Title: ISOINDOLINE DERIVATIVES FOR USE IN THE TREATMENT OF A VIRAL INFECTION

Abstract: Compounds of Formula I are disclosed and methods of treating viral infections with compositions comprising such compounds (Formula I).
Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))
ISOINDOLINE DERIVATIVES FOR USE IN THE TREATMENT OF A VIRAL INFECTION

FIELD OF THE INVENTION

The present invention relates to substituted isoindoline compounds, pharmaceutical compositions, and methods of use thereof for (i) inhibiting HIV replication in a subject infected with HIV, or (ii) treating a subject infected with HIV, by administering such compounds.

BACKGROUND OF THE INVENTION

Human immunodeficiency virus type 1 (HIV-1) leads to the contraction of acquired immune deficiency disease (AIDS). The number of cases of HIV continues to rise, and currently over twenty-five million individuals worldwide suffer from the virus. Presently, long-term suppression of viral replication with antiretroviral drugs is the only option for treating HIV-1 infection. Indeed, the U.S. Food and Drug Administration has approved twenty-five drugs over six different inhibitor classes, which have been shown to greatly increase patient survival and quality of life. However, additional therapies are still required because of undesirable drug-drug interactions; drug-food interactions; non-adherence to therapy; and drug resistance due to mutation of the enzyme target.

Currently, almost all HIV positive patients are treated with therapeutic regimens of antiretroviral drug combinations termed, highly active antiretroviral therapy ("HAART"). However, HAART therapies are often complex because a combination of different drugs must be administered often daily to the patient to avoid the rapid emergence of drug-resistant HIV-1 variants. Despite the positive impact of HAART on patient survival, drug resistance can still occur. The emergence of multidrug-resistant HIV-1 isolates has serious clinical consequences and must be suppressed with a new drug regimen, known as salvage therapy.

Current guidelines recommend that salvage therapy includes at least two, and preferably three, fully active drugs. Typically, first-line therapies combine three to four drugs targeting the viral enzymes reverse transcriptase and protease. One option for salvage therapy is to administer different combinations of drugs from the same mechanistic class that remain active against the resistant isolates. However, the options for this approach are often limited, as resistant mutations frequently confer broad cross-resistance to different drugs in the same class. Alternative therapeutic strategies have recently become available with the development of fusion, entry, and integrase inhibitors. However, resistance to all three new drug classes has already been reported both in the lab and in patients. Sustained successful treatment of HIV-1-
infected patients with antiretroviral drugs will therefore require the continued development of new and improved drugs with new targets and mechanisms of action.

For example, over the last decade HIV inhibitors have been reported to target the protein-protein interaction between HIV-1 integrase and Lens Epithelium Derived Growth Factor/p75 ("LEDGF"). LEDGF is a cellular transcriptional cofactor of HIV-1 integrase that promotes viral integration of reverse transcribed viral cDNA into the host cell’s genome by tethering the preintegration complex to the chromatin. Because of its crucial role in the early steps of HIV replication, the interaction between LEDGF and integrase represents another attractive target for HIV drug therapy.

SUMMARY OF THE INVENTION

Briefly, in one aspect, the present invention discloses compounds of Formula I:

![Formula I](image)

wherein:

- R^1 is C_{1-6}alkyl;
- R^2 is C_{5-14}aryl, C_{3-7}cycloalkyl, C_{3-7}cycloalkenyl, C_{2-9}heterocycle, or C_{2-9}heteroaryl, wherein each R^2 group is optionally substituted by one to four substituents selected from halo, C_{1-6}alkyl, C_{1-6}heteroalkyl, or C_{1-6}alkylene or C_{1-6}heteroalkylene wherein said C_{1-6}alkylene or C-1.
- cycloalkenyl, C_{3-9}heterocycle, or C_{5-9}heteroaryl to form a fused ring;
- L is a bond, $-\text{CH}_2(\text{CO})^-$, $-\text{C}_{1-3}$alkylene-, $-\text{SO}_2^-$, $-\text{C}(\text{O})^-$, $-\text{C}(\text{S})^-$, $-\text{C}(\text{NH})^-$, $-\text{C}(\text{O})\text{NH}^-$, $-\text{C}(\text{O})\text{NHCH}_2^-$, $-\text{C}(\text{O})\text{N}^-$, $-\text{C}(\text{O})\text{OCH}_2^-$, $-\text{C}(\text{O})\text{O}$, $-\text{C}(\text{O})\text{C}(\text{O})^-$, $-\text{SO}_2\text{NH}^-$, or $-\text{C}_2\text{H}_5\text{C}(\text{O})^-$;
- R^3 is H, CN, C_{1-6}alkyl, C_{5-14}aryl, $\text{CH}_2\text{C}_{5-14}$aryl, $\text{CH}_2\text{C}_{3-7}$cycloalkyl, C_{3-7}cycloalkyl, C_{3-7}spirocycloalkyl, C_{3-7}cycloalkenyl, C_{2-9}heterocycle, or C_{2-9}heteroaryl, wherein each R^3 group is optionally substituted by one to four substituents selected from halo, C_{1-6}alkyl, C_2.

bridgedheterocycle, C₂-₇-cycloalkyl, C₁-₆fluoroalkyl, -OC₁-₆alkyl, -C(O)R⁴, -C(O)NR⁴, -C(O)NHR⁴,
C₅-₁₄aryl, C₁-₆heteroalkyl, -B(OH)₂, C₂-₉heterocycle, C₁-₆heteroaryl, -C(O)OC₁-₆alkyl, or two
substituents bonded to adjacent atoms may bond together to form a fused ring and that fused
ring may optionally be substituted with R⁴;
R⁴ is CN, halo, -OC₁-₆alkyl, C₁-₆alkyl, C₂-₇-cycloalkyl, C₂-₉heterocycle, or C₅-₁₄aryl;
and wherein each heterocycle, heteroaryl, heteroalkyl, and heteroalkylene comprises
one to three heteroatoms selected from S, N, B, or O.
In another aspect the present invention discloses pharmaceutically acceptable salts of
the compounds of Formula I.
In another aspect, the present invention discloses pharmaceutical compositions
comprising a compound of Formula I or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention discloses a method for treating a viral infection in
a patient mediated at least in part by a virus in the retrovirus family of viruses, comprising
administering to said patient a composition comprising a compound of Formula I, or a
pharmaceutically acceptable salt thereof. In some embodiments, the viral infection is mediated
by the HIV virus.
In another aspect, a particular embodiment of the present invention provides a method of
treating a subject infected with HIV comprising administering to the subject a therapeutically
effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof.
In yet another aspect, a particular embodiment of the present invention provides a
method of inhibiting progression of HIV infection in a subject at risk for infection with HIV
comprising administering to the subject a therapeutically effective amount of a compound of
Formula I, or a pharmaceutically acceptable salt thereof. Those and other embodiments are
further described in the text that follows.
In accordance with another embodiment of the present invention, there is provided a
method for preventing or treating a viral infection in a mammal mediated at least in part by a
virus in the retrovirus family of viruses which method comprises administering to a mammal, that
has been diagnosed with said viral infection or is at risk of developing said viral infection, a
compound as defined in Formula I, wherein said virus is an HIV virus and further comprising
administration of a therapeutically effective amount of one or more agents active against an HIV
virus, wherein said agent active against the HIV virus is selected from the group consisting of
Nucleotide reverse transcriptase inhibitors; Non-nucleotide reverse transcriptase inhibitors;
Protease inhibitors; Entry, attachment and fusion inhibitors; Integrase inhibitors; Maturation
inhibitors; CXCR4 inhibitors; and CCR₅ inhibitors.
DETAILED DESCRIPTION OF THE INVENTION

Preferably R^1 is C_{1-6}alkyl. Most preferably, R^1 is t-butyl.

Preferably R^2 is optionally substituted phenyl. Most preferably, R^2 is phenyl substituted by one to four substituents selected from fluorine, methyl, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$- wherein said $-\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$- is bonded to adjacent carbon atoms on said phenyl to form a bicyclic ring, or $-\text{NHCH}_2\text{CH}_2\text{O}$- wherein said $-\text{NHCH}_2\text{CH}_2\text{O}$- is bonded to adjacent carbon atoms on said phenyl to form a bicyclic ring.

Preferably R^3 is C_{1-6}alkyl, phenyl, naphthyl, cyclopentyl, cyclohexyl, pyridyl, or tetrahydropyranyl, each of which is optionally substituted by 1-3 substituents selected from halogen, C_{1-6}alkyl, $-\text{OC}_{1-6}$alky, C_{1-3}fluoroalkyl, or phenyl.

Preferably the stereochemistry on the carbon to which OR^1 is bound is as depicted below.

```
  H
  /\  \\
  H  C-\  \\
 \  /   / \  \
 /  |  |  _  \\
/   N-  |  |  \\
  /    /   \\
 /     /    \\
  /  CO_2H
```

"Pharmacologically acceptable salt" refers to pharmacologically acceptable salts derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, and tetraalkylammonium, and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, and oxalate. Suitable salts include those described in P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts Properties, Selection, and Use; 2002.

EXAMPLES

The compounds of this invention may be made by a variety of methods, including well-known standard synthetic methods. Illustrative general synthetic methods are set out below and then specific compounds of the invention are prepared in the working examples.
The following examples serve to more fully describe the manner of making and using the above-described invention. It is understood that these examples in no way serve to limit the true scope of the invention, but rather are presented for illustrative purposes. In the examples below and the synthetic schemes above, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning.

aq. = aqueous
μL = microliters
μM = micromolar
NMR = nuclear magnetic resonance
boc = tert-butoxycarbonyl
br = broad
Cbz = benzylxycarbonyl
d = doublet
δ = chemical shift
°C = degrees celsius
DCM = dichloromethane
dd = doublet of doublets
DMEM = Dulbecco's Modified Eagle's Medium
DMF = N,N-dimethylformamide
DMSO = dimethylsulfoxide
EtOAc = ethyl acetate
g = gram
h or hr = hours
HCV = hepatitis C virus
HPLC = high performance liquid chromatography
Hz = hertz
IU = International Units
IC₅₀ = inhibitory concentration at 50% inhibition
J = coupling constant (given in Hz unless otherwise indicated)
m = multiplet
M = molar
M+H⁺ = parent mass spectrum peak plus H⁺
mg = milligram
min = minutes
mL = milliliter
mM = millimolar
mmol = millimole
MS = mass spectrum
nm = nanomolar
ppm = parts per million
q.s. = sufficient amount
s = singlet
RT = room temperature
sat. = saturated
t = triplet
TFA = trifluoroacetic acid
Z = benzzyloxy carbonyl

Scheme 1
Example 1: 2-(tert-Butoxy)-2-(2-(4-fluorobenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

Step 1: Methyl 2-oxo-4-(p-tolyl)but-3-ynoate
A suspension of CuI (0.1 eq, 1.722 mmol, 0.328 g) in THF (40 mL) was treated with Et₃N (3 eq, 51.7 mmol, 7.20 mL) and stirred until a colorless solution formed. Then, 1-ethynyl-4-methylbenzene (1.0 eq, 17.22 mmol, 2.183 mL) and methyl-2-chloro-2-oxoacetate (2.0 eq, 34.4 mmol, 3.17 mL) were added and the yellow reaction mixture stirred at ambient temperature. After 18h, the reaction mixture was quenched with sat. aq. NaHCO₃. The aqueous layer was extracted with ethyl acetate (x3). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to a brown solid. The crude material was purified via silica gel column chromatography (0-100% EtOAc-hexanes) to afford the title compound as an orange solid (2.32 g, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.56 (m, 2H), 7.23-7.21 (m, 2H), 3.95 (s, 3H), 2.40 (s, 3H). LCMS (ES+)(m/z): 203.15 (M+H).

Step 2: Ethyl 2-hydroxy-4-(p-tolyl)but-3-ynoate

A solution of methyl-2-oxo-4-(p-tolyl)but-3-ynoate (1.0 eq, 200 mg, 0.989 mmol) in ethanol (5 mL) was treated with CeCl₃·7H₂O (1.25 eq, 0.461 g, 1.23 mmol) and then NaBH₄ (0.5 eq, 0.47945 mmol, 19 mg) was added portion wise. After 15 min, the reaction mixture was concentrated in vacuo the residue was quenched with dilute HCl and extracted with DCM (x3). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The crude material was purified via column chromatography (0-100% EtOAc-hexanes) to afford an orange oil. (122 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.32 (m, 2H), 7.12-7.10 (m, 2H), 5.03 (d, 1H), 4.34 (q, 2H), 3.07 (d, 1H), 2.34 (s, 3H), 1.32 (t, 3H). LCMS (ES+)(m/z): 219.81 (M+H).

Step 3: Benzyl di(but-2-yn-1-yl)carbamate

To a suspension of NaH (27.8 mmol, 1.11 g, 60% dispersion) in DMF (100 mL) was added 1-bromobut-2-yne (27.1 mmol, 2.375 mL). The reaction mixture was cooled in an ice bath
and a solution of benzyl carbamate (13.23 mmol, 2.0 g) in DMF (10 mL) was added dropwise over 25 min. The ice bath was removed and the reaction mixture stirred at ambient temperature. After 15 min, the reaction mixture was poured slowly over ice. The mixture was extracted with ether (3x100 mL) and the combined organic layers were washed with H₂O (4 x 100 mL), brine, dried over Na₂SO₄ and concentrated in vacuo. The crude material was purified via silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound as a yellow oil (1.94 g, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 4H), 5.17 (s, 2H), 4.18 (s, 4H), 1.81 (s, 6H). LCMS (ES+)(m/z): 256.8 (M+H).

Step 4: Benzyl 5-(2-ethoxy-1-hydroxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindoline-2-carboxylate

![Chemical Structure]

To an oven dried flask under N₂ was added racemic BINAP (342 mg, 0.550 mmol) and Rh[(COD)₂]BF₄ (223 mg, 0.550 mmol) in dry DCM (5 mL) and the reaction mixture stirred for 5 minutes at RT. H₂ gas was bubbled through the solution and the reaction mixture stirred under an atmosphere of H₂. After 1h, a solution of ethyl 2-hydroxy-4-(p-tolyl)but-3-ynoate (400 mg, 1.833 mmol) in DCM (1 mL) was added, followed by the dropwise addition of a solution of benzyl di(but-2-yn-1-yl)carbamate (515 mg, 2.016 mmol) in DCM (3 mL) and the reaction mixture was heated to reflux. After 18h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (555 mg, 64% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.32 (m, 5H), 7.23-7.19 (m, 2H), 7.07-7.05 (m, 2H), 5.22 (s, 2H), 5.04 (s, 1H), 4.76-4.70 (m, 4H), 4.25-4.08 (m, 2H), 3.04-3.03 (d, 1H), 2.39 (s, 3H), 2.175 (d, 3H), 1.85 (d, 3H), 1.27-1.18 (m, 3H). LCMS (ES+)(m/z): 474.21 (M+H).

Step 5: Benzyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindoline-2-carboxylate
To a solution of benzyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindole-2-carboxylate (76 mg, 0.1603 mmol) in tert-butyl acetate (40 mL) was added perchloric acid (0.4809 mL, 70%). After 45 min, the reaction mixture was cooled to 0 °C and the pH adjusted to 8 with 1N NaOH. The aqueous layer was extracted with ethyl acetate (x3) and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude material was purified by flash column chromatography (H:EA) to afford a clear oil (50 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 7.22-7.21 (m, 3H), 7.06-7.05 (m, 1H), 5.24 (s, 2H), 4.89 (s, 1H), 4.77-4.70 (m, 4H), 4.22-4.08 (m, 2H), 2.42 (s, 3H), 2.315 (d, 3H), 1.3545 (d, 3H), 1.23 (t, 3H), 0.96 (s, 9H). LCMS (ES+)m/z: 530.18 (M+1).

Step 6: Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate

A solution of benzyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindole-2-carboxylate (352 mg, 0.665 mmol) in MeOH (15 mL) was degassed with N₂ for 15 min and treated with Pd/C (70 mg). A balloon of H₂ was bubbled through the reaction mixture at which time LCMS indicated complete consumption of the starting material. The reaction mixture was then bubbled with N₂ for 15 min and filtered through a pad of Celite, rinsing with MeOH and DCM. The filtrate was concentrated in vacuo to afford the title compound as a purple solid (277 mg, 100%). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.19 (m, 3H), 7.08-7.06 (m,
Step 7: Ethyl 2-(tert-butoxy)-2-(2-(4-fluorobenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate

To a solution of ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (427 mg, 1.080 mmol) in DCE (10 mL) was added 4-fluorobenzaldehyde (1.5 eq, 1.619 mmol, 0.171 mL). The reaction mixture stirred for a few minutes at ambient temperature and sodium triacetoxyborohydride (1.5 eq, 1.619 mmol, 343 mg) was added. After 30 minutes, the RM was quenched withaq, sat sodium bicarbonate and extracted with DCM (×3). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude material was purified via flash column chromatography (H:EA) to yield a purple oil (377 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 2H), 7.23-7.18 (m, 3H), 7.07-7.03 (m, 3H), 4.95 (s, 1H), 4.21-4.00 (m, 2H), 3.96 (s, 2H), 3.93-3.92 (m, 4H), 2.42 (s, 3H), 2.27 (s, 3H), 1.80 (s, 3H), 1.23 (t, 3H), 0.95 (s, 9H). LCMS (ES⁺)(m/z): 504.38 (M⁺1).

Step 8: 2-(tert-Butoxy)-2-(2-(4-fluorobenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

To a solution of ethyl 2-(tert-butoxy)-2-(2-(4-fluorobenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (15 mg, 0.030 mmol) in 1,4-dioxane (3 mL) was added LiOH (0.596 mL, 0.596 mmol, 1 M) and the reaction mixture stirred at reflux. After 18h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The white residue was dissolved in a minimal amount of water, acidified using 1 N HCl, and extracted with ethyl
acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by reverse phase HPLC to yield a white solid (8 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃ δ 7.51-7.48 (m, 2H), 7.33-7.32 (m, 2H), 7.19-7.15 (m, 3H), 7.08-7.06 (m, 1H), 5.14 (s, 1H), 4.95 (t, 2H), 4.46 (s, 2H), 4.28 (t, 2H), 2.42 (s, 3H), 2.22 (s, 3H), 1.87 (s, 3H), 0.96 (s, 9H). LCMS (ES+)(m/z):476.04 (M+1).

Example 2: (S)-2-(tert-Butoxy)-2-(2-(4-fluorobenzyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

A sample of 2-(tert-Butoxy)-2-(2-(4-fluorobenzyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid was purified using a CC4 (250x30 mm i.d., 5 μm; ES Industries, West Berlin, NJ) under supercritical conditions maintained at 40 °C, 140 bar, with methanol/diethylamine modified CO₂ (10% MeOH+0.1% DEA, 90% CO₂) delivered at a combined flow rate of 90 ml/min on a PIC prep SFC system (PIC Solution; Avignon, France). Triggered collections were made using a Knauer selectable wavelength UV-Vis detector at 220 nm.

Chiral purity was determined by chiral analytical HPLC on a CC4 column (250x4.6 mm i.d., 5 μm; ES Industries, West Berlin, NJ) under supercritical conditions maintained at 40 °C, 140 bar, with methanol/diethylamine modified CO₂ (10% MeOH+0.1% DEA, 90% CO₂) delivered at a combined flow rate of 2 ml/min on an Aurora Fusion A5 Evolution SFC system (Agilent Technologies, Santa Clara, CA) equipped with a DAD detector and monitored at 220 nm. Retention time of the title compound under these conditions was 8.6 min.

Example 3: (S)-2-(tert-butoxy)-2-(2-(2,3-difluorobenzyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid
The title compound was prepared according to the procedure described in Example 1 except the intermediate from Step 5 was purified by chiral HPLC using the following conditions:

Benzyl 5-(1-(tert-Butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindoline-2-carboxylate was purified using a RegisCell column (250x30 mm i.d., 10 µm; Regis Technologies, Morton Grove, Illinois) under supercritical conditions maintained at 40 °C, 140 bar, with methanol modified CO₂ (15% MeOH, 85% CO₂) delivered at a combined flow rate of 90 ml/min on a PIC prep SFC system (PIC Solution; Avignon, France). Triggered collections were made using a Knauer selectable wavelength UV-Vis detector at 220 nm.

Chiral purity was determined by chiral analytical SFC on a RegisCell column (250x4.6 mm i.d., 5 µm; Regis Technologies, Morton Grove, IL) under supercritical conditions maintained at 40 °C, 140 bar, with methanol modified CO₂ (15% MeOH, 85% CO₂) delivered at a combined flow rate of 2 ml/min on PIC Solution Analytical SFC system (Avignon, France) equipped with a DAD detector and monitored at 220 nm. Retention time of the title compound under these conditions was 6.17 minutes.

¹H NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 1H), 7.34-7.30 (m, 2H), 7.27-7.21 (m, 3H), 7.05-7.03 (m, 1H), 5.12 (s, 1H), 4.96 (s, 2H), 4.60 (s, 2H), 4.36 (s, 2H), 2.42 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H), 0.97 (s, 9H). LCMS(ES⁺)(m/z):494.57 (M+1).

Example 4: (S)-2-(tert-Butoxy)-2-(2-(cyclohexylcarbamoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid
Step 1: (S)-Ethyl 2-(tert-butoxy)-2-(2-cyclohexylcarbamoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-y]acetate

A solution of (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (13 mg, 0.033 mmol) in DCM (1 mL) was added Et$_3$N (0.013 mL, 0.099 mmol) and cyclohexylisocyanate (0.008 mL, 0.493 mmol). After 5 min, sat. aq. NaHCO$_3$ was added and the layers partitioned. The aqueous layer was extracted with DCM (3x) and the combined extracts washed with brine, dried (Na$_2$SO$_4$), filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (13.3 mg, 79%). 1H NMR (400 Mz, CDCl$_3$) δ 7.22-7.21 (m, 3H), 7.07-7.00 (m, 1H), 4.98 (s, 1H), 4.65 (s, 4H), 4.20-4.09 (m, 2H), 2.42 (s, 3H), 2.33 (s, 3H), 2.05-2.01 (m, 2H), 1.86 (s, 3H), 1.75-1.72 (m, 2H), 1.66-1.62 (m, 1H), 1.46-1.36 (m, 2H), 1.23 (t, 3H), 1.19-1.12(m, 4H), 0.96 (s, 9H). LCMS (ES+)(m/z):521.48 (M+1).

Step 2: (S)-2-(tert-Butoxy)-2-(2-cyclohexylcarbamoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-y]acetic acid

To a solution of (S)-Ethyl 2-(tert-butoxy)-2-(2-cyclohexylcarbamoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (13.3 mg, 0.026 mmol) in 1,4-dioxane (3 mL) was added LiOH (0.511 mL, 0.511 mmol, 1 M) and the reaction mixture stirred at reflux. After 18 h, the reaction
mixture was cooled to ambient temperature and concentrated *in vacuo*. The white residue was dissolved in a minimal amount of water, acidified using 1 N HCl, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by reverse phase HPLC to yield a white solid (5 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.36 (m, 1H), 7.25-7.24 (m, 2H), 7.08-7.06 (m, 1H), 5.16 (s, 1H), 4.72-4.60 (m, 4H), 3.74-3.71 (m, 1H), 2.41 (s, 3H), 2.26 (s, 3H), 2.03-2.01 (m, 3H), 1.90 (s, 3H), 1.76-1.63 (m, 3H), 1.46-1.36 (m, 2H), 1.21-1.12 (m, 3H), 0.99 (s, 9H). LCMS (ES⁺)(m/z): 493.42 (M+1).

Example 5: 2-(tert-Butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

Step 1: *Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl)acetate*

![Chemical Structure](image)

A solution of Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (40 mg, 0.101 mmol) in DCM (3 mL) was added Et₃N (0.042 mL, 0.30 mmol) and naphthalene-1-sulfonyl chloride (34 mg, 0.152 mmol). After 5 min, sat. aq. NaHCO₃ was added and the layers partitioned. The aqueous layer was extracted with DCM (3x) and the combined extracts washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (40 mg, 68%) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.92-8.90 (m, 1H), 8.28-8.26 (m, 1H), 8.08-8.06 (m,
1H), 7.93-7.91 (m, 1H), 7.93-7.91 (m, 1H), 7.67-7.61 (m, 1H), 7.59-7.56 (m, 2H), 7.20-7.11 (m, 3H), 6.98-6.96 (m, 1H), 4.90 (s, 1H), 4.71 (s, 4H), 4.15-4.02 (m, 2H), 2.39 (s, 3H), 2.23 (s, 3H), 1.76 (s, 3H), 1.19 (t, 3H), 0.91 (s, 9H). LCMS (ES+)(m/z): 586.40 (M+1).

Step 2: (2-(tert-Butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

To a solution of Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl)acetate (40 mg, 0.068 mmol) in 1,4-dioxane (3 mL) was added LiOH (0.511 mL, 0.511 mmol, 1 M) and the reaction mixture stirred at reflux. After 2 h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The white residue was dissolved in a minimal amount of water, acidified using 1 N HCl, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by reverse phase HPLC to yield a white solid (27 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.92-8.90 (m, 1H), 8.28-8.26 (m, 1H), 8.10-8.08 (m, 1H), 7.95-7.93 (m, 1H), 7.69-7.67 (m, 1H), 7.62-7.60 (m, 2H), 7.23-7.21 (m, 3H), 7.03-7.01 (m, 1H), 5.11 (s, 1H), 4.84-4.79 (m, 2H), 4.70-4.63 (m, 2H), 2.40 (s, 3H), 2.17 (s, 3H), 1.81 (s, 3H), 0.96 (s, 9H). LCMS (ES+)(m/z): 558.32 (M+1).

Example 6: 2-(tert-Butoxy)-2-(4,7-dimethyl-2,6-di-p-tolyisoindolin-5-yl)acetic acid

![Chemical Structure](image)
Step 1: Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2,6-di-p-tolylisooindolin-5-yl)acetate

To a solution of ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2,6-di-p-tolylisooindolin-5-yl)acetate (25 mg, 0.063 mmol) in THF (2 mL) was added 4-iodotoluene (41 mg, 0.19 mmol), ruphos palladacycle (5.2 mg, 6.3 µmol) and finally LiHMDS (0.158 mL, 0.158 mmol) dropwise. After 15 min, the reaction mixture was cooled to 0 °C and quenched with sat. aq. NH₄Cl (aq), extracted with EtOAc, and the combined extracts dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (7.3 mg, 24%) as an orange oil. LCMS (ES+)(m/z): 486.42 (M+1).

Step 2: 2-(tert-Butoxy)-2-(4,7-dimethyl-2,6-di-p-tolylisooindolin-5-yl)acetic acid

To a solution of ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2,6-di-p-tolylisooindolin-5-yl)acetate (7.3 mg, 0.015 mmol) in 1,4-dioxane (3 mL) was added LiOH (0.30 mL, 0.30 mmol, 1 M) and the reaction mixture was irradiated in the microwave at 120 °C for 20 min. The reaction mixture was concentrated in vacuo to afford a white residue that was dissolved in a minimal amount of water, acidified using 1 N HCl, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by reverse phase HPLC to yield a white solid (1.1 mg, 16% yield). ¹H NMR (400 MHz, CDCl₃) δ
7.39-7.38 (m, 1H), 7.12-7.08 (m, 4H), 6.64-6.62 (m, 3H), 5.18 (s, 1H), 4.66-4.52 (m, 4H), 2.41 (s, 3H), 2.31 (s, 3H), 2.28 (s, 3H), 1.95 (s, 3H). LCMS (ES+)(m/z): 458.14 (M+1).

Example 7: (S)-2-((tert-butoxy)-2-(4,7-dimethyl-2-(piperidine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

Step 1: Ethyl 2-((tert-butoxy)-2-(4,7-dimethyl-2,6-di-p-tolylisoindolin-5-yl)acetate

![Chemical Structure](image)

An ice cold solution of phosgene (0.1516 mmol, 0.08 mL, 20% in toluene) was treated dropwise with a solution of ethyl 2-((tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (25 mg, 0.0632 mmol) in THF (1.25 mL). After 10 min, the reaction mixture was concentrated in vacuo and the residue dissolved in THF (1.25 mL) and cooled to 0 °C. Pyridine (1.05 eq, 0.0663 mmol) was added dropwise, followed by the dropwise addition of piperidine (1.05 eq, 0.0663 mmol). After 10 min, the reaction mixture was partitioned between EtOAc and water. The organic layer was washed with 1 M HCl, water, brine, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by ISCO (0-100% EtOAc-hexanes) to afford the title compound (19 mg, 61%) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.20 (m, 3H), 7.06-7.04 (m, 1H), 4.97 (s, 1H), 4.75 (s, 4H), 4.19-4.07 (m, 2H), 3.29 (br.s., 4H), 2.42 (s, 3H), 2.32 (s, 3H), 1.85 (s, 3H), 1.63 (s, 6H), 1.23 (t, 3H), 0.96 (s, 9H). LCMS (ES+)(m/z): 507.55 (M+1).
Step 2: (S)-2-(tert-Butoxy)-2-(4,7-dimethyl-2-(piperidine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

To a solution of ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2,6-di-p-tolylisoindolin-5-yl)acetate (19 mg, 0.037 mmol) in 1,4-dioxane (3 mL) was added LiOH (0.76 mL, 0.76 mmol, 1 M) and the reaction mixture was heated to reflux. After 18 h, the reaction mixture was concentrated in vacuo to afford a white residue that was dissolved in a minimal amount of water, acidified using 1 N HCl, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by reverse phase HPLC to yield a white solid (11.1 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.36 (m, 1H), 7.24-7.21 (m, 2H), 7.07-7.05 (m, 1H), 5.15 (s, 1H), 4.86-4.80 (m, 2H), 4.72-4.65 (m, 2H), 3.30 (br.s., 4H), 2.41 (s, 3H), 2.25 (s, 3H), 1.89 (s, 3H), 1.64 (s, 6H), 0.98 (s, 9H). LCMS (ES⁺)(m/z): 479.5 (M+1).

Scheme 2
Example 8: (2S)(M)-2-(tert-Butoxy)-2-((6-(8-fluoro-5-methylchroman-6-yl)-2-(3-fluorobenzyl)-4,7-dimethylisoindolin-5-yl)acetic acid
(S)-But-3-yn-1,2-diol

The title compound was prepared from the known procedure as described in WO2010/130034.

Step 1: (S)-1-((tert-Butyldiphenylsilyl)oxy)but-3-yn-2-ol

An ice cold solution of (S)-But-3-yn-1,2-diol (220 mg, 2.56 mmol) in DCM (10 mL) was treated with imidazole (209 mg, 3.067 mmol) and TBDPSCI (0.730 mL, 2.812 mmol). After 18h, the reaction mixture was poured into sat. aq. NaHCO₃ and the layers partitioned. The organic layer was washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (425 mg, 51%) as a colorless oil. 1H NMR (400 MHz, CHLOROFORM-d): δ 1.07 (s, 9 H), 2.41 (d, 1 H), 2.64 (d, 1 H), 3.73 (dd, 1 H), 3.80 (dd, 1 H), 4.45 (m, 1 H), 7.41 (m, 6 H), 7.67 (m, 4 H). LCMS (m/z ES+): 347 (M+23).

Step 2: (S)-(2-(tert-Butoxy)but-3-yn-1-yl)oxy)tert-butyldiphenylsilylamine

A solution of (S)-1-((tert-Butyldiphenylsilyl)oxy)but-3-yn-2-ol (425 mg, 1.311 mmol) in tert-butyl acetate (70 mL) was treated with HClO₄ (3.93 mL, 1.311 mmol). After 10 min, the reaction mixture was cooled to 0°C and treated with 1N NaOH until the pH was = 7. The reaction mixture was diluted with EtOAc and the layers partitioned. The organic phase was washed with brine, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (470 mg, 95%) as a colorless oil. ¹H NMR (400 MHz, CHLOROFORM-d): δ 1.04 (s, 9 H), 1.24 (s, 9 H),
2.31 (d, 1H), 3.70 (m, 2 H), 4.24 (m, 1 H), 7.37 (m, 6 H), 7.70 (m, 4 H). LCMS (m/z ES+): 403 (M+23).

6-Bromo-8-fluoro-5-methylchroman

The title compound was prepared from the known procedure as described in WO2010/130842

Step 3: (S)-((2-(tert-Butoxy)-4-(8-fluoro-5-methylchroman-6-yl)but-3-yn-1-yl)oxy)(tert-butyldiphenylsilane

A solution of 6-Bromo-8-fluoro-5-methylchroman (409 mg, 1.68 mmol), (S)-((2-(tert-Butoxy)but-3-yn-1-yl)oxy)(tert-butyldiphenylsilane (956 mg, 2.516 mmol) and diisopropyl amine (3.59 mL, 252 mmol) in DMF (10 mL) was degassed with N₂ for 10 min and treated with Cul (64 mg, 0.336 mmol) and Pd(PPh₃)₄ (388 mg, 0.336 mmol) and then heated to 80 °C. After 18 h, the reaction mixture was diluted with EtOAc. Saturated aqueous NH₄Cl was added and the layers partitioned. The organic phase was washed with water, brine, dried (MgSO₄) filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (762 mg, 83%) as a red oil. ¹H NMR (400 MHz, CHLOROFORM-d): δ 1.07 (s, 9 H), 1.29 (s, 9 H), 2.05 (m, 2H), 2.23 (s, 3H), 2.63 (t, 2 H), 3.78 (m, 2H), 4.20 (m, 2H), 4.51 (dd, 1H), 6.95 (d, 1H), 7.39 (m, 6 H), 7.73 (m, 4 H). LCMS (m/z ES+): 567 (M+23).

Step 4: (S)-2-(tert-Butoxy)-4-(8-fluoro-5-methylchroman-6-yl)but-3-yn-1-ol

22
A solution of \((S)-(2-(\text{tert-Butoxy})-4-(8\text{-fluoro-5-methylchroman-6-yl})\text{but-3-yn-1-yl})\text{oxy})\text{(tert-butyl)}\text{diphenylsilane} (760 mg, 1.4 mmol) in THF (2 mL) was treated with TBAF (14 mL, 14 mmol, 1.0 M in THF). After 15 min, the reaction mixture was concentrated \textit{in vacuo} and purified by silica gel chromatography (0-100\% EtOAc-hexanes) to afford the title compound (402 mg, 94\%) as a colorless oil. 1H NMR (400 MHz, CHLOROFORM-d): \(\delta\) 1.34 (s, 9 H), 2.06 (m, 2H), 2.26 (s, 3H), 2.65 (t, 2 H), 3.70 (m, 2H), 4.21 (m, 2H), 4.48 (dd, 1H), 6.97 (d, 1H). LCMS (m/z ES+): 329 (M+23).

**Step 5: (S)-2-(\text{tert-Butoxy})-4-(8\text{-fluoro-5-methylchroman-6-yl})\text{but-3-ynoic acid}

A suspension of \((S)-(2-(\text{tert-Butoxy})-4-(8\text{-fluoro-5-methylchroman-6-yl})\text{but-3-yn-1-yl})\text{oxy})\text{(tert-butyl)}\text{diphenylsilane} (108 mg, 0.353 mmol) in DCM (5 mL) was treated with Dess Martin periodinane (300 mg, 0.706 mmol). After 18 h, the reaction mixture was quenched with sat. aq. Na$_2$S$_2$O$_3$ and the layers partitioned. The organic layer was washed with brine, dried (Na$_2$SO$_4$), filtered and concentrated \textit{in vacuo} to afford the title compound as a yellow oil (312 mg) that was used immediately without further purification. LCMS (m/z ES+): 343 (M+23).

**Step 6: (S)-\text{methyl 2-(tert-butoxy)-4-(8-fluoro-5-methylchroman-6-yl)but-3-ynoate}

F

\(\begin{array}{c}
\text{O} \\
\end{array}\)

\(\begin{array}{c}
\text{CO}_2\text{Me} \\
\end{array}\)
A solution of (S)-2-(tert-Butoxy)-4-(8-fluoro-5-methylchroman-6-yl)but-3-ynoic acid (312 mg) and Cs₂CO₃ (171 mg, 0.525 mmol) was treated with Mel (0.110 mL, 1.75 mmol). After 2 h, the reaction mixture was diluted with EtOAc and water. The layers were partitioned and the organic layer was washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (40 mg, 32% of 2 steps) as a colorless oil. ¹H NMR (400 MHz, CHLOROFORM-d): δ 1.32 (s, 9 H), 2.06 (m, 2H), 2.26 (s, 3H), 2.63 (t, 2 H), 3.83 (s, 3H), 4.20 (m, 2H), 4.99 (s, 1H), 7.00 (d, 1H). LCMS (m/z ES+): 335 (M+1)

Step 7: (2S)(M)(Benzy1 5-(-1-(tert-butoxy)-2-methoxy-2-oxoethyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindoline-2-carboxylate

An oven dried flask was charged with (R)-BINAP (12.2 mg, 0.020 mmol) and [Rh(cod)₂]BF₄ (8 mg, 0.020 mmol) in DCM (1 mL). After 5 min, the reaction mixture was saturated with H₂ and placed under an atmosphere of H₂. After 1 h, a solution of (S)-methyl 2-(tert-butoxy)-4-(8-fluoro-5-methylchroman-6-yl)but-3-ynoate (22 mg, 0.066 mmol) in DCM (0.5 mL) and benzyl di(but-2-yn-1-yl)carbamate (51 mg, 0.197 mmol) in DCM (1.5 mL). After 18 h, the reaction mixture was concentrated in vacuo to afford an 8:1 mixture of diastereomers that were purified by silica gel chromatography (0-100% EtOAc-hex) to afford the title compound (24 mg, 62%). ¹H NMR (400 MHz, CHLOROFORM-d): δ 1.09 (s, 9 H), 1.74 (d, 3H), 1.78 (s, 3H), 2.14 (m, 2H), 2.37 (d, 3H), 2.71 (m, 2H), 3.57 (d, 3H), 4.28 (m, 2H), 4.73 (m, 4H), 4.97 (s, 1H), 5.24 (s, 2H), 6.64 (d, 1H), 7.41 (m, 5H). LCMS (m/z ES+): 590 (M+1).

Step 8: (2S)(M)-Methyl 2-(tert-butoxy)-2-(6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate
A solution of (2S)(M)(Benzyl 5-(-1-(tert-butoxy)-2-methoxy-2-oxoethyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindoline-2-carboxylate (14 mg, 0.024 mmol) in MeOH (2 mL) was degassed with N₂ and treated with Pd/C (7.5 mg). The reaction mixture was saturated with H₂ and then placed under an atmosphere of H₂. After 10 min, the reaction mixture was filtered through a pad of celite and the filtrate concentrated in vacuo to afford the title compound (12 mg, 100%) as a red oil. LCMS(ES+)(m/z): 456 (M+1).

Step 9: (2S)(M)-Methyl 2-(tert-butoxy)-2-(-6-(8-fluoro-5-methylchroman-6-yl)-2-(3-fluorobenzyl)-4,7-dimethylisoindolin-5-yl)acetate

A solution of (2S)(M)-Methyl 2-(tert-butoxy)-2-(-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (12 mg, 0.026 mmol) in DCE (1.5 mL) was treated with added 3-fluorobenzaldehyde (0.004 mL 0.036 mmol) and Na(OAc)₃BH (7.5 mg, 0.036 mmol). After 15 min, the reaction mixture was diluted with DCM and poured into sat. aq. NaHCO₃. The layers were partitioned and the organic phase washed with water, brine, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (4 mg, 30%) as a colorless oil. ¹H NMR (400 MHz, CHLOROFORM-d): δ 1.12 (s, 9 H), 1.76 (s, 3H), 1.77 (s, 3H), 2.18 (m, 2H), 2.38 (s, 3H), 2.73 (m, 2H), 3.61 (s, 3H), 4.31 (m, 4H), 4.49 (s, 2H), 4.99 (m, 3H), 6.62 (d, 1H), 7.23 (m, 2H), 7.34 (d, 1H), 7.50 (m, 1H). LCMS(ES+)(m/z): 564 (M+1).
Step 10: (2S)(M)-2-(tert-Butoxy)-2-([6-(8-fluoro-5-methylchroman-6-yl)]-2-(3-fluorobenzyl)-4,7-dimethylisoindolin-5-yl)acetic acid

A solution of (2S)(M)-Methyl 2-(tert-butoxy)-2-[6-(8-fluoro-5-methylchroman-6-yl)]-2-(3-fluorobenzyl)-4,7-dimethylisoindolin-5-yl)acetate (4 mg, 0.007 mmol) in 1,4-dioxane (2 mL) was treated with LiOH (0.142 mL, 0.142 mmol, 1.0 M) and heated to 105 °C. After 18 h, the reaction mixture was concentrated in vacuo and the residue was partitioned between EtOAc and water. The organic phase was washed with water, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (1.3 mg, 33%) as a colorless oil. ¹H NMR (400 MHz, METHANOL-d₄): δ 1.05 (s, 9 H), 1.76 (m, 6 H), 2.07 (m, 2 H), 2.38 (s, 3 H), 2.69 (t, 2 H), 4.20 (t, 2 H), 4.65 (s, 2 H), 4.71 (m, 4 H), 4.95 (s, 1 H), 6.53 (d, 1 H), 7.25 (m, 1 H), 7.39 (m, 2 H), 7.53 (m, 1 H). LCMS (m/z ES⁺): 550 (M+1);

The following compounds were prepared in a manner similar to the procedures described above for Examples 1 – 8.

Example 9: 2-(2-Benzyl-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)-2-(tert-butoxy)acetic acid

¹H NMR (400 MHz, CDCl₃) δ7.54-7.47 (m, 5H), 7.32-7.30 (m, 3H), 7.06-7.04 (m, 1H), 5.12 (s, 1H), 4.93 (t, 2H), 4.45 (s, 2H), 4.26 (t, 2H), 2.40 (s, 3H), 2.20 (s, 3H), 1.84 (s, 3H), 0.94, (s, 9H). LCMS (ES⁺)(m/z): 458.31 (M+1)
Example 10: 2-(tert-butoxy)-2-(2-cyclohexylmethyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3) &\delta 7.34-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.09-7.07 (m, 1H), 5.20-5.10 (m, 2H), 5.13 (s, 1H), 4.21-4.10 (m, 2H), 3.175 (d, 2H), 2.42 (s, 3H), 2.24 (s, 3H), 1.90 (s, 3H), 1.82-1.70 (m, 4H), 1.33-1.06 (m, 7H), 0.97 (s, 9H). LCMS (ES+) (m/z): 464.45 (M+1).
\end{align*}
\]

Example 11: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(pyridin-4-ylmethyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3) &\delta 8.87-8.86 (m, 2H), 7.83-7.82 (m, 2H), 7.32-7.28 (m, 3H), 7.06-7.00 (m, 1H), 5.15 (s, 1H), 4.86-4.79 (m, 2H), 4.60 (s, 2H), 4.42-4.34 (m, 2H), 2.42 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H), 0.98 (s, 9H). LCMS(ES+) (m/z): 459.40 (M+1).
\end{align*}
\]

Example 12: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((tetrahydro-2H-pyran-4-yl)methyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\end{align*}
\]
Example 13: (S)-2-(tert-Butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylmethyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\text{1H NMR (400 MHz, CDCl}_3\text{) } \delta 7.22-7.18 \text{ (m, 3H), 7.05-7.00 (m, 1H), 4.95 (s, 1H), 4.20-4.14(m, 2H), 4.03-3.98 (m, 4H), 3.95-3.93 (m, 4H), 3.44 (t, 1H), 2.64 (d, 2H), 2.41 (s, 3H), 2.30 (s, 3H), 1.82 (s, 3H), 1.79-1.76 (m, 2H), 1.42-1.28 (m, 2H), 1.22 (t, 3H), 0.95 (s, 9H). LCMS (ES\text{+})(m/z): 494.14 (M+1).}
\]

Example 14: (S)-2-(tert-Butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylmethyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\text{1H NMR (400 MHz, CDCl}_3\text{) } \delta 8.02-7.95 \text{ (m, 3H), 7.74-7.72 (m, 1H), 7.36-7.34 (m, 1H), 7.29-7.258 (m, 2H), 7.08-7.06 (m, 1H), 4.60-4.52 (m, 3H), 5.15 (s, 1H), 4.98-4.88 (m, 2H), 4.95 (s, 2H), 4.47-4.40 (m, 2H), 2.42 (s, 3H), 2.17 (s, 3H), 1.84 (s, 3H), 0.96 (s, 9H). LCMS(ES\text{+})(m/z): 508.09 (M+1).}
\]
Example 15: 2-(tert-Butoxy)-2-(4,7-dimethyl-2-(methylsulfonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3) & \delta 7.35-7.33 (m, 1H), 7.27-7.22 (m, 2H), 7.07-7.05 (m, 1H), 5.16 (s, 1H), 4.78-4.73 (m, 2H), 4.68-4.60 (m, 2H), 2.92 (s, 3H), 2.42 (s, 3H), 2.24 (s, 3H), 1.88 (s, 3H), 0.99 (s, 9H). LCMS (ES+)(m/z): 446.22 (M+1).
\end{align*}
\]

Example 16: 2-(tert-Butoxy)-2-(4,7-dimethyl-2-(naphthalen-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
8.92-8.90 (m, 1H), 8.28-8.26 (m, 1H), 8.10-8.08 (m, 1H), 7.95-7.93 (m, 1H), 7.69-7.67 (m, 1H), 7.62-7.60 (m, 2H), 7.23-7.21 (m, 3H), 7.03-7.01 (m, 1H), 5.11 (s, 1H), 4.84-4.79 (m, 2H), 4.70-4.63 (m, 2H), 2.40 (s, 3H), 2.17 (s, 3H), 1.81 (s, 3H), 0.96 (s, 9H). LCMS (ES+)(m/z): 558.32 (M+1).
\end{align*}
\]

Example 17: 2-(2-((Benzyloxy)carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)-2-(tert-butoxy)acetic acid
\[\text{Example 18: (S)-2-\(\text{tert-butoxy}\)-2-(2-\(\text{4-chlorobenzyl}\)-4,7-dimethyl-6-(\text{p-tolyl})isoindolin-5-y)acetic acid} \]

\[\text{Example 19: (S)-2-\(\text{tert-butoxy}\)-2-(2-\(\text{4-methoxybenzyl}\)-4,7-dimethyl-6-(\text{p-tolyl})isoindolin-5-y)acetic acid} \]
\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40-7.38 (m, 2H), 7.32-7.30 (m, 1H), 7.25-7.22 (m, 2H), 7.05-7.04 (m, 1H), 6.96-6.94 (m, 2H), 5.11 (s, 1H), 4.93-4.85 (m, 2H), 4.37 (s, 2H), 4.28-4.21 (m, 2H), 3.83 (s, 3H), 2.40 (s, 3H), 2.19 (s, 3H), 1.84 (s, 3H), 0.94 (s, 9H). LCMS (ES\(^{+}\))(m/z): 488.50 (M+1).

Example 20: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(4-methylbenzyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 20](image)

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36-7.32 (m, 4H), 7.28-7.24 (m, 3H), 7.08-7.06 (m, 1H), 5.13 (s, 1H), 4.97-4.89 (m, 2H), 4.42 (s, 2H), 4.32-4.25 (m, 2H), 2.42 (s, 3H), 2.40 (s, 3H), 2.21 (s, 3H), 1.86 (s, 3H), 0.96 (s, 9H). LCMS (ES\(^{+}\))(m/z): 472.16 (M+1).

Example 21: (S)-2-(tert-butoxy)-2-(2-(2-fluorobenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 21](image)

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.61-7.58 (m, 2H), 7.50-7.45 (m, 2H), 7.31-7.27 (m, 2H), 7.20-7.15 (m, 1H), 7.06-7.04 (m, 1H), 5.11 (s, 1H), 5.02-4.94 (m, 2H), 4.56 (s, 2H), 4.38-4.30 (m, 2H), 2.40 (s, 3H), 2.21 (s, 3H), 1.85 (s, 3H), 0.94 (s, 9H). LCMS (ES\(^{+}\))(m/z): 476.79 (M+1).

Example 22: (S)-2-(tert-butoxy)-2-(2-(3-fluorobenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 22](image)

31
Example 23: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((4-methyl-1H-imidazol-2-yl)methyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.49-7.44 (m, 1H), 7.33-7.31 (m, 3H), 7.24-7.17 (m, 3H), 7.06-7.04 (m, 1H), 5.13 (s, 1H), 5.01-4.92 (m, 2H), 4.46 (s, 2H), 4.31-4.23 (m, 2H), 2.42 (s, 3H), 2.23 (s, 3H), 1.86 (s, 3H), 0.97 (s, 9H). LCMS (ES$^+$)(m/z): 476.48 (M+1).

Example 24: (S)-2-(tert-butoxy)-2-(2-(3-methoxybenzyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.36-7.34 (m, 1H), 7.28-7.24 (m, 2H), 7.14 (s, 1H), 7.07-7.05 (m, 1H), 5.29-5.28 (m, 2H), 5.13 (s, 1H), 4.74-4.63 (m, 4H), 2.46 (s, 3H), 2.42 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H), 0.98 (s, 9H). LCMS (ES$^+$)(m/z): 462.44 (M+1).
1H NMR (400 MHz, CDCl$_3$) δ 7.38-7.32 (m, 2H), 7.28-7.24 (m, 2H), 7.12 (s, 1H), 7.08-7.00 (m, 3H), 5.14 (s, 1H), 5.00-4.91 (m, 2H), 4.42 (s, 2H), 4.32-4.24 (m, 2H), 3.83 (s, 3H), 2.42 (s, 3H), 2.22 (s, 3H), 1.86 (s, 3H), 0.96 (s, 9H). LCMS (ES$^+$)(m/z): 488.50 (M+1).

Example 25: (S)-2-(tert-butoxy)-2-(2-isobutyl-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.34-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.09-7.08 (m, 1H), 5.22-5.14 (m, 3H), 4.24-4.17 (m, 2H), 3.20 (d, 2H), 2.42 (s, 3H), 2.25 (s, 3H), 2.22-2.1 (m, 1H), 1.90 (s, 3H), 1.15 (s, 3H), 1.13 (s, 3H), 0.96 (s, 9H). LCMS (ES$^+$)(m/z): 423.58 (M+1).

Example 26: (S)-2-(tert-butoxy)-2-(2-(3,4-dichlorobenzyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.56 (s, 1H), 7.44-7.42 (m, 1H), 7.37-7.35 (m, 1H), 7.28-7.25 (m, 2H), 7.23-7.19 (m, 1H), 7.05-7.03 (m, 1H), 5.15 (s, 1H), 4.10-4.04 (m, 2H), 3.95-3.79 (m, 4H), 2.40 (s, 3H), 2.21 (s, 3H), 1.83 (s, 3H), 0.97 (s, 9H). LCMS (ES$^+$)(m/z): 526.42 (M+1).

Example 27: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-toly)-2-(4-(trifluoromethyl)benzyl)isoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 7.76-7.74 (m, 2H), 7.69-7.67 (m, 2H), 7.34-7.32 (m, 1H), 7.28-7.24 (m, 2H), 7.06-7.04 (m, 2H), 5.14 (s, 1H), 4.52 (s, 2H), 2.42 (s, 3H), 2.23 (s, 3H), 1.86 (s, 3H), 0.98 (s, 9H). LCMS (ES$^+$)(m/z): 526.48 (M+1).

Example 28: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)-2-(3-(trifluoromethyl)benzyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.72 (s, 1H), 7.63-7.47 (m, 3H), 7.73-7.35 (m, 1H), 7.24-7.19 (m, 2H), 7.05-7.03 (m, 1H), 5.13 (s, 1H), 4.15-3.85 (m, 6H), 2.40 (s, 3H), 2.22 (s, 3H), 1.83 (s, 3H), 0.97 (s, 9H). LCMS (ES$^+$)(m/z): 526.03 (M+1).

Example 29: (S)-2-(2-[[1,1'-biphenyl]-3-ylmethyl]-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)-2-(tert-butoxy)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 7.75-7.71 (m, 2H), 7.61-7.59 (m, 2H), 7.57-7.53 (m, 1H), 7.49-7.37 (m, 4H), 7.34-7.32 (m, 1H), 7.28-7.32 (m, 1H), 7.08-7.07 (m, 1H), 5.14 (s, 1H), 5.05-4.97 (m, 2H), 4.55 (s, 2H), 4.39-4.31 (m, 2H), 2.42 (s, 3H), 2.23 (s, 3H), 1.87 (s, 3H), 0.96 (s, 9H). LCMS (ES$^+$)(m/z): 534.4 (M+1).

Example 30: (S)-2-(tert-butoxy)-2-(2-cyclohexylmethyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.34-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.09-7.07 (m, 1H), 5.20-5.10 (m, 2H), 5.13 (s, 1H), 4.21-4.10 (m, 2H), 3.175 (d, 2H), 2.42 (s, 3H), 2.24 (s, 3H), 1.90 (s, 3H), 1.82-1.70 (m, 4H), 1.33-1.06 (m, 7H), 0.97 (s, 9H). LCMS (ES$^+$)(m/z):464.16 (M+1).

Example 31: (2S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(3-phenylcyclohexyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 7.37-7.30 (m, 5H), 7.24-7.22 (m, 3H), 7.10-7.08 (m, 1H), 5.34-5.16 (m, 2H), 5.13 (s, 1H), 4.20-4.10 (m, 2H), 3.46-3.40 (m, 2H), 2.41 (s, 3H), 2.33-2.30 (m, 2H), 2.25 (s, 3H), 2.04-1.95 (m, 6H), 1.91 (s, 3H), 0.96 (s, 9H). LCMS(ES$^+$)(m/z): 526.47 (M+1).

Example 32: (2S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((3R)-3-methylcyclohexyl)-6-(p-toly)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.34-7.32 (m, 1H), 7.26-7.25 (m, 2H), 7.10-7.08 (m, 1H), 5.15-5.06 (m, 2H), 5.13 (s, 1H), 4.29-4.10 (m, 2H), 3.44 (br.s., 1H), 2.42 (s, 3H), 2.25 (s, 3H), 2.11-2.08 (m, 1H), 1.95-1.83 (m, 3H), 1.90 (s, 3H), 1.80-1.17 (m, 2H), 1.65-1.61 (m, 2H), 1.43-1.42 (m, 1H), 1.02 (d, 3H), 0.95 (s, 9H). LCMS(ES$^+$)(m/z): 464.49 (M+1).

Example 33: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(((1r,4S)-4-methylcyclohexyl)carbamoyl)-6-(p-toly)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl₃) δ 7.37-7.35 (m, 1H), 7.24-7.22 (m, 2H), 7.08-7.06 (m, 1H), 5.16 (s, 1H), 4.72-4.59 (m, 4H), 3.70-3.65 (m, 1H), 2.41 (s, 3H), 2.26 (s, 3H), 2.07-2.04 (m, 2H), 1.89 (s, 3H), 1.75-1.72 (m, 2H), 1.35-1.28 (m, 1H), 1.22-1.07 (m, 4H), 0.98 (s, 9H), 0.91 (d, 3H).
LCMS(ES+)(m/z): 507.52 (M+1).

Example 34: (S)-2-(2-(benzylcarbamoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

1H NMR (400 MHz, CDCl₃) δ 7.33-7.29 (m, 5H), 7.23-7.15 (m, 3H), 7.01-7.00 (m, 1H), 5.09 (s, 1H), 4.65-4.61 (m, 5H), 4.48 (s, 2H), 2.35 (s, 3H), 2.19 (s, 3H), 1.81 (s, 3H), 0.92 (s, 9H).
LCMS(ES+)(m/z): 501.49 (M+1).

Example 35: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(pyrrolidine-1-carbonyl)-6-(p-tolylisoindolin-5-yl)acetic acid
Example 36: (S)-2-((tert-butoxy)-2-((cyclohexylsulfonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

Example 37: (2S)-2-((tert-butoxy)-2-[[4,7-dimethyl-2-{1(1R,3R)-3-methylcyclohexyl}-6-(4-methylphenyl)-2,3-dihydro-1H-isooindol-5-yl]acetic acid
1H NMR (400 MHz, CDCl₃) δ 7.34-7.32 (m, 1H), 7.26-7.25 (m, 2H), 7.10-7.08 (m, 1H), 5.15-5.06 (m, 2H), 5.13 (s, 1H), 4.29-4.10 (m, 2H), 3.44 (br.s., 1H), 2.42 (s, 3H), 2.25 (s, 3H), 2.11-2.08 (m, 1H), 1.95-1.83 (m, 3H), 1.90 (s, 3H), 1.80-1.17 (m, 2H), 1.65-1.61 (m, 2H), 1.43-1.42 (m, 1H), 1.02 (d, 3H), 0.95 (s, 9H). LCMS(ES+)(m/z): 464.49 (M+1).

Example 38: (2S)-2-(tert-butoxy)-2-[2-[3-(3-fluorophenyl)propyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

1H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 4H), 7.08-7.06 (m, 1H), 6.99-6.89 (m, 3H), 5.15-5.07 (m, 3H), 4.22-4.10 (m, 2H), 3.32-3.28 (m, 2H), 2.78-2.75 (m, 2H), 2.41 (s, 3H), 2.28-2.18 (m, 2H), 2.23 (s, 3H), 1.87 (s, 3H), 0.97 (s, 9H). LCMS(ES+)(m/z): 504.11 (M+1).

Example 39: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(2-phenylethyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

1H NMR (400 MHz, METHANOL-d₄) δ ppm 0.86 (s, 9H) 1.85 (s, 3H) 2.31 (s, 3H) 2.37 (s, 3H) 3.02 (t, J=7.81 Hz, 2H) 3.28-3.34 (m, 2H) 4.17 - 4.41 (m, 4H) 4.90 (s, 1H) 7.03 (d, J=7.62 Hz, 1H) 7.15 - 7.35 (m, 7H) 7.45 (d, J=7.62 Hz, 1H). LCMS(ES+)(m/z): 472.47 (M+1)

Example 40: (2S)-2-(tert-butoxy)-2-[2-[(1-[(tert-butoxy)carbonyl]pyrrolidin-2-yl)methyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid
1H NMR (400 MHz, METHANOL-d_4) δ ppm 0.90 (s, 9 H) 1.48 (s, 9 H) 1.86 - 1.98 (m, 5 H) 2.34 (br. s., 3 H) 2.40 (s, 3 H) 3.23 - 3.68 (m, 11 H) 4.99 - 5.06 (m, 1 H) 7.06 (d, J=7.42 Hz, 1 H) 7.19 - 7.34 (m, 3 H). LCMS(ES$^+$)(m/z): 551.55 (M+1).

Example 41: (2S)-2-((tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(pyridin-3-ylmethyl)-2,3-dihydro-1H-isooindol-5-yl]acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 8.83-8.77 (m, 2H), 8.34-8.32 (m, 1H), 7.68-7.65 (m, 1H), 7.33-7.24 (m, 3H), 7.06-7.04 (m, 1H), 5.13 (s, 1H), 4.82-4.73 (m, 2H), 4.58 (s, 2H), 4.49-4.42 (m, 2H), 2.42 (s, 3H), 2.23 (s, 3H), 1.87 (s, 3H), 0.98 (s, 9H). LCMS(ES$^+$)(m/z): 459.42 (M+1).

Example 42: (2S)-2-((tert-butoxy)-2-[2-[3,5-difluorophenyl]methyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isooindol-5-yl]acetic acid
\(^1H \) NMR (400 MHz, METHANOL-\(d_4 \)) \(\delta \) 7.28-7.02 (m, 7H), 5.00 (s, 1H), 4.73-4.71 (m, 4H), 4.65 (s, 2H), 2.39 (s, 3H), 2.30 (s, 3H), 1.86 (s, 3H), 0.89 (s, 9H). LCMS(ES+)(m/z): 494.14 (M+1).

Example 43: (2S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-[3-(methylcarbamo yl)phenyl]methyl]-6-(4-methylphenyl)-2,3-dihydro-1H-isindol-5-yl)acetic acid

\[
\text{\includegraphics[width=0.5\textwidth]{example43.png}}
\]

\(^1H \) NMR (400 MHz, CHLOROFORM-\(d \)) \(\delta \) ppm 0.89 - 1.08 (m, 9 H) 1.86 (s, 3 H) 2.22 (br. s., 3 H) 2.42 (s, 3 H) 3.01 (d, \(J=2.54 \) Hz, 3 H) 3.71 (s, 1H) 4.17 - 4.34 (m, 2 H) 4.47 (s., 1 H) 4.91-4.99 (m, 2 H) 5.14 (s, 1 H) 7.05 (d, \(J=6.05 \) Hz, 2 H) 7.18 - 7.39 (m, 3 H) 7.42 - 7.64 (m, 2 H) 8.02 (d, \(J=7.62 \) Hz, 1 H) 8.15 (s, 1 H); LCMS(ES+)(m/z): 515.50 (M+1).

Example 44: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)]-2-[3-(piperidine-1-carbonyl)phenyl]methyl]-2,3-dihydro-1H-isindol-5-yl]acetic acid

\[
\text{\includegraphics[width=0.5\textwidth]{example44.png}}
\]

\(^1H \) NMR (400 MHz, METHANOL-\(d_4 \)) d ppm 0.83 - 0.94 (m, 9 H) 1.69 (br. s., 6 H) 1.86 (s, 3 H) 2.30 (s, 3 H) 2.39 (s, 3 H) 3.37 (br. s., 2 H) 3.71 (br. s., 2 H) 4.68 (s, 6 H) 5.01 (s, 1 H) 6.94 - 7.40 (m, 4 H) 7.48 - 7.76 (m, 4 H). LCMS(ES-)(m/z): 569.49 (M+1).

Example 45: (2S)-2-(tert-butoxy)-2-[2-[3-chlorophenyl]methyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isindol-5-yl]acetic acid
Example 46: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-[[3-(morpholin-4-yl)phenyl]methyl]-2,3-dihydro-1H-isoindol-5-yl]acetic acid

Example 47: (2S)-2-(tert-butoxy)-2-{2-[[3-fluoro-2-methylphenyl]methyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid
Example 48: (2S)-2-(tert-butoxy)-2-[2-(methoxycarbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-
dihydro-1H-isindol-5-yl]acetic acid

Step 1: (S)-methyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindoline-2-
carboxylate

An ice cold solution of (2S)-ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (30 mg, 0.076 mmol) in dichloromethane and triethylamine (1.5 eq, 0.114 mmol,
0.015 mL) was treated dropwise with methyl chloroformate (1.1 eq, 0.083 mmol, 0.01 mL added) and allowed to warm to ambient temperature. After 10 min, the reaction mixture was diluted with water and the phases separated. The aqueous layer was extracted with DCM (x3), and the combined organics were washed with brine, dried, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (24 mg, 70%) as a light red oil. \(^{1}\)H NMR (400 MHz, CHLOROFORM-\(d\)) \(\delta\) ppm 0.95 (s, 9 H), 1.19 - 1.24 (m, 3 H), 1.84 (d, \(J=5.86\) Hz, 3 H), 2.31 (d, \(J=5.67\) Hz, 3 H), 2.41 (s, 3 H), 3.79 (d, \(J=2.54\) Hz, 3 H), 4.02 - 4.23 (m, 2 H), 4.60 - 4.76 (m, 4 H), 4.97 (s, 1 H), 7.04 (d, \(J=7.82\) Hz, 1 H), 7.16 - 7.24 (m, 3 H). LCMS(ES\(+\))(m/z): 454.39 (M+1).

Step 2: (2S)-2-(tert-butoxy)-2-[2-(methoxycarbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid.

![Chemical Structure](image)

A solution of (2S)-methyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(p-tolyl)isoindole-2-carboxylate (24 mg, 0.053 mmol) in 1,4-dioxane (3 mL) was treated with 1M LiOH (20 eq, 1.058 mmol, 1.058 mL) and heated to 90 °C. After 18h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The white residue was dissolved in water, acidified with 1N HCl and extracted with ethyl acetate (x3). The combined organics were washed with brine, dried (Na\(_2\)SO\(_4\)), filtered, and concentrated in vacuo. The crude material was purified by reverse phase HPLC to afford the title compound as a white solid (13 mg, 57.7% yield). \(^{1}\)H NMR (400 MHz, CHLOROFORM-\(d\)) \(\delta\) ppm 0.99 (s, 9 H), 1.89 (d, \(J=6.84\) Hz, 3 H), 2.25 (d, \(J=7.42\) Hz, 3 H), 2.42 (s, 3 H), 3.81 (d, \(J=2.54\) Hz, 3 H), 4.57 - 4.87 (m, 4 H), 5.16 (s, 1 H), 7.07 (d, \(J=6.83\) Hz, 1 H), 7.19 - 7.26 (m, 2 H), 7.36 (d, \(J=6.44\) Hz, 1 H). LCMS(ES\(+\))(m/z): 426.31 (M+1).

Example 49: (2S)-2-(tert-butoxy)-2-[2-(4-fluorobenzenesulfonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

44
\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.95-7.91 (m, 2H), 7.30-7.20 (m, 5H), 7.03-7.01 (m, 1H), 5.11 (s, 1H), 4.74-4.69 (m, 2H), 4.55-4.48 (m, 2H), 2.40 (s, 3H), 2.19 (s, 3H), 1.82 (s, 3H), 0.97 (s, 9H).

LCMS(ES\(^+\))(m/z):526.34 (M+1).

Example 50: \((2S)-2-\text{[ert-butoxy]-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(piperidine-1-sulfonyl)-2,3-dihydro-1H-isoindol-5-y}]\)acetic acid

Step 1: \((2S)-\text{ethyl 2-\{ert-butoxy\}-2-[4,7-dimethyl-2-(piperidin-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl\}]\)acetate.

A solution of \((S)\)-ethyl 2-\{ert-butoxy\}-2-[4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl]\)acetate (45 mg, 0.114 mmol) and triethylamine (1.5 eq, 0.341 mmol, 0.048 mL) was treated dropwise with piperidine-1-sulfonyle chloride (1.5 eq, 0.171 mmol, 0.024 mL added). After 1 h, the reaction mixture was diluted with sat. aq. NaHCO\(_3\) and the phases separated. The aqueous layer was extracted with DCM (x3), and the combined organics were washed with brine, dried, filtered,
and concentrated in vacuo. The crude material was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (24 mg, 51%) as a light red oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 3H), 7.05-7.03 (m, 1H), 4.97 (s, 1H), 4.66 (s, 4H), 4.20-4.07 (m, 2H), 3.29-3.27 (m, 4H), 2.42 (s, 3H), 2.29 (s, 3H), 1.82 (s, 3H), 1.66-1.56 (m, 6H), 1.23 (t, 3H), 0.96 (s, 9H). LCMS(ES+)(m/z): 543.42 (M+1).

Step 2: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(piperidine-1-sulfonyl)-2,3-dihydro-1H-isooindol-5-yl]acetic acid

A solution of (2S)-ethyl 2-(tert-butoxy)-2-[4,7-dimethyl-2-(piperidin-1-ylsulfonyl)-6-(p-tolyl)isoindolin-5-yl]acetate (24 mg, 0.044 mmol) in MeOH (3 mL) was treated with 1M LiOH (20 eq, 1.058 mmol, 1.058 mL) and heated to 80 °C. After 6 h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The white residue was dissolved in water, acidified with 1N HCl and extracted with ethyl acetate (x3). The combined organics were washed with brine, dried, filtered, and concentrated in vacuo to afford the title compound (21 mg, 93% yield) as a tan oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 1H), 7.24-7.22 (m, 2H), 7.07-7.05 (m, 1H), 5.15 (s, 1H), 4.75-4.59 (m, 4H), 3.29-3.27 (m, 4H), 2.41 (s, 3H), 2.23 (s, 3H), 1.86 (s, 3H), 1.66-1.56 (m, 6H), 0.99 (s, 9H). LCMS(ES+)(m/z): 515.43 (M+1).

Example 51: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-[propan-2-ylsulfamoyl]-2,3-dihydro-1H-isooindol-5-yl]acetic acid. The title compound was made in a manner similar to Example 50.
\[\text{Example 52: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(morpholine-4-sulfonyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid.} \]

The title compound was made in a manner similar to Example 50.

\[\text{Example 53: (2S)-2-(tert-butoxy)-2-[2-[3,4-difluorophenyl]methyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid}\]
1H NMR (400 MHz, Methanol-d4) δ 7.58-7.54 (m, 1H), 7.42-7.39 (m, 2H), 7.28-7.21 (m, 3H), 7.04-7.02 (m, 1H), 5.00 (s, 1H), 4.71-4.69 (m, 4H), 4.62 (s, 2H), 2.39 (s, 3H), 2.30 (s, 3H), 1.86 (s, 3H), 0.89 (s, 9H). LCMS(ES+)(m/z): 494.43 (M+1).

Example 54: (2S)-2-[(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-[[1r,4r]-4-methylcyclohexyl]carbamoyl]-2,3-dihydro-1H-isoindol-5-yl]acetic acid

1H NMR (400 MHz, CDCl3)δ7.37-7.35 (m, 1H), 7.24-7.22 (m, 2H), 7.08-7.06 (m, 1H), 5.16 (s, 1H), 4.72-4.59 (m, 4H), 3.70-3.65 (m, 1H), 2.41 (s, 3H), 2.26 (s, 3H), 2.07-2.04 (m, 2H), 1.89 (s, 3H), 1.75-1.72 (m, 2H), 1.35-1.28 (m, 1H), 1.22-1.07 (m, 4H), 0.98 (s, 9H), 0.91 (d, 3H). LCMS(ES+)(m/z): 507.52 (M+1).

Example 55: (2S)-2-[[2-(benzylcarbamoyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(tert-butoxy)acetic acid
1H NMR (400 MHz, CDCl₃) δ 7.33-7.29 (m, 5H), 7.23-7.15 (m, 3H), 7.01-7.00 (m, 1H), 5.09 (s, 1H), 4.65-4.61 (m, 5H), 4.48 (s, 2H), 2.35 (s, 3H), 2.19 (s, 3H), 1.81 (s, 3H), 0.92(s, 9H).
LCMS(ES+)(m/z): 501.49 (M+1).

Example 56: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(pyrrolidine-1-carbonyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

1H NMR (400 MHz, CDCl₃) δ 7.38-7.36 (m, 1H), 7.24-7.21 (m, 2H), 7.08-7.06 (m, 1H), 5.16 (s, 1H), 4.87-4.70 (m, 4H), 3.52-3.49 (m, 4H), 2.41 (s, 3H), 2.25 (s, 3H), 1.93-1.90 (m, 4H), 1.89 (s, 3H), 0.98 (s, 9H). LCMS(ES+)(m/z): 465.43 (M+1).

Example 57: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(morpholine-4-carbonyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid
Example 58: (2S)-2-(tert-butoxy)-2-[2-[(cyclohexyloxy)methyl]carbamoyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoxindol-5-yl)acetic acid

\[^{1}\text{H NMR (400 MHz, CHLOROFORM-d)}\delta \text{ ppm: 0.98 (s, 9H) 1.09 - 1.33 (m, 4H) 1.46 - 1.83 (m, 7H) 1.90 (s, 3H) 2.26 (s, 3H) 2.41 (s, 3H) 3.17 (t, J=6.35 Hz, 2H) 4.41 (t, J=5.66 Hz, 1H) 4.59 - 4.76 (m, 4H) 5.16 (s, 1H) 7.07 (d, J=7.23 Hz, 1H) 7.19 - 7.26 (m, 2H) 7.36 (d, J=7.03 Hz, 1H). LCMS(ES+)(m/z): 507.44 (M+1).}\]

Example 59: (2S)-2-(tert-butoxy)-2-[2-(dimethylcarbamoyl)]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoxindol-5-yl)acetic acid
\[\text{Example 60: (2S)-2-[2-(azepane-1-carbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(tert-butoxy)acetic acid} \]

\[\text{Example 61: (2S)-2-[2-(azetidine-1-carbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(tert-butoxy)acetic acid} \]
\textbf{Example 62}: (2S)-2-(tert-butoxy)-2-[[2-(methoxymethyl)(methyl)carbamoyl]4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isooindol-5-yl]acetic acid

\textbf{Example 63}: (2S)-2-(tert-butoxy)-2-[[2-(methoxymethyl)(methyl)carbamoyl]4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isooindol-5-yl]acetic acid
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.98 (s, 9 H) 1.43 (s, 9 H) 1.89 (s, 3 H) 2.26 (s, 3 H) 2.41 (s, 3 H) 4.22 (s, 1 H) 4.55 - 4.72 (m, 4 H) 5.16 (s, 1 H) 7.07 (d, J=7.23 Hz, 1 H) 7.19 - 7.26 (m, 2 H) 7.36 (d, J=7.23 Hz, 1 H). LCMS(ES+)/(m/z): 467.46 (M+1).

Example 64: (2S)-2-[(tert-butoxy)-2-[2-(1,1-dioxo-1Λ^5-4-thiomorpholine-4-carbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetate acid

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.89 - 1.02 (m, 9 H) 1.88 (s, 3 H) 2.25 (s, 3 H) 2.40 (s, 3 H) 3.15 (br. s., 4 H) 3.86 (br. s., 4 H) 4.64 - 4.90 (m, 4 H) 5.14 (s, 1 H) 7.04 (d, J=7.04 Hz, 1 H) 7.16 - 7.29 (m, 2 H) 7.34 (d, J=7.23 Hz, 1 H). LCMS(ES+)/(m/z): 529.40 (M+1).

Example 65: (2S)-2-[(azocane-1-carbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(tert-butoxy)acetic acid
Example 66: (2S)-2-((tert-butoxy)-2-[2-(3,3-difluoropiperidine-1-carbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

Example 67: (2S)-2-((tert-butoxy)-2-[2-(cyclohexyl(methyl)carbamoyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid
1H NMR (400 MHz, METHANOL-d_4) δ ppm 0.87 (s, 9 H) 1.06 - 1.27 (m, 2 H) 1.30 - 1.46 (m, 2 H) 1.50 - 1.69 (m, 2 H) 1.73 - 1.89 (m, 4 H) 1.84 (s, 3 H) 2.30 (s, 3 H) 2.37 (s, 3 H) 2.84 (s, 3 H) 3.65 - 3.75 (m, 1 H) 4.63 - 4.78 (m, 4 H) 4.92 (s, 1 H) 6.99 - 7.09 (m, 1 H) 7.21 (t, J=7.42 Hz, 2 H) 7.43 (d, J=7.23 Hz, 1 H). LCMS(ES$^+$)(m/z): 507.48 (M+1).

Example 68: (2S)-2-(tert-butoxy)-2-[2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.99 (s, 9 H) 1.89 (s, 3 H) 2.26 (s, 3 H) 2.32 - 2.41 (m, 2 H) 2.42 (s, 3 H) 3.75 (t, J=7.32 Hz, 2 H) 3.84 (t, J=13.08 Hz, 2 H) 4.64 - 4.87 (m, 4 H) 5.16 (s, 1 H) 6.98 - 7.12 (m, 1 H) 7.20 - 7.26 (m, 2 H) 7.36 (d, J=7.42 Hz, 1 H). LCMS(ES$^+$)(m/z): 501.43 (M+1).

Example 69: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-[(2R)-2-methylpiperidine-1-carbonyl]-2,3-dihydro-1H-isoindol-5-yl]acetic acid
Example 70: (2S)-2-(tert-butoxy)-2-[2-(cyclobutylcarbamoyle)-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

Example 71: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-(4-methylphenyl)-2-(4-methylpiperazine-1-carbonyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid
Example 72: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-2-[(3R)-3-methylmorpholine-4-carbonyl]-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

\[\begin{align*}
\text{H NMR (400 MHz, CHLOROFORM-d) } & \delta \text{ ppm 0.96 (s, 9 H) 1.34 (d, } J=6.59 \text{ Hz, 3 H) 1.88 (s, 3 H) 2.24 (s, 3 H) 2.40 (s, 3 H) 3.37 (d, } J=4.94 \text{ Hz, 2 H) 3.56 - 3.92 (m, 5 H) 4.55 - 4.80 (m, 3 H) 4.87 (d, } J=14.28 \text{ Hz, 1 H) 5.14 (s, 1 H) 7.05 (d, } J=6.78 \text{ Hz, 1 H) 7.17 - 7.24 (m, 2 H) 7.35 (d, } J=6.59 \text{ Hz, 1 H). LCMS(ES+)(m/z): 495.52 (M+1).}
\end{align*} \]

Example 73: (2S)-2-(tert-butoxy)-2-[2-[(2S,6S)-2,6-dimethylmorpholine-4-carbonyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid

\[\begin{align*}
\text{H NMR (400 MHz, CHLOROFORM-d) } & \delta \text{ ppm 0.97 (s, 9 H) 1.87 (s, 3 H) 2.24 (s, 3 H) 2.40 (s, 3 H) 2.84 (s, 3 H) 2.93 - 3.01 (m, 2 H) 3.50 - 3.65 (m, 4 H) 3.93 (d, } J=14.47 \text{ Hz, 2 H) 4.60 - 4.74 (m, 2 H) 4.76 - 4.89 (m, 2 H) 5.14 (s, 1 H) 7.04 (d, } J=6.78 \text{ Hz, 1 H) 7.22 (d, } J=8.61 \text{ Hz, 2 H) 7.32 (br. s., 1 H). LCMS(ES+)(m/z): 494.33 (M+1).}
\end{align*} \]
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.97 (s, 9 H) 1.26 (s, 3 H) 1.28 (s, 3 H) 1.87 (s, 3 H) 2.24 (s, 3 H) 2.40 (s, 3 H) 3.09 (dd, J=12.82, 6.23 Hz, 2 H) 3.43 (dd, J=12.82, 2.93 Hz, 2 H) 4.04 - 4.14 (m, 2 H) 4.62 - 4.89 (m, 4 H) 5.14 (s, 1 H) 7.05 (d, J=6.96 Hz, 1 H) 7.18 - 7.24 (m, 2 H) 7.35 (d, J=6.78 Hz, 1 H). LCMS(ES$^+$)(m/z): 509.50 (M+1).

Example 74: (2S)-2-(tert-butoxy)-2-[2-[2,2-dimethylpropyl]carbamoyl]-4,7-dimethyl-6-[4-methylphenyl]-2,3-dihydro-1H isoindol-5-yl]acetic acid

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.96 (s, 9 H) 0.99 (s, 9 H) 1.90 (s, 3 H) 2.27 (s, 3 H) 2.42 (s, 3 H) 3.16 (d, J=6.05 Hz, 2 H) 4.42 (t, J=6.15 Hz, 1 H) 4.59 - 4.78 (m, 4 H) 5.16 (s, 1 H) 7.08 (d, J=7.23 Hz, 1 H) 7.20 - 7.26 (m, 2 H) 7.37 (d, J=7.23 Hz, 1 H). LCMS(ES$^+$)(m/z): 481.41 (M+1).

Example 75: (2S)-2-(tert-butoxy)-2-[4,7-dimethyl-6-[4-methylphenyl]-2-[8-oxa-3-azabicyclo[3.2.1]octane-3-carbonyl]-2,3-dihydro-1H-isoindol-5-yl]acetic acid
\[\begin{align*}
\text{Example 76: } & (2S)-2- \text{(tert-butoxy)}-2-[4,7-\text{dimethyl}-6-\text{(4-methylphenyl)}-2-\text{(1,4-oxazepane-4-carbonyl)}-2,3-\text{dihydro-1H-isindol-5-yl]acetic acid}}
\end{align*} \]

\[\begin{align*}
\text{Example 77: } & (2S)-2- \text{(tert-butoxy)}-2-[2-[(3S)-3-\text{hydroxypyrrolidine-1-carbonyl}]-4,7-\text{dimethyl}-6-\text{(4-methylphenyl)}-2,3-\text{dihydro-1H-isindol-5-yl]acetic acid}}
\end{align*} \]
\[\text{Example 78: (2S)-2-[(tert-butoxy)-2-[2-[cyclohexylmethyl](methyl)carbamoyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]acetic acid} \]

\[\text{Example 79: (2S)-2-[(2-benzylxylo)ethyl]carbamoyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(tert-butoxy)acetic acid} \]
Example 80: (2S)-2-[(8aR)-octahydroprrolo[1,2-a]piperazine-2-carbonyl]-4,7-dimethyl-6-(4-methylphenyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(tert-butoxy)acetic acid

Example 81: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(4-methylpiperidine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 0.87 - 1.08 (m, 12 H), 1.29 (m, 1 H), 1.72 (d, J=12.30 Hz, 3 H), 1.91 (s, 3 H), 2.28 (s, 3 H), 2.44 (s, 3 H), 2.86 (t, J=12.05 Hz, 2 H), 3.83 (d, J=13.05 Hz, 2 H), 4.63 - 4.78 (m, 2 H), 4.78 - 4.92 (m, 2 H), 5.17 (s, 1 H), 7.09 (d, J=7.28 Hz, 1 H), 7.21 - 7.27 (m, 2 H) 7.39 (d, J=7.03 Hz, 1 H). LCMS (ES$^+$)(m/z): 493.47 (M+1).

Example 82: (2S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(octahydrocyclopenta[c]pyrrole-2-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 1.01 (s, 9 H), 1.48 - 1.60 (m, 2 H), 1.60 - 1.71 (m, 1 H), 1.77 - 1.89 (m, 3 H), 1.91 (s, 3 H), 2.28 (s, 3 H), 2.44 (s, 3 H), 2.64 - 2.74 (m, 2 H), 3.29 (dd, J=10.67, 4.14 Hz, 2 H), 3.72 (dd, J=10.67, 7.91 Hz, 2 H), 4.68 - 4.80 (m, 2 H), 4.80 - 4.91 (m, 2 H), 5.18 (s, 1 H), 7.09 (d, J=7.53 Hz, 1 H), 7.22 - 7.28 (m, 2 H), 7.39 (d, J=7.53 Hz, 1 H). LCMS (ES$^+$)(m/z): 505.54 (M+1).

Example 83: (S)-2-(2-((1R,4R)-7-azabicyclo[2.2.1]heptane-7-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)-2-(tert-butoxy)acetic acid
Example 84: (S)-2-(tert-butoxy)-2-[(2-(4,4-dimethylpiperidine-1-carbonyl)4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetic acid

\[\text{1H NMR (400 MHz, CDCl}_3) \delta 7.36-7.04 \text{ (m, 4H) (under CHCl}_3), 5.14 \text{ (s, 1H), 4.73 (m, 4H), 3.30 (m, 4H), 2.40 (s, 3H), 2.25 (s, 3H), 1.87 (s, 3H), 1.41 (m, 4H), 1.01-0.94 (m, 15H).} \]

LCMS(ES+)(m/z): 507.55 (M+1); 1113.97 (2M+1).

Example 85: (S)-2-(2-(4-acetypiperazine-1-carbonyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

\[\text{1H NMR (400 MHz, CDCl}_3) \delta 0.98 \text{ (s, 9 H), 1.45 (d, J=6.78 Hz, 3 H), 1.80 - 1.95 (m, 8 H), 2.26 (s, 3 H), 2.41 (s, 3 H), 4.24 (br. s., 2H), 4.66 - 4.80 (m, 2 H), 4.80 - 4.92 (m, 2 H), 5.15 (s, 1 H), 7.07 (d, J=7.03 Hz, 1 H), 7.19 - 7.29 (m, 2 H), 7.37 (d, J=7.28 Hz, 1 H).} \]

LCMS(ES+)(m/z): 491.44 (M+1), 513.31 (M+23), 981.90 (2M+1).
Example 86: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(piperazine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 7.32 (m, 1H), 7.24-7.17 (m, 2H), 7.04 (m, 1H), 5.13 (s, 1H) 4.76 (m, 4H), 3.63 (m, 4H), 3.29 (m, 4H), 2.40 (s, 3H), 2.24 (s, 3H), 1.88 (s, 3H), 0.97 (s, 9H). \text{LCMS(ES+)(m/z): 480.5 (M+1); 959.98 (2M+1).} \]

Example 87: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((S)-2-methylpyrrolidine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 7.32 (m, 1H), 7.24-7.17 (m, 2H), 7.04 (m, 1H), 5.13 (s, 1H) 4.76 (m, 4H), 3.63 (m, 4H), 3.29 (m, 4H), 2.40 (s, 3H), 2.24 (s, 3H), 1.88 (s, 3H), 0.97 (s, 9H). \text{LCMS(ES+)(m/z): 522.54 (M+1); 1043.95 (2M+1).} \]
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36 (m, 1H), 7.25-7.20 (m, 2H), 7.07 (m, 1H), 5.16 (s, 1H), 5.09-4.88 (m, 2H), 4.63-4.45 (m, 2H), 4.10 (m, 1H), 3.60-3.40 (m, 2H), 2.41 (s, 3H), 2.25 (s, 3H), 2.13 (m, 1H), 1.91 (m, 1H), 1.89 (s, 3H), 1.80 (m, 1H), 1.52 (m, 1H), 0.99 (s, 9H). LCMS(ES\(^+\))(m/z): 479.51 (M+1); 1041.91(2M+1).

Example 88: (S)-2-(tert-butoxy)-2-(2-(2S,5R)-2,5-dimethylmorpholine-4-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 88](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36 (m, 1H), 7.23 (m, 2H), 7.06 (m, 1H), 5.16 (s, 1H), 4.91-4.58 (m, 4H), 4.0-3.4 (m, 5H), 2.98 (m, 1H), 2.42 (s, 3H), 2.25 (s, 3H), 1.89 (s, 3H), 1.38 (m, 3H), 1.22 (m, 3H), 0.98 (s, 9H). LCMS(ES\(^+\))(m/z): 509.46 (M+1); 1017.92 (2M+1).

Example 89: (S)-2-(tert-butoxy)-2-(2-(4-fluoropiperidine-1-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 89](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (s, 9 H), 1.87 - 2.00 (m, 5 H) 2.00 - 2.10 (m, 3 H), 2.28 (s, 3 H), 2.44 (s, 3 H), 3.32 - 3.43 (m, 2H), 3.48 - 3.59 (m, 2 H), 4.66 - 4.79 (m, 2 H), 4.79 - 4.91 (m, 3 H), 5.18 (s, 1 H) 7.09 (d, \(J=7.28\) Hz, 1 H), 7.22 - 7.29 (m, 2 H), 7.39(d, \(J=7.03\) Hz, 1 H). LCMS (ES\(^+\))(m/z): 497.52 (M+1), 519.49 (M+23), 993.94 (2M+1).
Example 90: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(4-methyl-3-oxopiperazine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\end{align*}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.35 (m, 1H), 7.21 (m, 2H), 7.05 (m, 1H), 5.13 (s, 1H), 4.75 (m, 4H), 4.12 (s, 2H), 3.61 (m, 2H), 3.47 (m, 2H), 3.02 (s, 3H), 2.39 (s, 3H), 2.25 (s, 3H), 1.85 (s, 3H), 0.96 (s, 9H). LCMS (ES$^+$)(m/z): 508.44 (M+1); 1015.81 (2M+1).

Example 91: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((S)-3-methylmorpholine-4-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\end{align*}
\]

1H NMR (400 MHz, CDCl$_3$) δ 1.01 (s, 9H), 1.39 (d, J=6.78 Hz, 3H), 1.92 (s, 3H), 2.28 (s, 3H), 2.44 (s, 3H), 3.36 - 3.49 (m, 2H), 3.58 - 3.73 (m, 2H), 3.73 - 3.82 (m, 1H), 3.84 - 3.97 (m, 2H), 4.66 (d, J=14.56 Hz, 1H), 4.80 (br. s., 2H), 4.89 (d, J=14.56 Hz, 1H), 5.18 (s, 1H), 7.09 (d, J=7.53 Hz, 1H), 7.21 - 7.32 (m, 2H), 7.38 (br. s., 1H). LCMS (ES$^+$)(m/z): 495.53 (M+1), 517.47 (M+23), 989.77 (2M+1).

Example 92: (S)-2-(tert-butoxy)-2-((2-(4,4-difluoropiperidine-1-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\end{align*}
\]
1H NMR (400 MHz, CDCl$_3$) δ 0.98 (s, 9 H), 1.89 (s, 3 H), 1.98 - 2.15 (m, 4 H), 2.25 (s, 3 H), 2.41 (s, 4 H), 3.48 (t, J=5.52 Hz, 5 H), 4.63 - 4.77 (m, 2 H), 4.77 - 4.89 (m, 2 H), 5.15 (s, 1 H), 7.07 (br. s., 1 H), 7.17 - 7.29 (m, 2 H), 7.35 (br. s., 1 H). LCMS (ES$^+$)(m/z): 515.51 (M+1), 537.43 (M+23).

Example 93: (S)-2-(tert-butoxy)-2-(2-(3,3-dimethylpiperidine-1-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.43-7.01 (m, 4 H), 5.14 (s, 1 H), 4.77 (m, 4 H), 3.23 (m, 2 H), 3.0 (s, 2 H), 2.39 (s, 3 H), 2.24 (s, 3 H), 1.87 (s, 3 H), 1.39 (m, 2 H), 0.96 (m, 17 H). LCMS(ES$^+$)(m/z): 507.52 (M+1); 1013.91 (2M+1).

Example 94: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)-2-((2,2,2-trifluoroethyl)carbamoyl)isoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 7.35 (m, 1H), 7.22 (m, 2H), 7.06 (m, 1H), 5.16 (s, 1H), 4.70 (m, 4H), 2.40 (s, 3H), 2.25 (s, 3H), 1.89 (s, 3H), 1.58 (m, 2H), 0.97 (s, 9H). LCMS(ES$^+$(m/z): 493.41 (M+1); 985.68 (2M+1).

Example 95: (S)-2-(2-(4-benzylpiperidine-1-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)-2-(tert-butoxy)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.35 (m, 1H), 7.32-7.11 (m, 7H), 7.04 (m, 1H), 5.13 (s, 1H) 4.86-4.59 (m, 4H), 3.79 (m, 2H), 2.77 (m, 2H), 2.57 (m, 2H), 2.40 (s, 3H), 2.25 (s, 3H), 1.87 (s, 3H), 1.70 (m, 2H), 1.28 (m, 2H), 0.96 (s, 9H), 0.85 (m, 1H). LCMS(ES$^+$(m/z): 569.50 (M+1); 1137.87 (2M+1).

Example 96: (S)-2-(tert-butoxy)-2-(2-((R)-3-fluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 7.36 (m, 1H), 7.22 (m, 2H), 7.06 (m, 1H), 5.38-5.19 (m, 1H), 5.14 (s, 1H), 5.04-4.80 (m, 2H), 4.65 (m, 2H), 3.91-3.60 (m, 4H), 2.40 (s, 3H), 2.25 (s, 3H), 1.87 (s, 3H), 0.98 (s, 9H), 0.85 (m, 2H). LCMS (ES$^+$)(m/z): 483.43 (M+1); 965.75 (2M+1).

Example 97: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((2-phenylpropan-2-yl)carbamoyl)-6-(p-tolyliisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 0.98 (s, 9 H), 1.78 (s, 6 H), 1.88 (s, 3 H), 2.25 (s, 3 H), 2.41 (s, 3 H), 4.60 - 4.75 (m, 5 H), 5.16 (s, 1 H), 7.07 (d, J=7.03 Hz, 1 H), 7.19 - 7.28 (m, 2 H), 7.34 (t, J=7.65 Hz, 4 H), 7.46 (d, J=7.78 Hz, 2 H). LCMS (ES$^+$)(m/z): 529.53 (M+1), 1079.95 (2M+23).

Example 98: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(4-morpholinopiperidine-1-carbonyl)-6-(p-tolyliisoindolin-5-yl)acetic acid

69
Example 99: (S)-2-(tert-butoxy)-2-(((S)-1-cyclohexylethyl)carbamoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetic acid

Example 100: (2S)-2-(tert-Butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-6-(M)-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
Step 1: (2S)-Methyl 2-(tert-butoxy)-2-((M)-2-(3,3-difluoropyrrolidine-1-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate

An ice cold solution of phosgene (0.129 mL, 0.243 mmol, 20% in PhMe) in THF (1 mL) was treated dropwise with a solution of (S)-methyl 2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (45.7 mg, 0.10 mmol) in THF (2.0 mL). After 40 min, the reaction mixture was concentrated in vacuo and dissolved in THF (2.0 mL) and cooled to 0 °C. The reaction mixture was treated with pyridine (0.01 mL, 0.124 mmol), triethylamine (0.04 mL, 0.287 mmol) and 3,3-difluoropyrrolidine, HCl (22 mg, 0.15 mmol). After 18h, the reaction mixture was poured into sat. aq. NaHCO₃ and extracted with EtOAc. The organics were dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (29 mg, 49%). LCMS(ES+)(m/z): 589.49 (M+1).

Step 2: (2S)-2-(tert-Butoxy)-2-((M)-2-(3,3-difluoropyrrolidine-1-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid.
A solution of (2S)-methyl 2-(tert-butoxy)-2-((M)-2-(3,3-difluoropyrroloidine-1-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (29 mg, 0.049 mmol) in EtOH (3 mL) and 1,4-dioxane (3 mL) was treated with LiOH (1.0 mL, 1.0 mmol) and heated to 70 °C. After 18h, the reaction mixture was concentrated in vacuo and diluted with water. The pH was adjusted to 3 with 1N HCl and then extracted with EtOAc. The organics were washed with Na2SO4, filtered and concentrated. The residue was purified by reverse phase HPLC to afford the title compound (15 mg, 53%) as a white solid.\(^1\)\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.67 (m, 1H), 5.05 (s, 1H), 4.77 (m, 4H), 4.26 (m, 2H), 3.87-3.71 (m, 4H), 2.68 (m, 2H), 2.37 (m, 2H), 2.27 (s, 3H), 2.11 (m, 2H), 1.85 (s, 3H), 1.77 (s, 3H), 1.11 (s, 9H). LCMS(ES+)(m/z): 575.45 (M+1).

Example 101: (2S)-2-(tert-butoxy)-2-((M)-5-methylchroman-6-yl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid.

The title compound was made in a similar manner to example 100.

\[\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example101}
\end{center}}\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.69 (d, \(J=11.3\) Hz, 1H), 5.06 (s, 1H), 4.77 (m, 4H), 4.27 (m, 2H), 3.31 (br. s., 4H), 2.68 (m, 2H), 2.28 (s, 3H), 2.12 (m, 2H), 1.86 (s, 3H), 1.77 (s, 3H), 1.64 (br.s., 6H), 1.13 (s, 9H). LCMS(ES+)(m/z): 553.49 (M+1).

Example 102: (S)-2-(tert-butoxy)-2-((R)-2-(3,3-difluoropiperidine-1-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid.

The title compound was made in a similar manner to example 100.
1H NMR (400 MHz, CDCl$_3$) δ 6.68 (m, 1H), 5.06 (br.s, 1H), 4.78 (m, 4H), 4.25 (m, 2H), 3.52 (m, 2H), 3.31 (m, 2H), 2.68 (m, 2H), 2.27 (s, 3H), 2.14-1.98 (m, 4H), 1.90-1.82 (m, 5H), 1.76 (S, 3H), 1.12 (s, 9H). LCMS(ES+)(m/z):589.49 (M+1).

Example 103: (2S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid.

Step 1. (S)-Methyl 2-(tert-butoxy)-2-(((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetate

A solution of (S)-methyl 2-(tert-butoxy)-2-(((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (70 mg, 0.154 mmol) and 3-fluorobenzoic acid (43 mg, 0.307 mmol) in EtOAc (3 mL) was treated with Et$_3$N (0.064 mL, 0.461 mmol) and T3P (0.23 mL, 0.387
mmol, 50% in EtOAc). After 3 h, the reaction mixture was poured into sat. aq. NaHCO3 and extracted with EtOAc. The organics were dried (Na2SO4), filtered and concentrated in vacuo, The residue was purified by silica gel chromatography (0-100% EtOAc-hexanes) to afford the title compound (39 mg, 44%) as a white solid. LCMS(ES+)(m/z): 578.35 (M+1).

Step 2. (2S)-2-(tert-butoxy)-2-(((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisooindolin-5-yl)acetic acid.

A solution of (S)-Methyl 2-(tert-butoxy)-2-(((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisooindolin-5-yl)acetate (39 mg, 0.068 mmol) in 1,4-dioxane (5 mL) was treated with 1M LiOH (1 mL, 1.00 mmol) and heated to 70 °C. After 8h, the reaction mixture was warmed to ambient temperature and stirring continued for an additional 12 h. The reaction mixture was concentrated in vacuo, dissolved in water and acidified using 6N HCl. The aqueous layer was then extracted with EtOAc and the organic layer concentrated in vacuo, and purified by reverse phase HPLC to afford the title compound (21 mg, 24%) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.48-7.26 (m, 3H), 7.17 (m, 1H), 6.66 (m, 1H), 5.06 (br.s., 1H), 4.99 (m, 2H), 4.72 (m, 2H), 4.25 (m, 2H), 2.67 (m, 2H), 2.42-2.01 (m, 5H), 1.91-1.60 (m, 6H), 1.12 (m, 9H). LCMS(ES+)(m/z): 564.41 (M+1).

Example 104: (S)-2-(tert-butoxy)-2-(((M)-2-(3,3-dimethylbutanoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisooindolin-5-yl)acetic acid.

The title compound was made in a similar manner to example 103.

![Chemical Structure](image)

1H NMR (400 MHz, CDCl3) δ 6.68 (m, 1H), 5.08 (br.s., 1H), 4.80 (m, 4H), 4.26 (m, 2H), 2.69 (m, 2H), 2.36-2.24 (m, 5H), 2.11 (m, 2H), 1.85 (m, 3H), 1.77 (s, 3H), 1.16-1.08 (m, 18H). LCMS(ES+)(m/z):540.58 (M+1).
Example 105: \((\text{S})\)-2-(tert-butoxy)-2-(2-(2,3-dihydrobenzo[b][1,4]dioxine-5-carbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{Step 1: (S)-methyl} & \quad \text{2-(tert-butoxy)-2-(2-(2,3-dihydrobenzo[b][1,4]dioxine-5-carbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetate} \\
\text{A solution of (S)-methyl} & \quad \text{2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetate} \\
& \quad \text{(40 mg, 0.105 mmol) in ethyl acetate (2 mL) was treated with 2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylic acid (37.8 mg, 0.210 mmol), Et}_3N \quad \text{(0.044 mL, 0.315 mmol), and Propylphosphonic} \\
& \quad \text{anhydride (~50wt\% in EtOAc) (0.156 mL, 0.262 mmol) at ambient temperature. After 1 h, the} \\
& \quad \text{reaction mixture was diluted with sat. NaHCO}_3 \quad \text{and the layers partitioned. The organic} \\
& \quad \text{layer was washed with brine, dried (Na}_2\text{SO}_4), \text{ filtered and concentrated in vacuo to afford} \\
& \quad \text{the title compound (55 mg, 97\% as a purple solid. LCMS (m/z) ES}^+ = 544 \text{ (M+1).}} \\
\text{Step 2: (S)-2-(tert-butoxy)-2-(2-(2,3-dihydrobenzo[b][1,4]dioxine-5-carbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid} \\
\text{A solution of (S)-methyl} \quad \text{2-(tert-butoxy)-2-(2-(2,3-dihydrobenzo[b][1,4]dioxine-5-carbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetate} \quad \text{(55.3 mg, 0.102 mmol) in} \\
& \quad \text{tetrahydrofuran (3 mL) and Methanol (3 mL) was treated with 2M LiOH (0.524 mL, 1.048 mmol) and} \\
& \quad \text{stirred at 70\°C. After 10 h, the reaction mixture was cooled to ambient temperature and}
\end{align*}
\]
concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (27.2 mg, 0.049 mmol, 46.5 % yield) as white solid. 1H NMR (400MHz, CHLOROFORM-d) δ ppm 7.35 (d, J=7.0 Hz, 1H), 7.30 - 7.17 (m, 2H), 7.12 - 7.00 (m, 1H), 6.99 - 6.85 (m, 3H), 5.16 (s, 1H), 5.07 - 4.89 (m, 2H), 4.72 - 4.55 (m, 2H), 4.36 - 4.24 (m, 4H), 2.42 (d, J=5.5 Hz, 3H), 2.35 - 2.07 (m, 3H), 2.00 - 1.72 (m, 3H), 0.99 (d, J=8.0 Hz, 9H); LCMS (m/z) ES$^+$ = 530 (M+1).

Examples 106-123 were made in a similar manner as Example 105.

Example 106: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-piperidin-1-yl)acetyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Example 106](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.37 - 7.30 (m, 1H), 7.29 - 7.18 (m, 2H), 7.07 (d, J=7.3 Hz, 1H), 5.16 (d, J=4.7 Hz, 1H), 4.92 - 4.59 (m, 4H), 4.37 - 4.19 (m, 1H), 4.01 (d, J=15.5 Hz, 1H), 3.84 - 3.56 (m, 2H), 3.37 (br. s., 2H), 2.42 (s, 3H), 2.26 (d, J=9.7 Hz, 3H), 2.12 - 1.91 (m, 5H), 1.88 (d, J=7.4 Hz, 3H), 1.52 (br. s., 1H), 0.99 (d, J=1.8 Hz, 9H). LCMS(ES$^+$)(m/z): 493 (M+1).

Example 107: (S)-2-(tert-butoxy)-2-(2-(cyclohexanecarbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Example 107](image)
1H NMR (400 MHz, METHANOL-d$_4$) δ 7.36 - 7.22 (m, 3H), 7.09 (d, J=7.6 Hz, 1H), 5.05 (d, J=1.3 Hz, 1H), 4.94 (br. s., 2H), 4.72 (br. s., 2H), 2.76 - 2.59 (m, 1H), 2.42 (s, 3H), 2.33 (d, J=10.1 Hz, 3H), 1.94 - 1.80 (m, 7H), 1.75 (d, J=12.1 Hz, 1H), 1.61 - 1.22 (m, 5H), 0.93 (d, J=1.2 Hz, 9H). LCMS(ES+)(m/z): 478 (M+1).

Example 108: (S)-2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

1H NMR (400 MHz, METHANOL-d$_4$) δ 7.61 - 7.49 (m, 1H), 7.49 - 7.44 (m, 1H), 7.40 (d, J=9.1 Hz, 1H), 7.32 - 7.20 (m, 4H), 7.08 (dd, J=8.0, 14.7 Hz, 1H), 5.05 (d, J=4.1 Hz, 1H), 4.96 (br. s., 2H), 4.81 (d, J=3.2 Hz, 2H), 2.42 (d, J=6.8 Hz, 3H), 2.38 - 2.11 (m, 3H), 1.99 - 1.68 (m, 3H), 0.93 (d, J=7.6 Hz, 9H). LCMS(ES+)(m/z): 490 (M+1).

Example 109: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-pivaloyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.36 (d, J=7.0 Hz, 1H), 7.30 - 7.19 (m, 2H), 7.08 (d, J=7.3 Hz, 1H), 5.17 (s, 1H), 5.10 - 4.70 (m, 4H), 2.42 (s, 3H), 2.28 (s, 3H), 1.91 (s, 3H), 1.38 (s, 9H), 1.00 (s, 9H). LCMS(ES+)(m/z): 452 (M+1).
Example 110: (S)-2-{(tert-butoxy)-2-{2-(3,3-dimethylbutanoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)}acetic acid

\[
\begin{align*}
\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \ & \delta \ 7.35 \ (d, J=6.9 \text{ Hz, 1H}), \ 7.31 - 7.17 \ (m, 2H), \ 7.08 \ (d, J=6.8 \text{ Hz, 1H}), \ 5.17 \ (d, J=5.1 \text{ Hz, 1H}), \ 4.93 - 4.65 \ (m, 4H), \ 2.42 \ (s, 3H), \ 2.35 \ (dd, J=2.3, 5.4 \text{ Hz, 2H}), \ 2.27 \ (s, 3H), \ 1.91 \ (s, 3H), \ 1.14 \ (d, J=3.3 \text{ Hz, 9H}), \ 1.00 \ (s, 9H). \ \text{LCMS} (\text{ES}^+) (m/z): 466 \ (M+1).
\end{align*}
\]

Example 111: (S)-2-{(tert-butoxy)-2-{2-(4,4-difluorocyclohexanecarbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)}acetic acid

\[
\begin{align*}
\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \ & \delta \ 7.43 - 7.31 \ (m, 1H), \ 7.31 - 7.20 \ (m, 2H), \ 7.07 \ (d, J=7.2 \text{ Hz, 1H}), \ 5.17 \ (d, J=5.3 \text{ Hz, 1H}), \ 4.95 - 4.69 \ (m, 4H), \ 2.68 - 2.53 \ (m, 1H), \ 2.42 \ (s, 3H), \ 2.35 - 2.19 \ (m, 5H), \ 2.11 - 1.70 \ (m, 9H), \ 1.00 \ (s, 9H). \ \text{LCMS} (\text{ES}^+) (m/z): 514 \ (M+1).
\end{align*}
\]

Example 112: (S)-2-{(tert-butoxy)-2-{2-(cyclopentanecarbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)}acetic acid
\[\text{Example 113: (2S)-2-(tert-butoxy)-2-(2-(3,3-difluorocyclopentanecarbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid} \]

\[\text{Example 114: (S)-2-(tert-butoxy)-2-(2-(3-methoxybenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid} \]
1H NMR (400 MHz, CDCl$_3$) δ 0.98 (d, J=8.03 Hz, 9 H), 1.78 (br. s., 1.5 H), 1.86 - 2.00 (m, 1.5 H), 2.14 (br. s., 1.5 H), 2.22 - 2.36 (m, 1.5 H), 2.41 (br. s., 3 H), 3.86 (br. s., 3 H), 4.73 (d, J=12.55 Hz, 3 H), 4.88 - 5.10 (m, 2 H), 5.15 (br. s., 1 H), 7.01 (br. s., 2 H), 7.05 - 7.18 (m, 3 H), 7.26 (br. s., 3 H), 7.36 (br. s., 2 H). LCMS(ES$^+$)(m/z): 502.37 (M+1, 524.36 (M+23), 1003.69 (2M+1), 1025.53 (2M+23).

Example 115: (S)-2-((tert-butoxy)-2-(2-(3-fluoro-4-methylbenzoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 0.98 (d, J=8.53 Hz, 9 H), 1.79 (s, 1.5 H), 1.94 (s, 1.5 H), 2.15 (s, 1.5 H), 2.31 (s, 1.5 H), 2.33 - 2.38 (m, 4 H), 2.41 (d, J=5.27 Hz, 3 H), 4.74 (d, J=13.80 Hz, 2 H), 4.88-5.09 (m, 2 H), 5.15 (s, 1 H), 7.19-7.30 (m, 9 H), 7.35 (d, J=7.28 Hz, 1 H). LCMS(ES$^+$)(m/z): 504.38 (M+1), 1007.78 (2M+1), 1029.73 (2M+23).

Example 116: (S)-2-((tert-butoxy)-2-(2-(4-methoxycyclohexanecarbonyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 1.02 (s, 9 H) 1.23 - 1.42 (m, 2 H) 1.72 (d, J=11.29 Hz, 2 H) 1.94 (d, J=8.03 Hz, 6 H) 2.24 (d, J=12.55 Hz, 2 H) 2.30 (d, J=7.03 Hz, 3 H) 2.44 (s, 3 H) 2.47 - 2.59 (m, 1 H) 3.24 (br. s., 1 H) 3.42 (d, J=3.01 Hz, 3 H) 4.71 - 4.94 (m, 4 H) 5.19 (d, J=4.52 Hz, 1 H) 7.09 (d, J=6.53 Hz, 1 H) 7.22 - 7.34 (m, 2 H) 7.38 (d, J=5.77 Hz, 1 H). LCMS (ES+)(m/z): 508.54 (M+1), 1015.78 (2M+1), 1037.62 (2M+23).

Example 117: (S)-2-(tert-butoxy)-2-(2-(2-cyclohexylacetyl)-4,7-dimethyl-6-(o-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.42 - 7.31 (m, 1 H), 7.30 - 7.18 (m, 2 H), 7.07 (d, J=7.1 Hz, 1 H), 5.17 (d, J=5.0 Hz, 1 H), 4.90 - 4.69 (m, 4 H), 2.42 (s, 3 H), 2.35 - 2.21 (m, 5 H), 2.04 - 1.93 (m, 1 H), 1.91 (s, 3 H), 1.83 (d, J=12.5 Hz, 2 H), 1.76 - 1.62 (m, 3 H), 1.42 - 1.25 (m, 2 H), 1.24 - 1.09 (m, 1 H), 1.09 - 0.91 (m, 11 H). LCMS(ES+)(m/z): 492 (M+1).

Example 118: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(spiro[3.3]heptane-2-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid
\[\text{Example 119: (S)-2-(tert-butoxy)-2-(2-(3,5-difluorobenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid} \]

\[\text{Example 120: (S)-2-(tert-butoxy)-2-(2-(2,3-difluorobenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid} \]
\(^1\)H NMR (400 MHz, METHANOL-d\(_4\)) \(\delta\) 7.52 - 7.38 (m, 1H), 7.37 - 7.20 (m, 5H), 7.09 (dd, \(J=8.0\), 14.8 Hz, 1H), 5.05 (d, \(J=4.2\) Hz, 1H), 5.01 - 4.90 (m, 2H), 4.75 - 4.65 (m, 2H), 2.42 (d, \(J=7.4\) Hz, 3H), 2.39 - 2.13 (m, 3H), 1.99 - 1.71 (m, 3H), 0.93 (d, \(J=8.3\) Hz, 9H). LCMS(ES\(^+\))(m/z): 508 (M+1).

Example 121: (S)-2-(tert-butoxy)-2-(2-(5-fluoro-2-methylbenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\(^1\)H NMR (400 MHz, METHANOL-d\(_4\)) \(\delta\) 7.36 (td, \(J=5.7, 8.4\) Hz, 1H), 7.31 - 7.21 (m, 3H), 7.19 - 7.03 (m, 3H), 5.04 (d, \(J=4.8\) Hz, 1H), 4.98 - 4.91 (m, 2H), 4.55 (d, \(J=3.2\) Hz, 2H), 2.41 (d, \(J=8.2\) Hz, 3H), 2.37 (s, 1.5H), 2.32 (s, 3H), 2.16 (s, 1.5H), 1.97 - 1.69 (m, 3H), 0.93 (d, \(J=8.9\) Hz, 9H). LCMS(ES\(^+\))(m/z): 504 (M+1).

Example 122: (S)-2-(tert-butoxy)-2-(2-(3-fluoro-5-methoxybenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid
Example 123: (S)-2-(tert-butoxy)-2-(2-(3-fluoro-5-methylbenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

1H NMR (400 MHz, METHANOL-d$_4$) δ 7.32 - 7.21 (m, 3H), 7.08 (dd, J=8.0, 13.4 Hz, 1H), 7.02 - 6.92 (m, 2H), 6.90 - 6.81 (m, 1H), 5.04 (d, J=3.9 Hz, 1H), 4.98 - 4.91 (m, 2H), 4.80 (d, J=4.1 Hz, 2H), 3.86 (d, J=5.7 Hz, 3H), 2.42 (d, J=6.3 Hz, 3H), 2.38 - 2.17 (m, 3H), 1.96 - 1.75 (m, 3H), 0.93 (d, J=6.9 Hz, 9H). LCMS(ES$^+$)(m/z): 520 (M+1).

Example 124: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid.

The title compound was made in a similar manner to Example 1.
1H NMR (400 MHz, METHANOL-d$_4$) δ 7.41 - 7.24 (m, 3H), 7.11 (d, J=7.5 Hz, 1H), 5.07 (s, 1H), 4.66 (d, J=5.0 Hz, 4H), 2.45 (s, 3H), 2.39 (s, 3H), 1.95 (s, 3H), 0.95 (s, 9H). LCMS(ES$^+$)(m/z): 368 (M+1).

Example 125: (S)-2-(tert-butoxy)-2-(2-((2,3-dihydrobenzo[b][1,4]dioxin-5-yl)methyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid.

The title compound was made in a similar manner to Example 1.

1H NMR (400 MHz, CDCl$_3$) δ 7.37 - 7.30 (m, 1H), 7.27 (s, 2H), 7.08 (d, J=7.7 Hz, 1H), 7.03 - 6.84 (m, 3H), 5.14 (s, 1H), 5.00 (t, J=14.0 Hz, 2H), 4.48 - 4.19 (m, 8H), 2.42 (s, 3H), 2.22 (s, 3H), 1.87 (s, 3H), 0.97 (s, 9H). LCMS(ES$^+$)(m/z): 516 (M+1).

Example 126: (S)-2-(tert-butoxy)-2-(2-(tert-butoxycarbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid.

The title compound was made in a similar manner to Example 48.
1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.36 (br. s., 1H), 7.29 - 7.19 (m, 2H), 7.07 (d, \(J=7.4 \) Hz, 1H), 5.16 (d, \(J=2.2 \) Hz, 1H), 4.79 - 4.49 (m, 4H), 2.42 (s, 3H), 2.26 (s, 3H), 1.89 (s, 3H), 1.54 (d, \(J=3.1 \) Hz, 9H), 0.99 (s, 9H). LCMS(ES-)(m/z): 466 (M-1).

Example 127: (S)-2-((tert-butoxy)-2-((4,7-dimethyl-2-(2-oxo-2-(piperidin-1-yl)ethyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

Step 1: (S)-Methyl 2-((tert-butoxy)-2-((4,7-dimethyl-2-(2-oxo-2-(piperidin-1-yl)ethyl)-6-(p-tolyl)isoindolin-5-yl)acetate.
An ice cold suspension of (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-toly1)isoindolin-5-yl)acetate (20 mg, 0.051 mmol) in DCM (0.5 mL) was treated with 2-chloro-1-(piperidin-1-yl)ethanone (9.81 mg, 0.061 mmol), and Et3N (10.57 µl, 0.076 mmol). After 18 h, the reaction mixture was diluted with sat. NaHCO3 and the layers partitioned. The organic phase was washed with with water, brine, dried over Na2SO4, filtered, and concentrated in vacuo to afford the title compound (31.5 mg, 120 % yield) as a brown oil. LCMS(ES+)(m/z): 521.56 (M+1).

Step 2: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-oxo-2-(piperidin-1-yl)ethyl)-6-(p-toly1)isoindolin-5-yl)acetic acid.

An ice cold solution of crude (S)-ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-oxo-2-(piperidin-1-yl)acetyl)-6-(p-toly1)isoindolin-5-yl)acetate (44.3 mg, 0.083 mmol) in THF (3 mL) and ethanol (3 mL) was treated with 2M LiOH (0.208 mL, 0.415 mmol) and stirred at 70 °C. After 18 h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (15 mg, 34.6 % yield) as beige solid. 1H NMR (400MHz, CHLOROFORM-d) δ ppm 7.35 (d, J=7.3 Hz, 1H), 7.30 - 7.18 (m, 2H), 7.08 (br. s., 1H), 5.17 (s, 1H), 5.02 - 4.68 (m, 4H), 3.72 - 3.59 (m, 2H), 3.52 - 3.35 (m, 2H), 2.42 (s, 3H), 2.34 - 2.16 (m, 3H), 1.97 - 1.82 (m, 3H), 1.79 - 1.54 (m, 6H), 1.00 (d, J=3.1 Hz, 9H); LCMS (m/z) ES− = 505 (M-1).

Example 128: (S)-2-((tert-butoxy)-2-(2-imino(piperidin-1-yl)methyl)-4,7-dimethyl-6-(p-toly1)isoindolin-5-yl)acetic acid

Step 1: (S)-Ethyl 2-(tert-butoxy)-2-(2-cyano-4,7-dimethyl-6-(p-toly1)isoindolin-5-yl)acetate
A solution of (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetate (30 mg, 0.076 mmol) and Et$_3$N (0.014 mL, 0.099 mmol) in THF (0.5 mL) was treated with a solution of cyanogen bromide (9.24 mg, 0.087 mmol) in THF (0.5 mL) and stirred at ambient temperature. After 18 h, the mixture was filtered through acrodisc ptfte filter and partitioned between EtOAc and sat. NaHCO$_3$. The organics were washed with brine, dried (Na$_2$SO$_4$), filtered and concentrated in vacuo to afford the title compound (36.9 mg, 115 % yield) as a brown oil. LCMS (m/z) ES$^+$ = 443 (M+Na).

Step 2: (S)-Ethyl 2-(tert-butoxy)-2-(2-(imino(piperdin-1-yl)methyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetate

A solution of (S)-Ethyl 2-(tert-butoxy)-2-(2-cyano-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetate (17.3 mg, 0.041 mmol) in DCM (0.5 mL) was treated with piperidine (0.3 mL) and heated at 60°C. After 18 h, additional piperidine (400 uL) and pyridine (20 uL) was added and stirring continued for an additional 6 h. Additional piperidine (400 uL) and Et$_3$N (0.014 mL, 0.099 mmol), was added and the temperature of the reaction mixture was raised to 70°C. After 18 h, the reaction mixture was diluted with water and the laters partitioned. The organic layer was washed with 1N HCl, brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo to afford the title compound. LCMS (m/z) ES$^+$ = 506 (M+1).
Step 3: (S)-2-(tert-butoxy)-2-(2-(imino(piperidin-1-yl)methyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid.

A solution of (20 mg, 0.041 mmol) in THF (0.5 mL) and EtOH (0.5 mL) was treated with 2M LiOH (205 μL) and stirred at 70°C. After 18 h, the reaction mixture was concentrated in vacuo and the residue purified by reverse phase HPLC to afford the title compound (1.1 mg, 2.073 μmol, 3.91% yield). 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 7.39 - 7.32 (m, 1H), 7.31 - 7.21 (m, 2H), 7.07 (d, J=8.4 Hz, 1H), 5.16 (s, 1H), 4.98 - 4.87 (m, 2H), 4.80 (t, J=14.7 Hz, 2H), 3.43 (br. s., 4H), 2.43 (s, 3H), 2.27 (s, 3H), 1.91 (s, 3H), 1.77 (br. s., 6H), 0.99 (s, 9H); LCMS (m/z) ES⁺ = 478 (M+1).

Example 129: (S)-2-(tert-butoxy)-2-(2-(imino(piperidin-1-yl)methyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

2-oxo-2-(piperidin-1-yl)acetyl chloride

An ice cold solution of 2-oxo-2-(piperidin-1-yl)acetic acid (70 mg, 0.445 mmol) in DCM (1.8 mL) was treated with oxalyl chloride (0.058 mL, 0.668 mmol) and DMF (2 drops). After 1 h, the reaction mixture was concentrated in vacuo to afford the title compound (100.3 mg, 0.571 mmol, 128% yield) as a yellow oil. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 3.64 - 3.52 (m, 2H), 3.46 - 3.31 (m, 2H), 1.81 - 1.60 (m, 6H); LCMS (m/z) ES⁺ = 172 (M+1, methyl ester).

Step 1: (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-oxo-2-(piperidin-1-yl)acetyl)-6-(p-tolyl)isoindolin-5-yl)acetate

89
An ice cold suspension of 2-oxo-2-(piperidin-1-yl)acetyl chloride (17.76 mg, 0.101 mmol) in DCM (0.5 mL) was treated dropwise with a solution of (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (40 mg, 0.101 mmol) in DCM (0.5 mL), Et₃N (0.014 mL, 0.101 mmol) and was then warmed to ambient temperature. After 18h, the reaction mixture was diluted with sat. aq. NaHCO₃, extracted with DCM, washed with water, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-100% EtOAc/Hexane) to afford the title compound (44.3 mg, 0.083 mmol, 82% yield) as brown oil. LCMS (m/z) ES⁺ = 1070 (2M+1).

Step 2: (S)-2-(tert-butoxy)-2-(2-imino(piperidin-1-yl)methyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

An ice cold solution of (S)-ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-oxo-2-(piperidin-1-yl)acetyl)-6-(p-tolyl)isoindolin-5-yl)acetate (44.3 mg, 0.083 mmol) in THF (3 mL) and Ethanol (3 mL) was treated with 2M LiOH (0.208 mL, 0.415 mmol) and stirred at 70 °C. After 18h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (15 mg, 34.6% yield) as beige solid. ¹H NMR (400MHz, CHLOROFORM-d) δ ppm 7.35 (d, J=7.3 Hz, 1H), 7.30 - 7.18 (m, 2H), 7.08 (br. s., 1H), 5.17 (s, 1H), 5.02 - 4.68 (m, 4H), 3.72 - 3.59 (m, 2H), 3.52 - 3.35 (m, 2H), 2.42 (s, 3H), 2.34 - 2.16 (m, 3H), 1.97 - 1.82 (m, 3H), 1.79 - 1.54 (m, 6H), 1.00 (d, J=3.1 Hz, 9H); LCMS (m/z) ES⁺ = 505 (M-1).

Example 130: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((R)-3-methylmorpholino)-2-oxoacetyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid.

The title compound was made in a similar manner as Example 129.
1H NMR (400 MHz, METHANOL-d$_4$) δ 7.34 - 7.23 (m, 3H), 7.15 - 7.05 (m, 1H), 5.08 - 5.02 (m, 1H), 4.97 - 4.75 (m, 4H), 4.52 (dt, J=2.8, 6.8 Hz, 0.5H), 4.25 - 4.15 (m, 0.5H), 4.03 - 3.94 (m, 0.5H), 3.92 - 3.81 (m, 1H), 3.81 - 3.74 (m, 0.5H), 3.73 - 3.48 (m, 3H), 3.45 (d, J=12.0 Hz, 0.5H), 3.28 - 3.18 (m, 0.5H), 2.42 (s, 3H), 2.32 (d, J=18.1 Hz, 3H), 1.94 - 1.83 (m, 3H), 1.49 - 1.34 (m, 3H), 1.00 - 0.86 (m, 9H). LCMS(ES-)(m/z): 521 (M-1).

Example 131: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(piperidine-1-carbonothioyl)-6-(p-toly)isoindolin-5-yl)acetic acid.

Step 1. (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(piperidine-1-carbonothioyl)-6-(p-toly)isoindolin-5-yI)acetate
An ice cold suspension of 1,1'-thiocarbonyldiimidazole (18.92 mg, 0.106 mmol) in DCM (1 mL) was treated dropwise with a solution of (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (40 mg, 0.101 mmol) in DCM (1 mL). After 25 min, the reaction mixture was treated with piperidine (0.011 mL, 0.111 mmol) and stirring continued at 0 °C. After 1 h, additional piperidine (9 uL) and pyridine (9 uL, 0.111 mmol) was added and stirring continued at 0 °C. After 1 h, the reaction mixture was warmed to 40 °C. After 18 h, the reaction mixture was warmed to 60 °C. After 18 h, additional DCM (0.5 mL) and piperidine (200 uL) was added and the reaction mixture warmed to 80 °C. After 18 h, the reaction mixture was cooled to ambient temperature, diluted with water, extracted with DCM, and washed with 1N HCl, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to afford the title compound (38.7 mg, 0.074 mmol, 73.2 % yield) as brown foam. LCMS (m/z) ES⁺ = 523 (M+1).

Step 2. (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(piperidine-1-carbonothioyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid.

A solution of crude (S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-2-(piperidine-1-carbonothioyl)-6-(p-tolyl)isoindolin-5-yl)acetate (38.7 mg, 0.074 mmol) in THF (1.5 mL) and Ethanol (1.5 mL) was treated with 2M LiOH (0.37 mL, 0.74 mmol) was warmed to 65 °C. After 18 h, the reaction was cooled to ambient temperature and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (16.6 mg, 0.032 mmol, 31.9 % yield) as pinkish beige solid. ¹H NMR (400MHz, METHANOL-d₄) δ ppm 7.33 - 7.22 (m, 3H), 7.09 (d, J=8.2 Hz, 1H), 5.11 - 4.92 (m, 5H), 3.47 (br. s., 4H), 2.42 (s, 3H), 2.32 (s, 3H), 1.89 (s, 3H), 1.71 (br. s., 6H), 0.94 (s, 9H); LCMS (m/z) ES⁺ = 495 (M+1).

Example 132: (S)-2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid
(S)-methyl 2-(tert-butoxy)-4-(4-chlorophenyl)but-3-ynoate

\[
\begin{align*}
\text{O} & \quad \text{CO}_2\text{Me} \\
\text{Cl} & \quad \text{C}_3\text{H}_5
\end{align*}
\]

The title compound was made in a manner similar to Step 6 in Example 8 except using 1-chloro-4-iodobenzene in Step 3. \(^1\)H NMR (400MHz, CHLOROFORM-d) \(\delta = 7.42 - 7.38\) (m, 2H), 7.30 (d, \(J=8.3\) Hz, 2H), 4.98 (s, 1H), 3.85 (s, 3H), 1.34 (s, 9H).

Step 1: (S)-benzyl 5-(1-(tert-butoxy)-2-methoxy-2-oxoethyl)-6-(4-chlorophenyl)-4,7-dimethylisopindoline-2-carboxylate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{OMe} & \quad \text{O} \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{Ph}
\end{align*}
\]

To an oven dried flask under \(N_2\) was added racemic BINAP (18 mg, 0.029 mmol) and [Rh(cod)_2]BF_4 (11.5 mg, 0.029 mmol) in dry DCM (5 mL). After 5 min, \(H_2\) gas was bubbled through the solution and the reaction mixture stirred under an atmosphere of \(H_2\). After 1 h, a solution of (S)-methyl 2-(tert-butoxy)-4-(4-chlorophenyl)but-3-ynoate (80 mg, 0.285 mmol) in DCM (1 mL) was added, followed by the dropwise addition of a solution of benzyl di(but-2-yn-1-yl)carbamate (109 mg, 0.427 mmol) in DCM (1 mL) and the reaction mixture was heated to reflux. After 3 h, the reaction mixture was charged with additional benzyl di(but-2-yn-1-yl)carbamate (109 mg, 0.427 mmol) in DCM (1 mL) and stirring continued. After 1 h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc-hexanes) to afford the title compound (85 mg, 0.159 mmol, 55.6 % yield). \(^1\)H NMR (400MHz, CHLOROFORM-d) \(\delta = 7.50 - 7.27\) (m, 8H), 7.14 (ddd, \(J=2.1, 3.7, 8.0\) Hz, 1H), 5.26 (d, \(J=2.8\) Hz, 2H), 4.95 (s, 1H), 4.76 (dd, \(J=10.0, 14.6\) Hz, 2H), 3.70 (d, \(J=2.0\) Hz, 3H), 2.33 (d, \(J=11.3\) Hz, 2H), 1.86 (d, \(J=11.8\) Hz, 2H), 1.00 (d, \(J=1.5\) Hz, 9H). LCMS (ES+)(m/z): 558.4 (M+Na).

93
Step 2: (S)-Methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethylisoindolin-5-yl)acetate

A solution of (S)-benzyl 5-(1-(tert-butoxy)-2-methoxy-2-oxoethyl)-6-(4-chlorophenyl)-4,7-dimethylisoindoline-2-carboxylate (70 mg, 0.131 mmol) in MeOH (1.5 mL) was treated with Pd/C (14.0 mg, 0.131 mmol) and then placed under an atmosphere of H₂. After 1 h, the reaction mixture was filtered through a pad of Celite and the filtrate concentrated in vacuo to afford the title compound (64 mg, 56%). ¹H NMR (400MHz, CHLOROFORM-d) δ = 7.48 - 7.38 (m, 2H), 7.29 - 7.21 (m, 1H), 7.10 (dd, J=2.0, 8.0 Hz, 1H), 4.91 (s, 1H), 4.62 - 4.47 (m, 4H), 3.68 (s, 3H), 2.36 - 2.26 (m, 3H), 1.88 - 1.78 (m, 3H), 1.02 - 0.92 (m, 9H). LCMS (ES+)(m/z): 402.9 (M+H).

Step 3: (S)-Methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetate.

An ice cold solution of phosgene (20% in toluene) (0.079 mL, 0.149 mmol) was treated dropwise with a solution of (S)-Methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethylisoindolin-5-yl)acetate (20 mg, 0.050 mmol) in THF (1.25 mL). After 30 min, the reaction mixture was concentrated in vacuo and redissolved in THF (1.2 mL). The reaction mixture was cooled to 0 °C and pyridine (4.23 µl, 0.052 mmol) was added, followed by piperidine (5.16 µl, 0.052 mmol). After 30 min, the reaction mixture was wanted to ambient temperature. After 1 h, the reaction mixture was diluted with H₂O and extracted with EtOAc. The organics were washed with 1M HCl, H₂O, brine, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was
purified by silica gel chromatography (0-100% EtOAc-Hexanes) to afford the title compound (20 mg, 0.039 mmol, 78 % yield). LCMS (ES+)(m/z): 513.44 (M+H).

Step 4: (S)-Methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetate.

A solution of (S)-Methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetate (20 mg, 0.039 mmol) in 1,4-dioxane (1.2 mL) was treated with 2M LiOH (0.373 mL, 0.746 mmol) and warmed to 70 °C. After 72 h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (6.0 mg, 24%). 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.99 (s, 10 H) 1.64 (br. s., 6 H) 1.87 (s, 3 H) 2.26 (s, 3 H) 3.30 (br. s., 4 H) 4.69 (t, J=14.38 Hz, 2 H) 4.75 - 4.88 (m, 2 H) 5.04 (br. s., 1 H) 7.12 (d, J=7.50 Hz, 1 H) 7.38 - 7.50 (m, 3 H). LCMS (ES+)(m/z): 499.44 (M+H).

Example 133: (S)-2-(tert-butoxy)-2-(6-(4-chlorophenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid.

![Image of the molecule]

Step 1: (S)-Methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetate

![Image of the molecule]
To a solution of (S)-methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-4,7-dimethylisoindolin-5-yl)acetate (19.5 mg, 0.049 mmol) in EtOAc (0.5 mL) was added 3-fluorobenzoic acid (13.60 mg, 0.097 mmol), triethylamine (0.020 mL, 0.146 mmol), and T3P (50% weight) (0.072 mL, 0.121 mmol). After 1.5 h, the reaction mixture was poured into sat. aq. NaHCO₃ and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica chromatography (0-40% EtOAc-Hexanes) to afford the title compound (13 mg, 0.025 mmol, 51.1% yield). LCMS (ES+)(m/z): 524.42 (M+H).

Step 2: (S)-2-(tert-butoxy)-2-(6-(4-chlorophenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid.

A solution of (S)-methyl 2-(tert-butoxy)-2-(6-(4-chlorophenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetate (13 mg, 0.025 mmol) in 1,4-dioxane (0.5 mL) was treated with 2 M LiOH (0.125 mL, 0.25 mmol) and heated to 70 °C. After 16 h, the reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was dissolved in DCM and washed with 1 M HCl. The organic layer was dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by reverse phase HPLC to afford the title compound (7.5 mg, 0.015 mmol, 30.3% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.53 - 7.29 (m, 5H), 7.23 - 6.98 (m, 3H), 5.05 (br. s., 1H), 5.05 - 4.64 (m, 4H), 2.36 - 2.13 (d, 3H), 1.94 - 1.74 (d, 3H), 1.00 (d, 9H). LCMS (ES+)(m/z): 510.41/512.39 (M+1).

Example 134: (S)-2-(tert-butoxy)-2-(6-(4-chlorophenyl)-2-(cyclohexanecarbonyl)-4,7-dimethylisoindolin-5-yl)acetic acid.

The title compound was made in a similar manner as Example 133.
1H NMR (400 MHz, CDCl3) δ ppm 7.47 - 7.38 (m, 3H), 7.13 (d, 1H), 5.06 (br. s., 1H), 4.89 -
4.71 (m, 4H), 2.56 - 2.43 (m, 1H), 2.28 (d, 3H), 1.89 (d, 3H), 1.82 (d, 4H), 1.76 - 1.29 (m, 6H),
1.01 (s, 9H). LCMS(ES$^+$)(m/z): 498.48/500.51 (M+1).

Example 135: (S)-2-(tert-butoxy)-2-(6-(4-chlorophenyl)-2-(3,3-dimethylbutanoyl)-4,7-
 dimethylisopindolin-5-yl)acetic acid.

The title compound was made in a similar manner as Example 133.

![Chemical structure](image)

1H NMR (400 MHz, CDCl3) δ ppm 7.49 - 7.39 (m, 3 H), 7.13 (br. s., 1 H), 5.06 (br. s., 1 H), 4.88
- 4.72 (m, 4 H), 2.36 - 2.30 (m, 2 H), 2.27 (s, 3 H), 1.88 (s, 3 H), 1.13 (d, 9 H), 1.01 (s, 9 H).
LCMS(ES$^+$)(m/z): 486.46/488.39 (M+1).

Example 136: (S)-2-(tert-butoxy)-2-((R)-2-(5-fluoro-2-methylbenzoyl)-6-(8-fluoro-5-
methylchroman-6-yl)-4,7-dimethylisopindolin-5-yl)acetic acid.

The title compound was made in a similar manner as Example 103.

![Chemical structure](image)

1H NMR (400 MHz, CDCl3) δ 7.26 (m, 1H) (under CHCl$_3$), 7.09-6.97 (m, 2H), 6.68 (m, 1H),
5.13-4.95 (m, 3H), 4.50 (m, 2H), 4.27 (m, 2H), 2.69 (m, 2H), 2.35 (m, 4H), 2.19-2.16 (m, 3H),
1.90-1.80 (m, 5H), 1.68-1.51 (m, 2H), 1.14 (m, 9H). LCMS(ES$^+$)(m/z): 578.47 (M+1)

Examples 137-162 were made in a similar manner as Example 103.
Example 137: (S)-2-(tert-butoxy)-2-((M)-2-(cyclohexanecarbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl3) δ (mixture of rotamers) 6.69 (m, 1H), 5.08 (s, 1H), 4.82 (m, 4H), 4.27 (m, 2H), 2.70 (m, 2H), 2.50 (m, 1H), 2.30 (m, 3H), 2.13 (m, 2H), 1.90-1.54 (m, 13H), 1.33 (m, 3H), 1.14 (m, 9H); LCMS(ES+)(m/z): 552.62 (M+1)

Example 138: (S)-2-((M)-2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

1H NMR (400 MHz, CHLOROFORM-d) δ (mixture of rotamers) 7.04-6.87 (m, 3H), 6.67 (m, 1H), 6.04 (m, 2H), 5.09-4.95 (m, 3H), 4.85-4.71 (m, 2H), 4.26 (m, 2H), 2.69 (m, 2H), 2.36-2.14 (m, 3H), 2.10 (m, 2H), 1.89-1.64 (m, 6H), 1.11 (m, 9H); ES+MS:590.47 (M+1)

Example 139: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(3-methoxy-2-methylbenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
Example 140: (S)-2-(tert-butoxy)-2-((M)-2-(3-fluoro-5-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yi)-4,7-dimethylisoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } &\delta \text{ mixture of rotomers: 7.25 (m, 1H), 6.90 (m, 2H), 6.67 (m, 1H),} \\
&5.06-4.99 (m, 3H), 4.48 (m, 2H), 4.27 (m, 2H), 3.88 (m, 3H), 2.70 (m, 2H), 2.35-2.14 (m, 8H),} \\
&1.87-1.63 (m, 6H), 1.13 (m, 9H). \text{ LCMS(ES\text{+})(m/z): 590.57 (M+1).}
\end{align*}
\]

Example 141: (S)-2-(tert-butoxy)-2-((M)-2-(3-fluoro-2-methylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yi)-4,7-dimethylisoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } &\delta \text{ mixture of rotomers: 6.88 (m, 2H), 6.71 (m, 2H), 5.06-4.98 (m, 3H),} \\
&4.74 (m, 2H), 4.27 (m, 2H), 3.86 (m, 3H), 2.89 (m, 2H), 2.35-2.20 (m, 3H), 2.13 (m, 2H), 1.86-1.69 (m, 6H), 1.13 (m, 9H). \text{ LCMS(ES\text{+})(m/z): 594.55 (M+1).}
\end{align*}
\]
\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ mixture of rotamers: 7.28 (m, 1H), 7.10 (m, 2H), 6.67 (m, 1H), 5.06-4.99 (m, 3H), 4.49 (m, 2H), 4.28 (m, 2H), 2.69 (m, 2H), 2.36-2.12 (m, 8H), 1.87-1.65 (m, 6H), 1.13 (m, 9H). LCMS(ES\(^+\))(m/z): 578.55 (M+1).

Example 142: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(2-methylnicotinoyl)isoindolin-5-yl)acetic acid

\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ mixture of rotamers: 8.91 (s, 1H), 8.16 (m, 1H), 7.74 (m, 1H), 6.65 (m, 1H), 5.06 (m, 3H), 4.54 (m, 2H), 4.28 (m, 2H), 2.85 (m, 3H), 2.70 (m, 2H), 2.27 (m, 5H), 1.76 (m, 6H), 1.13 (m, 9H). LCMS(ES\(^+\))(m/z): 561.55 (M+1).

Example 143: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(5-methoxynicotinoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
\[\text{Example 144: (S)-2-(\text{tert-butoxy})-2-((M)-2-(3-fluoro-4-methylbenzoyl)}-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl)acetic acid} \]

\[\text{Example 145: (S)-2-(\text{tert-butoxy})-2-((M)-2-(4-fluoro-3-methylbenzoyl)}-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl)acetic acid} \]
1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.45-7.39 (m, 2H), 7.08 (m, 1H), 6.67 (m, 1H), 5.06-4.99 (m, 3H), 4.76 (m, 2H), 4.27 (m, 2H), 2.69 (m, 2H), 2.35-2.12 (m, 8H), 1.86-1.69 (m, 6H), 1.13 (m, 9H). LCMS(ES$^+$)(m/z): 578.50 (M$^+$).

Example 146: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(2-methylbenzoyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.36-7.27 (m, 4H), 6.67 (m, 1H), 5.06-5.00 (m, 3H), 4.49 (m, 2H), 4.28 (m, 2H), 2.69 (m, 2H), 2.39-2.12 (m, 8H), 1.87-1.63 (m, 6H), 1.13 (m, 9H). LCMS(ES$^+$)(m/z): 560.53 (M$^+$).

Example 147: (S)-2-(tert-butoxy)-2-((M)-2-(3-chlorobenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.57 (s, 1H), 7.46-7.41 (m, 3H), 6.68 (m, 1H), 5.06-4.99 (m, 3H), 4.73 (m, 2H), 4.27 (m, 2H), 2.69 (m, 2H), 2.35-2.12 (m, 5H), 1.86-1.69 (m, 6H), 1.13 (m, 9H). LCMS(ES$^+$)(m/z): 580.48 (M+1).

Example 148: (S)-2-(tert-butoxy)-2-((M)-2-(2-fluoro-3-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoadolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.20-6.99 (m, 3H), 6.67 (m, 1H), 5.06-4.99 (m, 3H), 4.67 (m, 2H), 4.27 (m, 2H), 3.95 (m, 3H), 2.69 (m, 2H), 2.35-2.12 (m, 5H), 1.88-1.66 (m, 6H), 1.13 (m, 9H). LCMS(ES$^+$)(m/z): 594.55 (M+1).

Example 149: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(3-methylbenzoyl)isoadolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.39-7.27 (m, 4H), 6.68 (m, 1H), 5.07-5.00 (m, 3H), 4.75 (m, 2H), 4.28 (m, 2H), 2.70 (m, 2H), 2.42 (m, 3H), 2.35-2.11 (m, 5H), 1.87-1.68 (m, 6H), 1.14 (m, 9H). LCMS(ES+)(m/z): 560.55 (M+1).

Example 150: (S)-2-((tert-butoxy)-2-((M)-2-(5-fluoro-2-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.12-7.07 (m, 2H), 6.94 (m, 1H), 6.68 (m, 1H), 5.07 (s, 1H), 4.99 (m, 2H), 4.62-4.57 (m, 2H), 4.27 (m, 2H), 3.86 (m, 3H), 2.69 (m, 2H), 2.34-2.12 (m, 5H), 1.88-1.66 (m, 6H), 1.14 (m, 9H). LCMS(ES+)(m/z): 594.55 (M+1).

Example 151: (S)-2-((M)-2-(benzoflthiophene-4-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

104
1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.99 (m, 1H), 7.57 (m, 1H), 7.50-7.41 (m, 3H), 6.67 (m, 1H), 5.14-5.06 (m, 3H), 4.67-4.59 (m, 2H), 4.27 (m, 2H), 4.70 (m, 2H), 2.38-2.08 (m, 5H), 1.89-1.59 (m, 6H), 1.13 (m, 9H). LCMS(ES$^+$(m/z): 602.49 (M+1).

Example 152: (S)-2-(tert-butoxy)-2-((M)-2-(2,3-dihydrobenzofuran-7-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyloindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers: 7.31-7.27 (m, 2H), 6.94 (m, 1H), 6.68 (m, 1H), 5.07-4.99 (m, 3H), 4.82-4.74 (m, 2H), 4.66 (m, 2H), 4.27 (m, 2H), 3.29 (m, 2H), 2.70 (m, 2H), 2.34-2.12 (m, 5H), 1.87-1.68 (m, 6H), 1.14 (m, 9H). LCMS(ES$^+$(m/z): 588.48 (M+1).

Example 153: (S)-2-(tert-butoxy)-2-((M)-2-(2,3-dihydrobenzofuran[1,4]dioxine-5-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyloindolin-5-yl)acetic acid
Example 154: (S)-2-((tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(1-methyl-1H-indazole-5-carbonyl)isoindolin-5-yl)acetilacetic acid

\[
\begin{align*}
\text{H NMR} &\ (400 \text{ MHz, CDCl}_3) &\delta \text{ mixture of rotamers: } 8.09 \text{ (m, 1H), } 8.02 \text{ (m, 1H), } 7.65 \text{ (m, 1H), } 7.49 \text{ (m, 1H), } 6.68 \text{ (m, 1H), } 5.08-5.05 \text{ (m, 3H), } 4.81 \text{ (m, 2H), } 4.27 \text{ (m, 2H), } 4.14 \text{ (m, 3H), } 2.69 \text{ (m, 2H), } 2.37-2.12 \text{ (m, 5H), } 1.88-1.66 \text{ (m, 6H), } 1.14 \text{ (m, 9H). LCMS(ES\text{+})(m/z): 600.5 \text{ (M+1).}}
\end{align*}
\]

Example 155: (S)-2-((tert-butoxy)-2-((2-(2-(tert-buty1)benzoyl)-6-((M)-8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetilacetic acid
Example 156: \((S)-2-((t-butoxy)-2-(6-(6-(M)-8-fluoro-5-methylchroman-6-yl)-2-(3-methoxy-4-methylbenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

Example 157: \((S)-2-((t-butoxy)-2-(2-(2,5-dimethylbenzoyl)-6-(6-(M)-8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.19-7.04 (m, 3H), 6.66 (m, 1H), 5.01 (m, 3H), 4.48 (m, 2H), 4.25 (m, 2H), 2.0-2.05 (m, 11H), 1.89-1.59 (m, 6H) 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 574.40 (M+1); 1147.97 (2M+1).

Example 158: (S)-2-(2-benzoyl-6-((M)-8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.58 (m, 2H), 7.49 (m, 3H), 6.68 (m, 1H), 5.04 (m, 3H), 4.75 (m, 2H), 4.27 (m, 2H), 2.69 (m, 2H), 2.40-2.04 (m, 5H), 1.91-1.63 (m, 6H) 1.13 (m, 9H). LCMS (ES$^+$)(m/z): 546.52 (M+1); 1091.89 (2M+1).

Example 159: (S)-2-(tert-butoxy)-2-(6-((M)-8-fluoro-5-methylchroman-6-yl)-2-(3-methoxybenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
Example 160: (S)-2-(tert-butoxy)-2-(6-((M)-8-fluoro-5-methylchroman-6-yl)-2-(5-methoxy-2-methylbenzoyl)-4,7-dimethylisooindolin-5-yl)acetic acid

Example 161: (S)-2-(tert-butoxy)-2-(2-(2,3-dihydro-1H-indene-4-carbonyl)-6-((M)-8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisooindolin-5-yl)acetic acid
Example 162: (S)-2-(tert-butoxy)-2-((M)-2-(2,2-difluorobenzo[d][1,3]dioxole-4-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, CHLOROFORM-d)} \delta \text{ ppm 7.32 - 7.25 (m, 1H), 7.24 - 7.12 (m, 2H), 6.68 (t, J=10.6 Hz, 1H), 5.08 (br. s., 1H), 5.03 (d, J=15.0 Hz, 2H), 4.77 (d, J=15.5 Hz, 2H), 4.35 - 4.21 (m, 2H), 2.84 - 2.58 (m, 2H), 2.44 - 2.05 (m, 5H), 1.93 - 1.62 (m, 6H), 1.14 (d, J=6.6 Hz, 9H); LCMS (m/z) ES+ = 626.50 (M+1).} \]

Examples 163-167 were made in a similar manner as Example 105.

Example 163: (S)-2-(tert-butoxy)-2-(2-(2-methoxybenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-d\textsubscript{4}) \delta ppm 7.53 - 7.43 (m, 1H), 7.34 (td, J=1.9, 7.5 Hz, 1H), 7.31 - 7.21 (m, 3H), 7.20 - 7.03 (m, 3H), 5.04 (d, J=4.4 Hz, 1H), 4.91 (br. s., 2H), 4.60 (br. s, 2H), 3.89 (d, J=5.1 Hz, 3H), 2.41 (d, J=8.3 Hz, 3H), 2.38 - 2.10 (m, 3H), 1.97 - 1.68 (m, 3H), 0.93 (d, J=9.2 Hz, 9H); LCMS (m/z) ES+ = 502.52 (M+1).} \]

Example 164: (S)-2-(tert-butoxy)-2-(2-(2,3-dihydrobenzofuran-7-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

110
Example 165: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(1-methyl-1H-indole-4-carbonyl)-6-(p-toly1)isoindolin-5-yl)acetic acid

1H NMR (400MHz, METHANOL-d_4) δ ppm 7.36 (t, $J=7.1$ Hz, 1H), 7.32 - 7.18 (m, 4H), 7.09 (dd, $J=7.7$, 12.5 Hz, 1H), 6.96 (dt, $J=5.7$, 7.5 Hz, 1H), 5.05 (d, $J=3.2$ Hz, 1H), 4.91 (br. s., 2H), 4.77 (br. s., 2H), 4.66 (q, $J=8.5$ Hz, 2H), 3.37 - 3.22 (m, 2H), 2.42 (d, $J=6.6$ Hz, 3H), 2.38 - 2.13 (m, 3H), 1.97 - 1.71 (m, 3H), 0.93 (d, $J=7.1$ Hz, 9H); LCMS (m/z) ES$^+$ = 514.54 (M+1).

Example 166: (S)-2-(2-(benzo[b]thiophene-4-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)-2-(tert-butoxy)acetic acid

1H NMR (400MHz, METHANOL-d_4) δ ppm 7.55 (t, $J=8.1$ Hz, 1H), 7.37 - 7.19 (m, 6H), 7.16 - 6.98 (m, 1H), 6.48 (d, $J=3.0$ Hz, 1H), 5.10 - 4.97 (m, 3H), 4.67 (d, $J=3.2$ Hz, 2H), 3.87 (d, $J=7.4$ Hz, 3H), 2.49 - 2.32 (m, 4.5H), 2.06 (s, 1.5H), 1.96 (s, 1.5H), 1.63 (s, 1.5H), 0.94 (s, 4.5H), 0.90 (s, 4.5H); LCMS (m/z) ES$^+$ = 525.57 (M+1).
Example 167: \((S)-2-\{(2\text{-benzofuran-7-carbonyl})-4,7\text{-dimethyl-6-(p-tolyl)isoindolin-5-yl}\}-2\{\text{tert-butoxy}\}\text{acetic acid}\)

\[
\begin{align*}
\text{H NMR (400MHz, METHANOL-\text{d}_4)} & \delta \text{ ppm 8.08 (t, } J=7.7 \text{ Hz, 1H), 7.73 (t, } J=5.1 \text{ Hz, 1H), 7.61 - 7.40 (m, 3H), 7.34 - 7.19 (m, 3H), 7.15 - 6.98 (m, 1H), 5.12 - 4.99 (m, 3H), 4.63 (d, } J=3.5 \text{ Hz, 2H), 2.46 - 2.35 (m, 4.5H), 2.08 (s, 1.5H), 1.97 (s, 1.5H), 1.65 (s, 1.5H), 0.94 (s, 4.5H), 0.90 (s, 4.5H); LCMS (m/z) ES^+ = 528.50 (M+1).}
\end{align*}
\]

Examples 168 - 200 were made in a similar manner as Example 103.

Example 168: \((S)-2-\{(M)-2\{1\text{-naphthoyl})-6\{8\text{-fluoro-5-methylchroman-6-yl}\}-4,7\text{-dimethylisoindolin-5-yl}\}-2\{\text{tert-butoxy}\}\text{acetic acid}\)
Example 169: (S)-2-((M)-2-(benzofuran-7-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisopindolin-5-yl)-2-(tert-butoxy)acetic acid

Example 170: (S)-2-(tert-butoxy)-2-(3,5-difluorobenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisopindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.10 (m, 2H), 6.93 (m, 1H), 6.66 (m, 1H), 5.10-4.91 (m, 3H), 4.72 (m, 2H), 4.26 (m, 2H), 2.68 (m, 2H), 2.37-2.05 (m, 5H), 1.89-1.65 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 582.51 (M+1); 1163.80 (2M+1).

Example 171: \((S)-2-(\text{tert-butoxy})-2-((M)-2-(3\text{-chloro-4-fluorobenzoyl})-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}

\[\text{Structure Image}\]

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.66 (m, 1H), 7.48 (m, 1H), 7.24 (m, 1H), 6.66 (m, 1H), 5.00 (m, 3H), 4.73 (m, 2H), 4.26 (m, 2H), 2.67 (m, 2H), 2.37-2.04 (m, 5H), 1.89-1.64 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 598.34 (M+1); 1197.48 (2M+1).

Example 172: \((S)-2-(\text{tert-butoxy})-2-((M)-2-(3\text{-chloro-2-methylbenzoyl})-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}

\[\text{Structure Image}\]

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.43 (m, 1H), 7.21 (m, 2H), 6.65 (m, 1H), 5.01 (m, 3H), 4.46 (m, 2H), 4.25 (m, 2H), 2.67 (m, 2H), 2.43-2.04 (m, 8H), 1.90-1.60 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 598.35 (M+1); 1189.84 (2M+1).

Example 173: \((S)-2-(\text{tert-butoxy})-2-((M)-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethyl-2-(3,4,5-trifluorobenzoyl)isoindolin-5-yl})\text{acetic acid}

\[\text{Structure Image}\]
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 7.25 (m, 2H), 6.66 (m, 1H), 5.12-4.91 (m, 3H), 4.74 (m, 2H), 4.25 (m, 2H), 2.68 (m, 2H), 2.36-2.05 (m, 5H), 1.89-1.65 (m, 6H), 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 600.52 (M+1).

Example 174: \((S)-2\text{-}	ext{(tert-butoxy)}\text{-}2\text{-}\text{(M)}\text{-}6\text{-}(8\text{-}fluoro\text{-}5\text{-}methylchroman\text{-}6\text{-}yl)}\text{-}2\text{-}(4\text{-}fluorobenzoyl)}\text{-}4,7\text{-}dimethylisoindolin\text{-}5\text{-}yl)\text{acetic acid}

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 7.59 (m, 2H), 7.16 (m, 2H), 6.66 (m, 1H), 5.03 (m, 3H), 4.74 (m, 2H), 4.26 (m, 2H), 2.68 (m, 2H), 2.38-2.04 (m, 5H), 1.90-1.62 (m, 6H), 1.11 (m, 9H). LCMS (ES\(^+\))(m/z): 564.53 (M+1); 1127.26 (2M+1).

Example 175: \((S)-2\text{-}(\text{tert-butoxy})\text{-}2\text{-}\text{(M)}\text{-}2\text{-}(4\text{-}chloro\text{-}3,5\text{-}difluorobenzoyl)}\text{-}6\text{-}(8\text{-}fluoro\text{-}5\text{-}methylchroman\text{-}6\text{-}yl)}\text{-}4,7\text{-}dimethylisoindolin\text{-}5\text{-}yl)\text{acetic acid}
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.22 (m, 2H), 6.66 (m, 1H), 5.03 (m, 3H), 4.72 (m, 2H), 4.26 (m, 2H), 2.68 (m, 2H), 2.38-2.05 (m, 5H), 1.90-1.66 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 616.31 (M$+1$).

Example 176: (S)-2-(tert-butoxy)-2-((M)-2-(2,3-difluorobenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.23 (m, 3H), 6.65 (m, 1H), 5.01 (m, 3H), 4.66 (m, 2H), 4.26 (m, 2H), 2.68 (m, 2H), 2.39-2.03 (m, 5H), 1.90-1.63 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 582.35 (M$+1$); 1163.74 (2M$+1$).

Example 177: (S)-2-(tert-butoxy)-2-((M)-2-(5-fluoro-2-methylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.26 (m, 1H), 7.01 (m, 2H), 6.66 (m, 1H), 5.02 (m, 3H), 4.48 (m, 2H), 4.26 (m, 2H), 2.68 (m, 2H), 2.38-2.04 (m, 8H), 1.90-1.60 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 578.38 (M$+1$); 1156.42 (2M$+1$).

Example 178: (S)-2-(tert-butoxy)-2-((M)-2-(3-fluoro-5-methylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.15 (m, 1H), 7.10-6.93 (m, 2H), 6.66 (m, 1H), 5.01 (m, 3H), 4.71 (m, 2H), 4.25 (m, 2H), 2.68 (m, 2H), 2.45-2.04 (m, 8H), 1.91-1.63 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 578.45 (M+1); 1155.76 (2M+1).

Example 179: (S)-2-((tert-butoxy)-2-((M)-2-(2-fluoro-5-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.08 (m, 1H), 6.94 (m, 2H), 6.66 (m, 1H), 5.02 (m, 3H), 4.68 (m, 2H), 4.26 (m, 2H), 3.81 (m, 3H), 2.68 (m, 2H), 2.38-2.03 (m, 5H), 1.91-1.63 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 594.49 (M+1); 1187.73 (2M+1).

Example 180: (S)-2-((tert-butoxy)-2-((M)-2-(4-fluoro-3-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
\(^1 \text{H NMR (400 MHz, CDCl}_3 \) \(\delta \) (mixture of rotamers) 7.21 (m, 1H), 7.13 (m, 2H), 6.66 (m, 1H), 5.01 (m, 3H), 4.75 (m, 2H), 4.25 (m, 2H), 3.92 (m, 3H), 2.67 (m, 2H), 2.38-2.02 (m, 5H), 1.92-1.64 (m, 6H), 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 594.48 (M+1); 1178.78 (2M+1).

Example 181: \((S)-2-(\text{tert}-\text{butoxy})-2-((M)-2-(\text{3-chloro-5-fluorobenzoyl})-6-(\text{8-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisooindolin-5-yl})\text{acetic acid} \)

![Chemical structure](image1)

\(^1 \text{H NMR (400 MHz, CDCl}_3 \) \(\delta \) (mixture of rotamers) 7.36 (m, 1H), 7.19 (m, 2H), 6.66 (m, 1H), 5.02 (m, 3H), 4.71 (m, 2H), 4.25 (m, 2H), 2.68 (m, 2H), 2.37-2.04 (m, 5H), 1.90-1.65 (m, 6H), 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 598.35 (M+1); 1197.65 (2M+1).

Example 182: \((S)-2-(\text{tert}-\text{butoxy})-2-((M)-6-(\text{8-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethyl-2-(5-methylnicotinoyl)}\text{isooindolin-5-yl})\text{acetic acid} \)

![Chemical structure](image2)

\(^1 \text{H NMR (400 MHz, CDCl}_3 \) \(\delta \) (mixture of rotamers) 8.92 (m, 1H), 8.74 (m, 1H), 8.23 (m, 1H), 6.66 (m, 1H), 5.04 (m, 3H), 4.81 (m, 2H), 4.26 (m, 2H), 2.76-2.53 (m, 5H), 2.39-2.04 (m, 5H), 1.92-1.64 (m, 6H), 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 561.37 (M+1); 1121.84 (2M+1).

Example 183: \((S)-2-(\text{tert}-\text{butoxy})-2-((M)-6-(\text{8-fluoro-5-methylchroman-6-yl})-2-(\text{2-methoxy-5-methylbenzoyl})-4,7\text{-dimethylisooindolin-5-yl})\text{acetic acid} \)
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.19 (m, 1H), 7.12 (s, 1H), 6.87 (m, 1H), 6.66 (m, 1H), 5.00 (m, 3H), 4.59 (m, 2H), 4.25 (m, 2H), 3.83 (m, 3H), 2.68 (m, 2H), 2.38-2.04 (m, 8H), 1.91-1.60 (m, 6H), 1.11 (m, 9H). LCMS (ES$^+$)(m/z): 590.40 (M+1); 1179.86 (2M+1).

Example 184: (S)-2-((tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-picolinoyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 8.69 (m, 1H), 7.92 (m, 2H), 7.43 (m, 1H), 6.69 (m, 1H), 5.15 (m, 5H), 4.26 (m, 2H), 2.68 (m, 2H), 2.38-2.05 (m, 5H), 1.89-1.70 (m, 6H), 1.12 (m, 9H). LCMS (ES$^+$)(m/z): 547.34 (M+1); 1116.34 (2M+23).

Example 185: (S)-2-((tert-butoxy)-2-((M)-2-(5-chloro-2-methylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

119
Example 186: (S)-2-(tert-butoxy)-2-((M)-2-(3,4-difluorobenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisоindolin-5-yl)acetic acid

Example 187: (S)-2-(tert-butoxy)-2-((M)-2-(3-fluoro-4-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisоindolin-5-yl)acetic acid

Example 188: (S)-2-(tert-butoxy)-2-((M)-2-(3,5-dichloro-4-fluorobenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisоindolin-5-yl)acetic acid
Example 189: (S)-2-(tert-butoxy)-2-((M)-2-(4,5-dimethylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

Example 190: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(4-methylbenzoyl)isoindolin-5-yl)acetic acid
Example 191: (S)-2-(tert-butoxy)-2-((M)-2-(3,5-dimethylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

Example 192: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(4-methoxy-3-methylbenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

Example 193: (S)-2-(tert-butoxy)-2-((M)-2-(2,3-dimethylbenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.23-7.09 (m, 3H), 6.66 (m, 1H), 5.02 (m, 3H), 4.47 (m, 2H), 4.25 (m, 2H), 2.67 (m, 2H), 2.38-2.04 (m, 11H), 1.90-1.58 (m, 6H) 1.12 (m, 9H). LCMS (ES+) (m/z): 574.54 (M+1), 1147.86 (2M+1).

Example 194: (S)-2-(tert-butoxy)-2-((M)-2-(3-chloro-4,5-difluorobenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.48-7.31 (m, 2H), 6.66 (m, 1H), 5.01 (m, 3H), 4.73 (m, 2H), 4.25 (m, 2H), 2.68 (m, 2H), 2.36-2.05 (m, 5H), 1.88-1.65 (m, 6H) 1.12 (m, 9H). LCMS (ES+) (m/z): 616.46 (M+1).

Example 195: (S)-2-(tert-butoxy)-2-((M)-2-(3-fluoro-2-methoxybenzoyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 7.22-7.06 (m, 3H), 6.66 (m, 1H), 5.10-4.93 (m, 3H), 4.58 (m, 2H), 4.25 (m, 2H), 3.98 (m, 3H), 2.67 (m, 2H), 2.37-2.04 (m, 5H), 1.89-1.60 (m, 6H) 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 594.60 (M+1), 1187.90 (2M+1).

Example 196: \((S)-2-(t tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(4-methoxybenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 7.57 (m, 2H), 6.96 (m, 2H), 6.67 (m, 1H), 5.03 (m, 3H), 4.79 (m, 2H), 4.25 (m, 2H), 4.25 (m, 3H), 2.67 (m, 2H), 2.37-2.05 (m, 5H), 1.89-1.64 (m, 6H) 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 576.34 (M+1), 1152.61 (2M+1).

Example 197: \((S)-2-(t tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(2-fluoro-6-methylbenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
Example 198: \((S)-2-(\text{tert-butoxy})-2-((M)-2-(4\text{-chlorobenzoyl})-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

\[
\text{H NMR (400 MHz, CDCl}_3\text{)} \delta \text{ (mixture of rotamers) } 7.29 \text{ (m, 1H), 7.11-6.94 (m, 2H), 6.66 (m, 1H), 5.02 (m, 3H), 4.63 (m, 1H), 4.41 (m, 1H), 4.25 (m, 2H), 2.67 (m, 2H), 2.40-2.05 (m, 8H), 1.90-1.60 (m, 6H) 1.12 (m, 9H). LCMS (ES\text{+})(m/z): 578.36 (M+1), 1155.65 (2M+1).}
\]

Example 199: \((S)-2-(\text{tert-butoxy})-2-((M)-6-(8\text{-fluoro-5-methylchroman-6-yl})-2-(2\text{-methoxybenzoyl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

\[
\text{H NMR (400 MHz, CDCl}_3\text{)} \delta \text{ (mixture of rotamers) } 7.53 \text{ (m, 2H), 7.45 (m, 2H), 6.66 (m, 1H), 5.02 (m, 3H), 4.72 (m, 2H), 4.25 (m, 2H), 2.67 (m, 2H), 2.36-2.05 (m, 5H), 1.89-1.63 (m, 6H) 1.12 (m, 9H). LCMS (ES\text{+})(m/z): 580.32 (M+1).}
\]

Example 200: \((S)-2-(\text{tert-butoxy})-2-((M)-6-(8\text{-fluoro-5-methylchroman-6-yl})-2-(2\text{-methoxy-4\text{-methylbenzoyl}})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

\[
\text{H NMR (400 MHz, CDCl}_3\text{)} \delta \text{ (mixture of rotamers) } 7.41 \text{ (m, 1H), 7.32 (m, 1H), 7.01 (m, 2H), 6.66 (m, 1H), 5.02 (m, 3H), 4.57 (m, 2H), 4.26 (m, 2H), 3.86 (m, 3H), 2.68 (m, 2H), 2.38-2.05 (m, 5H), 1.90-1.58 (m, 6H) 1.12 (m, 9H). LCMS (ES\text{+})(m/z): 576.36 (M+1), 1173.75 (2M+23).}
\]
\[\text{Example 201: } (S)-2-(\text{tert-butoxy})-2-((M)-6-(8-\text{fluoro}-5-\text{methylchroman}-6-\text{yl})-2-(5-(3-\text{fluorophenyl})-1,3,4-\text{oxadiazol}-2-\text{yl})-4,7-\text{dimethylisoindolin}-5-\text{yl}) \text{acetic acid} \]

\[\text{Step 1: } (S)-\text{methyl 2-(tert-butoxy}-2-((M)-6-(8-\text{fluoro}-5-\text{methylchroman}-6-\text{yl})-2-(2-(3-}\text{fluorobenzoyl)hydrazinecarbonyl)-4,7-\text{dimethylisoindolin}-5-\text{yl}) \text{acetate} \]

A solution of (S)-methyl 2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (20 mg, 0.044 mmol) in 2 mL THF was added dropwise to phosgene (0.058 mL, 0.110 mmol) in 1 mL THF at 0°C. The reaction was warmed slowly to room temperature and stirred for 1 hour, then concentrated to a brown oil and redisolved in 2
mL THF. The solution was cooled to 0°C and pyridine (3.91 μl, 0.048 mmol) was added dropwise followed by a solution of 3-fluorobenzohydrazide (33.8 mg, 0.220 mmol) dissolved in 2 mL THF. The solution was warmed slowly to room temperature and stirred for 2 hours. The solvent was removed to leave a brown oil. The oil was dissolved in EtOAc, washed with 1M HCl, brine and dried over Na2SO4. The oil was purified by HPLC to yield the title compound as a white solid (9.6 mg, 0.015 mmol, 34.4 % yield). LCMS (ES+)(m/z): 636.41 (M+1).

Step 2: (S)-methyl 2-(tert-butox)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(5-(3-fluorophenyl)-1,3,4-oxadiazol-2-yl)-4,7-dimethylisooindolin-5-yl)acetate

A solution of (S)-methyl 2-(tert-butox)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(2-(3-fluorobenzoyl)hydrazinecarbonyl)-4,7-dimethylisooindolin-5-yl)acetate (9.6 mg, 0.015 mmol) and burgess reagent (10.80 mg, 0.045 mmol) in 2 mL DCM was heated in a sealed microwave vial at 70 °C for 30 minutes. The solution was diluted with DCM and washed with water. The organic layer was dried over sodium sulfate and purified by silica gel chromatography (0-100% ethyl acetate/hexanes gradient elution) to give the title compound as a purple oil (9.33 mg). LCMS (ES+)(m/z): 618.53 (M+1).

Step 3: (S)-2-(tert-butox)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(5-(3-fluorophenyl)-1,3,4-oxadiazol-2-yl)-4,7-dimethylisooindolin-5-yl)acetic acid

To a solution of (S)-methyl 2-(tert-butox)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-(5-(3-fluorophenyl)-1,3,4-oxadiazol-2-yl)-4,7-dimethylisooindolin-5-yl)acetate (9.33 mg, 0.015 mmol) in 2 mL Dioxane was added LiOH (0.227 mL, 0.227 mmol) . The solution was heated to 70°C and stirred overnight. SM remains by LCMS, another 10 eq LiOH was added and heated to 80°C for 1 hour. Solution concenctrated and redissolved in EtoAc, washed with 1 M HCl, brine
and solvent removed. The resulting oil was purified by HPLC to yield the title compound as a white powder (1.8 mg, 2.98 µmol, 19.74 % yield).

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.78 (m, 1H), 7.67 (m, 1H), 7.46 (m, 1H), 7.17 (m, 1H), 6.70 (m, 1H), 5.10 (m, 1H), 4.96 (m, 4H), 4.26 (m, 2H), 2.69 (m, 2H), 2.34 (m, 3H), 2.12 (m, 2H), 1.85 (m, 6H), 1.13 (m, 9H). LCMS (ES$^+$)(m/z): 604.39 (M+1).

Example 202: (S)-2-((M)-2-(benzo[d]oxazol-2-yl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

Step 1 (S)-methyl 2-((M)-2-(benzo[d]oxazol-2-yl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetate.

A solution of (S)-methyl 2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (10 mg, 0.022 mmol), 2-chlorobenzo[d]oxazole (5.01 µL, 0.044 mmol), and K_2CO$_3$ (6.07 mg, 0.044 mmol) in 2 mL DMF were heated in a sealed microwave vial for 30 minutes at 150 °C. The solution was diluted with diethyl ether and washed with water x2, brine, dried over sodium sulfate and purified by silica gel chromatography (0-100% ethyl
acetate/hexanes gradient elution) to give the title compound as a colorless oil (10 mg). LCMS (ES+)(m/z): 573.42

Step 2 (S)-2-((M)-2-(benzo[d]oxazol-2-yl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid.

To a solution of (S)-methyl 2-((M)-2-(benzo[d]oxazol-2-yl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetate (10 mg, 0.017 mmol) in 2 mL Dioxane was added LiOH (0.262 mL, 0.262 mmol). The solution was heated to 70°C and stirred overnight. SM remains by LCMS, another 10 eq LiOH was added and heated to 80°C for 1 hour. The solution was concentrated and redissolved in EtoAC, washed with 1 M HCl, brine and solvent removed. The resulting oil was purified by HPLC to yield the title compound as a white powder (2.5 mg, 4.48 μmol, 25.6 % yield).

^1H NMR (400 MHz, CDCl₃) δ (mixture of rotamers) 7.51 (m, 1H), 7.36 (m, 1H), 7.25 (m, 1H), 7.12 (m, 1H), 6.70 (m, 1H), 5.06 (m, 5H), 4.26 (m, 2H), 2.69 (m, 2H), 2.34 (m, 3H), 2.12 (m, 2H), 1.85 (m, 6H), 1.14 (m, 9H). LCMS (ES+)(m/z): 559.36 (M+1); 581.37 (M+23).

Example 203: (S)-2-(tert-butoxy)-2-((M)-2-((5-(3,4-difluorobenzyl)-1,3,4-oxadiazol-2-yl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

The title compound was made in a similar manner to that described in Example 201.

^1H NMR (400 MHz, CDCl₃) δ (mixture of rotamers) 7.20-7.01 (m, 3H), 6.67 (m, 1H), 5.07 (m, 1H), 4.82 (m, 4H), 4.26 (m, 2H), 4.07 (m, 3H), 2.68 (m, 2H), 2.29 (m, 3H), 2.11 (m, 2H), 1.87-1.75 (m, 6H), 1.12 (m, 9H). LCMS (ES+)(m/z): 636.54 (M+1), 658.54 (M+23).

Example 204: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-((5-fluorobenzof[d]oxazol-2-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

129
The title compound was made in a similar manner to that described in Example 202.

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 7.21 (m, 1H), 7.10 (m, 1H), 6.73 (m, 2H), 5.13-4.93 (m, 5H), 4.26 (m, 2H), 2.68 (m, 2H), 2.34 (m, 3H), 2.12 (m, 2H), 1.85 (m, 6H), 1.14 (m, 9H). LCMS (ES$^+$)(m/z): 577.34 (M+1); 600.42 (2M+1).

Example 205: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-((M)-2-methylpiperidine-1-carbonyl)isoindolin-5-yl)acetic acid

The title compound was made in a similar manner to example 100.

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 6.67 (m, 1H), 5.05 (m, 1H), 4.74 (m, 4H), 4.25 (m, 2H), 3.15 (m, 1H), 3.07 (m, 1H), 2.68 (m, 2H), 2.26 (m, 3H), 2.11 (m, 2H), 1.88-1.46 (m, 9H), 1.30-1.07 (m, 16H). LCMS (ES$^+$)(m/z): 667.43 (M+1); 1134.06 (2M+1).

Example 206: (S)-2-(tert-butoxy)-2-((M)-2-(4,4-dimethylazepane-1-carbonyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

The title compound was made in a similar manner to example 100.
\(^1H \text{ NMR} (400 \text{ MHz, CDCl}_3 \, \delta (\text{mixture of rotamers}) \, 6.67 \, (m, \, 1H), \, 5.06 \, (m, \, 1H), \, 4.75 \, (m, \, 4H), \, 4.25 \, (m, \, 2H), \, 3.41 \, (m, \, 4H), \, 2.68 \, (m, \, 2H), \, 2.32-2.04 \, (m, \, 5H), \, 1.90-1.70 \, (m, \, 8H), \, 1.64 \, (m, \, 2H), \, 1.44 \, (m, \, 2H), \, 1.11 \, (m, \, 9H), \, 0.96 \, (m, \, 6H). \) \text{LCMS (ES+)(m/z): 595.46 (M+1); 1189.97 (2M+1).}

Example 207: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(neopentylcarbamoyl)isoindolin-5-yl)acetic acid

The title compound was made in a similar manner to example 100.

\(^1H \text{ NMR} (400 \text{ MHz, CDCl}_3 \, \delta (\text{mixture of rotamers}) \, 6.67 \, (m, \, 1H), \, 5.06 \, (m, \, 1H), \, 4.69 \, (m, \, 4H), \, 4.40 \, (m, \, 1H), \, 4.26 \, (m, \, 2H), \, 3.14 \, (m, \, 2H), \, 2.68 \, (m, \, 2H), \, 2.28 \, (m, \, 3H), \, 2.11 \, (m, \, 2H), \, 1.85 \, (m, \, 3H), \, 1.78 \, (m, \, 3H), \, 1.12 \, (m, \, 9H), \, 0.94 \, (m, \, 9H). \) \text{LCMS (ES+)(m/z): 555.41 (M+1); 1109.97 (2M+1).}

Example 208: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(pyrrolidine-1-carbonyl)isoindolin-5-yl)acetic acid

The title compound was made in a similar manner to example 100.
1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 6.68 (m, 1H), 5.05 (m, 1H), 4.77 (m, 4H), 4.25 (m, 2H), 3.48 (m, 4H), 2.68 (m, 2H), 2.27 (m, 3H), 2.11 (m, 2H), 1.96-1.72 (m, 10H), 1.11 (m, 9H). LCMS (ES$^+$(m/z): 539.37 (M+1); 1077.80 (2M+1).

Example 209: (S)-2-((tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-((S)-3-methylmorpholine-4-carbonyl)isoindolin-5-yl)acetic acid

The title compound was made in a similar manner to example 100.

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 6.67 (m, 1H), 5.05 (m, 1H), 4.76 (m, 4H), 4.26 (m, 2H), 3.93-3.56 (m, 5H), 3.38 (m, 2H), 2.68 (m, 2H), 2.27 (m, 3H), 2.11 (m, 2H), 1.85 (m, 3H), 1.77 (m, 3H), 1.35 (m, 3H), 1.12 (m, 9H). LCMS (ES$^+$(m/z): 569.38 (M+1); 1137.83 (2M+1).

Example 210: (S)-2-((tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-((3-fluorophenyl)carbamoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
Step 1: (S)-methyl 2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-((3-fluorophenyl)carbamoyl)-4,7-dimethylisoindolin-5-yl)acetate

To a solution of phosgene (0.464 mL, 0.878 mmol) in 2 mL THF at 0°C was added a solution of 3-fluoroaniline (0.042 mL, 0.439 mmol) in 3 mL THF dropwise. The solution was stirred for 30 minutes then warmed slowly to room temperature and solvent removed. The oil was redissolved in 2 mL THF and cooled to 0°C. A solution of (S)-methyl 2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate (40 mg, 0.088 mmol) in 3 mL THF was added dropwise. The solution was stirred for 30 minutes then warmed to room temperature and solvent removed. The purple oil was dissolved in EtOAc was washed with 1M HCl, brine, dried over sodium sulfate and solvent removed. The oil was purified by HPLC to yield the title compound as a white solid (6.9 mg). LCMS (ES+)(m/z): 593.43 (M+1); 1185.77 (2M+1).

Step 2: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-((3-fluorophenyl)carbamoyl)-4,7-dimethylspindolin-5-yl)acetic acid

To a solution of (S)-methyl 2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-((3-fluorophenyl)carbamoyl)-4,7-dimethylisoindolin-5-yl)acetate (6.9 mg, 0.012 mmol) in 2 mL Dioxane was added LiOH (0.175 mL, 0.175 mmol). The solution was heated to 70°C and stirred overnight. The solution was concentrated and dissolved in EtoAc, washed with 1 M HCl,
brine and solvent removed. The resulting oil was purified by HPLC to yield the title compound as a white powder (1.2 mg, 2.074 μmol, 17.81 % yield).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 7.45 (m, 1H), 7.30-7.09 (m, 2H), 6.72 (m, 2H), 6.35 (s, 1H), 5.08 (s, 1H), 4.81 (m, 4H), 4.26 (m, 2H), 2.69 (m, 2H), 2.31 (s, 3H), 2.12 (m, 2H), 1.89-1.77 (m, 6H) 1.13 (m, 9H). LCMS (ES+) (m/z): 579.55 (M+1), 1180.53 (2M+23).

Example 211: \((S)-2-(\text{tert-butoxy})-2-((M)-2-(4,4\text{-dimethylpiperidine-1-carbonyl})-6-(\beta\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}

The title compound was made in a similar manner to example 100.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 6.66 (m, 1H), 5.05 (m, 1H), 4.75 (m, 4H), 4.26 (m, 2H), 3.31 (m, 4H), 2.67 (m, 2H), 2.27 (m, 3H), 2.11 (m, 1H), 1.84 (s, 3H), 1.75 (s, 3H), 1.42 (m, 4H), 1.11 (s, 9H), 0.99 (s, 6H). LCMS (ES+) (m/z): 581.59 (M+1); 1161.98 (2M+1).

Example 212: \((S)-2-(\text{tert-butoxy})-2-((M)-6-(\beta\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethyl-2-((S)-2-methylpyrrolidine-1-carbonyl)isoindolin-5-yl})\text{acetic acid}

The title compound was made in a similar manner to example 100.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 6.67 (m, 1H), 5.02 (m, 3H), 4.54 (m, 2H), 4.24 (m, 2H), 4.09 (m, 1H), 3.59-3.39 (m, 2H), 2.68 (m, 2H), 2.28 (s, 3H), 2.11 (m, 2H), 1.98-
1.71 (m, 8H), 1.49 (m, 1H), 1.21 (m, 3H), 1.12 (s, 9H). LCMS (ES+)(m/z): 553.41 (M+1); 1105.94 (2M+1).

Example 213: \((S)-2-\text{(tert-butoxy)}-2-((M)-2-(4,4\text{-difluoropiperidine-1-carbonyl})-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

The title compound was made in a similar manner to example 100.

\(1H\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) (mixture of rotamers) 6.66 (m, 1H), 5.06 (s, 1H), 4.78 (m, 4H), 4.25 (m, 2H), 3.48 (m, 4H), 2.67 (m, 2H), 2.27 (s, 3H), 2.16-1.98 (m, 6H), 1.85 (3, 3H), 1.77 (s, 3H), 1.12 (s, 9H). LCMS (ES+)(m/z): 589.42 (M+1); 1177.87 (2M+1).

Example 214: \((S)-2-\text{(tert-butoxy)}-2-((M)-2-(3,3\text{-dimethylpyrrolidine-1-carbonyl})-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

The title compound was made in a similar manner to example 100.

\(1H\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) (mixture of rotamers) 6.67 (m, 1H), 5.05 (m, 1H), 4.77 (m, 4H), 4.26 (m, 2H), 3.58 (m, 2H), 3.23 (s, 2H), 2.68 (m, 2H), 2.27 (m, 3H), 2.11 (m, 2H), 1.88-1.64 (m, 8H), 1.11 (m, 15H). LCMS (ES+)(m/z): 567.60 (M+1); 1134.06 (2M+1).

Example 215: \((S)-2-\text{(tert-butoxy)}-2-((M)-6-(8\text{-fluoro-5-methylchroman-6-yl})-4,7\text{-dimethyl-2-(2-oxo-2-(piperidin-1-yl)acetyl)isoindolin-5-yl})\text{acetic acid}\)
The title compound was made in a similar manner to example 129 except using (2S)(M)-Methyl 2-(tert-butoxy)-2-((6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyleisoindolin-5-yl)acetate in step 1.

\[\text{Example 216:} \quad (S)-2-((M)-2-(benzo[d][1,3]dioxol-4-ylmethyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyleisoindolin-5-yl)-2-(tert-butoxy)acetic acid \]

The title compound was made in a similar manner to example 8.

\[\text{1H NMR (400 MHz, CHLOROFORM-d)} \]

\[6.94-6.87 (m, 3H), 6.65 (m, 1H), 5.97 (m, 2H), 5.05-4.90 (m, 3H), 4.53-4.08 (m, 6H), 2.67 (m, 2H), 2.37-2.01 (m, 5H), 1.75 (m, 6H), 1.10 (s, 9H); \]

\[\text{LCMS(ES+)(m/z): 576.4 (M+1).} \]

\[\text{Example 217:} \quad (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(phenoxy carbonyl)isoindolin-5-yl)acetic acid \]
Step 1

Phenyl 5-((S)-1-(tert-butoxy)-2-methoxy-2-oxoethyl)-6-((M)-8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisooindoline-2-carboxylate

To a solution of phenyl carbonochloridate (0.022 mL, 0.176 mmol) in 2 mL THF at 0 °C was added a solution of (S)-methyl 2-(tert-butoxy)-2-(6-((M)-8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisooindolin-5-yl)acetate (40 mg, 0.088 mmol) in 2 mL THF. The solution was slowly warmed to room temperature and stirred for 2 h. The solution was concentrated in vacuo, dissolved in etoac, washed with 1M HCl, brine, dried over sodium sulfate and solvent removed to afford the title compound as a green oil (50.5 mg). LCMS (ES+)(m/z): 598.42 (M+23).

Step 2

((S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethyl-2-(phenoxy carbonyl)isooindolin-5-yl)acetic acid
To a solution of phenyl (M)-phenyl 5-((S)-1-(tert-butoxy)-2-methoxy-2-oxoethyl)-6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindoline-2-carboxylate (50.5 mg, 0.088 mmol) in 6 mL Dioxane was added LiOH (1.316 mL, 1.316 mmol). The solution was heated to 70°C and stirred overnight. SM remains by LCMS, another 10 eq LiOH was added and heated to 80°C for 1 hour. The solution was concentrated and redissolved in EtoAC, washed with 1 M HCl, brine and solvent removed. The resulting oil was purified by HPLC to yield the title compound as a white powder (5.5 mg, 9.79 µmol, 11.16 % yield).

1H NMR (400 MHz, CDCl₃) δ (mixture of rotamers) 7.38 (m, 2H), 7.20 (m, 3H), 6.69 (m, 1H), 5.08 (m, 1H), 4.97-4.76 (m, 4H), 4.27 (m, 2H), 2.68 (m, 2H), 2.30 (m, 3H), 2.12 (m, 2H), 1.92-1.74 (m, 6H), 1.14 (m, 9H). LCMS (ES+)(m/z): 562.33 (M+1); 1145.74 (2M+23).

Example 218: (S)-2-(tert-butoxy)-2-((M)-6-(8-fluoro-5-methylchroman-6-yl)-2-((3-fluorophenyl)sulfonyl)-4,7-dimethylisoindolin-5-yl)acetic acid

The title compound was made in a similar manner to example 5 except using (2S)(M)-Methyl 2-(tert-butoxy)-2-(6-(8-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetate in step 1.
1H NMR (400 MHz, CDCl₃) δ (mixture of rotamers) 7.71 (m, 1H), 7.62 (m, 1H), 7.54 (m, 1H), 7.31 (m, 1H), 6.62 (m, 1H), 5.02 (s, 1H), 4.63 (m, 4H), 4.25 (m, 2H), 2.66 (m, 2H), 2.21 (s, 3H), 2.10 (m, 2H), 1.83-1.68 (m, 6H), 1.10 (s, 9H). LCMS (ES+)(m/z): 600.49 (M+1).

The following compounds were made in a manner using the procedures outlined above unless otherwise noted.

Example 219: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-methylbenzoyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Diagram]

1H NMR (400 MHz, CDCl₃) δ 7.32-7.41 (m, 3H), 7.31 (d, 3H), 7.24 (d, 1H), 7.02-7.13 (m, 1H), 5.18 (s, 1H), 4.99-5.10 (m, 2H), 4.43-4.55 (m, 2H), 2.44 (d, 3H), 2.40 (d, 3H), 2.34 (s, 1.5H), 2.13 (s, 1.5H), 1.97 (s, 1.5H), 1.76 (s, 1.5H), 1.00 (m, 9H). LCMS(ES+)(m/z): 486.48 (M+1), 508.40 (M+23), 971.69 (2M+1), 993.71 (2M+23).

Example 220: (S)-2-(tert-butoxy)-2-(2-(3-chlorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Diagram]
\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.57 (br. s., 1H), 7.41 - 7.52 (m, 3H), 7.33 - 7.40 (m, 1H), 7.23 (s, 2H), 7.01 - 7.12 (m, 1H), 5.16 (s, 1H), 4.96 (s, 2H), 4.72 (d, 2H), 2.42 (d, 3H), 2.32 (s, 1.5H), 2.16 (s, 1.5H), 1.95 (s, 1.5H), 1.80 (s, 1.5H), 0.99 (d, \(J=8.53\) Hz, 9H). LCMS(ES\(^+\))(m/z): 506.50 (M+1), 528.45 (M+23), 1011.75(2M+1), 1033.69(2M+23).

Example 221: (S)-2-(tert-butoxy)-2-(2-(3-fluoro-2-methylbenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{Chemical Structure Image}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.36 (br. s., 1H), 7.25 (br. S, 4H), 7.04-7.15 (m, 2H), 5.18 (s, 1H), 4.97-5.11 (m, 2H), 4.46-4.56 (m, 2H), 2.44 (d, 3H), 2.25-2.37 (m, 4.5H), 2.14 (s, 1.5H), 1.97 (s, 1.5H), 1.78 (s, 1.5H), 1.00-1.03 (s, 9H). LCMS(ES\(^+\))(m/z): 504.45 (M+1), 526.47 (M+23), 1007.75 (2M+1), 1029.72 (2M+23).

Example 222: (S)-2-(tert-butoxy)-2-(2-(3-methoxy-4-methylbenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\begin{align*}
\text{Chemical Structure Image}
\end{align*}
\]
\(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.35 (d, 1H), 7.16-7.25 (m, 3H), 6.97-7.11 (m, 3H), 5.15 (s, 1H), 4.89-5.10 (m, 2H), 4.76 (d, 2H), 3.87 (d, 3H), 2.41 (d, 3H), 2.31 (s, 1.5H), 2.27 (d, 3H), 2.14 (s, 1.5H), 1.94 (s, 1.5H), 1.78 (s, 1.5H), 0.98 (d, 9 H). LCMS(ES\(^+\))(m/z): 516.49 (M+1), 538.52 (M+23), 1031.81 (2M+1).

Example 223: \((S)-2-(\text{tert-butoxy})-2-(4,7\text{-dimethyl-2-(1-methyl-1H-pyrazole-5-carbonyl)-6-(p-tolyl)}\text{isoindolin-5-yl})\text{acetic acid}

\[\text{Structure Image} \]

\(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.62 (dd, 1H), 7.37 (d, 1H), 7.23-7.30 (m, 2H), 7.09 (t, 1H), 6.67 (dd, 1H), 5.19 (s, 1H), 4.86-5.12 (m, 4H), 4.09-4.19 (m, 3H), 2.39-2.52 (m, 3H), 2.34 (s, 1.5H), 2.25 (s, 1.5H), 1.97 (s, 1.5H), 1.88 (s, 1.5H), 0.94-1.10 (m, 9H). LCMS(ES\(^+\))(m/z): 476.45 (M+1), 973.94 (2M+23).

Example 224: \((S)-2-(\text{tert-butoxy})-2-(2-(\text{4-(tert-butyl)benzoyl})-4,7\text{-dimethyl-6-(p-tolyl)}\text{isoindolin-5-yl})\text{acetic acid}

\[\text{Structure Image} \]
1H NMR (400 MHz, CDCl$_3$) δ 7.45-7.61 (m, 3H), 7.38 (d, 1H), 7.22-7.29 (m, 3H), 7.08 (dd, 1H), 5.18 (s, 1H), 5.08 (d, 1H), 5.00 (d, 1H), 4.82 (d, 2H), 2.44 (d, 3H), 2.34 (s, 1.5H), 2.19 (s, 1.5H), 1.97 (s, 1.5H), 1.83 (s, 1.5H), 1.38 (d, 9 H), 1.00 (s, 9H). LCMS(ES$^+$)(m/z): 528.52 (M+1), 1055.74 (2M+1), 1077.86 (2M+23).

Example 225: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(3-methylbenzoyl)-6-(p-tolyliisoindolin-5-yl)acetic acid

![Chemical structure of Example 225](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.35 - 7.47 (m, 4H), 7.21 - 7.32 (m, 3H), 7.08 (dd, 1H), 5.18 (s, 1H), 4.91-5.13 (m, 2H), 4.75 (d, 2H), 2.38-2.50 (m, 6H), 2.34 (s, 1.5H), 2.17 (s, 1.5H), 1.97 (s, 1.5H), 1.80 (s, 1.5H), 1.01 (d, 9H). LCMS(ES$^+$)(m/z): 486.50 (M+1), 508.51 (M+23), 971.67 (2M+1), 993.73 (2M+23).

Example 226: (S)-2-(tert-butoxy)-2-(2-(3-chloro-5-fluorobenzoyl)-4,7-dimethyl-6-(p-tolyliisoindolin-5-yl)acetic acid

![Chemical structure of Example 226](image)
Example 227: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)-2-(4-(trifluoromethyl)benzoyl)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 7.39 \text{ (br. s., 2H)}, 7.16 - 7.34 \text{ (m, 4H)}, 6.99 - 7.16 \text{ (m, 1H)}, 5.18 \text{ (br. s., 1H)}, 4.90 - 5.13 \text{ (m, 2H)}, 4.76 \text{ (s, 2H)}, 2.39 - 2.62 \text{ (m, 3H)}, 1.5H), 2.20 \text{ (br. s., 1.5H), 1.97 \text{ (br. s., 1.5H), 1.83 \text{ (br. s., 1.5H), 1.01 \text{ (d, 9H). LCMS(ES+)(m/z): 524.39 (M+1), 546.33 (M+23), 1046.69 (2M+1), 1069.35 (2M+23).}}}

Example 228: (S)-2-(tert-butoxy)-2-(2-(cyclobutanecarbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 7.66-7.90 \text{ (m, 4H)}, 7.18 - 7.32 \text{ (m, 3 H), 7.06 (d, 1H), 5.18 (br. s., 1 H), 4.90-5.14 (m, 2H), 4.75 (s, 1H), 4.71 (s, 1H), 2.44 (d, 3H), 2.35 (br. s., 1.5H), 2.17 (br. s, 1.5H), 1.98 (s, 1.5H), 1.81 (s, 1.5H), 1.01 (d, 9H). LCMS(ES+)(m/z): 540.44 (M+1), 562.39 (M+23), 1079.60 (2M+1).} \]
Example 229: (S)-2-(2-benzoyl-4,7-dimethyl-6-(p-toly)isooindolin-5-yl)-2-(tert-butoxy)acetic acid

Example 230: (S)-2-(tert-butoxy)-2-(2-(3-(tert-butyl)benzoyl)-4,7-dimethyl-6-(p-toly)isooindolin-5-yl)acetic acid
1H NMR (400 MHz, CDCl$_3$) δ 7.57-7.62 (m, 1H), 7.47-7.54 (m, 1H), 7.31-7.44 (m, 3H), 7.18 - 7.25 (m, 2H), 7.04 (br. s, 1H), 5.15 (s, 1H), 4.91-5.12 (m, 2H), 4.75 (s, 1H), 4.71 (s, 1H), 2.41 (d, 3H), 2.32 (s, 1H), 2.13 (s, 1H), 1.95 (s, 1H), 1.77 (s, 1H), 1.35 (d, 9H), 0.98 (d, 9H). LCMS(ES+)(m/z): 528.61 (M+1), 550.55 (M+23), 1055.95 (2M+1), 1078.00 (2M+23).

Example 231: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((S)-tetrahydrofuran-3-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.25 (m, 3H), 7.1 (m, 1H), 5.05 (s, 1H), 4.9 (m, 2H), 4.7 (m, 2H), 4.05 (m, 1H), 3.9 (m, 2H), 3.8 (m, 1H), 3.5 (m, 1H), 2.4 (s, 3H), 2.8 (s, 3H), 2.15 (m, 2H), 1.85 (s, 3H), 0.9 (s, 9H). LCMS(ES+)(m/z): 466.48 (M+1); 931.80 (2M+1).

Example 232: (S)-2-(tert-butoxy)-2-(2-(3-ethoxypropanoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.
1H NMR (400 MHz, CDCl$_3$) δ 7.35 (m, 1H), 7.21 (m, 2H), 7.06 (m, 1H), 5.15 (s, 1H), 4.90-4.67 (m, 4H), 3.82 (m, 2H), 3.54 (m, 2H), 2.69 (m, 2H), 2.40 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H), 1.19 (m, 3H), 0.98 (s, 9H). LCMS(ES$^+$)(m/z): 468.45 (M+1); 957.84 (2M+23).

Example 233: (S)-2-(tert-butoxy)-2-(2-(3-fluorophenyl)acetyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure image]

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.37-6.91 (m, 8H), 5.14 (s, 1H), 4.90-4.70 (m, 4H), 3.79 (m, 2H), 2.40 (s, 3H), 2.23 (d, 3H), 1.87 (d, 3H), 0.97 (s, 9H). LCMS(ES$^+$)(m/z): 504.42 (M+1); 1007.97 (2M+1).

Example 234: (S)-2-(tert-butoxy)-2-(2-(3-isopropoxybenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure image]

The title compound was isolated as a white solid after reverse phase hplc.
1H NMR (400 MHz, CDCl$_3$) δ 7.39-6.93 (m, 8H), 5.14 (s, 1H), 5.09-4.52 (m, 5H), 2.40 (d, 3H), 2.33-2.09 (m, 3H), 1.96-1.73 (m, 3H), 1.34 (m, 6H), 0.97 (d, 9H). LCMS(ES+)(m/z): 530.40 (M+1); 1059.85 (2M+1).

Example 235: (S)-2-(tert-butoxy)-2-(2-(5-methoxynicotinoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 235](image)

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ (mix of rotamers) 8.61 (m, 1H), 8.53 (m, 1H), 8.76 (m, 1H), 7.35 (m, 1H), 7.24 (m, 2H), 7.07 (m, 1H), 5.16 (m, 1H), 5.11-4.67 (m, 4H), 4.00 (d, 3H), 2.42 (d, 3H), 2.36-2.12 (m, 3H), 2.00-1.77 (m, 3H), 0.99 (d, 9H). LCMS(ES+)(m/z): 503.43 (M+1); 1005.73 (2M+1).

Example 236: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(5-methylnicotinoyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 236](image)

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ (mixture of rotamers) 8.92 (m, 1H), 8.75 (m, 1H), 8.23 (m, 1H), 7.35 (m, 1H), 7.24 (m, 2H), 7.07 (m, 1H), 5.16 (m, 1H), 5.11-4.67 (m, 4H), 2.60 (d, 3H), 2.42 (d,
3H), 2.36-2.12 (m, 3H), 2.00-1.77 (m, 3H), 1.00 (d, 9H). LCMS(ES+)(m/z): 487.45 (M+1); 973.72 (2M+1).

Example 237: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(1-methyl-1H-imidazole-4-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 8.14 (m, 1H), 7.78 (m, 1H), 7.34 (m, 1H), 7.23 (m, 2H), 7.06 (m, 1H), 5.38-4.84 (m, 5H), 3.86 (m, 3H), 2.41 (s, 3H), 2.26 (s, 3H), 1.91 (m, 3H), 0.97 (s, 9H). LCMS(ES+)(m/z): 476.42 (M+1); 951.88 (2M+1).

Example 238: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(1-methyl-1H-imidazole-2-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 8.46 (m, 1H), 7.83 (m, 1H), 7.34 (m, 1H), 7.23 (m, 2H), 7.05 (m, 1H), 5.17 (m, 1H), 4.98 (m, 4H), 4.09 (s, 3H), 2.41 (s, 3H), 2.28 (m, 3H), 1.92 (m, 3H), 0.99 (s, 9H). LCMS(ES+)(m/z): 476.42 (M+1); 951.82 (2M+1).
Example 239: (S)-2-((tert-butoxy)-2-(4,7-dimethyl-2-(1-methyl-1H-imidazole-2-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.45-7.02 (m, 6H), 5.22-4.89 (m, 5H), 4.00 (s, 3H), 2.40 (m, 3H), 2.34-2.18 (m, 3H), 1.95-1.80 (m, 3H), 0.98 (m, 9H). LCMS(ES$^+$)(m/z): 476.49 (M+1); 951.68 (2M+1).

Example 240: (S)-2-((tert-butoxy)-2-(4,7-dimethyl-2-(1-methyl-1H-pyrazole-3-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.44-6.85 (m, 6H), 5.40-4.86 (m, 5H), 3.98 (m, 3H), 2.40 (m, 3H), 2.30 (m, 3H), 1.93 (m, 3H), 0.98 (m, 9H). LCMS(ES$^+$)(m/z): 476.41 (M+1); 951.80 (2M+1).
Example 241: (S)-2-((tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)-2-(3,3,3-trifluoro-2,2-dimethylpropanoyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.38-7.02 (m, 4H), 5.40-4.86 (m, 5H), 2.40 (s, 3H), 2.25 (s, 3H), 1.88 (s, 3H), 1.60 (s, 6H), 0.98 (s, 9H). LCMS(ES$^+$)/(m/z): 506.40 (M+1); 1033.82 (2M+23).

Example 242: (S)-2-((tert-butoxy)-2-(2-(2-(tert-butyl)benzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.58-6.96 (m, 8H), 5.15 (s, 1H), 5.06-4.32 (m, 4H), 2.40 (s, 3H), 2.14-1.87 (m, 3H), 1.42 (m, 9H), 1.24 (m, 3H), 0.95 (m, 9H). LCMS(ES$^+$)/(m/z): 528.49 (M+1); 1056.01 (2M+1).

Example 243: (S)-2-((tert-butoxy)-2-(4,7-dimethyl-2-(1-methylcyclohexanecarbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

150
Example 244: (2S)-2-(tert-butoxy)-2-(2-(3-methoxycyclohexanecarbonyl)-4,7-dimethyl-6-(p-tolyli)isoindolin-5-yl)acetic acid – diastereomer mixture 1

Example 245: (2S)-2-(tert-butoxy)-2-(2-(3-methoxycyclohexanecarbonyl)-4,7-dimethyl-6-(p-tolyli)isoindolin-5-yl)acetic acid – diastereomer mixture 2
1H NMR (400MHz, CHLOROFORM-d) δ ppm 7.35 (d, $J=7.1$ Hz, 1H), 7.30 - 7.17 (m, 2H), 7.07 (d, $J=6.1$ Hz, 1H), 5.17 (d, $J=6.8$ Hz, 1H), 4.96 - 4.72 (m, 4H), 3.68 (br. s., 0.4H), 3.46 - 3.35 (m, 3H), 3.34 - 3.22 (m, 0.6H), 2.96 (br. s., 0.4H), 2.65 - 2.52 (m, 0.6H), 2.43 (s, 3H), 2.28 (d, $J=2.9$ Hz, 3H), 2.23 - 2.07 (m, 1H), 2.05 - 1.86 (m, 4H), 1.80 (d, $J=11.8$ Hz, 1H), 1.71 - 1.48 (m, 2H), 1.47 - 1.19 (m, 3H), 1.09 - 0.93 (m, 9H); LCMS (m/z) ES$^+$ = 508 (M+1).

Example 246: (S)-2-(tert-butoxy)-2-(2-(4-fluoro-3-methylbenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) δ ppm 7.49 - 7.32 (m, 3H), 7.30 - 7.19 (m, 2H), 7.15 - 6.98 (m, 2H), 5.16 (s, 1H), 5.10 - 4.88 (m, 2H), 4.80 - 4.67 (m, 2H), 2.47 - 2.38 (m, 3H), 2.37 - 2.12 (m, 6H), 1.99 - 1.74 (m, 3H), 1.06 - 0.91 (m, 9H); LCMS (m/z) ES$^+$ = 504 (M+1).
Example 247: \((S)-2\text{-}(\text{tert-butoxy})\text{-}2\text{-}(2\text{-}(2\text{-}4\text{-}difluorobenzoyl})\text{-}4\text{-}7\text{-} \text{dimethyl-6\text{-}(p\text{-}toly1)}\text{-isindolin-5\text{-}yl})\text{acetic acid}

\[
\begin{align*}
\text{1H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) } & \delta \text{ ppm 7.55 - 7.44 (m, 1H), 7.35 (d, J=7.6 Hz, 1H), 7.30 - 7.19 (m, 2H), 7.13 - 6.89 (m, 3H), 5.16 (s, 1H), 5.10 - 4.90 (m, 2H), 4.73 - 4.57 (m, 2H), 2.47 - 2.38 (m, 3H), 2.36 - 2.09 (m, 3H), 1.99 - 1.74 (m, 3H), 1.06 - 0.91 (m, 9H); LCMS (m/z) ES^+ = 508 (M+1).}
\end{align*}
\]

Example 248: \((S)-2\text{-}(\text{tert-butoxy})\text{-}2\text{-}(2\text{-}4\text{-}fluoro-5\text{-}methoxybenzoyl})\text{-}4\text{-}7\text{-} \text{dimethyl-6\text{-}(p\text{-}toly1)}\text{-isindolin-5\text{-}yl})\text{acetic acid}

\[
\begin{align*}
\text{1H NMR (400MHz, METHANOL-d_4) } & \delta \text{ ppm (mixture of rotamers) 7.36 - 7.15 (m, 4H), 7.13 - 6.98 (m, 3H), 5.09 - 5.00 (m, 1H), 4.94 (br. s., 2H), 4.70 (br. s., 2H), 3.89 - 3.74 (m, 3H), 2.47 - 2.11 (m, 6H), 2.01 - 1.67 (m, 3H), 1.02 - 0.80 (m, 9H); LCMS (m/z) ES^+ = 520 (M+1).}
\end{align*}
\]
Example 249: (S)-2-(tert-butoxy)-2-(2-(5-methoxy-2-methylbenzoyl)-4,7-dimethyl-6-(p-tolylo)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-\textsubscript{d}_4) } \delta \text{ ppm (mixture of rotamers) 7.32 - 7.18 (m, 4H), 7.14 - 7.03 (m, 1H), 6.99 - 6.86 (m, 2H), 5.08 - 5.01 (m, 1H), 4.97 - 4.91 (m, 2H), 4.58 - 4.51 (m, 2H), 3.85 - 3.76 (m, 3H), 2.47 - 2.39 (m, 3H), 2.37 (s, 1.5H), 2.26 (s, 3H), 2.15 (s, 1.5H), 1.98 - 1.66 (m, 3H), 0.99 - 0.86 (m, 9H); LCMS (m/z) ES+ = 516 (M+1).} \]

Example 250: (S)-2-(tert-butoxy)-2-(2-(2-methoxy-5-methylbenzoyl)-4,7-dimethyl-6-(p-tolylo)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-\textsubscript{d}_4) } \delta \text{ ppm (mixture of rotamers) 7.34 - 7.22 (m, 4H), 7.18 - 7.13 (m, 1H), 7.13 - 6.99 (m, 2H), 5.09 - 4.99 (m, 1H), 4.92 - 4.88 (m, 2H), 4.60 (br. s, 2H), 3.89 -} \]
3.81 (m, 3H), 2.45 - 2.39 (m, 3H), 2.38 - 2.30 (m, 4.5H), 2.15 (s, 1.5H), 1.93 (s, 1.5H), 1.72 (s, 1.5H), 0.98 - 0.87 (m, 9H); LCMS (m/z) ES' = 516 (M+1).

Example 251: *(S)-2-(tert-butoxy)-2-(4-fluoro-3-methoxybenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)

^1H NMR (400MHz, METHANOL-d4) δ ppm (mixture of rotamers) 7.42 - 7.34 (m, 1H), 7.32 - 7.18 (m, 5H), 7.15 - 7.03 (m, 1H), 5.08 - 5.03 (m, 1H), 4.98 - 4.93 (m, 2H), 4.85 - 4.80 (m, 2H), 3.98 - 3.89 (m, 3H), 2.46 - 2.39 (m, 3H), 2.39 - 2.17 (m, 3H), 1.97 - 1.73 (m, 3H), 0.98 - 0.86 (m, 9H); LCMS (m/z) ES' = 520 (M+1).

Example 252: *(S)-2-(tert-butoxy)-2-(2-(3-chloro-4-fluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical Structure](image)
Example 253: (S)-2-(tert-butoxy)-2-(2-fluoro-3-methoxybenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[
\text{\textit{H NMR (400MHz, METHANOL-\text{d}_4) (mixture of rotamers) } \delta \text{ ppm } 7.88 - 7.78 (m, 1H), 7.71 - 7.59 (m, 1H), 7.44 - 7.36 (m, 1H), 7.32 - 7.21 (m, 3H), 7.13 - 7.01 (m, 1H), 5.06 - 5.02 (m, 1H), 4.98 - 4.93 (m, 2H), 4.85 - 4.78 (m, 2H), 2.46 - 2.39 (m, 3H), 2.38 - 2.18 (m, 3H), 1.96 - 1.74 (m, 3H), 0.97 - 0.88 (m, 9H); LCMS (m/z) ES^+ = 524 (M+1).}
\]

Example 254: (S)-2-(tert-butoxy)-2-(2-(4-fluorobenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[
\text{\textit{H NMR (400MHz, METHANOL-\text{d}_4) (mixture of rotamers) } \delta \text{ ppm } 7.37 - 7.21 (m, 5H), 7.17 - 6.99 (m, 2H), 5.12 - 5.03 (m, 1H), 4.96 (br. s., 2H), 4.69 (br. s., 2H), 4.02 - 3.89 (m, 3H), 2.50 - 2.12 (m, 6H), 2.02 - 1.69 (m, 3H), 1.02 - 0.84 (m, 9H); LCMS (m/z) ES^+ = 520 (M+1).}
\]
1H NMR (400MHz, METHANOL-\text{d}_4) \text{ (mixture of rotamers)} \delta \text{ ppm } 7.79 - 7.64 \text{ (m, 2H), 7.37 - 7.20 (m, 5H), 7.18 - 7.01 (m, 1H), 5.09 - 5.04 (m, 1H), 5.01 - 4.94 (m, 2H), 4.86 - 4.81 (m, 2H), 2.48 - 2.40 (m, 3H), 2.40 - 2.17 (m, 3H), 1.99 - 1.74 (m, 3H), 0.99 - 0.87 (m, 9H); LCMS (m/z) ES$^+$ = 490 (M+1).}

Example 255: (S)-2-(tert-butoxy)-2-(2-(2,3-dihydrobenzo[b][1,4]dioxine-6-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure image]

1H NMR (400MHz, METHANOL-\text{d}_4) \text{ (mixture of rotamers)} \delta \text{ ppm } 7.37 - 7.25 \text{ (m, 3H), 7.23 - 7.05 (m, 3H), 7.02 - 6.92 (m, 1H), 5.10 - 5.04 (m, 1H), 5.00 - 4.93 (m, 2H), 4.92 - 4.84 (m, 2H), 4.38 - 4.27 (m, 4H), 2.49 - 2.41 (m, 3H), 2.40 - 2.20 (m, 3H), 1.99 - 1.76 (m, 3H), 1.02 - 0.88 (m, 9H); LCMS (m/z) ES$^+$ = 530.44 (M+1).

Example 256: (S)-2-(tert-butoxy)-2-(2-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborole-6-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid
1H NMR (400MHz, METHANOL-d_4) (mixture of rotamers) δ ppm 7.94 (br. s., 1H), 7.82 - 7.70 (m, 1H), 7.64 - 7.52 (m, 1H), 7.39 - 7.22 (m, 3H), 7.19 - 7.02 (m, 1H), 5.22 - 5.14 (m, 2H), 5.10 - 5.05 (m, 1H), 5.04 - 4.97 (m, 2H), 4.84 - 4.76 (m, 2H), 2.49 - 2.16 (m, 6H), 2.00 - 1.72 (m, 3H), 1.00 - 0.89 (m, 9H); LCMS (m/z) ES$^+$ = 528 (M+1).

Example 257: (S)-2-(2-(3-boronobenzoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

1H NMR (400MHz, METHANOL-d_4) (mixture of rotamers) δ ppm 8.15 - 7.43 (m, 4H), 7.39 - 7.22 (m, 3H), 7.16 - 7.02 (m, 1H), 5.10 - 5.05 (m, 1H), 5.04 - 4.95 (m, 2H), 4.85 - 4.78 (m, 2H), 2.48 - 2.19 (m, 6H), 2.00 - 1.73 (m, 3H), 1.01 - 0.90 (m, 9H); LCMS (m/z) ES$^+$ = 516 (M+1).

Example 258: (S)-2-(tert-butoxy)-2-(2-(3-methoxy-2-methylbenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid
\(^1\)H NMR (400MHz, METHANOL-d4) (mixture of rotamers) δ ppm 7.40 - 7.21 (m, 4H), 7.17 - 7.00 (m, 2H), 7.00 - 6.88 (m, 1H), 5.10 - 5.04 (m, 1H), 4.99 - 4.94 (m, 2H), 4.56 - 4.48 (m, 2H), 3.95 - 3.85 (m, 3H), 2.47 - 2.36 (m, 5H), 2.24 - 2.19 (m, 3H), 2.16 (s, 1H), 1.99 - 1.69 (m, 3H), 1.01 - 0.87 (m, 9H); LCMS (m/z) ES\(^+\) = 516.48 (M+1).

Example 259: \((S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-methylnicotinoyl)-6-(p-tolyli)sopindolin-5-yl)acetic acid\)

\(^1\)H NMR (400MHz, METHANOL-d4) (mixture of rotamers) δ ppm 8.78 (br. s., 1H), 8.60 - 8.38 (m, 1H), 7.98 - 7.77 (m, 1H), 7.42 - 7.22 (m, 3H), 7.20 - 6.99 (m, 1H), 5.15 - 5.00 (m, 3H), 4.77 - 4.62 (m, 2H), 2.77 (br. s., 3H), 2.55 - 2.14 (m, 6H), 2.06 - 1.74 (m, 3H), 1.02 - 0.82 (m, 9H); LCMS (m/z) ES\(^+\) = 487 (M+1).

Example 260: \((S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(4-methylnicotinoyl)-6-(p-tolyli)sopindolin-5-yl)acetic acid\)
\[\text{Example 261: } \text{(S)-2-\text{tert-butoxy)-2-(2-(3,4-difluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid}} \]

\[\text{H NMR (400MHz, METHANOL-d4) (mixture of rotamers) } \delta \text{ ppm 7.68 - 7.58 (m, 1H), 7.55 - 7.47 (m, 1H), 7.46 - 7.36 (m, 1H), 7.33 - 7.21 (m, 3H), 7.14 - 7.02 (m, 1H), 5.08 - 5.03 (m, 1H), 4.99 - 4.93 (m, 2H), 4.85 - 4.79 (m, 2H), 2.47 - 2.39 (m, 3H), 2.38 - 2.18 (m, 3H), 1.96 - 1.75 (m, 3H), 0.98 - 0.87 (m, 9H); LCMS (m/z) ES+ = 508 (M+1).} \]
Example 262: (S)-2-((tert-butoxy)-2-(2-(2,5-difluorobenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-d₄) (mixture of rotamers) \delta ppm 7.39 - 7.21 (m, 6H), 7.15 - 7.03 (m, 1H), 5.08 - 5.03 (m, 1H), 4.97 - 4.91 (m, 2H), 4.74 - 4.68 (m, 2H), 2.47 - 2.39 (m, 3H), 2.38 - 2.15 (m, 3H), 1.98 - 1.74 (m, 3H), 0.97 - 0.88 (m, 9H); LCMS (m/z) ES+ = 508 (M+1).}\]

Example 263: (S)-2-((tert-butoxy)-2-(2-(5-chloro-2-methylbenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-d₄) (mixture of rotamers) \delta ppm 7.48 - 7.18 (m, 6H), 7.15 - 7.00 (m, 1H), 5.09 - 5.02 (m, 1H), 4.95 (br. s., 2H), 4.55 (br. s., 2H), 2.48 - 2.35 (m, 4.5H), 2.32 (s, 3H), 2.16 (s, 1.5H), 1.98 - 1.69 (m, 3H), 0.99 - 0.84 (m, 9H); LCMS (m/z) ES+ = 520 (M+1).}\]
Example 264: (S)-2-({tert-butoxy}-2-{(4-chloro-3-fluorobenzoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)}acetic acid

\[
\begin{align*}
\text{1H NMR (400MHz, METHANOL-d4) (mixture of rotamers) \& ppm} & 7.71 - 7.53 (m, 2H), 7.52 - 7.44 (m, 1H), 7.34 - 7.19 (m, 3H), 7.14 - 7.01 (m, 1H), 5.07 - 5.03 (m, 1H), 4.98 - 4.93 (m, 2H), 4.85 - 4.80 (m, 2H), 2.47 - 2.39 (m, 3H), 2.38 - 2.18 (m, 3H), 1.98 - 1.75 (m, 3H), 0.95 - 0.86 (m, 9H); LCMS (m/z) ES+ = 524 (M+1).
\end{align*}
\]

Example 265: (S)-2-(2-(benzo[d][1,3]dioxole-5-carbonyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)-2-({tert-butoxy})acetic acid

\[
\begin{align*}
\text{1H NMR (400MHz, METHANOL-d4) (mixture of rotamers) \& ppm} & 7.36 - 7.23 (m, 3H), 7.23 - 7.17 (m, 1H), 7.14 (br. s, 1H), 7.12 - 7.03 (m, 1H), 6.99 - 6.88 (m, 1H), 6.12 - 5.96 (m, 2H), 5.09 - 5.02 (m, 1H), 4.98 - 4.92 (m, 2H), 4.91 - 4.79 (m, 2H), 2.49 - 2.39 (m, 3H), 2.39 - 2.17 (m, 3H), 1.98 - 1.76 (m, 3H), 1.01 - 0.86 (m, 9H); LCMS (m/z) ES+ = 516.47 (M+1).
\end{align*}
\]
Example 266: (S)-2-(tert-butoxy)-2-(2-(3-carbamoyl-5-fluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindoline-5-yl)acetic acid

\[\text{Chemical Structure} \]

\(^1\)H NMR (400MHz, METHANOL-\(d_4\)) (mixture of rotomers) \(\delta\) ppm 8.01 - 7.91 (m, 1H), 7.84 - 7.74 (m, 1H), 7.65 - 7.57 (m, 1H), 7.33 - 7.19 (m, 3H), 7.15 - 7.01 (m, 1H), 5.08 - 5.04 (m, 1H), 5.01 - 4.95 (m, 2H), 4.85 - 4.81 (m, 2H), 2.46 - 2.40 (m, 3H), 2.39 - 2.19 (m, 3H), 1.98 - 1.75 (m, 3H), 0.96 - 0.87 (m, 9H); LCMS \((m/2)\) \(ES^+\) = 533.49 (M+1).

Example 267: (S)-3-(5-(tert-butoxy(carboxy)methyl)-4,7-dimethyl-6-(p-tolyl)isoindoline-2-carbonyl)-5-fluorobenzoic acid

\[\text{Chemical Structure} \]

\(^1\)H NMR (400MHz, METHANOL-\(d_4\)) (mixture of rotomers) \(\delta\) ppm 8.16 - 8.03 (m, 1H), 7.91 - 7.80 (m, 1H), 7.74 - 7.64 (m, 1H), 7.32 - 7.20 (m, 3H), 7.15 - 7.00 (m, 1H), 5.07 - 5.03 (m, 1H), 4.99 -
4.94 (m, 2H), 4.84 - 4.81 (m, 2H), 2.45 - 2.39 (m, 3H), 2.38 - 2.17 (m, 3H), 1.97 - 1.72 (m, 3H), 0.96 - 0.87 (m, 9H); LCMS (m/z) ES$^+$ = 534.51 (M+1).

Example 268: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-nicotinoyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 268](image)

1H NMR (400MHz, METHANOL-d$_4$) (mixture of rotamers) δ ppm 8.99 - 8.87 (m, 1H), 8.82 - 8.70 (m, 1H), 8.31 (tt, J=1.8, 8.0 Hz, 1H), 7.73 (dt, J=5.3, 8.2 Hz, 1H), 7.34 - 7.20 (m, 3H), 7.08 (dd, J=7.9, 15.6 Hz, 1H), 5.09 - 5.03 (m, 1H), 5.01 - 4.96 (m, 2H), 4.94 - 4.74 (m, 2H), 2.48 - 2.39 (m, 3H), 2.39 - 2.17 (m, 3H), 1.99 - 1.74 (m, 3H), 0.98 - 0.87 (m, 9H); LCMS (m/z) ES$^+$ = 473.51 (M+1).

Example 269: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(thiazole-5-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

![Chemical structure of Example 269](image)
Example 270: (S)-2-(tert-butoxy)-2-(2-(4-chlorobenzoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-\text{d}_4) \delta ppm 9.23 (d, J=3.8 Hz, 1H), 8.58 (d, J=7.8 Hz, 1H), 7.38 - 7.23 (m, 3H), 7.13 (d, J=7.8 Hz, 1H), 5.24 (br. s., 2H), 5.09 (s, 1H), 5.00 (br. s., 2H), 2.45 (s, 3H), 2.39 (s, 3H), 1.96 (d, J=1.8 Hz, 3H), 0.96 (s, 9H); LCMS (m/z) ES+ = 479.45 (M+1).} \]

Example 271: (S)-2-(tert-butoxy)-2-(2-(3,5-dichlorobenzoyl)-4,7-dimethyl-6-(p-tolylisoindolin-5-yl)acetic acid

\[\text{1H NMR (400MHz, METHANOL-\text{d}_4) (mixture of rotamers) \delta ppm 7.74 - 7.62 (m, 2H), 7.60 - 7.47 (m, 2H), 7.37 - 7.19 (m, 3H), 7.18 - 7.01 (m, 1H), 5.10 - 5.04 (m, 1H), 5.02 - 4.94 (m, 2H), 4.85 - 4.78 (m, 2H), 2.49 - 2.41 (m, 3H), 2.40 - 2.17 (m, 3H), 2.01 - 1.74 (m, 3H), 1.02 - 0.85 (m, 9H); LCMS (m/z) ES+ = 506.44 (M+1).} \]
\(^1\)H NMR (400MHz, METHANOL-\(d_4\)) (mixture of rotamers) \(\delta\) ppm 7.65 (br. s., 3H), 7.42 - 7.21 (m, 3H), 7.18 - 6.97 (m, 1H), 5.06 (br. s., 1H), 4.96 (br. s., 2H), 4.82 (br. s., 2H), 2.56 - 2.20 (m, 6H), 2.03 - 1.74 (m, 3H), 1.08 - 0.83 (m, 9H); LCMS (m/z) ES\(^+\) = 540.42 (M+1).

Example 272: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-oxazole-4-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{Chemical Structure Image} \]

\(^1\)H NMR (400MHz, METHANOL-\(d_4\)) (mixture of rotamers) \(\delta\) ppm 8.61 - 8.51 (m, 1H), 8.37 - 8.24 (m, 1H), 7.40 - 7.23 (m, 3H), 7.20 - 7.04 (m, 1H), 5.39 - 5.25 (m, 2H), 5.08 (s, 1H), 5.02 - 4.94 (m, 2H), 2.44 (s, 3H), 2.40 - 2.30 (m, 3H), 2.00 - 1.88 (m, 3H), 0.96 (s, 9H); LCMS (m/z) ES\(^+\) = 463.49 (M+1).

Example 273: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-picolinoyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{Chemical Structure Image} \]
\(^1\)H NMR (400MHz, METHANOL-\(d_4\)) (mixture of rotamers) \(\delta\) ppm 8.71 (br. s., 1H), 8.11 - 7.99 (m, 1H), 7.98 - 7.83 (m, 1H), 7.68 - 7.52 (m, 1H), 7.39 - 7.21 (m, 3H), 7.20 - 7.03 (m, 1H), 5.17 - 5.10 (m, 2H), 5.10 - 5.05 (m, 1H), 5.04 - 4.98 (m, 2H), 2.52 - 2.21 (m, 6H), 2.02 - 1.78 (m, 3H), 1.06 - 0.82 (m, 9H); LCMS (m/z) ES\(^+\) = 473.53 (M+1).

Example 274: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(2-phenyloxazole-5-carbonyl)-6-(p-toly)isoindolin-5-yl)acetic acid

\(\begin{align*}
\text{\textbf{H NMR (400MHz, METHANOL-\(d_4\)) (mixture of rotamers) \(\delta\) ppm 8.26 - 8.12 (m, 2H), 8.02 (d, } \\
\text{J=4.3 Hz, 1H), 7.67 - 7.50 (m, 3H), 7.42 - 7.24 (m, 3H), 7.14 (d, } J=7.8 \text{ Hz, 1H), 5.41 - 5.23 (m, } \\
\text{2H), 5.10 (s, 1H), 5.05 - 4.95 (m, 2H), 2.51 - 2.35 (m, 6H), 2.06 - 1.91 (m, 3H), 0.97 (s, 9H); } \\
\text{LCMS (m/z) ES\(^+\) = 539.52 (M+1).}
\end{align*}
\)

Example 275: (S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)-2-(tert-butoxy)acetic acid
\[\text{Example 276: (S)-2-(tert-butoxy)-2-(2-(3,4-dichlorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid} \]
Example 277: (S)-2-(tert-butoxy)-2-(2-(3,4-dichloro-5-fluorobenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[\text{H NMR (400MHz, METHANOL-d}_4\text{) (mixture of rotamers) } \delta \text{ ppm 7.77 - 7.69 (m, 1H), 7.64 - 7.54 (m, 1H), 7.36 - 7.23 (m, 3H), 7.16 - 7.03 (m, 1H), 5.09 - 5.03 (m, 1H), 5.01 - 4.93 (m, 2H), 4.87 - 4.83 (m, 2H), 2.50 - 2.41 (m, 3H), 2.40 - 2.21 (m, 3H), 1.99 - 1.77 (m, 3H), 1.00 - 0.90 (m, 9H); LCMS (m/z) ES^+ = 558.43 (M+1).} \]

Example 278: (S)-2-(tert-butoxy)-2-(2-(3,4-difluoro-5-methylbenzoyl)-4,7-dimethyl-6-(p-toly)isoindolin-5-yl)acetic acid

\[\text{H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) } \delta \text{ ppm 7.41 - 7.32 (m, 1H), 7.31 - 7.17 (m, 4H), 7.12 - 6.98 (m, 1H), 5.16 (s, 1H), 5.09 - 4.88 (m, 2H), 4.80 - 4.65 (m, 2H), 2.45 - } \]

169
2.40 (m, 3H), 2.40 - 2.35 (m, 3H), 2.34 - 2.14 (m, 3H), 1.98 - 1.79 (m, 3H), 1.04 - 0.94 (m, 9H); LCMS (m/z) ES⁺ = 522.51 (M+1).

Example 279: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(p-tolyl)-2-(3,4,5-trifluorobenzoyl)isoindolin-5-yl)acetic acid

\[\text{\begin{align*}
\text{\textbullet} & \text{\textbullet} \\
& \text{\textbullet} \\
& \text{\textbullet} \\
& \text{\textbullet} \\
\end{align*}} \]

\[^{1}\text{H NMR (400MHZ, METHANOL-d\textsubscript{4} (mixture of rotamers) \textdelta ppm 7.67 - 7.43 (m, 2H), 7.42 - 7.21 (m, 3H), 7.19 - 7.00 (m, 1H), 5.06 (br. s., 1H), 5.01 - 4.68 (m, 4H), 2.49 - 2.19 (m, 6H), 2.05 - 1.69 (m, 3H), 1.06 - 0.83 (m, 9H); LCMS (m/z) ES⁺ = 526.36 (M+1).} \]

Example 280: (S)-2-(tert-butoxy)-2-(2-(3-chloro-4,5-difluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[\text{\begin{align*}
\text{\textbullet} & \text{\textbullet} \\
& \text{\textbullet} \\
& \text{\textbullet} \\
& \text{\textbullet} \\
\end{align*}} \]

170
1H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) δ ppm 7.52 - 7.42 (m, 1H), 7.40 - 7.32 (m, 2H), 7.31 - 7.17 (m, 2H), 7.12 - 6.97 (m, 1H), 5.17 (s, 1H), 5.10 - 4.85 (m, 2H), 4.82 - 4.63 (m, 2H), 2.49 - 2.37 (m, 3H), 2.36 - 2.12 (m, 3H), 2.01 - 1.76 (m, 3H), 1.12 - 0.93 (m, 9H); LCMS (m/z) ES$^+$ = 542.44 (M+1).

Example 281: (S)-2-(tert-butoxy)-2-(2-(3,5-dichloro-4-fluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) δ ppm 7.63 - 7.51 (m, 2H), 7.41 - 7.31 (m, 1H), 7.30 - 7.18 (m, 2H), 7.14 - 6.99 (m, 1H), 5.16 (s, 1H), 5.10 - 4.87 (m, 2H), 4.82 - 4.63 (m, 2H), 2.48 - 2.39 (m, 3H), 2.36 - 2.15 (m, 3H), 1.98 - 1.78 (m, 3H), 1.07 - 0.94 (m, 9H); LCMS (m/z) ES$^+$ = 558.37 (M+1).

Example 282: (S)-2-(tert-butoxy)-2-(2-(4-chloro-3,5-difluorobenzoyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid
\[\begin{align*} \text{Example 283: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-(6-methylnicotinyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid} \end{align*} \]

\[\begin{align*} \text{1H NMR (400MHz, METHANOL-d4) (mixture of rotamers) } & \delta \text{ ppm 9.09 - 8.91 (m, 1H), 8.58 (t, J=7.8 Hz, 1H), 7.91 (t, J=8.5 Hz, 1H), 7.40 - 7.22 (m, 3H), 7.19 - 7.00 (m, 1H), 5.15 - 5.06 (m, 1H), 5.05 - 4.99 (m, 2H), 4.98 - 4.80 (m, 2H), 2.91 - 2.75 (m, 3H), 2.53 - 2.17 (m, 6H), 2.03 - 1.76 (m, 3H), 1.04 - 0.85 (m, 9H); LCMS (m/z) ES\(^+\) = 487.49 (M+1).} \end{align*} \]
Example 284: \((S)-2\text-\text{(tert-butoxy)}-2\text-\text{(2,3-dimethoxybenzoyl)}-4,7\text{-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid}

\[
\begin{align*}
\text{H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) } & \delta \text{ ppm 7.40 - 7.30 (m, 1H), 7.26 - 7.11 (m, 3H), 7.10 - 6.96 (m, 2H), 6.96 - 6.88 (m, 1H), 5.21 - 5.10 (m, 1H), 5.09 - 4.89 (m, 2H), 4.74 - 4.49 (m, 2H), 3.96 - 3.91 (m, 3H), 3.90 (s, 3H), 2.46 - 2.37 (m, 3H), 2.36 - 2.06 (m, 3H), 1.99 - 1.69 (m, 3H), 1.06 - 0.91 (m, 9H); LCMS (m/z) ES^+ = 532.54 (M+1).}
\end{align*}
\]

Example 285: \((S)-2\-\text{(tert-butoxy)}-2\text-\text{(M)-2-(2,5-difluorobenzoyl)}-6-(8\text{-fluoro-5-methylchroman-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid}

\[
\begin{align*}
\text{The title compound was isolated as a white solid after reverse phase hplc.}
\end{align*}
\]

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } & \delta \text{ (mixture of rotamers) 7.14 (m, 3H), 6.66 (m, 1H), 5.02 (m, 3H), 4.66 (m, 2H), 4.26 (m, 2H), 2.68 (m, 2H), 2.37-2.05 (m, 5H), 1.89-1.63 (m, 6H), 1.12 (m, 9H). LCMS (ES+)(m/z): 582.35 (M+1); 1163.63 (2M+1).}
\end{align*}
\]
Example 286: \((S)-2\-(\text{tert-butoxy})-2\-((M)-6-(8\text{-fluoro-5-methylchroman-6-yl})-2\-(4\text{-methoxy-2-methylbenzoyl})-4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

The title compound was isolated as a white solid after reverse phase hplc.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (mixture of rotamers) 7.21 (m, 1H), 6.79 (m, 2H), 6.65 (m, 1H), 5.02 (m, 3H), 4.50 (m, 2H), 4.25 (m, 2H), 3.83 (m, 3H), 2.67 (m, 2H), 2.41-2.02 (m, 8H), 1.91-1.60 (m, 6H), 1.12 (m, 9H). LCMS (ES\(^+\))(m/z): 590.49 (M\(^+\)); 1179.86 (2M\(^+\)).

Example 287: \((S)-2\-(\text{tert-butoxy})-2\-(4,7\text{-dimethyl-2-((1\text{neopentyloxy})\text{carbonyl})-6-(\text{p-toly})\text{isoindolin-5-yl})\text{acetic acid}\)

The title compound was isolated as a white solid after reverse phase hplc.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34 (m, 1H), 7.22 (m, 2H), 7.06 (m, 1H), 5.14 (s, 1H), 4.71 (m, 4H), 3.88 (s, 2H), 2.40 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H), 0.99 (m, 18H). LCMS(ES\(^+\))(m/z): 482.49 (M\(^+\)); 963.88 (2M\(^+\)).
Example 288: \((S)-2-(\text{tert-butoxy})-2-(2-(3\text{-fluorophenylcarbonothioyl})-4,7\text{-dimethyl-}6-(p\text{-tolyl})\text{isoindolin-5-yl})\text{acetic acid} \\
\begin{center}
\includegraphics[width=0.5\textwidth]{structure.png}
\end{center}

Step 1
\((S)\)-ethyl 2-(\text{tert-butoxy})-2-(2-(3\text{-fluorophenylcarbonothioyl})-4,7\text{-dimethyl-}6-(p\text{-tolyl})\text{isoindolin-5-yl})\text{acetate}. A mixture of 3-fluorobenzaldehyde (12.55 mg, 0.101 mmol), \((S)-\)ethyl 2-(\text{tert-butoxy})-2-(4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (40 mg, 0.101 mmol), and sulfur (3.89 mg, 0.121 mmol) in N,N-Dimethylformamide (DMF) (1 mL) was heated at 100 °C for 1 h. The reaction was cooled to ambient temperature, diluted with ice water, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification with column chromatography (0-50% EtOAc/Hexane) afforded the title compound (12.3 mg, 0.023 mmol, 22.79 % yield) as yellow oil. LCMS (m/z) ES⁺ = 534.51 (M+1).

Step 2
\((S)-2-(\text{tert-butoxy})-2-(2-(3\text{-fluorophenylcarbonothioyl})-4,7\text{-dimethyl-}6-(p\text{-tolyl})\text{isoindolin-5-yl})\text{acetic acid}. A solution of \((S)-\)ethyl 2-(\text{tert-butoxy})-2-(2-(3\text{-fluorophenylcarbonothioyl})-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetate (12.3 mg, 0.023 mmol) in ethanol (0.5 mL) and Tetrahydrofuran (THF) (0.5 mL) was treated with 2M LiOH (0.115 mL, 0.23 mmol) and stirred at 70 °C for 5 hours. The reaction was cooled to ambient temperature and concentrated in vacuo. The residue was purified by reverse phase HPLC (35-95% MeCN/H₂O-0.1% TFA) to afford the title compound (2.2 mg, 4.26 μmol, 18.54 % yield) as an off-white solid. NMR showed rotamers.

\(^1\)H NMR (400MHz, METHANOL-d4) d ppm 7.52 - 7.39 (m, 1H), 7.33 - 6.99 (m, 7H), 5.31 - 5.14 (m, 2H), 5.03 (d, J=6.4 Hz, 1H), 4.79 (d, J=3.8 Hz, 2H), 2.45 - 2.10 (m, 6H), 1.98 - 1.67 (m, 3H), 0.91 (d, J=9.9 Hz, 9H); LCMS (m/z) ES⁺ = 506.49 (M+1).
Example 289: (S)-2-(tert-butoxy)-2-(2-((3,3-difluoropyrrolidin-1-yl)sulfonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.33 (m, 1H), 7.22 (m, 2H), 7.05 (m, 1H), 5.14 (s, 1H), 4.78-4.56 (m, 4H), 3.77-3.52 (m, 4H), 2.40 (s, 6H), 2.22 (s, 3H), 1.85 (s, 3H), 0.99 (s, 9H).
LCMS(ES$^+$)(m/z): 537.51 (M+1).

Example 290: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((pyrimidin-2-ylmethyl)carbamoyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 8.80 (m, 2H), 7.35 (m, 1H), 7.20 (m, 2H), 7.05 (m, 1H), 5.15 (s, 1H), 4.75 (m, 5H), 2.40 (s, 3H), 2.25 (s, 3H), 1.90 (s, 3H), 1.25 (s, 1H), 0.95 (s, 9H).
LCMS(ES$^+$)(m/z): 503.45 (M+1); 1005.85 (2M+1).
Example 291: (S)-2-(tert-butoxy)-2-(2-(3,3-dimethylpyrrolidine-1-carbonyl)-4,7-dimethyl-6-(p-tolyl)isoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase hplc.

1H NMR (400 MHz, CDCl$_3$) δ 7.35 (m, 1H), 7.21 (m, 2H), 7.06 (m, 1H), 5.14 (s, 1H), 4.90-4.64 (m, 4H), 3.58 (m, 2H), 3.23 (s, 2H), 2.39 (s, 3H), 2.23 (s, 3H), 1.87 (s, 3H), 1.69 (m, 2H), 1.11 (s, 6H), 0.96 (s, 9H). LCMS(ES+)(m/z): 493.53 (M+1); 985.89 (2M+1).

Example 292: (S)-2-(tert-butoxy)-2-(4,7-dimethyl-2-((R)-2-methylpyrrolidine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

1H NMR (400 MHz, CDCl$_3$) δ 7.36 (d, 1 H), 7.18-7.27 (m, 2H), 7.07 (d, 1H), 5.15 (s, 1H), 5.06 (d, 1H), 4.90 (d, 1H), 4.48-4.60 (m, 2H), 4.06-4.15 (m, 1H), 3.39-3.59 (m, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 2.13 (td, 1H), 1.92 (dt, 1H), 1.89 (s, 3H), 1.81 (br. s, 1H), 1.50 (br. s, 1H), 1.21 (d, 3H), 0.98 (s, 9H). LCMS(ES+)(m/z): 479.61 (M+1), 501.60 (M+23), 957.93 (2M+1), 979.85 (2M+23).
Example 293: (S)-2-((tert-butoxy)-2-(4,7-dimethyl-2-((S)-2-methylpiperidine-1-carbonyl)-6-(p-tolyl)isoindolin-5-yl)acetic acid

\[
\text{Scheme 3}
\]
Example 295: (S)-2-(tert-butoxy)-2-((M)-6-(8-chloro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid.

To an ice cold solution of 1-bromobut-2-yne (7.15 g, 53.8 mmol) in anhydrous DMF (45 mL) was added NaH (60%, 2.44 g, 61.1 mmol). After stirring at 0 °C for 15 min, a solution of 3-fluorobenzamide (3.4 g, 24.4 mmol) in anhydrous DMF (5 mL) was added dropwise over 1 hr. The resulting mixture was warmed up to RT and stirred for 1 hr before being quenched with
water (100 mL) and extracted with ether (2x200 mL). The the combined ether solutions were
were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give
the crude product which was purified by column chromatography (silica gel, 0-15%
EtOAc/petroleum ether) to afford N,N-di(but-2-yne-1-yl)-3-fluorobenzamide (4.78 g, 80% yield) as
a yellow oil.

Step 1

Ethyl 2-hydroxy-4-(trimethylsilyl)but-3-ynoate.

\[\text{TMS} \equiv \text{OEt} \]

To a solution of TMS-acetylene (250 g, 2.55 mol) in anhydrous THF (2.5 L) at 0°C was added
3M EtMgBr/ether (933 mL, 2.80 mol) dropwise under an N₂ atmosphere while maintaining the
inner temperature below 5°C. After stirring at 0°C for 30 min, the suspension was added to an
ice cold solution of 50% ethyl glyoxylate/toluene (624 g, 3.05 mol) in anhydrous THF (5 L) via
cannula. After stirring at 0°C for 1 h, the mixture was quenched with saturated aqueous NH₄Cl
solution (3 L) and extracted with EtOAc (2x1 L). The combined EtOAc solutions were
concentrated at reduced pressure. The residue was diluted with EtOAc (3 L). The solution was
washed with water (2x1 L) and brine (2x1 L), dried over Na₂SO₄ and concentrated under
reduced pressure. The crude material was purified by flash chromatography (silica gel, 0-10%
EtOAc/petroleum ether) to give the title compound (285 g, 56%) as a yellow oil. ¹H NMR
(400MHz, CHLOROFORM-d) δ = 4.83 (d, J=7.3 Hz, 1H), 4.34 (qq, J=7.2, 10.8 Hz, 2H), 3.02 (d,
J=7.3 Hz, 1H), 1.34 (t, J=7.2 Hz, 3H), 0.22 - 0.16 (m, 9H).

Step 2

180
Ethyl 2-acetoxy-4-((trimethylsilyl)but-3-ynoate

![Chemical Structure](image)

To a 10 L flask was added EtOAc (7.5 L) followed by Ac₂O (400 mL). After stirring at RT for 30 minutes the mixture was cooled to 0 °C and treated with another portion of Ac₂O (2.1 L). After 1 hour at 0 °C, the solution was allowed to warm to RT. To the solution was added ethyl 2-hydroxy-4-((trimethylsilyl)but-3-ynoate (520 g, 2.60 mol). After stirring at RT for 1 hour the solution was washed with 1N aqueous NaOH (3x, 20 L total). The solution was then washed with brine (5 L), dried over Na₂SO₄ and concentrated to dryness at reduced pressure. The crude product was purified by flash chromatography (silica gel, 0-5% EtOAc/petroleum ether) to give the title compound (590 g, 94%) as a yellow oil. ¹H NMR (400MHz, CHLOROFORM-d) δ = 5.69 (s, 1H), 4.36 - 4.21 (m, 2H), 2.19 (s, 3H), 1.32 (t, J=7.2 Hz, 3H), 0.25 - 0.15 (m, 9H).

Step 3

(S)-Ethyl 2-hydroxy-4-((trimethylsilyl)but-3-ynoate

![Chemical Structure](image)

To a solution of ethyl 2-acetoxy-4-((trimethylsilyl)but-3-ynoate (150 g, 0.620 mol) in acetone (1.88 L) and phosphate buffer solution (pH 7.2, 7.5 L) was added Amano Lipase PS (75 g). After stirring at 20 °C overnight, the reaction mixture was diluted with water (2.5 L) and extracted with EtOAc (3 L). The layers were separated and the organic layer was washed with brine (3x, 10 L total volume), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product. This material was purified by flash chromatography (silica gel, 0-10% EtOAc/petroleum ether) to afford the title compound (55 g, 44%) as a yellow oil. ¹H NMR (400MHz, CHLOROFORM-d) δ = 4.83 (d, J=7.3 Hz, 1H), 4.34 (qq, J=7.2, 10.8 Hz, 2H), 3.02 (d, J=7.3 Hz, 1H), 1.34 (t, J=7.2 Hz, 3H), 0.22 - 0.16 (m, 9H).

Step 4

181
(S)-Ethyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate

To a solution of (S)-ethyl 2-hydroxy-4-(trimethylsilyl)but-3-ynoate (100 g, 0.500 mol) in t-BuOAc (2.5 L) was added HClO₄ (41 mL, 0.500 mol) dropwise at RT. After stirring for 40 minutes, the mixture was quenched with NaHCO₃ powder, diluted with water (2 L) and extracted with EtOAc (2L). The EtOAc solution was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude product. This material was was purified by flash chromatography (silica gel, 0-5% EtOAc/petroleum ether) to afford the title compound (103 g, 81%) as a yellow oil. ¹H NMR (400MHz, CHLOROFORM-d) δ = 4.72 (s, 1H), 4.33 - 4.20 (m, 2H), 1.31 (t, J=7.2 Hz, 3H), 1.28 (s, 9H), 0.17 (s, 9H).

Step 5
(S)-Ethyl 2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate

A suspension of [Rh(cod)₂]BF₄ (0.317 g, 0.780 mmol) and (+/-)-BINAP (0.486 g, 0.780 mmol) in anhydrous DCM (26 mL) was sparged with H₂ for 5 minutes and stirred under 1 atm (balloon) of H₂. After 1 hour the solution was concentrated at reduced pressure. The solution was redissolved in 10 mL of DCM and the solution added to a flask containing a solution of (S)-ethyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate (1.00 g, 3.90 mmol) in 10 mL of DCM. This solution was heated to 40 °C and treated with a solution of N,N-di(but-2-yn-1-yl)-3-fluorobenzamide (2.85 g, 11.7 mmol, 3.00 equiv) in 28 mL of DCM (syringe pump) over 3 hours. TLC (silica gel, 7:3 hexanes/EtOAc) at this point indicated partial conversion of (S)-ethyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate to the desired product (vs authentic TLC standard). The solution
was then treated with an additional 0.10 equiv portion of catalyst solution in 10 mL of DCM followed by slow addition of 2.00 equiv of \(N,N\)-di(but-2-yn-1-yl)-3-fluorobenzamide in 12 mL of DCM over 3 hours. The solution was then cooled to RT and stirred overnight. TLC at this point showed about 85% conversion. The solution was concentrated to dryness at reduced pressure and the residue subjected to flash chromatography (silica gel, 0-50% EtOAc/hexanes) to afford the title compound (1.53 g, 79%) as a tan foam.

Step 6

\[(S)\text{-Ethyl 2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-6-iodo-4,7-dimethylisoindolin-5-yl)acetate}\]

To a stirred solution of (S)-ethyl 2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate (3.15 g, 6.30 mmol) in anhydrous DCM (52 mL) at 0 °C was added NaHCO\(_3\) (10.6 g, 126 mmol). The mixture was then treated with 1M ICl/DCM (6.93 mL, 6.93 mmol) by dropwise addition. After 12 minutes LCMS indicated complete reaction. The solution was partitioned between EtOAc and 5% aqueous sodium thiosulfate and the phases separated. The aqueous phase was extracted once with EtOAc. The combined EtOAc solutions were washed with water (1x), brine (1x), dried over Na\(_2\)SO\(_4\) and concentrated at reduced pressure to give 3.67 g of a pale yellow foam. This material was subjected to flash chromatography (silica gel, 0-100% EtOAc/hexanes) to give the title compound (3.20 g, 92%) as a white foam.

Step 7

\[(S)\text{-ethyl 2-(tert-butoxy)-2-((M)-6-(8-chloro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetate}\]
In a sealable vial, a degassed mixture of (S)-ethyl 2-((tert-butoxy)-2-(2-(3-fluorobenzoyl)-6-iodo-4,7-dimethylisooindolin-5-yl)acetate (73.0 mg, 0.132 mmol), 2-(8-chloro-5-methylchroman-6-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (65.1 mg, 0.211 mmol), K$_2$PO$_4$ (84 mg, 0.396 mmol) and MePhos (9.62 mg, 0.026 mmol) in N,N-Dimethylformamide (DMF) (1.0 mL) was treated with Pd(dba)$_2$ (24.16 mg, 0.026 mmol) and the flask containing the mixture was sealed, then immersed into a 80 °C oil bath and stirred for 50 minutes. The mixture was cooled, diluted with EtOAc, washed with water, then brine, dried over Na$_2$SO$_4$, filtered and concentrated. The residue was purified on silica gel (4 g gold column, 0-20% hexanes/EtOAc) to afford an off-white residue (38 mg, 48%). LC/MS (m/z) ES$^+$ = 608 (M+1).

Step 8

(S)-2-((tert-butoxy)-2-((M)-6-(8-chloro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisooindolin-5-yl)acetate. A mixture of (S)-ethyl 2-((tert-butoxy)-2-((M)-6-(8-chloro-5-methylchroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisooindolin-5-yl)acetate (38.0 mg, 0.062 mmol) in 1,4-Dioxane (1.5 mL) was treated with 2M LiOH (0.312 mL, 0.625 mmol) and the mixture was heated to 60 °C and stirred for 3 hours. The temperature was increased to 70 °C and stirring was continued overnight. Additional 2M LiOH (0.312 mL, 0.625 mmol) was added and stirring at 70 °C was continued overnight. The mixture was concentrated, 1N HCl added and the mixture was extracted with EtOAc. The extracts were washed with brine, dried over Na$_2$SO$_4$, filtered and concentrated *in vacuo*. The residue was purified by RP-HPLC to afford a colorless residue (7.4 mg, 20%). 1H NMR (400 MHz, CDCl$_3$) δ ppm 7.51 - 7.42 (m, 1H), 7.39 - 7.36 (m, 1H), 7.33 - 7.25 (m, 1H), 7.24 - 7.15 (m, 1H), 6.95 (d, J=12.3 Hz, 1H), 5.02 (d, J=15.3 Hz, 3H), 4.74 (d, J=15.3 Hz, 2H), 4.31 (q, J=5.3 Hz, 2H), 2.75 - 2.66 (m, 2H), 2.35 (s, 1.5H), 2.19 (s, 1.5H), 2.16 - 2.07 (m, 2H), 1.94 - 1.66 (m, 6H), 1.19 - 1.07 (m, 9H); LC/MS (m/z) ES$^+$ = 580 (M+1). LC/MS (m/z) ES$^+$ = 580 (M+1).
Compounds 296-306 were prepared in a manner similar to the procedures described for Example 295.

Example 296: (2S)-2-(tert-butoxy)-2-(6-(4-chloro-2-methylphenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

![Chemical Structure](image)

1H NMR (CHLOROFORM-d) δ: 7.41-7.52 (m, 1H), 7.33-7.40 (m, 1H), 7.29 (br. s., 2H), 7.14-7.25 (m, 2H), 6.96 (br. s., 1H), 4.90-5.14 (m, 3H), 4.67-4.81 (m, 2H), 2.18-2.44 (m, 3H), 2.01-2.11 (m, 3H), 1.63-1.88 (m, 3H), 0.99-1.16 (m, 9H). LCMS(ES+)(m/z): 524.3 (M+1).

Example 297: (2S)-2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-6-(2-hydroxy-4-methylphenyl)-4,7-dimethylisoindolin-5-yl)acetic acid

![Chemical Structure](image)

1H NMR (CHLOROFORM-d) δ: 7.45-7.53 (m, 1H), 7.37-7.43 (m, 1H), 7.32 (d, 1H), 7.21 (d, 1H), 6.81-6.99 (m, 3H), 5.28 (d, 1H), 4.95-5.14 (m, 2H), 4.77 (d, 2H), 2.39 (d, 3H), 2.16-2.37 (m, 3H), 1.74-1.90 (m, 3H), 1.13 (d, 9H) LCMS(ES+)(m/z): 506.38 (M+1).
Example 298: (2S)-2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-6-(4-methoxy-2-methylphenyl)-4,7-dimethylisoindolin-5-yl)acetic acid

The title compound was isolated as a white solid after reverse phase HPLC. 1H NMR (400 MHz, CDCl$_3$) δ mixture of rotamers, 4:1 mixture of atropisomers: 7.50-7.42 (m, 1H), 7.37-7.35 (m, 1H), 7.33-7.27 (m, 1H), 7.22-7.16 (m, 1H), 6.96-6.91 (m, 1H), 6.84-6.75 (m, 2H), 5.17-4.91 (m, 3H), 4.76-4.72 (m, 2H), 3.85-3.83 (m, 3H), 2.38-2.20 (m, 3H), 2.07-1.97 (m, 3H), 1.89-1.67 (m, 3H), 1.13-1.00 (m, 9H). LCMS(ES+)(m/z): 520.39 (M+1).

Example 299: (2S)-2-(tert-butoxy)-2-(6-(2,3-dihydropyrano[4,3,2-de]quinolin-7-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
Example 300: (2S)-2-(tert-butoxy)-2-(6-(5-chloroquinolin-8-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

Example 301: (S)-2-(tert-butoxy)-2-(6-((M)-8-fluoro-5-methyl-3,4-dihydro-2H-benzol[b][1,4]oxazin-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid
Example 302: (S)-2-(tert-butoxy)-2-(6-(4,4-dimethylcyclohex-1-en-1-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

Example 303: (2S)-2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetic acid
5.03 (m, 1H), 5.02 - 4.95 (m, 2H), 4.85 - 4.79 (m, 2H), 4.36 - 4.23 (m, 2H), 3.60 - 3.50 (m, 2H),
2.51 - 2.25 (m, 3H), 1.89 - 1.65 (m, 6H), 1.14 - 1.04 (m, 9H); LCMS (m/z) ES⁺ = 547.48 (M+1).

Example 304: (S)-2-(tert-butoxy)-2-(6-(chroman-6-yl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl) acetic acid

![Chemical Structure](image)

¹H NMR (400MHz, METHANOL-d₄) (mixture of rotamers and atropisomers) δ ppm 7.64 - 7.53 (m, 1H), 7.52 - 7.46 (m, 1H), 7.43 (d, J=9.5 Hz, 1H), 7.36 - 7.26 (m, 1H), 7.15 - 7.04 (m, 1H),
6.96 - 6.75 (m, 2H), 5.17 - 5.08 (m, 1H), 5.04 - 4.94 (m, 2H), 4.85 - 4.76 (m, 2H), 4.30 - 4.16 (m, 2H), 2.94 - 2.67 (m, 2H), 2.44 - 2.15 (m, 3H), 2.14 - 2.01 (m, 2H), 2.00 - 1.79 (m, 3H), 1.03 - 0.91 (m, 9H); LCMS (m/z) ES⁺ = 532.48 (M+1).

Example 305: (2S)-2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-4,7-dimethyl-6-(5-methylchroman-6-yl)isoindolin-5-yl) acetic acid

![Chemical Structure](image)
1H NMR (400MHz, METHANOL-d$_4$) (mixture of rotamers and atropisomers) δ ppm 7.61 - 7.50 (m, 1H), 7.50 - 7.36 (m, 2H), 7.32 - 7.22 (m, 1H), 7.10 - 6.61 (m, 2H), 5.08 - 4.99 (m, 1H), 4.99 - 4.92 (m, 2H), 4.83 - 4.77 (m, 2H), 4.28 - 4.02 (m, 2H), 2.82 - 2.57 (m, 2H), 2.51 - 2.18 (m, 3H), 2.15 - 1.96 (m, 2H), 1.92 - 1.59 (m, 6H), 1.14 - 0.90 (m, 9H); LCMS (m/z) ES^+ = 546.53 (M+1).

Example 306: (2S)-2-(tert-butoxy)-2-(6-(2-chloro-4-methylphenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisopindolin-5-yl)acetic acid

![Chemical Structure Image]

1H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers) δ ppm 7.56 - 7.42 (m, 1H), 7.40 - 7.34 (m, 1H), 7.33 - 7.24 (m, 2H), 7.24 - 7.15 (m, 1H), 7.14 - 7.04 (m, 1H), 6.98 - 6.80 (m, 1H), 5.35 - 5.19 (m, 1H), 5.18 - 4.90 (m, 2H), 4.85 - 4.67 (m, 2H), 2.50 - 2.28 (m, 6H), 1.92 - 1.67 (m, 3H), 1.22 - 1.09 (m, 9H); LCMS (m/z) ES^+ = 524 (M+1).

Scheme 4
Example 307: \((S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(4,4-dimethylcyclohex-1-en-1-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid\)

(S)-Benzyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(trimethylsilyl)isoindoline-2-carboxylate. A mixture of \([\text{Rh}(\text{cod})_2]\text{BF}_4\) (5.00 g, 12.3 mmol) and \(\text{(R)}\)-BINAP (7.67 g, 12.3 mmol) in DCM (50 mL) was stirred at RT under \(\text{H}_2\) (1 atm) until the solution turned to dark red color (4 hours). The resulting mixture was placed under \(\text{N}_2\) and treated with a solution of \((S)\)-ethyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate (50.0 g, 195 mmol) in DCM (100 mL). After heating to 40 °C, a solution of benzyl di(but-2-yn-1-yl)carbamate (99.6 g, 390 mmol) in DCM (400 mL) was
added dropwise over 2.5 hours and the reaction mixture was stirred at 40 °C for an additional 30 minutes. The resulting mixture was concentrated in vacuo to give the crude product which was purified by column chromatography (silica gel, 0-10% EtOAc/petroleum ether) to afford the title compound (84 g, 84%) as a yellow oil.

Step 2

(S)-Ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate. A solution of benzyl 5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4,7-dimethyl-6-(trimethylsilyl)isoindoline-2-carboxylate (280 mg, 0.547 mmol) in Methanol (4.885 mL) was charged with Pd/C (58.2 mg, 0.055 mmol) and stirred under an atmosphere of H₂. After 1 h, the reaction mixture was filtered through a pad of celite, and the filter cake was rinsed with DCM. The filtrate was concentrated in vacuo to afford (S)-ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate (207 mg, 0.547 mmol, 100 % yield). LC/MS (m/z) ES⁺ = 378.5 (M+1).

Step 3

(S)-Ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)-2-(tert-butoxy)acetate. A solution of crude (S)-ethyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate (207 mg, 0.547 mmol, 100 % yield) was dissolved in EtOAc (5 mL) and treated with benzo[d][1,3]dioxole-4-carboxylic acid (182 mg, 1.094 mmol), followed by NEt₃ (0.229 mL, 1.642 mmol), and then T₃P (0.977 mL, 1.642 mmol). The reaction was stirred for 1.5 h, poured over sat. NaHCO₃, and extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to give (S)-ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)-2-(tert-butoxy)acetate (288 mg, 0.547 mmol, 100 % yield). LC/MS (m/z) ES⁺ = 526.3 (M+1).

Step 4

(S)-Ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-ido-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetate. A solution of (S)-ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)-2-(tert-butoxy)acetate (288 mg, 0.547 mmol, 100 % yield) was dissolved in DCM (5 mL) and cooled to 0 °C and treated dropwise with iodine chloride (1M in DCM) (0.657 mL, 0.657 mmol). After 20 min, the reaction mixture was diluted with DCM and washed with a 50% sat. solution of Na₂S₂O₄. The organic layer was washed with brine, dried over Na₂SO₄, then concentrated in vacuo. The residue was purified by silica gel chromatography (24 g SiO2, 0-60% EtOAc-Hexanes) to afford the title compound (245 mg,
0.423 mmol, 77%). 1H NMR (400MHz, CHLOROFORM-d) δ = 7.03 - 6.98 (m, 1H), 6.96 - 6.92 (m, 2H), 6.06 (d, J=2.5 Hz, 2H), 5.89 (s, 1H), 5.03 - 4.90 (m, 2H), 4.82 - 4.70 (m, 2H), 4.25 - 4.08 (m, 3H), 2.46 - 2.35 (m, 3H), 2.32 - 2.21 (m, 3H), 1.31 - 1.20 (m, 12H). LC/MS (m/z) ES$^+$ = 580.4 (M+1).

Step 5

(S)-ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(4,4-dimethylcyclohex-1-en-1-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetate. A solution of (S)-ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-iodo-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetate (76 mg, 0.131 mmol), 2-(4,4-dimethylcyclohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (46.5 mg, 0.197 mmol) and Na$_2$CO$_3$ (2.0 M) (0.202 mL, 0.403 mmol) in DMF were degassed with N$_2$ for 10 min. Pd(PPh$_3$)$_4$ (15.16 mg, 0.013 mmol) was added, and reaction was heated in microwave reactor for 20 min. Mixture was then poured over sat. aq. NaHCO$_3$ and extracted with EtOAc. The organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered and concentrated in vacuo. LC/MS (m/z) ES$^+$ = 562.3 (M+1).

Step 6

(S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(4,4-dimethylcyclohex-1-en-1-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid. A solution of (S)-ethyl 2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(4,4-dimethylcyclohex-1-en-1-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetate (73.7 mg, 0.131 mmol, 100 % yield) in 1,4-dioxane (1.312 mL) was treated with lithium hydroxide (0.650 mL, 1.3 mmol) and heated to 80 °C. After 18h, the reaction mixture was concentrated in vacuo, taken up in DCM, washed with 1 M HCl, brine, and dried over Na$_2$SO$_4$. The solvent was removed in vacuo, and the crude product was purified by reverse phase HPLC (30-100% ACN-H$_2$O) to afford (S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(4,4-dimethylcyclohex-1-en-1-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid (26 mg, 0.049 mmol, 37.1 % yield). 1H NMR (CHLOROFORM-d) δ: 6.87-7.11 (m, 3H), 6.06 (s, 2H), 5.35-5.89 (m, 2H), 4.68-5.04 (m, 4H), 1.89-2.58 (m, 11H), 1.52 (d, 2H), 1.24 (d, 9H), 1.05 (br. s., 6H). LCMS(ES$^+$)(m/z): 534.4 (M+1).

Examples 308 - 311 were prepared in a manner similar to the procedures described above for Example 307.
Example 308: (S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(4-chlorophenyl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

\[
\begin{align*}
\text{\footnotesize{Cl}} & \quad \text{\footnotesize{O}} \quad \text{\footnotesize{OH}} \\
\text{N} & \quad \text{\footnotesize{O}} \\
\text{\footnotesize{O}} & \quad \text{\footnotesize{O}}
\end{align*}
\]

\[\text{1H NMR (CHLOROFORM-d) } \delta: 7.44 \text{ (br. s., 3H), 7.07-7.18 \text{ (m, 1H), 6.97-7.04 \text{ (m, 1H), 6.93 \text{ (m, 2H), 6.04 \text{ (d, 2H), 4.77 \text{ (s, 5H), 2.14-2.36 \text{ (m, 3H), 1.78-1.94 \text{ (m, 3H), 1.01 \text{ (d, 9H).}}}}}}
\]

LCMS(ES+)(m/z): 536.3/538.3 (M+1).

Example 309: (2S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(2-chloro-4-methylphenyl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

\[
\begin{align*}
\text{\footnotesize{Cl}} & \quad \text{\footnotesize{O}} \quad \text{\footnotesize{CO$_2$H}} \\
\text{N} & \quad \text{\footnotesize{O}} \\
\text{\footnotesize{O}} & \quad \text{\footnotesize{O}}
\end{align*}
\]

\[\text{1H NMR (CHLOROFORM-d) } \delta: 7.26-7.50 \text{ (m, 2H), 7.04-7.18 \text{ (m, 1H), 6.81-7.03 \text{ (m, 3H), 5.99-6.10 \text{ (m, 2H), 4.72-5.27 \text{ (m, 5H), 1.99-2.47 \text{ (m, 7H), 1.70-1.97 \text{ (m, 3H), 0.96-1.18 \text{ (m, 9H).}}}}}}
\]

LCMS(ES+)(m/z): 550.3/552.3 (M+1).

Example 310: (2S)-2-(2-(benzo[d][1,3]dioxole-4-carbonyl)-6-(8-fluoro-5-methyl-3,4-dihydro-2H-benzof[b][1,4]oxazin-6-yl)-4,7-dimethylisoindolin-5-yl)-2-(tert-butoxy)acetic acid

\[
\begin{align*}
\text{\footnotesize{Cl}} & \quad \text{\footnotesize{O}} \quad \text{\footnotesize{CO$_2$H}} \\
\text{N} & \quad \text{\footnotesize{O}} \\
\text{\footnotesize{O}} & \quad \text{\footnotesize{O}}
\end{align*}
\]
1H NMR (CHLOROFORM-d) δ: 6.20-7.08 (m, 4H), 6.05 (d, 2H), 4.72-5.16 (m, 5H), 4.34 (br. s., 2H), 3.57 (br. s., 2H), 2.16-2.34 (m, 3H), 1.69-1.89 (m, 6H), 1.13 (d, 9H). LCMS(ES+)(m/z): 591.52 (M+1).

Example 311: (2S)-2-(tert-butoxy)-2-(2-(3-fluorobenzoyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetic acid

1H NMR (CHLOROFORM-d) δ: 7.42-7.53 (m, 1H), 7.36 (m, 1H), 7.29 (d, 1H), 7.15-7.24 (m, 1H), 6.27 (m, 1H), 5.09 (s, 1H), 5.01 (d, 2H), 4.74 (d, 2H), 4.34 (m, 2H), 3.55-3.59 (m, 2H), 2.13-2.35 (m, 3H), 1.69-1.87 (m, 6H), 1.13 (d, 9H). LCMS(ES+)(m/z): 565.3 (M+1).

Scheme 5
Example 312: \((S)\)-2-(tert-butoxy)-2-((M)-2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetic acid.

rac-Methyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate

Methyl 2-hydroxy-4-(trimethylsilyl)but-3-ynoate. A solution of methyl 2-oxo-4-(trimethylsilyl)but-3-ynoate (485 mg, 2.63 mmol) in Methanol (20 mL) was treated with cerium(III) chloride heptahydrate (1226 mg, 3.29 mmol), followed by portion-wise addition of sodium borohydride (49.8 mg, 1.316 mmol) and the mixture was stirred at ambient temperature for 30 minutes. Additional NaBH₄ (25 mg) was added (3:05 pm) and then another portion (20 mg, 3:25 pm). After 10-15 minutes stirring at ambient temperature, the mixture was concentrated. 1N HCl was
added and the mixture was extracted with DCM. The extracts were dried over MgSO₄, filtered and concentrated. The residue was purified on silica (24 g column, 0-20% hexanes/EtOAc) to afford a pale yellow oil. ¹H NMR (400MHz, CHLOROFORM-d) δ = 4.86 (d, J=7.3 Hz, 1H), 3.88 (s, 3H), 3.00 (d, J=7.3 Hz, 1H), 0.19 (s, 9H).

Methyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate. A solution of methyl 2-hydroxy-4-(trimethylsilyl)but-3-ynoate (92 mg, 0.494 mmol) in t-Butyl acetate (15 mL) was treated with perchloric acid (0.119 mL, 1.976 mmol). A ground glass stopper was placed on the flask and the mixture was stirred at ambient temperature for 30 minutes. The mixture was diluted with EtOAc, washed with 1N NaOH, then brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to a pink tinged oil. The residue was used crude in the next step. ¹H NMR (400MHz, CHLOROFORM-d) δ = 4.75 (s, 1H), 3.81 (s, 3H), 1.28 (s, 9H), 0.17 (s, 9H).

Step 1

(S)-Benzy] 5-(1-(tert-butoxy)-2-methoxy-2-oxoethyl)-4,7-dimethyl-6-(trimethylsilyl)isoindoline-2-carboxylate. [Rh(cod)₂]BF₃ (0.335 g, 0.825 mmol) and (+/-) BINAP (0.514 g, 0.825 mmol) were suspended in Dichloromethane (36 ml) and stirred for 5 min. The mixture was then purged with H₂ for 1 min, and stirred under 1 atm H₂. After 1 h, methyl 2-(tert-butoxy)-4-(trimethylsilyl)but-3-ynoate (1 g, 4.13 mmol) in DCM (2 mL) was added, followed by the dropwise addition of 2 eq. diyne over 90 min. The reaction was stirred 90 min at ambient temperature, followed by the dropwise addition of an additional 2 eq diyne over a period of 90 min. After 30 min, the reaction mixture was concentrated in vacuo, and purified by silica gel chromatography (80 g SiO₂, 0-30% EtOAc-cyclohexane) to afford the title compound (4.2 g, 79%). The racemic mixture was purified by preparative HPLC chromatography (20% MeOH modified CO₂ on either Cell2 or CC4, 140 bar, 40C, 2 ml/min. The material was dissolved in 3:1 mixture of MeOH/CHCl₃ at 75 mg/ml and prepped (15 mg/200 ul injection on 21.20x150 mm CC4) to afford (S)-benzyl 5-(1-(tert-butoxy)-2-methoxy-2-oxoethyl)-4,7-dimethyl-6-(trimethylsilyl)isoindoline-2-carboxylate (>99% ee). ¹H NMR (400MHz, CHLOROFORM-d) δ = 7.49 - 7.32 (m, 5H), 5.66 (br. s., 1H), 5.33 - 5.19 (m, 2H), 4.80 - 4.62 (m, 4H), 3.73 (s, 3H), 2.37 (d, J=13.1 Hz, 3H), 2.23 (d, J=10.8 Hz, 3H), 1.19 (s, 9H), 0.50 (br. s., 9H). LCMS(ES+)(m/z): 498.4 (M+1).

(S)-Methyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate. A solution of (S)-benzyl 5-(1-(tert-butoxy)-2-methoxy-2-oxoethyl)-4,7-dimethyl-6-(trimethylsilyl)isoindoline-2-carboxylate (150 mg, 0.301 mmol) in Methanol (3 mL) was treated with Pd/C (32.1 mg, 0.030
mmol). The suspension was stirred under an atmosphere of H₂ for 40 min, then filtered through celite. Filter cake was washed with DCM, and filtrate was concentrated in vacuo to give title compound (110 mg, 0.303 mmol, 100 % yield). ¹H NMR (400MHz, CHLOROFORM-d) δ ppm 5.65 (br. s., 1H), 4.21 (d, J=5.1 Hz, 4H), 3.71 (s, 3H), 2.35 (s, 3H), 2.21 (s, 3H), 1.18 (s, 9H), 0.48 (br. s., 9H); LCMS (m/z) ES+ = 364 (M+1).

Step 2

(S)-methyl 2-(tert-butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate. An ice cold solution of phosgene (20% in toluene) (1.353 mL, 2.5575 mmol) in Tetrahydrofuran (5 mL) was treated dropwise with a solution of (S)-methyl 2-(tert-butoxy)-2-(4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate (372 mg, 1.023 mmol) in Tetrahydrofuran (7.5 mL). The resulting purple solution was stirred in ice bath for 20 min, and then warmed to ambient temperature. After 50 min, the reaction mixture was concentrated in vacuo to give the carbamoyl chloride as green oil. The residue was dissolved in tetrahydrofuran (10 mL), cooled to 0 °C, and treated with pyridine (0.091 mL, 1.125 mmol), Et₃N (1.069 mL, 7.6725 mmol), and 3,3-difluoropyrrolidine, Hydrochloride (0.734 g, 5.115 mmol). The reaction was stirred at 0 °C for 45 min, and then at ambient temperature. After 18 h the reaction was diluted with ice water, extracted with EtOAc, washed with 1M HCl, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to give crude (S)-methyl 2-(tert-butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate (479.6 mg, 0.966 mmol, 94 % yield) as a brown foam. ¹H NMR (400MHz, CHLOROFORM-d) δ ppm 5.64 (br. s., 1H), 4.83 - 4.60 (m, 4H), 3.83 (t, J=13.2 Hz, 2H), 3.78 - 3.69 (m, 5H), 2.46 - 2.30 (m, 5H), 2.22 (s, 3H), 1.17 (s, 9H), 0.49 (s, 9H); LCMS (m/z) ES+ = 497.52 (M+1)

Step 3

(S)-methyl 2-(tert-butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-6-iodo-4,7-dimethylisoindolin-5-yl)acetate. An ice cold mixture of (S)-methyl 2-(tert-butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(trimethylsilyl)isoindolin-5-yl)acetate (479.6 mg, 0.966 mmol, 94 % yield) and sodium bicarbonate (0.859 g, 10.23 mmol) in Dichloromethane (10 mL) was treated dropwise with ICl (1M in DCM) (1.030 mL, 1.03 mmol) over 20 min, and stirred at 0 °C. After 1 h, the reaction was quenched with aq. Na₂S₂O₃, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification with column chromatography (0-70% EtOAC/Hexane) afforded (S)-methyl 2-(tert-butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-6-iodo-4,7-dimethylisoindolin-5-yl)acetate (413.1 mg, 0.751 mmol, 73.4 % yield)

198
(N35491-7-3) as brown solid. 1H NMR (400MHz, CHLOROFORM-d) δ ppm 5.91 (s, 1H), 4.87 - 4.58 (m, 4H), 3.83 (t, J=13.1 Hz, 2H), 3.77 - 3.65 (m, 5H), 2.47 - 2.33 (m, 5H), 2.30 (s, 3H), 1.23 (s, 9H); LCMS (m/z) ES+ = 551.37 (M+1).

Step 4

(S)-Methyl 2-(tert-butoxy)-2-((M)-2-(3,3-difluoropyrrrolidine-1-carbonyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetate A solution of (S)-methyl 2-(tert-butoxy)-2-2-(3,3-difluoropyrrrolidine-1-carbonyl)-6-iodo-4,7-dimethylisoindolin-5-yl)acetate (70 mg, 0.127 mmol) and 5-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazine (52.5 mg, 0.191 mmol) in N,N-Dimethylformamide (DMF) (1.3 mL) was degassed with N₂ for 10 min, treated with 2M Na₂CO₃ (0.191 mL, 0.382 mmol), Pd(Ph₃P)₄ (14.70 mg, 0.013 mmol), and irradiated in the microwave at 120°C for 20 min. The reaction was poured into aq. sat. NaHCO₃, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated. Purification with column chromatography (0-100% EtOAc/Hexane) afforded the title compound (38.9 mg, 0.068 mmol, 53.5 % yield) as light brown oil. LCMS (m/z) ES+ = 594.47 (M+Na).

Step 5

(S)-2-(tert-butoxy)-2-((M)-2-(3,3-difluoropyrrrolidine-1-carbonyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetic acid. (S)-methyl 2-(tert-butoxy)-2-((M)-2-(3,3-difluoropyrrrolidine-1-carbonyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetate (38.9 mg, 0.068 mmol, 53.5 % yield) (N35491-10-2) in 1,4-Dioxane (1 mL) was treated with 2M LiOH (0.340 mL, 0.68 mmol), stirred at 70°C for 9 hours, and then concentrated. Purification with reverse phase HPLC (20-85% MeCN/H₂O-0.1% TFA) afforded (2S)-2-(tert-butoxy)-2-(2-(3,3-difluoropyrrrolidine-1-carbonyl)-4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)isoindolin-5-yl)acetic acid (25 mg, 0.044 mmol, 65.3 % yield) as white solid. ¹H NMR (400MHz, METHANOL-d4) δ ppm 6.79 (d, J=8.3 Hz, 1H), 6.60 (d, J=8.3 Hz, 1H), 5.05 (s, 1H), 4.83 (d, J=5.5 Hz, 4H), 4.33 (t, J=4.4 Hz, 2H), 3.92 (t, J=13.1 Hz, 2H), 3.80 (t, J=7.3 Hz, 2H), 3.65 - 3.55 (m, 2H), 2.51 - 2.35 (m, 5H), 1.87 (s, 3H), 1.81 (s, 3H), 1.11 (s, 9H); LCMS (m/z) ES− = 556.52 (M-1).

Examples 313 – 322 were made in a similar manner as Example 312.
Example 313: (S)-2-(tert-butoxy)-2-(6-(chroman-6-yl)-2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethylisodolinol-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400MHz, METHANOL-d}_4\text{) (mixture of atropisomers) } & \delta \text{ ppm 7.16 - 7.05 (m, 1H), 6.95 - 6.76 (m, 2H), 5.15 - 5.08 (m, 1H), 4.86 - 4.74 (m, 4H), 4.31 - 4.17 (m, 2H), 3.92 (t, J=13.2 Hz, 2H), 3.79 (t, J=7.4 Hz, 2H), 2.92 - 2.70 (m, 2H), 2.52 - 2.38 (m, 2H), 2.37 - 2.29 (m, 3H), 2.13 - 1.99 (m, 2H), 1.97 - 1.89 (m, 3H), 1.05 - 0.91 (m, 9H); LCMS (m/z) ES' = 1085.88 (2M+1).}
\end{align*}
\]

Example 314: (2S)-2-(tert-butoxy)-2-(6-(2-chloro-4-methylphenyl)-2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethylisodolinol-5-yl)acetic acid

\[
\begin{align*}
\text{H NMR (400MHz, METHANOL-d}_4\text{) } & \delta \text{ ppm 7.46 - 7.34 (m, 2H), 7.26 (d, J=7.8 Hz, 1H), 4.97 (s, 1H), 4.86 - 4.76 (m, 4H), 3.92 (t, J=13.1 Hz, 2H), 3.80 (t, J=7.4 Hz, 2H), 2.53 - 2.40 (m, 5H), 2.38 (s, 3H), 1.91 (s, 3H), 1.02 (s, 9H); LCMS (m/z) ES' = 535.47 (M+1).}
\end{align*}
\]
Example 315: (2S)-2-(tert-butoxy)-2-(3,3-difluoropyrrolidine-1-carbonyl)-6-(8-fluoro-5-methyl-3,4-dihydro-2H-benzof[b][1,4]oxazin-6-yl)-4,7-dimethylisoindolin-5-yl)acetic acid

\[\text{H NMR (CHLOROFORM-d)} \delta: 6.29 (d, 1H), 5.09 (s, 1H), 4.78 (d, 4H), 4.35 (m, 2H), 3.85 (m, 2H), 3.74-3.79 (m, 2H), 3.57 (m, 2H), 2.33-2.45 (m, 2H), 2.26 (s, 3H), 1.80 (s, 3H), 1.75 (s, 3H), 1.13 (s, 9H). LCMS(ES+)(m/z): 576.3 (M+1).\]

Example 316: (2S)-2-(tert-butoxy)-2-(6-(2-chloro-4-methylphenyl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid

\[\text{H NMR (400MHz, METHANOL-d4)} \delta \text{ ppm 7.36 (s, 1H), 7.20 (d, } J=7.5 \text{ Hz, 1H), 7.04 (d, } J=7.8 \text{ Hz, 1H), 5.05 (s, 1H), 4.81 (d, } J=11.5 \text{ Hz, 4H), 3.42 - 3.36 (m, 4H), 2.45 (s, 3H), 2.43 (s, 3H), 1.84 (s, 3H), 1.76 - 1.62 (m, 6H), 1.11 (s, 9H); LCMS (m/z) } ES^+ = 513.50 (M+1).\]

Example 317: (S)-2-(tert-butoxy)-2-(6-(chroman-6-yl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid
\(^1\)H NMR (400MHz, METHANOL-\(d_4\)) (mixture of atropisomers) \(\delta\) ppm 7.13 - 7.06 (m, 1H), 6.94 - 6.77 (m, 2H), 5.16 - 5.08 (m, 1H), 4.84 - 4.71 (m, 4H), 4.29 - 4.19 (m, 2H), 3.42 - 3.35 (m, 4H), 2.96 - 2.70 (m, 2H), 2.33 (s, 3H), 2.14 - 1.99 (m, 2H), 1.97 - 1.86 (m, 3H), 1.78 - 1.58 (m, 6H), 1.03 - 0.93 (m, 9H); LCMS (m/z) ES\(^+\) = 521.56 (M+1).

Example 318: (2S)-2-(tert-butoxy)-2-(6-(8-fluoro-5-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid

\(^1\)H NMR (CHLOROFORM-d) \(\delta\): 6.28 (d, 1H), 5.07 (s, 1H), 4.69-4.83 (m, 4H), 4.34 (m, 2H), 3.56 (m, 2H), 3.31 (br. s., 4H), 2.26 (s, 3H), 1.79 (s, 3H), 1.73 (s, 3H), 1.64 (br. s., 6H), 1.12 (s, 9H). LCMS(ES+)(m/z): 554.3 (M+1).
Example 319: (2S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(5-methyl-3,4-dihydro-2H-benzof[b][1,4]oxazin-6-yl)-2-(piperidine-1-carbonyl)isindolin-5-yl)acetic acid

\[
\text{HO-} \begin{array}{c}
\text{O} \\
\text{N}
\end{array} \begin{array}{c}
\text{O} \\
\text{N}
\end{array} \\
\text{O-} \begin{array}{c}
\text{O} \\
\text{N}
\end{array}
\]

\[\text{\[^1\text{H NMR (400MHz, METHANOL-d4) \delta ppm 6.75 (d, J=8.3 Hz, 1H), 6.57 (d, J=8.3 Hz, 1H), 5.03 (s, 1H), 4.77 (d, J=4.6 Hz, 4H), 4.30 (t, J=4.4 Hz, 2H), 3.64 - 3.50 (m, 2H), 3.41 - 3.33 (m, 4H), 2.38 (s, 3H), 1.84 (s, 3H), 1.78 (s, 3H), 1.67 (br. s., 6H), 1.08 (s, 9H); LCMS (m/z) ES\(^+\) = 536.56 (M+1).}\]}

Example 320: (2S)-2-(tert-butoxy)-2-(2-(3,3-difluoropyrrolidine-1-carbonyl)-4,7-dimethyl-6-(5-methylchroman-6-yl)isindolin-5-yl)acetic acid

\[
\text{HO-} \begin{array}{c}
\text{O} \\
\text{N}
\end{array} \begin{array}{c}
\text{O} \\
\text{N}
\end{array} \\
\text{O-} \begin{array}{c}
\text{O} \\
\text{N}
\end{array}
\]

\[\text{\[^1\text{H NMR (400MHz, METHANOL-d4) \delta ppm 7.15 - 6.76 (m, 1H), 6.75 - 6.65 (m, 1H), 5.08 (s, 0.25H), 5.04 (s, 0.75H), 4.86 - 4.75 (m, 4H), 4.19 (t, J=5.0 Hz, 2H), 3.92 (t, J=13.1 Hz, 2H), 3.80 (t, J=7.4 Hz, 2H), 2.79 - 2.63 (m, 2H), 2.54 - 2.29 (m, 5H), 2.20 - 2.03 (m, 2H), 1.90 - 1.75 (m, 6H), 1.15 - 0.93 (m, 9H); LCMS (m/z) ES\(^+\) = 557.53 (M+1).}\]}

203
Example 321: (2S)-2-(tert-butoxy)-2-(4,7-dimethyl-6-(5-methylchroman-6-yl)-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid

\[
\text{\begin{center}
\includegraphics[width=0.3\textwidth]{compound1.png}
\end{center}}
\]

\(^{1}\text{H NMR (400MHz, METHANOL-\text{d}_4) (3:1 mixture of atropisomers) \delta ppm 7.13 - 6.76 (m, 1H), 6.75 - 6.63 (m, 1H), 5.10 - 5.01 (m, 1H), 4.85 - 4.73 (m, 4H), 4.28 - 4.09 (m, 2H), 3.41 - 3.36 (m, 4H), 2.78 - 2.62 (m, 2H), 2.45 - 2.33 (m, 3H), 2.17 - 2.03 (m, 2H), 1.90 - 1.76 (m, 6H), 1.75 - 1.62 (m, 6H), 1.15 - 0.94 (m, 9H); LCMS (m/z) ES+ = 535.55 (M+1).}
\]

Example 322: (2S)-2-(tert-butoxy)-2-(6-(2-chloro-4-methylphenyl)-4,7-dimethyl-2-(piperidine-1-carbonyl)isoindolin-5-yl)acetic acid

\[
\text{\begin{center}
\includegraphics[width=0.3\textwidth]{compound2.png}
\end{center}}
\]

\(^{1}\text{H NMR (400MHz, METHANOL-\text{d}_4) \delta ppm 7.47 - 7.32 (m, 1.4H), 7.30 - 7.15 (m, 1H), 7.04 (d, J=7.5 Hz, 0.6H), 5.12 - 4.96 (m, 1H), 4.84 - 4.74 (m, 4H), 3.37 (br. s., 4H), 2.50 - 2.32 (m, 6H), 1.90 (s, 1H), 1.84 (s, 2H), 1.69 (br. s., 6H), 1.11 (s, 6H), 1.02 (s, 3H); LCMS (m/z) ES+ = 513.48 (M+1).}
\]
Example 323: \(2\text{-}(\text{tert-butoxy})\text{-}2\text{-}(6\text{-}(4\text{-chloro-2-methylphenyl})\text{-}2\text{-}(3,3\text{-difluoropyrrolidine-1-carbonyl})\text{-}4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

The title compound was made in a similar manner to Example 100.

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{F} \\
\text{O} \\
\text{N} \\
\end{array}
\]

\(^1\text{H NMR (CHLOROFORM-d) \delta: 7.29 (s, 1H), 7.21 (d, 2H), 4.95-5.17 (m, 1H), 4.78 (d, 4H), 3.84 (m, 2H), 3.75 (m, 2H), 2.28-2.45 (m, 5H), 1.96-2.10 (m, 3H), 1.70-1.83 (m, 3H), 1.02-1.15 (m, 9H). LCMS(ES+)(m/z): 557.64/559.38 (M+23).}

Example 324: \((2S)\text{-}2\text{-}(\text{tert-butoxy})\text{-}2\text{-}(6\text{-}(4\text{-chloro-2-methylphenyl})\text{-}2\text{-}(\text{cyclohexanecarbonyl})\text{-}4,7\text{-dimethylisoindolin-5-yl})\text{acetic acid}\)

The title compound was made in a similar manner to Example 103.

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{N} \\
\end{array}
\]
\(^1\)H NMR (400 MHz, CHLOROFORM-\(d\)) \(\delta\) 7.38 - 7.52 (m, 3 H), 7.13 (d, \(J=7.18\) Hz, 1 H), 5.06 (br. s., 1 H), 2.43 - 2.57 (m, 1 H), 4.68 - 4.91 (m, 4 H), 2.28 (d, 3 H), 1.89 (d, 3 H), 1.82 (d, 4 H), 1.73 (br. s., 1 H), 1.61 (d, 2 H), 1.30 - 1.46 (m, 3 H), 1.01 (s, 9 H). LCMS(ES\(\dagger\))(m/z): 498.5 (M+1).

Example 325: (2S)-2-(tert-butoxy)-2-(6-(4-chloro-2-methylphenyl)-2-(3,3-dimethylbutanoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

The title compound was made in a similar manner to Example 103.

\(\text{\includegraphics{image.png}}\)

\(^1\)H NMR (400 MHz, CDCl\(3\)) \(\delta\) ppm 7.49 - 7.39 (m, 3 H), 7.13 (br. s., 1 H), 5.06 (br. s., 1 H), 4.88 - 4.72 (m, 4 H), 2.36 - 2.30 (m, 2 H), 2.27 (s, 3 H), 1.88 (s, 3 H), 1.13 (d, 9 H), 1.01 (s, 9 H). LCMS(ES\(\dagger\))(m/z): 486.46/488.39 (M+1)

Example 326: (2S)-2-(tert-butoxy)-2-(6-(2-chloro-4-methylphenyl)-2-(3-fluorobenzoyl)-4,7-dimethylisoindolin-5-yl)acetic acid

The title compound was made in a similar manner to Example 103.
1H NMR (400MHz, CHLOROFORM-d) (mixture of rotamers and atropisomer) δ ppm 7.54 - 7.42 (m, 1H), 7.41 - 7.34 (m, 1H), 7.34 - 7.24 (m, 2H), 7.24 - 7.13 (m, 1H), 7.13 - 7.04 (m, 1H), 6.96 - 6.80 (m, 1H), 5.35 - 4.88 (m, 3H), 4.84 - 4.65 (m, 2H), 2.53 - 2.26 (m, 6H), 2.00 - 1.67 (m, 3H), 1.20 - 1.03 (m, 9H); LCMS (m/z) ES$^+$ = 524 (M+1).

ANTI-HIV ACTIVITY

MT4 Assay

Antiviral HIV activity and cytotoxicity values for compounds of the invention from Table 1 were measured in parallel in the HTLV-1 transformed cell line MT-4 based on the method previously described (Hazen et al., 2007, *In vitro* antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV (Hazen et al., “In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV”, *Antimicrob. Agents Chemother.* 2007, 51: 3147-3154; and Pauwels et al., “Sensitive and rapid assay on MT-4 cells for the detection of antiviral compounds against the AIDS virus”, *J. of Virological Methods* 1987, 16: 171-185).

Luciferase activity was measured 96 hours later by adding a cell titer glo (Promega, Madison, Wis.). Percent inhibition of cell protection data was plotted relative to no compound control. Under the same condition, cytotoxicity of the compounds was determined using cell titer Glo™ (Promega, Madison, Wis.). IC$_{50}$s were determined from a 10 point dose response curve using 3-4-fold serial dilution for each compound, which spans a concentration range > 1000 fold.
These values are plotted against the molar compound concentrations using the standard four parameter logistic equation:

\[y = \left(\frac{(V_{\text{max}} \times x^n)}{(K^n + x^n)} \right) + Y_2 \]

where:

- \(Y_2 \) = minimum \(y \)
- \(n \) = slope factor
- \(V_{\text{max}} \) = maximum \(y \)
- \(x \) = compound concentration [M]
- \(K = EC_{50} \)

When tested in the MT4 assay compounds were found to have IC_{50} values listed in Table 1.

<table>
<thead>
<tr>
<th>Example</th>
<th>IC_{50} (uM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.035</td>
</tr>
<tr>
<td>2</td>
<td>0.036</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>0.033</td>
</tr>
<tr>
<td>5</td>
<td>0.042</td>
</tr>
<tr>
<td>6</td>
<td>2977</td>
</tr>
<tr>
<td>7</td>
<td>0.004</td>
</tr>
<tr>
<td>8</td>
<td>0.005</td>
</tr>
<tr>
<td>9</td>
<td>0.098</td>
</tr>
<tr>
<td>10</td>
<td>0.071</td>
</tr>
<tr>
<td>11</td>
<td>0.174</td>
</tr>
<tr>
<td>12</td>
<td>0.82</td>
</tr>
<tr>
<td>13</td>
<td>0.044</td>
</tr>
<tr>
<td>14</td>
<td>0.118</td>
</tr>
<tr>
<td>15</td>
<td>2.133</td>
</tr>
<tr>
<td>16</td>
<td>0.062</td>
</tr>
<tr>
<td>17</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>18</td>
<td>0.075</td>
</tr>
<tr>
<td>19</td>
<td>0.34</td>
</tr>
<tr>
<td>20</td>
<td>0.115</td>
</tr>
<tr>
<td>21</td>
<td>0.04</td>
</tr>
<tr>
<td>22</td>
<td>0.02</td>
</tr>
<tr>
<td>23</td>
<td>0.203</td>
</tr>
<tr>
<td>24</td>
<td>0.012</td>
</tr>
<tr>
<td>25</td>
<td>0.946</td>
</tr>
<tr>
<td>26</td>
<td>0.054</td>
</tr>
<tr>
<td>27</td>
<td>0.932</td>
</tr>
<tr>
<td>28</td>
<td>0.094</td>
</tr>
<tr>
<td>29</td>
<td>0.184</td>
</tr>
<tr>
<td>30</td>
<td>0.047</td>
</tr>
<tr>
<td>31</td>
<td>0.203</td>
</tr>
<tr>
<td>32</td>
<td>0.723</td>
</tr>
<tr>
<td>33</td>
<td>0.616</td>
</tr>
<tr>
<td>34</td>
<td>0.086</td>
</tr>
<tr>
<td>35</td>
<td>0.012</td>
</tr>
<tr>
<td>36</td>
<td>0.037</td>
</tr>
<tr>
<td>37</td>
<td>0.723</td>
</tr>
<tr>
<td>38</td>
<td>1.230</td>
</tr>
<tr>
<td>39</td>
<td>0.872</td>
</tr>
<tr>
<td>40</td>
<td>3.427</td>
</tr>
<tr>
<td>41</td>
<td>0.050</td>
</tr>
<tr>
<td>42</td>
<td>0.025</td>
</tr>
<tr>
<td>43</td>
<td>0.937</td>
</tr>
<tr>
<td>44</td>
<td>3.350</td>
</tr>
<tr>
<td>45</td>
<td>0.043</td>
</tr>
<tr>
<td>46</td>
<td>4.077</td>
</tr>
<tr>
<td>47</td>
<td>0.044</td>
</tr>
<tr>
<td>48</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>49</td>
<td>0.100</td>
</tr>
<tr>
<td>50</td>
<td>0.029</td>
</tr>
<tr>
<td>51</td>
<td>0.044</td>
</tr>
<tr>
<td>52</td>
<td>0.018</td>
</tr>
<tr>
<td>53</td>
<td>0.051</td>
</tr>
<tr>
<td>54</td>
<td>0.288</td>
</tr>
<tr>
<td>55</td>
<td>0.086</td>
</tr>
<tr>
<td>56</td>
<td>0.012</td>
</tr>
<tr>
<td>57</td>
<td>0.044</td>
</tr>
<tr>
<td>58</td>
<td>0.350</td>
</tr>
<tr>
<td>59</td>
<td>0.279</td>
</tr>
<tr>
<td>60</td>
<td>0.014</td>
</tr>
<tr>
<td>61</td>
<td>0.038</td>
</tr>
<tr>
<td>62</td>
<td>0.044</td>
</tr>
<tr>
<td>63</td>
<td>0.015</td>
</tr>
<tr>
<td>64</td>
<td>0.106</td>
</tr>
<tr>
<td>65</td>
<td>0.010</td>
</tr>
<tr>
<td>66</td>
<td>0.006</td>
</tr>
<tr>
<td>67</td>
<td>0.055</td>
</tr>
<tr>
<td>68</td>
<td>0.008</td>
</tr>
<tr>
<td>69</td>
<td>0.014</td>
</tr>
<tr>
<td>70</td>
<td>0.034</td>
</tr>
<tr>
<td>71</td>
<td>0.276</td>
</tr>
<tr>
<td>72</td>
<td>0.016</td>
</tr>
<tr>
<td>73</td>
<td>0.026</td>
</tr>
<tr>
<td>74</td>
<td>0.021</td>
</tr>
<tr>
<td>75</td>
<td>0.034</td>
</tr>
<tr>
<td>76</td>
<td>0.012</td>
</tr>
<tr>
<td>77</td>
<td>0.160</td>
</tr>
<tr>
<td>78</td>
<td>0.126</td>
</tr>
<tr>
<td>79</td>
<td>0.231</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>80</td>
<td>0.381</td>
</tr>
<tr>
<td>81</td>
<td>0.016</td>
</tr>
<tr>
<td>82</td>
<td>0.014</td>
</tr>
<tr>
<td>83</td>
<td>0.006</td>
</tr>
<tr>
<td>84</td>
<td>0.011</td>
</tr>
<tr>
<td>85</td>
<td>0.120</td>
</tr>
<tr>
<td>86</td>
<td>1.163</td>
</tr>
<tr>
<td>87</td>
<td>0.005</td>
</tr>
<tr>
<td>88</td>
<td>0.018</td>
</tr>
<tr>
<td>89</td>
<td>0.011</td>
</tr>
<tr>
<td>90</td>
<td>0.267</td>
</tr>
<tr>
<td>91</td>
<td>0.013</td>
</tr>
<tr>
<td>92</td>
<td>0.016</td>
</tr>
<tr>
<td>93</td>
<td>0.007</td>
</tr>
<tr>
<td>94</td>
<td>0.044</td>
</tr>
<tr>
<td>95</td>
<td>0.778</td>
</tr>
<tr>
<td>96</td>
<td>0.014</td>
</tr>
<tr>
<td>97</td>
<td>0.144</td>
</tr>
<tr>
<td>98</td>
<td>2.296</td>
</tr>
<tr>
<td>99</td>
<td>0.045</td>
</tr>
<tr>
<td>100</td>
<td>0.005</td>
</tr>
<tr>
<td>101</td>
<td>0.003</td>
</tr>
<tr>
<td>102</td>
<td>0.002</td>
</tr>
<tr>
<td>103</td>
<td>0.002</td>
</tr>
<tr>
<td>104</td>
<td>0.002</td>
</tr>
<tr>
<td>105</td>
<td>0.014</td>
</tr>
<tr>
<td>106</td>
<td>0.143</td>
</tr>
<tr>
<td>107</td>
<td>0.007</td>
</tr>
<tr>
<td>108</td>
<td>0.006</td>
</tr>
<tr>
<td>109</td>
<td>0.036</td>
</tr>
<tr>
<td>110</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>111</td>
<td>0.016</td>
</tr>
<tr>
<td>112</td>
<td>0.029</td>
</tr>
<tr>
<td>113</td>
<td>0.010</td>
</tr>
<tr>
<td>114</td>
<td>0.005</td>
</tr>
<tr>
<td>115</td>
<td>0.006</td>
</tr>
<tr>
<td>116</td>
<td>0.031</td>
</tr>
<tr>
<td>117</td>
<td>0.017</td>
</tr>
<tr>
<td>118</td>
<td>0.014</td>
</tr>
<tr>
<td>119</td>
<td>0.003</td>
</tr>
<tr>
<td>120</td>
<td>0.003</td>
</tr>
<tr>
<td>121</td>
<td>0.004</td>
</tr>
<tr>
<td>122</td>
<td>0.003</td>
</tr>
<tr>
<td>123</td>
<td>0.004</td>
</tr>
<tr>
<td>124</td>
<td>1.090</td>
</tr>
<tr>
<td>125</td>
<td>0.015</td>
</tr>
<tr>
<td>126</td>
<td>0.013</td>
</tr>
<tr>
<td>127</td>
<td>0.318</td>
</tr>
<tr>
<td>128</td>
<td>8.539</td>
</tr>
<tr>
<td>129</td>
<td>0.014</td>
</tr>
<tr>
<td>130</td>
<td>0.041</td>
</tr>
<tr>
<td>131</td>
<td>0.019</td>
</tr>
<tr>
<td>132</td>
<td>0.021</td>
</tr>
<tr>
<td>133</td>
<td>0.005</td>
</tr>
<tr>
<td>134</td>
<td>0.006</td>
</tr>
<tr>
<td>135</td>
<td>0.023</td>
</tr>
<tr>
<td>136</td>
<td>0.002</td>
</tr>
<tr>
<td>137</td>
<td>0.002</td>
</tr>
<tr>
<td>138</td>
<td>0.002</td>
</tr>
<tr>
<td>139</td>
<td>0.037</td>
</tr>
<tr>
<td>140</td>
<td>0.002</td>
</tr>
<tr>
<td>141</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>142</td>
<td>0.031</td>
</tr>
<tr>
<td>143</td>
<td>0.004</td>
</tr>
<tr>
<td>144</td>
<td>0.005</td>
</tr>
<tr>
<td>145</td>
<td>0.002</td>
</tr>
<tr>
<td>146</td>
<td>0.003</td>
</tr>
<tr>
<td>147</td>
<td>0.013</td>
</tr>
<tr>
<td>148</td>
<td>0.009</td>
</tr>
<tr>
<td>149</td>
<td>0.002</td>
</tr>
<tr>
<td>150</td>
<td>0.004</td>
</tr>
<tr>
<td>151</td>
<td>0.005</td>
</tr>
<tr>
<td>152</td>
<td>0.002</td>
</tr>
<tr>
<td>153</td>
<td>0.004</td>
</tr>
<tr>
<td>154</td>
<td>0.008</td>
</tr>
<tr>
<td>155</td>
<td>0.048</td>
</tr>
<tr>
<td>156</td>
<td>0.003</td>
</tr>
<tr>
<td>157</td>
<td>0.003</td>
</tr>
<tr>
<td>158</td>
<td>0.002</td>
</tr>
<tr>
<td>159</td>
<td>0.002</td>
</tr>
<tr>
<td>160</td>
<td>0.004</td>
</tr>
<tr>
<td>161</td>
<td>0.003</td>
</tr>
<tr>
<td>162</td>
<td>0.002</td>
</tr>
<tr>
<td>163</td>
<td>0.004</td>
</tr>
<tr>
<td>164</td>
<td>0.004</td>
</tr>
<tr>
<td>165</td>
<td>0.108</td>
</tr>
<tr>
<td>166</td>
<td>0.027</td>
</tr>
<tr>
<td>167</td>
<td>0.004</td>
</tr>
<tr>
<td>168</td>
<td>0.011</td>
</tr>
<tr>
<td>169</td>
<td>0.002</td>
</tr>
<tr>
<td>170</td>
<td>0.002</td>
</tr>
<tr>
<td>171</td>
<td>0.002</td>
</tr>
<tr>
<td>172</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>173</td>
<td>0.003</td>
</tr>
<tr>
<td>174</td>
<td>0.004</td>
</tr>
<tr>
<td>175</td>
<td>0.005</td>
</tr>
<tr>
<td>176</td>
<td>0.004</td>
</tr>
<tr>
<td>177</td>
<td>0.002</td>
</tr>
<tr>
<td>178</td>
<td>0.002</td>
</tr>
<tr>
<td>179</td>
<td>0.004</td>
</tr>
<tr>
<td>180</td>
<td>0.004</td>
</tr>
<tr>
<td>181</td>
<td>0.005</td>
</tr>
<tr>
<td>182</td>
<td>0.005</td>
</tr>
<tr>
<td>183</td>
<td>0.004</td>
</tr>
<tr>
<td>184</td>
<td>0.002</td>
</tr>
<tr>
<td>185</td>
<td>0.004</td>
</tr>
<tr>
<td>186</td>
<td>0.002</td>
</tr>
<tr>
<td>187</td>
<td>0.003</td>
</tr>
<tr>
<td>188</td>
<td>0.004</td>
</tr>
<tr>
<td>189</td>
<td>0.004</td>
</tr>
<tr>
<td>190</td>
<td>0.005</td>
</tr>
<tr>
<td>191</td>
<td>0.002</td>
</tr>
<tr>
<td>192</td>
<td>0.005</td>
</tr>
<tr>
<td>193</td>
<td>0.005</td>
</tr>
<tr>
<td>194</td>
<td>0.011</td>
</tr>
<tr>
<td>195</td>
<td>0.003</td>
</tr>
<tr>
<td>196</td>
<td>0.002</td>
</tr>
<tr>
<td>197</td>
<td>0.004</td>
</tr>
<tr>
<td>198</td>
<td>0.005</td>
</tr>
<tr>
<td>199</td>
<td>0.004</td>
</tr>
<tr>
<td>200</td>
<td>0.011</td>
</tr>
<tr>
<td>201</td>
<td>0.387</td>
</tr>
<tr>
<td>202</td>
<td>0.124</td>
</tr>
<tr>
<td>203</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>204</td>
<td>0.665</td>
</tr>
<tr>
<td>205</td>
<td>0.004</td>
</tr>
<tr>
<td>206</td>
<td>0.005</td>
</tr>
<tr>
<td>207</td>
<td>0.004</td>
</tr>
<tr>
<td>208</td>
<td>0.004</td>
</tr>
<tr>
<td>209</td>
<td>0.023</td>
</tr>
<tr>
<td>210</td>
<td>0.014</td>
</tr>
<tr>
<td>211</td>
<td>0.005</td>
</tr>
<tr>
<td>212</td>
<td>0.002</td>
</tr>
<tr>
<td>213</td>
<td>0.003</td>
</tr>
<tr>
<td>214</td>
<td>0.003</td>
</tr>
<tr>
<td>215</td>
<td>0.010</td>
</tr>
<tr>
<td>216</td>
<td>0.004</td>
</tr>
<tr>
<td>217</td>
<td>0.012</td>
</tr>
<tr>
<td>218</td>
<td>0.011</td>
</tr>
<tr>
<td>219</td>
<td>0.004</td>
</tr>
<tr>
<td>220</td>
<td>0.004</td>
</tr>
<tr>
<td>221</td>
<td>0.004</td>
</tr>
<tr>
<td>222</td>
<td>0.004</td>
</tr>
<tr>
<td>223</td>
<td>0.013</td>
</tr>
<tr>
<td>224</td>
<td>0.044</td>
</tr>
<tr>
<td>225</td>
<td>0.005</td>
</tr>
<tr>
<td>226</td>
<td>0.005</td>
</tr>
<tr>
<td>227</td>
<td>0.014</td>
</tr>
<tr>
<td>228</td>
<td>0.013</td>
</tr>
<tr>
<td>229</td>
<td>0.005</td>
</tr>
<tr>
<td>230</td>
<td>0.111</td>
</tr>
<tr>
<td>231</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>232</td>
<td>0.148</td>
</tr>
<tr>
<td>233</td>
<td>0.012</td>
</tr>
<tr>
<td>234</td>
<td>0.026</td>
</tr>
<tr>
<td>235</td>
<td>0.005</td>
</tr>
<tr>
<td>236</td>
<td>0.005</td>
</tr>
<tr>
<td>237</td>
<td>0.067</td>
</tr>
<tr>
<td>238</td>
<td>0.940</td>
</tr>
<tr>
<td>239</td>
<td>0.016</td>
</tr>
<tr>
<td>240</td>
<td>0.121</td>
</tr>
<tr>
<td>241</td>
<td>0.025</td>
</tr>
<tr>
<td>242</td>
<td>0.013</td>
</tr>
<tr>
<td>243</td>
<td>0.018</td>
</tr>
<tr>
<td>244</td>
<td>0.014</td>
</tr>
<tr>
<td>245</td>
<td>0.026</td>
</tr>
<tr>
<td>246</td>
<td>0.005</td>
</tr>
<tr>
<td>247</td>
<td>0.005</td>
</tr>
<tr>
<td>248</td>
<td>0.005</td>
</tr>
<tr>
<td>249</td>
<td>0.005</td>
</tr>
<tr>
<td>250</td>
<td>0.004</td>
</tr>
<tr>
<td>251</td>
<td>0.003</td>
</tr>
<tr>
<td>252</td>
<td>0.004</td>
</tr>
<tr>
<td>253</td>
<td>0.012</td>
</tr>
<tr>
<td>254</td>
<td>0.004</td>
</tr>
<tr>
<td>255</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>256</td>
<td>0.740</td>
</tr>
<tr>
<td>257</td>
<td>0.134</td>
</tr>
<tr>
<td>258</td>
<td>0.015</td>
</tr>
<tr>
<td>259</td>
<td>0.020</td>
</tr>
<tr>
<td>260</td>
<td>0.015</td>
</tr>
<tr>
<td>261</td>
<td>0.004</td>
</tr>
<tr>
<td>262</td>
<td>0.005</td>
</tr>
<tr>
<td>263</td>
<td>0.006</td>
</tr>
<tr>
<td>264</td>
<td>0.009</td>
</tr>
<tr>
<td>265</td>
<td>0.004</td>
</tr>
<tr>
<td>266</td>
<td>0.126</td>
</tr>
<tr>
<td>267</td>
<td>3.463</td>
</tr>
<tr>
<td>268</td>
<td>0.014</td>
</tr>
<tr>
<td>269</td>
<td>0.116</td>
</tr>
<tr>
<td>270</td>
<td>0.004</td>
</tr>
<tr>
<td>271</td>
<td>0.008</td>
</tr>
<tr>
<td>272</td>
<td>0.086</td>
</tr>
<tr>
<td>273</td>
<td>0.004</td>
</tr>
<tr>
<td>274</td>
<td>0.297</td>
</tr>
<tr>
<td>275</td>
<td>0.005</td>
</tr>
<tr>
<td>276</td>
<td>0.016</td>
</tr>
<tr>
<td>277</td>
<td>0.014</td>
</tr>
<tr>
<td>278</td>
<td>0.005</td>
</tr>
<tr>
<td>279</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>280</td>
<td>0.008</td>
</tr>
<tr>
<td>281</td>
<td>0.017</td>
</tr>
<tr>
<td>282</td>
<td>0.007</td>
</tr>
<tr>
<td>283</td>
<td>0.013</td>
</tr>
<tr>
<td>284</td>
<td>0.048</td>
</tr>
<tr>
<td>285</td>
<td>0.002</td>
</tr>
<tr>
<td>286</td>
<td>0.011</td>
</tr>
<tr>
<td>287</td>
<td>0.005</td>
</tr>
<tr>
<td>288</td>
<td>0.015</td>
</tr>
<tr>
<td>289</td>
<td>0.014</td>
</tr>
<tr>
<td>290</td>
<td>2.558</td>
</tr>
<tr>
<td>291</td>
<td>0.005</td>
</tr>
<tr>
<td>292</td>
<td>0.005</td>
</tr>
<tr>
<td>293</td>
<td>0.004</td>
</tr>
<tr>
<td>294</td>
<td>0.004</td>
</tr>
<tr>
<td>295</td>
<td>0.009</td>
</tr>
<tr>
<td>296</td>
<td>0.005</td>
</tr>
<tr>
<td>297</td>
<td>0.042</td>
</tr>
<tr>
<td>298</td>
<td>0.024</td>
</tr>
<tr>
<td>299</td>
<td>0.014</td>
</tr>
<tr>
<td>300</td>
<td>0.040</td>
</tr>
<tr>
<td>301</td>
<td>0.005</td>
</tr>
<tr>
<td>302</td>
<td>0.004</td>
</tr>
<tr>
<td>303</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>304</td>
<td>0.004</td>
</tr>
<tr>
<td>305</td>
<td>0.002</td>
</tr>
<tr>
<td>306</td>
<td>0.038</td>
</tr>
<tr>
<td>307</td>
<td>0.004</td>
</tr>
<tr>
<td>308</td>
<td>0.004</td>
</tr>
<tr>
<td>309</td>
<td>0.004</td>
</tr>
<tr>
<td>310</td>
<td>0.018</td>
</tr>
<tr>
<td>311</td>
<td>0.015</td>
</tr>
<tr>
<td>312</td>
<td>0.006</td>
</tr>
<tr>
<td>313</td>
<td>0.004</td>
</tr>
<tr>
<td>314</td>
<td>0.004</td>
</tr>
<tr>
<td>315</td>
<td>0.015</td>
</tr>
<tr>
<td>316</td>
<td>0.041</td>
</tr>
<tr>
<td>317</td>
<td>0.003</td>
</tr>
<tr>
<td>318</td>
<td>0.005</td>
</tr>
<tr>
<td>319</td>
<td>0.004</td>
</tr>
<tr>
<td>320</td>
<td>0.003</td>
</tr>
<tr>
<td>321</td>
<td>0.002</td>
</tr>
<tr>
<td>322</td>
<td>0.005</td>
</tr>
<tr>
<td>323</td>
<td>0.013</td>
</tr>
<tr>
<td>324</td>
<td>0.013</td>
</tr>
<tr>
<td>325</td>
<td>0.013</td>
</tr>
<tr>
<td>326</td>
<td>0.005</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A compound of Formula I:

 ![Formula I](image)

 wherein:

 - R^1 is $C_{1,6}$alkyl;
 - R^2 is $C_{5,14}$aryl, $C_{3,7}$cycloalkyl, $C_{3,7}$cycloalkenyl, $C_{2,9}$heterocycle, or $C_{2,9}$heteroaryl, wherein each R^2 group is optionally substituted by one to four substituents selected from halo, $C_{1,6}$alkyl, $C_{1,6}$heteroalkyl, or $C_{1,6}$alkylene or $C_{1,6}$heteroalkylene wherein said $C_{1,6}$alkylene or $C_{1,6}$heteroalkylene are bonded to adjacent carbon atoms on said $C_{5,14}$aryl, $C_{3,7}$cycloalkyl, $C_{3,7}$cycloalkenyl, $C_{3,7}$heterocycle, or $C_{3,7}$heteroaryl to form a fused ring;
 - L is a bond, $-\text{CH}_2(\text{CO})-$, $-\text{C}_{1,3}$alkylene$-, -\text{SO}_2-, -\text{C}(-\text{O})-, -\text{C}(-\text{S})-, -\text{C}(-\text{NH})-, -\text{C}(-\text{O})\text{NH}-, -\text{C}(\text{O})\text{NHCH}_2-, -\text{C}(\text{O})\text{N}-, -\text{C}(\text{O})\text{OCH}_2-, -\text{C}(\text{O})\text{O}, -\text{C}(-\text{O})\text{C}(-\text{O})-, -\text{SO}_2\text{-NH}-, or $-\text{CH}_2\text{C}(-\text{O})-$;
 - R^3 is H, CN, $C_{1,6}$alkyl, $C_{5,14}$aryl, $\text{CH}_2\text{C}_{5,14}$aryl, $\text{CH}_2\text{C}_{3,7}$cycloalkyl, $C_{3,7}$cycloalkyl, $C_{3,7}$spirocycloalkyl, $C_{3,7}$cycloalkenyl, $C_{2,9}$heterocycle, or $C_{2,9}$heteroaryl, wherein each R^3 group is optionally substituted by one to four substituents selected from halo, $C_{1,6}$alkyl, C_2 bridgedheterocycle, $C_{3,7}$cycloalkyl, $C_{1,5}$fluoroalkyl, $-\text{OC}_{1,6}$alkyl, $-\text{C}(-\text{O})\text{R}^4$, $-\text{C}(-\text{O})\text{NR}^4$, $-\text{C}(\text{O})\text{NHR}^4$, $C_{5,14}$aryl, $C_{1,6}$heteroaryl, $-\text{B}(-\text{OH})_2$, $C_{2,9}$heterocycle, $C_{1,6}$heteroaryl, $-\text{C}(\text{O})\text{OC}_{1,6}$alkyl, or two substituents bonded to adjacent atoms may bond together to form a fused ring and that fused ring may optionally be substituted with R^4;
 - R^4 is CN, halo, $-\text{OC}_{1,6}$alkyl, $C_{1,6}$alkyl, $C_{3,7}$cycloalkyl, $C_{2,9}$heterocycle, or $C_{5,14}$aryl;
 - and wherein each heterocycle, heteroaryl, heteroalkyl, and heteroalkylene comprises one to three heteroatoms selected from S, N, B, or O.

2. A compound according to Claim 1 wherein R^1 is $C_{1,6}$alkyl.

3. A compound according to Claim 2 wherein R^1 is t-butyl.
4. A compound according to any of Claims 1-3 wherein R² is optionally substituted phenyl.

5. A compound according to Claim 4 wherein R² is phenyl substituted by one to four substituents selected from fluorine, methyl, \(-\text{CH}_2\text{CH}_3\text{CH}_2\text{O}\)- wherein said \(-\text{CH}_2\text{CH}_3\text{CH}_2\text{O}\)- is bonded to adjacent carbon atoms on said phenyl to form a bicyclic ring, or \(-\text{NHCH}_2\text{CH}_2\text{O}\)- wherein said \(-\text{NHCH}_2\text{CH}_2\text{O}\)- is bonded to adjacent carbon atoms on said phenyl to form a bicyclic ring.

6. A compound according to any of Claims 1-5 wherein R³ is C\(_{1-6}\)alkyl, phenyl, naphthyl, cyclopentyl, cyclohexyl, pyridyl, or tetrahydropyranyl, each of which is optionally substituted by 1-3 substituents selected from halogen, C\(_{1-6}\)alkyl, \(-\text{OC}_{1-6}\)alkyl, C\(_{1-6}\)fluoroalkyl, or phenyl.

7. A compound according to any of Claims 1-6 wherein the stereochemistry on the carbon to which OR¹ is bound is as depicted below:

![Stereochemistry Diagram]

8. A compound according to Claim 1 wherein the compound is:

![Chemical Structure]

9. A compound according to Claim 1 wherein the compound is:

![Chemical Structure]
10. A compound according to Claim 1 wherein the compound is

11. A pharmaceutically acceptable salt of a compound according to any of Claims 1-10.

12. A pharmaceutical composition comprising a compound or salt according to any of Claims 1-11.

13. A method for treating a viral infection in a patient mediated at least in part by a virus in the retrovirus family of viruses, comprising administering to said patient a composition according to Claim 12.

14. The method of Claim 13 wherein said viral infection is mediated by the HIV virus.

15. A compound or salt as defined in any of Claims 1-11 for use in medical therapy.

16. A compound or salt as defined in any of Claims 1-11 for use in the treatment of a viral infection in a human.

17. The use of a compound or salt as defined in any of Claims 1-11 in the manufacture of a medicament for use in the treatment of a viral infection in a human.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No.

PCT/IB2015/055095

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>C07D209/44</th>
<th>A61K31/4035</th>
<th>A61K31/454</th>
<th>C07D407/10</th>
<th>C07D401/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>C07D407/06</td>
<td>A61K31/4439</td>
<td>A61K31/4178</td>
<td>A61K31/5377</td>
<td>A61K31/55</td>
<td></td>
</tr>
<tr>
<td>A61K31/541</td>
<td>C07D417/06</td>
<td>C07D413/06</td>
<td>A61K31/496</td>
<td>A61K31/5386</td>
<td></td>
</tr>
</tbody>
</table>

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

A61K

A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2013/134142 A1 (SQUIBB BRISTOL MYERS CO [US]) 12 September 2013 (2013-09-12) the whole document</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

18 August 2015

Date of mailing of the international search report

21/09/2015

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Sarakinos, Georgios
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2009/030316 A1 (MERCK PATENT GMBH [DE]; EGGENWEILER HANS-MICHAEL [DE]; SIRRENBERG CHR) 12 March 2009 (2009-03-12) the whole document</td>
<td>1-17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015522061 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015191469 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013409794 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013237499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013134142 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013103738 A1</td>
</tr>
<tr>
<td>WO 2013012649 A1</td>
<td>24-01-2013</td>
<td>AR 087184 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014522858 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201317237 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013018049 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 34201 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013012649 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008295176 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10815059 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2697934 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101790513 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102007041116 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201000362 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2181092 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2532853 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010536893 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100061817 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010031745 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009030316 A1</td>
</tr>
<tr>
<td>WO 2008155001 A1</td>
<td>24-12-2008</td>
<td>AR 067082 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 518837 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008266585 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P10815058 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2691019 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687808 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102007028521 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201000007 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2155690 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2375114 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5426539 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530377 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100061820 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010256137 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008155001 A1</td>
</tr>
</tbody>
</table>