PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/39261
GOG6F 9/40 Al . L.

(43) International Publication Date: 5 August 1999 (05.08.99)

(21) International Application Number: PCT/US98/21406 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 9 October 1998 (09.10.98)

(30) Priority Data:

08/948,109 9 October 1997 (09.10.97) Us

(71) Applicant: THE LEARNING COMPANY [US/US]; 1
Athenaeum Street, Cambridge, MA 02142 (US).

(72) Inventor: TOMIC, Ratko, V.; 7 Tufts Road, Lexington, MA
02173 (US).

(74) Agents: MUIRHEAD, Donald, W. et al.; Foley, Hoag & Eliot
LLP, One Post Office Square, Boston, MA 02109 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: WINDOWS API TRAPPING SYSTEM

(57) Abstract

FROM
CALLING
ROUTINE

Supplementing a
software routine loaded in
computer memory includes
loading an additional routine

OLD
API

NEW

API
s

into the computer memory,
providing relocated opcodes
by relocating a number of

CONT

/

bytes from a relocatable
portion of the software
routine to another memory
location where the number
of bytes corresponds to
an integral number of
instructions of the relocatable
portion, causing program
control to flow from the
additional routine to the

relocated opcodes, causing
program control to flow from
the relocated opcodes to a
memory address immediately
following the relocatable
portion, and causing program
control to flow from the

|

CODE 18

RETURN TO
CALLING
ROUTINE

- o nonnad

RETURN TO
CALLING
ROUTINE

]

relocatable portion to the
additional routine. Causing
program control to flow

from the additional routine to the relocated opcodes may include placing the relocated opcodes at a location in the computer memory
that immediately follows the additional routine. Causing program control to flow from the relocated opcodes to the memory address
immediately following the relocatable portion may include placing a program control instruction at a location in the computer memory
immediately following the relocated opcodes. Causing program control to flow from the relocatable portion to the additional routine may
include placing a program control instruction at a memory location corresponding to a source address of the relocatable portion of the

software routine.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

St
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/39261 PCT/US98/21406

WINDOWS API TRAPPING SYSTEM

Cross-Reference to Related Applications
This application is based on U.S. provisional patent application No. 60/028,339,

filed on October 11, 1996.

Background of The Invention
1, Field of the Invention

This application relates to the field of software and more particularly to the field of

managing aspects of an interface between software and the underlying operating system.

2, Description of Rel

Many conventional operating systems provide a formalized Application
Programming Interface (API) that allows application programmers to make calls to
software routines that perform a variety of system-wide functions. Using the API
facilitates writing application programs by decreasing the amount of code that application
programmers need to provide and, at the same time, providing standardization of routines

that are used by many of the applications.

However, in some instances, it is necessary to modify an API call in order to, for
example, perform specialized functions that are not provided by the operating system or to
keep track of certain types of API calls. For some operating systems, it is not difficult to
intercept and monitor API calls. For example, under MS-DOS, most APIs use interrupts
and are thus easy to intercept. In other instances, intercepting and trapping API calls can
be challenging for an application programmer. For example, in some Microsoft Windows
Environments (Win16 and Win32), the APIs use exported functions which are connected
to the application at application load time via static or dynamic linkirig. This linkage
process is done by the internal OS routines and undocumented data structures which are

usually inaccessible to outside (non-Microsoft) software developers. In addition, newer

10

15

20

25

WO 99/39261 PCT/US98/21406

versions of the Windows OS actively thwart API intercepting methods described in the
programming literature for the earlier versions of the OS. In some instances, a
technological race is unfolding between the operating system developers and the third
party (application) developers who need to provide OS/applications enhancements

unforseen (or undesired) by the OS developers.

A method for intercepting Windows 3.x APIs based on patching the entry point of
the API function with a JMP instruction is known. In this system, the interceptor first
obtains the address of the target API function via a call to GetProcAddress(). Note that
this step has been actively thwarted by the OS in Win95 for many key API functions,
although within months the workarounds for much of the thwarting attempts have been
published. Following getting the procedure address, the interceptor removes the
write-protection of the obtained memory address (which is a code address, thus it is set by
the OS as read/execute-only). Following this, the interceptor patches the API entry point
with JMP InterceptSrv instruction, where InterceptSrv is a service function in the

interceptor's code that monitors and/or processes the API calls.

After the interceptor has set up the API call in the manner described above, an
application or OS calls the API entry point. The JMP InterceptSrv instruction at the
entry point address transfers control to the InterceptSrv() function and the InterceptSrv()
processes the call (accessing as necessary the function arguments on the stack) and, upon
completion, either returns control to the caller or passes control to the original API
function. Returning control to the caller is straightforward. Passing control to the API,
on the other hand, requires that the InterceptSrv() remove the patched in JMP
InterceptSrv from the API entry point and restore the original opcode bytes (the original
five bytes that were present in the API before the patch was inserted). Then, the
InterceptSrv() pushes all original arguments from the-caller's stack on to the current stack
(interceptor's stack). Finally, the InterceptSrv() calls the original API function. When the

original API returns, the InterceptSrv() saves the return value into a local variable, the

2-

10

15

20

25

WO 99/39261 PCT/US98/21406

InterceptSrv() reinserts the JMP InterceptSrv patch at the API entry point, and the

InterceptSrv() returns the saved return value to the original caller.

The technique described above is used in many commercial application enhancers.
However, it has many drawbacks. For one thing, the division of labor between the set up
portion and the run time portion is highly inefficient since the set up portion is executed
only once (at the interceptor's load time) while the run time portion is executed many
times (from the load time onward). In a more efficient system, as much of the work as
possible would be shifted from the run time portion to the set up portion. In addition, for
a processor running MS Windows on an Intel processor, the necessary replacement of the
JMP Intercept opcodes requires a write operation of five bytes, which can not be done in
a single processor instruction. Hence, the replacement leaves a short interval of instability
between the two write instructions, during which the API entry point has invalid
instructions and a hardware interrupt at that moment could initiate reentry into the API,

which will probably crash the system.

On the other hand, disabling the interrupts in Windows application mode (CPU
ring 3 code where these actions are occurring) is a highly expensive operation due to
system control over the CPU interrupt flag, which triggers an elaborate exception process
(in CPU ring 0). The complex ring transition and the exception process, which may take
as much or more time than all the rest of processing above, would occur twice. Therefore
most commercial interceptors (as well as the published code) choose the tradeoff with the
instability allowed, in order not to pay the disproportionate performance cost associated

with disabling interrupts.

Another disadvantage of the technique described above is that, during certain time
intervals, ancther call to the monitored API will be missed by the interceptor. Since many
Windows APIs perform checks on the task queue within and can (and often do) switch to

another thread/task, the missing of intercepts is a real problem for interceptors which

-3-

10

15

20

25

WO 99/39261 PCT/US98/21406

require processing on every call to the API (especially those implementing security
features). Also, the overwriting of the API entry point on every call is unsafe when
multiple interceptors exist on the same system. For example, while the system is
processing the original API call, a switch to another task or thread can (and often will)
occur. If the second task inserts its own intetcept for the same API (or spawns a program
which does that), then return to the first interceptor will destroy the new intercept, thus
permanently disabling operation of the new intercept. Additionally, if the first intercept
unloads, followed by an unload of second intercept, then the API entry will be left pointing

to the non-existent first intercept and the system will crash when the API is invoked.

Another disadvantage of the technique described above is that some Windows API
functions (e.g. memory allocation and protection) are sensitive to the source of the call,
i.e. the Windows API code will check where the call is made from and, based on
knowledge of Microsoft's sources of calls, will work differently if called from third party
applications as opposed to particular Microsoft sources. This behavior is, among other
reasons, related to the active thwarting of the third party interceptors mentioned above.
Since the intercept technique described above changes the original source of the API call
énd makes the interceptor appear to Windows as the source of the API call, the Windows
API processing may operate differently, often malfunctioning in a way that leads to
instabilities and system crashes. This makes the technique described above unsuitable for

intercepting some of the Windows APIs.

Summary Of The Invention

According to the present invention, supplementing a software routine loaded in
computer memory includes loading an additional routine into the computer memory,
providing relocated opcodes by relocating a number of bytes from a relocatable portion of
the software routine to an other memory location where the number of bytes corresponds

to an integral number of instructions of the relocatable portion, causing program control

4.

10

15

20

25

WO 99/39261 » PCT/US98/21406

to flow from the additional routine to the relocated opcodes, causing program control to
flow from the relocated opcodes to a memory address immediately following the
relocatable portion, and causing program control to flow from the relocatable portion to

the additional routine.

Causing program control to flow from the additional routine to the relocated
opcodes may include placing the relocated opcodes at a location in the computer memory
that immediately follows the additional routine. Causing program control to flow from the
relocated opcodes to the memory address immediately following the relocatable portion
may include placing a program control instruction at a location in the computer memory
immediately following the relocated opcodes. The program control instruction may be an
unconditional jump instruction. Causing program control to flow from the relocatable
portion to the additional routine may include placing a program control instruction at a
memory location corresponding to a source address of the relocatable portion of the
software routine. The program control instruction may be an unconditional jump
instruction. Providing the relocated opcodes may include relocating a number of bytes

that is at least equal to an amount of bytes required for the unconditional jump instruction.

Following providing the relocated opcodes, it is possible to resolve any opcodes
contained therein that reference relative displacements between the relocated opcodes and
opcodes contained in the software routine. The software routine and additional routine
may be APT’s that run under the Microsoft Windows operating system. The additional

routine may be configured to load at a predetermined address in the computer memory.

According further to the present invention, supplementing a Windows API loaded
in computer memory includes loading an additional routine into the computer memory,
providing relocated opcodes by relocating a number of bytes from a relocatable portion of
the API to an other memory location where the number of bytes corresponds to an

integral number of opcodes of the relocatable portion, causing program control to flow

5.

10

15

20

25

WO 99/39261 PCT/US98/21406

from the additional routine to the relocated opcodes, causing program control to flow
from the relocated opcodes to a memory address immediately following the relocatable
portion, and causing program control to flow from the relocatable portion to the
additional routine. According further to the present invention, a software program that
supplements a Windows API loaded in computer memory includes an additional routine
that is loaded into the computer memory, first means for providing relocated opcodes by
relocating a number of bytes from a relocatable portion of the API to an other memory
location where the number of bytes corresponds to an integral number of instructions of
the relocatable portion, second means, coupled to the first means and to the additional
routine, for causing program control to flow from the additional routine to the relocated
opcodes, third means, coupled to first means and to the API, for causing program control
to flow from the relocated opcodes to a memory address immediately following the
relocatable portion, and fifth means, coupled to the API and to the additional routine, for

causing program control to flow from the relocatable portion to the additional routine.

In the intercept install phase, the technique described herein disassembles the target
API entry code and relocates (based on the semantics of the instructions found there) the
whole instructions from the API entry into the interceptor's memory. Then, in the intercept
operation phase, when control needs to be passed to the original API function, instead of
having to swap back and forth the overlayed API entry opcodes, the intercept simply
passes control to the second (relocated) copy of the API entry code, which, upon
completion, passes control to the next section of the original API code (the section which

follows the relocated section).

This method thus shifts the division of labor heavily toward the install phase of the
intercept, relieving the active phase of the intercept by eliminating many of the steps
described in connection with the prior art system and the performance, safety and system

stability drawbacks associated with them.

-6-

10

15

20

25

WO 99/39261 PCT/US98/21406

The technique described herein has many advantages over conventional trapping
systems. One advantage is that all trapping work, except for a minimum amount of work
necessary to transfer control to the interceptor and back, is done only once at install time,
relieving the performance burden from the run time activity of the interceptor. In addition,

no opcode swapping is done during the existence and activation of the traps. This

~ eliminates performance, stability and safety drawbacks resulting from the activity found in

some conventional systems. Furthermore, since the execution of the some of the trapping
code occurs on the stack of the original caller, there is no need to copy API function
arguments to the interceptor's stack. By executing much of the code on the original
caller's stack, the source of the call will appear to the Windows API as if it came from the
original caller, therefore resolving problems associated with Windows behaving differently
depending on the identity of the caller. By not copying API entry opcodes back and forth
at each API call, no window of system instability is created. Instead, time-consuming

precautions (e.g., disabling interrupts) occurs once at intercept install time.

There are additional advantages. Since the trap opcodes are never removed during
processing of the original API, the possibility of missing API calls is significantly
decreased, as described above. Therefore, the system described herein is an excellent
choice for situations where the interceptor must see all of the API calls to the target API
function to operate properly or reliably. The problem of multiple interceptors setting traps
while processing of the trap is going on is resolved, since the new interceptor will always
see fixed opcodes at the API entry point, thus the second interceptor will not be forcibly
disabled, as in conventional techniques. Also, since the setting and removal of the traps
occur only once at load/unload time of interceptor, the problem of dangling intercept (with
target of JMP InterceptSrv already unloaded) can be avoided since the interceptor can
afford more detailed, time consuming, checks for safe removal of the intercepts (e.g. by
refusing to unload itself if it is not the last interceptor). Doing these checks in the old
trapping system is not only time consuming on every API call, but it is in most cases

extremely difficult, if not inherently impossible, since it would require that the interceptor

-7-

10

15

20

25

WO 99/39261 PCT/US98/21406

refuse execution of the original API call, which will cause malfunction in the calling
application. In addition, the system described herein protects against unauthorized
canceling of installed API security functions since canceling a new API task installed using
the technique described herein, without restoring the original opcodes of the original API,

will likely cause the system to crash.

Brief Description Of Drawings
FIG. 1 is a diagram illustrating a relationship between an old API and a new API

according to the present invention.

FIG. 2 is a flow chart showing steps that are performed to install the new API

according to the present invention.

FIG. 3 is a flow chart illustrating steps that are performed to remove the new API

that is installed using the steps of FIG. 2.

Detailed Description of the Preferred Embodiment(s)

Refer to FIG. 1, a diagram 10 illustrates a relationship between an old API 12 and
anew API 14. The old API 12 represents an existing API provided with an operating
system, such as MS Windows 95. The new API 14 represents an API that is provided for
use in connection with, for example, an applications program. As discussed in more detail
below, the new API 14 can be executed instead of the old API 12 or can be executed in
addition to the old API 12. Note that, in some instances, the new API 14 and/or the old
API 12 may be referred to herein as a “routine”. However, the term “routine” should not
be understood as referring to a single, unitary, block of code but, instead, should be
understood to refer to a collection of code that may be provided in a plurality of blocks
that may make calls or jumps therebetween. Note also that the specific functionality
provided by the new API 14 is a design choice but may, in some instances, including

saving and restoring registers used by the caller and/or the old API 12.

-8-

10

15

20

25

WO 99/39261 PCT/US98/21406

In order to execute the new API 14, the old API 12 is patched with an
unconditional jump instruction 16 that transfers control from the old API 12 to the
beginning of the new API 14. If the new API 14 is executed instead of the old API 12
(i.e, the old API 121is nof to be executed), then a return to the calling routine occurs at
the end of the new API 14, as indicated by the dotted line shown at the end of the new
API 14. Note that, as will be apparent to one of ordinary skill in the art, other suitably
equivalent control flow instructions may be used in place of the unconditional jump

instruction 16.

If the old API 12 will be executed in addition to the new API 14, then opcodes
that were located at a relocatable portion of the old API 12 (in this case the beginning of
the old API 12) become relocated code 18 that is placed at the end of the new API 14. As
discussed in more detail hereinafter, any relative offsets between opcodes within the
relocated code 18 and opcodes in the remainder of the old API 12 are adjusted, as
appropriate. Note that, as will be apparent to one of ordinary skill in the art, it is possible
to place the relocated code 18 at an other portion of memory and then use an appropriate
control flow instruction at the end of the new API 14 to transfer program control from the

new API 14 to the relocated code 18.

Immediately following the end of the relocated code 18 is an unconditional jump
instruction 19 that transfers program control to the portion of the old API 12 immediately
following the relocatable portion of the old API 12, marked on the diagram 10 with the
address "CONT". Thus, if both the old API 12 and the new API 14 are to be executed,
then the calling routine calls the old API 12 which jumps, via the jump instruction 16, to
the beginning of the new API 14 which then executes and, at the end thereof, executes the
opcodes of the relocated code 18 followed by the jump instruction 19 that jumps back to
the remainder of the old API 12. Note that the relocated code 18 and the portion of the
old API 12 beginning at the CONT address constitute the entirety of the old API 12.

Also note that, as will be apparent to one of ordinary skill in the art, other suitably

9.

10

15

20

25

WO 99/39261 PCT/US98/21406

equivalent control flow instructions may be used in place of the unconditional jump

instruction 19.

Referring to Fig. 2, a flow chart 20 illustrates steps for making patches that cause
execution of the new API 14 when an application program or the operating system calls
the old API 12. Processing begins at a first step 22, where a byte from the beginning of
the old API 12 is fetched. Following the step 22 is a test step 24 which determines if a
whole instruction (as opposed to a partial instruction) has been fetched. This
determination is made in a conventional fashion by, for example, disassembling the fetched
bytes. Note that it is necessary to fetch an integral number of instructions from the
relocatable portion of the old API 12 since it is not possible to execute a partial

instruction.

Ifit is determined at the test step 24 that one or more whole instructions have not
been fetched, then control passes from the test step 24 back to the step 22 to fetch another
byte. Otherwise, if an integral number of instructions have been fetched, then control
passes from the test step 24 to a test step 26 which determines if enough bytes have been
fetched from the relocatable portion of the old API 12 to accommodate the unconditional
jump instruction 16 that transfers control from the old API 12 to the new API 14. In
some embodiments, the required number of bytes is five. However, the test step 24
preceding the test step 26 makes it possible that a number of bytes greater than five will
have been fetched since it is necessary that a number of bytes corresponding to an integral

number of instructions be fetched from the relocatable portion of the old API 12.

Ifit is determined at the test step 26 that enough bytes have not been fetched, then
control passes from the test step 26 back to the step 22 where another byte is fetched.
Otherwise, if enough bytes have been fetched, then control passes from the test step 26 to
a step 28. Note that it is not possible to reach the test step 26 without having fetched a

number of bytes corresponding to an integral number of instructions. This is because it is

-10-

10

15

20

25

WO 99/39261 PCT/US98/21406

not possible to execute the test step 26 without having passed the test at the step 24,
which determines that the number of fetched bytes corresponds to a whole number of

instructions.

At the step 28, the bytes that have been fetched are moved from the relocatable
portion of the old API 12 to the end of the new API 14 and any opcodes in the relocated
code 18 that refer to relative offsets are resolved. Note that opcodes in the relocated code
18 that contain a relative offset, such as a jump relative or a call relative, may need to be
modified when the opcodes are relocated. Also note that, the relative positions within
memory of the old API 12 and the new API 14 should not change after the API's 12, 14

are loaded in memory.

Following the step 28 is a step 30 where the unconditional jump instruction 19 is
added to the end of the new API 14. As discussed above, the unconditional jump
instruction 19 causes control to return back to the portion of the old API 12 that follows
the relocatable portion of the old API 12. Following the step 30 is a step 32 where the
unconditional jump instruction 16 is added to the beginning of the old API 12 so that
when an application program or the operating system calls the old API 12, the
unconditional jump instruction 16 from the old API 12 to the new API 14 will be

executed.

As discussed above, it is possible that the new API 14 entirely replaces the old API
12 so that no part of the old API 12 needs to be executed once the new API 14 has been
provided. In that case, an alternative patch is provided. As shown in FIG. 2, control
passes from the test step 26 to a step 34 where a return instruction is added to the end of
the new API 14 (if a return instruction is not already found at the end thereof). Following
the step 34, control passes to the step 32 where the unconditional jump instruction 16 is
added to the relocatable portion of the old API so that a call to the old API 12 will cause
program control to flow from the old API 12 to the new API 14,

-11-

10

15

20

25

WO 99/39261 PCT/US98/21406

Note that, in some instances, it may be unadvisable to relocate the code that is at
the beginning of the old API 12. For example, there may be other instructions within the
old API 12 that reference the code located at the beginning thereof. In those cases, it is

~ possible to use other portions of the old API 12 as the relocatable portion. For example, it

would be possible to relocate bytes following the first N microprocessor instructions, in
the manner described above, and replace the relocated bytes with the unconditional jump

instruction 16.

The code that executes the patching step illustrated by the flow chart 20 may be
written in a conventional computer source language, such as C++, and compiled in a
conventional manner similar to compilation of other Microsoft Windows DLL's. In some
instances, the preferred base address of the new API 14 may be set to a value that will
cause the new API 14 to always load at the same address for all the processes which use
the new API 14. Thus, the new API 14 may be shared so that the new API 14 is loaded in

memory only once, even when used by multiple processes.

Refer to FIG. 3, a flow chart 40 illustrates steps that are performed when a process
that uses the new API 14 is removed from memory. Note that, under the Windows
environment, a special routine (MS Main) is called when a process is removed from
memory. The MS Main routine provides the application with an opportunity to do

cleanup including, in this instance, restoring the old API 12.

Processing begins at a first test step 42 where it is determined if the process being
removed is the last process that uses the new API 14. If not, then the old API 12 and the
new API 14 are not modified and no cleanup is done, since the new API 14 must remain
to be used by the other processes. Otherwise, control passes from the test step 42 to a
step 44 where the relative instructions of the relocated code 18 are modified back to the
original state prior to restoring the relocated code into the old API 12. Following the step

44 is a step 46 where the relocated code 18 is restored into the old API 12, thus

-12-

10

WO 99/39261 PCT/US98/21406

overriding the unconditional jump instruction 16 that was provided to the old API 12
when the old API 12 was patched. Once the relocated code 18 is restored to the old API
12, then a call to the old API 12 will not result in execution of the new API 14,

Note that, although the invention has been illustrated herein using APIs with the
Windows operating system, it would be straight-forward for one of ordinary skill in the art
to adapt the system described herein to other operating systems and other types of

routines.

While the invention has been disclosed in connection with the preferred
embodiments shown and described in detail, various modifications and improvements
thereon will become readily apparent to those skilled in the art. Accordingly, the spirit

and scope of the present invention is to be limited only by the following claims.

-13-

WO 99/39261 PCT/US98/21406

Claim(s)

1. A method of supplementing a software routine loaded in computer memory,
comprising:

(@ loading an additional routine into the computer memory,

(b) providing relocated opcodes by relocating a number of bytes from a
relocatable portion of the software routine to an other memory location,
the number of bytes corresponding to an integral number of instructions of
the relocatable portion;

(c) causing program control to flow from the additional routine to the
relocated opcodes;

(d) causing program control to flow from the relocated opcodes to a memory
address immediately following the relocatable portion; and

(e) causing program control to flow from the relocatable portion to the

additional routine.

2. A method, according to claim 1, wherein causing program control to flow from the
additional routine to the relocated opcodes includes placing the relocated opcodes at a

location in the computer memory that immediately follows the additional routine.

3. A method, according to claim 1, wherein causing program control to flow from the
relocated opcodes to the memory address immediately following the relocatable portion
includes placing a program control instruction at a location in the computer memory

immediately following the relocated opcodes.

4. A method, according to claim 3, wherein the program control instruction is an

unconditional jump instruction.

5. A method, according to claim 1, wherein causing program control to flow from the

-14-

WO 99/39261 PCT/US98/21406

relocatable portion to the additional routine includes placing a program control instruction
at a memory location corresponding to a source address of the relocatable portion of the

software routine.

6. A method, according to claim 5, wherein the program control instruction is an

unconditional jump instruction.

7. A method, according to claim 6, wherein providing the relocated opcodes includes
relocating a number of bytes that is at least equal to an amount of bytes required for the

unconditional jump instruction.

8. A method, according to claim 1, further comprising:
® following providing the relocated opcodes, resolving any opcodes
contained therein that reference relative displacements between the

relocated opcodes and opcodes contained in the software routine.

9. A method, according to claim 1, wherein the software routine and additional routine are

API’s that run under the Microsoft Windows operating system.

10. A method, according to claim 9, wherein the additional routine is configured to load at

a predetermined address in the computer memory.

11. A method of supplementing a Windows API loaded in computer memory, comprising:

(a) loading an additional routine into the computer memory;

(b) providing relocated opcodes by relocating a number of bytes from a
relocatable portion of the API to an other memory location, the number of
bytes corresponding to an integral number of instructions of the relocatable
portion;

(©) causing program control to flow from the additional routine to the

-15-

WO 99/39261 PCT/US98/21406

relocated opcodes;

(d) causing program control to flow from the relocated opcodes to a memory
address immediately following the relocatable portion; and

(e) causing pfogram control to ﬂow from the relocatable portion to the

additional routine.

12. A software program that supplements a Windows API loaded in computer memory,
comprising:

an additional routine that is loaded into the computer memory;

first means for providing relocated opcodes by relocating a number of bytes from a
relocatable portion of the API to an other memory location, the number of bytes
corresponding to an integral number of instructions of the relocatable portion;

second means, coupled to the first means and to the additional routine, for causing
program control to flow from the additional routine to the relocated opcodes;

third means, coupled to first means and to the API, for causing program control to
flow from the relocated opcodes to a memory address immediately following the
relocatable portion; and

fifth means, coupled to the API and to the additional routine, for causing program

control to flow from the relocatable portion to the additional routine.

-16-

WO 99/39261 PCT/US98/21406

1/3

FROM
CALLING
ROUTINE OLD NEW

API API
10
\— Af

16 /
CON/T.
J2 4

l RELOC. §

CODE 18 '

RETURN TO E 18 i

LIN
ggbﬂ,ﬁ; 19 RETURN TO
CALLING
ROUTINE
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 99/39261 PCT/US98/21406

26

ENOUGH
?

MOVE BYTES
og | AND RESOLVE
RELATIVE
INST.

e TR T .

Y

ADD JUMP ADD RETURN
TO END OF TOEND OF }—34

30 7]
NEW API NEW API

ADD JUMP
32| TO BEGINING fe--------------
OF OLD API

 J

(DONE ’

FIG. 2
SUBSTITUTE SHEET (RULE 26)

WO 99/39261 PCT/US98/21406

3/3

START

RESOLVE
RELATIVE
INST.

44 -

Y

MOVE
46 | RELOCATED
CODE

FIG. 3

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT int

ional Application No

PCT/US 98/21406

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F9/40

According to International Patent Classification (IPC) or to both national classification and iPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbois)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y WO 94 27221 A (SIEMENS AG)
24 November 1994
see the whole document

2 August 1995
see the whole document

7 Jdanuary 1993
see page 4, line 3 - line 25

see figures 2-4

see page 8, line 35 - page 13, line 17

1-12

Y EP 0 665 496 A (SUN MICROSYSTEMS INC) 1-12

A WO 93 00633 A (PURE SOFTWARE INC) 1-12

-/—

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but pubiished on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the intemational filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particuiar relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr_:ts, :rstuch combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

14 May 1999

Date of mailing of the international search report

28/05/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nt,

Fax: (+31-70) 340-3016

Authorized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

In. tional Application No

PCT/US 98/21406

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A MATT PIETREK: "Intercepting API Functions 1-12
in Win32"

PC MAGAZINE,

vol. 13, no. 19, 11 August 1994, pages
307-312, XP002102766

NEW YORK US

see the whole document

Form PCT/ISA/210 (continuation of second shest) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT '

information on patent family members

stional Application No

PCT/US 98/21406

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9427221 A 24-11-1994 DE 4315944 A 17-11-1994
EP 0698239 A 28-02-1996
JP 8510342 T 29-10-1996

EP 0665496 A 02-08-1995 us 5581697 A 03-12-1996
JP 8036488 A 06-02-1996
us 5675803 A 07-10-1997

WO 9300633 A 07-01-1993 us 5193180 A 09-03-1993
AU 2188792 A 25-01-1993
CA 2111958 A 07-01-1993
EP 0591360 A 13-04-1994
us 5535329 A 09-07-1996
us 5835701 A 10-11-1998
us 5335344 A 02-08-1994

Fom PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

