Abstract:
The fungicidal compositions comprising a paraffinic oil and 2-chloro-N₄-chloro[1,1'-biphenyl]-2-yl-3-pyridinecarboxamide (boscalid) are provided. The fungicidal compositions may further comprise a pigment. The fungicidal compositions may be provided as oil-in-water (O/W) emulsions which may be used for controlling fungal disease, such as dollar spot or bentgrass dead spot or bermudagrass dead spot, in plants, such as turfgrasses. Methods of applying the fungicidal compositions are also provided.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
(43) International Publication Date
15 March 2012 (15.03.2012)
(51) International Patent Classification:
A01N 61/02 (2006.01) A01N 43/40 (2006.01)
A01N 25/30 (2006.01) A01P 300 (2006.01)
(57) Abstract: Fungicidal compositions comprising a paraffinic oil and 2-chloro-N₄-chloro[1,1'-biphenyl]-2-yl-3-pyridinecarboxamide (boscalid) are provided. The fungicidal compositions may further comprise a pigment. The fungicidal compositions may be provided as oil-in-water (O/W) emulsions which may be used for controlling fungal disease, such as dollar spot or bentgrass dead spot or bermudagrass dead spot, in plants, such as turfgrasses. Methods of applying the fungicidal compositions are also provided.

(54) Title: SYNERGISTIC PARAFFINIC OIL AND BOSCALID FUNGICIDES

(57) Abstract:
SYNERGISTIC PARAFFINIC OIL AND BOSCALID FUNGICIDES

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Serial No. 61/381,179 entitled "SYNERGISTIC PARAFFINIC OIL AND BOSCALID FUNGICIDES" filed on 9 September 2010, which is herein incorporated by reference in its entirety.

FIELD

The invention relates to fungicidal compositions comprising a paraffinic oil and a heterocyclic aromatic C18H12Cl2N2O compound, and methods for using such compositions on plants, including methods of formulating oil-in-water (O/W) emulsions containing the fungicidal compositions.

BACKGROUND

Grasses are often planted and maintained to provide aesthetically pleasing or recreationally useful groundcover for an area of land, which may be called a lawn, turf, pitch, field or green depending on the context. It is common to refer to the species of grasses that are maintained in this way as turfgrasses.

Turfgrass care and maintenance has a rich horticultural tradition, reflecting in part the rich variety of pathologies that affect turfgrasses (see, for example, Walsh, B. et al., HortScience, 34, 1999, 13-21).

Dollar spot, thought to be caused by the fungal pathogen Sclerotinia homoeocarpa, is a common disease affecting turfgrass species, with symptoms that vary according to species and management practices. Characteristic symptoms of dollar spot infection include bleached, circular patches, with patches sometimes occurring in clusters, particularly on grasses cut short, such as golf course fairways, tees, and greens.

A number of management practices are known for controlling dollar spot disease in turfgrasses, including managing leaf wetness, or preventing moisture or nitrogen stress. Fungicides are also available for controlling dollar spot. For example, the use of the fungicide boscalid for controlling dollar spot disease in turfgrasses has been reported, with boscalid sometimes described as the first
fungicide from the carboxamide active ingredient class (one of a class of compounds described in European Patent No. 545099). Boscalid is thought to be a systemic fungicide, acting as an inhibitor of respiration within the fungal cell (CAS No. 188425-85-6; Synonyms: 2-chloro-N-(4′-chloro[1,1′-biphenyl]-2-yl)-nicotinamide; 2-chloro-N-(4′-chloro[1,1′-biphenyl]-2-yl)-3-pyridinecarboxamide; 2-chloro-N-(4′-chloro-2-biphenylyl)nicotinamide; 2-chloro-N-(4′-chlorobiphenyl-2-yl)-nicotinamide; 2-chloro-N-[2-(4-chlorophenyl)phenyl]-pyridine-3-carboxamide; Nicobifen; 2-chloro-N-(4M-chloro-2-biphenylyl)nicotinamide; Molecular Formula: C_{18}H_{12}Cl_{2}N_{2}O), having the following structure:

![Structure of Boscalid]

Boscalid has been made available in a number of commercial formulations, for example from the BASF Corporation under the names Endura™ or Pristine™ or Emerald™.

In an alternative approach to conventional chemical fungicides, oil-in-water emulsions comprising paraffinic oils and paraffinic spray oils have been used for controlling turfgrass pests (see, for example, Canadian Patent Application 2,472,806 and Canadian Patent Application 2,507,482). In addition, oil-in-water formulations comprising paraffinic oils and a pigment for controlling turfgrass pests have been reported (see, for example, WO 2009/155693). For example, Petro-Canada produces CIVITAS™, a broad spectrum fungicide and insecticide for use on golf course turf and landscape ornamentals, used for example to control powdery mildew, adelgids and webworms on landscape ornamentals (US EPA REG. NO. 69526-13). Product labeling indicates that CIVITAS™ may be applied as part of an alternating spray program or in tank mixes with other turf and ornamental protection products; and that CIVITAS™ may be used as a preventative treatment with curative properties for the control of many important diseases on turf, including fairways and roughs.
The combined use of formulations comprising paraffinic oils, pigment and other conventional chemical fungicides has also been reported for treating turfgrass pests, including fungicides such as demethylation inhibitors (e.g., propiconazole), methyl benzimidazole carbamate (e.g., thiophanate-methyl), and dicarboxamides (e.g., iprodione), see, for example, WO 2009/155693.

SUMMARY

In various embodiments, there is provided a fungicidal composition comprising an emulsifier, a paraffinic oil, and 2-chloro-N-(4'-chloro[1,1'-biphenyl]-2-yl)-3-pyridinecarboxamide (boscalid). In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In a further embodiment, there is provided a use of the composition for controlling a fungal pathogen on a plant. In another embodiment, there is provided a method of controlling a fungal pathogen of a plant, the method comprising applying to the plant a composition comprising an emulsifier and a paraffinic oil, in combination with boscalid. In selected embodiments, the paraffinic oil and boscalid may be applied in amounts that are synergistically effective for controlling the fungal pathogen. In selected embodiments, the method may further comprise mixing the paraffinic oil, the emulsifier, and boscalid before applying the composition to the plant. Compositions of the invention may be formulated as oil-in-water emulsions for application.

In selected embodiments, the paraffinic oil may comprise a paraffin having a number of carbon atoms ranging from about 12 to about 50. In alternative embodiments, the paraffinic oil may comprise a paraffin having a number of carbon atoms ranging from about 16 to about 35. In selected embodiments, the paraffinic oil may comprise a paraffin having an average number of carbon atoms of about 23. In alternative embodiments, the paraffinic oil may have a paraffin content of at least about 80%. In selected embodiments, the paraffinic oil may have a paraffin content of at least about 90%. In alternative embodiments, the paraffinic oil may have a paraffin content of at least about 99%.
In another embodiment, the composition may further comprise a pigment and a silicone surfactant. In selected embodiments, the pigment may be a polychlorinated (Cu II) phthalocyanine. In alternative embodiments, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxyolate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-poloxoypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In selected embodiments, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition may further comprise a polyethylene glycol according to formula IV:

\[R^1-O-(CH_2CH_2O)_f-R^2 \]

wherein \(R^1 = \text{H or CH}_2=\text{CH-C}_2 \text{H}_2 \text{ or COCH}_3; \) \(R^2 = \text{H or CH}_2=\text{CH-C}_2 \text{H}_2 \text{ or COCH}_3; \) and \(f \geq 1. \)

In selected embodiments, the fungal pathogen may be at least one of a fungus that causes dollar spot in turfgrass and a fungus that causes bentgrass dead spot or bermudagrass dead spot in a turfgrass. In alternative embodiments, the fungal pathogen may be a fungus that blights leaf tissue in a turfgrass. In selected embodiments, the fungal pathogen may be a fungus that causes dollar spot in a turfgrass. In selected embodiments, the fungal pathogen may be \textit{Sclerotinia homoeocarpa}. In selected embodiments, the fungal pathogen may be a fungus that causes bentgrass dead spot or bermudagrass dead spot in a turfgrass. In alternative embodiments, the fungal pathogen may be \textit{Ophiopsphaerella agrostis}. In selected embodiments, the turfgrass and the plant may independently be one or more of: bentgrass, bluegrass, ryegrass, fescue, bermudagrass, bahiagrass, zoysia, beachgrass, wheatgrass, or carpetgrass. In alternative embodiments, the turfgrass and the plant may independently be one or more of: bentgrass, colonial bentgrass, perennial ryegrass, annual ryegrass, Kentucky bluegrass, common bermudagrass, hybrid bermudagrass, annual bluegrass, seashore paspalum, St. Augustinegrass, tall fescue, bahiagrass, zoysiagrass, centipedegrass, rough stalk bluegrass, buffalo grass, blue grama, or annual bentgrass. In selected embodiments, the turfgrass and the plant may independently be one or more of: creeping bentgrass or annual bluegrass.
In alternative embodiments, boscalid may be applied to the plant at a rate from about 0.02 to about 0.12 oz per 1000 square feet. In selected embodiments, the paraffinic oil may be applied to the plant at a rate from about 0.9 to about 32 oz/1000 square ft. In alternative embodiments, the paraffinic oil may be applied to the plant at a rate of about 8 oz/1000 square ft. In selected embodiments, the paraffinic oil may be applied to the plant at a rate of less than about 31 oz/1000 square ft.

DETAILED DESCRIPTION

This invention is based in part on the fortuitous discovery that fungicidal formulations containing paraffinic oil as an active agent, in combination with the fungicide boscalid, are surprisingly effective in controlling fungal disease, including dollar spot in turfgrasses. The Examples illustrate that combined use of paraffinic oil with boscalid provides an unexpected synergistic response in the control of dollar spot in turfgrass.

The paraffinic oil and boscalid may be provided as components of the same fungicidal composition. Accordingly, in an embodiment, there is provided a composition comprising a paraffinic oil and boscalid. In another embodiment, the composition may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the composition may be, for example, an emulsifiable concentrate containing the paraffinic oil, boscalid, and the emulsifier, which is thereafter prepared for use as a diluted oil-in-water (O/W) emulsion.

In another embodiment, the paraffinic oil and boscalid may be used in combination with a pigment. The paraffinic oil, boscalid, and the pigment may be provided as components of the same composition. Accordingly, in an embodiment, there is provided a composition comprising a paraffinic oil,
boscalid, and a pigment. In a further embodiment, the composition may further comprise an emulsifier, a silicone surfactant, or a combination thereof. In alternative embodiments, the composition may further comprise an emulsifier. In selected embodiments, the composition may further comprise a silicone surfactant. In alternative embodiments, the composition may further comprise an emulsifier and a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the composition may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the composition may be, for example, an emulsifiable concentrate containing the paraffinic oil, boscalid, the emulsifier, the pigment, and the silicone surfactant, which is thereafter prepared
for use as a diluted oil-in-water (O/W) emulsion. In another embodiment, the composition may be, for example, an emulsifiable concentrate containing the paraffinic oil, boscalid, the emulsifier, the pigment, the silicone surfactant and the polyethylene glycol, which is thereafter prepared for use as a diluted oil-in-water (O/W) emulsion.

The paraffinic oil and boscalid may be provided as components of separate compositions. Accordingly, in an embodiment, there is provided a commercial package which comprises: a first composition comprising a paraffinic oil; and a second composition comprising boscalid. In another embodiment, the first and/or second compositions may further comprise an emulsifier. In an embodiment, the first composition may further comprise an emulsifier. In a further embodiment, the second composition may further comprise an emulsifier. In another embodiment, the first and second compositions may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant.

The paraffinic oil, boscalid, and pigment may be provided as components of two compositions. Accordingly, in an embodiment, there is provided a commercial package which comprises: a first composition comprising a paraffinic oil and boscalid; and a second composition comprising a pigment. In an embodiment, there is provided a commercial package which comprises: a first composition comprising a paraffinic oil and a pigment; and a second composition comprising boscalid. In an embodiment, there is provided a commercial package which comprises: a first composition comprising a paraffinic oil; and a second composition comprising boscalid and a pigment. In alternative embodiments, the first and/or second compositions may further comprise an emulsifier or a silicone surfactant or a combination thereof. In an embodiment, the first and/or second compositions may further comprise an emulsifier. In an embodiment, the first composition may further comprise an emulsifier. In alternative embodiments, the
second composition may further comprise an emulsifier. In another embodiment, the first and second compositions may further comprise an emulsifier. In selected embodiments, the first and/or second compositions may further comprise a silicone surfactant. In another embodiment, the first composition may further comprise a silicone surfactant. In another embodiment, the second composition may further comprise a silicone surfactant. In alternative embodiments, the first and second compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylation, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant.
The paraffinic oil, boscalid, and the pigment may be provided as components of three compositions. In an embodiment, there is provided a commercial package which comprises: a first composition comprising a paraffinic oil; a second composition comprising boscalid; and a third composition comprising a pigment. In an embodiment, the first, second and/or third compositions may further comprise an emulsifier or a silicone surfactant or a combination thereof. In an embodiment, the first, second and/or third compositions may further comprise an emulsifier. In an embodiment, the first composition may further comprise an emulsifier. In another embodiment, the second composition may further comprise an emulsifier. In alternative embodiments, the third composition may further comprise an emulsifier. In an embodiment, the first and second compositions may further comprise an emulsifier. In another embodiment, the first and third compositions may further comprise an emulsifier. In a further embodiment, the second and third compositions may further comprise an emulsifier. In selected embodiments, the first, second and third compositions may further comprise an emulsifier. In an embodiment, the first, second and/or third compositions may further comprise a silicone surfactant. In an embodiment, the first composition may further comprise a silicone surfactant. In another embodiment, the second composition may further comprise a silicone surfactant. In alternative embodiments, the third composition may further comprise a silicone surfactant. In an embodiment, the first and second compositions may further comprise a silicone surfactant. In another embodiment, the first and third compositions may further comprise a silicone surfactant. In a further embodiment, the second and third compositions may further comprise a silicone surfactant. In alternative embodiments, the first, second and third compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the first, second and/or third compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or
synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first, second and/or third compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant.

The first, second and/or third compositions of the commercial packages may be emulsifiable concentrates, which are thereafter prepared for use as a diluted oil-in-water (O/W) emulsion.

The emulsifiable concentrates may be prepared by admixing suitable amounts of the components of the emulsifiable concentrates, for example, the paraffinic oil, boscalid, pigment, emulsifier, silicone surfactant and/or polyethylene glycol, and mixing and/or applying shear until the emulsifiable concentrate is obtained. In an embodiment, there is provided a method of preparing an emulsifiable concentrate, the method comprising mixing, in any order, a paraffinic oil and boscalid. In alternative embodiments, the method may further comprise mixing, in any order, the paraffinic oil and boscalid with an emulsifier. In alternative embodiments, there is provided a method of preparing an emulsifiable concentrate, the method comprising mixing, in any order, a paraffinic oil, boscalid, a pigment and a silicone surfactant. In selected
embodiments, the method may further comprise mixing, in any order, the paraffinic oil, boscalid, the pigment and the silicone surfactant with an emulsifier. In alternative embodiments, the pigment may be dispersed in water and the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol olate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the pigment may be dispersed in oil and the method may further comprise mixing, in any order, the paraffinic oil, boscalid, the pigment, the silicone surfactant, and the emulsifier with a polyethylene glycol of the formula IV. In another embodiment, the pigment may be dispersed in oil and the method may further comprise mixing, in any order, the paraffinic oil, boscalid, the pigment, the silicone surfactant, and the emulsifier with a polyethylene glycol of the formula IV, and the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof.

In an embodiment, the emulsifiable concentrates may be prepared for use as separately diluted compositions. The diluted compositions may be used simultaneously or separately for controlling a fungal pathogen of a plant.

In another embodiment, the emulsifiable concentrates may be prepared for use as a diluted O/W emulsion, for example, by tank mixing the emulsifiable concentrates. Accordingly, the paraffinic oil and boscalid may be provided as components of an O/W emulsion. Accordingly, in an embodiment, there is provided a composition comprising a paraffinic oil, boscalid and water. In selected embodiments, the composition may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The paraffinic oil, boscalid, and pigment may be provided as components of an O/W emulsion. Accordingly, in an
embodiment, there is provided a composition comprising a paraffinic oil, boscalid, a pigment and water. In alternative embodiments, the composition may further comprise an emuisifier or a silicone surfactant or a combination thereof. In selected embodiments, the composition may further comprise an emuisifier. In alternative embodiments, the composition may further comprise a silicone surfactant. In selected embodiments, the composition may further comprise an emuisifier and a silicone surfactant. In an embodiment, the emuisifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the composition may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emuisifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The O/W emulsions may be used for controlling a fungal pathogen of a plant.
The paraffinic oil and boscalid may be used to prepare O/W emulsions. Accordingly, in an embodiment, there is provided a use of a paraffinic oil and boscalid for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In alternative embodiments, there is also provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a paraffinic oil and boscalid. In alternative embodiments, the paraffinic oil and boscalid may be used or mixed with an emulsifier for preparing the O/W emulsion. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The paraffinic oil, boscalid, and the pigment may be used to prepare O/W emulsions. Accordingly, in another embodiment, there is provided a use of a paraffinic oil, boscalid and a pigment for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In alternative embodiments, there is also provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a paraffinic oil, boscalid and a pigment. In alternative embodiments, the paraffinic oil, boscalid and the pigment may be used or mixed with an emulsifier or a silicone surfactant or a combination thereof for preparing the O/W emulsion. In selected embodiments, the paraffinic oil, boscalid and the pigment may be used or mixed with an emulsifier for preparing the O/W emulsion. In alternative embodiments, the paraffinic oil, boscalid and the pigment may be used or mixed with a silicone surfactant for preparing the O/W emulsion. In selected embodiments, the paraffinic oil, boscalid and the pigment may be used or mixed with an emulsifier and a silicone surfactant for preparing the O/W emulsion. In an embodiment, the pigment may be dispersed in water and the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric
surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, there is provided a use of a paraffinic oil, boscalid, an emulsifier, a pigment, a silicone surfactant and a polyethylene glycol of the formula IV for preparing an O/W emulsion effective to control a fungal pathogen of a plant, wherein the pigment may be dispersed in oil. In another embodiment, there is provided a use of a paraffinic oil, boscalid, an emulsifier, a pigment, a silicone surfactant and a polyethylene glycol of the formula IV for preparing an O/W emulsion effective to control a fungal pathogen of a plant, wherein the pigment may be dispersed in oil, and the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof. In alternative embodiments, there is provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a paraffinic oil, boscalid, an emulsifier, a pigment, a silicone surfactant and a polyethylene glycol of the formula IV, wherein the pigment may be dispersed in oil, and the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the
pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The O/W emulsions may be used for controlling a fungal pathogen of a plant.

In an embodiment, there is provided a use of a composition comprising a paraffinic oil and boscalid for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In alternative embodiments, there is also provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing a composition comprising a paraffinic oil and boscalid with water. In selected embodiments, the composition may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In another embodiment, there is provided a use of a composition comprising a paraffinic oil, boscalid and a pigment for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In alternative embodiments, there is also provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing a composition comprising a paraffinic oil, boscalid and a pigment with water. In selected embodiments, the composition may further comprise an emulsifier or a silicone surfactant or a combination thereof. In alternative embodiments, the composition may further comprise an emulsifier. In another embodiment, the composition may further comprise a silicone surfactant. In selected embodiments, the composition may further comprise an emulsifier and a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric
surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the composition may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The O/W emulsions may be used for controlling a fungal pathogen of a plant.

In an embodiment, there is provided a use of a first composition comprising a paraffinic oil, and a second composition comprising boscalid for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In selected embodiments, there is also provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a first composition comprising a paraffinic oil, and a second composition comprising boscalid. In an embodiment, the first and/or second compositions may further comprise an emulsifier. In another embodiment, the first composition may further comprise an emulsifier. In an embodiment, the second composition may further comprise an emulsifier. In alternative
embodiments, the first and second compositions may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, there is provided a use of a first composition comprising a paraffinic oil and boscalid, and a second composition comprising a pigment for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In an embodiment, there is provided a use of a first composition comprising a paraffinic oil and a pigment, and a second composition comprising boscalid for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In an embodiment, there is provided a use of a first composition comprising a paraffinic oil, and a second composition comprising boscalid and a pigment for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In an embodiment, there is provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a first composition comprising a paraffinic oil and boscalid, and a second composition comprising a pigment. In an embodiment, there is provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a first composition comprising a paraffinic oil and a pigment, and a second composition comprising boscalid. In an embodiment, there is provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a first composition comprising a paraffinic oil, and a second composition comprising boscalid and a pigment. In selected embodiments, the first and/or second composition may further comprise an emulsifier or a silicone surfactant or a combination thereof. In an embodiment, the first and/or second compositions may further comprise an emulsifier. In another embodiment, the first composition may further comprise an emulsifier. In an embodiment, the second composition may further comprise an emulsifier. In a further
embodiment, the first and second compositions may further comprise an emulsifier. In another embodiment, the first and/or second compositions may further comprise a silicone surfactant. In an embodiment, the first composition may further comprise a silicone surfactant. In another embodiment, the second composition may further comprise a silicone surfactant. In selected embodiments, the first and second compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The O/W emulsions may be used for controlling a fungal pathogen of a plant.
In an embodiment, there is provided a use of a first composition comprising a paraffinic oil, a second composition comprising boscalid, and a third composition comprising a pigment for preparing an O/W emulsion effective to control a fungal pathogen of a plant. In selected embodiments, there is also provided a method of preparing an O/W emulsion effective to control a fungal pathogen of a plant, the method comprising mixing, in any order, a first composition comprising a paraffinic oil, a second composition comprising boscalid, and a third composition comprising a pigment. In an embodiment, the first, second and/or third compositions may further comprise an emulsifier or a silicone surfactant or a combination thereof. In an embodiment, the first, second and/or third compositions may further comprise an emulsifier. In another embodiment, the first composition may further comprise an emulsifier. In an embodiment, the second composition may further comprise an emulsifier. In a further embodiment, the third composition may further comprise an emulsifier. In alternative embodiments, the first and second compositions may further comprise an emulsifier. In selected embodiments, the first and third compositions may further comprise an emulsifier. In alternative embodiment, the second and third compositions may further comprise an emulsifier. In selected embodiments, the first, second and third compositions may further comprise an emulsifier. In another embodiment, the first, second and/or third compositions may further comprise a silicone surfactant. In another embodiment, the first composition may further comprise a silicone surfactant. In a further embodiment, the second composition may further comprise a silicone surfactant. In an embodiment, the third composition may further comprise a silicone surfactant. In an embodiment, the first and second compositions may further comprise a silicone surfactant. In another embodiment, the first and third compositions may further comprise a silicone surfactant. In a further embodiment, the second and third compositions may further comprise a silicone surfactant. In alternative embodiments, the first, second and third compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester
ethoxylate, or a combination thereof. In another embodiment, the first, second and/or third compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first, second and/or third compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The O/W emulsions may be used for controlling a fungal pathogen of a plant.

O/W emulsions may be prepared by admixing suitable amounts of the components of the O/W emulsions, for example, the paraffinic oil, boscalid, pigment, emulsifier, silicone surfactant, and/or water, and mixing and/or applying shear until the emulsion is obtained. In alternative embodiments, O/W emulsions may be prepared by admixing suitable amounts of the components of the O/W emulsions, for example, the paraffinic oil, boscalid, the pigment, the emulsifier, the silicone surfactant, the polyethylene glycol, and/or water, and mixing and/or applying shear until the emulsion is obtained. Alternatively, the separate components may be combined at the nozzle of a spray gun to form the O/W emulsion.
In another embodiment, there is provided a use of a paraffinic oil and boscalid, in any order, for controlling a fungal pathogen of a plant. In alternative embodiments, the paraffinic oil may be used in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be used in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be used in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In a further embodiment, there is provided a use of a paraffinic oil, boscalid, and a pigment, in any order, for controlling a fungal pathogen of a plant. In alternative embodiments, the paraffinic oil may be used in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be used in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be used in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be used in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be used in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. Also provided is a use of any of the O/W emulsions as described herein for controlling a fungal pathogen of a plant.

In an embodiment, there is provided a use of a composition comprising a paraffinic oil and boscalid for controlling a fungal pathogen of a plant. In another embodiment, the composition may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of a plant.
of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In another embodiment, there is provided a use of a composition comprising a paraffinic oil, boscalid and a pigment for controlling a fungal pathogen of a plant. In selected embodiments, the composition may further comprise an emulsifier or a silicone surfactant or a combination thereof. In another embodiment, the composition may further comprise an emulsifier. In a further embodiment, the composition may further comprise a silicone surfactant. In selected embodiments, the composition may further comprise an emulsifier and a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the composition may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be present in amounts
that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the compositions may further comprise water.

The paraffinic oil and boscalid may be used as components of two compositions for controlling a fungal pathogen of a plant. Accordingly, in an embodiment, there is provided a use, in any order, of a first composition comprising a paraffinic oil, and a second composition comprising boscalid, for controlling a fungal pathogen of a plant. In an embodiment, the first and/or second compositions may further comprise an emulsifier. In another embodiment, the first composition may further comprise an emulsifier. In an embodiment, the second composition may further comprise an emulsifier. In selected embodiments, the first and second compositions may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. The paraffinic oil, boscalid, and the pigment may be used as components of two compositions for controlling a fungal pathogen of a plant. Accordingly, in an embodiment, there is provided a use, in any order, of a first composition comprising a paraffinic oil and boscalid, and a second composition comprising a pigment for controlling a fungal pathogen of a plant. In an embodiment, there is provided a use, in any order, of a first composition comprising a paraffinic oil, and a second composition comprising boscalid and a pigment for controlling a fungal pathogen of a plant. In an embodiment, there is provided a use, in any order, of a first composition comprising a paraffinic oil and a pigment, and a second composition comprising boscalid for controlling a fungal pathogen of a plant. In alternative embodiments, the first and/or second compositions may further comprise an emulsifier or a silicone surfactant or a combination thereof. In an embodiment, the first and/or
second compositions may further comprise an emulsifier. In another embodiment, the first composition may further comprise an emulsifier. In a further embodiment, the second composition may further comprise an emulsifier. In an embodiment, the first and second compositions may further comprise an emulsifier. In an embodiment, the first and/or second compositions may further comprise a silicone surfactant. In another embodiment, the first composition may further comprise a silicone surfactant. In a further embodiment, the second composition may further comprise a silicone surfactant. In selected embodiments, the first and second compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol olate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be present in an amount that is synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the
pigment may be present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant. In selected embodiments, the first and/or second compositions may further comprise water.

The paraffinic oil, boscalid, and pigment may be used as components of three compositions for controlling a fungal pathogen of a plant. Accordingly, in an embodiment, there is provided a use, in any order, of a first composition comprising a paraffinic oil, a second composition comprising boscalid, and a third composition comprising a pigment, for controlling a fungal pathogen of a plant. In alternative embodiments, the first, second and/or third compositions may further comprise an emulsifier or a silicone surfactant or a combination thereof. In another embodiment, the first, second and/or third compositions may further comprise an emulsifier. In another embodiment, the first composition may further comprise an emulsifier. In a further embodiment, the second composition may further comprise an emulsifier. In an embodiment, the third composition may further comprise an emulsifier. In an embodiment, the first and second compositions may further comprise an emulsifier. In another embodiment, the first and third compositions may further comprise an emulsifier. In a further embodiment, the second and third compositions may further comprise an emulsifier. In selected embodiments, the first, second and third compositions may further comprise an emulsifier. In another embodiment, the first, second and/or third compositions may further comprise a silicone surfactant. In another embodiment, the first composition may further comprise a silicone surfactant. In a further embodiment, the second composition may further comprise a silicone surfactant. In an embodiment, the third composition may further comprise a silicone surfactant. In an embodiment, the first and second compositions may further comprise a silicone surfactant. In another embodiment, the first and third compositions may further comprise a silicone surfactant. In a further embodiment, the second and third compositions may further comprise a silicone surfactant. In alternative embodiments, the first, second and third compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene
glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another
embodiment, the first, second and/or third compositions may further comprise a
polyethylene glycol of the formula IV. In another embodiment, the emulsifier may
comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a
sorbitan fatty acid ester, or a combination thereof, and the first, second and/or
third compositions may further comprise a polyethylene glycol of the formula IV.
In alternative embodiments, the paraffinic oil may be present in an amount that is
synergistically effective when applied to a plant for controlling a fungal pathogen
of the plant. In an embodiment, boscalid may be present in an amount that is
synergistically effective when applied to a plant for controlling a fungal pathogen
of the plant. In an embodiment, the pigment may be present in an amount that is
synergistically effective when applied to a plant for controlling a fungal pathogen
of the plant. In alternative embodiments, the paraffinic oil and boscalid may be
present in amounts that are synergistically effective when applied to a plant for
controlling a fungal pathogen of the plant. In alternative embodiments, the
paraffinic oil and the pigment may be present in amounts that are synergistically
effective when applied to a plant for controlling a fungal pathogen of the plant. In
alternative embodiments, boscalid and the pigment may be present in amounts
that are synergistically effective when applied to a plant for controlling a fungal
pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid,
and the pigment may be present in amounts that are synergistically effective
when applied to a plant for controlling a fungal pathogen of the plant. In selected
embodiments, the first and/or second and/or third compositions may further
comprise water.

Also provided is a method of controlling a fungal pathogen of a plant, the
method comprising applying to the plant, in any order, a paraffinic oil and
boscalid. In alternative embodiments, the paraffinic oil may be applied in an
amount that is synergistically effective for controlling a fungal pathogen of the
plant. In an embodiment, boscalid may be applied in an amount that is
synergistically effective for controlling a fungal pathogen of the plant. In selected
embodiments, the paraffinic oil and boscalid may be applied in amounts that are
synergistically effective for controlling a fungal pathogen of the plant. In another
embodiment, there is provided a method of controlling a fungal pathogen of a
plant, the method comprising applying to the plant, in any order, a paraffinic oil, boscalid, and a pigment. In alternative embodiments, the paraffinic oil may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant.

In an embodiment, there is provided a method of controlling a fungal pathogen of a plant, the method comprising applying to the plant a composition comprising a paraffinic oil, in combination with boscalid. In another embodiment, the composition may further comprise an emulsifier. In alternative embodiments, the paraffinic oil may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In selected embodiments, the paraffinic oil and boscalid may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, there is provided a method of controlling a fungal pathogen of a plant, the method comprising applying to the plant a composition comprising a paraffinic oil and a pigment, in combination with boscalid. In selected embodiments, the composition may further comprise an emulsifier or a silicone surfactant or a combination thereof. In another embodiment, the composition may further comprise an emulsifier. In a further embodiment, the composition may further comprise a silicone surfactant. In selected embodiments, the composition may further comprise an emulsifier and
a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol olate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, and the composition may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In selected embodiments, the compositions may further comprise water.

The paraffinic oil and boscalid may be applied to the plant as components of two compositions. Accordingly, in an embodiment, there is provided a method of controlling a fungal pathogen of a plant, the method comprising applying, in any order, to the plant a first composition comprising a paraffinic oil, and a second composition comprising boscalid. In another embodiment, the first and/or second compositions may further comprise an emulsifier. In an embodiment, the first composition may further comprise an emulsifier. In an embodiment, the second composition may further comprise an emulsifier. In selected
embodiments, the first and second compositions may further comprise an
emulsifier. In alternative embodiments, the paraffinic oil may be applied in an
amount that is synergistically effective for controlling a fungal pathogen of the
plant. In an embodiment, boscalid may be applied in an amount that is
5 synergistically effective for controlling a fungal pathogen of the plant. In selected
embodiments, the paraffinic oil and boscalid may be applied in amounts that are
synergistically effective for controlling a fungal pathogen of the plant. The
paraffinic oil, boscalid, and the pigment may be applied to the plant as
components of two compositions. Accordingly, in an embodiment, there is
10 provided a method of controlling a fungal pathogen of a plant, the method
comprising applying, in any order, to the plant a first composition comprising a
paraffinic oil, and a second composition comprising boscalid and a pigment. In
an embodiment, there is provided a method of controlling a fungal pathogen of a
plant, the method comprising applying, in any order, to the plant a first
composition comprising a paraffinic oil and boscalid, and a second composition
comprising a pigment. In an embodiment, there is provided a method of
controlling a fungal pathogen of a plant, the method comprising apply, in any
order, to the plant a first composition comprising a paraffinic oil and a pigment,
and a second composition comprising boscalid. In alternative embodiments, the
15 first and/or second compositions may further comprise an emulsifier or a silicone
surfactant or a combination thereof. In another embodiment, the first and/or
second compositions may further comprise an emulsifier. In another
embodiment, the first composition may further comprise an emulsifier. In a
further embodiment, the second composition may further comprise an emulsifier.
20 In alternative embodiments, the first and second compositions may further comprise an emulsifier. In another embodiment, the first and/or second compositions may further comprise a silicone surfactant. In an embodiment, the first composition may further comprise a silicone surfactant. In another embodiment, the second composition may further comprise a silicone surfactant.
25 In a further embodiment, the first and second compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxyate, an alkyl polysaccharide, a
glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl
phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first and/or second compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. The paraffinic oil, boscalid, and pigment may be applied to the plant as components of three compositions. Accordingly, in an embodiment, there is provided a method of controlling a fungal pathogen of a plant, the method comprising applying, in any order, to the plant a first composition comprising a paraffinic oil, a second composition comprising boscalid, and a third composition comprising a pigment. In alternative embodiments, the first, second and/or third compositions may further comprise an emulsifier or a silicone surfactant or a combination thereof. In another embodiment, first, second and/or third compositions may further comprise an emulsifier. In an embodiment, the first composition may further comprise an emulsifier. In an embodiment, the second composition may further comprise an emulsifier. In a further embodiment, the third composition may further comprise an emulsifier. In selected embodiments, the first and second compositions may
further comprise an emulsifier. In alternative embodiments, the first and third compositions may further comprise an emulsifier. In an embodiment, the second and third compositions may further comprise an emulsifier. In a further embodiment, the first, second and third compositions may further comprise an emulsifier. In another embodiment, the first, second and third compositions may further comprise a silicone surfactant. In an embodiment, the first composition may further comprise a silicone surfactant. In a further embodiment, the second composition may further comprise a silicone surfactant. In another embodiment, the third composition may further comprise a silicone surfactant. In selected embodiments, the first and second compositions may further comprise a silicone surfactant. In alternative embodiments, the first and third compositions may further comprise a silicone surfactant. In an embodiment, the second and third compositions may further comprise a silicone surfactant. In a further embodiment, the first, second and third compositions may further comprise a silicone surfactant. In an embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof. In another embodiment, the first, second and/or third compositions may further comprise a polyethylene glycol of the formula IV. In another embodiment, the emulsifier may comprise a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the first, second and/or third compositions may further comprise a polyethylene glycol of the formula IV. In alternative embodiments, the paraffinic oil may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, boscalid may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In an embodiment, the pigment may be applied in an amount that is synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and boscalid may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil and the pigment may be applied in amounts that
are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, boscalid and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In alternative embodiments, the paraffinic oil, boscalid, and the pigment may be applied in amounts that are synergistically effective for controlling a fungal pathogen of the plant. In selected embodiments, the first and/or second and/or third compositions may further comprise water.

Compositions of the invention may be applied to the plant to provide a dosage of the active agents that is sufficient to effectively control the fungal pathogen. The compositions may be reapplied as required. The compositions may be applied to the plant by spraying, misting, sprinkling, pouring, or any other suitable method.

In an embodiment, the paraffinic oil may comprise, for example, an oil enriched in paraffin. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 12 to about 50 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 12 to about 40 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 16 to about 40 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 16 to about 35 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 15 to about 30 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 18 to about 25 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 12 to about 21 or any combinations thereof. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 20 to about 35. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms that is less than or equal to about 20. In an embodiment, the paraffinic oil
may comprise, for example, a paraffin having an average number of carbon atoms ranging from about 12 to about 20. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms ranging from about 16 to about 30. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms ranging from about 25 to about 30. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms of about 16 or about 27. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms of about 16. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms of about 27. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having an average number of carbon atoms of about 23. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 16 to about 40 with an average number of carbon atoms of about 27. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 16 to about 35 and having an average number of carbon atoms of about 23. In an embodiment, the paraffinic oil may comprise, for example, a paraffin having a number of carbon atoms ranging from about 12 to about 21 with an average number of carbon atoms of about 16. In an embodiment, the paraffin may be, for example, an isoparaffin. In an embodiment, the paraffin may be, for example, a synthetic isoparaffin.

In an embodiment, paraffin may be present in the paraffinic oil in an amount, for example, of at least about 80%. In an embodiment, paraffin may be present in the paraffinic oil in an amount, for example, of at least about 90%. In an embodiment, paraffin may be present in the paraffinic oil in an amount, for example, of at least about 99%.

In selected embodiments, the paraffinic oil has been refined to remove compounds that are associated with plant injury, for example, aromatic compounds or compounds containing sulfur, nitrogen, or oxygen. In an embodiment, the paraffinic oil may comprise, for example, low levels of aromatic compounds and/or compounds containing sulfur, nitrogen, or oxygen. In an
embodiment, the paraffinic oil may comprise, for example, less than about 10 wt% of aromatic compounds and/or compounds containing sulfur, nitrogen, or oxygen. In an embodiment, the paraffinic oil may comprise, for example, less than about 5 wt% of aromatic compounds and/or compounds containing sulfur, nitrogen, or oxygen. In an embodiment, the paraffinic oil may comprise, for example, less than about 2 wt% of aromatic compounds and/or compounds containing sulfur, nitrogen, or oxygen. In an embodiment, the paraffinic oil has substantially no content of aromatic compounds and/or compounds containing sulfur, nitrogen, or oxygen.

Non-limiting examples of suitable paraffinic oils may include, HT100, High Flash Jet, LSRD, and N65DW (available from Petro-Canada, Calgary, AB, Canada).

The expression "oil-in-water (O/W) emulsion" may include, for example, a dispersed system containing at least two normally immiscible phases, one being dispersed as droplets in the other. Emulsions are thermodynamically unstable due to excess free energy associated with the surface of the dispersed droplets such that the particles tend to flocculate (clumping together of dispersed droplets or particles) and subsequently coalesce (fusing together of agglomerates into a larger drop or droplets) to decrease the surface energy. If these droplets fuse, the emulsion will "break" (i.e., the phases will separate) destroying the emulsion and making it difficult to prepare formulations that have a suitable shelf-life for storage. To prevent or slow "breaking" of an emulsion, an emulsifying agent or emulsifier is often added. The type and concentration of a particular emulsifying agent will depend, inter alia, on the emulsion phase components and the desired result.

In an embodiment, the emulsifier may be, for example, a "fast break" or "quick break" emulsifier. A "fast break" or "quick break" emulsifier allows the paraffinic oil to be quickly released from the O/W emulsion upon application to the turfgrass for contact of pests thereon. When a "fast break" or "quick break" emulsifier is present in a suitable amount (for example a selected proportion or ratio with respect to the paraffinic oil), the resulting "fast break" or "quick break" O/W emulsion quickly releases the oil phase upon application to the turfgrass. Consequently, there is less runoff of the O/W emulsion from the grass blades as
compared to more stable O/W emulsions such that a sufficient amount of oil adheres to the turfgrass for a sufficient amount of time to effectively contact and control associated turfgrass pests. In an embodiment, for example, the oil phase resides on the turfgrass for a period of not less than one hour. In an embodiment, for example, the oil phase resides on the turfgrass for a period of from not less than 1 hour but not more than 30 days. In an embodiment, the "fast break" or "quick break" emulsion may be, for example, an emulsion having an oil phase that, after mixing with water, is reconstituted in 0.5 to 15 minutes according to the following test:

1. Fill 100mL graduated cylinder with tap water.
2. Add 1mL of emulsified oil.
3. Invert graduated cylinder 5 times.
4. Using a stop watch and human observation, measure how long it takes for the oil phase to reconstitute after inversion (step 3).

In selected embodiments, the oil phase may be, for example, reconstituted in 2 to 5 minutes, or 3 to 5 minutes, or 4 to 5 minutes, or 2 to 4 minutes, or 3 to 4 minutes, or 2 to 3 minutes, or 2 minutes, or 3 minutes, or 4 minutes, or 5 minutes according to the test. The "fast break" or "quick break" property of the O/W emulsion must be balanced with the need to provide an O/W emulsion with a suitable shelf life under suitable storing conditions, and for a suitable timeframe.

In selected embodiments, the emulsifier may be, for example, a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or any combination thereof.

In alternative embodiments, the emulsifier may be, for example, a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or any combination thereof.

In selected embodiments, the natural or synthetic alcohol ethoxylate may be, for example, a polyoxyethylene (4 to 12) lauryl ether (C12), polyoxyethylene (10) cetyl ether (C16), polyoxyethylene (10) stearyl ether (C18), polyoxyethylene (10) oleyl ether (C18 mono-unsaturated), a polyoxyethylene (2 to 11) C12-C15 alcohol, a polyoxyethylene (3 to 9) C11-C14 alcohol, a polyoxyethylene (9) C12-
C14 alcohol, a polyoxyethylene (11) C16-C18 alcohol, a polyoxyethylene (20) C12-C15 alcohol, or any combination thereof. In an embodiment, the natural or synthetic alcohol ethoxylate may be, for example, a polyoxyethylene (4 to 7) lauryl ether (C12), polyoxyethylene (10) cetyl ether (C16), a polyoxyethylene (2 to 11) C12-C15 alcohol, a polyoxyethylene (3 to 9) C11-C14 alcohol, a polyoxyethylene (9) C12-C14 alcohol, or any combination thereof.

In some embodiments, the alcohol alkoxylate may be, for example, a butyl ether polyoxyethylene/polyoxypropylene block copolymer.

In alternative embodiments, the alkyl polysaccharide may be, for example, a C8-C11 alkylpolysaccharide or any combination thereof. The glycerol oleate may be, for example, a glycerol mono-, di-, tri-oleate, or any combination thereof. The polyoxyethylene-polyoxypropylene block copolymer may be, for example, a polyoxyethylene-polyoxypropylene block copolymer having a molecular weight of about 1100 to about 11400 and 10 to 80% EO. The alkyl phenol ethoxylate may be, for example, a nonyl phenol ethoxylate, a dodecyl phenol ethoxylate, or any combination thereof. In an embodiment, the nonyl phenol ethoxylate may be, for example, a polyoxyethylene (2 to 8) nonylphenol.

In selected embodiments, the polymeric surfactant may be, for example, a graft copolymer, a random copolymer, or any combination thereof. In an embodiment, the graft copolymer may be, for example, a polymethacrylic acid and acrylate with polyoxyethylene chains. In an embodiment, the random copolymer may be, for example, a random copolymer having ester and ether groups.

In alternative embodiments, the polyethylene glycol may be, for example, a polyethylene glycol having MW: about 200 to about 8000; MW: about 400 PEG dioleate; or MW: about 600 PEG dioleate.

In alternative embodiments, the sorbitan fatty acid ester ethoxylate may be, for example, polyoxyethylene (20) sorbitan tristearate, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (5) sorbitan monooleate, polyoxyethylene (20) sorbitan trioleate, or any combination thereof. In an embodiment, the sorbitan fatty acid ester may be, for example, a sorbitan tristearate, a sorbitan triololate, or any combination thereof.
In some embodiments, the emulsifier may be, for example, an alkyl phenol ethoxylate, a mixture of an ethoxylated alcohol and a glycerol oleate, or any combination thereof. In an embodiment, the emulsifier may be, for example, an alkyl phenol ethoxylate. In an embodiment, the emulsifier may be, for example, a nonylphenolethoxylate, a dodecylphenolethoxylate, or any combination thereof. In an embodiment, the emulsifier may be, for example, a nonylphenolethoxylate. In an embodiment, the emulsifier may be, for example, a dodecylphenolethoxylate.

In an embodiment, the emulsifier may be, for example, a mixture of an ethoxylated alcohol and a glycerol oleate. In an embodiment, the emulsifier may be, for example, a C10 to C16 alcohol ethoxylate and a glycerol oleate combination. In an embodiment, the emulsifier may be, for example, polyoxyethylene lauryl ether, C10 to C16 alcohol ethoxylates, and glycerol oleate. In an embodiment, the emulsifier may be, for example, ethoxylated alcohols having primary C5-C20 carbon chains with an average of about 2 to about 7 ethoxylation groups, and a glycerol oleate. In an embodiment, the emulsifier may be, for example, a polyoxyethylene (11) C16-18 alcohol. In an embodiment, the emulsifier may be, for example, sorbitan tristearate.

Non-limiting examples of suitable emulsifiers include AL3149 (available from Uniqema), AL3313 (available from Uniqema), PC Emuls Green (available from Petro-Canada, Calgary, AB, Canada), Lutensol™ AT11 (available from BASF), SPAN65 (available from Uniqema), and S-MAZ™65K (available from BASF).

In selected embodiments, the weight ratio of the paraffinic oil to the emulsifier may be, for example, from about 95:5 to about 99.95:0.05. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, from about 98.0:2 to about 99.9:0.1. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, from about 98.5:1.5 to about 99.5:0.5. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, from about 98.5:1.5 to about 99.9:0.1. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, from about 99.2:0.8 to about 99.5:0.5. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, about 98.8:1.2. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, about 99.3:0.7.
example, about 99.2:0.8. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, about 99.4:0.6. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, about 99.5:0.5. In an embodiment, the weight ratio of the paraffinic oil to the emulsifier may be, for example, about 99.9:0.1.

In selected embodiments, the pigment may be, for example, a phthalocyanine compound. In selected embodiments, the pigment may be, for example, about 0.025 wt%.

In selected embodiments, the emulsifier may be present in the concentrate in an amount, for example, from about 0.05 to about 10.0 wt%, or from about 0.5 to about 10.0 wt%, or from about 1.0 to about 10.0 wt%, or from about 0.05 to about 5.0 wt%, or from about 0.5 to about 5.0 wt%, or from about 1.0 to about 5.0 wt%, or from about 0.05 to about 3.0 wt%, or from about 0.5 to about 3.0 wt%, or from about 1.0 to about 3.0 wt%, or about 0.75 wt%, or about 0.8 wt%, or about 1.0 wt%, or about 1.5 wt%, or about 2.0 wt%. In alternative embodiments, the emulsifier may be present in the non-aqueous portion of the O/W emulsion in an amount, for example, from about 0.05 to about 10.0 wt%, or from about 0.5 to about 10.0 wt%, or from about 1.0 to about 10.0 wt%, or from about 0.05 to about 5.0 wt%, or from about 0.5 to about 5.0 wt%, or from about 1.0 to about 5.0 wt%, or from about 0.05 to about 3.0 wt%, or from about 0.5 to about 3.0 wt%, or from about 1.0 to about 3.0 wt%, or about 0.5 wt%, or about 0.75 wt%, or about 0.8 wt%, or about 1.0 wt%, or about 1.5 wt%, or about 2.0 wt%. In selected embodiments, the emulsifier may be present in the O/W emulsion in an amount, for example, from about 2.0 wt% of less, or from about 1.0 wt% or less, or from about 0.01 to about 2.0 wt%, or from about 0.025 to about 2.0 wt%, or from about 0.5 to about 2.0 wt%, or from about 0.01 to about 1.0 wt%, or from about 0.025 to about 1.0 wt%, or from about 0.5 to about 1.0 wt%, or from about 0.01 to about 0.5 wt%, or from about 0.025 to about 0.5 wt%, or from about 0.01 to about 0.25 wt%, or from about 0.025 to about 0.25 wt%, or about 0.05 wt%, or about 0.06 wt%, or about 0.1 wt%, or about 0.12 wt%, or about 0.5 wt%, or about 0.6 wt%, or about 1.2 wt%.

In alternative embodiments, the pigment may be, for example, a phthalocyanine compound. In selected embodiments, the pigment may be, for
example, a metal-free phthalocyanine compound. In an embodiment, the pigment may be, for example, a halogenated metal-free phthalocyanine. In an embodiment, the pigment may be, for example, a polychlorinated metal-free phthalocyanine. In alternative embodiments, the pigment may be, for example, a metal phthalocyanine compound. In an embodiment, the pigment may be, for example, a copper phthalocyanine. In an embodiment, the pigment may be, for example, a nonhalogenated copper phthalocyanine. In an embodiment, the pigment may be, for example, a nonchlorinated copper phthalocyanine. In an embodiment, the pigment may be, for example, Phthalocyanine Blue BN (CAS 147-14-8). In an embodiment, the pigment may be, for example, a halogenated copper phthalocyanine. In an embodiment, the pigment may be, for example, Phthalocyanine Green 6G (CAS 14302-13-7). In an embodiment, the pigment may be, for example, polychlorinated (Cu II) phthalocyanine. In an embodiment, the pigment may be, for example, Phthalocyanine Green G (CAS 1328-45-6 and 1328-53-6). Non-limiting examples of suitable pigments may include Sunserse™ Green 7 (available from Sun Chemical Corp. Performance Pigments Cincinnati, OH, USA), Sunserse™ EXP 006-102 (available from Sun Chemical Corp. Performance Pigments, Cincinnati, OH, USA), and Pigment Green 7 powder (available from Hercules Exports, Mumbai, India).

In alternative embodiments, the silicone surfactant may comprise, for example, a silicone polyether. In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether having a suitable alkoxy group with hydrogen end groups (H-capped), methyl end groups (CH₃-capped), or acetyl end groups (COCH₃-capped). In an embodiment, the silicone polyether may be, for example, a trisiloxane having a suitable alkoxy group with hydrogen end groups (H-capped), methyl end groups (CH₃-capped), or acetyl end groups (COCH₃-capped). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I:

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\text{Si} \quad \text{O} \quad \text{Si} \quad \text{O} \quad \text{Si} \quad \text{O} \\
\text{Si(CH}_3)_3
\end{array}
\]

\[
\begin{array}{c}
\text{CH}_2 \quad \text{CH}_2 \quad \text{O} \quad \text{CH}_2 \quad \text{CH}_2 \quad \text{O}
\end{array}
\]

\[
\text{OR}
\]

\[
\text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{CH}_3
\]

\[
\text{n}
\]

39
wherein \(R \) is \(H, \text{CH}_3 \) or \(\text{COCH}_3 \); \(x \) is 1 to 24; and \(n \) is 0 or \(\geq 1 \). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(R = H; x = 1 \) to 24; and \(n = 0 \). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(R = \text{CH}_3; x = 1 \) to 24; and \(n = 0 \). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(R = \text{CH}_3; x = 1 \) to 24; and \(n \geq 1 \). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(R = \text{COCH}_3; x = 1 \) to 24; and \(n = 0 \). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(R = \text{COCH}_3; x = 1 \) to 24; and \(n \geq 1 \).

In selected embodiments, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(n = 0; x = 1 - 24 \); the average \(x = 8 - 10 \); and \(R = H \). In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula I wherein \(n = 0; x = 1 - 24 \), the average \(x = 8 - 10 \); and \(R = \text{COCH}_3 \).

In alternative embodiments, the silicone surfactant may comprise, for example, an \(H \)-capped dimethyl methyl (polyethylene oxide) silicone polymer. In an embodiment, the \(H \)-capped dimethyl methyl (polyethylene oxide) silicone polymer may have, for example, a molecular weight from about 200 to about 6000. In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula II:

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2\text{CH}_2\text{CH}_2\text{O(CH}_2\text{CH}_2\text{O})_c\text{H} \\
\text{(CH}_3)_3\text{Si} & \quad \text{O} \quad \text{O} \quad (\text{SiO})_b \quad \text{Si} \quad \text{O} \quad \text{Si(CH}_3)_3 \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

wherein \(c = 2 - 16 \); and \(b = 2 - 70 \). In an embodiment, for example, the average \(b = 44 \). In an embodiment, for example, the average \(c = 10 \).

Alternatively, the silicone surfactant may comprise, for example, an \(H \)-capped trisiloxane. In an embodiment, the silicone surfactant may comprise, for example, a silicone polyether of the formula III:
wherein \(d = 1\) - 24. In an embodiment, for example, \(d = 1\) - 20. In an embodiment, for example, the average \(d = 8\) - 10. In an embodiment, for example, the average \(d = 8\).

Alternatively, the silicone surfactant may comprise, for example, a silicone copolyol, containing a hydrogen end group and one pendant polyethylene oxide group and has an average molecular weight between about 600 to about 1000 Daltons. In an embodiment, the silicone surfactant may comprise, for example, a trisiloxane with an ethoxylated alkyl group having a hydrogen end group (H-End).

In an embodiment, the trisiloxane with an ethoxylated alkyl group having a hydrogen end group may have, for example, a number of ethoxylation groups in the range of 1 - 20. In an embodiment, the silicone surfactant may comprise, for example, a methyl (propylhydroxide, ethoxylated) bis (trimethylsiloxy) silane. In an embodiment, the silicone surfactant may comprise, for example, a dimethyl, methyl (polyethylene oxide) silicone polymer.

Commercial preparations of the silicone surfactants may or may not contain small amounts of polyethylene glycols (PEG) or other low molecular weight polydimethyl siloxanes (PDMS).

In selected embodiments, the polyethylene glycol may comprise, for example, a polyethylene glycol of the formula IV:

\[
R^1\text{—O—}(\text{CH}_2\text{CH}_2\text{O})_f\text{—R}^2
\]

wherein \(R^1 = \text{H or CH}_2=\text{CH-CH}_2\) or COCH\(_3\); \(R^2 = \text{H or CH}_2=\text{CH-CH}_2\) or COCH\(_3\); and \(f \geq 1\). In an embodiment, the polyethylene glycol has, for example, a low molecular weight. In an embodiment, the polyethylene glycol has, for example, a molecular weight of about 300 to about 1500 Daltons. In an embodiment, the polyethylene glycol may be, for example, a low molecular weight polyethylene glycol allyl ether. In an embodiment, the polyethylene glycol may be, for example, a low molecular weight polyethylene glycol mono-allyl ether having an average molecular of from about 300 to about 600 Daltons and having from 1 to 20 moles of ethylene glycol with an average ethoxylation (EO) of 8 to 10. In an
embodiment, the polyethylene glycol may comprise, for example, a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \), \(R^2 = H \), and \(f = 1-20 \) with an average \(f = 8 \). A polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \) or \(COCH_3 \), and \(R^2 = COCH_3 \), a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \) and \(R^2 = H \), or any combination thereof. In an embodiment, the polyethylene glycol may comprise, for example, a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \) or \(COCH_3 \), and \(R^2 = COCH_3 \), a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \) and \(R^2 = H \), or any combination thereof. In an embodiment, the polyethylene glycol may comprise, for example, a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \), \(R^2 = H \), and \(f = 1-20 \) with an average \(f = 8 \). In an embodiment, the polyethylene glycol may comprise, for example, a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \) or \(COCH_3 \), and \(R^2 = COCH_3 \). In an embodiment, the polyethylene glycol may comprise, for example, a polyethylene glycol of the formula \(IV \) wherein \(R^1 = CH_2=CH-CH_2 \) and \(R^2 = H \). Non-limiting examples of suitable polyethylene glycols may include Polyglykol A500 (available from Clariant).

In alternative embodiments, the silicone surfactant may further comprise, for example, the polyethylene glycol. In selected embodiments, the silicone surfactant may comprise, for example, from about 10 to about 30 wt% of polyethylene glycol. In selected embodiments, the polyethylene glycol may be present in the O/W emulsion in an amount, for example, from about 0.01 to about 0.03 wt%.

Non-limiting examples of suitable silicone surfactants may include Sylgard™ 309 (available from Dow Corning, Midland, MI, USA), Silsurf™ A008-UP (available from Siltech Corp. Toronto, ON, Canada), Lambent MFF 199 SW (available from Lambert Technologies Corp., Gurnee, IL, USA), and Lambent MFF 159-100 (available from Lambert Technologies Corp., Gurnee, IL, USA).

In selected embodiments, the silicone surfactant may be present in the concentrate in an amount, for example, from about 0.1 to about 5 wt%, or about 1.8 wt%, or about 2 wt%. In alternative embodiments, the silicone surfactant may be present in the non-aqueous portion of the O/W emulsion in an amount, for example, from about 0.1 to about 5 wt%, or about 1.8 wt%, or about 2 wt%. In
selected embodiments, the silicone surfactant may be present in the O/W emulsion in an amount, for example, from about 0.01 to about 0.5 wt%, or about 0.1 wt%, or about 0.12 wt%.

In alternative embodiments, boscalid may be used in different crystal forms, and in alternative hydration states, such as an anhydrate or monohydrate (see, for example, WO 03/029219 and WO 04/072039). Boscalid may be commercially available, for example as a product identified as Emerald™ (available from BASF Corporation, Research Triangle Park, NC, USA).

In alternative embodiments, the aqueous component of the O/W emulsions may comprise distilled water or other waters having a low mineral electrolyte content.

In selected embodiments, the fungicidal compositions may exhibit a synergistic response, for example in controlling a fungal pathogen in turfgrass. In an embodiment, the fungicidal compositions may be synergistic fungicidal compositions for treating a fungal pathogen in turfgrass. In alternative embodiments, the fungicidal composition may exhibit a synergistic response, for example, in controlling dollar spot or dead spot or a combination thereof in turfgrass. In selected embodiments, the fungicidal composition may exhibit a synergistic response, for example, in controlling dollar spot or bentgrass dead spot or bermudagrass dead spot or a combination thereof in turfgrass. In selected embodiments, the fungicidal compositions may exhibit a synergistic response, for example in controlling dollar spot in turfgrass. Accordingly, in an embodiment, the fungicidal compositions may be synergistic fungicidal compositions for treating dollar spot in turfgrass. In selected embodiments, the fungicidal compositions may exhibit a synergistic response, for example in controlling bentgrass dead spot or bermudagrass dead spot in turfgrass. Accordingly, in an embodiment, the fungicidal compositions may be synergistic fungicidal compositions for treating bentgrass dead spot or bermudagrass dead spot or a combination thereof in turfgrass. In alternative embodiments, the fungicidal compositions may be synergistic fungicidal combinations for treating bentgrass dead spot. In selected embodiments, the fungicidal compositions may be synergistic fungicidal composition for treating bermudagrass dead spot in turfgrass. As for example is suggested by Burpee and Latin (Plant Disease Vol.
92 No. 4, April 2008, 601-606), the term "synergy", "synergistic", or the like, may refer to the interaction of two or more agents so that their combined effect is greater than the sum of their individual effects, this may include, in the context of the invention, the action of two or more fungicidal agents in which the total response of a fungus to the fungicidal agent combination is greater than the sum of the individual components.

In selected embodiments, the paraffinic oil may be present in the composition in a synergistically effective amount. In selected embodiments, boscalid may be present in the composition in a synergistically effective amount.

In alternative embodiments, the pigment may be present in the composition in a synergistically effective amount. In selected embodiments, the paraffinic oil and boscalid may be present in the composition in synergistically effective amounts. In alternative embodiments, the paraffinic oil and the pigment may be present in the composition in synergistically effective amounts. In selected embodiments, boscalid and the pigment may be present in the composition in synergistically effective amounts. In alternative embodiments, the paraffinic oil, boscalid and the pigment may be present in the composition in synergistically effective amounts. In alternative embodiments, the paraffinic oil may be used or applied to the plant at a rate which supplies a synergistically effective amount of the paraffinic oil to the plant. Similarly, boscalid may be used or applied to the plant at a rate which supplies a synergistically effective amount of boscalid to the plant. Alternatively, the pigment may be used or applied to the plant at a rate which supplies a synergistically effective amount of the pigment to the plant. In selected embodiments, the paraffinic oil and boscalid may be used or applied to the plant at rates which supply synergistically effective amounts of the paraffinic oil and boscalid to the plant. In selected embodiments, the paraffinic oil and the pigment may be used or applied to the plant at rates which supply synergistically effective amounts of the paraffinic oil and the pigment to the plant. In selected embodiments, the boscalid and the pigment may be used or applied to the plant at rates which supply synergistically effective amounts of boscalid and the pigment to the plant. In selected embodiments, the paraffinic oil, boscalid and the pigment may be used or applied to the plant at rates which supply
synergistically effective amounts of the paraffinic oil, boscalid and the pigment to the plant.

In alternative embodiments, the paraffinic oil may be used or applied to the plant at a rate that is less than a given rate, such as less than the rate proscribed by product labeling. For example, the paraffinic oil may be used or applied to the plant at, for example, 75% or less of the label rate, or 70% or less of the label rate. Alternatively, the paraffinic oil may be used or applied to the plant at, for example, 50% or less of the label rate, or from about 25% to about 75% of the label rate, or from about 25% to about 50% of the label rate, or at about 75% of the label rate, or at about 50% of the label rate, or at about 25% of the label rate. In selected embodiments, the paraffinic oil may be used or applied to the plant at, for example, from about 0.9 to about 32 oz/1000 square ft, or from about 1 to about 32 oz/1000 square ft, or from about 2 to about 32 oz/1000 square ft, or from about 3 to about 32 oz/1000 square ft, or from about 4 to about 32 oz/1000 square ft, or from about 5 to about 32 oz/1000 square ft, or from about 6 to about 32 oz/1000 square ft, or from about 7 to about 32 oz/1000 square ft, or from about 8 to about 32 oz/1000 square ft, or from about 9 to about 32 oz/1000 square ft, or from about 10 to about 32 oz/1000 square ft, or from about 11 to about 32 oz/1000 square ft, or from about 12 to about 32 oz/1000 square ft, or from about 13 to about 32 oz/1000 square ft, or from about 14 to about 32 oz/1000 square ft, or from about 15 to about 32 oz/1000 square ft, or from about 16 to about 32 oz/1000 square ft, or from about 17 to about 32 oz/1000 square ft, or from about 18 to about 32 oz/1000 square ft, or from about 19 to about 32 oz/1000 square ft, or from about 20 to about 32 oz/1000 square ft, or from about 21 to about 32 oz/1000 square ft, or from about 22 to about 32 oz/1000 square ft, or from about 23 to about 32 oz/1000 square ft, or from about 24 to about 32 oz/1000 square ft, or from about 25 to about 32 oz/1000 square ft, or from about 26 to about 32 oz/1000 square ft, or from about 27 to about 32 oz/1000 square ft, or from about 28 to about 32 oz/1000 square ft, or from about 29 to about 32 oz/1000 square ft, or from about 30 to about 32 oz/1000 square ft, or from about 31 to about 32 oz/1000 square ft, or from about 0.9 to about 31 oz/1000 square ft, or from about 1 to about 31 oz/1000 square ft, or from about 2 to about 31 oz/1000 square ft, or from about 3 to about 31 oz/1000 square ft, or
from about 4 to about 31 oz/1000 square ft, or from about 5 to about 31 oz/1000 square ft, or from about 6 to about 31 oz/1000 square ft, or from about 7 to about 31 oz/1000 square ft, or from about 8 to about 31 oz/1000 square ft, or from about 9 to about 31 oz/1000 square ft, or from about 10 to about 31 oz/1000 square ft, or from about 11 to about 31 oz/1000 square ft, or from about 12 to about 31 oz/1000 square ft, or from about 13 to about 31 oz/1000 square ft, or from about 14 to about 31 oz/1000 square ft, or from about 15 to about 31 oz/1000 square ft, or from about 16 to about 31 oz/1000 square ft, or from about 17 to about 31 oz/1000 square ft, or from about 18 to about 31 oz/1000 square ft, or from about 19 to about 31 oz/1000 square ft, or from about 20 to about 31 oz/1000 square ft, or from about 21 to about 31 oz/1000 square ft, or from about 22 to about 31 oz/1000 square ft, or from about 23 to about 31 oz/1000 square ft, or from about 24 to about 31 oz/1000 square ft, or from about 25 to about 31 oz/1000 square ft, or from about 26 to about 31 oz/1000 square ft, or from about 27 to about 31 oz/1000 square ft, or from about 28 to about 31 oz/1000 square ft, or from about 29 to about 31 oz/1000 square ft, or from about 30 to about 31 oz/1000 square ft, or from about 0.9 to about 30 oz/1000 square ft, or from about 1 to about 30 oz/1000 square ft, or from about 2 to about 30 oz/1000 square ft, or from about 3 to about 30 oz/1000 square ft, or from about 4 to about 30 oz/1000 square ft, or from about 5 to about 30 oz/1000 square ft, or from about 6 to about 30 oz/1000 square ft, or from about 7 to about 30 oz/1000 square ft, or from about 8 to about 30 oz/1000 square ft, or from about 9 to about 30 oz/1000 square ft, or from about 10 to about 30 oz/1000 square ft, or from about 11 to about 30 oz/1000 square ft, or from about 12 to about 30 oz/1000 square ft, or from about 13 to about 30 oz/1000 square ft, or from about 14 to about 30 oz/1000 square ft, or from about 15 to about 30 oz/1000 square ft, or from about 16 to about 30 oz/1000 square ft, or from about 17 to about 30 oz/1000 square ft, or from about 18 to about 30 oz/1000 square ft, or from about 19 to about 30 oz/1000 square ft, or from about 20 to about 30 oz/1000 square ft, or from about 21 to about 30 oz/1000 square ft, or from about 22 to about 30 oz/1000 square ft, or from about 23 to about 30 oz/1000 square ft, or from about 24 to about 30 oz/1000 square ft, or from about 25 to about 30 oz/1000 square ft, or from about 26 to about 30 oz/1000 square ft, or from about 27 to about 30 oz/1000 square ft, or from about 28 to about 30 oz/1000 square ft, or from about 29 to about 30 oz/1000 square ft, or from about 30 to about 30 oz/1000 square ft.
ft, or from about 28 to about 30 oz/1000 square ft, or from about 29 to about 30
oz/1000 square ft, or from about 0.9 to about 29 oz/1000 square ft, or from about
1 to about 29 oz/1000 square ft, or from about 2 to about 29 oz/1000 square ft,
or from about 3 to about 29 oz/1000 square ft, or from about 4 to about 29
oz/1000 square ft, or from about 5 to about 29 oz/1000 square ft, or from about 6
to about 29 oz/1000 square ft, or from about 7 to about 29 oz/1000 square ft, or
from about 8 to about 29 oz/1000 square ft, or from about 9 to about 29 oz/1000
square ft, or from about 10 to about 29 oz/1000 square ft, or from about 11 to
about 29 oz/1000 square ft, or from about 12 to about 29 oz/1000 square ft, or
from about 13 to about 29 oz/1000 square ft, or from about 14 to about 29
oz/1000 square ft, or from about 15 to about 29 oz/1000 square ft, or from about
16 to about 29 oz/1000 square ft, or from about 17 to about 29 oz/1000 square
ft, or from about 18 to about 29 oz/1000 square ft, or from about 19 to about 29
oz/1000 square ft, or from about 20 to about 29 oz/1000 square ft, or from about
21 to about 29 oz/1000 square ft, or from about 22 to about 29 oz/1000 square
ft, or from about 23 to about 29 oz/1000 square ft, or from about 24 to about 29
oz/1000 square ft, or from about 25 to about 29 oz/1000 square ft, or from about
26 to about 29 oz/1000 square ft, or from about 27 to about 29 oz/1000 square
ft, or from about 28 to about 29 oz/1000 square ft, or from about 0.9 to about 28
oz/1000 square ft, or from about 1 to about 28 oz/1000 square ft, or from about 2
to about 28 oz/1000 square ft, or from about 3 to about 28 oz/1000 square ft, or
from about 4 to about 28 oz/1000 square ft, or from about 5 to about 28 oz/1000
square ft, or from about 6 to about 28 oz/1000 square ft, or from about 7 to about
28 oz/1000 square ft, or from about 8 to about 28 oz/1000 square ft, or from
about 9 to about 28 oz/1000 square ft, or from about 10 to about 28 oz/1000
square ft, or from about 11 to about 28 oz/1000 square ft, or from about 12 to
about 28 oz/1000 square ft, or from about 13 to about 28 oz/1000 square ft, or
from about 14 to about 28 oz/1000 square ft, or from about 15 to about 28
oz/1000 square ft, or from about 16 to about 28 oz/1000 square ft, or from about
17 to about 28 oz/1000 square ft, or from about 18 to about 28 oz/1000 square
ft, or from about 19 to about 28 oz/1000 square ft, or from about 20 to about 28
oz/1000 square ft, or from about 21 to about 28 oz/1000 square ft, or from about
22 to about 28 oz/1000 square ft, or from about 23 to about 28 oz/1000 square

ft, or from about 24 to about 28 oz/1000 square ft, or from about 25 to about 28 oz/1000 square ft, or from about 26 to about 28 oz/1000 square ft, or from about 27 to about 28 oz/1000 square ft, or from about 0.9 to about 27 oz/1000 square ft, or from about 1 to about 27 oz/1000 square ft, or from about 2 to about 27 oz/1000 square ft, or from about 3 to about 27 oz/1000 square ft, or from about 4 to about 27 oz/1000 square ft, or from about 5 to about 27 oz/1000 square ft, or from about 6 to about 27 oz/1000 square ft, or from about 7 to about 27 oz/1000 square ft, or from about 8 to about 27 oz/1000 square ft, or from about 9 to about 27 oz/1000 square ft, or from about 10 to about 27 oz/1000 square ft, or from about 11 to about 27 oz/1000 square ft, or from about 12 to about 27 oz/1000 square ft, or from about 13 to about 27 oz/1000 square ft, or from about 14 to about 27 oz/1000 square ft, or from about 15 to about 27 oz/1000 square ft, or from about 16 to about 27 oz/1000 square ft, or from about 17 to about 27 oz/1000 square ft, or from about 18 to about 27 oz/1000 square ft, or from about 19 to about 27 oz/1000 square ft, or from about 20 to about 27 oz/1000 square ft, or from about 21 to about 27 oz/1000 square ft, or from about 22 to about 27 oz/1000 square ft, or from about 23 to about 27 oz/1000 square ft, or from about 24 to about 27 oz/1000 square ft, or from about 25 to about 27 oz/1000 square ft, or from about 26 to about 27 oz/1000 square ft, or from about 0.9 to about 26 oz/1000 square ft, or from about 1 to about 26 oz/1000 square ft, or from about 2 to about 26 oz/1000 square ft, or from about 3 to about 26 oz/1000 square ft, or from about 4 to about 26 oz/1000 square ft, or from about 5 to about 26 oz/1000 square ft, or from about 6 to about 26 oz/1000 square ft, or from about 7 to about 26 oz/1000 square ft, or from about 8 to about 26 oz/1000 square ft, or from about 9 to about 26 oz/1000 square ft, or from about 10 to about 26 oz/1000 square ft, or from about 11 to about 26 oz/1000 square ft, or from about 12 to about 26 oz/1000 square ft, or from about 13 to about 26 oz/1000 square ft, or from about 14 to about 26 oz/1000 square ft, or from about 15 to about 26 oz/1000 square ft, or from about 16 to about 26 oz/1000 square ft, or from about 17 to about 26 oz/1000 square ft, or from about 18 to about 26 oz/1000 square ft, or from about 19 to about 26 oz/1000 square ft, or from about 20 to about 26 oz/1000 square ft, or from about 21 to about 26 oz/1000 square ft, or from about 22 to about 26 oz/1000 square ft, or from about 23 to about 26 oz/1000 square ft
ft, or from about 24 to about 26 oz/1000 square ft, or from about 25 to about 26
oz/1000 square ft, or from about 0.9 to about 25 oz/1000 square ft, or from about
1 to about 25 oz/1000 square ft, or from about 2 to about 25 oz/1000 square ft,
or from about 3 to about 25 oz/1000 square ft, or from about 4 to about 25
oz/1000 square ft, or from about 5 to about 25 oz/1000 square ft, or from about 6
to about 25 oz/1000 square ft, or from about 7 to about 25 oz/1000 square ft, or
from about 8 to about 25 oz/1000 square ft, or from about 9 to about 25 oz/1000
square ft, or from about 10 to about 25 oz/1000 square ft, or from about 11 to
about 25 oz/1000 square ft, or from about 12 to about 25 oz/1000 square ft, or
from about 13 to about 25 oz/1000 square ft, or from about 14 to about 25
oz/1000 square ft, or from about 15 to about 25 oz/1000 square ft, or from about
16 to about 25 oz/1000 square ft, or from about 17 to about 25 oz/1000 square
ft, or from about 18 to about 25 oz/1000 square ft, or from about 19 to about 25
oz/1000 square ft, or from about 20 to about 25 oz/1000 square ft, or from about
21 to about 25 oz/1000 square ft, or from about 22 to about 25 oz/1000 square
ft, or from about 23 to about 25 oz/1000 square ft, or from about 24 to about 25
oz/1000 square ft, or from about 0.9 to about 24 oz/1000 square ft, or from about
1 to about 24 oz/1000 square ft, or from about 2 to about 24 oz/1000 square ft,
or from about 3 to about 24 oz/1000 square ft, or from about 4 to about 24
oz/1000 square ft, or from about 5 to about 24 oz/1000 square ft, or from about 6
to about 24 oz/1000 square ft, or from about 7 to about 24 oz/1000 square ft, or
from about 8 to about 24 oz/1000 square ft, or from about 9 to about 24 oz/1000
square ft, or from about 10 to about 24 oz/1000 square ft, or from about 11 to
about 24 oz/1000 square ft, or from about 12 to about 24 oz/1000 square ft, or
from about 13 to about 24 oz/1000 square ft, or from about 14 to about 24
oz/1000 square ft, or from about 15 to about 24 oz/1000 square ft, or from about
16 to about 24 oz/1000 square ft, or from about 17 to about 24 oz/1000 square
ft, or from about 18 to about 24 oz/1000 square ft, or from about 19 to about 24
oz/1000 square ft, or from about 20 to about 24 oz/1000 square ft, or from about
21 to about 24 oz/1000 square ft, or from about 22 to about 24 oz/1000 square
ft, or from about 23 to about 24 oz/1000 square ft, or from about 0.9 to about 23
oz/1000 square ft, or from about 1 to about 23 oz/1000 square ft, or from about 2
to about 23 oz/1000 square ft, or from about 3 to about 23 oz/1000 square ft, or
from about 4 to about 23 oz/1000 square ft, or from about 5 to about 23 oz/1000 square ft, or from about 6 to about 23 oz/1000 square ft, or from about 7 to about 23 oz/1000 square ft, or from about 8 to about 23 oz/1000 square ft, or from about 9 to about 23 oz/1000 square ft, or from about 10 to about 23 oz/1000 square ft, or from about 11 to about 23 oz/1000 square ft, or from about 12 to about 23 oz/1000 square ft, or from about 13 to about 23 oz/1000 square ft, or from about 14 to about 23 oz/1000 square ft, or from about 15 to about 23 oz/1000 square ft, or from about 16 to about 23 oz/1000 square ft, or from about 17 to about 23 oz/1000 square ft, or from about 18 to about 23 oz/1000 square ft, or from about 19 to about 23 oz/1000 square ft, or from about 20 to about 23 oz/1000 square ft, or from about 21 to about 23 oz/1000 square ft, or from about 22 to about 23 oz/1000 square ft, or from about 0.9 to about 22 oz/1000 square ft, or from about 1 to about 22 oz/1000 square ft, or from about 2 to about 22 oz/1000 square ft, or from about 3 to about 22 oz/1000 square ft, or from about 4 to about 22 oz/1000 square ft, or from about 5 to about 22 oz/1000 square ft, or from about 6 to about 22 oz/1000 square ft, or from about 7 to about 22 oz/1000 square ft, or from about 8 to about 22 oz/1000 square ft, or from about 9 to about 22 oz/1000 square ft, or from about 10 to about 22 oz/1000 square ft, or from about 11 to about 22 oz/1000 square ft, or from about 12 to about 22 oz/1000 square ft, or from about 13 to about 22 oz/1000 square ft, or from about 14 to about 22 oz/1000 square ft, or from about 15 to about 22 oz/1000 square ft, or from about 16 to about 22 oz/1000 square ft, or from about 17 to about 22 oz/1000 square ft, or from about 18 to about 22 oz/1000 square ft, or from about 19 to about 22 oz/1000 square ft, or from about 20 to about 22 oz/1000 square ft, or from about 21 to about 22 oz/1000 square ft, or from about 0.9 to about 21 oz/1000 square ft, or from about 1 to about 21 oz/1000 square ft, or from about 2 to about 21 oz/1000 square ft, or from about 3 to about 21 oz/1000 square ft, or from about 4 to about 21 oz/1000 square ft, or from about 5 to about 21 oz/1000 square ft, or from about 6 to about 21 oz/1000 square ft, or from about 7 to about 21 oz/1000 square ft, or from about 8 to about 21 oz/1000 square ft, or from about 9 to about 21 oz/1000 square ft, or from about 10 to about 21 oz/1000 square ft, or from about 11 to about 21 oz/1000 square ft, or from about 12 to about 21 oz/1000 square ft, or from about 13 to about 21 oz/1000 square ft, or
from about 1.4 to about 2.1 oz/1000 square ft, or from about 1.5 to about 2.1
oz/1000 square ft, or from about 1.6 to about 2.1 oz/1000 square ft, or from about
17 to about 2.1 oz/1000 square ft, or from about 18 to about 2.1 oz/1000 square
ft, or from about 19 to about 2.1 oz/1000 square ft, or from about 20 to about 2.1
oz/1000 square ft, or from about 0.9 to about 20 oz/1000 square ft, or from about
1 to about 20 oz/1000 square ft, or from about 2 to about 20 oz/1000 square ft,
or from about 3 to about 20 oz/1000 square ft, or from about 4 to about 20
oz/1000 square ft, or from about 5 to about 20 oz/1000 square ft, or from about 6
to about 20 oz/1000 square ft, or from about 7 to about 20 oz/1000 square ft, or
from about 8 to about 20 oz/1000 square ft, or from about 9 to about 20 oz/1000
square ft, or from about 10 to about 20 oz/1000 square ft, or from about 11 to
about 20 oz/1000 square ft, or from about 12 to about 20 oz/1000 square ft, or
from about 13 to about 20 oz/1000 square ft, or from about 14 to about 20
oz/1000 square ft, or from about 15 to about 20 oz/1000 square ft, or from about
16 to about 20 oz/1000 square ft, or from about 17 to about 20 oz/1000 square
ft, or from about 18 to about 20 oz/1000 square ft, or from about 19 to about 20
oz/1000 square ft, or from about 0.9 to about 19 oz/1000 square ft, or from about
1 to about 19 oz/1000 square ft, or from about 2 to about 19 oz/1000 square ft,
or from about 3 to about 19 oz/1000 square ft, or from about 4 to about 19
oz/1000 square ft, or from about 5 to about 19 oz/1000 square ft, or from about 6
to about 19 oz/1000 square ft, or from about 7 to about 19 oz/1000 square ft, or
from about 8 to about 19 oz/1000 square ft, or from about 9 to about 19 oz/1000
square ft, or from about 10 to about 19 oz/1000 square ft, or from about 11 to
about 19 oz/1000 square ft, or from about 12 to about 19 oz/1000 square ft, or
from about 13 to about 19 oz/1000 square ft, or from about 14 to about 19
oz/1000 square ft, or from about 15 to about 19 oz/1000 square ft, or from about
16 to about 19 oz/1000 square ft, or from about 17 to about 19 oz/1000 square
ft, or from about 18 to about 19 oz/1000 square ft, or from about 0.9 to about 18
oz/1000 square ft, or from about 1 to about 18 oz/1000 square ft, or from about 2
to about 18 oz/1000 square ft, or from about 3 to about 18 oz/1000 square ft, or
from about 4 to about 18 oz/1000 square ft, or from about 5 to about 18 oz/1000
square ft, or from about 6 to about 18 oz/1000 square ft, or from about 7 to about
18 oz/1000 square ft, or from about 8 to about 18 oz/1000 square ft, or from
about 9 to about 18 oz/1000 square ft, or from about 10 to about 18 oz/1000 square ft, or from about 11 to about 18 oz/1000 square ft, or from about 12 to about 18 oz/1000 square ft, or from about 13 to about 18 oz/1000 square ft, or from about 14 to about 18 oz/1000 square ft, or from about 15 to about 18 oz/1000 square ft, or from about 16 to about 18 oz/1000 square ft, or from about 17 to about 18 oz/1000 square ft, or from about 0.9 to about 17 oz/1000 square ft, or from about 1 to about 17 oz/1000 square ft, or from about 2 to about 17 oz/1000 square ft, or from about 3 to about 17 oz/1000 square ft, or from about 4 to about 17 oz/1000 square ft, or from about 5 to about 17 oz/1000 square ft, or from about 6 to about 17 oz/1000 square ft, or from about 7 to about 17 oz/1000 square ft, or from about 8 to about 17 oz/1000 square ft, or from about 9 to about 17 oz/1000 square ft, or from about 10 to about 17 oz/1000 square ft, or from about 11 to about 17 oz/1000 square ft, or from about 12 to about 17 oz/1000 square ft, or from about 13 to about 17 oz/1000 square ft, or from about 14 to about 17 oz/1000 square ft, or from about 15 to about 17 oz/1000 square ft, or from about 16 to about 17 oz/1000 square ft, or from about 0.9 to about 16 oz/1000 square ft, or from about 1 to about 16 oz/1000 square ft, or from about 2 to about 16 oz/1000 square ft, or from about 3 to about 16 oz/1000 square ft, or from about 4 to about 16 oz/1000 square ft, or from about 5 to about 16 oz/1000 square ft, or from about 6 to about 16 oz/1000 square ft, or from about 7 to about 16 oz/1000 square ft, or from about 8 to about 16 oz/1000 square ft, or from about 9 to about 16 oz/1000 square ft, or from about 10 to about 16 oz/1000 square ft, or from about 11 to about 16 oz/1000 square ft, or from about 12 to about 16 oz/1000 square ft, or from about 13 to about 16 oz/1000 square ft, or from about 14 to about 16 oz/1000 square ft, or from about 15 to about 16 oz/1000 square ft, or from about 0.9 to about 15 oz/1000 square ft, or from about 1 to about 15 oz/1000 square ft, or from about 2 to about 15 oz/1000 square ft, or from about 3 to about 15 oz/1000 square ft, or from about 4 to about 15 oz/1000 square ft, or from about 5 to about 15 oz/1000 square ft, or from about 6 to about 15 oz/1000 square ft, or from about 7 to about 15 oz/1000 square ft, or from about 8 to about 15 oz/1000 square ft, or from about 9 to about 15 oz/1000 square ft, or from about 10 to about 15 oz/1000 square ft, or from about 11 to about 15 oz/1000 square ft, or from about 12 to about 15 oz/1000 square ft, or
from about 13 to about 15 oz/1000 square ft, or from about 14 to about 15 oz/1000 square ft, or from about 0.9 to about 14 oz/1000 square ft, or from about 1 to about 14 oz/1000 square ft, or from about 2 to about 14 oz/1000 square ft, or from about 3 to about 14 oz/1000 square ft, or from about 4 to about 14 oz/1000 square ft, or from about 5 to about 14 oz/1000 square ft, or from about 6 to about 14 oz/1000 square ft, or from about 7 to about 14 oz/1000 square ft, or from about 8 to about 14 oz/1000 square ft, or from about 9 to about 14 oz/1000 square ft, or from about 10 to about 14 oz/1000 square ft, or from about 11 to about 14 oz/1000 square ft, or from about 12 to about 14 oz/1000 square ft, or from about 13 to about 14 oz/1000 square ft, or from about 0.9 to about 13 oz/1000 square ft, or from about 1 to about 13 oz/1000 square ft, or from about 2 to about 13 oz/1000 square ft, or from about 3 to about 13 oz/1000 square ft, or from about 4 to about 13 oz/1000 square ft, or from about 5 to about 13 oz/1000 square ft, or from about 6 to about 13 oz/1000 square ft, or from about 7 to about 13 oz/1000 square ft, or from about 8 to about 13 oz/1000 square ft, or from about 9 to about 13 oz/1000 square ft, or from about 10 to about 13 oz/1000 square ft, or from about 11 to about 13 oz/1000 square ft, or from about 12 to about 13 oz/1000 square ft, or from about 13 oz/1000 square ft, or from about 0.9 to about 12 oz/1000 square ft, or from about 1 to about 12 oz/1000 square ft, or from about 2 to about 12 oz/1000 square ft, or from about 3 to about 12 oz/1000 square ft, or from about 4 to about 12 oz/1000 square ft, or from about 5 to about 12 oz/1000 square ft, or from about 6 to about 12 oz/1000 square ft, or from about 7 to about 12 oz/1000 square ft, or from about 8 to about 12 oz/1000 square ft, or from about 9 to about 12 oz/1000 square ft, or from about 10 to about 12 oz/1000 square ft, or from about 11 to about 12 oz/1000 square ft, or from about 0.9 to about 11 oz/1000 square ft, or from about 1 to about 11 oz/1000 square ft, or from about 2 to about 11 oz/1000 square ft, or from about 3 to about 11 oz/1000 square ft, or from about 4 to about 11 oz/1000 square ft, or from about 5 to about 11 oz/1000 square ft, or from about 6 to about 11 oz/1000 square ft, or from about 7 to about 11 oz/1000 square ft, or from about 8 to about 11 oz/1000 square ft, or from about 9 to about 11 oz/1000 square ft, or from about 10 to about 11 oz/1000 square ft, or from about 0.9 to about 10 oz/1000 square ft, or from about 1 to about 10 oz/1000 square ft, or from about 2 to about 10 oz/1000 square ft, or
from about 3 to about 10 oz/1000 square ft, or from about 4 to about 10 oz/1000 square ft, or from about 5 to about 10 oz/1000 square ft, or from about 6 to about 10 oz/1000 square ft, or from about 7 to about 10 oz/1000 square ft, or from about 8 to about 10 oz/1000 square ft, or from about 9 to about 10 oz/1000 square ft, or from about 0.9 to about 9 oz/1000 square ft, or from about 1 to about 9 oz/1000 square ft, or from about 2 to about 9 oz/1000 square ft, or from about 3 to about 9 oz/1000 square ft, or from about 4 to about 9 oz/1000 square ft, or from about 5 to about 9 oz/1000 square ft, or from about 6 to about 9 oz/1000 square ft, or from about 7 to about 9 oz/1000 square ft, or from about 8 to about 9 oz/1000 square ft, or from about 0.9 to about 8 oz/1000 square ft, or from about 1 to about 8 oz/1000 square ft, or from about 2 to about 8 oz/1000 square ft, or from about 3 to about 8 oz/1000 square ft, or from about 4 to about 8 oz/1000 square ft, or from about 5 to about 8 oz/1000 square ft, or from about 6 to about 8 oz/1000 square ft, or from about 7 to about 8 oz/1000 square ft, or from about 0.9 to about 7 oz/1000 square ft, or from about 1 to about 7 oz/1000 square ft, or from about 2 to about 7 oz/1000 square ft, or from about 3 to about 7 oz/1000 square ft, or from about 4 to about 7 oz/1000 square ft, or from about 5 to about 7 oz/1000 square ft, or from about 6 to about 7 oz/1000 square ft, or from about 0.9 to about 6 oz/1000 square ft, or from about 1 to about 6 oz/1000 square ft, or from about 2 to about 6 oz/1000 square ft, or from about 3 to about 6 oz/1000 square ft, or from about 4 to about 6 oz/1000 square ft, or from about 5 to about 6 oz/1000 square ft, or from about 0.9 to about 5 oz/1000 square ft, or from about 1 to about 5 oz/1000 square ft, or from about 2 to about 5 oz/1000 square ft, or from about 3 to about 5 oz/1000 square ft, or from about 4 to about 5 oz/1000 square ft, or from about 0.9 to about 4 oz/1000 square ft, or from about 1 to about 4 oz/1000 square ft, or from about 2 to about 4 oz/1000 square ft, or from about 3 to about 4 oz/1000 square ft, or from about 0.9 to about 3 oz/1000 square ft, or from about 1 to about 3 oz/1000 square ft, or from about 2 to about 3 oz/1000 square ft, or from about 0.9 to about 2 oz/1000 square ft, or from about 1 to about 2 oz/1000 square ft, or from about 0.9 to about 1 oz/1000 square ft. In selected embodiments, the paraffinic oil may be used or applied to the plant at, for example, about 0.9 oz/1000 square ft, or about 1 oz/1000 square ft, or about 2 oz/1000 square ft, or about 3 oz/1000 square ft, or about 4 oz/1000
square ft, or about 5 oz/1000 square ft, or about 6 oz/1000 square ft, or about 7
oz/1000 square ft, or about 8 oz/1000 square ft, or about 9 oz/1000 square ft, or
about 10 oz/1000 square ft, or about 11 oz/1000 square ft, or about 12 oz/1000
square ft, or about 13 oz/1000 square ft, or about 14 oz/1000 square ft, or about
15 oz/1000 square ft, or about 16 oz/1000 square ft, or about 17 oz/1000 square
ft, or about 18 oz/1000 square ft, or about 19 oz/1000 square ft, or about 20
oz/1000 square ft, or about 21 oz/1000 square ft, or about 22 oz/1000 square ft,
or about 23 oz/1000 square ft, or about 24 oz/1000 square ft, or about 25
oz/1000 square ft, or about 26 oz/1000 square ft, or about 27 oz/1000 square ft,
or about 28 oz/1000 square ft, or about 29 oz/1000 square ft, or about 30
oz/1000 square ft, or about 31 oz/1000 square ft, or about 32 oz/1000 square ft.
In alternative embodiments, the paraffinic oil may be used or applied to the plant
at, for example, about 7.8 oz/1000 square ft, or about 15.7 oz/1000 square ft, or
about 12.5 oz/1000 square ft.

In selected embodiments, the paraffinic oil may be used or applied to the
plant at an interval rate of, for example, from 1 day to 90 days, or from 1 day to
60 days, or from 1 day to 30 days, or from 1 day to 21 days, or from 1 day to 14
days, or from 1 day to 7 days, or from 7 days to 90 days, or from 7 days to 60
days, or from 7 days to 30 days, or from 7 days to 21 days, or from 7 days to 14
days, from 14 days to 90 days, from 14 days to 60 days, from 14 days to 30
days, or from 14 days to 21 days, or 1 day, or 2 days, or 3 days, or 4 days, or 5
days, or 6 days, or 7 days, or 8 days, or 9 days, or 10 days, or 11 days, or 12
days, or 13 days, or 14 days, or 15 days, or 16 days, or 17 days, or 18 days, or 19
days, or 20 days, or 21 days, or 22 days, or 23 days, or 24 days, or 25 days,
or 26 days, or 27 days, or 28 days, or 29 days, or 30 days, or 31 days, or 32
days, or 33 days, or 34 days, or 35 days, or 36 days, or 37 days, or 38 days, or
39 days, or 40 days, or 41 days, or 42 days, or 43 days, or 44 days, or 45 days,
or 46 days, or 47 days, or 48 days, or 49 days, or 50 days, or 51 days, or 52
days, or 53 days, or 54 days, or 55 days, or 56 days, or 57 days, or 58 days, or
59 days, or 60 days, or 61 days, or 62 days, or 63 days, or 64 days, or 65 days,
or 66 days, or 67 days, or 68 days, or 69 days, or 70 days, or 71 days, or 72
days, or 73 days, or 74 days, or 75 days, or 76 days, or 77 days, or 78 days, or
79 days, or 80 days, or 81 days, or 82 days, or 83 days, or 84 days, or 85 days, or 86 days, or 87 days, or 88 days, or 89 days, or 90 days.

In selected embodiments, bosalid may be used or applied to the plant at a rate that is less than a given rate, such as less than the rate proscribed by product labeling. In alternative embodiments, bosalid may be used or applied to the plant at, for example, 75% or less of the label rate, or 70% or less of the label rate, or 50% or less of the label rate, or from about 25% to about 75% of the label rate, or from about 25% to about 50% of the label rate, or at about 75% of the label rate, or at about 50% of the label rate, or at about 25% of the label rate.

In selected embodiments, bosalid may be used or applied to the plant at, for example, from about 0.01 to about 0.18 oz/1000 square ft, or from about 0.02 to about 0.18 oz/1000 square ft, or from about 0.03 to about 0.18 oz/1000 square ft, or from about 0.04 to about 0.18 oz/1000 square ft, or from about 0.05 to about 0.18 oz/1000 square ft, or from about 0.06 to about 0.18 oz/1000 square ft, or from about 0.07 to about 0.18 oz/1000 square ft, or from about 0.08 to about 0.18 oz/1000 square ft, or from about 0.09 to about 0.18 oz/1000 square ft, or from about 0.10 to about 0.18 oz/1000 square ft, or from about 0.11 to about 0.18 oz/1000 square ft, or from about 0.12 to about 0.18 oz/1000 square ft, or from about 0.13 to about 0.18 oz/1000 square ft, or from about 0.14 to about 0.18 oz/1000 square ft, or from about 0.15 to about 0.18 oz/1000 square ft, or from about 0.16 to about 0.18 oz/1000 square ft, or from about 0.17 to about 0.18 oz/1000 square ft, or from about 0.01 to about 0.17 oz/1000 square ft, or from about 0.02 to about 0.17 oz/1000 square ft, or from about 0.03 to about 0.17 oz/1000 square ft, or from about 0.04 to about 0.17 oz/1000 square ft, or from about 0.05 to about 0.17 oz/1000 square ft, or from about 0.06 to about 0.17 oz/1000 square ft, or from about 0.07 to about 0.17 oz/1000 square ft, or from about 0.08 to about 0.17 oz/1000 square ft, or from about 0.09 to about 0.17 oz/1000 square ft, or from about 0.10 to about 0.17 oz/1000 square ft, or from about 0.11 to about 0.17 oz/1000 square ft, or from about 0.12 to about 0.17 oz/1000 square ft, or from about 0.13 to about 0.17 oz/1000 square ft, or from about 0.14 to about 0.17 oz/1000 square ft, or from about 0.15 to about 0.17 oz/1000 square ft, or from about 0.16 to about 0.17 oz/1000 square ft, or from about 0.17 to about 0.17 oz/1000 square ft, or from about 0.01 to about 0.16 oz/1000 square ft, or from about 0.02 to about 0.16 oz/1000 square ft, or from about 0.03 to about 0.16 oz/1000 square ft, or from about 0.04 to about 0.16 oz/1000 square ft, or from about 0.05 to about 0.16 oz/1000 square ft, or from about 0.06 to about 0.16 oz/1000 square ft, or from about 0.07 to about 0.16 oz/1000 square ft, or from about 0.08 to about 0.16 oz/1000 square ft, or from about 0.09 to about 0.16 oz/1000 square ft, or from about 0.10 to about 0.16 oz/1000 square ft, or from about 0.11 to about 0.16 oz/1000 square ft, or from about 0.12 to about 0.16 oz/1000 square ft, or from about 0.13 to about 0.16 oz/1000 square ft, or from about 0.14 to about 0.16 oz/1000 square ft, or from about 0.15 to about 0.16 oz/1000 square ft, or from about 0.16 to about 0.16 oz/1000 square ft, or from about 0.17 to about 0.16 oz/1000 square ft.
about 0.16 oz/1000 square ft, or from about 0.03 to about 0.16 oz/1000 square ft, or from about 0.04 to about 0.16 oz/1000 square ft, or from about 0.05 to about 0.16 oz/1000 square ft, or from about 0.06 to about 0.16 oz/1000 square ft, or from about 0.07 to about 0.16 oz/1000 square ft, or from about 0.08 to about 0.16 oz/1000 square ft, or from about 0.09 to about 0.16 oz/1000 square ft, or from about 0.10 to about 0.16 oz/1000 square ft, or from about 0.11 to about 0.16 oz/1000 square ft, or from about 0.12 to about 0.16 oz/1000 square ft, or from about 0.13 to about 0.16 oz/1000 square ft, or from about 0.14 to about 0.16 oz/1000 square ft, or from about 0.15 to about 0.16 oz/1000 square ft, or from about 0.01 to about 0.15 oz/1000 square ft, or from about 0.02 to about 0.15 oz/1000 square ft, or from about 0.03 to about 0.15 oz/1000 square ft, or from about 0.04 to about 0.15 oz/1000 square ft, or from about 0.05 to about 0.15 oz/1000 square ft, or from about 0.06 to about 0.15 oz/1000 square ft, or from about 0.07 to about 0.15 oz/1000 square ft, or from about 0.08 to about 0.15 oz/1000 square ft, or from about 0.09 to about 0.15 oz/1000 square ft, or from about 0.10 to about 0.15 oz/1000 square ft, or from about 0.11 to about 0.15 oz/1000 square ft, or from about 0.12 to about 0.15 oz/1000 square ft, or from about 0.13 to about 0.15 oz/1000 square ft, or from about 0.14 to about 0.15 oz/1000 square ft, or from about 0.01 to about 0.14 oz/1000 square ft, or from about 0.02 to about 0.14 oz/1000 square ft, or from about 0.03 to about 0.14 oz/1000 square ft, or from about 0.04 to about 0.14 oz/1000 square ft, or from about 0.05 to about 0.14 oz/1000 square ft, or from about 0.06 to about 0.14 oz/1000 square ft, or from about 0.07 to about 0.14 oz/1000 square ft, or from about 0.08 to about 0.14 oz/1000 square ft, or from about 0.09 to about 0.14 oz/1000 square ft, or from about 0.10 to about 0.14 oz/1000 square ft, or from about 0.11 to about 0.14 oz/1000 square ft, or from about 0.12 to about 0.14 oz/1000 square ft, or from about 0.13 to about 0.14 oz/1000 square ft, or from about 0.01 to about 0.13 oz/1000 square ft, or from about 0.02 to about 0.13 oz/1000 square ft, or from about 0.03 to about 0.13 oz/1000 square ft, or from about 0.04 to about 0.13 oz/1000 square ft, or from about 0.05 to about 0.13 oz/1000 square ft, or from about 0.06 to about 0.13 oz/1000 square ft, or from about 0.07 to about 0.13 oz/1000 square ft, or from about 0.08 to about 0.13 oz/1000 square ft, or from about 0.09 to about 0.13 oz/1000 square ft.
ft, or from about 0.10 to about 0.13 oz/1000 square ft, or from about 0.11 to about 0.13 oz/1000 square ft, or from about 0.12 to about 0.13 oz/1000 square ft, or from about 0.01 to about 0.12 oz/1000 square ft, or from about 0.02 to about 0.12 oz/1000 square ft, or from about 0.03 to about 0.12 oz/1000 square ft, or from about 0.04 to about 0.12 oz/1000 square ft, or from about 0.05 to about 0.12 oz/1000 square ft, or from about 0.06 to about 0.12 oz/1000 square ft, or from about 0.07 to about 0.12 oz/1000 square ft, or from about 0.08 to about 0.12 oz/1000 square ft, or from about 0.09 to about 0.12 oz/1000 square ft, or from about 0.10 to about 0.12 oz/1000 square ft, or from about 0.11 to about 0.12 oz/1000 square ft, or from about 0.01 to about 0.11 oz/1000 square ft, or from about 0.02 to about 0.11 oz/1000 square ft, or from about 0.03 to about 0.11 oz/1000 square ft, or from about 0.04 to about 0.11 oz/1000 square ft, or from about 0.05 to about 0.11 oz/1000 square ft, or from about 0.06 to about 0.11 oz/1000 square ft, or from about 0.07 to about 0.11 oz/1000 square ft, or from about 0.08 to about 0.11 oz/1000 square ft, or from about 0.09 to about 0.11 oz/1000 square ft, or from about 0.10 to about 0.11 oz/1000 square ft, or from about 0.01 to about 0.10 oz/1000 square ft, or from about 0.02 to about 0.10 oz/1000 square ft, or from about 0.03 to about 0.10 oz/1000 square ft, or from about 0.04 to about 0.10 oz/1000 square ft, or from about 0.05 to about 0.10 oz/1000 square ft, or from about 0.06 to about 0.10 oz/1000 square ft, or from about 0.07 to about 0.10 oz/1000 square ft, or from about 0.08 to about 0.10 oz/1000 square ft, or from about 0.09 to about 0.10 oz/1000 square ft, or from about 0.10 to about 0.10 oz/1000 square ft, or from about 0.01 to about 0.09 oz/1000 square ft, or from about 0.02 to about 0.09 oz/1000 square ft, or from about 0.03 to about 0.09 oz/1000 square ft, or from about 0.04 to about 0.09 oz/1000 square ft, or from about 0.05 to about 0.09 oz/1000 square ft, or from about 0.06 to about 0.09 oz/1000 square ft, or from about 0.07 to about 0.09 oz/1000 square ft, or from about 0.08 to about 0.09 oz/1000 square ft, or from about 0.09 to about 0.09 oz/1000 square ft, or from about 0.01 to about 0.08 oz/1000 square ft, or from about 0.02 to about 0.08 oz/1000 square ft, or from about 0.03 to about 0.08 oz/1000 square ft, or from about 0.04 to about 0.08 oz/1000 square ft, or from about 0.05 to about 0.08 oz/1000 square ft, or from about 0.06 to about 0.08 oz/1000 square ft, or from about 0.07 to about 0.08 oz/1000 square ft, or from about 0.08 to about 0.08 oz/1000 square ft, or from about 0.09 to about 0.08 oz/1000 square ft, or from about 0.01 to about 0.07 oz/1000 square ft, or from about 0.02 to about 0.07 oz/1000 square ft, or from about 0.03 to about 0.07 oz/1000 square ft, or from about 0.04 to about 0.07 oz/1000 square ft, or from about 0.05 to about 0.07 oz/1000 square ft, or from about 0.06 to about 0.07 oz/1000 square ft, or from about 0.07 to about 0.07 oz/1000 square ft, or from about 0.08 to about 0.07 oz/1000 square ft, or from about 0.09 to about 0.07 oz/1000 square ft, or from about 0.10 to about 0.07 oz/1000 square ft, or from about 0.01 to about 0.06 oz/1000 square ft, or from about 0.02 to about 0.06 oz/1000 square ft, or from about 0.03 to about 0.06 oz/1000 square ft, or from about 0.04 to about 0.06 oz/1000 square ft, or from about 0.05 to about 0.06 oz/1000 square ft, or from about 0.06 to about 0.06 oz/1000 square ft, or from about 0.07 to about 0.06 oz/1000 square ft, or from about 0.08 to about 0.06 oz/1000 square ft, or from about 0.09 to about 0.06 oz/1000 square ft, or from about 0.10 to about 0.06 oz/1000 square ft, or from about 0.01 to about 0.05 oz/1000 square ft, or from about 0.02 to about 0.05 oz/1000 square ft, or from about 0.03 to about 0.05 oz/1000 square ft, or from about 0.04 to about 0.05 oz/1000 square ft, or from about 0.05 to about 0.05 oz/1000 square ft, or from about 0.06 to about 0.05 oz/1000 square ft, or from about 0.07 to about 0.05 oz/1000 square ft, or from about 0.08 to about 0.05 oz/1000 square ft, or from about 0.09 to about 0.05 oz/1000 square ft, or from about 0.10 to about 0.05 oz/1000 square ft, or from about 0.01 to about 0.04 oz/1000 square ft, or from about 0.02 to about 0.04 oz/1000 square ft, or from about 0.03 to about 0.04 oz/1000 square ft, or from about 0.04 to about 0.04 oz/1000 square ft, or from about 0.05 to about 0.04 oz/1000 square ft, or from about 0.06 to about 0.04 oz/1000 square ft, or from about 0.07 to about 0.04 oz/1000 square ft, or from about 0.08 to about 0.04 oz/1000 square ft, or from about 0.09 to about 0.04 oz/1000 square ft, or from about 0.10 to about 0.04 oz/1000 square ft.
about 0.07 oz/1000 square ft, or from about 0.03 to about 0.07 oz/1000 square ft, or from about 0.04 to about 0.07 oz/1000 square ft, or from about 0.05 to about 0.07 oz/1000 square ft, or from about 0.06 to about 0.07 oz/1000 square ft, or from about 0.01 to about 0.06 oz/1000 square ft, or from about 0.02 to about 0.06 oz/1000 square ft, or from about 0.03 to about 0.06 oz/1000 square ft, or from about 0.04 to about 0.06 oz/1000 square ft, or from about 0.05 to about 0.06 oz/1000 square ft, or from about 0.01 to about 0.05 oz/1000 square ft, or from about 0.02 to about 0.05 oz/1000 square ft, or from about 0.03 to about 0.05 oz/1000 square ft, or from about 0.04 to about 0.05 oz/1000 square ft, or from about 0.01 to about 0.04 oz/1000 square ft, or from about 0.02 to about 0.04 oz/1000 square ft, or from about 0.03 to about 0.04 oz/1000 square ft, or from about 0.01 to about 0.03 oz/1000 square ft, or from about 0.02 to about 0.03 oz/1000 square ft, or from about 0.01 to about 0.02 oz/1000 square ft.

In selected embodiments, boscalid may be used or applied to the plant at, for example, about 0.01 oz/1000 square ft, or about 0.02 oz/1000 square ft, or about 0.03 oz/1000 square ft, or about 0.04 oz/1000 square ft, or about 0.05 oz/1000 square ft, or about 0.06 oz/1000 square ft, or about 0.07 oz/1000 square ft, or about 0.08 oz/1000 square ft, or about 0.09 oz/1000 square ft, or about 0.10 oz/1000 square ft, or about 0.11 oz/1000 square ft, or about 0.12 oz/1000 square ft, or about 0.13 oz/1000 square ft, or about 0.14 oz/1000 square ft, or about 0.15 oz/1000 square ft, or about 0.16 oz/1000 square ft, or about 0.17 oz/1000 square ft, or about 0.18 oz/1000 square ft. In alternative embodiments, boscalid may be used or applied to the plant at, for example, about 0.09 oz/1000 square ft, or about 0.045 oz/1000 square ft.

In selected embodiments, boscalid may be used or applied to the plant at an interval rate of, for example, from 1 day to 90 days, or from 1 day to 60 days, or from 1 day to 30 days, or from 1 day to 21 days, or from 1 day to 14 days, or from 1 day to 7 days, or from 7 days to 90 days, or from 7 days to 60 days, or from 7 days to 30 days, or from 7 days to 21 days, or from 7 days to 14 days, from 14 days to 90 days, from 14 days to 60 days, from 14 days to 30 days, or from 14 days to 21 days, or 1 day, or 2 days, or 3 days, or 4 days, or 5 days, or 6 days, or 7 days, or 8 days, or 9 days, or 10 days, or 11 days, or 12 days, or 13 days, or 14 days, or 15 days, or 16 days, or 17 days, or 18 days, or 19 days, or
20 days, or 21 days, or 22 days, or 23 days, or 24 days, or 25 days, or 26 days, or 27 days, or 28 days, or 29 days, or 30 days, or 31 days, or 32 days, or 33 days, or 34 days, or 35 days, or 36 days, or 37 days, or 38 days, or 39 days, or 40 days, or 41 days, or 42 days, or 43 days, or 44 days, or 45 days, or 46 days, or 47 days, or 48 days, or 49 days, or 50 days, or 51 days, or 52 days, or 53 days, or 54 days, or 55 days, or 56 days, or 57 days, or 58 days, or 59 days, or 60 days, or 61 days, or 62 days, or 63 days, or 64 days, or 65 days, or 66 days, or 67 days, or 68 days, or 69 days, or 70 days, or 71 days, or 72 days, or 73 days, or 74 days, or 75 days, or 76 days, or 77 days, or 78 days, or 79 days, or 80 days, or 81 days, or 82 days, or 83 days, or 84 days, or 85 days, or 86 days, or 87 days, or 88 days, or 89 days, or 90 days.

In alternative embodiments, the paraffinic oil and boscalid may be present in the fungicidal composition in a weight ratio of boscalid:paraffinic oil that is synergistically effective. In selected embodiments, the paraffinic oil and boscalid may be used or applied to the plant in a weight ratio of boscalid:paraffinic oil that is synergistically effective. In selected embodiments, the paraffinic oil and boscalid may be used or applied to the plant in a weight ratio of boscalid:paraffinic oil of, for example, from about 0.12:3 to about 0.12:32, or from about 0.12:4 to about 0.12:32, or about 0.12:3, or about 0.12:4, or about 0.12:5, or about 0.12:6, or about 0.12:7, or about 0.12:8, or about 0.12:9, or about 0.12:10, or about 0.12:11, or about 0.12:12, or about 0.12:13, or about 0.12:14, or about 0.12:15, or about 0.12:16, or about 0.12:17, or about 0.12:18, or about 0.12:19, or about 0.12:20, or about 0.12:21, or about 0.12:22, or about 0.12:23, or about 0.12:24, or about 0.12:25, or about 0.12:26, or about 0.12:27, or about 0.12:28, or about 0.12:29, or about 0.12:30, or about 0.12:31, or about 0.12:32.

In alternative embodiments, the paraffinic oil and boscalid may be used or applied to the plant in a weight ratio of boscalid:paraffinic oil of, for example, from about 0.02:1 to about 0.02:32, or from about 0.02:2 to about 0.02:32, or about 0.02:1, or about 0.02:2, or about 0.02:3, or about 0.02:4, or about 0.02:5, or about 0.02:6, or about 0.02:7, or about 0.02:8, or about 0.02:9, or about 0.02:10, or about 0.02:11, or about 0.02:12, or about 0.02:13, or about 0.02:14, or about 0.02:15, or about 0.02:16, or about 0.02:17, or about 0.02:18, or about 0.02:19, or about 0.02:20, or about 0.02:21, or about 0.02:22, or about 0.02:23,
or about 0.02:24, or about 0.02:25, or about 0.02:26, or about 0.02:27, or about 0.02:28, or about 0.02:29, or about 0.02:30, or about 0.02:31, or about 0.02:32.

In selected embodiments, the pigment may be used or applied to the plant at, for example, from about 0.1 to about 3.0 oz/1000 square ft, or from about 0.2 to about 3.0 oz/1000 square ft, or from about 0.3 to about 3.0 oz/1000 square ft, or from about 0.4 to about 3.0 oz/1000 square ft, or from about 0.5 to about 3.0 oz/1000 square ft, or from about 0.6 to about 3.0 oz/1000 square ft, or from about 0.7 to about 3.0 oz/1000 square ft, or from about 0.8 to about 3.0 oz/1000 square ft, or from about 0.9 to about 3.0 oz/1000 square ft, or from about 1.0 to about 3.0 oz/1000 square ft, or from about 1.2 to about 3.0 oz/1000 square ft, or from about 1.4 to about 3.0 oz/1000 square ft, or from about 1.6 to about 3.0 oz/1000 square ft, or from about 1.8 to about 3.0 oz/1000 square ft, or from about 2.0 to about 3.0 oz/1000 square ft, or from about 2.2 to about 3.0 oz/1000 square ft, or from about 2.4 to about 3.0 oz/1000 square ft, or from about 2.6 to about 3.0 oz/1000 square ft, or from about 2.8 to about 3.0 oz/1000 square ft, or from about 0.1 to about 2.8 oz/1000 square ft, or from about 0.2 to about 2.8 oz/1000 square ft, or from about 0.3 to about 2.8 oz/1000 square ft, or from about 0.4 to about 2.8 oz/1000 square ft, or from about 0.5 to about 2.8 oz/1000 square ft, or from about 0.6 to about 2.8 oz/1000 square ft, or from about 0.7 to about 2.8 oz/1000 square ft, or from about 0.8 to about 2.8 oz/1000 square ft, or from about 0.9 to about 2.8 oz/1000 square ft, or from about 1.0 to about 2.8 oz/1000 square ft, or from about 1.2 to about 2.8 oz/1000 square ft, or from about 1.4 to about 2.8 oz/1000 square ft, or from about 1.6 to about 2.8 oz/1000 square ft, or from about 1.8 to about 2.8 oz/1000 square ft, or from about 2.0 to about 2.8 oz/1000 square ft, or from about 2.2 to about 2.8 oz/1000 square ft, or from about 2.4 to about 2.8 oz/1000 square ft, or from about 2.6 to about 2.8 oz/1000 square ft, or from about 0.1 to about 2.6 oz/1000 square ft, or from about 0.2 to about 2.6 oz/1000 square ft, or from about 0.3 to about 2.6 oz/1000 square ft, or from about 0.4 to about 2.6 oz/1000 square ft, or from about 0.5 to about 2.6 oz/1000 square ft, or from about 0.6 to about 2.6 oz/1000 square ft, or from about 0.7 to about 2.6 oz/1000 square ft, or from about 0.8 to about 2.6 oz/1000 square ft, or from about 0.9 to about 2.6 oz/1000 square ft, or from about 1.0 to about 2.6 oz/1000 square ft, or from about 1.2 to about 2.6 oz/1000 square ft.
square ft, or from about 1.4 to about 2.6 oz/1000 square ft, or from about 1.6 to about 2.6 oz/1000 square ft, or from about 1.8 to about 2.6 oz/1000 square ft, or from about 2.0 to about 2.6 oz/1000 square ft, or from about 2.2 to about 2.6 oz/1000 square ft, or from about 2.4 to about 2.6 oz/1000 square ft, or from about 0.1 to about 2.4 oz/1000 square ft, or from about 0.2 to about 2.4 oz/1000 square ft, or from about 0.3 to about 2.4 oz/1000 square ft, or from about 0.4 to about 2.4 oz/1000 square ft, or from about 0.5 to about 2.4 oz/1000 square ft, or from about 0.6 to about 2.4 oz/1000 square ft, or from about 0.7 to about 2.4 oz/1000 square ft, or from about 0.8 to about 2.4 oz/1000 square ft, or from about 0.9 to about 2.4 oz/1000 square ft, or from about 1.0 to about 2.4 oz/1000 square ft, or from about 1.2 to about 2.4 oz/1000 square ft, or from about 1.4 to about 2.4 oz/1000 square ft, or from about 1.6 to about 2.4 oz/1000 square ft, or from about 1.8 to about 2.4 oz/1000 square ft, or from about 2.0 to about 2.4 oz/1000 square ft, or from about 2.2 to about 2.4 oz/1000 square ft, or from about 0.1 to about 2.2 oz/1000 square ft, or from about 0.2 to about 2.2 oz/1000 square ft, or from about 0.3 to about 2.2 oz/1000 square ft, or from about 0.4 to about 2.2 oz/1000 square ft, or from about 0.5 to about 2.2 oz/1000 square ft, or from about 0.6 to about 2.2 oz/1000 square ft, or from about 0.7 to about 2.2 oz/1000 square ft, or from about 0.8 to about 2.2 oz/1000 square ft, or from about 0.9 to about 2.2 oz/1000 square ft, or from about 1.0 to about 2.2 oz/1000 square ft, or from about 1.2 to about 2.2 oz/1000 square ft, or from about 1.4 to about 2.2 oz/1000 square ft, or from about 1.6 to about 2.2 oz/1000 square ft, or from about 1.8 to about 2.2 oz/1000 square ft, or from about 2.0 to about 2.2 oz/1000 square ft, or from about 0.1 to about 2.0 oz/1000 square ft, or from about 0.2 to about 2.0 oz/1000 square ft, or from about 0.3 to about 2.0 oz/1000 square ft, or from about 0.4 to about 2.0 oz/1000 square ft, or from about 0.5 to about 2.0 oz/1000 square ft, or from about 0.6 to about 2.0 oz/1000 square ft, or from about 0.7 to about 2.0 oz/1000 square ft, or from about 0.8 to about 2.0 oz/1000 square ft, or from about 0.9 to about 2.0 oz/1000 square ft, or from about 1.0 to about 2.0 oz/1000 square ft, or from about 1.2 to about 2.0 oz/1000 square ft, or from about 1.4 to about 2.0 oz/1000 square ft, or from about 1.6 to about 2.0 oz/1000 square ft, or from about 1.8 to about 2.0 oz/1000 square ft, or from about 0.1 to about 1.8 oz/1000 square ft, or from about 0.2 to about 1.8
oz/1000 square ft, or from about 0.3 to about 1.8 oz/1000 square ft, or from about 0.4 to about 1.8 oz/1000 square ft, or from about 0.5 to about 1.8 oz/1000 square ft, or from about 0.6 to about 1.8 oz/1000 square ft, or from about 0.7 to about 1.8 oz/1000 square ft, or from about 0.8 to about 1.8 oz/1000 square ft, or from about 0.9 to about 1.8 oz/1000 square ft, or from about 1.0 to about 1.8 oz/1000 square ft, or from about 1.2 to about 1.8 oz/1000 square ft, or from about 1.4 to about 1.8 oz/1000 square ft, or from about 1.6 to about 1.8 oz/1000 square ft, or from about 0.1 to about 1.6 oz/1000 square ft, or from about 0.2 to about 1.6 oz/1000 square ft, or from about 0.3 to about 1.6 oz/1000 square ft, or from about 0.4 to about 1.6 oz/1000 square ft, or from about 0.5 to about 1.6 oz/1000 square ft, or from about 0.6 to about 1.6 oz/1000 square ft, or from about 0.7 to about 1.6 oz/1000 square ft, or from about 0.8 to about 1.6 oz/1000 square ft, or from about 0.9 to about 1.6 oz/1000 square ft, or from about 1.0 to about 1.6 oz/1000 square ft, or from about 1.2 to about 1.6 oz/1000 square ft, or from about 1.4 to about 1.6 oz/1000 square ft, or from about 0.1 to about 1.4 oz/1000 square ft, or from about 0.2 to about 1.4 oz/1000 square ft, or from about 0.3 to about 1.4 oz/1000 square ft, or from about 0.4 to about 1.4 oz/1000 square ft, or from about 0.5 to about 1.4 oz/1000 square ft, or from about 0.6 to about 1.4 oz/1000 square ft, or from about 0.7 to about 1.4 oz/1000 square ft, or from about 0.8 to about 1.4 oz/1000 square ft, or from about 0.9 to about 1.4 oz/1000 square ft, or from about 1.0 to about 1.4 oz/1000 square ft, or from about 1.2 to about 1.4 oz/1000 square ft, or from about 0.1 to about 1.2 oz/1000 square ft, or from about 0.2 to about 1.2 oz/1000 square ft, or from about 0.3 to about 1.2 oz/1000 square ft, or from about 0.4 to about 1.2 oz/1000 square ft, or from about 0.5 to about 1.2 oz/1000 square ft, or from about 0.6 to about 1.2 oz/1000 square ft, or from about 0.7 to about 1.2 oz/1000 square ft, or from about 0.8 to about 1.2 oz/1000 square ft, or from about 0.9 to about 1.2 oz/1000 square ft, or from about 1.0 to about 1.2 oz/1000 square ft, or from about 1.2 oz/1000 square ft, or from about 0.1 to about 1.0 oz/1000 square ft, or from about 0.2 to about 1.0 oz/1000 square ft, or from about 0.3 to about 1.0 oz/1000 square ft, or from about 0.4 to about 1.0 oz/1000 square ft, or from about 0.5 to about 1.0 oz/1000 square ft, or from about 0.6 to about 1.0 oz/1000 square ft, or from about 0.7 to about 1.0 oz/1000 square ft, or from about 0.8 to about 1.0 oz/1000 square ft, or from about 0.9 to about 1.0 oz/1000 square ft, or from about 0.1 to about 1.0 oz/1000 square ft, or from about 0.2 to about 1.0 oz/1000 square ft, or from about 0.3 to about 1.0 oz/1000 square ft, or from about 0.4 to about 1.0 oz/1000 square ft, or from about 0.5 to about 1.0 oz/1000 square ft, or from about 0.6 to about 1.0 oz/1000 square ft, or from about 0.7 to about 1.0 oz/1000 square ft, or from about 0.8 to about 1.0 oz/1000 square ft, or from about 0.9 to about 1.0 oz/1000 square ft, or from about 0.1 to about 1.0 oz/1000 square ft, or from about 0.2 to about 1.0 oz/1000 square ft, or from about 0.3 to about 1.0 oz/1000 square ft, or from about 0.4 to about 1.0 oz/1000 square ft, or from about 0.5 to about 1.0 oz/1000 square ft, or from about 0.6 to about 1.0 oz/1000 square ft, or from about 0.7 to about 1.0 oz/1000 square ft, or from about 0.8 to about 1.0 oz/1000 square ft, or from about 0.9 to about 1.0 oz/1000 square ft.
about 1.0 oz/1000 square ft, or from about 0.1 to about 0.9 oz/1000 square ft, or from about 0.2 to about 0.9 oz/1000 square ft, or from about 0.3 to about 0.9 oz/1000 square ft, or from about 0.4 to about 0.9 oz/1000 square ft, or from about 0.5 to about 0.9 oz/1000 square ft, or from about 0.6 to about 0.9 oz/1000 square ft, or from about 0.7 to about 0.9 oz/1000 square ft, or from about 0.8 to about 0.9 oz/1000 square ft, or from about 0.1 to about 0.8 oz/1000 square ft, or from about 0.2 to about 0.8 oz/1000 square ft, or from about 0.3 to about 0.8 oz/1000 square ft, or from about 0.4 to about 0.8 oz/1000 square ft, or from about 0.5 to about 0.8 oz/1000 square ft, or from about 0.6 to about 0.8 oz/1000 square ft, or from about 0.7 to about 0.8 oz/1000 square ft, or from about 0.1 to about 0.7 oz/1000 square ft, or from about 0.2 to about 0.7 oz/1000 square ft, or from about 0.3 to about 0.7 oz/1000 square ft, or from about 0.4 to about 0.7 oz/1000 square ft, or from about 0.5 to about 0.7 oz/1000 square ft, or from about 0.6 to about 0.7 oz/1000 square ft, or from about 0.1 to about 0.6 oz/1000 square ft, or from about 0.2 to about 0.6 oz/1000 square ft, or from about 0.3 to about 0.6 oz/1000 square ft, or from about 0.4 to about 0.6 oz/1000 square ft, or from about 0.5 to about 0.6 oz/1000 square ft, or from about 0.1 to about 0.5 oz/1000 square ft, or from about 0.2 to about 0.5 oz/1000 square ft, or from about 0.3 to about 0.5 oz/1000 square ft, or from about 0.4 to about 0.5 oz/1000 square ft, or from about 0.1 to about 0.4 oz/1000 square ft, or from about 0.2 to about 0.4 oz/1000 square ft, or from about 0.3 to about 0.4 oz/1000 square ft, or from about 0.1 to about 0.3 oz/1000 square ft, or from about 0.2 to about 0.3 oz/1000 square ft, or from about 0.1 to about 0.2 oz/1000 square ft, or from about 0.1 oz/1000 square ft, or about 0.2 oz/1000 square ft, or about 0.3 oz/1000 square ft, or about 0.4 oz/1000 square ft, or about 0.5 oz/1000 square ft, or about 0.6 oz/1000 square ft, or about 0.7 oz/1000 square ft, or about 0.8 oz/1000 square ft, or about 0.9 oz/1000 square ft, or about 1.0 oz/1000 square ft, or about 1.1 oz/1000 square ft, or about 1.2 oz/1000 square ft, or about 1.3 oz/1000 square ft, or about 1.4 oz/1000 square ft, or about 1.5 oz/1000 square ft, or about 1.6 oz/1000 square ft, or about 1.7 oz/1000 square ft, or about 1.8 oz/1000 square ft, or about 1.9 oz/1000 square ft, or about 2.0 oz/1000 square ft, or about 2.1 oz/1000 square ft, or about 2.2 oz/1000 square ft, or about 2.3 oz/1000 square ft, or about 2.4 oz/1000 square ft, or about 2.5 oz/1000 square ft, or about 2.6 oz/1000 square ft.
oz/1000 square ft, or about 2.7 oz/1000 square ft, or about 2.8 oz/1000 square ft, or about 2.9 oz/1000 square ft, or about 3.0 oz/1000 square ft.

In selected embodiments, the pigment may be used or applied to the plant at an interval rate of, for example, from 1 day to 90 days, or from 1 day to 60 days, or from 1 day to 30 days, or from 1 day to 21 days, or from 1 day to 14 days, or from 1 day to 7 days, or from 7 days to 90 days, or from 7 days to 60 days, or from 7 days to 30 days, or from 7 days to 21 days, or from 7 days to 14 days, from 14 days to 90 days, from 14 days to 60 days, from 14 days to 30 days, or from 14 days to 21 days, or 1 day, or 2 days, or 3 days, or 4 days, or 5 days, or 6 days, or 7 days, or 8 days, or 9 days, or 10 days, or 11 days, or 12 days, or 13 days, or 14 days, or 15 days, or 16 days, or 17 days, or 18 days, or 19 days, or 20 days, or 21 days, or 22 days, or 23 days, or 24 days, or 25 days, or 26 days, or 27 days, or 28 days, or 29 days, or 30 days, or 31 days, or 32 days, or 33 days, or 34 days, or 35 days, or 36 days, or 37 days, or 38 days, or 39 days, or 40 days, or 41 days, or 42 days, or 43 days, or 44 days, or 45 days, or 46 days, or 47 days, or 48 days, or 49 days, or 50 days, or 51 days, or 52 days, or 53 days, or 54 days, or 55 days, or 56 days, or 57 days, or 58 days, or 59 days, or 60 days, or 61 days, or 62 days, or 63 days, or 64 days, or 65 days, or 66 days, or 67 days, or 68 days, or 69 days, or 70 days, or 71 days, or 72 days, or 73 days, or 74 days, or 75 days, or 76 days, or 77 days, or 78 days, or 79 days, or 80 days, or 81 days, or 82 days, or 83 days, or 84 days, or 85 days, or 86 days, or 87 days, or 88 days, or 89 days, or 90 days.

In alternative embodiments, the paraffinic oil and the pigment may be present in the fungicidal composition in a weight ratio of paraffinic oil:pigment that is synergistically effective. In selected embodiments, the paraffinic oil and the pigment may be present in a weight ratio of paraffinic oil:pigment of, for example, about 10:1, or about 10.5:1, or about 11:1, or about 11.5:1, or about 12:1, or about 12.5:1, or about 13:1, or about 13.5:1, or about 14:1, or about 14.5:1, or about 15:1, or about 15.5:1, or about 16:1, or about 16.5:1, or about 17:1, or about 17.5:1, or about 18:1, or about 18.5:1, or about 19:1, or about 19.5:1, or about 20:1, or about 20.5:1, or about 21:1, or about 21.5:1, or about 22:1. In selected embodiments, the paraffinic oil and the pigment may be used or applied to the plant in a weight ratio of paraffinic oil:pigment that is synergistically
effective. In selected embodiments, the paraffinic oil and the pigment may be
used or applied to the plant in a weight ratio of paraffinic oil:pigment of, for
example, about 10:1, or about 10.5:1, or about 11:1, or about 11.5:1, or about
12:1, or about 12.5:1, or about 13:1, or about 13.5:1, or about 14:1, or about
14.5:1, or about 15:1, or about 15.5:1, or about 16:1, or about 16.5:1, or about
17:1, or about 17.5:1, or about 18:1, or about 18.5:1, or about 19:1, or about
19.5:1, or about 20:1, or about 20.5:1, or about 21:1, or about 21.5:1, or about
22:1.

In selected embodiments, the composition may be applied to the plant at
a total spray volume of from about 0.2 to about 7.0 gallons/1000 square ft, or
from about 0.4 to about 7.0 gallons/1000 square ft, or from about 0.8 to about
7.0 gallons/1000 square ft, or from about 1.2 to about 7.0 gallons/1000 square ft,
or from about 1.6 to about 7.0 gallons/1000 square ft, or from about 2.0 to about
7.0 gallons/1000 square ft, or from about 2.4 to about 7.0 gallons/1000 square ft,
or from about 2.8 to about 7.0 gallons/1000 square ft, or from about 3.0 to about
7.0 gallons/1000 square ft, or from about 3.2 to about 7.0 gallons/1000 square ft,
or from about 3.6 to about 7.0 gallons/1000 square ft, or from about 4.0 to about
7.0 gallons/1000 square ft, or from about 4.4 to about 7.0 gallons/1000 square ft,
or from about 4.8 to about 7.0 gallons/1000 square ft, or from about 5.0 to about
7.0 gallons/1000 square ft, or from about 5.2 to about 7.0 gallons/1000 square ft,
or from about 5.6 to about 7.0 gallons/1000 square ft, or from about 6.0 to about
7.0 gallons/1000 square ft, or from about 6.4 to about 7.0 gallons/1000 square ft,
or from about 6.8 to about 7.0 gallons/1000 square ft, or from about 0.2 to about
6.8 gallons/1000 square ft, or from about 0.4 to about 6.8 gallons/1000 square ft,
or from about 0.8 to about 6.8 gallons/1000 square ft, or from about 1.2 to about
6.8 gallons/1000 square ft, or from about 1.6 to about 6.8 gallons/1000 square ft,
or from about 2.0 to about 6.8 gallons/1000 square ft, or from about 2.4 to about
6.8 gallons/1000 square ft, or from about 2.8 to about 6.8 gallons/1000 square ft,
or from about 3.0 to about 6.8 gallons/1000 square ft, or from about 3.2 to about
6.8 gallons/1000 square ft, or from about 3.6 to about 6.8 gallons/1000 square ft,
or from about 4.0 to about 6.8 gallons/1000 square ft, or from about 4.4 to about
6.8 gallons/1000 square ft, or from about 4.8 to about 6.8 gallons/1000 square ft,
or from about 5.0 to about 6.8 gallons/1000 square ft, or from about 5.2 to about
6.8 gallons/1000 square ft, or from about 5.6 to about 6.8 gallons/1000 square ft,
6.8 gallons/1000 square ft, or from about 5.6 to about 6.8 gallons/1000 square ft, or from about 6.0 to about 6.8 gallons/1000 square ft, or from about 6.4 to about 6.8 gallons/1000 square ft, or from about 0.2 to about 6.4 gallons/1000 square ft, or from about 0.4 to about 6.4 gallons/1000 square ft, or from about 0.8 to about 6.4 gallons/1000 square ft, or from about 1.2 to about 6.4 gallons/1000 square ft, or from about 1.6 to about 6.4 gallons/1000 square ft, or from about 2.0 to about 6.4 gallons/1000 square ft, or from about 2.4 to about 6.4 gallons/1000 square ft, or from about 2.8 to about 6.4 gallons/1000 square ft, or from about 3.0 to about 6.4 gallons/1000 square ft, or from about 3.2 to about 6.4 gallons/1000 square ft, or from about 3.6 to about 6.4 gallons/1000 square ft, or from about 4.0 to about 6.4 gallons/1000 square ft, or from about 4.4 to about 6.4 gallons/1000 square ft, or from about 4.8 to about 6.4 gallons/1000 square ft, or from about 5.0 to about 6.4 gallons/1000 square ft, or from about 5.2 to about 6.4 gallons/1000 square ft, or from about 5.6 to about 6.4 gallons/1000 square ft, or from about 6.0 to about 6.4 gallons/1000 square ft, or from about 0.2 to about 6.0 gallons/1000 square ft, or from about 0.4 to about 6.0 gallons/1000 square ft, or from about 0.8 to about 6.0 gallons/1000 square ft, or from about 1.2 to about 6.0 gallons/1000 square ft, or from about 1.6 to about 6.0 gallons/1000 square ft, or from about 2.0 to about 6.0 gallons/1000 square ft, or from about 2.4 to about 6.0 gallons/1000 square ft, or from about 2.8 to about 6.0 gallons/1000 square ft, or from about 3.0 to about 6.0 gallons/1000 square ft, or from about 3.2 to about 6.0 gallons/1000 square ft, or from about 3.6 to about 6.0 gallons/1000 square ft, or from about 4.0 to about 6.0 gallons/1000 square ft, or from about 4.4 to about 6.0 gallons/1000 square ft, or from about 4.8 to about 6.0 gallons/1000 square ft, or from about 5.0 to about 6.0 gallons/1000 square ft, or from about 5.2 to about 6.0 gallons/1000 square ft, or from about 5.6 to about 6.0 gallons/1000 square ft, or from about 6.0 to about 6.0 gallons/1000 square ft, or from about 2.0 to about 5.6 gallons/1000 square ft, or from about 2.4 to about 5.6 gallons/1000 square ft, or from about 2.8 to about 5.6 gallons/1000 square ft, or from about 3.0 to about 5.6 gallons/1000 square ft, or from about 3.2 to about 5.6 gallons/1000 square ft, or from about 3.6 to about 5.6 gallons/1000 square ft,
or from about 4.0 to about 5.6 gallons/1000 square ft, or from about 4.4 to about 5.6 gallons/1000 square ft, or from about 4.8 to about 5.6 gallons/1000 square ft,
or from about 5.0 to about 5.6 gallons/1000 square ft, or from about 5.2 to about 5.6 gallons/1000 square ft, or from about 0.2 to about 5.2 gallons/1000 square ft,
or from about 0.4 to about 5.2 gallons/1000 square ft, or from about 0.8 to about 5.2 gallons/1000 square ft, or from about 1.2 to about 5.2 gallons/1000 square ft,
or from about 1.6 to about 5.2 gallons/1000 square ft, or from about 2.0 to about 5.2 gallons/1000 square ft, or from about 2.4 to about 5.2 gallons/1000 square ft,
or from about 2.8 to about 5.2 gallons/1000 square ft, or from about 3.0 to about 5.2 gallons/1000 square ft, or from about 3.2 to about 5.2 gallons/1000 square ft,
or from about 3.6 to about 5.2 gallons/1000 square ft, or from about 4.0 to about 5.2 gallons/1000 square ft, or from about 4.4 to about 5.2 gallons/1000 square ft,
or from about 4.8 to about 5.2 gallons/1000 square ft, or from about 5.0 to about 5.2 gallons/1000 square ft, or from about 0.2 to about 5.0 gallons/1000 square ft,
or from about 0.4 to about 5.0 gallons/1000 square ft, or from about 0.8 to about 5.0 gallons/1000 square ft, or from about 1.2 to about 5.0 gallons/1000 square ft,
or from about 1.6 to about 5.0 gallons/1000 square ft, or from about 2.0 to about 5.0 gallons/1000 square ft, or from about 2.4 to about 5.0 gallons/1000 square ft,
or from about 2.8 to about 5.0 gallons/1000 square ft, or from about 3.0 to about 5.0 gallons/1000 square ft, or from about 3.2 to about 5.0 gallons/1000 square ft,
or from about 3.6 to about 5.0 gallons/1000 square ft, or from about 4.0 to about 5.0 gallons/1000 square ft, or from about 4.4 to about 5.0 gallons/1000 square ft,
or from about 4.8 to about 5.0 gallons/1000 square ft, or from about 0.2 to about 4.8 gallons/1000 square ft, or from about 0.4 to about 4.8 gallons/1000 square ft,
or from about 0.8 to about 4.8 gallons/1000 square ft, or from about 1.2 to about 4.8 gallons/1000 square ft, or from about 1.6 to about 4.8 gallons/1000 square ft,
or from about 2.0 to about 4.8 gallons/1000 square ft, or from about 2.4 to about 4.8 gallons/1000 square ft, or from about 2.8 to about 4.8 gallons/1000 square ft,
or from about 3.0 to about 4.8 gallons/1000 square ft, or from about 3.2 to about 4.8 gallons/1000 square ft, or from about 3.6 to about 4.8 gallons/1000 square ft,
4.4 gallons/1000 square ft, or from about 1.2 to about 4.4 gallons/1000 square ft, or from about 1.6 to about 4.4 gallons/1000 square ft, or from about 2.0 to about 4.4 gallons/1000 square ft, or from about 2.4 to about 4.4 gallons/1000 square ft, or from about 2.8 to about 4.4 gallons/1000 square ft, or from about 3.0 to about 4.4 gallons/1000 square ft, or from about 3.2 to about 4.4 gallons/1000 square ft, or from about 3.6 to about 4.4 gallons/1000 square ft, or from about 4.0 to about 4.4 gallons/1000 square ft, or from about 0.2 to about 4.0 gallons/1000 square ft, or from about 0.4 to about 4.0 gallons/1000 square ft, or from about 0.8 to about 4.0 gallons/1000 square ft, or from about 1.2 to about 4.0 gallons/1000 square ft, or from about 1.6 to about 4.0 gallons/1000 square ft, or from about 2.0 to about 4.0 gallons/1000 square ft, or from about 2.4 to about 4.0 gallons/1000 square ft, or from about 2.8 to about 4.0 gallons/1000 square ft, or from about 3.0 to about 4.0 gallons/1000 square ft, or from about 3.2 to about 4.0 gallons/1000 square ft, or from about 3.6 to about 4.0 gallons/1000 square ft, or from about 0.2 to about 3.6 gallons/1000 square ft, or from about 0.4 to about 3.6 gallons/1000 square ft, or from about 0.8 to about 3.6 gallons/1000 square ft, or from about 1.2 to about 3.6 gallons/1000 square ft, or from about 1.6 to about 3.6 gallons/1000 square ft, or from about 2.0 to about 3.6 gallons/1000 square ft, or from about 2.4 to about 3.6 gallons/1000 square ft, or from about 2.8 to about 3.6 gallons/1000 square ft, or from about 3.0 to about 3.6 gallons/1000 square ft, or from about 3.2 to about 3.6 gallons/1000 square ft, or from about 0.2 to about 3.2 gallons/1000 square ft, or from about 0.4 to about 3.2 gallons/1000 square ft, or from about 0.8 to about 3.2 gallons/1000 square ft, or from about 1.2 to about 3.2 gallons/1000 square ft, or from about 1.6 to about 3.2 gallons/1000 square ft, or from about 2.0 to about 3.2 gallons/1000 square ft, or from about 2.4 to about 3.2 gallons/1000 square ft, or from about 2.8 to about 3.2 gallons/1000 square ft, or from about 3.0 to about 3.2 gallons/1000 square ft, or from about 0.2 to about 3.0 gallons/1000 square ft, or from about 0.4 to about 3.0 gallons/1000 square ft, or from about 0.8 to about 3.0 gallons/1000 square ft, or from about 1.2 to about 3.0 gallons/1000 square ft, or from about 1.6 to about 3.0 gallons/1000 square ft, or from about 2.0 to about 3.0 gallons/1000 square ft, or from about 2.4 to about 3.0 gallons/1000 square ft, or from about 2.8 to about 3.0 gallons/1000 square ft, or from about 0.2 to about 2.8 gallons/1000 square ft, or from about 0.4 to about 2.8 gallons/1000 square ft,
or from about 0.8 to about 2.8 gallons/1000 square ft, or from about 1.2 to about 2.8 gallons/1000 square ft, or from about 1.6 to about 2.8 gallons/1000 square ft, or from about 2.0 to about 2.8 gallons/1000 square ft, or from about 0.2 to about 2.4 gallons/1000 square ft, or from about 0.4 to about 2.4 gallons/1000 square ft, or from about 0.8 to about 2.4 gallons/1000 square ft, or from about 1.2 to about 2.4 gallons/1000 square ft, or from about 1.6 to about 2.4 gallons/1000 square ft, or from about 2.0 to about 2.4 gallons/1000 square ft, or from about 0.2 to about 2.0 gallons/1000 square ft, or from about 0.4 to about 2.0 gallons/1000 square ft, or from about 0.8 to about 2.0 gallons/1000 square ft, or from about 1.2 to about 2.0 gallons/1000 square ft, or from about 1.6 to about 2.0 gallons/1000 square ft, or from about 0.2 to about 1.6 gallons/1000 square ft, or from about 0.4 to about 1.6 gallons/1000 square ft, or from about 0.8 to about 1.6 gallons/1000 square ft, or from about 1.2 to about 1.6 gallons/1000 square ft, or from about 0.2 to about 1.2 gallons/1000 square ft, or from about 0.4 to about 1.2 gallons/1000 square ft, or from about 0.8 to about 1.2 gallons/1000 square ft, or from about 0.2 to about 0.8 gallons/1000 square ft, or from about 0.4 to about 0.8 gallons/1000 square ft, or from about 0.2 to about 0.4 gallons/1000 square ft, or about 0.2 gallons/1000 square ft, or about 0.4 gallons/1000 square ft, or about 0.8 gallons/1000 square ft, or about 1.0 gallons/1000 square ft, or about 1.2 gallons/1000 square ft, or about 1.6 gallons/1000 square ft, or about 2.0 gallons/1000 square ft, or about 2.4 gallons/1000 square ft, or about 2.8 gallons/1000 square ft, or about 3.0 gallons/1000 square ft, or about 3.2 gallons/1000 square ft, or about 3.6 gallons/1000 square ft, or about 4.0 gallons/1000 square ft, or about 4.4 gallons/1000 square ft, or about 4.8 gallons/1000 square ft, or about 5.0 gallons/1000 square ft, or about 5.2 gallons/1000 square ft, or about 5.6 gallons/1000 square ft, or about 6.0 gallons/1000 square ft, or about 6.4 gallons/1000 square ft, or about 6.8 gallons/1000 square ft, or about 7.0 gallons/1000 square ft.

The composition may also include, for example, customary additives or adjuvants for the preparation of composition in the field of turf or field crop protection. The composition may comprise, for example, a surfactant, a dispersant, a wetter, a thickener, an organic solvent, a cosolvent, an antifoam, a carboxylic acid, a preservative, a stabilizer and the like.
As used herein, the term "control" or "controlling" is used to refer to preventing, destroying, repelling, mitigating or treating plant diseases, such as diseases caused by turfgrass pathogens. In selected embodiments, the plant disease may be caused by, for example, a fungal pathogen. In alternative embodiments, the fungal pathogen may be, for example, a fungus that blights leaf tissue in a turfgrass. In alternative embodiments, the fungal pathogen may be, for example, Sclerotinia homoeocarpa or Ophiosphaerella agrostis or a combination thereof. In selected embodiments, the disease may be, for example, dollar spot or bentgrass dead spot or bermudagrass dead spot or a combination thereof. In selected embodiments, the turfgrass pathogen is the fungal pathogen Sclerotinia homoeocarpa, and the disease may be, for example, dollar spot. In alternative embodiments, the turfgrass pathogen is the fungal pathogen Ophiosphaerella agrostis, and the disease may be, for example, bentgrass dead spot or bermudagrasses dead spot. In alternative embodiments, the turfgrass pathogen is the fungal pathogen Ophiosphaerella agrostis, and the disease may be, for example, bentgrass dead spot. In alternative embodiments, the turfgrass pathogen is the fungal pathogen Ophiosphaerella agrostis, and the disease may be, for example, bermudagrasss dead spot.

As used herein, the term "turfgrass" refers to a cultivated grass that provides groundcover, for example a turf or lawn that is periodically cut or mowed to maintain a consistent height. Grasses belong to the Poaceae family, which is subdivided into six subfamilies, three of which include common turfgrasses: the Festucoideae subfamily of cool-season turfgrasses; and the Panicoideae and Eragrostoideae subfamilies of warm-season turfgrasses. A limited number of species are in widespread use as turfgrasses, generally meeting the criteria of forming uniform soil coverage and tolerating mowing and traffic. In general, turfgrasses have a compressed crown that facilitates mowing without cutting off the growing point. In the context of the present invention, the term "turfgrass" includes areas in which one or more grass species are cultivated to form relatively uniform soil coverage, including blends that are a combination of differing cultivars of the same species, or mixtures that are a combination of differing species and/or cultivars. For example, turfgrasses may include one or more of the following grasses: bluegrasses (Poa spp.), such as kentucky
bluegrass (Poa pratensis), rough bluegrass (Poa trivialis), Canada bluegrass (Poa compressa), annual bluegrass (Poa annua), upland bluegrass (Poa glauca), wood bluegrass (Poa nemoralis), bulbous bluegrass (Poa bulbosa), Big Bluegrass (Poa ampla), Canby Bluegrass (Poa canbyi), Pine Bluegrass (Poa scabrella), Rough Bluegrass (Poa trivialis), Sandberg Bluegrass (Poa secunda); the bentgrasses and Redtop (Agrostis spp.), such as creeping bentgrass (Agrostis palustris), colonial bentgrass (Agrostis capillaris), velvet bentgrass (Agrostis canina), South German Mixed Bentgrass (Agrostis spp. including Agrostis tenius, Agrostis canina, and Agrostis palustris), Redtop (Agrostis alba), Spike Bentgrass (Agrostis exerata); the fescues (Festuca spp.), such as red fescue (Festuca rubra spp. rubra) creeping fescue (Festuca rubra), chewings fescue (Festuca rubra commutata), sheep fescue (Festuca ovina var. ovina), hard fescue (Festuca longifolia), hair fescue (Festuca capillata), tall fescue (Festuca arundinacea), meadow fescue (Festuca elatior), Arizona Fescue (Festuca arizonica), Foxtail Fescue (Festuca megalura), Idaho Fescue (Festuca idahoensis), Molate Fescue (Fescue rubra); the ryegrasses (Lolium spp.), such as annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), and Italian ryegrass (Lolium multiflorum); the wheatgrasses (Agropyron spp.), such as crested wheatgrass (Agropyron cristatum), desert wheatgrass (Agropyron desertorum), western wheatgrass (Agropyron smithii), Intermediate Wheatgrass (Agropyron intermedium), Pubescent Wheatgrass (Agropyron trichophorum), Slender Wheatgrass (Agropyron trachycaulum), Streambank Wheatgrass (Agropyron riparius), Tall Wheatgrass (Agropyron elongatum), and Bluebunch Wheatgrass (Agropyron spicatum); beachgrass (Ammophila breviligulata); Brome grasses (Bromus spp.), such as Arizona Brome (Bromus arizonicus), California Brome (Bromus carinatus), Meadow Brome (Bromus biebersteinii), Mountain Brome (Bromus marginatus), Red Brome (Bromus rubens), and smooth brome grass (Bromus inermis); cattails such as Timothy (Phleum pratense), and sand cattail (Phleum subulatum); orchardgrass (Dactylis glomerata); Alkaligrass (Puccinellia distans); crested dog's-tail (Cynosurus cristatus); Bermudagrass (Cynodon spp. such as Cynodon dactylon); hybrid bermudagrass (such as Cynodon dactylon X c. transvaalensis); Zoysiagrasses (Zoysia spp.) such as Zoysia japonica, Zoysia matrella, and Zoysia tenuifolia; St.
Augustinegrass (Stenotaphrum secundatum); Centipedegrass (Eremochloa ophiuroides); Carpetgrass (Axonopus fissifolius); Bahiagrass (Paspalum notatum); Kikuyugrass (Pennisetum clandestinum); Buffalograss (Buchloe dactyloids); Seashore paspalum (Paspalum vaginatum); Blue Grama (Bouteloua gracilis); Black Grama (Bouteloua eriopoda); Sideoats Grama (Bouteloua curtipendula); Sporobolus spp., such as Alkali Sacaton (Sporobolus airiodes), Sand Dropseed (Sporobolus cryptandrus), and Prairie Dropseed (Sporobolus heterolepis); Hordeum spp., such as California Barley (Hordeum californicum), Common Barley (Hordeum vulgare), and Meadow Barley (Hordeum brachyantherum); Alopecurus spp., such as Creeping Foxtail (Alopecurus arundinaceaus), and Meadow Foxtail (Alopecurus pratensis); Stipa spp., such as Needle & Thread (Stipa comata), Foothill Needlegrass (Stipa lepida), Green Needlegrass (Stipa viridula), Nodding Needlegrass (Stipa cernua), and Purple Needlegrass (Stipa pulchra); Elymus spp., such as Blue Wildrye (Elymus glauces), Canada Wildrye (Elymus Canadensis), Creeping Wildrye (Elymus triticoides), and Russian Wildrye (Elymus junceus); Buffelgrass (Cenchrus ciliaris); Big Quaking Grass (Briza maxima); Big Bluestem (Andropogon gerardii), Little Bluestem (Schizachyrium scoparium), and Sand Bluestem (Andropogon hallii); Deergrass (Muhlenbergia rigens); Eastern Gamagrass (Tripsacum dactyloides); Galleta (Hilaria jamesii); Tufted Hairgrass (Deschampsia caespitosa); Indian Rice Grass (Oryzopsis hymenoides); Indian Grass (Sorghastrum nutans); Sand Lovegrass (Eragrostis trichodes); Weeping Lovegrass (Eragrostis curvula); California Melic (Melica californica); Prairie Junegrass (Koeleria pyramidata); Purple Threeawn (Aristida purpurea).

In selected embodiments, the turfgrass may be, for example, bentgrass, bluegrass, ryegrass, fescue, bermudagrass, paspalum or bahiagrass, zoysia, beachgrass, wheatgrass, carpetgrass, or any combinations thereof. In an embodiment, the turfgrass may be, for example, creeping bentgrass, colonial bentgrass, perennial ryegrass, annual ryegrass, Kentucky bluegrass, common
bermudagrass, hybrid bermudagrass, annual bluegrass, seashore paspalum, St. Augustinegrass, tall fescue, bahiagrass, zoysiagrass, centipedegrass, rough stalk bluegrass, buffalo grass, blue grama, annual bentgrass, redtop, velvet bentgrass, coastal bermudagrass, magennis bermudagrass, blue couch grass, smooth crabgrass, sheep fescue, hard fescue, red fescue, chewing fescue, common velvet grass, Italian ryegrass, Texas bluegrass, plains bluegrass, seaside alkali-grass, muscarene grass, or any combinations thereof. In an embodiment, the turfgrass may be, for example, bentgrass, bermudagrass, hybrid bermudagrass, or any combinations thereof. In an embodiment, the turfgrass may be, for example, bentgrass. In another embodiment, the turfgrass may be, for example, bermudagrass or hybrid bermudagrass or a combination thereof. In an embodiment, the turfgrass may be, for example, creeping bentgrass, colonial bentgrass, velvet bentgrass, roughstalk bluegrass, hybrid bermudagrass, or any combinations thereof. In an embodiment, the turfgrass may be, for example, creeping bentgrass, annual bluegrass, or any combinations thereof. In an embodiment, the turfgrass may be, for example, creeping bentgrass. In an embodiment, the turfgrass may be, for example, creeping bentgrass. In an embodiment, the turfgrass may be, for example, annual bluegrass. The term turfgrass encompasses areas having differing intensities of cultivation, such as parks, golf courses, sports fields, sod farms, roadsides, and lawns for housing residences, commercial sites, and institutional grounds. A selected embodiment involves the control of dollar spot on annual bluegrass or creeping bentgrass or a combination thereof, particularly on golf courses. A selected embodiment involves control of bentgrass dead spot or bermudagrass dead spot on bentgrass or hybrid bermudagrass or a combination thereof, particularly on golf courses, for example, on golf course greens.

The present invention includes isomers such as geometrical isomers, optical isomers based on asymmetric carbon, stereoisomers and tautomers and is not limited by the description of the formula illustrated for the sake of convenience.

Various alternative embodiments and examples of the invention are described herein. These embodiments and examples are illustrative, and not limiting.
EXAMPLES

General Methodologies

Studies were established in a completely randomized design with three replications. The treatments included an untreated (fertilizer only) treatment and twenty-three rate/interval combinations of Civitas™ and Emerald™. The label-recommended rates of Civitas™ application to control dollar spot on turfgrass are 8-32 oz/1000 sq.ft. The label-recommended rate of Emerald™ application to control dollar spot on turfgrass is 0.13 oz/1000 sq.ft.

Initial treatments were made on June 16 and continued for 15 weeks (final treatments were made on September 27). Treatments were applied to experimental plots (4’ x 4’) on a mixed stand of creeping bentgrass/annual bluegrass (*Agrostis palustris/Poa annua*) grown on a sand-based putting green (pH=8.2). Applications were made with a handheld CO₂ sprayer at 40 psi (276 kPa) fitted with TeeJet™ XR8015 nozzles calibrated to deliver 2 gallons (7.6 liters) of water per 1,000 ft² (92.9 m²).

Golf traffic was simulated daily during the season using a modified traffic device with two 0.5 meter diameter rollers that spin at different speeds to create slipping motion. The rollers were fitted with SoftSpikes. The amount of spikes and passes used were designed to simulate 30,000 rounds of golf.

The turf was mowed seven times per week at 0.15” and clippings were collected. Fertility program included ammonium sulfate, iron sulfate and Primo MAXX™ plant growth regulator (available from Syngenta Crop Protection, Inc. Greensboro, NC, U.S.A) applied every 7-10 days. Annual nitrogen rate was 2.5 lbs per 1000 sq feet, iron was applied at 2-4 ounces per application and Primo MAXX™ at 0.125 ounces of product per 1000 square feet per application. Straight sand topdressing (pH 8.0) was applied every 14 days, typically in conjunction with light vertical mowing or grooming.

Precipitation was such that supplemental irrigation was not required on a regular basis. Data were collected for turf quality and dollar spot disease rates. Data analysis was conducted using linear mixed models with compound symmetric covariance structure to assess treatment effects when repeated measurements were made on the same experimental unit over time. Treatment
differences at individual measurement events were evaluated using analysis of variance and Fisher's protected least significant difference (LSD). The MIXED and GLM procedures in SAS/STAT software version 9.1 (SAS, Cary, NC) were used to perform the analyses.

Table 1. Treatment application regimes

<table>
<thead>
<tr>
<th>Treatment (Trt) #</th>
<th>Product</th>
<th>Rate/1000 (oz/1000)</th>
<th>Interval (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated, fertilizer only</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Emerald<sup>a</sup></td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Emerald</td>
<td>0.065</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Civitas<sup>b</sup> + Harmonizer<sup>c</sup></td>
<td>8/0.5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Civitas + Harmonizer</td>
<td>12.75/1.8</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Civitas 1P</td>
<td>17.3</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Civitas 1P</td>
<td>17.3</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Emerald + Trt 4</td>
<td>0.13</td>
<td>21/7</td>
</tr>
<tr>
<td>12</td>
<td>Emerald + Trt 5</td>
<td>0.13</td>
<td>21/14</td>
</tr>
<tr>
<td>13</td>
<td>Emerald + Trt 6</td>
<td>0.13</td>
<td>21/14</td>
</tr>
<tr>
<td>14</td>
<td>Emerald + Trt 7</td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>Emerald + Trt 8</td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Emerald + Trt 9</td>
<td>0.13</td>
<td>21/14</td>
</tr>
<tr>
<td>17</td>
<td>Emerald + Trt 10</td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>Emerald + Trt 4</td>
<td>0.065</td>
<td>21/7</td>
</tr>
<tr>
<td>19</td>
<td>Emerald + Trt 5</td>
<td>0.065</td>
<td>21/14</td>
</tr>
<tr>
<td>20</td>
<td>Emerald + Trt 6</td>
<td>0.065</td>
<td>21/14</td>
</tr>
<tr>
<td>21</td>
<td>Emerald + Trt 7</td>
<td>0.065</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>Emerald + Trt 8</td>
<td>0.065</td>
<td>21</td>
</tr>
<tr>
<td>23</td>
<td>Emerald + Trt 9</td>
<td>0.065</td>
<td>21/14</td>
</tr>
</tbody>
</table>
Dollar spot

Three periods of dollar spot infection were observed. Treatments were initiated about seven weeks prior to the first evidence of dollar spot pressure. Initially, dollar spot pressure was observed to be low; however, it was observed to increase to very high pressure by the 14th week of the study.

Table 2a. Effect of various treatments on number of dollar spots per plot.

<table>
<thead>
<tr>
<th>Treatment (Trt) #</th>
<th>Product</th>
<th>Rate/1000 (oz/1000)</th>
<th>Interval (days)</th>
<th>27-Jul</th>
<th>20-Aug</th>
<th>4-Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated, fertilizer only</td>
<td>-</td>
<td>-</td>
<td>7.7</td>
<td>13.0</td>
<td>40.7</td>
</tr>
<tr>
<td>2</td>
<td>Emerald</td>
<td>0.13</td>
<td>21</td>
<td>0</td>
<td>0.7</td>
<td>10.7</td>
</tr>
<tr>
<td>3</td>
<td>Emerald</td>
<td>0.065</td>
<td>21</td>
<td>0</td>
<td>1.3</td>
<td>9.7</td>
</tr>
<tr>
<td>4</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>7</td>
<td>0</td>
<td>1.7</td>
<td>6.7</td>
</tr>
<tr>
<td>5</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>14</td>
<td>2.7</td>
<td>10.0</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>14</td>
<td>1.7</td>
<td>7.0</td>
<td>14.0</td>
</tr>
<tr>
<td>7</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>21</td>
<td>13.3</td>
<td>20.0</td>
<td>28.0</td>
</tr>
<tr>
<td>8</td>
<td>Civitas + Harmonizer</td>
<td>12.75/1.8</td>
<td>21</td>
<td>1.0</td>
<td>5.7</td>
<td>12.0</td>
</tr>
<tr>
<td>9</td>
<td>Civitas 1P</td>
<td>17.3</td>
<td>14</td>
<td>0.7</td>
<td>5.3</td>
<td>15.0</td>
</tr>
<tr>
<td>10</td>
<td>Civitas 1P</td>
<td>17.3</td>
<td>21</td>
<td>2.7</td>
<td>8.9</td>
<td>14.7</td>
</tr>
<tr>
<td>11</td>
<td>Emerald + Trt 4</td>
<td>0.13</td>
<td>21/7</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Emerald +</td>
<td>0.13</td>
<td>21/14</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>13</td>
<td>Emerald +</td>
<td>0.13</td>
<td>21/14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Emerald +</td>
<td>0.13</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Emerald +</td>
<td>0.13</td>
<td>21</td>
<td>0</td>
<td>0.3</td>
<td>3.3</td>
</tr>
<tr>
<td>16</td>
<td>Emerald +</td>
<td>0.13</td>
<td>21/14</td>
<td>0</td>
<td>0</td>
<td>4.7</td>
</tr>
<tr>
<td>17</td>
<td>Emerald +</td>
<td>0.13</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1.7</td>
</tr>
<tr>
<td>18</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21/7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21/14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21/14</td>
<td>0</td>
<td>0.3</td>
<td>4.3</td>
</tr>
<tr>
<td>21</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>22</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21</td>
<td>0</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>23</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21/14</td>
<td>0</td>
<td>0</td>
<td>2.7</td>
</tr>
<tr>
<td>24</td>
<td>Emerald +</td>
<td>0.065</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>LSD (p=0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>9.5</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2a illustrates that neither boscalid alone nor CIVITAS alone are capable of sustained elimination of dollar spot, while the combined use of the boscalid and CIVITAS achieves this result, even with half the recommended application rate of boscalid.
Table 2b illustrates that the efficacy of the combination of Emerald and Civitas in treating dollar spot exceeds the expected efficacy, evidencing a synergistic effect. Applying the approach to identifying synergy as set out in S.R. Colby, "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967), expected efficacy, E, may be expressed as:
\[E = X + Y (100 - X) / 100 \]
where X is the efficacy, expressed in % of the untreated control, of the first composition (boscalid), and Y is the efficacy, expressed in % of the untreated control, of the second composition (Civitas). Table 2b sets out the expected and actual efficacies for treatments 18 and 19 of Table 2a, illustrating the synergistic effect found with half the recommended rate of boscalid application in combination with the lowest rate of Civitas application.

Table 2b. Synergistic effect of various treatments on number of dollar spots per plot.

<table>
<thead>
<tr>
<th>Trt #</th>
<th>20-Aug Actual</th>
<th>20-Aug Expected</th>
<th>4-Sep Actual</th>
<th>4-Sep Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.0</td>
<td></td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.3 (90.0%)</td>
<td></td>
<td>9.7 (76.2%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.7 (86.9%)</td>
<td></td>
<td>6.7 (83.5%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.0 (23.1%)</td>
<td></td>
<td>17.7 (56.5%)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0 (100%)</td>
<td>98.7%<sup>a</sup></td>
<td>0 (100%)</td>
<td>96.1%<sup>b</sup></td>
</tr>
<tr>
<td>19</td>
<td>0 (100%)</td>
<td>92.3%<sup>c</sup></td>
<td>0 (100%)</td>
<td>89.6%<sup>d</sup></td>
</tr>
</tbody>
</table>

\[a \quad E = 90 + 86.9(100 - 90) / 100 \]
\[b \quad E = 76.2 + 83.5(100 - 76.2) / 100 \]
\[c \quad E = 90 + 23.1(100 - 90) / 100 \]
\[d \quad E = 76.2 + 56.5(100 - 76.2) / 100 \]

Table 3a. Effect of various treatments on season-long dollar spot infestation.

<table>
<thead>
<tr>
<th>Treatment #</th>
<th>Product</th>
<th>Rate/1000 (oz/1000)</th>
<th>Interval (days)</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated</td>
<td>-</td>
<td>-</td>
<td>20.4</td>
</tr>
<tr>
<td>2</td>
<td>Emerald</td>
<td>0.13</td>
<td>21</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>Emerald</td>
<td>0.065</td>
<td>21</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Civitas</td>
<td>Harmonizer</td>
<td>8/0.5</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>5</td>
<td>Civitas</td>
<td>Harmonizer</td>
<td>8/0.5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Civitas</td>
<td>Harmonizer</td>
<td>16/1</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Civitas</td>
<td>Harmonizer</td>
<td>16/1</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Civitas</td>
<td>Harmonizer</td>
<td>12.75/1.8</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Civitas 1P</td>
<td></td>
<td>17.3</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Civitas 1P</td>
<td></td>
<td>17.3</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Emerald + Trt 4</td>
<td></td>
<td>0.13</td>
<td>21/7</td>
</tr>
<tr>
<td>12</td>
<td>Emerald + Trt 5</td>
<td></td>
<td>0.13</td>
<td>21/14</td>
</tr>
<tr>
<td>13</td>
<td>Emerald + Trt 6</td>
<td></td>
<td>0.13</td>
<td>21/14</td>
</tr>
<tr>
<td>14</td>
<td>Emerald + Trt 7</td>
<td></td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>Emerald + Trt 8</td>
<td></td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Emerald + Trt 9</td>
<td></td>
<td>0.13</td>
<td>21/14</td>
</tr>
<tr>
<td>17</td>
<td>Emerald + Trt 10</td>
<td></td>
<td>0.13</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>Emerald + Trt 4</td>
<td></td>
<td>0.065</td>
<td>21/7</td>
</tr>
<tr>
<td>19</td>
<td>Emerald + Trt 5</td>
<td></td>
<td>0.065</td>
<td>21/14</td>
</tr>
<tr>
<td>20</td>
<td>Emerald + Trt 6</td>
<td></td>
<td>0.065</td>
<td>21/14</td>
</tr>
<tr>
<td>21</td>
<td>Emerald + Trt 7</td>
<td></td>
<td>0.065</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>Emerald + Trt 8</td>
<td></td>
<td>0.065</td>
<td>21</td>
</tr>
<tr>
<td>23</td>
<td>Emerald + Trt 9</td>
<td></td>
<td>0.065</td>
<td>21/14</td>
</tr>
<tr>
<td>24</td>
<td>Emerald + Trt 10</td>
<td></td>
<td>0.065</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 3b. Synergistic effect of various treatments on season-long dollar spot infestation.

<table>
<thead>
<tr>
<th>Trt #</th>
<th>Actual</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.7 (81.9%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.8 (86.3%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.1 (50.5%)</td>
<td></td>
</tr>
<tr>
<td>18 (3+4)</td>
<td>0 (100%)</td>
<td>97.5%<sup>a</sup></td>
</tr>
<tr>
<td>19 (3+5)</td>
<td>0 (100%)</td>
<td>91.0%<sup>b</sup></td>
</tr>
</tbody>
</table>

^a E=81.9+86.3(100-81.9)/100

^b E=81.9+50.5(100-81.9)/100

Table 3b sets out the expected and actual efficacies for treatments 18 and 19 of Table 3a, illustrating the season-long synergistic effect found with half the recommended rate of boscalid application in combination with the lowest rate of Civitas application.

Turf Quality

Turf quality was assessed on three occasions using a scale of 1 to 9 (where 1 = poor quality; 9 = excellent quality; and 6 = acceptable quality). Significant treatment effects were observed on each rating date and for the seasonal turfgrass quality ratings (Tables 4 and 5). As the study progressed, it was observed that the untreated plots struggled to maintain acceptable quality, mostly the result of severe natural infestations of dollar spot.
Table 4. Effect of various treatments on turfgrass quality ratings.

<table>
<thead>
<tr>
<th>Treatment (Trt) #</th>
<th>Product</th>
<th>Rate/1000 (oz/1000)</th>
<th>Interval (days)</th>
<th>29-Jun</th>
<th>17-Jul</th>
<th>7-Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td>5.4</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>Emerald</td>
<td>0.13</td>
<td>21</td>
<td>6.0</td>
<td>5.6</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>Emerald</td>
<td>0.065</td>
<td>21</td>
<td>6.0</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>4</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>7</td>
<td>6.3</td>
<td>6.2</td>
<td>7.1</td>
</tr>
<tr>
<td>5</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>14</td>
<td>6.1</td>
<td>6.1</td>
<td>6.6</td>
</tr>
<tr>
<td>6</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>14</td>
<td>6.2</td>
<td>5.8</td>
<td>6.7</td>
</tr>
<tr>
<td>7</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>21</td>
<td>6.0</td>
<td>5.8</td>
<td>6.7</td>
</tr>
<tr>
<td>8</td>
<td>Civitas + Harmonizer</td>
<td>12.75/1.8</td>
<td>21</td>
<td>6.7</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>9</td>
<td>Civitas 1P</td>
<td>17.3</td>
<td>14</td>
<td>6.2</td>
<td>5.7</td>
<td>6.2</td>
</tr>
<tr>
<td>10</td>
<td>Civitas 1P</td>
<td>17.3</td>
<td>21</td>
<td>6.0</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>11</td>
<td>Emerald + Trt 4</td>
<td>0.13</td>
<td>21/7</td>
<td>6.7</td>
<td>6.6</td>
<td>7.1</td>
</tr>
<tr>
<td>12</td>
<td>Emerald + Trt 5</td>
<td>0.13</td>
<td>21/14</td>
<td>6.7</td>
<td>6.3</td>
<td>6.8</td>
</tr>
<tr>
<td>13</td>
<td>Emerald + Trt 6</td>
<td>0.13</td>
<td>21/14</td>
<td>6.6</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>14</td>
<td>Emerald + Trt 7</td>
<td>0.13</td>
<td>21</td>
<td>6.4</td>
<td>6.1</td>
<td>6.7</td>
</tr>
<tr>
<td>15</td>
<td>Emerald + Trt 8</td>
<td>0.13</td>
<td>21</td>
<td>6.9</td>
<td>6.9</td>
<td>6.5</td>
</tr>
<tr>
<td>16</td>
<td>Emerald + Trt 9</td>
<td>0.13</td>
<td>21/14</td>
<td>6.2</td>
<td>5.9</td>
<td>6.3</td>
</tr>
<tr>
<td>17</td>
<td>Emerald + Trt 10</td>
<td>0.13</td>
<td>21</td>
<td>6.3</td>
<td>6.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Treatment (Trt) #</td>
<td>Product</td>
<td>Rate/1000 (oz/1000)</td>
<td>Interval (days)</td>
<td>TQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Untreated, fertilizer only</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Emerald</td>
<td>0.13</td>
<td>21</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Emerald</td>
<td>0.065</td>
<td>21</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>7</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Civitas + Harmonizer</td>
<td>8/0.5</td>
<td>14</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>14</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Civitas + Harmonizer</td>
<td>16/1</td>
<td>21</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Effect of various treatments on season-long turfgrass quality ratings.
Tables 4 and 5 together illustrate that the combined use of boscalid at half the recommended rate and the lowest rate of Civitas application yielded the best results in terms of turfgrass quality, which was achieved while completely eliminating dollar spot as illustrated in Tables 2 and 3.

Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way.

Numeric ranges are inclusive of the numbers defining the range. The word "comprising" is used herein as an open-ended term, substantially equivalent to the phrase "including, but not limited to", and the word "comprises" has a corresponding meaning. As used herein, the singular forms "a", "an" and
"the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a thing" includes more than one such thing.

Citation of references herein is not an admission that such references are prior art to the present invention. Any priority document(s) and all publications, including but not limited to patents and patent applications, cited in this specification are incorporated herein by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein and as though fully set forth herein.

The invention includes all embodiments and variations substantially as hereinbefore described and with reference to the examples.
What is claimed is:

1. A fungicidal composition comprising an emulsifier, a paraffinic oil, and 2-chloro-N-(4'-chloro[1',1'-biphenyl]-2-yl)-3-pyridinecarboxamide (boscalid), wherein the paraffinic oil and boscalid are present in amounts that are synergistically effective when applied to a plant for controlling a fungal pathogen of the plant.

2. The composition according to claim 1, wherein the paraffinic oil comprises a paraffin having a number of carbon atoms ranging from about 12 to about 50.

3. The composition according to claim 1, wherein the paraffinic oil comprises a paraffin having a number of carbon atoms ranging from about 16 to about 35.

4. The composition according to any one of claims 1 to 3, wherein the paraffinic oil comprises a paraffin having an average number of carbon atoms of about 23.

5. The composition according to any one of claims 1 to 4, wherein the paraffinic oil has a paraffin content of at least about 80%.

6. The composition according to any one of claims 1 to 4, wherein the paraffinic oil has a paraffin content of at least about 90%.

7. The composition according to any one of claims 1 to 4, wherein the paraffinic oil has a paraffin content of at least about 99%.

8. The composition according to any one of claims 1 to 7, which further comprises a pigment and a silicone surfactant.

9. The composition according to claim 8, wherein the pigment is a polychlorinated (Cu II) phthalocyanine.
10. The composition according to claim 8 or 9, wherein the emulsifier comprises a natural or synthetic alcohol ethoxylate, an alcohol alkoxylation, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof.

11. The composition according to claim 8 or 9, wherein the emulsifier comprises a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition further comprises a polyethylene glycol according to formula IV:

\[R^1 - O - (CH_2CH_2O)_fR^2 \]

wherein \(R^1 = H \) or \(CH_2=CH-CH_2 \) or \(COCH_3 \); \(R^2 = H \) or \(CH_2=CH-CH_2 \) or \(COCH_3 \); and \(f \geq 1 \).

12. The composition according to any one of claims 1 to 11, wherein the fungal pathogen is at least one of a fungus that causes dollar spot in turfgrass and a fungus that causes bentgrass dead spot or bermudagrass dead spot in a turfgrass.

13. The composition according to any one of claims 1 to 12, wherein the fungal pathogen is a fungus that blights leaf tissue in a turfgrass.

14. The composition according to any one of claims 1 to 13, wherein the fungal pathogen is a fungus that causes dollar spot in a turfgrass.

15. The composition according to any one of claims 1 to 14, wherein the fungal pathogen is \textit{Sclerotinia homoeocarpa}.

16. The composition according to any one of claims 12 to 15, wherein the turfgrass and the plant are independently one or more of: bentgrass, bluegrass, ryegrass, fescue, bermudagrass, bahiagrass, zoysia, beachgrass, wheatgrass, or carpetgrass.
17. The composition according to any one of claims 12 to 15, wherein the turfgrass and the plant are independently one or more of: bentgrass, colonial bentgrass, perennial ryegrass, annual ryegrass, Kentucky bluegrass, common bermudagrass, hybrid bermudagrass, annual bluegrass, seashore paspalum, St. Augustinegrass, tall fescue, bahiagrass, zoysiagrass, centipedegrass, rough stalk bluegrass, buffalo grass, blue grama, or annual bentgrass.

18. The composition according to any one of claims 12 to 15, wherein the turfgrass and the plant are independently one or more of: creeping bentgrass or annual bluegrass.

19. The composition according to any one of claims 1 to 12, wherein the fungal pathogen is a fungus that causes bentgrass dead spot or bermudagrass dead spot in a turfgrass.

20. The composition according to any one of claims 1 to 12 and 19, wherein the fungal pathogen is *Ophiostoma agrostis*.

21. Use of the composition according to any one of claims 1 to 20, for controlling the fungal pathogen on the plant.

22. The use according to claim 21, wherein boscalid is applied to the plant at a rate from about 0.02 to about 0.12 oz per 1000 square feet.

23. The use according to claim 21 or 22, wherein the paraffinic oil is applied to the plant at a rate from about 0.9 to about 32 oz/1000 square ft.

24. The use according to claim 21 or 22, wherein the paraffinic oil is applied to the plant at a rate of about 8 oz/1000 square ft.

25. The use according to claim 21 or 22, wherein the paraffinic oil is applied to the plant at a rate of less than about 31 oz/1000 square ft.
26. A method of controlling a fungal pathogen of a plant, the method comprising applying to the plant a composition comprising an emulsifier and a paraffinic oil, in combination with boscalid, wherein the paraffinic oil and boscalid are applied in amounts that are synergistically effective for controlling the fungal pathogen.

27. The method according to claim 26, further comprising mixing the paraffinic oil, the emulsifier, and boscalid before applying the composition to the plant.

28. The method according to claim 26 or 27, wherein the paraffinic oil comprises a paraffin having a number of carbon atoms ranging from about 12 to about 50.

29. The method according to claim 26 or 27, wherein the paraffinic oil comprises a paraffin having a number of carbon atoms ranging from about 16 to about 35.

30. The method according to any one of claims 26 to 29, wherein the paraffinic oil comprises a paraffin having an average number of carbon atoms of about 23.

31. The method according to any one of claims 26 to 30, wherein the paraffinic oil has a paraffin content of at least about 80%.

32. The method according to any one of claims 26 to 30, wherein the paraffinic oil has a paraffin content of at least about 90%.

33. The method according to any one of claims 26 to 30, wherein the paraffinic oil has a paraffin content of at least about 99%.

34. The method according to any one of claims 26 to 33, wherein the composition further comprises a pigment and a silicone surfactant.
35. The method according to claim 34, wherein the pigment is a polychlorinated (Cu II) phthalocyanine.

36. The method according to claim 34 or 35, wherein the emulsifier comprises a natural or synthetic alcohol ethoxylate, an alcohol alkoxylate, an alkyl polysaccharide, a glycerol oleate, a polyoxyethylene-polyoxypropylene block copolymer, an alkyl phenol ethoxylate, a polymeric surfactant, a polyethylene glycol, a sorbitan fatty acid ester ethoxylate, or a combination thereof.

37. The method according to claim 34 or 35, wherein the emulsifier comprises a natural or synthetic alcohol ethoxylate, a polymeric surfactant, a sorbitan fatty acid ester, or a combination thereof, and the composition further comprises a polyethylene glycol according to formula IV:

\[
R^1 - O - (CH_2CH_2O)_f - R^2
\]

wherein \(R^1 = H \) or \(CH_2=CH-CH_2 \) or \(COCH_3 \); \(R^2 = H \) or \(CH_2=CH-CH_2 \) or \(COCH_3 \); and \(f \geq 1 \).

38. The method according to any one of claims 26 to 37, wherein the fungal pathogen is at least one of a fungus that causes dollar spot in turfgrass and a fungus that causes bentgrass dead spot or bermudagrass dead spot in a turfgrass.

39. The method according to any one of claims 26 to 38, wherein the fungal pathogen is a fungus that blights leaf tissue in a turfgrass.

40. The method according to any one of claims 26 to 39, wherein the fungal pathogen is a fungus that causes dollar spot in a turfgrass.

41. The method according to any one of claims 26 to 40, wherein the fungal pathogen is *Sclerotinia homoeocarpa*.
42. The method according to any one of claims 26 to 41, wherein the plant and the turfgrass are each independently one or more of: bentgrass, bluegrass, ryegrass, fescue, bermudagrass, bahiagrass, zoysia, beachgrass, wheatgrass or carpetgrass.

43. The method according to any one of claims 26 to 41, wherein the plant and the turfgrass are each independently one or more of: creeping bentgrass, colonial bentgrass, perennial ryegrass, annual ryegrass, Kentucky bluegrass, common bermudagrass, hybrid bermudagrass, annual bluegrass, seashore paspalum, St. Augustinegrass, tall fescue, bahiagrass, zoysiagrass, centipedegrass, rough stalk bluegrass, buffalo grass, blue grama, or annual bentgrass.

44. The method according to any one of claims 26 to 41, wherein the plant and the turfgrass are each independently one or more of: creeping bentgrass or annual bluegrass.

45. The method according to any one of claims 26 to 38, wherein the fungal pathogen is a fungus that causes bentgrass dead spot or bermudagrass dead spot in a turfgrass.

46. The method according to any one of claims 26 to 38 and 45, wherein the fungal pathogen is *Ophiosphaerella agrostis*.

47. The method according to any one of claims 26 to 46, wherein boscalid is applied to the plant at a rate from about 0.02 to about 0.12 oz per 1000 square feet.

48. The method according to any one of claims 26 to 47, wherein the paraffinic oil is applied to the plant at a rate from about 0.9 to about 32 oz/1000 square ft.
49. The method according to any one of claims 26 to 47, wherein the paraffinic oil is applied to the plant at a rate of about 8 oz/1000 square ft.

50. The method according to any one of claims 26 to 47, wherein the paraffinic oil is applied to the plant at a rate less than about 31 oz/1000 square ft.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA20 11/001018

A. CLASSIFICATION OF SUBJECT MATTER
IPC: A01N 61/02 (2006.01) A01N 25/30 (2006.01) A01N 43/40 (2006.01) A01P 3/00 (2006.01)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC: A01N 61/02 (2006.01) A01N 25/30 (2006.01) A01N 43/40 (2006.01) A01P 3/00 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
Canadian Patent Database, EPOQUE-search engine searching EPODOC, P.A.T and EPOQUE INTERNAL, Scopus
(search terms: boscalid, nicobifen, paraffinic oil, mineral oil, emulsifier, pigment, surfactant)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US5330995A (EICKEN, Karl et al) 19 July 1994 (19-07-1994) (compound No. 3.10 and page 30, lines 6-13)</td>
<td>1-50</td>
</tr>
</tbody>
</table>

[X] See patent family annex.

[] Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
22 November 2011 (22-11-2011)

Date of mailing of the international search report
29 November 2011 (29-11-2011)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476

Authorized officer
Ginette Devarennes (819) 934-3591

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Date</th>
<th>Publication Date</th>
<th>Patent Document</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA2729242A1</td>
<td>30 December 2009</td>
<td>(30-12-2009)</td>
<td>CN102215692A</td>
<td>12 October 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR3023336T3</td>
<td>29 August 1997</td>
<td>(29-08-1997)</td>
<td>HUT62861A</td>
<td>28 June 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101977501A</td>
<td>16 February 2011</td>
<td>(16-02-2011)</td>
<td>CO63199097A2</td>
<td>21 July 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2011509971A</td>
<td>31 March 2011</td>
<td>(31-03-2011)</td>
<td>KR20100105883A</td>
<td>30 September 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX2010007676A</td>
<td>18 August 2010</td>
<td>(18-08-2010)</td>
<td>US2011052555A1</td>
<td>03 March 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2011052555A1</td>
<td>03 March 2011</td>
<td>(03-03-2011)</td>
<td>WO2009090181A3</td>
<td>21 October 2010</td>
</tr>
</tbody>
</table>