram Summarizing an exem
plary sequence of steps for incorporating a plugin into an
existing data access server embodying the present invention;
0019 FIG. 5 is a sequence diagram summarizing an exem
plary sequence of steps for starting up a data access server
embodying the present invention;
0020 FIG. 6 is a sequence diagram Summarizing an exem
plary sequence of steps for shutting down a data access server
embodying the present invention;
0021 FIG. 7 is a sequence diagram Summarizing an exem
plary sequence of steps performed by a data access server to
respond to client application request for process data from a
particular data Source in a process control system according
to a particular data exchange protocol;
0022 FIG. 8 summarizes a set of interfaces implemented
by data exchange protocol plugins; and
0023 FIG. 9 summarizes a set of interfaces implemented
by a data access server engine.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

0024. As mentioned previously herein, the exemplary data
access server architecture is extensible with regard to incor
porating new client data exchange protocols (e.g., DDE/Suit
eLink/OPC. The extensibility is realized by a data access
server architecture that utilizes modularized program exten
sions, such as for example plugins. The modularized program
extensions issue interface calls to a data access server engine
that executes a set of operations corresponding to the inter
face calls. The modularized program extensions pass
requests, received from client applications according to par
ticular data exchange protocols, to the data access server
engine using the interface calls. Each of the modularized
extensions exist independently of other modularized program
extensions. Each modularized program extension is function
ally linked/linkable to the data access server engine at runtime
(rather than needing to be programmed). The modular nature
of the program/system data exchange protocol extensions as
well as the extensible architecture of the data access server
enable extending the set of client data exchange protocols
supported by the data access server after the server is
deployed in a process control system/network.
0025 Turning to FIG.1, an exemplary portion of a process
control network 10 is illustratively depicted. The process
control network 10 can be viewed as a set of devices con
nected to one or more networklinks associated with particular
levels of the process control network 10. In the exemplary
embodiment, the depicted portion of the process control net
work 10 includes a fieldbus level 12, a local control level 14,
and a supervisory control level 16. Though the exemplary

US 2010/0205244 A1

embodiment is depicted as having three levels, those skilled
in the art will readily appreciate the applicability of the
present invention to a number of process control network
architectures having more, less, or the same number of net
work levels. The illustratively depicted network 10 embodies
a multi-level bus topology. However, the present invention
can be incorporated into a process control network embody
ing an alternative network topology (e.g., a star network, a
hybrid bus/star network, etc.).
0026. In the exemplary portion of a process control net
work, a set of intelligent field devices 20 reside at the fieldbus
level 12. The field devices include intelligent process variable
transmitters that sense pressure, temperature, fluid flow, etc.
in a controlled industrial process. The field devices also
include actuators such as those enabling opening and closing
fluid flow valves for tanks, burners, etc.
0027. One or more control processors 30 at the local con

trol level 14, perform local control functions with regard to
the set of intelligent field devices 20. The control processors
30 receive process state information provided by the intelli
gent field devices 20. State information includes, for example
pressure, temperature, mass flow, Volumetric flow, etc. The
control processors apply the received status information to a
set desired points for the process, and then transmit control
signals to actuators in order to obtain or maintain the desired
set points. The control processors are programmed/config
ured to store the status and control information associated
with their control function.

0028. The supervisory control level 16 includes higher
level control applications programs that facilitate and/or
implement enterprise/plant level decision making and Super
visory (e.g., set point) control value designation functions. An
alarm server 40 receives process status data from a number of
lower level sources, including both the control processors 30
and the field devices. The alarm server 40 compares the
received status data against a set of alarm/event conditions
and issues appropriate notifications to either monitors or con
trol processes (e.g., control processors 30) in response to a
detected alarm/event condition. The control processors 30
issue appropriate signals to controlled field devices/actuators
to address the event/alarm condition. A historian 42, also
operating at the Supervisory control level 16, archives data
received from any of the aforementioned levels of the process
control system. Such data is available for auditing and Veri
fication by a variety of application programs. A human
machine interface (HMI) 44 is yet another node connected to
the supervisory control level 16. The human-machine inter
face 44 provides a set of graphic/text user interface functions
enabling a human to view the operation/status of the con
trolled process associated with the process control system
with which the depicted items of FIG. 1 are associated.
0029. In an exemplary embodiment of the present inven

tion, a data access server 50 is interposed between the super
visory control level 16's processing nodes and the lower
levels of the process control system (e.g., the local control
level 14 and fieldbus level 12). The data access server 50
receives and/or extracts data from the field devices 20 (via
channel 52) and/or the control processors 30 (via channel 54)
and provides corresponding (possibly reformatted) data to
processing nodes at the supervisory control level 16 of the
process control network 10. The data access server 50 per
forms the task of providing data to a variety of client appli
cations that obtain data in accordance with particular data
exchange protocols and are otherwise unable to access pro

Aug. 12, 2010

cess control data provided at the local control level 14 and
fieldbus level 12. Maintaining the ability of the data access
server 50 to provide process control/manufacturing data to
new Supervisory-level client applications is potentially a non
trivial, costly task when the new client applications utilize
newly developed data exchange protocols—or previously
existing data exchange protocols that are not presently Sup
ported by the data access server 50.
0030. However, the data access server 50 incorporating the
present invention provides an extensible client interface
architecture that invites expansion of the DAS 50 to support
additional data exchange protocols even after the data access
server 50 has been deployed in a process control network.
Such additional protocol support is achieved through the
incorporation of modularized program/system extensions
(e.g., plugin) Supporting particular data exchange protocols
meeting the data access needs of new client applications
added to the set of applications operating at the Supervisory
control level 16 of the network 10. In an exemplary embodi
ment of the invention (described herein below with reference
to FIG. 3), a library within the data access server 50 activates
the modularized program/system extensions. The activated
extensions execute client application requests by accessing
core data access server functions Supported by a set of appli
cation interfaces executed by an engine within the data access
Server 50.
0031. The process of installing a data exchange protocol
extension module can occur at any time of the data access
server 50’s lifetime, including after the initial installation of
the data access server 50. When upgrading to support addi
tional data exchange protocols (e.g., a newer version of OPC)
of new client application releases, there is no need to installa
new version of the data access server 50. Instead a developer/
maintainer of the previously installed data access server 50
Software creates a new client protocol plugin Supporting the
new OPC data exchange protocol. The new OPC plugin is
then added to existing data access servers that incorporate the
extensible, plugin-based, data access server architecture.
0032. Furthermore, it is noted that the present invention is
not limited to any particular process control system network
topology or technology. For example, the disclosed exem
plary process control network comprises a hierarchically
arranged digital system. However, in an alternative network
embodiment the present invention is incorporated within a
DAS connected to a single-level process control network
wherein the field devices, control processor(s), and Supervi
sory control applications constitute nodes on a single bus. In
yet other cases, the DAS receives data concerning conven
tional, analog field devices that utilize the 4-20 milliamp
standard for process communications.
0033 Turning to FIG. 2, a general interface arrangement
for the data access server 50 is schematically depicted. On the
data source side, the data access server 50 obtains data from
physical devices 56, such as the field devices 20 or process
controllers 30, by means of vendor-specific data input logic
58. Examples of vendor-specific data access protocols incor
porated into the vendor-specific data input logic are DF1 and
Programmable Controller Communications Commands
(PCCC) for Allen Bradley PLCs. The data access server 50
converts the obtained data into a generic format and stores the
converted data within a database maintained by the data
access server 50. In response to particular client requests, the
data access server retrieves the data from the database and
transmits the data in accordance with particular client appli

US 2010/0205244 A1

cation data exchange protocols associated with each of the
different client data exchange protocols needed to transfer
data to clients 60, 62, and 64. In an exemplary embodiment of
the present invention, three protocol-specific plugins incor
porated within the data access server 50 support providing
process control data access via three different data exchange
protocols (DDE, Suite Logic, and OPC) to clients 60, 62 and
64. The data exchange protocol-specific plugins incorporated
within the DAS 50 render a DDE interface 70, SuiteLink
interface 72 and OPC 2.0 interface 74 for data access by the
clients 60, 62, and 64 respectively.
0034 Turning to FIG.3, the software architecture of a data
access server incorporating the present invention is schemati
cally depicted. As depicted in FIG.3, the architecture of a data
access server incorporating the present invention comprises,
by way of example, three distinct functional components. A
client data exchange component 80 is responsible for receiv
ing client application requests and presenting responsive data
to client applications according to particular Supported data
exchange protocols. A data access server (DAS) engine 90
component presents global data to the client protocol com
ponent 80 in accordance with previous requests from the
client protocol component 80 initiated by client application
requests. The DAS engine 90 also interfaces to a device
protocol component 96. The device protocol component 96 is
responsible for delivering data received from data sources
such as field devices and control processors, to the DAS
engine 90. The DAS engine 90 then passes the received data
back to a particular protocol module of the client protocol
component 80 or alternatively stores the received data in
anticipation of later requests or updates requested by client
applications and received by the DAS 50 via the client data
exchange protocol component 80.
0035. As mentioned herein above, the client data
exchange protocol component 80 facilitates providing data to
client applications according to specific data exchange pro
tocols currently supported by the DAS50. As depicted in FIG.
3, the client data exchange protocol component 80 incorpo
rates a modular architecture. In particular, the client data
exchange protocol component 80 comprises an extensible set
of client data exchange protocol modules (e.g., plugins 84.86
and 88) that Support data exchange protocol-specific interac
tion between the DAS 50 and a set of client applications that
communicate with the DAS 50 according to particular data
exchange protocols. Such data exchange protocols include,
by way of example, DDE, OPC 2.0, and SuiteLink. Each of
these three data exchange protocols is handled respectively
by DDE plugin 84, OPC 2.0 plugin 86 and SL plugin 88 that
are installed, and are concurrently active, on the DAS 50.
0036. The plugins 84, 86, and 88 interact with the DAS
engine 90 via a set of standard interfaces (discussed herein
below with reference to FIGS. 8 and 9) incorporated within
the plugins 84, 86 and 88, and the DAS engine 90. A set of
standard interfaces 82 (see, FIG.9) comprise a superset of all
interface operations potentially needed by any one of the
plugins to enable the DAS engine 90 to respond to data
requests received by the plugins from client applications
executing at the Supervisory control level of the process con
trol system. The standardized interface between the plugins
and the DAS engine 90 also facilitates replacing the DAS
engine 90 without impacting the compatibility of the plugins
with a replacement DAS engine 90.
0037. The plugins of the data exchange protocol compo
nent 80, though adhering to a specified interface provided by

Aug. 12, 2010

the DAS engine 90, are created in a variety of ways. The
plugins of the client data exchange protocol layer 80 can be
written from scratch. However, in an embodiment of the
invention the plugins are created from a toolkit including
partially specified interface procedures for the plugins includ
ing calls to the standard interfaces incorporated within the
DAS engine 90. Protocol-specific programming completes
each of the plugins corresponding to particular data exchange
protocols.
0038. The protocol-specific plugins of the data exchange
protocol component 80 enable the data access server 50 to
provide data, received by the DAS 50 that originates from
field devices and control processors in a process control sys
tem, to client applications according to data exchange lan
guages, methods and requirements of specific data exchange
protocols utilized by the client applications. Thus, the data
exchange protocol component 80 facilitates establishing data
exchange protocol-specific interfaces to client applications
that utilize information provided by the process control sys
tem controllers and field devices. The client applications, in
turn, utilize the received information to implement, by way of
example, Supervisory control of an industrial/manufacturing
process.

0039. Of course, the DAS 50 receives data requests and
provides information to a particular client application only if
the data exchange protocol component 80 Supports the data
exchange protocol utilized by the particular client applica
tion. In the illustrative embodiment of the present invention,
such protocol-specific support is provided by a data exchange
protocol plugin installed on the DAS 50 that interfaces to core
functionality provided by the DAS engine 90 via the set of
standard interfaces 82. Therefore, in the event that a new
client application utilizes a data exchange protocol that is not
presently supported by one of the plugins installed on the
DAS 50, then a new plugin is installed at the data exchange
protocol component 80. Ifa plugin does not currently exist for
a particular data exchange protocol, then a new plugin is
developed for the previously unsupported data exchange pro
tocol.

0040. The disclosed DAS architecture facilitates augmen
tation of the DAS 50 to incorporate a previously unsupported
data exchange protocol utilized by a new client application
with minimal, if any, impact on the existing DAS 50 pro
grams. The new plugin is installed on the DAS 50 by a system
administrator, using any of several well known installation
procedures, without modifying existing DAS 50 programs.
Expanding the DAS 50 capabilities to support new client
application data exchange protocols, through installation of a
new plugin, does not require redeployment of the DAS 50
Software nor does it require re-writing portions of the existing
DAS 50 software. Thus, the architecture of the DAS 50, and
in particular the data exchange protocol component 80,
depicted in FIG. 3 reduces the effort required to augment
and/or update a current set of data exchange protocols Sup
ported by the DAS 50 deployed in a process control network/
system.
0041 Implementation of the DAS 50, in an embodiment
of the invention, is based in-part on MICROSOFT Corpora
tions well known COM/DCOM technology. To cover as
wide variety of client application data exchange protocols as
possible, the data access server 50 supports both dynamic and
static plugins. Dynamic plugins are a class of plugins that
encapsulate client protocols (for instance OPC) wherein a
server can be activated by a client application request (re

US 2010/0205244 A1

ceived by a dynamic plugin). Typically clients for Such plu
gins activate a server (in this case the DAS 50) via a service
control manager (SCM) and the lifetime of the activated
server is determined by the client reference count. When the
client reference count for the DAS reaches zero, the server
shuts down or enters some form of inactive state (at least with
regard to that particular plugin). Static plugins, on the other
hand, are a class of plugins that are intended to communicate
with clients that do not have server activation facilities (such
as DDE and SuiteLink data exchange protocol client appli
cations) and expect the data access server to be activated
when the client attempts to connect and communicate with a
data access server. Embodiments of the present invention
include either/both static and dynamic plugins.
0042. The extensible data exchange protocol interface of
the disclosed data access server architecture facilitates inde
pendent development/modification of core components of a
data access server, embodied in the DAS engine 90, and the
development/incorporation of data exchange protocols
embodied in protocol-specific plugins. If the need to Support
a new client application data exchange protocol arises after
completing development of, and deploying, the data access
server 50, then support for the new protocol is established by
developing and installing a new protocol-specific plugin
developed in accordance with the interface requirements of
the set of standard interfaces 82. Thus, deployment of the data
access server 50 is not held up by a need to establish support
for new or presently unsupported data exchange protocols.
FIG.4, described herein below, depicts a sequence of events
performed on the data access server 50 when a new data
exchange protocol plugin is installed upon a network node
executing the data access server 50. Thereafter, FIGS. 5 and 6
depict sequences of events, and the entities that perform them,
during the activation and shutdown of a data access server
embodying the disclosed extensible data access server archi
tecture including client protocol extension modules in the
form of plugins.
0043. The DAS engine 90 logically organizes data
received from devices to provide a standardized/generic data
access interface to the plugins (e.g., DDE plugin 84) through
the set of standard interfaces 82. As explained above, the
plugins of the data exchange protocol component 80, in turn,
provide client protocol-specific access to the received data.
Thus, the DAS engine 90 remains relatively stable in relation
to the data exchange protocol component 80 that is modified
to accommodate previously non-Supported data exchange
protocols (without modifying the DAS engine 90).
0044 Data activation, or the actual retrieval of stored data
in response to a request specified by a particular client pro
tocol plugin, is performed in a standardized manner (regard
less of the requesting client's protocol) at the DAS engine 90.
In an embodiment of the present invention, the client proto
col-specific plugins receive a data request for an item of
interest according to a particular data exchange protocol and
convert the request into one or more calls to particular ones of
the operations associated with the set of standard interfaces
82. The calls are handled by core data accessfunctions within
the DAS engine 90. The DAS engine 90 issues a correspond
ing request to a device protocol (or alternatively retrieves data
that has already been provided by the device protocol). The
device protocol, if needed, retrieves the requested data from
data sources within the process control system (e.g., field
devices and control processors). The DAS engine 90 returns

Aug. 12, 2010

data via standard interface plugin operation calls incorpo
rated into the DAS engine-to-plugins interface (see, FIGS. 8
and 9).
0045. The DAS engine 90 software manages groups, and
items that the groups reference. In general, a group is a col
lection of items and possibly other groups (in a nesting
arrangement) having similar requirements. An item repre
sents/corresponds to a data source on the data access server
50. The DAS engine 90 also manages hierarchy levels of
groups and items—with the lower level endpoints being a
single physical item (e.g., an object in a data Supplying device
such as a programmable logic controller). The DAS engine 90
Supports an n-to-1 relation of groups to a particular refer
enced item. Thus, the DAS engine 90 optimizes access to
items such that if multiple (n) clients/groups access/reference
a same data item, then the DAS engine 90 obtains the data
item only once and then provides the data to the multiple (n)
requestors potentially according to multiple Supported data
exchange protocols. In a particular embodiment of the inven
tion, the DAS engine 90 stores a retrieved data value as a
physical item, and all clients (group items) referencing the
data item use the properties of the stored physical item. Each
physical item maintains/provides a current value, timestamp
and quality (VTO) for a corresponding data item. Each group
item stores a value and quality for the last update the group
item received of the referenced item. After retrieving particu
lar requested data corresponding to a referenced physical
item, the DAS engine 90 accesses one of the included data
exchange protocol plugins in the data exchange protocol
component 80 to render data for a referenced item to a client
application according to a particular data exchange protocol.
0046. The lowest level of the software architecture of the
data access server 50 is the device protocol component (or
“server specific part”) 96. The device protocol component 96
implements hardware (and potentially database) protocols to
deliver actual data from field devices 20 and control proces
sors 30 to the DAS engine 90. The device protocol component
96 implements one or more distinct data extraction interface
standards to obtain the process control information from a
variety of field devices and control processors in a process
control system/network environment.
0047 Finally, though not specifically depicted in FIG. 3,
the DAS 50 includes a library of support functions, including
standard support functions associated with the COM/DCOM
component of the WINDOWS operating system. These Sup
port functions facilitate the start-up and shut-down of the
depicted components of the DAS 50 in FIG.3. The operation
of these support functions is described herein below with
reference to the exemplary methods performed by the DAS
SO.

0048 Turning now to FIG. 4 a set of steps are depicted for
adding a new client protocol to the data access server 50 by
means of a plugin. The plugin itself includes one or more
Software modules (e.g., dll or exe files) that are copied onto a
target server system during deployment. The DAS 50 is, for
example, a compute node executing Wonderware's data
access server Software. In the present example, the plugin is
packaged within a self-installed program/utility that is
executable by an administrator. The augmentation process is
handled at a high level and does not require human program
ming skills to complete. At stage 100, a system engineer
launches an installation program of well-known design that,
during stage 102, produces a window (or series of windows)
presenting a set of customization options associated with the

US 2010/0205244 A1

particular client protocol plugin. During stage 104, the plugin
software module is deployed on the DAS 50 (as well as upon
any other computing devices that execute the plugin soft
ware).
0049. Next, during stage 106, a registration command is
invoked to register the plugin Software according to require
ments of the particular operating environment/system upon
which the plugin Software is deployed. Such requirements, as
will be appreciated by those skilled in the art, vary from
system to system based upon the notification requirements of
the different systems. In an exemplary embodiment of the
present invention, the plugin is registered within a plugin
repository. In the exemplary embodiment, the plugin reposi
tory is implemented in a MICROSOFT WINDOWS environ
ment using a WINDOWS “Component Categories' mecha
nism. In WINDOWS environments, the Component
Categories mechanism uses the WINDOWS Registry as the
storage area for identifying registered protocol extension plu
gins. This registration arrangement enables grouping of logi
cally related components to occur as well as enumeration of
the registered components by the client applications that ulti
lize the plugins. During a protocol enable stage 108 steps are
executed to make the plugin-enhanced DAS 50 visible to the
client applications that utilize the particular enabled client
data exchange protocol. For example, in the case of an OPC
client, the DAS 50 is registered in the OPC category of the
WINDOWS Registry. Stage 108 establishes a link between a
client application and a particular client access protocol
embodied within a registered plugin. During the protocol
enable stage 108, the DAS 50 activates the registered protocol
plugin’s capabilities to facilitate interacting with requesting
clients according to a particular client protocol. Thereafter,
the enabled plugin operates as a protocol interface between
the process data stored by the DAS 50 and requesting clients
that utilize the data transmission protocol embodied within
the enabled plugin. While the WINDOWS Registry is utilized
in the exemplary embodiment, the registration of a plugin or
other extension module can occur via alternative registration
repositories in alternative embodiments of the invention.
0050 Having described how a client protocol plugin is
added to an existing system, attention is directed to FIG.5 and
a summarized set of stages/steps depicting how the DAS 50 is
activated/instantiated in association with, in this particular
example, an OPC client request. In the particular example, the
DAS 50 is activated dynamically using the MICROSOFT
WINDOWS SCM utility in response to an initial client
request. However, in alternative embodiments of the inven
tion the DAS 50 and/or the client protocol specific plugins are
statically activated before receiving any specific requests
from a client application. During the initial startup process the
DAS 50 is activated, and objects and data structures support
ing connections between client data exchange protocol plu
gins of the data exchange protocol component 80, the DAS
engine 90, and the are established. In particular, during acti
vation the DAS engine 90, which hosts all plugins for a DAS
50, accesses the repository of installed plugins (e.g., within
the WINDOWS Registry) and activates all installed client
protocol plugins. During activation, the DAS Engine 90 per
forms a sequence of steps to activate each installed dynami
cally activated plugin in accordance with MICROSOFT's
COM (component object model) based technology. Thus,
from the point of view of the DAS 50's clients, the DAS 50
(and its activated protocol plugins) appears to client applica
tions as a single entity that carries out a particular client

Aug. 12, 2010

protocol used by the particular clients. In actuality, the DAS
50 is a multi-component system with multiple client interface
components (e.g., plugins) providing the DAS 50 the capa
bility to expand its set of supported client protocol interface to
provide data to multiple distinct clients practicing a variety of
different data exchange protocols. It is emphasized that these
steps are exemplary, and those skilled in the art will readily
appreciate that the steps for starting up the DAS 50 and its
installed plugins are modified in alternative embodiments of
the invention.
0051 During stage 200, an OPC client request (from any
application interfacing to the DAS 50 via the OPC protocol)
calls a “CoCreateInstance' WINDOWS API. The stages that
follow create a fully functional data access server of the type
represented in FIG.3 including the set of client data exchange
protocol plugins 84, 86 and 88, the DAS engine 90, and the
device protocol component 96, as well as the structures that
enable these components to pass requests and data between
one another within the DAS 50. The CoCreateInstance API is
called once to start a DA server executable. Since the single
executable instance of the DA server, in a preferred embodi
ment of the invention, Supports multiple client requests on
multiple distinct connections (and potentially using different
data exchange protocols) to the identified DA server, launch
ing additional copies of the executable is both unnecessary
and potentially reduces the performance of the DAS 50.
0052. In response to the CoCreateInstance call, at stage
202 a system control manager (SCM) of the WINDOWS
operating system issues a “Creatinstance WINDOWS API
call to create an IOS Activate Class Factory object
instance. Next, during stage 204, the IOS ActivateClassFac
tory creates an IOS Server object. This occurs only once
(during the initial startup of the DAS). The IOS Server object
is a logical entity created from a device protocol-specific DLL
written for a particular device protocol component 96 behav
ior. The IOS Server object supports interaction between the
DAS engine 90 and the device protocol component 96 of the
DAS50. After the IOS Server object has been created during
stage 204, at stage 206 the IOS Server object invokes cre
ation of an IOT Server object. The IOT Server object, ren
dered from a standard DAS engine DLL, establishes connec
tions supporting interaction between the DAS engine 90 and
the data exchange protocol component 80—comprising plu
gins corresponding to particular data exchange protocols
(e.g., OPC)—and the device protocol component 96 of the
DAS SO.
0053. During stage 208, IOS ActivateOlassFactory ini
tializes the IOS Server object instance created during stage
204. Initialization during stage 208 comprises passing infor
mation enabling the DAS engine 90 and the device protocol
component 96 to communicate. During stage 210 IOS Server
builds bridge objects modifying the default behavior (group
of objects and functionality exposed) of the DAS engine 90
according to specifications Supplied by the device protocol
component 96. At stages 212 and 213 the IOS Server object
and IOT Server object cross-initialize the bridge objects so
that both the IOS Server object and the IOT Server are able
to reference the bridge objects.
0054 During stage 214, the IOT Server identifies all plu
gins installed upon the machine running the DAS 50. After
identifying the plugins during stage 214, during stage 216
IOT Server object invokes a CoCreateInstance API specify
ing a plugin (e.g., the OPC plugin). The API call results in the
instantiation of a PluginCreator object corresponding to the

US 2010/0205244 A1

specified (e.g., OPC) plugin. Stages 214 and 216 are repeated
for all plugins. Upon completion of stages 214 and 216 (pos
sibly multiple repetitions for multiple supported client data
exchange protocols), the DAS90 is ready to process requests
from client applications—including a first client request that
resulted in the execution of stages 200 to 216.
0055. The remaining stages of FIG. 5 concerns the cre
ation of a logical data access (DA) server object for a particu
lar client connection. These remaining stages are only utilized
for COM-based clients (e.g., OPC). In the case of non-COM
clients, the plugin for the particular data exchange protocol
handles the creation of a server object for the client connec
tion. During stage 218 the SCM invokes the CreateInstance
operation on the IOS Activate ClassFactory Object to ini
tiate creation of the logical DA server object corresponding to
a specific client-server connection. During stage 220 the
IOS Activate ClassFactory object for the DAS 50 creates an
IOS Activate object to establish an identity for the logical
DA server object instance created to service the new client
application/DA server connection. During stage 222, the
IOS Activate ClassFactory object increases the instance
count for the DA server from Zero to one. The instance count
references the number of current users of the DA server.
When the instance count reaches zero, the DA server instance
is removed.

0056. Thereafter, a set of calls during stages 224, 226, 228,
and 230 propagate a call to create a new logical DA server
object for a particular client connection. During stage 224
IOS Activate Class Factory invokes the QueryInterface
method on the IOS Activate object designating an identifi
cation for the interface (logical DA server instance). During
stage 226 IOS Activate invokes the SystemOueryInterface
method upon IOS Server object with the identified interface.
During stages 228 and 230 the IOS server object passes the
interface identification to the IOT Server object, and the
IOT Server object passes the interface identification to the
Plug InCreator, as the request to establish a particular logical
interface between a client application and the DAS 50 is
propagated to create a logical DA server object.
0057. At stage 232 the PlugInCreator looks for the identi
fied DA server object instance in a set of existing DA server
object instances. If the DA server object instance is present,
then the request from the COM-based client (e.g., OPC) is
delegated to the DA server object. Otherwise, during stage
234 the logical DA server object instance is created for the
particular client connection.
0058 Referring now to FIG. 6, an exemplary set of stages
are depicted for shutting down the DAS 50 when the last of a
set of logical DA server object instances is released by a client
application. It is noted that the example before is for a COM
based (e.g., OTC) plugin connection. In the case of non-COM
plugins, the shutdown is handled by the plugins themselves.
Since there are potentially multiple plugins and multiple cli
ents connected simultaneously to the DAS 50, in an orderly
shut down the DAS 50 ensures that all connected clients are
disconnected prior to shutting itself down. The stages
depicted in FIG. 6 depict an exemplary method for perform
ing an orderly shutdown via execution of a handshaking pro
cedure for each connected clients. During stage 300 a client
application closes a connection to the DAS 50 the last of
such connections presently served by the DAS 50 with a
call to the corresponding IOS Activate object. In response
during stage 302 the IOS Activate object associated with the
client connection initiates removing the DA server object

Aug. 12, 2010

associated with the connection. During stages 304 and 306,
the removal of objects and the clean up procedure cascades
through the IOS server and IOT server created during the
steps summarized in FIG. 5, to the Plug InCreator. During step
308, the Plug InCreator finds the object associated with the
data exchange protocol associated with the disconnected cli
ent. During step 310 the Plug InCreator invokes a release
method upon the DA server object corresponding to the client
connection, and during stage 312 the DA server object is
destroyed.
0059. As explained herein above, when all connections are
closed, then the DAS 50 itself shuts down. During step 320,
the object count for connections is reduced by one. Assuming
the current connection is the last connection for the DAS50,
the object count reaches Zero- i.e., there are no more con
nections. During stage 322 the IOS Activate object invokes a
suggestshutdown method on the IOS server object. The
IOS server passes the call onto the IOT server object. The
IOT server passes the shutdown request in the form of a
sShutdownPossible method call to the Plug InCreator object.
If shutdown is indeed possible, then at stage 328 the IOT
server object invokes the release method on the Plug In center.
The Plug In center then shuts down the plugin for the particu
lar data exchange protocol used by the client for the extin
guished connection. Finally, during stage 332 the IOT server
cleans temporary structures created to support the DAS 50
and its integrated client and device interface protocol com
ponents.
0060 Turning now to FIG.7, an exemplary set of steps are
summarized for the DAS50 responding to a client application
request. Again, the request is a COM-based (e.g., OPC) client
application. However, non-COM-based client applications
are contemplated within the scope of the present invention.
The process steps may differ for non-COM applications. Dur
ing stage 400, the OPC client issues a request that invokes all
or part of the steps depicted in FIG. 5 (depending upon
whether this is a first client connection for the DAS 50) to
create a DA server object for the connection. Once activated,
the requests are received by the DAS 50, from client applica
tions, via the plugins. The requests are then passed from the
appropriate plugins to the DAS engine 90 via standard inter
face operation calls described herein below with reference to
FIG. 9. After the DAS 50 has set up appropriate DA server
object structures to Support the connection to the client, at
stage 402 the client invokes an AddGroup function on the
plugin to establish a container in which to deposit/access
process control data requested by the client. During stage 404
the AddGroup request is propagated via the standard interface
operation “AddGroup' to the DAS engine 90 by the plugin
(e.g. OPC plugin 86). During stage 406 the client application
requests a Subscription service for changes to the data iden
tified in the added group, and the Subscription request is
propagated to the DAS engine 90 during stage 408. Next,
during stage 410 the client application requests the plugin to
add particular data items (e.g., a pressure sensor reading) to
the group added during stage 402. The plugin propagates the
request to the DAS engine 90 during stage 412.
0061. Thereafter, the DAS engine 90 obtains the requested
data via requests to the device protocol component 96 during
stage 414. During stage 416 the device protocol component
96 carries out the request to obtain the data using a device
specific protocol to request data from field device data pro
viders (including control processors). The device data corre
sponding to the requested data items are provided to the

US 2010/0205244 A1

device protocol component by the field device data provider
during stage 418. During stage 420, the device protocol com
ponent 96 returns the device data back to the DAS engine 90.
Next, at stage 422 the DAS engine 90 provides the device data
to the appropriate plugin. The plugin performs any data
change filtering required to eliminate unchanged data and
then forwards the changed data at stage 424.
0062. It is noted that with regard to the sequence of stages/
steps depicted in FIG. 7, the steps on the left side of the DAS
(OPC) plugin vertical line are performed according to a client
application data exchange protocol (e.g., OPC 2.0). The client
application protocol-specific plugin (e.g., OPC plugin 86)
communicates with the client according to a particular data
exchange protocol. The steps on the right side of DAS plugin
Vertical line are performed according to a set of interfaces
(operations) universally defined for all plugins and the DAS
engine 90 see FIGS. 8 and 9 described herein below. Thus,
the DAS plugin acts as a protocol converter between particu
lar client application protocols and the DAS engine 90.
0063 Having described an exemplary data access server
architecture embodying the present invention, the following
observations are made about the server's modular client pro
tocol interface architecture. First, device specific data encod
ing is decoupled from client application data exchange pro
tocols. Therefore, development of these two distinct aspects
of the data access server are autonomous. Second, special
client application protocol configuration is not needed for
interfacing the data access server 50 to client applications that
adopt one of the plugin-Supported data exchange protocols.
Assuming a plugin for a particular data exchange protocol
exists, the plugin is obtained and installed in a routine manner
by a system administrator. There is no need to upgrade the
core functionality of the DAS that remains unchanged.
Third, support is provided for dynamic plugins (for COM
based clients) and static plugins (for non COM based cli
ents). The static plugins will not activate the DAS (i.e., the
DAS must be started independently of the plugins). In
instances where static plugins are present, a DAS control
client is provided to enable users to start the DAS prior to
invoking the static plugin to handle a client data request. The
dynamic plugins activate the relevant server Software, and
when the client reference count for the server reaches zero the
server shuts down. Fourth, the present invention enables
leveraging (i.e., providing a ready platform) existing data
access servers incorporating the server library for plugins
added after initial installation of a data access server for
interfacing to new client applications via new data exchange
protocols.
0064. In an embodiment of the invention, when a plugin is
developed the plugin is an in-process component (e.g., a
dynamically linked library (DLL)). However, in an alterna
tive embodiment of the invention the plugin is developed as
an out-of-process (e.g., *.exe) component of the data access
server 50. With regard to threading, the DAS engine 90 is
developed as a multi-threaded apartment (MTA). If MTA is
utilized, then proxy/stub pairs (that slow performance) are
avoided. For plugins that encapsulate COM based protocols
the plugins are MTAs to ensure the COM rule for IUnknown
identity (part of the MICROSOFT COM specification) is
followed. Thus, every time a COM object is a requester, it
returns the same interface to provide its IUnknown interface.
This requirement is not required for other interfaces. With
regard to granularity, the data exchange protocol plugins
handle a broad spectrum of data retrieval-related objects

Aug. 12, 2010

including server and group objects. Server objects expose
global server services. Servers are also specified as containers
for group objects that reference other group objects or spe
cific data items.

0065. In an embodiment of the present invention, the inter
faces between plugins and the DAS engine 90 are based upon
COM interfaces. The structure and content of interface opera
tions executed by the plugins and called by the DAS engine
90, identified in FIG. 8, are described herein below. The
operations called by the DAS engine 90 and carried out by the
various installed plugins enable the DAS engine 90 to com
municate process data to client applications via the plugins.
While a basic set of interface operations and their associated
operations are identified and described herein below, it will be
understood by those skilled in the art that alternative embodi
ments of the invention include differing interface operations
and specifications.
0066. The DAS engine 90 to plugin interfaces are
described in the following manner. First, an interface “decla
ration” identifies a set of operations associated with the inter
face. Next, operations identified in the declaration section are
individually described under a subsection identified by an
“operations' heading. The operations performed by the plu
gins are described with reference to exemplary passed param
eters and a Summary of the general function performed by the
plugins.
0067. An IioPiData interface 500 includes a set of opera
tions, called by the DAS engine 90 and executed within plu
gins, concerning notifications (including data) from the DAS
engine 90 to a data exchange protocol plugin in association
with reading data from, and writing data to, a process data
source managed/monitored by the DAS engine 90 such that
process data is accessible by the DAS engine 90 via the device
protocol 96. The following is an exemplary declaration/sum
mary for the IioPiData interface 500.

Declaration

0068

object,
uuid(7AA39773-AC55-11D2-8203-00A024A866AC),
helpstring(IIoPiData Interface'),
pointer default(unique)

interface IIoPiData: IUnknown
{

HRESULT OnData (
in PIHANDLE hCGroup,
in DWORD dwCount,
in, size is(dwCount) PIHANDLE * phPlugin Items,
in, size is(dwCount) VARIANT * pv Values,
in, size is(dwCount) WORD *pwOualities,
in, size is(dwCount) FILETIME *pftTimeStamps,
in, size is(dwCount) HRESULT *pErrors,
out UPDATECODE * updatecode

);
HRESULT OnReadComplete?

in DWORD dwCount,
in, size is(dwCount) PIHANDLE * phPlugin Items,
in, size is(dwCount) VARIANT * pv Values,
in, size is(dwCount) WORD *pwOualities,
in, size is(dwCount) FILETIME *pftTimeStamps,
in, size is(dwCount) HRESULT *pErrors,
in CTTRANSACTIONDEF TransactionDef

US 2010/0205244 A1

0069

-continued

);
HRESULT OnWriteComplete(

in DWORD dwCount,
in, size is(dwCount) PIHANDLE * phPlugin Items,
in, size is(dwCount) HRESULT : pErrors,
in CTTRANSACTIONDEF TransactionDef

);

The following is a description of exemplary opera
tions for carrying out the IioPiData interface 500 in a data
exchange protocol-specific plugin.

Operations

OnData

Declaration

0070

HRESULT OnData (
in PIHANDLE hCGroup,
in DWORD dwCount,
in, size is(dwCount)
in, size is(dwCount)
in, size is(dwCount)
in, size is(dwCount)
in, size is(dwCount)

PIHANDLE * phPlug InItems,
VARIANT * pv Values,
WORD *pwOualities,
FILETIME * pftTimeStamps,
HRESULT *pErrors,

out UPDATECODE * updatecode

Parameter Descriptions for the OnData Operation:

0071

Hgroup

DwCount

phPlug InItems

PwValues

pw Oualiti

pftTimeSt

Perrors

A Handle identifying the group these items
belong to, as Supplied by the Plugin.
Size of the arrays being passed. This is the
number of items whose VTO is being reported for

An array of dwCount handles. These handles were
Supplied by the Plugin, and identify the items
whose VTOs are being reported.
NOTE:

one with it

NOTE:

one with it

is the responsibility of the Plug In to
ispose of the memory holding the array, when

An array of dwCount variant values. These are
he values being reporte

is the responsibility of the Plug In to
ispose of the memory holding the array, when

or the items.

(S An array of dwCount DWORDs. These are the

NOTE:

one with it
amps

NOTE:

one with it

qualities being reported for the items.
is the responsibility of the Plug In to

ispose of the memory holding the array, when

An array of dwCount FILETIME structures. These
are the times being reported for the items.

is the responsibility of the Plug In to
ispose of the memory holding the array, when

An array of HRESULTs. These are the individual
error codes for each item being reported. Bit 15

Aug. 12, 2010

-continued

(0x00008000) can be used by the Plugin to check
for primefirst updates. Before passing pError
values to OPC clients mask with -0x00008000
first.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

Remarks:

0072 For active items, when the server-specific protocol
engine (at the device protocol layer 96 of the DAS 50) deter
mines that an item has a new value, it is added to a list. At the
end of a protocol cycle (as determined by the protocol
engine), the list of new item VTOs is sent by the DAS engine
90 to a particular date exchange protocol plugin using this
method. Determination of an actual change of value is made
by the DAS Engine 90. Only those items which have received
new update values are put on the list.

OnReadComplete
Declaration

0073

HRESULT OnReadComplete(
in DWORD dwCount,
in, size is(dwCount) PIHANDLE * phPlugIn Items,
in, size is(dwCount) VARIANT * pv Values,
in, size is(dwCount) WORD *pwOualities,
in, size is(dwCount) FILETIME * pftTimeStamps,
in, size is(dwCount) HRESULT *pErrors,
in CTTRANSACTIONDEF TransactionDef

Parameter Descriptions for the OnReadComplete Operation:

0.074

DwCount Size of the arrays being passed. This is the
number of items whose demand read is complete,
and are reporting VTO.
An array of dwCount handles. These handles were
Supplied by the Plugin, and identify the items
whose VTOs are being reported.
NOTE: It is the responsibility of the Plug In to
ispose of the memory holding the array, when
one with it.
An array of dwCount variant values. These are
he values being reported for the items.
NOTE: It is the responsibility of the Plug In to
ispose of the memory holding the array, when
one with it.
An array of dwCount DWORDs. These are the
qualities being reported for the items.
NOTE: It is the responsibility of the Plug In to
ispose of the memory holding the array, when
one with it.
An array of dwCount FILETIME structures These
are the times being reported for the items.
NOTE: It is the responsibility of the Plug In to
ispose of the memory holding the array, when
one with it.

phPlugIn Items

PwValues

pw Qualities

pftTimeStamps

US 2010/0205244 A1

-continued

PErrors An array of HRESULTs. These are the individual
error codes for each item being reported.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.
Transaction ID definition. This demand read
is complete, and was started by the Plugin using
IIotDemand::Readdevice(). At that time, the
Plugin Supplied a transaction definition, and
allowed the read to proceed asynchronously.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

TransactionDef

Remarks

0075 For a list of items on demand read, the values may be
reported by the DAS engine 90 to a requesting plugin in an
out-of-band manner using this method. The OnReadCom
plete method works in much the same way as the OnData
method works for active items.

OnWriteComplete

Declaration

0076

HRESULT OnWriteComplete(
in DWORD dwCount,
in, size is(dwCount) PIHANDLE * phPlugnItems,
in, size is(dwCount) HRESULT * pherrors,
in CTTRANSACTIONDEF TransactionDef

Parameter Descriptions for the OnWriteComplete Operation:

0.077

DwCount Size of the arrays being passed. This is the
number of items whose write is complete, and are
reporting the event.
An array of dwCount handles. These handles were
Supplied by the Plugin, and identify the items
whose VTOs are being reported.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.
An array of HRESULTs. These are the individual
error codes for each item being reported.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.
Transaction definition. This demand write is
complete, and was started by the Plugin using
IIotDemand::WriteDevice(). At that time, the
Plugin Supplied a transaction definition, and
allowed the write to proceed asynchronously.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

PhPlug.In Items

Perrors

TransactionDef

Aug. 12, 2010

Remarks

0078 For a list of items being written by the DAS engine
90, the write complete event is reported to a particular data
exchange protocol plugin using this method. The OnWrite
Complete method works in much the same way as OnRead
Complete does for demand read items, except no VTO is
required for written data.
(0079. With continued reference again to FIG.8, an IioPlu
gIn interface 502 is the primary interface exposed by each
plugin to the DAS engine layer 90. The IioPlug In interface
502 facilitates general manipulation of a plugin by the DAS
engine layer 90. The following summarizes the content of an
exemplary implementation of the IioPlug In interface 502.

Declaration

0080

object,
uuid(7AA3977A-AC55-11D2-8203-00A024A866AC),
helpstring(IIoPlug In Interface'),
pointer default(unique)

interface IIoPlugIn : IUnknown

HRESULT Init (
in IIotDbServer* pIotDbServer,
out DWORD* nNumInterfaces

HRESULT GetIEnumCUID(
in REFID riid,
out, iid is(riid). LPUNKNOWN * ppUnk

);
HRESULT Shutdown ():
HRESULT Isshutdown Possible(out BOOL *bShutdown);

I0081. The following is a description of exemplary opera
tions for carrying out the IioPlugin interface 502.

Operations

GetIEnumGUID

Declaration

0082

HRESULT GetIEnumCUID(
in REFIID riid,
out, iid is(riid). LPUNKNOWN * ppUnk

Parameter Description for the GetIEnumCUID Operation:

0083

Riid This method returns enumerators, which enumerate top level
interfaces supported by this Plug In.IEnumCUID

US 2010/0205244 A1

Init

Declaration

0084

HRESULT Init(
in IIotDbServer* pIotDbServer,
out DWORD* nNumInterfaces

Parameter Descriptions for the Init Operation:

0085

plotDbServer An interface exposed by an object in the DAS engine
for use by the Plug In.

Remarks

I0086. The init operation allows the DAS engine 90 to
initialize this plugin and provides an interface pointer back
into the DAS engine 90 for use by the plug In.

ISShutdownPossible

Declaration

0087

HRESULT Isshutdown Possible(out BOOL *bShutdown)

Remarks

I0088. Isshutdown Possible allows the DAS engine 90 to
ask each plugin whether the plugin can be shutdown. Typi
cally the plug In will answer with:

0089 TRUE when there is no external client attached to
the plugin and with

0090 FALSE when there is external clients attached to
the plugin

object,

Aug. 12, 2010

0091 Return codes:
0092 S OK Success
(0093 S_FAIL Failed, indicates that the Plug In maybe in
an undefined state

Shutdown

Declaration

HRESULT Shutdown ()
Remarks

0094 Shutdown is an operation that allows the DAS
engine 90 to notify a particular plugin that the data access
server 50 will be shut down. In response to this notification,
the plugin is expected to:
(0095 1. Release all interface references to the DAS engine
(0096 2. Notify clients (if any) that the DA server is dis
connecting (In a way similar to IOPCShutdown: Shutdown
Request (. . .)).
0097. Note that shutdown does not determine whether the
plugin can be shut down or not. The plugin is informed about
the possible shutdown and is written in a way such that the
server can be shutdown in any moment after a Shutdown.(
)method is invoked.
0098. Return codes:

0099 SOK Success
0.100 S FALSE partial success, indicates that the
plugin maybe in-undefined state

0101 Turning now to FIG.9, a set of interfaces supported
by operations executed within the DAS engine layer 90 are
identified. These interfaces are executed by the DAS engine
layer 90 in response to calls by data exchange protocol
specific plugins to facilitate data communication between the
data access server 50 and communicatively connected client
applications that potentially operate according to a variety of
data exchange protocols Supported by the data access servers
set of client protocol plugins. Thus, the interfaces described
herein below represent a superset of the interface operations
executed by the DAS engine 90 to interact with all supported
data exchange protocol plugins installable on the DAS 50
embodying the present invention.
0102. An IiotDbServer interface 600 enables data
exchange protocol plugins to manipulate group handling by
the DAS engine 90 and invoke particular global services such
as, for example, setting local Ids, validating data items, etc.
Declaration

(0103)

uuid (AD50D6D1-B4A1-11 D2-A9BF-00AOC9EDOBFO),
helpstring(IIotDbServer Interface'),
pointer default(unique)

interface IIotDbServer: IUnknown

HRESULT GetModuleName (

);
out, string LPWSTR* pp.ModuleName

HRESULT Addgroup(
in, string LPCWSTR SZName,
in BOOL bActive,
in DWORD dwRequested UpdateRate,
in PIHANDLE hPlugnCroup,

US 2010/0205244 A1
12

-continued

unique, in LONG * pTimeBias,
in FLOAT * pPercentDeadband,
in DWORD dwLCID,
out CTHANDLE * phServerGroup,
out DWORD * pRevised UpdateRate,
in IICPData pIIoPiData,
in REFIID riid,
out, iid is(riid). LPUNKNOWN *ppUnk

);
HRESULT GetStatus.(

out CTSERVERSTATUS **ppServerStatus

HRESULT RemoveOroup.(
in CTHANDLE hServerGroup,
in BOOL bForce

);
HRESULT GetErrorString(

in HRESULT dwError,
in LCID dwLocale,
out, string LPWSTR* ppString

);
HRESULT Query AvailableLocaleIDs (

out DWORD *pdwCount,
out, size is(*pdwCount). LCID **pdwLcid

);
HRESULT Validate.Items.(

in DWORD dwNumItems,
in, size is(dwNumItems) CTITEMDEF * pItemArray,
out, size is(.dwNumItems) CTITEMRESULT * ppValidationResults,
out, size is(.dwNumItems). HRESULT ** ppErrors

);
HRESULT QueryOrganization.(

out CTNAMESPACETYPE * pNameSpaceType
);

HRESULT BrowseCfgNode(
in CSHANDLE hCfgNode,
out CSHANDLE : phParent,
in BOOL bBranches,
out DWORD *pdwBranchCount,
out, size is(*pdwBranchCount). CSHANDLE *pphBranches,
in BOOL bLeafs,
out DWORD *pdwLeafCount,
out, size is(*pdwLeafCount). CSHANDLE ** pphLeaves,
in BOOL bTopics,
out DWORD *pdwTopicCount,

);
HRESULT GetCfgNodeByNameId(

in, string LPCWSTR SzName,
out CSHANDLE * Node

);
HRESULT GetCfgNodeByPartialName(

in CSHANDLE hCurrentNode,
in, string LPCWSTR SzName,
out CSHANDLE * Node

);
HRESULT GetCfgNodeByTopicName(

in, string LPCWSTR SzTopicName,
out CSHANDLE * Node

);
HRESULT GetCfgNameIdByNode(

in CSHANDLE hNode,
out, string LPWSTR * ppName

);
HRESULT GetCfgNode Attributes.(

in DWORD
in

ppCtCfgNodeAttributes

size is(dwNumCfgNodes) const CSHANDLE
out, size is(dwNumCfgNodes) CTCFGNODEATTRIBUTES **

out, size is(*pdwTopicCount). CSHANDLE ** pphTopics

dwNumCfgNodes,
* pCfgNodeArray,

Aug. 12, 2010

US 2010/0205244 A1

0104. The following is a description of exemplary opera
tions offered within the scope of the IioDbServer interface
600.

Operations

AddGroup

Declaration

01.05

HRESULT AddGroup(
in, string LPCWSTR SzName,
in BOOL bActive,
in DWORD dwRequested UpdateRate,
in PIHANDLE hPlugInGroup,
unique, in LONG * pTimeBias,
in FLOAT * pPercent)eadband,
in DWORD dwLCID,
out CTHANDLE * phServerGroup,
out DWORD * pRevised UpdateRate,
in IIoPData pIIoPiData,
in REFIID riid,
out, LPUNKNOWN * ppUnk
iid is(riid)

)

Parameters

01.06

SzName Name of the requested group.
Bactive TRUE if the new group should be created

initially active.
dwRequestedUpdateRate Suggestion for the update rate. This

number typically will come from the end
Client, and be passed down through the
Plug In. This number may or may not be
possible.

HpluginCroup This handle identifies the group to the
Plug In. We must remember it on later
notifications.

PtimeBias pointer to the time bias in minutes (like
bias fielsd in W32 time zone)

PpercentDeadband Hysteretic deadband, to keep from
reporting jitter.

DwLCID locale ID
PhServerGroup This handle identifies the group to the

DAS Engine. We pass this back so the
Plug.In will be able to identify this
group in later transactions.

PRevisedUpdateRate The actual update rate we were able to
meet. This may or may not agree with the
requested update rate.

PIIoPData Plug In passes its IoPiData interface.
Riid Plug In specifies the desired interface

type.
PpUnk DAS Engine returns a pointer to an

implementation of the desired interface
type, or NULL if none exists.

Remarks

0107. This operation enables a data exchange protocol
plugin to request the DAS Engine 90 to create a group. This
may require the DAS Engine 90 to get details from the server
specific code at the device protocol layer 96 of the DAS 50.

Aug. 12, 2010

BrowseCfgNode

Declaration

0108)

HRESULT BrowseCfgNode(
in CSHANDLE hCfgNode,
out CSHANDLE * phParent,
in BOOL bBranches,
out) DWORD *pdwBranchCount,
out, size is(..*pdwBranchCount)
CSHANDLE **pphBranches,
in BOOL bLeafs,
out) DWORD *pdwLeafCount,
out, size is(..*pdwLeafCount)
CSHANDLE **pphLeaves,
in BOOL bTopics,
out) DWORD *pdwTopicCount,
out, size is(..*pdwTopicCount)
CSHANDLE **pphTopics

)

Parameters

0109

HcfgNode safe handle of node to browse at,
INVALID CSHANDLE for ROOT

PhParent safe handle of parent node, INVALID CSHANDLE
if the node has no parent

Bbranches flag whether to obtain array with Branches
PodwBranchCount number of child branches at node
PphBranches A pointer to an array of pdwBranchCount

CSHANDLES. The DAS Engine creates this
array, and passes a pointer toit out as a
return value.
NOTE: It is the responsibility of the Plug In
to dispose of the memory holding the array,
when done with it.
flag whether to obtain array with Leaves
number of child leaves at node
A pointer to an array of pdwLeafCount
CSHANDLES. The DAS Engine creates this
array, and passes a pointer to it (out) as
a return value.
NOTE: It is the responsibility of the Plug In
to dispose of the memory holding the array,
when done with it.
flag whether to obtain array with Topics
number of access paths/topics at node
A pointer to an array of pdwTopicCount
CSHANDLES. The DAS Engine creates this
array, and passes a pointer to it (out) as
a return value.
NOTE: It is the responsibility of the Plug In
to dispose of the memory holding the array,
when done with it.

Bleaves
PodwLeafCount
PphLeaves

Btopics
PdwTopicCount
PphTopics

Remarks

0110. This operation enables a client application, through
a particular data exchange protocol plugin, to request the
DAS engine 90 to browseat a specified node and to retrieve all
child objects: sub branches, leaves and access paths/topics.

US 2010/0205244 A1

GetCfgNameIdByNode
Declaration

0111

HRESULT GetCfgNameIdByNode(
in CSHANDLE
out, string LPWSTR

)

hNode,
* ppName

Parameters

0112

HNode Node DAS engine handle.
ppName Name of the fully qualified node name.

Remarks

0113. The GetCfgNameIdByNode operation enables a
plugin to retrieve the fully qualified name id of a node, (full
name path including delimiters up to the node).

GetCfgNodeAttributes
Declaration

0114

HRESULT GetCfgNode Attributes.(
in DWORD

Aug. 12, 2010

GetCfgNodeByNameld

Declaration

0117

HRESULT GetCfgNodeByNameId(
in, String LPCWSTR SZName,
out CSHANDLE * Node
)

Parameters

0118

SZName Name of the fully qualified node name.
HNode Node DAS engine handle.

Remarks

0119 This operation enables a plugin to request the DAS
engine 90 to provide a node handle corresponding to a fully
qualified name ID (full name path including delimiters up to
the node) specified by the plugin.

dwNumCfgNodes,
in, size is(dwNumCfgNodes) const CSHANDLE * pCfgNodeArray,
out, size is(dwNumCfgNodes) CTCFGNODEATTRIBUTES

ppCtCfgNodeAttributes
)

Parameters GetCfgNodeByPartialName

0115 Declaration
0120

DwNumCfgNodes Number of nodes to get attributes of. HRESULT GetCfgNodeByPartialName(etCfgNodeByPartialName
PCfgNodeArray safe handle array of nodes to get in CSHANDLE hCurrentNode,

attributes of: in, string LPCWSTR SZName,
ppOCfgNode Attributes A pointer to an array of dwNumCfgNodes cfg out CSHANDLE * Node

node attributesThe DAS Engine creates)
this array, and passes a pointer to it out
as a return value.

NOTE: It is the responsibility of the Parameters
PlugIn to dispose of the memory holdin

9. p 'memory 9. 0121
the array, when done with it.

hCurrentNode The DAS engine handle of a node to start the search
Remarks from, or INVALID CSHANDLE to start at the root.

SzName Some fragment of the name starting immediately
0116. This operation enables a client application, via a below the node indicated by hCurrentNode. For
data exchange protocol plugin, to request the DAS engine 90
to browse a specified node to retrieve all child objects: sub
branches, leaves and access paths/topics.

instance, if a fully-qualified item name is
“Server. Port1.PLC1. Item 1, then if hCurrentNode
represents the “Port1... node under the “Server

US 2010/0205244 A1

-continued

root (“Server. Port1), the handle for
“Server. Port1.PLC1 could be retrieved using
hCurrentNode and “PLC1'. Similarly, the handle
for the leaf could be retrieved using hCurrentNode
and “PLC1.Item1.

HNode Node DAS engine handle.

Remarks

0122) This operation enables a plugin to request the DAS
engine 90 to provide a node handle corresponding to name ID
fully specified by a current node and a fragment of the name
beginning at the current node.

GetCfgNodeByTopicName
Declaration

(0123

HRESULT GetCfgNodeByTopicName?
in, String LPCWSTR SzTopicName,
out CSHANDLE * Node
)

Parameters

0124

SzTopicName Name of the fully qualified topic name.
Hinode Node DAS engine handle.

Remarks

0.125. This operation enables a plugin to request the DAS
engine 90 to provide a node handle by specifying a fully
qualified name id of the topic/OPC access path.

GetErrorString
Declaration

0126

HRESULT GetErrorString(
in HRESULT dwError,
in LCID dwLocale,
out, string LPWSTR * ppString

)

Parameters

O127

dwError error code
dwLocale locale ID
ppString returned error text

Aug. 12, 2010

Remarks

I0128. This operation enables a plugin to request the DAS
engine 90 to provide error text for a specified error code and
locale.

GetModuleName

Declaration

0129

HRESULT GetModuleName (
out, string LPWSTR* pp.ModuleName

)

Parameters

O130

pp.ModuleName Server EXE module name, less extension.

Remarks

I0131 This operation enables a plugin to request the DAS
engine 90 to return the DAS 50's EXE module name, less any
file extension.

GetStatus

Declaration

(0132

HRESULT GetStatus(
out CTSERVERSTATUS **ppServerStatus

)

Parameters

0.133

ppServerStatus DAS Engine keeps a local CTSERVERSTATUS
structure, and returns a pointer to it.

Remarks

I0134. This operation enables a plugin to request the DAS
engine 90 to provide a pointer to a status for the DAS 50 as a
whole.

Query AvailableLocaleIDs
Declaration

0135)

HRESULT Query AvailableLocaleIDs (
out DWORD *pdwCount,
out, size is(,*pdwCount). LCID **pdwLcid
)

US 2010/0205244 A1 Aug. 12, 2010

Parameters -continued

0136 phServerGroup argument of a previous call to the
AddOroup method.

pdwCount number of locale ids R k
pdwLcid list of locale ids CakS

0143. This operation allows a plugin to request the DAS
engine 90 to remove a previously-created group.

Remarks Validatetems

0.137 This operation enables a plugin to request the DAS Declaration
engine 90 to provide a list of supported locale IDs. 0144)

HRESULT Validate.Items.(
in DWORD dwNumItems,
in, size is(dwNumItems) CTITEMDEF * pItemArray,
out, size is(.dwNumItems) CTITEMRESULT * ppValidationResults,
out, size is(.dwNumItems). HRESULT **ppErrors

)

QueryOrganization
Declaration

0138

HRESULT QueryOrganization.(
out CTNAMESPACETYPE * pNameSpaceType

)

Parameters

0139

PnameSpaceType DAS engine returns either: CT NS HIERARCHIAL
or CT NS FLAT.

Remarks

0140. This operation allows a plugin to query the configu
ration organization of the server. A server is configured either
flat or hierarchical.

Remove(Group
Declaration

0141

HRESULT RemoveOroup(
in CTHANDLE hServerGroup,
in BOOL bForce

)

Parameters

0142

hServerGroup This handle specifies the group to the DAS Engine.
It must be the handle as returned through the

Parameters

(0145

Number of items to validate.

An array of dwNumItems CTITEMDEF
structures. Each element in the array

dwNumItems

pItemArray

defines an item to be created or located,
and added to the group.

ppValidationResults A pointer to an array of dwNumItems
CTITEMRESULT structures. The DAS Engine
creates this array, and passes a pointer
to it out as a return value.

NOTE: It is the responsibility of the
PlugIn to dispose of the memory holding the
array, when done with it.
An array of HRESULTs. These are the
individual error codes for each item being
reported. The DAS Engine creates this

PpErrors

array, and passes a pointer to it out as a
return value.

NOTE: It is the responsibility of the
PlugIn to dispose of the memory holding the
array, when done with it.

Remarks

0146 This operation is similar to an Additems operation
in the IIotItemMgt interface 606 (described herein below) of
the group object. Since item syntax is independent of a group
this operation performs the same validation on the item defi
nition. This operation enables a plugin to satisfy groupless
client activities (only for on demand calls).
0147 An IiotDemand interface 602 enables plugins to
Submit out-of-band (outside the regular update period)
requests to the DAS engine 90 for arrays of specified data
items after the groups and physical data items are created,
added and activated.

US 2010/0205244 A1 Aug. 12, 2010

Declaration

0148

object,
uuid (AD50D6D5-B4A1-11 D2-A9BF-00AOC9EDOBFO),
helpstring(IIotDemand Interface'),
pointer default(unique)

interface IIotDemand: IUnknown
{

HRESULT ReadCache?
in DWORD dwNumItems,
in, size is(dwNumItems) CTHANDLE * phooreToolkit,
out, size is(dwNumItems) CTITEMSTATE **ppItemValues,
out, size is(dwNumItems) HRESULT **ppErrors

);
HRESULT Read Device(

in DWORD dwCount,
in, size is(dwCount) CTHANDLE * phooreToolkit,
in CTTRANSACTIONDEF TransactionDef,
unique, in LONG * pTimeBias,
in DWORD dwLCID,
out, size is(dwCount) HRESULT **ppErrors,
out CTHANDLE: CancelD

);
HRESULT WriteLDevice(

in DWORD dwCount,
in, size is(dwCount) CTHANDLE * phooreToolkit,
in, size is(dwCount) VARLANT * pItemValues,
in CTTRANSACTIONDEF TransactionDef,
unique, in LONG * pTimeBias,
in DWORD dwLCID,
out, size is(.dwCount) HRESULT **ppErrors,
out CTHANDLE: CancelD

);
HRESULT Cancel(

in CTHANDLE CancelD
);

Description Parameters

0149. After groups and items are created, added, and acti- 0152
vated, this interface enables plugins to Submit out-of-band
data access requests to arrays of specified items maintained/
monitored by the DAS engine 90. In many cases, these actions
will take a long time, and will proceed asynchronously. The
completions for these asynchronous calls will be reported on CancellD Cancel ID as Supplied in the transaction initiation.
methods of the IIoPiData interface.
0150. The following is a description of exemplary opera
tions for carrying out the IiotDemand interface 602. Remarks
Operations
Cancel 0153. This operation enables a plugin to cancel any pend
Declarati ing asynchronous transaction (demand calls or refreshes) that
eclarat1On 0151 was previously requested of the DAS engine 90.

HRESULT Cancel (ReadCache
in CTHANDLE CancelD

) Declaration

0154)

HRESULT ReadCache?
in DWORD dwNumItems,
in, size is(dwNumItems) CTHANDLE * phooreToolkit,

US 2010/0205244 A1

-continued

CTITEMSTATE
HRESULT

out, size is(dwNumItems)
out, size is(dwNumItems)

Parameters

0155

Count of items to be read from cache.
Array of dwNumItems handles. These are the
handles that identify the items to the DAS
Engine, and were Supplied to the Plugin during
IIotItemMgt::AddItems. This array is supplied by
the PlugIn.
A pointer to an array of CTITEMSTATE structures.
This array is created by the DAS Engine, and a
pointer to it is passed out as a return value.
Each CTITEMSTATE in the array indicates the
current item state for the specified item.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.
A pointer to an array of HRESULTs. This array is
created by the DAS Engine, and a pointer to it is
passed out as a return value. Each HRESULT gives
an error code for the specified item.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

DwNumItems
PhCoreToolkit

PpItemValues

PpErrors

Remarks

0156 This operation proceeds synchronously, and
invokes the DAS engine 90 to return a current VTO from the
cache including an array of dwNumItems items.

Read evice

Declaration

O157

HRESULT Read Device(
in DWORD dwCount,
in, size is(dwCount) CTHANDLE * phooreToolkit,
in CTTRANSACTIONDEF TransactionDef,
unique, in LONG * pTimeBias,
in DWORD dwLCID,
out, size is(.dwCount) HRESULT **ppErrors,
out CTHANDLE: CancelD

)

Parameters

0158

DwCount Count of items requested.
PhCoreToolkit Array of dwCount handles. These are the handles

that identify the items to the DAS Engine, and
were Supplied to the Plugin during
IIotItemMgt::AddItems.
This array is supplied by the PlugIn.

Aug. 12, 2010

** ppItemValues,
**ppErrors

-continued

TransactionDef Transaction definition. This will uniquely
identify the demand read transaction when
completion is signaled using
IIoPiData:OnWriteComplete().
This identifier is supplied by the DAS Engine.
pointer to the time bias in minutes (like bias
fields in W32 time Zone)
locale ID, OPC will only do demand calls for
items of the same group, so the OPC plug in will
Supply the locale ID and time bias of the group
A pointer to an array of HRESULTs. It is
possible that one or more of the specified items
oes not exist, or is otherwise invalid. This

array is created by the DAS Engine, and a
pointer to it is passed out as a return value.
NOTE: It is the responsibility of the Plug In to
ispose of the memory holding the array, when
one with it.

Cancel ID for the plug in to cancel the
transaction.

PTimeBias

DwLCID

PpErrors

CancelD

Remarks

0159. This operation proceeds asynchronously. Comple
tion is signaled by the DAS engine 90 on IIoPiData::OnRead
Complete(). This operation enables a plugin to request the
DAS engine 90 to perform a demand read for a list of items.
This demand read commences as soon as any bus activity is
complete, and returns with higher priority than any scanned
data.

Write Device

Declaration

(0160

HRESULT WriteDevice(
in DWORD dwCount,
in, size is(dwCount) CTHANDLE * phooreToolkit,
in, size is(dwCount) VARIANT * pItemValues,
in CTTRANSACTIONDEF TransactionDef,
unique, in LONG * pTimeBias,
in DWORD dwLCID,
out, size is(.dwCount) HRESULT **ppErrors,
out CTHANDLE: CancelD

)

Parameters

(0161

DwCount Count of items to be written.
PhCoreToolkit Array of dwCount handles. These are the handles

that identify the items to the DAS Engine, and
were Supplied to the PlugIn during
IIotItemMgt::AddItems.
This array is supplied by the PlugIn.

US 2010/0205244 A1

-continued

PItemValues Array of dwCount variant values. These are the
new values for the items.
Transaction definition. This will uniquely
identify the demand read transaction when
completion is signaled using
IIoPiData:OnWriteComplete().
This identifier is supplied by the DAS Engine.
pointer to the time bias in minutes (like bias
fields in W32 time Zone)
locale ID, OPC will only do demand calls for
items of the same group, so the OPC plug in will
Supply the locale ID and time bias of the group
A pointer to an array of HRESULTs. It is
possible that one or more of the specified items
oes not exist, or is otherwise invalid. This

array is created by the DAS Engine, and a
pointer to it is passed out as a return value.
NOTE: It is the responsibility of the Plug.In to
ispose of the memory holding the array, when
one with it.

Cancel ID for the plug in to cancel the
transaction.

TransactionDef

PTimeBias

DwLCID

PpErrors

CancelD

Remarks

0162 This operation proceeds asynchronously. Comple
tion is signaled by the DAS engine 90 on IIoPiData:On
WriteComplete(). This operation enables a plugin to request
the DAS engine 90 to perform a write to a list of items. This
write commences as soon as any bus activity is complete, and
returns with higher priority than any scanned data.
0163 An IliotGroupStateMgt interface 604 enables plu
gins to manipulate groups created on the DAS 50.

Declaration

(0164

object,
uuid (2030A921-0788-11d3-82C2-00A024A866AC),
helpstring(IIotGroupStateMgt Interface'),
pointer default(unique)

interface IIotGroupStateMgt: IUnknown

HRESULT GetState(
out DWORD * pUpdateRate,
out BOOL * pactive,
out, string LPWSTR *ppName,
out LONG * pTimeBias,
out FLOAT * pPercent Deadband,
out DWORD * pLCID,
out PIHANDLE * phPlug Ingroup,
out CTHANDLE * phooreToolkitGroup

);
HRESULT SetState(

unique, in DWORD * pRequestedUpdateRate,
out DWORD * pRevisedUpdateRate,
unique, in BOOL * pactive,
unique, in LONG * pTimeBias,
unique, in FLOAT * pPercent Deadband,
unique, in DWORD * pLCID,
unique, in PIHANDLE * phOlientGroup
);

HRESULT SetName(
in, string LPCWSTRSZName

Aug. 12, 2010

-continued

HRESULT CloneGroup(
in, string LPCWSTR SZName,
in IICPData pIIoPiData,
out CTHANDLE *phServerHandle,
in REFID riid,
out, iid is(riid) LPUNKNOWN *ppUnk

);

Description
0.165. This interface enables plugins to manipulate groups
that are created on the DAS 50.
0166 The following is a description of exemplary opera
tions for carrying out the IiotGroupStateMgt interface 604.

Operations
CloneGroup
Declaration

(0167

HRESULT CloneGroup(
in, string LPCWSTR SZName,
in IICPData pIIoPiData,
out CTHANDLE *phServerHandle,
in REFIID rid,
out, iid is(riid) LPUNKNOWN *ppUnk

)

Parameters

(0168

SzName Unique name of the new group.
PIIoPData Plug.In passes its IoPiData interface.
Riid Plug.In specifies the desired interface type.
Ppunk DAS Engine returns a pointer to an implementation of

the desired interface type, or NULL if none exists.

Remarks:

0169. This operation creates a copy of the existing group
with the same characteristics as the original.

GetState

Declaration

0170

HRESULT GetState(
out DWORD * pUpdateRate,
out BOOL * pactive,
out, string LPWSTR * ppName,
out LONG * pTimeBias,
out FLOAT * pPercentDeadband,
out DWORD * pLCID,
out PIHANDLE * phPlug Ingroup,
out CTHANDLE * phooreToolkitGroup

)

US 2010/0205244 A1

Parameters

0171

Parameters

PUpdateRate

Pactive
PpName
PTimeBias
pPercentDeadband

PLCID
phPlug InCiroup
phCoreToolkitGroup

Description

The current update rate. The Update Rate is
in milliseconds
The current active state of the group.
The current name of the group
The TimeZone Bias of the group (in minutes)
The percent change in an item value that
will cause an exception report of that value
to a client. This parameter only applies to
items in the group that have
wBUType of Analog. See discussion of

Percent Deadband in General Properties
Section
The current LCID for the group.
The client (Plugin) supplied group handle
The server generated group handle

Remarks: This operation gets the current state of the group.

20

SetName

Declaration

0172

HRESULT SetName(
in, string LPCWSTRSZName

)

Parameters

0173

Parameters Description

SzName New name for group.

Remarks:

0.174. This operation changes the name of a existing
group. The name must be unique.

object,

Aug. 12, 2010

SetState
Declaration

0175

HRESULT SetState(
unique, in DWORD * pRequestedUpdateRate,
out DWORD * pRevised UpdateRate,
unique, in BOOL * pactive,
unique, in LONG * pTimeBias,
unique, in FLOAT * pPercentDeadband,
unique, in DWORD * pLCID,
unique, in PIHANDLE * phOlientGroup

)

Parameters

(0176)

Parameters Description

pRequested UpdateRate New update rate requested for the group by
the client (milliseconds)

pRevised UpdateRate Closest update rate the server is able to
provide for this group.

Pactive TRUE (non-zero) to active the group. FALSE
(O) to deactivate the group.

PtimeBias TimeZone Bias if Group (in minutes).
pPercentDeadband The percent change in an item value that

will cause an exception report of that
value to a client. This parameter only
applies to items in the group that
have dwEUType of Analog. See discussion of
Percent Deadband in the General
Information Section

PLCID The Localization ID to be used by the
group.

phClientGroup New client supplied handle for the group.
This handle is returned in the data stream
provided to the client's IAdvise by the
Groups IDataObject.

Remarks:

0177. This operation enables a client to set various prop
erties of the group. Pointers to in items are used so that the
client can omit properties the client does not want to change
by passing a NULL pointer. The pRevisedUpdateRate argu
ment must contain a valid pointer.
0.178 An IiotItemMgt interface 606 enables plugins to
request the DAS engine 90 to add, validate, and remove items
within the context of a specified group. The IiotItemMgt
interface 606 is implemented in the DAS engine 90 by a group
object.
Declaration

0179

uuid (AD50D6D3-B4A1-11 D2-A9BF-00AOC9EDOBFO),
helpstring(IIotItemMgt Interface'),
pointer default(unique)

interface IIotItemMgt: IUnknown

HRESULT AddItems.(
in
in, size is (dwNumItems)

DWORD
CTITEMDEF

dwNumItems,
* pItemArray,

US 2010/0205244 A1

-continued

out, size is(dwNumItems) CTITEMRESULT

Aug. 12, 2010

**ppAddResults,
out, size is(dwNumItems) HRESULT **ppErrors

);
HRESULT Validate.Items.(

in DWORD dwNumItems,
in, size is(dwNumItems) CTITEMDEF * pItemArray,
out, size is(dwNumItems) CTITEMRESULT **ppValidationResults,
out, size is(dwNumItems) HRESULT **ppErrors

);
HRESULT Remove.Items.(

in DWORD dwNumItems,
in, size is(dwNumItems) CTHANDLE * phooreToolkit,
out, size is(dwNumItems) HRESULT **ppErrors

);
HRESULT SetActiveState(

in DWORD dwNumItems,
in, size is(dwNumItems) CTHANDLE * phooreToolkit,
in BOOL bActive,
out, size is(dwNumItems) HRESULT **ppErrors

);
HRESULT SetClientHandles.(

in DWORD dwNumItems,
in, size is(dwNumItems) CTHANDLE * phOoreToolkit,
in, size is(dwNumItems) PIHANDLE * phPlugin,
out, size is(.dwNumItems). HRESULT **ppErrors

);
HRESULT SetDatatypes.(

in DWORD dwCount,
in, size is(dwCount) CTHANDLE * phOoreToolkit,
in, size is(dwCount) VARTYPE * pRequestedDatatypes,
out, size is(.dwCount) HRESULT **ppErrors

);
HRESULT CreateEnumerator(

in REFIID rid,
out, iid is(riid). LPUNKNOWN* ppUnk

);
HRESULT GetItemCount(

out DWORD* dwItemCount
);
HRESULT Refresh(

in CTDATASOURCE dwSource,
in CTTRANSACTIONDEF
out DWORD *pdwCancel ID

TransactionDef,

);

Description

0180. The IliotItemMgt interface 606 is implemented by a
group object in the DAS engine 90. It allows items to be
added, validated, and removed within the context of a group.
The following is a description of exemplary operations for
carrying out the IliotItemMgt interface 606.

Operations

AddItems

Declaration

0181

HRESULT AddItems.(
in DWORD
in, size is (dwNumItems) CTITEMDEF
out, size is(.dwNumItems). CTITEMRESULT
out, size is(.dwNumItems). HRESULT

)

dwNumItems,
* pItemArray,

** pp AddResults,
**ppErrors

Parameters

0182

DwNumItems
PItemArray

Number of items to add to this group.
An array of dwNumItems CTITEMDEF structures. Each
element in the array defines an item to be created
or located, and added to the group.
A pointer to an array of dwNumItems CTITEMRESULT
structures. The DAS Engine creates this array, and
passes a pointer to it out as a return value.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when done
with it.
An array of HRESULTs. These are the individual
error codes for each item being reported. The DAS
Engine creates this array, and passes a pointer to
it out as a return value.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when done
with it.

PpAddResults

PpErrors

Remarks

0183 This operation provides a list interface function
similar to OPC. This operation allows a plugin to request the

US 2010/0205244 A1

DAS engine 90 to create (or provide a location of, if existing)
a list of items and return the result codes for the whole list.

CreateEnumerator

Declaration

0184

HRESULT CreateEnumerator(
in REFIID rid,
out, iid is(riid). LPUNKNOWN*ppUnk

)

Parameters

0185

Riid requested interface id.
Ppunk returned requested interface pointer or NULL.

Remarks

0186 This operation enables a plugin to request the DAS
engine 90 to create an enumerator for items in a DAS engine
90 group.

GetItemCount

Declaration

0187.

HRESULT GetItemCount(
out DWORD* dwtemCount

)

Parameters

0188

dwtemCount Return the item counthere.

Remarks

0189 This operation enables a plugin to request the DAS
engine 90 to provide the count of the total number of items in
a group, regardless of their state.

Refresh

Declaration

0190.

HRESULT Refresh(
in CTDATASOURCE dwSource,

22
Aug. 12, 2010

-continued

in CTTRANSACTIONDEF TransactionDef,
out DWORD *pdwCancel ID

)

Parameters

(0191)

DwSource requested data source: cache or device.
TransactionDef Transaction definition. This will uniquely

identify the refresh transaction when completion
is signaled using IIoPiData:Onata ().
This identifier is supplied by the DAS Engine.

PowCancelD DAS engine Supplied cancel ID.

Remarks

0.192 This operation enables a plugin to request the DAS
engine 90 to force an update of on active items in a group.

Removetems

Declaration

(0193

HRESULT Remove.Items.(
in DWORD dwNumItems,
in, size is (dwNumItems) CTHANDLE * phooreToolkit,
out, size is(.dwNumItems). HRESULT **ppErrors

)

Parameters

0.194

DwNumItems Number of items to remove from this group.
Special case: a value of DWORD MAX means delete
all items currently in this group.
An array of dwNumItems handles. These handles
identify each item to the DAS Engine. The handles
were created by the DAS Engine when the
AddItems () method was called, and passed out as
part of the CTITEMRESULT structures in the
pp AddResults array.
An array of dwNumItems HRESULTs. These are the
individual error codes for each item being
reported. The DAS Engine creates this array, and
passes a pointer to it out as a return value.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

PhCoreToolkit

PpErrors

Remarks

0.195. This operation enables a plugin to request a DAS
engine 90 to remove a list of items previously added to the
group.

US 2010/0205244 A1

SetActiveState

Declaration

0196)

HRESULT SetActiveState(
in DWORD dwNumItems,
in, size is (dwNumItems) CTHANDLE * phooreToolkit,
in BOOL bActive,
out, size is(.dwNumItems). HRESULT **ppErrors

)

Parameters

0197)

DwNumItems Number of items to activate in this group.
PhCoreToolkit An array of dwNumItems handles. These handles

identify each item to the DAS Engine. The handles
were created by the DAS Engine when the
AddItems () method was called, and passed out as
part of the CTITEMRESULT structures in the
pp AddResults array.

BActive An array of dwNumItems activate deactivate flags.
PpErrors An array of dwNumItems HRESULTs. These are the

individual error codes for each item being
reported. The DAS Engine creates this array, and
passes a pointer to it out as a return value.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

Remarks

0198 This operation enables a plugin to request a DAS
engine 90 to activate and deactivate a list of items previously
added to a group. Activated items are allowed to update their
VTO using

IIoPiData:OnReadComplete()
SetClientHandles

Declaration

0199.

HRESULT SetClientHandles.(
in DWORD dwNumItems,
in, size is(dwNumItems) CTHANDLE * phOoreToolkit,
in, size is(dwNumItems) PIHANDLE * phPlug In,
out, size is(.dwNumItems). HRESULT **ppErrors

)

Parameters

0200

DwNumItems Number of items to change the client handles.
PhCoreToolkit An array of dwNumItems handles. These handles

identify each item to the DAS Engine. The handles

Aug. 12, 2010

-continued

were created by the DAS Engine when the
AddItems () method was called, and passed out as
part of the CTITEMRESULT structures in the
pp AddResults array.

PhPlug In
PpErrors

An array of new dwNumItems client handles.
An array of dwNumItems HRESULTs. These are the
individual error codes for each item being
reported. The DAS Engine creates this array, and
passes a pointer to it out as a return value.
NOTE: It is the responsibility of the Plug In to
dispose of the memory holding the array, when
done with it.

Remarks

0201 This operation enables a plugin to request the DAS
engine 90 to set new client handles for existing items.

SetDatatypes

Declaration

(0202

HRESULT SetDatatypes.(
in DWORD dwCount,
in, size is(dwCount) CTHANDLE * phOoreToolkit,
in, size is(dwCount) VARTYPE * pRequestedDatatypes,
out, size is(.dwCount) HRESULT **ppErrors

)

Parameters

0203

DwCount
PhCoreToolkit

Number of items to set the data type to.
An array of dwNumItems handles. These
handles identify each item to the Cor. The
handles were created by the DAS Engine when
the AddItems() method was called, and
passed out as part of the CTITEMRESULT
structures in the pp AddResults array.
An array of dwNumItems requested new data
types.
An array of dwNumItems HRESULTs. These are
the individual error codes for each item
being reported. The DAS Engine creates this
array, and passes a pointer to it out as a
return value.
NOTE: It is the responsibility of the
PlugIn to dispose of the memory holding the
array, when done with it.

PRequestedDatatypes

PpErrors

Remarks

0204. This operation enables plugins to request the DAS
engine 90 to set new data types for existing items.

US 2010/0205244 A1
24

Validatetems
Declaration

0205

HRESULT Validate.Items.(
in DWORD dwNumItems,

Aug. 12, 2010

in, size is(dwNumItems) CTITEMDEF * pItemArray,
out, size is(.dwNumItems). CTITEMRESULT * ppValidationResults,
out, size is(.dwNumItems). HRESULT **ppErrors

)

Parameters

0206

DwNumItems Number of items to validate for this group.
PitemArray An array of dwNumItems CTITEMDEF

structures. Each element in the array
defines an item to be created or located,
and added to the group.
A pointer to an array of dwNumItems
CTITEMRESULT structures. The DAS Engine
creates this array, and passes a pointer
to it out as a return value.
NOTE: It is the responsibility of the
Plugin to dispose of the memory holding
the array, when done with it.
An array of HRESULTs. These are the
individual error codes for each item being
reported. The DAS Engine creates this
array, and passes a pointer to it out as a
return value.
NOTE: It is the responsibility of the
Plugin to dispose of the memory holding
the array, when done with it.

PpValidationResults

PpErrors

Remarks

0207. This operation is similar to the previously described
AddItems. However, no items are actually created by the DAS
engine 90. This operation allows a plugin to determine
whether an item name is valid, and its type and status in the
event that the item name is valid.

0208 Illustrative embodiments of the present invention
and certain variations thereof have been provided in the Fig
ures and accompanying written description. The present
invention is not intended to be limited to these embodiments.
Rather the present invention is intended to cover the disclosed
embodiments as well as others falling within the scope and
spirit of the invention to the fullest extent permitted in view of
this disclosure and the inventions defined by the claims
appended herein below.

1. A process data access server enabling client applications
incorporating potentially multiple differing data exchange
protocols to access process data stored at potentially many
different locations in a process control system, the process
data access server comprising:

a device protocol interface facilitating accessing process
data storage locations within the process control system;

a set of client data exchange protocol modules enabling
client applications to request access to process data stor
age locations via the process data access server accord

ing to particular client data exchange protocols Sup
ported by the set of client data exchange protocol
modules; and

a data access server engine for executing process data
access requests, received by the process data access
server via the set of client data exchange protocol mod
ules, by accessing, via the device protocol interface, data
storage locations corresponding to the process data
access requests, and wherein the data access server
engine includes a client application data exchange pro
tocol abstraction layer comprising a set of operations
callable by ones of the set of client data exchange pro
tocol modules in response to receipt by the set of client
data exchange protocol modules of process data access
requests.

2. The process data access server of claim 1 wherein the set
of client data exchange protocol modules comprise plugins.

3. The process data access server of claim 2 wherein at least
one of the set of client data exchange protocol plugins com
prises a dynamic plugin.

4. The process data access server of claim 2 wherein at least
one of the set of client data exchange protocol plugins com
prises a static plugin.

5. The process data access server of claim 2 wherein the set
of protocol conversion modules comprise both static and
dynamic plugins.

6. The process data access server of claim 1 wherein ones
of the set of client data exchange protocol modules handle
data access requests from client applications in accordance
with particular client data exchange protocols.

7. The process data access server of claim 1 further includ
ing:

a loading mechanism for determining a presence of at least
one of the set of client data exchange protocol modules
upon a machine for executing the process data access
server, and loading the at least one client data exchange
protocol module during a startup process that integrates
the at least one client data exchange module with the
data access server engine.

8. The process data access server of claim 1 wherein the set
of operations of the data access server engine includes at least
one operation callable by at least two distinct ones of the set
of client data exchange protocol modules that incorporate
distinct data exchange protocols.

9. The process data access server of claim 1 wherein an
operational data access server including the device protocol
interface, the set of client data exchange protocol modules,
and the data access server is created by a start-up process that
builds the operational data access server from previously
installed program files, and wherein the program files of the

US 2010/0205244 A1

client data exchange protocol modules and the data access
server are independently designateable with regard of one
another.

10. The process data access server of claim 1 wherein the
set of interface operations executable by the data access
server engine includes an asynchronous data read operation
for providing data from an identified data source in response
to a client application data request.

11. The process data access server of claim 1 wherein the
set of interface operations executable by the data access
server engine includes a synchronous read operation that, in
accordance with a timer duration expiration event, updates
identified process data values via the device protocol inter
face.

12. The process data access server of claim 11 wherein the
synchronous read operation discards an updated process data
value for a data item that is determined to be unchanged from
a current stored value for the data item, thereby avoiding
transmissions of unchanged data values between the process
data access server and requesting client applications.

13. The process data access server of claim 1 wherein the
set of interface operations executable by the data access
server engine includes a group creation operation that creates
a first logical group containing a first set of data items.

14. The process data access server of claim 13 wherein a
second logical group containing a second set of data items is
includable as an item within the first logical group containing
the first set of data items.

Aug. 12, 2010

15. The process data access server of claim 13 wherein the
set of interface operations executable by the data access
server engine includes a group remove operation that
removes a specified group from the process data access
SeVe.

16. The process data access server of claim 13 wherein the
set of interface operations executable by the data access
server engine includes operations for modifying the contents
of the first logical group.

17. The process data access server of claim 1 wherein the
set of interface operations executable by the data access
server engine includes a write operation to a specified data
item accessible by the process data access server.

18. The process data access server of claim 1 wherein the
set of interface operations includes a data reference structure
search operation that returns a data item reference corre
sponding to a data item value accessible by the client appli
cations via the process data access server.

19. The process data access server of claim 18 wherein the
data item reference is a handle.

20. The process data access server of claim 1 wherein the
set of interface operations includes an error code generator
that Supplies error code text to a requesting client data
exchange protocol module.

21-50. (canceled)

