(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/018191 A2

(43) International Publication Date
24 February 2005 (24.02.2005)

(51) International Patent Classification’: HO04L 29/00 [US/US]; 5740 Brittany Forrest Lane, San Diego, Califor-
nia 92130 (US). SHEKHAR, Shashank [IN/US]; 5775
(21) International Application Number: Morehouse Drive, San Diego, California 92121 (US).
PCT/US2004/026264

(74) Agents: WADSWORTH, Philip R. et al.; 5775 More-

(22) International Filing Date: 12 August 2004 (12.08.2004) house Drive, San Diego, California 92121-1714 (US).

(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
L. . AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(26) Publication Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(30) Priority Data:
60/494,983 13 August 2003 (13.08.2003) US

(71) Applicant (for all designated States except US): QUAL-
COMM, INCORPORATED [US/US]; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventors; and
(75) Inventors/Applicants (for US only): ANDERSON, Jon,

57018191 A2 | IV 0O O

James [US/US]; 7436 Augusta Drive, Boulder, Colorado
80301 (US). STEELE, Brian [US/US]; 1074 Iliad Way,
Lafayette, Colorado 80026 (US). WILEY, George, Alan

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

[Continued on next page]

206

202
r

(54) Title: A SIGNAL INTERFACE FOR HIGHER DATA RATES

FORWARD DIRECTION

feoa . 204

HOST 210 DISPLAY
_/ REVERSE DIRECTION AL
PORTABLE MALL
| COMPUTER | . _SCREEN
WIRELESS PROJECTION
TELEPHONE ___DisPLAY
______ MICRO-
PDA DISPLAY
WIRELESS | SURROUND
MODEM SOUND

(57) Abstract: A data Interface for transferring digital data between a host and a client over a communication path using packet
structures linked together to form a communication protocol for communicating a pre-selected set of digital control and presentation

& data. The signal protocol is used by link controllers configured to generate, transmit, and receive packets forming the communi-
& cations protocol, and to form digital data into one or more types of data packets, with at least one residing in the host device and

being coupled to the client through the communications path. The interface provides a cost-effective, low power, bi-directional,
high-speed data transfer mechanism over a short-range "serial" type data link, which lends itself to implementation with miniature
connectors and thin flexible cables which are especially useful in connecting display elements such as wearable micro-displays to
portable computers and wireless communication devices.

WO 2005/018191 A2

0 000 00 A

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, §Y, TJ,
M, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, §Z, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,

BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE,
SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

tOOOl]

[0002]

[0003]

[0004]

WO 2005/018191 PCT/US2004/026264

1
A SIGNAL INTERFACE FOR HIGHER DATA RATES

CROSS-REFERENCE TO RELATED APPLICATIONS
The present Application for Patent claims priority to Provisional Application No.
60/494,983 entitled “MDDI Specification Advancements” filed August 13, 2003, and

assigned to the assignee hereof and hereby expressly incorporated by reference herein.

BACKGROUND
I. Field
Embodiments of the invention in this disclosure relate to a digital signal protocol
and process for communicating or transferring signals between a host device and a client
device at high data rates. More specifically, the disclosure relates to a technique for
transferring multimedia and other types of digital signals from a host or controller device to
a client device for presentation or display to an end user using a low power high data rate

transfer mechanism having internal and external device applications.

IL. Background

Computers, electronic game related products, and various video technologies (for
example DVD's and High Definition VCRs) have advanced significantly over the last few
years to provide for presentation of increasingly higher resolution still, video, video-on-
demand, and graphics images, even when including some types of text, to end users of such
equipment. These advances in turn mandated the use of higher resolution electronic
viewing devices such as high definition video monitors, HDTV monitors, or specialized
image projection elements. Combining such visual images with high-definition or -quality
audio data, such as when using CD type sound reproduction, DVDs, and other devices also
having associated audio signal outputs, is used to create a more realistic, content rich, or
true multimedia experience for an end user. In addition, highly mobile, high quality sound
systems and music transport mechanisms, such as MP3 players, have been developed for
audio only presentations to end users. This has resulted in increased expectations for
typical users of commercial electronics devices, from computers to televisions and even
telephones, now being accustomed to and expecting high or premium quality output.

In a typical video presentation scenario, involving an electronics product video data

is typically transferred using current techniques at a rate that could be best termed as slow

[0005]

[0006]

[0007]

[0008]

WO 2005/018191 PCT/US2004/026264

2

or medium, being on the order of one to tens of kilobits per second. This data is then either
buffered or stored in transient or longer-term memory devices, for delayed (later) play out
on a desired viewing device. For example, images may be transferred “across” or using the
Internet using a program resident on a computer having a modem or internet connection
device, to receive or transmit data useful in digitally representing an image. A similar
transfer can take place using wireless devices such as portable computers equipped with
wireless modems, or wireless Personal Data Assistants (PDAs), or wireless telephones.

Once received, the data is stored locally in memory elements, circuits, or devices,
such as RAM or flash memory, including external storage devices, for playback.
Depending on the amount of data and the image resolution, the playback might begin
relatively quickly, or be presented with longer-term delay. That is, in some instances,
image presentation allows for a certain degree of real time playback for very small or low
resolution images not requiring much data, or using some type of buffering, so that after a
small delay, some material is presented while more material is being transferred. Provided
there are no interruptions in the transfer link, once the presentation begins the transfer is
reasonably transparent to the end user of the viewing device. |

The data used to create either still images or motion video are often compressed
using one of several well known techniques such as those specified by the Joint
Photographic Experts Group (JPEG), the Motion Picture Experts Group (MPEG), and other
well known standards organizations or companies in the media, -computer, and
communications industries to speed the transfer of data over a communication link. This
allows transferring images or data faster by using a smaller number of bits to transfer a
given amount of information.

Once the data is transferred to a “local” device such as a computer or other recipient
device, the resulting information is un-compressed (or played using special decoding
players), and decoded if needed, and prepared for appropriate presentation based on the
corresponding available presentation resolution and control elements. For example, a
typical computer video resolution in terms of a screen resolution of X by Y pixels typically
ranges from as low as 480x640 pixels, through 600x800 to 1024x1024, although a variety
of other resolutions are generally possible, either as desired or needed.

Image presentation is also affected by the image content and the ability of given
video controllers to manipulate the image in terms of certain predefined color levels or

color depth (bits per pixel used to generate colors) and intensities, and any additional

[0009]

[0010]

WO 2005/018191 PCT/US2004/026264

3

overhead bits being employed. For example, a typical computer presentation would
anticipate anywhere from around 8 to 32, or more, bits per pixel to represent various colors
(shades and hues), although other values are encountered.

From the above values, one can see that a given screen image is going to require the
transfer of anywhere from 2.45 Megabits (Mb) to around 33.55 Mb of data over the range
from the lowest to highest typical resolutions and depth, respectively. When viewing video
or motion type images at a rate of 30 frames per second, the amount of data required is
around 73.7 to 1,006 Megabits of data per.second (Mbps), or around 9.21 to 125.75
Megabytes per second (MBps). In addition, one may desire to present audio data in
conjunction with images, such as for a multimedia presentation, or as a separate high
resolution audio presentation, such as CD quality music. Additional signals dealing with
interactive commands, controls, or signals may also be employed. Each of these options
adding even more data to be transferred. In any case, when one desires to transfer high
quality or high resolution image data and high quality audio information or data signals to
an end user to create a content rich experience, a high data transfer rate link is required
between presentation elements and the source or host device that is configured to provide
such types of data.

Data rates of around 115 Kilobytes (KBps) or 920 Kilobits per second (Kbps) can be
routinely handled by modern serial interfaces. Other interfaces such as USB serial
interfaces, can accommodate data transfers at rates as high as 12 MBps, and specialized
high speed transfers such as those configured using the Institute of Electrical and
Electronics Engineers (IEEE) 1394 standard, can occur at rates on the order of 100 to 400
MBps. Unfortunately, these rates fall short of the desired high data rates discussed above
which are contemplated for use with future wireless data devices and services for providing
high resolution, content rich, output signals for driving portable video displays or audio
devices. In addition, these interfaces require the use of a significant amount of host or
system and client software to operate. Their software protocol stacks also create an
undeéirably large amount of overhead, especially where mobile wireless devices or
telephone applications are contemplated. Such devices have severe memory and power
consumption limitations, as well as already taxed computational capacity. Furthermore,
some of these interfaces utilize bulky cables which are too heavy and unsatisfactory for
highly aesthetic oriented mobile applications, complex connectors which add cost, or

simply consume too much power.

[0011]

[0012]

[0013]

[0014]

[0015]

WO 2005/018191 PCT/US2004/026264

4

There are other known interfaces such as the Analog Video Graphics Adapter
(VGA), Digital Video Interactive (DVI) or Gigabit Video Interface (GVIF) interfaces. The
first two of these are parallel type interfaces which process data at higher transfer rates, but
also employ heavy cables and consume large amounts of power, on the order of several
watts. Neither of these characteristics are amenable to use with portable consumer
electronic devices. Even the third interface consumes too much power and uses expensive
or bulky connectors.

For some of the above interfaces, and other very high rate data systems/protocols or
transfer mechanisms associated with data transfers for fixed installation computer
equipment, there is another major drawback. To accommodate the desired data transfer
rates also requires substantial amounts of power and/or operation at high current levels.
This greatly reduces the usefulness of such techniques for highly mobile consumer oriented
products.

Generally, to accommodate such data transfer rates using alternatives such as say
optical fiber type connections and transfer elements, also requires a number of additional
converters and elements that introduce much more complexity and cost, than desired for a
truly commercial consumer oriented product. Aside from the generally expensive nature of
optical systems as yet, their power requirements and complexity prevents general use for
lightweight, low power, portable applications.

What has been lacking in the industry for portable, wireless, or mobile applications,
is a technique to provide a high quality presentation experience, whether it be audio, video,
or multimedia based, for highly mobile end users. That is, when using portable computers,
wireless phones, PDAs, or other highly mobile communication devices or equipment, the
current video and audio presentation systems or devices being used simply cannot deliver
output at the desired high quality level. Often, the perceived quality that is lacking is the
result of unobtainable high data rates needed to transfer the high quality presentation data.
This can include both transfer to more efficient, advanced or feature laden external devices
for presentation to an end user, or transfer between hosts and clients internal to portable
devices such as computers, gaming machines, and wireless devices such as mobile
telephones.

In this latter case, there have been great strides made in adding higher and higher
resolution internal video screens, and other specialty input and/or output devices and

connections to wireless devices like so called third generation telephones, and to so called

[0016]

[0017]

[0018]

[0019]

WO 2005/018191 PCT/US2004/026264

5

laptop computers. However, internal data busses and connections which may include
bridging across rotating or sliding hinge or hinge-like structures which mount or connect
video screens or other elements to the main housing where the host and/or various other
control elements and output components reside. It is very difficult to construct high
throughput data transfers interfaces using prior techniques which can require up to 90
conductors to achieve the desired throughput, on say a wireless telephone, as one example.
This presents many manufacturing, cost prohibitive, and reliability challenging issues to
overcome.

Therefore, a new transfer mechanism is needed to increase data throughput between
host devices providing the data and client display devices or elements presenting an output
to end users.

Applicants have proposed such new transfer mechanisms in US Patent Application
Serial Nos. 10/020,520 and 10/236,657, both entitled "Generating And Implementing A
Communication Protocol And Interface For High Data Rate Signal Transfer", now allowed,
which are assigned to the assignee of the present invention and incorporated herein by
reference. The techniques discussed in those applications can greatly improve the transfer
rate for large quantities of data in high speed data signals. However, the demands for ever
increasing data rates, especially as related to video presentations, continue to grow. Even
with other ongoing developments in data signal technology, there is still a need to strive for
even faster transfer rates, improved communication link efficiencies, and more powerful
communication links. Therefore, there is a continuing need to develop a new or improved
transfer mechanism which is needed to increase data throughput between host and client
devices.

SUMMARY

The above drawback, and others, existent in the art are addressed by embodiments
of the invention in which a new protocol and data transfer means, method and mechanism
have been developed for transferring data between a host device and a recipient client
device at high data rates.

Embodiments for the invention are directed to a Mobile Data Digital Interface
(MDDI) for transferring digital data at a high rate between a host device and a client device
over a communication path which employs a plurality or series of packet structures linked
together to form a communication protocol for communicating a pre-selected set of digital

control and presentation data between the host and client devices. The signal

WO 2005/018191 PCT/US2004/026264

6

communications protocol or link layer is used by a physical layer of host or client link
controllers. At least one link controller residing in the host device is coupled to the client
device through the communications path or link, and is configured to generate, transmit,

and receive packets forming the communications protocol, and to form digital presentation

data into one or more types of data packets. The interface provides for bi-directional

[0020]

[0021]

[0022]

[0023]

transfer of information between the host and client, which can reside within a common
overall housing or support structure.

The implementation is generally all digital in nature with the exception of
differential drivers and receivers which can be easily implemented on a digital CMOS chip,
requires a few as 6 signals, and operates at almost any data rate that is convenient for the
system designer. The simple physical and link layer protocol makes it easy to integrate, and
this simplicity plus a hibernation state enables the portable system to have very low system
power consumption.

To aid in use and acceptance, the interface will add very little to the cost of a device,
will allow for consumption of very little power while able to power displays through the
interface using standard battery voltages, and can accommodate devices having a pocket-
able form-factor. The interface is scalable to support resolutions beyond HDTV, supports
simultaneous stereo video and 7.1 audio to a display device, performs conditional updates
to any screen region, and supports multiple data types in both directions.

In further aspects of embodiments of the invention, at least one client link controller,
or client receiver, is disposed in the client device and is coupled to the host device through
the communications path or link. The client link controller is also configured to generate,
transmit, and receive packets forming the communications protocol, and to form digital
presentation data into one or more types of data packets. Generally, the host or link
controller employs a state machine for processing data packets used in commands or certain
types of signal preparation and inquiry processing, but can use a slower general purpose
processor to manipulate data and some of the less complex packets used in the
communication protocol. The host controller comprises one or more differential line
drivers; while the client receiver comprises one or more differential line receivers coupled
to the communication path.

The packets are grouped together within media frames that are communicated
between the host and client devices having a pre-defined fixed length with a pre-determined

number of packets having different variable lengths. The packets each comprise a packet

[0024]

[0025]

[0026]

WO 2005/018191 PCT/US2004/026264

7

length field, one or more packet data fields, and a cyclic redundancy check field. A Sub-
frame Header Packet is transferred or positioned at the beginning of transfers of other
packets from the host link controller. One or more Video Stream type packets and Audio
Stream type packets are used by the communications protocol to transfer video type data
and audio type data, respectively, from the host to the client over a forward link for
presentation to a client device user. One or more Reverse Link Encapsulation type packets
are used by the communications protocol to transfer data from the client device to the host
link controller. These transfer in some embodiments include the transfer of data from
internal controllers having at leas one MDDI device to internal video screens. Other.
embodiments include transfer to internal sound systems, and transfers from various input
devices including joysticks and complex keyboards to internal host devices,

Filler type packets are generated by the host link controller to occupy periods of
forward link transmission that do not have data. A plurality of other packets are used by the
communications protocol to transfer video information. Such packets include Color Map,
Bit Block Transfer, Bitmap Area Fill, Bitmap Pattern Fill, and Transparent Color Enable
type packets. User-Defined Stream type packets are used by the communications protocol
to transfer interface-user defined data. Keyboard Data and Pointing Device Data type
packets are used by the communications protocol to transfer data to or from user input
devices associated with said client device. A Link Shutdown type packet is used by the
communications protocol to terminate the transfer of data in either direction over said
communication path.

The communication path generally comprises or employs a cable having a series of
four or more conductors and a shield. In addition, printed wires or conductors can be used,
as desired, with some residing on flexible substrates.

The host link controller requests display capabilities information from the client
device in order to determine what type of data and data rates said client is capable of
accommodating through said interface. The client link controller communicates display or
presentation capabilities to the host link controller using at least one Display Capability
type packet. Multiple transfer modes are used by the communications protocol with each
allowing the transfer of different maximum numbers of bits of data in parallel over a given
time period, with each mode selectable by negotiation between the host and client link
controllers. These transfer modes are dynamically adjustable during transfer of data, and

the same mode need not be used on the reverse link as is used on the forward link.

[0027]

[0028]

[0029]

[0030]

[0031]

[0032]

[0033]

WO 2005/018191 PCT/US2004/026264

8

In other aspects of some embodiments of the invention, the host device comprises a
wireless communications device, such as a wireless telephone, a wireless PDA, or a
portable computer having a wireless modem disposed therein. A typical client device
comprises a portable video display such as a micro-display device, and/or a portable audio
presentation system. Furthermore, the host may use storage means or elements to store
presentation or multimedia data to be transferred to be presented to a client device user.

In still other aspects of some embodiments, the host device comprises a controller or
communication link control device with drivers as described below residing within a
portable electronic device such as a wireless communications device, such as a wireless
telephone, a wireless PDA, or a portable computer. A typical client device in this
configuration comprises a client circuit or integrated circuit or module coupled to the host
and residing ihtin the same device, and to an internal video display such as a high resolution

screen for a mobile phone, and/or a portable audio presentation system.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the invention, as well as the structure and
operation of various embodiments of the invention, are described in detail below with
reference to the accompanying drawings. In the drawings, like reference numbers generally
indicate identical, functionally similar, and/or structurally similar elements or processing
steps, and the drawing in which an element first appears is indicated by the leftmost digit(s)
in the reference number.

FIG. 1A illustrates a basic environment in which embodiments of the invention
might operate including the use of a micro-display device used in conjunction with a
portable computer.

FIG. 1B illustrates a basic environment in which embodiments of the invention
might operate including the use of a micro-display device and audio presentation elements
used in conjunction with a wireless transceiver.

FIG. 1C illustrates a basic environment in which embodiments of the invention
might operate including the use of a micro-display device used in conjunction with a
portable computer.

FIG. 1D illustrates a basic environment in which embodiments of the invention
might operate including the use of a micro-display device and audio presentation elements

used in conjunction with a wireless transceiver.

[0034]
[0035]

[0036]

[0037]

[0038]
[0039]

[0040]
[0041]
[0042]
[0043]

[0044]
[0045]
[0046]
[0047]
 [0048]
[0049]
[0050]
[0051]
[0052]
[0053]
[0054]
[0055]
[0056]
[0057]

WO 2005/018191 PCT/US2004/026264

9

FIG. 2 illustrates the overall concept of a Mobile Digital Data Interface with a host
and client interconnection.

FIG. 3 illustrates the structure of a packet useful for realizing data transfers from a
client device to a host device.

FIG. 4 illustrates the use of an MDDI link controller and the types of signals passed
between a host and a client over the physical data link conductors for Type I and Type U
interfaces.

FIG. 5 illustrates the use of an MDDI link controller and the types of signals passed
between a host and a client over the physical data link conductors for Types II, II, and IV
interfaces.

FIG. 6 illustrates the structure of frames and sub-frames used to implement the
interface protocol. |

FIG. 7 illustrates the general structure of packets used to implement the interface
protocol.

FIG. 8 illustrates the format of a Sub-frame Header Packet.

FIG. 9 illustrates the format and contents of a Filler Packet.

FIG. 10 illustrates the format of a Video Stream Packet.

FIG. 11 illustrates the format and contents for the Video Data Format Descriptor of
FIG. 10.

| FIG. 12 illustrates the use of packed and unpacked formats for data.

FIG. 13 illustrates the format of an Audio Stream Packet.

FIG. 14 illustrates the use of byte-aligned and packed PCM formats for data

FIG. 15 illustrates the format of a User-Defined Stream Packet.

FIG. 16 illustrates the format of a Color Map Packet.

FIG. 17 illustrates the format of a Reverse Link Encapsulation Packet.

FIG. 18 illustrates the format of a Display Capability Packet.

FIG. 19 illustrates the format of a Keyboard Data Packet.

FIG. 20 illustrates the format of a Pointing Device Data Packet.

FIG. 21 illustrates the format of a Link Shutdown Packet.

FIG. 22 illustrates the format of a Display Request and Status Packet.

FIG. 23 illustrates the format of a Bit Block Transfer Packet.

FIG. 24 illustrates the format of a Bitmap Area Fill Packet.

FIG. 25 illustrates the format of a Bitmap Pattern Fill Packet.

[0058]
[0059]
[0060]
[0061]
[0062]
[0063]
[0064]
[0065]
[0066]
(00671
[0068]
[0069]

[0070]

[0071]
[0072]

[0073]

[0074]

[0075]

[0076]

[0077]

[0078]

WO 2005/018191 PCT/US2004/026264

10

FIG. 26 illustrates the format of a Communication Link Data Channel Packet.

FIG. 27 illustrates the format of a Interface Type Handoff Request Packet.

FIG. 28 illustrates the format of an Interface Type Acknowledge Packet.

FIG. 29 illustrates the format of a Perform Type Handoff Packet.

FIG. 30 illustrates the format of a Forward Audio Channel Enable Packet.

FIG. 31 illustrates the format of a Reverse Audio Sample Rate Packet.

FIG. 32 illustrates the format of a Digital Content Protection Overhead Packet.

FIG. 33 illustrates the format of a Transparent Color Enable Packet.

FIG. 34 illustrates the format of a Round Trip Delay Measurement Packet.

FIG. 35 illustrates the timing of events during the Round Trip Delay Measurement
Packet.

FIG. 36 illustrates a sample implementation of a CRC generator and checker useful
for implementing the invention.

FIG. 37A illustrates the timing of CRC signals for the apparatus of FIG. 36 when
sending data packets.

FIG. 37B illustrates the timing of CRC signals for the apparatus of FIG. 36 when
receiving data packets.

FIG. 38 illustrates processing steps for a typical service request with no contention.

FIG. 39 illustrates processing steps for a typical service request asserted after the
link restart sequence has begun, contending with link start.

FIG. 40 illustrates how a data sequence can be transmitted using DATA-STB
encoding.

FIG. 41 illustrates circuitry useful for generating the DATA and STB signals from
input data at the host, and then recovering the data at the client.

FIG. 42 illustrates drivers and terminating resistors useful for implementing one
embodiment.

FIG. 43 illustrates steps and signal levels employed by a client to secure service
from the host and by the host to provide such service.

FIG. 44 illustrates relative spacing between transitions on the Data0, other data lines
(DataX), and the strobe lines (Stb).

FIG. 45 illustrates the presence of a delay in response that can occur when a host

disables the host driver after transferring a packet.

[0079]

[0080]

[0081]

[0082]

[0083]

[0084]

[0085]

[0086]

[0087]

[0088]

[0089]

[0090]

[0091]

[0092]

[0093]

[0094]

[0095]

[0096]

[0097]

WO 2005/018191 PCT/US2004/026264

11

FIG. 46 illustrates the presence of a delay in response that can occur when a host
enables the host driver to transfer a packet.

FIG. 47 illustrates the relationship at the host receiver input between the timing of
the data being transferred and the leading and trailing edges of the strobe pulses.

FIG. 48 illustrates switching characteristics and corresponding client output delay
developed by the reverse data timing.

FIG. 49 illustrates a high level diagram of signal processing steps and conditions by
which synchronization can be implemented using a state machine.

FIG. 50 illustrates typical amounts of delay encountered for signal processing on the
forward and reverse paths in a system employing the MDDIL.

FIG. 51 illustrates marginal round trip delay measurement.

FIG. 52 illustrates Reverse Link data rate changes.

FIG. 53 illustrates a graphical representation of values of the Reverse Rate Divisor
versus forward link data rate.

FIGS. 54A and 54B illustrate steps undertaken in the operation of an interface.

FIG. 55 illustrates an overview of the interface apparatus processing packets.

FIG. 56 illustrates the format of a Forward Link Packet

FIG. 57 illustrates typical values for propagation delay and skew in an Type-I Link
interface.

FIG. 58 illustrates Data, Stb, and Clock Recovery Timing on a Type-I Link for
exemplary signal processing through the interface.

FIG. 59 illustrates typical values for propagation delaiy and skew in Type-II, Type-
IT or Type-1V Link interfaces.

FIGS. 60A, 60B, and 60C illustrate different possibilities for the timing of two data
signals and MDDI_Stb with respect to each other, being ideal, early, and late, respectively.

FIG. 61 illustrates interface pin assignments exemplary connectors used with a
Type-I/Type-1I interfaces.

FIGS. 62A and 62B illustrate possible MDDI_Data and MDDI_Stb waveforms for
both Type-I and Type-II Interfaces, respectively.

FIG. 63 illustrates a high level diagram of alternative signal processing steps and
conditions by which synchronization can be implemented using a state machine.

FIG. 64 illustrates exemplary relative timing between a series of clock cycles and

the timing of a various reverse link packets bits and divisor values.

WO 2005/018191 PCT/US2004/026264

12
[0098] FIG. 65 illustrates exemplary error code transfer processing.
[0099] FIG. 66 illustrates apparatus useful for error code transfer processing.
[00100] FIG. 67A illustrates error code transfer procéssing for code overloading.
[00101] FIG. 67B illustrates error code transfer processing for code reception.
[00102] FIG. 68A illustrates processing steps for a host initiated wake-up.
[00103] FIG. 68B illustrates processing steps for a client initiated wake-up.
[00104] FIG. 68C illustrates processing steps for host and client initiated wake-up with
contention.
[00105] FIG. 69 illustrates the format of a Request VCP Feature Packet
[00106] FIG. 70 illustrates the format of a VCP Feature Reply Packet
[00107] FIG. 71 illustrates the format of a VCP Feature Reply List
[00108] FIG. 72 illustrates the format of a Set VCP Feature Packet
[00109] FIG. 73 illustrates the format of a Request Valid Parameter Packet
[00110] FIG. 74 illustrates the format of a Valid Parameter Reply Packet
[00111] FIG. 75 illustrates the format of a Alpha-Cursor Image Capability Packet
[00112] FIG. 76 illustrates the format of a Alpha-Cursor Transparency Map Packet
[00113] FIG. 77 illustrates the format of a Alpha-Cursor Image Offset Packet
[00114] FIG. 78 illustrates the format of a Alpha-Cursor Video Stream Packet
[00115] FIG. 79 illustrates the format of a Scaled Video Stream Capability Packet
[00116] FIG. 80 illustrates the format of a Scaled Video Stream Setup Packet
[00117] FIG. 81 illustrates the format of a Scaled Video Stream Acknowledgement Packet
[00118] FIG. 82 illustrates the format of a Scaled Video Stream Packet
[00119] FIG. 83 illustrates the format of a Request Specific Status Packet
[00120] FIG. 84 illustrates the format of a Valid Status Reply List Packet
[00121] FIG. 85 illustrates the format of a Packet Processing Delay Parameters Packet
[00122] FIG. 86 illustrates the format of a Personal Display Capability Packet
[00123] FIG. 87 illustrates the format of a Display Error Report Packet
[00124] FIG. 88 illustrates the format of a Display Identification Packet
[00125] FIG. 89 illustrates the format of a Alternate Display Capability Packet
[00126] FIG. 90 illustrates the format of a Register Access Packet
[00127] FIG. 91A-91C illustrate use of two display buffers to reduce visible artifacts”
[00128] FIG. 92 illustrates two buffers with display refresh faster than image transfer”

[00129] FIG. 93 illustrates two buffers with display refresh slower than image transfer”

[00130]
[00131]
[00132]
[00133]
[00134]
[00135]

[00136]

[00137]

[00138]

WO 2005/018191 PCT/US2004/026264

13

FIG. 94 illustrates two buffers with display refresh much faster than image transfer”
FIG. 95 illustrates three buffers with display refresh faster than image transfer”

FIG. 96 illustrates three buffers with display refresh slower than image transfer”
FIG. 97 illustrates one buffer with display refresh faster than image transfer”

FIG. 98 illustrates host-client connection via daisy —chain and hub.

FIG. 99 illustrates client devices connected via a combination of hubs and daisy

chains.

DETAILED DESCRIPTION OF THE EMBODIMENTS
I. Overview

A general intent of the invention is to provide a Mobile Display Digital Interface
(MDDI), as discussed below, which results in or provides a cost-effective, low power
consumption, transfer mechanism that enables high- or very-high- speed data transfer over a
short-range communication link between a host device and a client device, such as a display
element, using a "serial" type of data link or channel. This mechanism lends itself to
implementation with miniature connectors and thin flexible cables which are especially
useful in connecting internal (to a housing or support frame) display elements or input
devices to a central controller, or external display elements or devices such as wearable
micro-displays (goggles or projectors) to portable computers, wireless communication
devices, or entertainment devices.

An advantage of embodiments of the invention is that a technique is provided for
data transfer that is low in complexity, low cost, has high reliability, fits well within the
environment of use, and is very robust, while remaining very flexible.

Embodiments of the invention can be used in a variety of situations to communicate
or transfer large quantities of data, generally for audio, video, or multimedia applications
from a host or source device where such data is generated or stored, to a client display or
presentation device at a high rate. A typical application, which is discussed below, is the
transfer of data from either a portable computer or a wireless telephone or modem to a
visual display device such as a small video screen or a wearable micro-display appliance,
such as in the form of goggles or helmets containing small projection lenses and screens, or
from a host to client device within such components. That is, from a processor to an

internal screen or other presentation element, as well as from various internal, or external

WO 2005/018191 PCT/US2004/026264

14

input devices employing a client to an internally located (collocated within same device
housing or support structure) host.

[00139] The characteristics or attributes of the MDDI are such that they are independent of
specific display technology. This is a highly flexible mechanism for transferring data at a
high rate without regards to the internal structure of that data, nor the functional aspects of
the data or commands it implements. This allows the timing of data packets being
transferred to be adjusted to adapt to the idiosyncrasies of particular client devices, such as
for unique display desires for certain devices, or to meet the requirements of combined
audio and video for some A-V systems, or for certain input devices such as joysticks, touch
pads, and so forth. The interface is very display element or client device agnostic, as long
as the selected protocol is followed. In addition, the aggregate serial link data or data rate
can vary over several orders of magnitude which allows a communication system or host
device designer to optimize the cost, power requirements, client device complexity, and
client device update rates.

[00140] The data interface is presented primarily for use in transferring large amounts of
high rate data over a "wired" signal link or small cable. However, some applications may
take advantage of a wireless link as well, including optical based links, provided it is
configured to use the same packet and data structures developed for the interface protocol,
and can sustain the desired level of transfer at low enough power consumption or

complexity to remain practical.

II. Environment

[00141] A typical application can be seen in FIGS. 1A and 1B where a portable or laptop
computer 100 and wireless telephone or PDA device 102 are shown communicating data
with display devices 104 and 106, respectively, along with audio reproduction systems 103
and 112. In addition, FIG 1A shows potential connections to a larger display or screen 114
or an image projector 116, which are only shown in one figure for clarity, but are
connectable to wireless device 102 as well. The wireless device can be currently receiving
data or have previously stored a certain amount of multimedia type data in a memory
element or device for later presentation for viewing and/or hearing by an end user of the
wireless device. Since a typical wireless device is used for voice and simple text
communications most of the time, it has a rather small display screen and simple audio

system (speakers) for communicating information to the device 102 user.

[00142]

[00143]

[00144]

[00145]

[00146]

WO 2005/018191 PCT/US2004/026264

15

Computer 100 has a much larger screen, but still inadequate external sound system,
and still falls short of other multimedia presentation devices such as a high definition
television, or movie screens. Computer 100 is used for purposes of illustration and other
types of processors, interactive video games, or consumer electronics devices can also be
used with the invention. Computer 100 can employ, but is not limited to or by, a wireless
modem or other built in device for wireless communications, or be connected to such
devices using a cable or wireless link, as desired.

This makes presentation of more complex or “rich” data a less than a useful or
enjoyable experience. Therefore, the industry is developing other mechanisms and devices
to present the information to end users and provide a minimum level of desired enjoyment
or positive experience.

As previously discussed above, several types of display devices have ’or are
currently being developed for presenting information to end users of device 100. For
example, one or more companies have developed sets of wearable goggles that project an
image in front of the eyes of a device user to present a visual display. When correctly
positioned such devices effectively "project" a virtual image, as perceived by a users eyes,
that is much larger than the element providing the visual output. That is, a very small
projection element allows the eye(s) of the user to "see" images on a much larger scale than
possible with typical LCD screens and the like. The use of larger virtual screen images also
allows the use of much higher resolution images than possible with more limited LCD
screen displays. Other display devices could include, but are not limited to, small LCD
screens or various flat panel display elements, projection lenses and display drivers for
projecting images on a surface, and so forth.

There may also be additional elements connected to or associated with the use of
wireless device 102 or computer 100 for presenting an output to another user, or to another
device which in turn transfers the signals elsewhere or stores them. For example, data may
be stored in flash memory, in optical form, for example using a writeable CD media or-on
magnetic media such as in a magnetic tape recorder and similar devices, for later use.

In addition, many wireless devices and computers now have built-in MP3 music
decoding capabilities, as well as other advanced sound decoders and systems. Portable
computers utilize CD and DVD playback capabilities as a general rule, and some have
small dedicated flash memory readers for receiving pre-recorded audio files. The issue with

having such capabilities is that digital music files promise a highly increased feature rich

WO 2005/018191 PCT/US2004/026264

16

experience, but only if the decoding and playback process can keep pace. The same holds
true for the digital video files.

[00147] To assist with sound reproduction, external speakers 114 are shown in FIG. la,
which could also be accompanied by addition elements such as sub-woofers, or "surround-
sound" speakers for front and rear sound projection. At the same time, speakers or
earphones 108 are indicated as built-in to the support frame or mechanism of micro-display
device 106 of FIG. 1b. As would be known, other audio or sound reproduction elements
can be used including power amplification or sound shaping devices.

[00148] In any case, as discussed above, when one desires to transfer high quality or high
resolution image data and high quality audio information or data si gnals from a data source
to an end user over one or more communication links 110, a high data rate is required. That
is, transfer link 110 is clearly a potential bottleneck in the communication of data as
discussed earlier, and is limiting system performance, since current transfer mechanisms do
not achieve the high data rates typically desired. As discussed above for example, for
higher image resolutions such as 1024 by 1024 pixels, with color depths of 24-32 bits per
pixel and at data rates of 30 fps, the data rates can approach rates in excess of 755 Mbps or
more. In addition, such images may be presented as part of a multimedia presentation
which includes audio data and potentially additional signals dealing with interactive gaming
or communications, or various commands, controls, or signals, further increasing the
quantity or data and the data rate.

[00149] It is also clear that fewer cables or interconnections required for establishing a data
link, means that mobile devices associated with a display are easier to use, and more likely
to be adopted by a larger user base. This is especially true where multiple devices are
commonly used to establish a full audio-visual experience, and more especially as the
quality level of the displays and audio output devices increases.

[00150] Another typical application related to many of the above and other improvements in
video screens and other output or input devices can be seen in FIGS. 1C and 1D where a
portable or laptop computer 130 and wireless telephone or PDA device 140 are shown
communicating data with “internal” display devices 134 and 144, respectively, along with
audio reproduction systems 136 and 146.

[00151] In FIGS. 1C and 1D, small cut-away sections of the overall electronic devices or
products are used to show the location of one or more internal hosts and controllers in one

portion of the device with a generalized communication link, here 138 and 148,

WO 2005/018191 PCT/US2004/026264

17

respectively, connecting them to the video display elements or screens having the
corresponding clients, across a rotating joint of some known type used throughout the
electronics industry today. One can see that the amount of data involved in these transfers
requires a large number of conductors to comprise links 138 and 148. It is estimated that
such communication links are approaching 90 or more conductors in order to satisfy today’s
growing needs for utilizing advanced color and graphical interfaces, display elements, on
such devices because of the types of parallel or other known interface techniques available
for transferring such data..

[00152] Unfortunately, the higher data rates exceed current technology available for
transferring data. Both in terms of the raw amount of data needing to be transferred per unit
time, and in terms of manufacturing reliable cost effective physical transfer mechanisms.

[00153] What is needed is a technique for transferring data at higher rates for the data
transfer link or communication path between presentation elements and the data source,
which allows for consistently low(er) power, light weight, and as simple and economical a
cabling structure as possible. Applicants have developed a new technique, or method and
apparatus, to achieve these and other goals to allow an array of mobile, portable, or even
fixed location devices to transfer data to desired displays, micro-displays, or audio transfer
elements, at very high data rates, while maintaining a desired low power consumption, and

complexity. .

IIl. High Rate Digital Data Interface System Architecture

[00154] In order to create and efficiently utilize a new device interface, a signal protocol and
system architecture has been formulated that provides a very high data transfer rate using
low power signals. The protocol is based on a packet and common frame structure, or
structures linked together to form a protocol for communicating a pre-selected set of data or

data types along with a command or operational structure imposed on the interface.

A. Overview

[00155] The devices connected by or communicating over the MDDI link are called the host
and client, with the client typically being a display device of some type, although other
output and input devices are contemplated. Data from the host to the display travels in the
forward direction (referred to as forward traffic or link), and data from the client to the host

travels in the reverse direction (reverse traffic or link), as enabled by the host. This is

WO 2005/018191 PCT/US2004/026264

18

illustrated in the basic configuration shown in FIG. 2. In FIG. 2, a host 202 is connected to
a client 204 using a bi-directional communication channel 206 which is illustrated as
comprising a forward link 208 and a reverse link 210. However, these channels are formed
by a common set of conductors whose data transfer is effectively switched between the
forward or reverse link operations. - This allows for greatly reduced numbers of
conductors, immediately addressing one of the many problems faced with current
approaches to high speed data transfer in low power environments such as for mobile
electronic devices.

[00156] As discussed elsewhere, the host comprises one of several types of devices that can
benefit from using the present invention. For example, host 202 could be a portable
computer in the form of a handheld, laptop, or similar mobile computing device, it could be
a Personal Data Assistant (PDA), a paging device, or one of many wireless telephones or
modems. Alternatively, host 202 could be a portable entertainment or presentation device
such as a portable DVD or CD player, or a game playing device.

[00157] Furthermore, the host can reside as a host device or control element in a variety of
other widely used or planned commercial products for which a high speed communication
link is desired with a client. For example, a host could be used to transfer data at high rates
from a video recording device to a storage based client for improved response, or to a high
resolution larger screen for presentations. An appliance such as a refrigerator that
incorporates an onboard inventory or computing system and/or Bluetooth connections to
other household devices, can have improved display capabilities when operating in an
internet or Bluetooth connected mode, or have reduced wiring needs for in-the-door
displays (a client) and keypads or scanners (client) while the electronic computer or control
systems (host) reside elsewhere in the cabinet. In general, those skilled in the art will
appreciate the wide variety of modern electronic devices and appliances that may benefit
from the use of this interface, as well as the ability to retrofit older devices with higher data
rate transport of information utilizing limited numbers of conductors available in connectors
or cables.

[00158] At the samé time, client 204 could comprise a variety of devices useful for
presenting information to an end user, or presenting information from a user to the host.
For example, a micro-display incorporated in goggles or glasses, a projection device built
into a hat or helmet, a small screen or even holographic element built into a vehicle, such as

in a window or windshield, or various speaker, headphone, or sound systems for presenting

WO 2005/018191 PCT/US2004/026264

19

high quality sound or music. Another example would be the use of touch pads or sensitive
devices, voice recognition input devices, security scanners and so forth that may want to
transfer a significant amount of information from the user with little actual “input™ other
than touch or sound from the user.

[00159] However, those skilled in the art will readily recognize that the present invention is
not limited to these devices, there being many other devices on the market, and proposed
for use, that are intended to provide end users with high quality images and sound, either in
terms of storage and transport or in terms of presentation at playback. The present
invention is useful in increasing the data throughput between various elements or devices to
accommodate the high data rates needed for realizing the desired user experience.

[00160] The inventive MDD Interface and communication signal protocol may be used to
simplify the interconnect between a host processor and a display within a device (internal
mode) to reduce the cost of these connections and improve reliability, not just for external
elements (external mode). The aggregate serial link data rate on each signal pair used by
this interface structure can vary over many orders of magnitude, which allows a system or
device designer to easily optimize cost, power, implementation complexity, and the display
update rate. The attributes of MDDI are independent of display technology. The timing of
data packets transferred through the interface can be easily adjusted to adapt to
idiosyncrasies of particular display devices or combined timing requirements of audio-video
systems. While this allows the system to have the smallest power consumption possible, it

is not a requirement of the display to have a frame buffer in order to use MDDI.

B. Interface Types

[00161] The MDD Interface is contemplated as addressing five or more somewhat distinct
physical types of interfaces found in the communications and computer industries. These
are labeled simply as Type-I, Type-II, Type-III, Type-IV and Type-U, although other labels
or designations may be applied by those skilled in the art depending upon the application
they are used for. ’

[00162] The Type-I interface is configured as a 6-wire (conductor) interface which makes it
suitable for mobile or wireless telephones, PDAs, e-Books, electronic games, and portable
media players, such as CD players, or MP3 players, and similar devices or devices used on
similar types of electronic consumer technology. In one embodiment, a Type-U inteﬁace is

configured as an 8-wire (conductor) interface which is more suitable for laptop, notebook,

WO 2005/018191 PCT/US2004/026264

20

or desktop personal computers and similar devices or applications, that do not require the
display to be updated rapidly and do not have a built-in MDDI link controller. This
interface type is also distinguishable by the use of an additional two-wire Universal Serial
Bus (USB) interface, which is extremely useful in accommodating existing operating
systems or software support found on most personal computers. Type-U interfaces can also
be used in a USB-only mode where the display simply has a USB connector that connects
to a standard USB port on a computer or similar device, for example a consumer electronics
device equipped with such a port, such as digital cameras or video players.

[00163] Type-II, Type-III, and Type-IV interfaces are suitable for high performance clients
or devices and use larger more complex cabling with additional twisted-pair type
conductors to provide the appropriate shielding and low loss transfers for data signals.

[00164] The Type-I interface passes signals which can comprise display, audio, control, and
limited signaling information, and is typically used for mobile clients or client devices that
do not require high-resolution full-rate video data. A Type-I interface can easily support
SVGA resolution at 30 fps plus 5.1 channel audio, and in a minimum configuration might
use only three wire pairs total, two pairs for data transmission and one pair for power
transfer. This type of interface is primarily intended for devices, such as mobile wireless
devices, where a USB host is typically not available within the such device for connection
and transfer of signals. In this configuration, the mobile wireless device is a MDDI host
device, and acts as the "master" that controls the communication link from the host, which
generally sends data to the client (forward traffic or link) for presentation, display or
playback.

[00165] In this interface, a host enables receipt of communication data at the host from the
client (reverse traffic or link) by sending a special command or packet type to the client that
allows it to take over the bus (link) for a specified duration and send data to the host as
reverse packets. This is illustrated in FIG. 3, where a type of packet referred to as an
encapsulation packet (discussed below) is used to accommodate the transfer of reverse
packets over the transfer link, creating the reverse link. The time interval allocated for the
host to poll the client for data is pre-determined by the host, and is based on the
requirements of each specified application. This type of half-duplex bi-directional data
transfer is especially advantageous where a USB port is not available for transfer of

information or data from the client.

WO 2005/018191 PCT/US2004/026264

21

[00166] High-performance displays capable of HDTV type or similar high resolutions
require around 1.5 Gbps rate data streams in order to support full-motion video. The Type-
IT interface supports high data rates by transmitting 2 bits in parallel, the Type-1IT by
transmitting 4 bits in parallel, and the Type-IV interface transfers 8 bits in parallel. Type-II
and Type-IIT use the same cable and connector as Type-I but can operate at twice and four
times the data rate to support higher-performance video applications on portable devices.
Type- IV is suited for very high performance clients or displays and requires a slightly
larger cable that contains additional twisted-pair data signals.

[00167] The protocol used by the MDDI allows each Type-I- II, -III, or -IV host to
generally communicate with any Type-I, -II, -III, or -IV client by negotiating what is the
highest data rate possible that can be used. The capabilities or available features of what
can be referred to as the least capable device is used to set the performance of the link. As a
rule, even for systems where the host and client are both capable using Type-II, Type-II1, or
Type-1V interfaces, both begin operation as a Type-I interface. The host then determines
the capability of the target client, and negotiates a hand-off or reconfiguration operation to
either Type-II, Type-III, or Type-IV mode, as appropriate for the particular application.

[00168] It is generally possible for the host to use the proper link-layer protocol (discussed
further below) and step down or again reconfigure operation at generally any time to a
slower mode to save power or to step up to a faster mode to support higher speed transfers,
such as for higher resolution display content. For example, a host may change interface
types when the system switches from a power source such as a battery to AC power, or
when the source of the display media switches to a lower or higher resolution format, or a
combination of these or other conditions or events may be considered as a basis for
changing an interface type, or transfer mode.

[00169] It is also possible for a system to communicate data using one mode in one direction
and another mode in another direction. For example, a Type IV interface mode could be
used to transfer data to a display at a high rate, while a Type I or Type U mode is used when
transferring data to a host device from peripheral devices such as a keyboard or a pointing
device. It will be appreciated by one skilled in the art that hosts and clients may
communicate outgoing data at different rates.

[00170] Often, users of the MDDI protocol may distinguish between an “external” mode and
an “internal” mode. An external mode describes the use of MDDI to connect a host in one

device to a client outside of that device that is up to about 2 meters from the host. In this

WO 2005/018191 PCT/US2004/026264

22

situation, the host may also send power to the external client so that both devices can easily
operate in a mobile environment. An internal mode describes when the host is connected
to a client contained inside the same device, such as within a common housing or support
frame or structure of some kind. An example would be applications within a wireless
phone or other wireless device, or a portable computer or gaming device where the client is
a display or display driver and the host is a central controller, graphics engine, or CPU
element. Since a client is located much closer to the host in internal mode applications as
opposed to external mode applications, there are generally no requirements discussed for

the power connection to the client in such configurations.

C. Physical Interface Structure

[00171] The general disposition of a device or link controller for establishing
communications between host and client devices is shown in FIGS. 4 and 5. In FIGS. 4 and
5, a MDDI link controller 402 and 502 is shown installed in a host device 202 and a MDDI
link controller 404 and 504 is shown installed in a client device 204. As before, host 202 is
connected to a client 204 using a bi-directional communication channel 406 comprising a
series of conductors. As discussed below, both the host and client link controllers can be
manufactured as an integrated circuit using a single circuit design that can be set, adjusted
or programmed to respond as either a host controller (driver) or a client controller
(receiver). This provides for lower costs due to larger scale manufacturing of a single
circuit device.

[00172] In FIG. 5, a MDDI link controller 502 is shown installed in a host device 202' and a
MDDI link controller 504 is shown installed in a client device 204'. As before, host 202’ is
connected to a client 204' using a bi-directional communication channel 506 comprising a
series of conductors. As discussed before, both the host and client link controllers can be
manufactured using a single circuit design.

[00173] Signals passed between a host and a client, such as a display device, over the MDDI
link, or the physical conductors used, are also illustrated in FIGS. 4 and 5. As seen in
FIGS. 4 and 5, the primary path or mechanism for transferring data through the MDDI uses
data signals labeled as MDDI_Data0+/- and MDDI_Stb+/-. Each of these are low voltage
data signals that are transferred over a differential pair of wires in a cable. There is only
one transition on either the MDDI_Data0 pair or the MDDI_Stb pair for each bit sent over

the binterface. This is a voltage based transfer mechanism not current based, so static

WO 2005/018191 PCT/US2004/026264

23

current consumption is near zero. The host drives the MDDI_Stb signals to the client

display.
[00174] While data can flow in both the forward and reverse directions over the MDDI_Data
pairs, that is, it is a bi-directional transfer path, the host is the master or controller of the
data link. The MDDI_Data0 and MDDI-Stb signal paths are operated in a differential mode
to maximize noise immunity. The data rate for signals on these lines is determined by the
rate of the clock sent by the host, and is variable over a range of about 1 kbps up to 400
Mbps or more.
[00175] The Type-Il interface contains one additional data pair or conductors or paths
beyond that of the Type-I, referred to as MDDI_Datal+/-. The Type-III interface contains
two additional data pairs or signal paths beyond that of the Type-II interface referred to as
MDDI_Data2+/-, and MDDI_Data3+/-. The Type-IV interface contains four more data
pairs or signal paths beyond that of the Type-III interface referred to as: MDDI_data4+/-,
MDDI_Data5+/-, MDDI_Data6+/-, and MDDI_Data7+/-, respectively. In each of the
above interface configurations, a host can send power to the client or display using the wire-
pair or signals designated as MDDI_Pwr and MDDI_Gnd. As discussed further below,
power transfer can also be accommodated, if desired, in some configurations on the
MDDI_datad+/-, MDDI_Data5+/-, MDDI_Data6+/-, or MDDI_Data7+/- conductors when

an interface “Type” is being used that employs fewer conductors than are available or

present for the other modes.

[00176] A summary of the signals passed between the host and client (display) over the
MDDI link for various modes are illustrated in Table I, below, in accordance with the
interface type.

Table I
Type-1 Type-11 Type-111 Type-IV
MDDI_Pw1/Gnd | MDDI_Pwr/Gnd | MDDI_Pwr/Gnd | MDDI_Pwr/Gnd
MDDI_Stb-+/- MDDL_Stb+/- MDDI_Stb+/- MDDI_Stb+/-

MDDI_Data0-+/-

MDDI_Data0-/-
MDDI_Datal+/-

MDDI_Data0+/-
MDDI_Datal-+/-
MDDI_Data2-+/-
MDDI_Data3-+/-

MDDI_Data0+/-
MDDI_Datal+/-
MDDI_Data2+/-
MDDI_Data3+/-

Optional Pwr Optional Pwr Optional Pwr MDDI_Data4-+/-
Optional Pwr Optional Pwr Optional Pwr MDDI_Data5+/-
Optional Pwr Optional Pwr Optional Pwr MDDI_Data6+/-
Optional Pwr Optional Pwr Optional Pwr MDDI_Data7+/-

WO 2005/018191 PCT/US2004/026264

24

[00177] Also note that the MDDI Pwr/Gnd connections for transfer from the host are
provided generally for external modes. Internal applications or modes of operation
generally have clients that draw power directly from other internal resources, and do not use
MDDI to control power distribution, as would be apparent to one skilled in the art, so such
distribution is not discussed in further detail here. However, it is certainly possible to allow
power to be distributed through the MDDI interface to allow for certain kinds of power
control, synchronization, or interconnection convenience, for example, as would be
understood by one skilled in the art.

[00178] Cabling generally used to implement the above structure and operation is nominally
on the order of 1.5 meters in length, generally 2 meters or less, and contains three twisted
pairs of conductors, each in turn being multi-strand 30 AWG wire. A foil shield covering is
wrapped or otherwise formed above the three twisted pairs, as an additional drain wire. The
twisted pairs and shield drain conductor terminate in the display connector with the shield
connected to the shield for the display (client), and there is an insulating layer, covering the
entire cable, as would be well known in the art. The wires are paired as: MDDI_Gnd with
MDDI_Pwr, MDDI_Stb+ with MDDI_Stb-; MDDI_Data0+ with MDDI Data0-;
MDDI_Datal+ with MDDI_Datal-; and so forth.

D. Data Types and Rates
[00179] To achieve a useful interface for a full range of user experiences and applications,
the Mobile Digital Data Interface (MDDI) provides support for a variety of clients and
display information, audio transducers, keyboards, pointing devices, and many other input
or output devices that might be integrated into or working in concert with a mobile display
device, along with control information, and combinations thereof. The MDD interface is
designed to be able to accommodate a variety of potential types of streams of data
traversing between the host and client in either the forward or reverse link directions using a
minimum number of cables or conductors. Both isochronous streams and asynchronous
stream (updates) are supported. Many combinations of data types are possible as long as
the aggregate data rate is less than or equal to the maximum desired MDDI link rate, which
is limited by the maximum serial rate and number of data airs employed. These could

include, but are not limited to those items listed in Tables II and IIT below.

PCT/US2004/026264

WO 2005/018191
25

Table 11
Transferring from Host to Client
isochronous video data 720x480,12bit, 30f/s ~124.5 Mbps
isochronous stereo audio data | 44.1kHz, 16bit, stereo ~ 1.4 Mbps
asynchronous graphics data | 800x600, 12bit, 10f/s, stereo | ~115.2 Mbps
asynchronous control minimum << 1.0 Mbps

Table III
Transferring from Client to Host
isochronous voice data 8 kHz, 8bit << 1.0 Mbps
isochronous video data 640x480, 12bit, 24f/s | ~ 88.5 Mbps
asynchronous status, user input, etc. | minimum << 1.0 Mbps

[00180] The interface is not fixed but extensible so that it can support the transfer of a

variety of information "types" which includes user-defined data, for future system
flexibility. Specific examples of data to be accommodated are: full-motion video, either in
the form of full or partial screen bitmap fields or compressed video; static bitmaps at low
rates to conserve power and reduce implementation costs; PCM or compressed audio data at
a variety of resolutions or rates; pointing device position and selection, and user-definable
data for capabilities yet to be defined. Such data may also be transferred along with control
or status information to detect device capability or set operating parameters.

[00181] Embodiments of the invention advance the art for use in data transfers that include,
but are not limited to: watching a movie (video display and audio); using a personal
computer with limited personal viewing (graphics display, sometimes combined with video
and audio); playing a video game on a PC, console, or personal device (motion graphics
display, or synthetic video and audio); "surfing" the Internet, using devices in the form of a
video phone (bi-directional low-rate video and audio), a camera for still digital pictures, or a
camcorder for capturing digital video images; using a phone or PDA docked with a
projector to give a presentation or docked with a desktop docking station connected to a
video monitor, keyboard, and mouse; and for productivity enhancement or entertainment
use with cell phones, smart phones, or PDAs, including wireless pointing devices and

keyboard data.

[00182]

[00183]

[00184]

WO 2005/018191 PCT/US2004/026264

26

The mobile data interface as discussed below is presented in terms of providing
large amounts of A-V type data over a communication or transfer link which is generally
configured as a wire-line or cable type link. However, it will be readily apparent that the
signal structure, protocols, timing, or transfer mechanism could be adjusted to provide a
link in the form of an optical or wireless media, if it can sustain the desired level of data
transfer.

The MDD interface signals use a concept known as the Common Frame (CF) for the
basic signal protocol or structure. The idea behind using of a Common Frame is to provide
a synchronization pulse for simultaneous isochronous data streams. A client device can use
this common frame rate as a time reference. A low CF rate increases channel efficiency by
decreasing overhead to transmit the sub-frame header. On the other hand, a high CF rate
decreases the latency, and allows a smaller elastic data buffer for audio samples. The CF
rate of the present inventive interface is dynamically programmable and may be set at one
of many values that are appropriate for the isochronous streams used in a particular
application. That is, the CF value is selected to best suit the given client and host
configuration, as desired.

The number of bytes generally required per common frame, which is adjustable or
programmable, for isochronous data steams that are most likely to be used with an

application, such as for a head-mounted micro-display are shown in Table IV.

Table IV
Common Frame Rate (CFR) =300 Hz
X Y | Bit| Frame Channel Rate Byte/
Rate (Mbps) CF

Computer Game | 720 | 480 | 24 30 1 248.832 27000
Computer 800 | 600 | 24 10 1 115.200 12500
Graphics

Video 640 | 480 | 12 | 29.97 or 1 221.184 92160

30

CD Audio 1 1 16 | 44100 2 14112 294
Voice 1 1 8 8000 1 0.064 | 26-2/3

[00185]

Fractional counts of bytes per common frame are easily obtained using a simple
programmable M/N counter structure. For example, a count of 26-2/3 bytes per CF is

implemented by transferring 2 frames of 27 bytes each followed by one frame of 26 bytes.

WO 2005/018191 PCT/US2004/026264

27

A smaller CF rate may be selected to produce an integer number of bytes per CF. However,
generally speaking, to implement a simple M/N counter in hardware should require less
area within an integrated circuit chip or electronic module used to implement part or all of
embodiments of the invention than the area needed for a larger audio sample FIFO buffer.

[00186] An exemplary application that illustrates the impact of different data transfer rates
and data types is a Karaoke system. For Karaoke, a system where an end user, or users,
sings along with a music video program. Lyrics of the song are displayed somewhere on,
typically at the bottom of, a screen so the user knows the words to be sung, and roughly the
timing of the song. This application requires a video display with infrequent graphics
updates, and mixing of the user’s voice, or voices, with a stereo audio stream.

[00187] If one assumes a common frame rate of 300 Hz, then each CF will consist of: 92,160
bytes of video content and 588 bytes of audio content (based on 147 16-bit samples, in
stereo) over the forward link to the client display device, and an average of 26.67 (26-2/3)
bytes of voice are sent back from a microphone to the mobile Karaoke machine.
Asynchronous packets are sent between the host and the display, possibly head mounted.
This includes at most 768 bytes of graphics data (quarter-screen height), and less than about
200 bytes (several) bytes for miscellaneous control and status commands.

[00188] - Table V, shows how data is allocated within a Common Frame for the Karaoke
example. The total rate being used is selected to be about 225 Mbps. A slightly higher rate
of 226 Mbps allows about another 400 bytes of data per sub-frame to be transferred which

allows the use of occasional control and status messages.

Table V
Element Rate Bytes/CF

Music Video at 640 x 480 pixels and 30 fps | 92160
Lyric Text at 640 x 120 pixels and 1 fps 768
CD Audio at 44,100 sps, stereo, 16-bit 588
Voice at 8,000 sps, mono, 8-bit 26.67
Sub-frame Header 19
Reverse Link Overhead 26.67+2%9+20
Total Bytes/CF 93626.33

Total Rate (Mbps) 224.7032

WO 2005/018191 PCT/US2004/026264

28

TIL(Continued) High Rate Digital Data Interface System Architecture
E. Link Layer

[00189] Data transferred using the MDD interface high-speed serial data signals consists of a
stream of time-multiplexed packets that are linked one after the other. Even when a
transmitting device has no data to send, a MDDI link controller generally automatically
sends filler packets, thus, maintaining a stream of packets. The use of a simple packet
structure ensures reliable isochronous timing for video and audio signals or data streams.

[00190] Groups of packets are contained within signal elements or structures referred to as
sub-frames, and groups of sub-frames are contained within signal elements or structures
referred to as a media-frame. A sub-frame contains one or more packets, depending on
their respective size and data transfer uses, and a media-frame contains one more sub-
frames. The largest sub-frame provided by the protocol employed by the embodiments
presented here is on the order of 232-1 or 4,294,967,295 bytes, and the largest media-frame
size then becomes on the order of 216-1 or 65,535 sub-frames.

[00191] A special header packet contains a unique identifier that appears at the beginning of
each sub-frame, as is discussed below. That identifier is also used for acquiring the frame
timing at the client device when communication between the host and client is initiated.
Link timing acquisition is discussed in more detail below.

[00192] Typically, a display screen is updated once per media-frame when full-motion video
is being displayed. The display frame rate is the same as the media-frame rate. The link
protocol supports full-motion video over an entire display, or just a small region of full-
motion video content surrounded by a static image, depending on the desired application.
In some low-power mobile applications, such as viewing web pages or email, the display
screen may only need to be updated occasionally. In those situations, it is advantageous to
transmit a single sub-frame and then shut down or inactivate the link to minimize power
consumption. The interface also supports effects such as stereo vision, and handles
graphics primitives.

[00193] Sub-frames allow a system to enable the transmission of high-priority packets on a
periodic basis. This allows simultaneous isochronous streams to co-exist with a minimal
amount of data buffering. This is one advantage embodiments provide to the display
process, allowing multiple data streams (high speed communication of video, voice,
control, status, pointing device data, etc.) to essentially share a common channel. It

transfers information using relatively few signals. It also enables display-technology-

WO 2005/018191 PCT/US2004/026264

29

specific actions to exist, such as horizontal sync pulses and blanking intervals for a CRT

monitor.

F. Link Controller
[00194] The MDDI link controller shown in FIGS. 4 and 5 is manufactured or assembled to
be a completely digital implementation with the exception of the differential line receivers
which are used to receive MDDI data and strobe signals. However, even the differential
line drivers and receivers can be implemented in the same digital integrated circuits with the
link controller, such as when making a CMOS type IC. No analog functions or phase lock
loops (PLLs) are required for bit recovery or to implement the hardware for the link
controller. The host and client link controllers contain very similar functions, with the
exception of the client interface which contains a state machine for link synchronization.
Therefore, the embodiments of the invention allow the practical advantage of being able to
create a single controller design or circuit that can be configured as either a host or client,

which can reduce manufacturing costs for the link controllers, as a whole.

IV. Interface Link Protocol
A. Frame structure ‘

[00195] The signal protocol or frame structure used to implement the forward link
communication for packet transfer is illustrated in FIG. 6. As shown in FIG. 6, information
or digital data is grouped into elements known as packets. Multiple packets are in turn
grouped together to form what are referred to as a "sub-frame," and multiple sub-frames are
in turn grouped together to form a "media" frame. To control the formation of frames and
transfer of sub-frames, each sub-frame begins with a specially predefined packet referred to
as a Sub-frame Header Packet (SHP).

[00196] The host device selects the data rate to be used for a given transfer. This rate can be
changed dynamically by the host device based on both the maximum transfer capability of
the host, or the data being retrieved from a source by the host, and the maximum capability
of the client, or other device the data is being transferred to.

[00197] A recipient client device designed for, or capable of, working with the MDDI or
inventive signal protocol is able to be queried by the host to determine the maximum, or
current maximum, data transfer rate it can use, or a default slower minimum rate may be

used, as well as useable data types and features supported. This information could be

WO 2005/018191 PCT/US2004/026264

30

transferred using a Display Capability Packet (DCP), as discussed further below. The client
display device is capable of transferring data or communicating with other devices using the
interface at a pre-selected minimum data rate or within a minimum data rate range, and the
host will perform a query using a data rate within this range to determine the full
capabilities of the client devices.

[00198] Other status information defining the nature of the bitmap and video frame-rate
capabilities of the display can be transferred in a status packet to the host so that the host
can configure the interface to be as efficient or optimal as practical, or desired within any
system constraints.

[00199] The host sends filler packets when there are no (more) data packets to be transferred
in the present sub-frame, or when the host cannot transfer at a rate sufficient to keep pace
with the data transmission rate chosen for the forward link. Since each sub-frame begins
with a sub-frame header packet, the end of the previous sub-frame contains a packet (most
likely a filler packet) the exactly fills the previous sub-frame. In the case of a lack of room
for data bearing packets per se, a filler packet will most likely be the last packet in a sub-
frame, or at the end of a next previous sub-frame and before a sub-frame header packet. It
is the task of the control operations in a host device to ensure that there is sufficient space
remaining in a sub-frame for each packet to be transmitted within that sub-frame. At the
same time, once a host device initiates the sending of a data packet, the host must be able to
successfully complete a packet of that size within a frame without incurring a data under-
run condition.

[00200] In one aspect of embodiments, sub-frame transmission has two modes. One mode is
a periodic sub-frame mode, or periodic timing epochs, used to transmit live video and audio
streams. In this mode, the Sub-frame length is defined as being non-zero. The second
mode is an asynchronous or non-periodic mode in which frames are used to provide bitmap
data to a client only when new information is available. This mode is defined by setting the
sub-frame length to zero in the Sub-frame Header Packet. When using the periodic mode,
sub-frame packet reception may commence when the display has synchronized to the
forward link frame structure. This corresponds to the "in sync" states defined according to
the state diagram discussed below with respect to FIG. 49 or FIG. 63. In the asynchronous
non-periodic sub-frame mode, reception commences after the first Sub-frame Header

packet is received.

WO 2005/018191 PCT/US2004/026264

31

B. Overall Packet Structure

[00201] The format or structure of packets used to formulate the signaling protocol
implemented by the embodiments are presented below, keeping in mind that the interface is
extensible and additional packet structures can be added as desired. The packets are labeled
as, or divided into, different "packet types" in terms of their function in the interface, that is,
commands or data they transfer. Therefore, each packet type denotes a pre-defined packet
structure for a given packet which is used in manipulating the packets and data being
transferred. As will be readily apparent, the packets may have pre-selected lengths or have
variable or dynamically changeable lengths depending on their respective functions. The
packets could also bear differing names, although the same function is still realized, as can
occur when protocols are changed during acceptance into a standard. The bytes or byte
values used in the various packets are configured as multi-bit (8- or 16-bit) unsigned
integers. A summary of the packets being employed along with their "type" designations,
listed in type order, is shown in Tables VI-1 through VI-4.

[00202] Each table represents a general “type” of packet within the overall packet structure
for ease in illustration and understanding. There is no limitation or other impact implied or
being expressed for the invention by these groupings, and the packets can be organized in
many other fashions as desired. The direction in which transfer of a packet is considered

valid is also noted.

Table VI -1
Link Control Packets
Packet} Valid in | Valid in
Packet Name Type |Forward | Reverse
Sub-frame Header Packet 15359 X
Filler Packet 0 X X
Reverse Link Encapsulation Packet 65 X
Link Shutdown Packet 69 X
Interface Type Handoff Request Packet | 75 X
Interface Type Acknowledge Packet 76 X
Perform Type Handoff Packet 77 X
Round Trip Delay Measurement Packet | 82 X
Forward Link Skew Calibration Packet | 83 X

WO 2005/018191

PCT/US2004/026264

32
Table VI -2
Basic Media Stream Packets
Packet| Valid in | Valid in
Packet Name Type |Forward | Reverse
Video Stream Packet 16 X X
Audio Stream Packet 32 X X
1-15,
18 — X X
Reserved Stream Packets 31,
33—
55
User-Defined Stream Packets 56 - 63 X X
Color Map Packet 64 X X
Forward Audio Channel Enable Packet | 78 X
Reverse Audio Sample Rate Packet 79 X
Transparent Color Enable Packet 81 X
Table VI -3
Display Status and Control Packets
Packet| Valid in | Valid in
Packet Name Type [Forward | Reverse
Display Capability Packet 66 X
Keyboard Data Packet 67 X X
Pointing Device Data Packet 68 X X
Display Request and Status Packet 70 X
Digital Content Protection Overhead 80 X X
Packet
Request VCP Feature Packet 128 X
VCP Feature Reply Packet 129 X
Set VCP Feature Packet 130 X
Request Valid Parameter Packet 131 X
Valid Parameter Reply Packet 132 X
Request Specific Status Packet 138 X
Valid Status Reply List Packet 139 X
Packet Processing Delay Parameters 140 X
Packet
Personal Display Capability Packet 141 X
Display Error Report Packet 142 X
Scaled Video Stream Capability Packet | 143 X
Display Identification Packet 144 X
Alternate Display Capability Packet 145 X
Register Access Packet 146 X

WO 2005/018191 PCT/US2004/026264

33

Table VI -4
Advanced Graphic and Display Packets

Packet| Valid in | Valid in
Packet Name Type |Forward | Reverse
Bit Block Transfer Packet 71 X
Bitmap Area Fill Packet 72 X
Bitmap Pattern Fill Packet 73 X
Read Frame Buffer Packet 74 X
Alpha-Cursor Image Capability Packet | 133 X
Alpha-Cursor Transparency Map 134 X
Packet
Alpha-Cursor Image Offset Packet 135 X
Alpha-Cursor Video Stream Packet 17 X
Scaled Video Stream Capability Packet | 143 X
Scaled Video Stream Setup Packet 136 X
Scaled Video Stream 137 X
Acknowledgement Packet
Scaled Video Stream Packet 18 X
[00203] Something that is clear from other discussions within this text is that while the

Reverse Encapsulation Packet, Display Capability Packet, and Display Request and Status
Packet are each conmsidered very important too or even required for External Mode
operation, they can be considered optional for Internal Mode operation. This creates yet
another type of MDD interface protocol which allows communication of data at very high
speeds with a reduced set of communications packets, and corresponding simplification of
control and timing.

[00204] Packets have a common basic structure or overall set of minimum fields comprising
a Packet Length field, a Packet Type field, Data Bytes field(s), and a CRC field, which is
illustrated in FIG. 7. As shown in FIG. 7, the Packet Length field contains information, in
the form of a multi-bit or -byte value, that specifies the total number of bits in the packet, or
its length between the packet length field and the CRC field. In one embodiment, the
packet length field contains a 16-bit or 2-byte wide, unsigned integer, that specifies the
packet length. The Packet Type field is another multi-bit field which designates the type of
information that is contained within the packet. In an exemplary embodiment, this is an 16-
bit or 2-byte wide value, in the form of an 16-bit unsigned integer, and specifies such data

types as display capabilities, handoff, video or audio streams, status, and so forth.

WO 2005/018191 PCT/US2004/026264

34

[00205] A third field is the Data Bytes field, which contains the bits or data being transferred
or sent between the host and client devices as part of that packet. The format of the data is
defined specifically for each packet type according to the specific type of data being
transferred, and may be separated into a series of additional fields, each with its own format
requirements. That is, each packet type will have a defined format for this portion or field.
The Jast field is the CRC field which contains the results of a 16-bit cyclic redundancy
check calculated over the Data Bytes, Packet Type, and Packet Length fields, which is used
to confirm the integrity of the information in the packet. In other words, calculated over the
entire packet except for the CRC field itself. The client generally keeps a total count of the
CRC errors detected, and reports this count back to the host in the Display Request and
Status Packet (see further below).

[00206] Generally, these field widths and organization are designed to keep 2-byte fieids
aligned on an even byte boundary, and 4-byte fields aligned on 4-byte boundaries. This
allows packet structures to be easily built in a main memory space of, or associated with, a
host and a client without violating the data-type alignment rules encountered for most or
typically used processors or contro] circuits. -

[00207] During transfer of the packets, fields are transmitted starting with the Least
Significant Bit (LSB) first and ending with the Most Significant Bit (MSB) transmitted last.
Parameters that are more than one byte in length are transmitted using the least significant
byte first, which results in the same bit transmission pattern being used for a parameter
greater than 8 bits in length, as is used for a shorter parameterl where the LSB is transmitted
first. The data fields of each packet are generally transmitted in the order that they are
defined in the subsequent sections below, with the first field listed being transmitted first,
and the last field described being transmitted last. The data on the MDDI_Data0 signal path
is aligned with bit '0' of bytes transmitted on the interface in any of the modes, Type-I,
Type-II, Type-III, or Type-IV. The

[00208] When manipulating data for displays, the data for arrays of pixels are transmitted by
rows first, then columns, as is traditionally done in the electronics arts. In other words, all
pixels that appear in the same row in a bit map are transmitted in order with the left-most
pixel transmitted first and the right-most pixel transmitted last. After the right-most pixel of
a row is transmitted then the next pixel in the sequence is the left-most pixel of the
following row. Rows of pixels are generally transmitted in order from top to bottom for

most displays, although other configurations can be accommodated as needed.

WO 2005/018191 PCT/US2004/026264

35

Furthermore, in handling bitmaps, the conventional approach, which is followed here, is to
define a reference point by labeling the upper-left corner of a bitmap as location or offset
"0,0." The X and Y coordinates used to define or determine a position in the bitmap
increase in value as one approaches the right and bottom of the bitmap, respectively. The
first row and first column (upper left corner of an image) start with an index value of zero.
The magnitude of the X coordinate increases toward the right side of the image, and the
magnitude of the Y coordinate increases toward the bottom of the image as viewed by the
user of the display.

[00209] A display window is the visible portion of a bitmap, the portion of the pixels in the
bitmap that can be seen by the user on the physical display medium. It is often the case that
the display window and the bitmap are the same size. The upper-left corner of a display
window always displays bitmap pixel location 0,0. The width of the display window
corresponds to the X axis of the bitmap, and the display window width shall be less than or
equal to the width of the corresponding bitmap. The height of the window corresponds to
the Y axis of the bitmap, and the display window height shall be less than or equal to the
height of the corresponding bitmap. The display window itself is not addressable in the
protocol because it is only defined as the visible portion of a bitmap. The relationship

between a bitmap and display window is illustrated in .

C. Packet Definitions
1 Sub-Frame Header Packet

[00210] The Sub-Frame Header packet is the first packet of every sub-frame, and has a basic
structure as illustrated in FIG. 8. The Sub-Frame Header Packet is used for host-client
synchronization, every host should be able to generate this packet, while every client should
be able to receive and interpret this packet. As can be seen in FIG. 8, this type of packet is
structured to have Packet Length, Packet Type, Unique Word, Reserved 1, Sub-Frame
Length, Protocol Version, Sub-Frame Count, and Media-frame Count fields, generally in
that order. In one embodiment, this type of packet is generally identified as a Type 15359
(0x3bff hexadecimal) packet and uses a pre-selected fixed length of 20 bytes, not including
the packet length field.

[00211] The Packet Type field and the Unique Word field each use a 2 byte value (16-bit
unsigned integer).. The 4-byte combination of these two fields together forms a 32-bit

unique word with good autocorrelation. In one embodiment, the actual unique word is

WO 2005/018191 PCT/US2004/026264

36

0x005a3bff, where the lower 16 bits are transmitted first as the Packét Type, and the most
significant 16 bits are transmitted afterward.

[00212] The Reserved 1 field contains 2 bytes that is reserved space for future use, and is
generally configured at this point with all bits set to zero. A purpose of this field is to cause
subsequent 2 byte fields to align to a 16-bit word address and cause 4-byte fields to align to
a 32-bit word address. The least significant byte is reserved to indicate that the host is
capable of addressing multiple client devices. A value of zero is reserved to indicate that
the host is capable of operating only with a single client device.

[00213] The Sub-frame Length field contains 4 bytes of information or values that specifies
the number of bytes per sub-frame. In one embodiment, the length of this field may be set
equal to zero to indicate that only one sub-frame will be transmitted by the host before the
link is shut down into an idle state. The value in this field can be dynamically changed "on-
the-fly" when transitioning from one sub-frame to the next. This capability is useful in
order to make minor timing adjustments in the sync pulses for accommodating isochronous
data streams. If the CRC of the Sub-frame Header packet is not valid then the link
controller should use the Sub-frame Length of the previous known-good Sub-frame Header
packet to estimate the length of the current sub-frame.

[00214] The Protocol Version field contains 2 bytes that specify the protocol version used by
the host. The Protocol Version field is set to '0' to specify the first or current version of the
protocol as being used. This value will change over time as new versions are created. The
Sub-frame Count field contains 2 bytes that specify a sequence number that indicates the
aumber of sub-frames that have been transmitted since the beginning of the media-frame.
The first sub-frame of the media-frame has a Sub-frame Count of zero. The last sub-frame
of the media-frame has a value of n-1, where n is the number of sub-frames per media-
frame. Note that if the Sub-frame Length is set equal to zero (indicating a non-periodic
sub-frame) then the Sub-frame count must also be set equal to zero.

[00215] The Media-frame Count field contains 4 bytes (32-bit unsigned integer) that specify
a sequence number that indicates the number of media-frames that have been transmitted
since the beginning of the present media item or data being transferred. The first media-
frame of a media item has a Media-frame Count of zero. The Media-frame Count
increments just prior to the first sub-frame of each media-frame and wraps back to zero

after the maximum Media-frame Count (for example, media-frame number 232-1 =

WO 2005/018191 PCT/US2004/026264

37

4,294,967,295) is used. The Media-frame Count value may be reset generally at any time

by the Host to suit the needs of an end application.

2. Filler Packet

[00216] A filler packet is a packet that is transferred to, or from, a client device when no
other information is available to be sent on either the forward or reverse link. It is
recommended that filler packets have a minimum length in order to allow maximum
flexibility in sending other packets when required. At the very end of a sub-frame or a
reverse link encapsulation packet (see below), a link controller sets the size of the filler
packet to fill the remaining space to maintain packet integrity. The Filler Packet is useful to
maintain timing on the link when the host or client have no information to send or
exchange. Every host and client needs to be able to send and receive this packet to make
effective use of the interface.

[00217] The format and contents of a Filler Packet are shown in FIG. 9. As shown in FIG. 9,
this type of packet is structured to have Packet Length, Packet Type, Filler Bytes, and CRC
fields. In one embodiment, this type of packet is generally identified as a Type 0, which is
indicated in the 2-byte Type field. The bits or bytes in the Filler Bytes field comprise a
variable number of all zero bit values to allow the filler packet to be the desired length. The
smallest filler packet contains no bytes in this field. That is, the packet consists of only the
packet length, packet type, and CRC, and in one embodiment uses a pre-selected fixed
length of 6 bytes or a Packet Length value of 4. The CRC value is determined for all bytes

in the packet including the Packet Length, which may be excluded in some other packet

types.

3. Video Stream Packet
[00218] Video Stream Packets carry video data to update typically rectangular regions of a
display device. The size of this region may be as small as a single pixel or as large as the
entire display. There may be an almost unlimited number of streams displayed
simultaneously, limited by system resources, because all context required to display a
stream is contained within the Video Stream Packet. The format of one embodiment of the
Video Stream Packet (Video Data Format Descriptor) is shown in FIG. 10. As seen in
FIG. 10, in one embodiment, this type of packet is structured to have Packet Length (2
bytes), Packet Type, bClient ID, Video Data Descriptor, Pixel Display Attributes, X Left

WO 2005/018191 PCT/US2004/026264

38

Edge, Y Top Edge, X Right Edge, Y Bottom Edge, X and Y Start, Pixel Count, Parameter
CRC, Pixel Data, and CRC fields. This type of packet is generally identified as a Type 16,
which is indicated in the 2-byte Type field. In one embodiment, a Client indicates an ability
to receive a Video Stream Packet using RGB, Monochrome, and Y Cr Cb Capability fields
of the Display Capability Packet.

[00219] In one embodiment, the bClient‘ ID field contains 2 bytes of information that are
reserved for a Client ID. Since this is a newly developed communications protocol actual
client IDs are not yet known or sufficiently communicable. Therefore, the bits in this field
are generally set equal to zero until such ID values are known, at which time the ID values
can be inserted or used, as would be apparent to those skilled in the art.

[00220] The common frame concept discussed above is an effective way to minimize the
audio buffer size and decrease latency. However, for video data it may be necessary to
spread the pixels of one video frame across multiple Video Stream Packets within a media-
frame. It is also very likely that the pixels in a single Video Stream Packet will not exactly
correspond to a perfect rectangular window on the display. For the exemplary video frame
rate of 30 frames per second, there are 300 sub-frames per second, which results in 10 sub-
frames per media-frame. If there are 480 rows of pixels in each frame, each Video Stream
Packet in each sub-frame will contain 48 rows of pixels. In other situations, the Video
Stream Packet might not contain an integer number of rows of pixels. This is true for other
video frame sizes where the number of sub-frames per media-frame does not divide evenly
into the number of rows (also known as video lines) per video frame. Each Video Stream
Packet generally must contain an integer number of pixels, even though it might not contain
an integer number of rows of pixels. This is important if pixels are more than one byte
each, or if they are in a packed format as shown in FIG. 12.

[00221] The format and contents employed for realizing the operation of an exemplary
Video Data Descriptor field, as mentioned above, are shown in FIGS. 11a-11d. In FIGS.
11a-11d, the Video Data Format Descriptor field contains 2 bytes in the form of a 16-bit
unsigned integer that specifies the format of each pixel in the Pixel Data in the present
stream in the present packet. It is possible that different Video Stream packets may use
different pixel data formats, that is, use a different value in the Video Data Format
Descriptor, and similarly, a stream (region of the display) may change its data format on-
the-fly. The pixel data format should comply with at least one of the valid formats for the
client as defined in the Display Capability Packet. The Video Data Format Descriptor

WO 2005/018191 PCT/US2004/026264

39

defines the pixel format for the present packet only which does not imply that a constant
format will continue to be used for the lifetime of a particular video stream.

[00222] FIGS. 11a through 11d illustrate how the Video Data Format Descriptor is coded.
As used in these figures, and in this embodiment, when bits [15:13] are equal to '000, as
shown in FIG. 11a, then the video data consists of an array of monochrome pixels where the
number of bits per pixel is defined by bits 3 through 0 of the Video Data Format Descriptor
word. Bits 11 through 4 are generally reserved for future use or applications and are set to
zero in this situation. When bits [15:13] are instead equal to '001', as shown in FIG. 11b,
then the video data consists of an array of color pixels that each specify a color through a
color map (palette). In this situation, bits 5 through 0 of the Video Data Format Descriptor
word define the number of bits per pixel, and bits 11 through 6 are generally reserved for
future use or applications and set equal to zero. When bits [15:13] are instead equal to
'010', as shown in FIG. 1lc, then the video data consists of an array of color pixels where
the number of bits per pixel of red is defined by bits 11 thfough 8, the number of bits per
pixel of green is defined by bits 7 through 4, and the number of bits per pixel of blue is
defined by bits 3 through 0. In this situation, the total number of bits in each .pixel is the
sum of the number of bits used for red, green, and blue.

[00223] However, when bits [15:13] are instead equal to '011', as shown in FIG. 11d, then
the video data consists of an array of video data in 4:2:2 YCbCr format with luminance and
chrominance information, where the number of bits per pixel of luminance (Y) is defined
by bits 11 through 8, the number of bits of the Cb component is defined by bits 7 through 4,
and the number of bits of the Cr component is defined by bits 3 through 0. The total
number of bits in each pixel is the sum of the number of bits used for red, green, and blue.
The Cb and Cr components are sent at half the rate as Y. In addition, the video samples in
the Pixel Data portion of this packet are organized as follows: Cbn, Yn, Crn, Yn+1, Cbn+2,
Yn+2, Cm+2, Yn+3, ... where Cbn and Crn are associated with Yn and Yn+1, and Cbn+2
and Crn+2 are associated with Yn+2 and Yn+3, and so on.

[00224] Yn, Yn+1, Yn+2 and Yn+3 are luminance values of four consecutive pixels in a
single row from left to right. The ordering of the color components is typically chosen to be
in the same format as the UYVY FOURCC format used by Microsoft Corporation in its
software, although the invention is not limited to this format. If there are an odd number of
pixels in a row (X Right Edge — X Left Edge + 1) in the window referenced by the Video

Stream Packet then the Y value corresponding to the last pixel in each row will be followed

WO 2005/018191 PCT/US2004/026264

40

by the Cb value of the first pixel of the next row, and a Cr value is not sent for the last pixel
in the row. It is recommended that windows using Y Cb Cr format have a width that is an
even number of pixels. The Pixel Data in a packet should contain an even number of
pixels. It may contain an odd or even number of pixels in the case where the last pixel of
the Pixel Data corresponds to the last pixel of a row in the window specified in the Video
Stream Packet header, i.e. when the X location of the last pixel in the Pixel Data is equal to
X Right Edge.

[00225] When bits [15:13] are instead equal to ‘100’ then the video data consists of an array
of Bayer pixels where the number of bits per pixel is defined by bits 3 through 0 of the
Video Data Format Descriptor word. The Pixel Pattern is defined by bits 5 and 4 as shown
in Error! Reference source not found. (Bayer). The order of pixel data may be horizontal
or vertical and the pixels in rows or columns may be sent in forward or backward order and
is defined by bits 8 through 6 as shown in Error! Reference source not found.. Bits 11
through 9 should be set to zero.

[00226] For all four formats shown in the figures, bit 12, which is designated as “P”,
specifies whether or not the Pixel Data samples are packed, or byte-aligned pixel data. A
value of '0" in this field indicates that each pixel in the Pixel Data field is byte-aligned with
an MDD interface byte boundary. A value of '1' indicates that each pixel and each color
within each pixel in the Pixel Data is packed up against the previous pixel or color within a
pixel leaving no unused bits. '

[00227] The first pixel in the first video stream packet of a media frame for a particular
display window will go into the upper left corner of the stream window defined by an X
Left Edge and a Y Top Edge, and the next pixel received is placed in the next pixel location
in the same row, and so on. In this first packet of a media frame, the X start value will
usually be equal to X Left Edge, and Y start value will usually be equal to Y Top Edge. In
subsequent packets corresponding to the same screen window, the X and Y start values will
usually be set to the pixel location in the screen window that would normally follow after
the last pixel sent in the Video Stream Packet that was transmitted in the previous sub-

frame.

4. Audio Stream Packet
[00228] The audio stream packets carry audio data to be played through the audio system of

the client, or for a stand alone audio presentation device. Different audio data streams may

WO 2005/018191 PCT/US2004/026264

41

be allocated for separate audio channels in a sound system, for example: left-front, right-
front, center, left-rear, and right-rear, depending on the type of audio system being used. A
full complement of audio channels is provided for headsets that contain enhanced spatial-
acoustic signal processing. A Client indicates an ability to receive an Audio Stream Packet
using the Audio Channel Capability and Audio Sample Rate fields of the Display
Capability Packet. The format of Audio Stream Packets is illustrated in FIG. 13.

[00229] As shown in FIG. 13, this type of packet is structured to have Packet Length, Packet
Type, bClient ID, Audio Channel ID, Reserved 1, Audio Sample Count, Bits Per Sample
and Packing, Audio Sample Rate, Parameter CRC, Digital Audio Data, and Audio Data
CRC fields. In one embodiment, this type of packet is generally identified as a Type 32
packet.

[00230] The bClient ID field contains 2 bytes of information that are reserved for a Client
ID, as used previously. The Reserved 1 field contains 2 bytes that is reserved for future use,
and is generally configured at this point with all bits set to zero.

[00231] The Bits Per Sample and Packing field contains 1 byte in the form of an 8-bit
unsigned integer that specifies the packing format of audio data. The format generally
employed is for Bits 4 through 0 to define the number of bits per PCM audio sample. Bit 5
then specifies whether or not the Digital Audio Data samples are packed. The difference
between packed and byte-aligned audio samples is illustrated in FIG. 14. A value of '0'
indicates that each PCM audio sample in the Digital Audio Data field is byte-aligned with
an MDDI interface byte boundary, and a value of '1' indicates that each successive PCM
audio sample is packed up against the previous audio sample. This bit is generally effective
only when the value defined in bits 4 through 0 (the number of bits per PCM audio sample)
is not a multiple of eight. Bits 7 through 6 are reserved for future use and are generally set

at a value of zero.

5. Reserved Stream Packets
[00232] In one embodiment, packet types 1 to 15, 18 to 31, and 33 through 55 are reserved
for stream packets to be defined for use in future versions or variations of the packet
protocols, as desired for various applications encountered. Again, this is part of making the
MDD interface more flexible and useful in the face of ever changing technology and system

designs as compared to other techniques.

WO 2005/018191 PCT/US2004/026264

42

6. User~Defined Stream Packets
[00233] Eight data stream types, known as Types 56 through 63, are reserved for use in
proprietary applications that may be defined by equipment manufacturers for use with a
MDDI link. These are known as User-defined Stream Packets. Such packets may be used
for any purpose, but the Host and Client should only employ such packets in situations
where the result of such use is very well understood or known. The specific definition of
the stream parameters and data for these packet types is left to the specific equipment
manufacturers implementing such packet types or seeking their use. Some exemplary uses
of the User-defined Stream Packets are to convey test parameters and test results, factory
calibration data, and proprietary special use data. The format of the user-defined stream
packets as used in one embodiment is illustrated in FIG. 15. As shown in FIG. 15, this type
of packet is structured to have Packet Length (2 bytes), Packet Type, bClient ID number,

Stream Parameters, Parameter CRC, Stream Data, and Stream Data CRC fields.

7. Color Map Packets

[00234] The color map packets specify the contents of a color map look-up table used to
present colors for a client. Some applications may require a color map that is larger than
the amount of data that can be transmitted in a single packet. In these cases, multiple Color
Map packets may be transferred, each with a different subset of the color map by using the
offset and length fields described below. The format of the Color Map Packet in one
embodiment is illustrated in FIG. 16. As shown in FIG. 16, this type of packet is structured
to have Packet Length, Packet Type, hClient ID, Color Map Item Count, Color Map Offset,
Parameter CRC, Color Map Data, and Data CRC fields. In one embodiment, this type of
packet is generally identified as a Type 64 packet (Video Data Format and Color Map
Packet) as specified in the Packet Type Field (2 bytes). A Client indicates an ability to
receive Color Map Packets using the Color Map Size and Color Map Width fields of the
Display Capability Packet.

8. Reverse Link Encapsulation Packets
[00235] In an exemplary embodiment, data is transferred in the reverse direction using a
Reverse Link Encapsulation Packet. A forward link packet is sent and the MDDI link
operation (transfer direction) is changed or turned around the middle of this packet so that

packets can be sent in the reverse direction. The format of the Reverse Link Encapsulation

WO 2005/018191 PCT/US2004/026264

43

packet in one embodiment is illustrated in FIG. 17. As shown in FIG. 17, this type of
packet is structured to have Packet Length, Packet Type, hCLient ID, Reverse Link Flags,
Reverse Rate Divisor, Turn-Around 1 Length, Turn-Around 2 Length, Parameter CRC, All
Zero 1, Turn-Around 1, Reverse Data Packets, All Zero 2, Turn-Around 2, and Driver re-
enable fields. This type of packet is generally identified as a Type 65 packet. For External
Mode every host must be able to generate this packet and receive data, and every client
must be able to receive and send data to the host. Implementation of this packet is optional
for Internal Mode.

[00236] The MDDI link controller behaves in a special manner while sending a Reverse
Link Encapsulation Packet. The MDD interface has a strobe signal that is always driven by
the host as controller of the link. The host behaves as if it were transmitting a zero for each
bit of the Turn-Around and Revefse Data Packets portions of the Reverse Link
Encapsulation packet. The host toggles a MDDI_Strobe signal at each bit boundary during
the two turn-around times and during the time allocated for reverse data packets. (This is
the same behavior as if it were transmitting all-zero data.) The host disables its MDDI data
signal line drivers during the time period specified by Turn-Around 1, and the client re-
enables its line drivers during the Driver Re-enable field following the time period specified
by Turn-Around 2 field. The client reads the Turn-Around Length parameter and drives the
data signals toward the host immediately after the last bit in the Turn-Around 1 field. That
is, the client clocks new data into the link on certain rising edges of the MDDI strobe as
specified in the packet contents description below, and elsewhere. The client uses the
Packet Length and Turn-Around Length parameters to know the length of time it has
available to send packets to the host. The client may send filler packets or drive the data
lines to a zero state when it has no data to send to the host. If the data lines are driven to
zero, the host interprets this as a packet with a zero length (not a valid length) and the host
does not accept any more packets from the client for the duration of the current Reverse
Link Encapsulation Packet.

[00237] The Host drives the MDDI_Data signals to the logic-zero level during the All Zero 1
field, and a client drives the MDDI data lines to a logic-zero level for at least one reverse
link clock period before the start of the Turn Around 2 field, that is during the All Zero 2
field period. This keeps the data lines in a deterministic state during the Turn Around 1 and
Turn Around 2 fields time period. If the client has no more packets to send, it may even

disable the data lines after driving them to a logic-zero level because the hibernation bias

WO 2005/018191 PCT/US2004/026264

44

resistors (discussed elsewhere) keep the data lines at a logic-zero level for the ’remainder of
the Reverse Data Packets field, or a duration of about 16 forward link bytes or more.

(00238} In one embodiment, the Reverse Link Request field of the Display Request and
Status Packet may be used to inform the host of the number of bytes the client needs in the
Reverse Link Encapsulation Packet to send data back to the host. The host attempts to
grant the request by allocating at least that number of bytes in the Reverse Link
Encapsulation Packet. The host may send more than one Reverse Link Encapsulation
Packet in a sub-frame. The display may send a Display Request and Status Packet at almost
any time, and the host will interpret the Reverse Link Request parameter as the total number

of bytes requested in one sub-frame.

9. Display Capability Packets

[00239] A host needs to know the capability of the client (display) it is communicating with
in order to configure the host-to-client link in an generally optimum or desired manner. It is
recommended that a display send a Display Capability Packet to the host after forward link
synchronization is acquired. The transmission of such a packet is considered required when
requested by the host using the Reverse Link Flags in the Reverse Link Encapsulation
Packet. The Display Capability Packet is used to inform the host of the capabilities of a
display. For External Mode every host must be able to receive this packet, and every
display must be able to send this packet to fully utilize this interface and protocol.
Implementation of this packet is optional for Internal Mode, since the capabilities of the
display should already be well defined and known to the host at the time of manufacture or
assembly into a single component or unit of some type.

[00240] The format of the Display Capability packet in one embodiment is illustrated in FIG.
18. As shown in FIG. 18, this type of packet is structured to have Packet Length, Packet
Type, Protocol Version, Min Protocol Version, Bitmap Width, Bitmap Height,
Monochrome Capability, Color Map Capability, RGB Capability, Y Cr Cb Capability,
Display Feature Capability, Data Rate Capability, Frame Rate Capability, Audio Buffer
Depth, Audio Stream Capability, Audio Rate Capability, Min Sub-frame rate, and CRC
fields. In an exemplary embodiment, this type of packet is generally identified as a Type 66

packet.

WO 2005/018191 PCT/US2004/026264

45

10. Keyboard Data Packets

[00241] A keyboard data packet is used to send keyboard data from the client device to the
host. A wireless (or wired) keyboard may be used in conjunction with various displays or
audio devices, including, but not limited to, a head mounted video display/audio
presentation device. The Keyboard Data Packet relays keyboard data received from one of
several known keyboard-like devices to the host. This packet can also be used on the
forward link to send data to the keyboard. A client indicates an ability to send and receive
Keyboard Data Packets using the Keyboard Data Field in the Display Capability Packet.

[00242] The format of a Keyboard Data Packet is shown in FIG. 19, and contains a variable
number of bytes of information from or for a keyboard. As shown in FIG. 19, this type of
packet is structured to have Packet Length, Packet Type, bClient ID, Keyboard Data
Format, Keyboard Data, and CRC fields. Here, this type of packet is generally identified as
a Type 67 packet.

[00243] The bClient ID is a reserved field, as before, and the CRC is performed over all
bytes of the packet. The Keyboard Data Format field contains a 2 bytes value that describes
the keyboard data format. Bits 6 through 0 should be identical to the Keyboard Data
Format field in the Display Capability Packet. This value is not to equal 127. Bits 15

through 7 are reserved for future use and are, therefore, currently set to zero.

11. Pointing Device Data Packets

[00244] A pointing device data packet is used to send position information from a wireless
mouse or other pointing device from the display to the host. Data can also be sent to the
pointing device on the forward link using this packet. An exemplary format of a Pointing
Device Data Packet is shown in FIG. 20, and contains a variable number of bytes of
information from or for a pointing device. As shown in FIG. 20, this type of packet is
structured to have Packet Length, Packet Type, Pointing Device Data, and CRC fields. In
an exemplary embodiment, this type of packet is generally identified as a Type 68 packet in
the 1-byte type field.

12. Link Shutdown Packets
[00245] A Link Shutdown Packet is sent from the host to the client display to indicate that
the MDDI data and strobe will be shut down and go into a low-power consumption

"hibernation” state. This packet is useful to shut down the link and conserve power after

WO 2005/018191 PCT/US2004/026264

46

static bitmaps are sent from a mobile communication device to the display, or when there is
no further information to transfer from a host to a client for the time being. Normal
operation is resumed when the host sends packets again. The first packet sent after
hibernation is a sub-frame header packet. The format of a Display Status Packet is shown
in FIG. 21. As shown in FIG. 21, this type of packet is structured to have Packet Length,
Packet Type, and CRC fields. In one embodiment, this type of packet is generally
identified as a Type 69 packet in the 1-byte type field, and uses a pre-selected fixed length
of 3 bytes.

[00246] In the low-power hibernation state, the MDDI_Data driver is disabled into a high-
impedance state, and the MDDI_Data signals are pulled to a logic zero state using a high-
impedance bias network that can be overdriven by the display. The strobe signal used by
the interface is set to a logic-zero level in the hibernation state to minimize power
consumption. FEither the host or client may cause the MDDI link to "wake up" from the
hibernation state as described elsewhere, which is a key advance for and advantage of the

present invention.

- 13 Display Request and Status Packets

[00247] The host needs a small amount of information from the display so it can configure
the host-to-display link in a generally optimum manner. It is recommended that the display
send one Display Status Packet to the host each sub-frame. The display should send this
packet as the first packet in the Reverse Link Encapsulation Packet to ensure that it is
delivered reliably to the host. The format of a Display Status Packet is shown in FIG. 22.
As shown in FIG. 22, this type of packet is structured to have Packet Length, Packet Type,
Reverse Link Request, CRC Error Count, and CRC fields. This type of packet is generally
identified as a Type 70 packet in the 1-byte type field, and uses a pre-selected fixed length
of 8 bytes.

[00248] The Reverse Link Request field may be used to inform the host of the number of
bytes the display needs in the Reverse Link Encapsulation Packet to send data back to the
host. The host should attempt to grant the request by allocating at least that number of
bytes in the Reverse Link Encapsulation Packet. The host may send more than one Reverse
Link Encapsulation Packet in a sub-frame in order to accommodate data. The client may
send a Display Request and Status Packet at any time and the host will interpret the Reverse

Link Request parameter as the total number of bytes requested in one sub-frame.

WO 2005/018191 PCT/US2004/026264

47

Additional details and specific examples of how reverse link data is sent back to the host are

shown below.

14. Bit Block Transfer Packets

[00249] The Bit Block Transfer Packet provides a means to scroll regions of the display in
any direction. Displays that have this capability will report the capability in bit O of the
Display Feature Capability Indicators field of the Display Capability Packet. The format of
a Bit Block Transfer Packet is shown in FIG. 23. As shown in FIG. 23, this type of packet
is structured to have Packet Length, Packet Type, Upper Left X Value, Upper Left Y Value,
Window Width, Window Height, Window X Movement, Window Y Movement, and CRC
fields. This type of packet is generally identified as a Type 71 packet, and uses a pre-
selected fixed length of 15 bytes.

[00250] The fields are used to specify the X and Y values of the coordinate of the upper left
corner of the window to be moved, the width and height of the window to be moved, and
the number of pixels that the window is to be moved horizontally, and vertically,
respectively. Positive values for the latter two fields cause the window to be moved to the

right, and down, and negative values cause movement to the left and up, respectively..

15. Bitmap Area Fill Packets

[00251] The Bitmap Area Fill Packet provides a means to easily initialize a region of the
display to a single color. Displays that have this capability will report the capability in bit 1
of the Display Feature Capability Indicators field of the Display Capability Packet. The
format of a Bitmap Area Fill Packet is shown in FIG. 24. As shown in FIG. 24, this type of
packet is structured to have Packet Length, Packet Type, Upper Left X Value, Upper Left Y
Value, Window Width, Window Height, Data Format Descriptor, Pixel Area Fill Value,
and CRC fields. This type of packet is generally identified as a Type 72 packet in the 1-
byte type field, and uses a pre-selected fixed length of 17 bytes.

16. Bitmap Pattern Fill Packets
[00252] The Bitmap Pattern Fill Packet provides a means to easily initialize a region of the
display to a pre-selected pattern. Displays that have this capability will report the capability
in bit 2 of the Display Feature Capability Indicators field of the Display Capability Packet.

The upper left comer of the fill pattern is aligned with the upper left corer of the window

WO 2005/018191 PCT/US2004/026264

48

to be filled. If the window to be filled is wider or taller than the fill pattern, then the pattern
may repeated horizontally or vertically a number of times to fill the window. The right or
bottom of the last repeated pattern is truncated as necessary. If the window is smaller than
the fill pattern, then the right side or bottom of the fill pattern may be truncated to fit the
window.

[00253] The format of a Bitmap Pattern Fill Packet is shown in FIG. 25. As shown in FIG.
25, this type of packet is structured to have Packet Length, Packet Type, Upper Left X
Value, Upper Left Y Value, Window Width, Window Height, Pattern Width, Pattern
Height, Data Format Descriptor, Parameter CRC, Pattern Pixel Data, and Pixel Data CRC
fields. This type of packet is generally identified as a Type 73 packet in the 1-byte type
field.

17. Commaunication Link Data Channel Packets

[00254] The Communication Link Daté Channel Packet provides a means for a display with
high-level computing capability, such as a PDA, to communicate with a wireless transceiver
such as a cell phone or wireless data port device. In this situation, the MDDI link is acting
as a convenient high-speed interface between the communication device and the computing
device with the mobile display, where this packet transports data at a Data Link Layer of an
operating system for the device. For example, this packet could be used if a web browser,
email client, or an entire PDA were built into a mobile display. Displays that have this
capability will report the capability in bit 3 of the Display Feature Capability Indicators
field of the Display Capability Packet.

[00255] The format of a Communication Link Data Channel Packet is shown in FIG. 26. As
shown in FIG. 26, .this type of packet is structured to have Packet Length, Packet Type,
Parameter CRC, Communication Link Data, and Communication Data CRC fields. This

_ type of packet is generally identified as a Type 74 packet in the type field.

18. Interface Type Handoff Request Packets
[00256] The Interface Type Handoff Request Packet enables the host to request that the
client or display shift from an existing or current mode to the Type-I (serial), Type-II (2-bit
parallel), Type-Ill (4-bit parallel), or Type-IV (8-bit paralle]) modes. Before the host
requests a particular mode it should confirm that the display is capable of operating in the

desired mode by examining bits 6 and 7 of the Display Feature Capability Indicators field

WO 2005/018191 PCT/US2004/026264

49

of the Display Capability Packet. The format of a Interface Type Handoff Request Packet
is shown in FIG. 27. As shown in FIG. 27, this type of packet is structured to have Packet
Length, Packet Type, Interface Type, and CRC fields. This type of packet is generally
identified as a Type 75 packet, and uses a pre-selected fixed length of 4 bytes.

19. Interface Type Acknowledge Packets

[00257] The Interface Type Acknowledge Packet is sent by the display to confirm receipt of
the Interface Type Handoff Packet. The requested mode, Type-I (serial), Type-II (2-bit
parallel), Type-III (4-bit parallel), or Type-IV (8-bit parallel) mode, is echoed back to the
host as a parameter in this packet. The format of a Interface Type Acknowledge Packet is
shown in FIG. 28. As shown in FIG. 28, this type of packet is structured to have Packet
Length, Packet Type, Interface Type, and CRC fields. This type of packet is generally
identified as a Type 76 packet, and uses a pre-selected fixed length of 4 bytes.

20. Perform Type Handoff Packets

[00258] The Perform Type Handoff Packet is a means for the host to command the display
to handoff to the mode specified in this packet. This is to be the same mode that was
previously requested and acknowledged by the Interface Type Handoff Request Packet and
Interface Type Acknowledge Packet. The host and display should switch to the agreed
upon mode after this packet is sent. The display may lose and re-gain link synchronization
during the mode change. The format of a Perform Type Handoff Packet is shown in FIG.
29. As shown in FIG. 29, this type of packet is structured to have Packet Length, Packet
Type, Packet Type, and CRC fields. This type of packet is generally identified as a Type 77
packet in the '1-byte type field, and uses a pre-selected fixed length of 4 bytes.

21. Forward Audio Channel Enable Packets
[00259] This packet allows the host to enable or disable audio channels in the display. This
capability is useful so the display (client) can power off audio amplifiers or similar circuit
clements to save power when there is no audio to be output by the host. This is
significantly more difficult to implement implicitly simply using the presence or absence of
audio streams as an indicator. The default state when the display system is powered-up is
that all audio channels are enabled. The format of a Forward Audio Channel Enable Packet

is shown in FIG. 30. As shown in FIG 30, this type of packet is structured to have Packet

WO 2005/018191 PCT/US2004/026264

50

Length, Packet Type, Audio Channel Enable Mask, and CRC fields. This type of packet is
generally identified as a Type 78 packet in the 1-byte type field, and uses a pre-selected
fixed length of 4 bytes.

22. Reverse Audio Sample Rate Packets

[00260] This packet allows the host to enable or disable the reverse-link audio channel, and
to set the audio data sample rate of this stream. The host selects a sample rate that is
defined to be valid in the Display Capability Packet. If the host selects an invalid sample
rate then the display will not send an audio stream to the host. The host may disable the
reverse-link audio stream by setting the sample rate to 255. The default state assumed when
the display system is initially powered-up or connected is with the reverse-link audio stream
disabled. The format of a Reverse Audio Sample Rate Packet is shown in FIG. 31. As
shown in FIG. 31, this type of packet is structured to have Packet 'Length, Packet Type,
Audio Sample Rate, and CRC fields. This type of packet is generally identified as a Type
79 packet, and uses a pre-selected fixed length of 4 bytes.

23. Digital Content Protection Overhead Packets

[00261] This packet allows the host and a display to exchange messages related to the digital
content protection method being used. Presently two types of content protection are
contemplated, Digital Transmission Content Protection (DTCP), or High-bandwidth Digital
Content Protection System (HDCP), with room reserved for future alternative protection
scheme designations. The method being used is specified by a Content Protection Type
parameter in this packet. The format of a Digital Content Protection Overhead Packet is
shown in FIG. 32. As shown in FIG. 32, this type of packet is structured to have Packet
Length, Packet Type, Content Protection Type, Content Protection Overhead Messages, and
CRC fields. This type of packet is generally identified as a Type 80 packet.

24. Transparent Color Enable Packets
[00262] The Transparent Color Enable Packet is used to specify which color is transparent in
a display and to enable or disable the use of a transparent color for displaying images.
Displays that have this capability will report that capability in bit 4 of the Display Feature
Capability Indicators field of the Display Capability Packet. When a pixel with the value

for transparent color is written to the bitmap, the color does not change from the previous

WO 2005/018191 PCT/US2004/026264

51

value. The format of a Transparent Color Enable Packet is shown in FIG. 33. As shown in
FIG. 33, this type of packet is structured to have Packet Length, Packet Type, Transparent
Color Enable, Data Format Descriptor, Transparent Pixel Value, and CRC fields. This type
of packet is generally identified as a Type 81 packet in the 1-byte type field, and uses a pre-
selected fixed length of 10 bytes.

25. Round Trip Delay Measurement Packets

[00263] The Round Trip Delay Measurement Packet is used to measure the propagation
delay from the host to a client (display) plus the Delay from the client (display) back to the
host. This measurement inherently includes the delays that exist in the line drivers and
receivers, and an interconnect sub-system. This measurement is used to set the tumn around
delay and reverse link rate divisor parameters in the Reverse Link Encapsulation Packet,
described generally above. This packet is most useful when the MDDI link is running at
the maximum speed intended for a particular application. The MDDI_Stb signal behaves as
though all zero data is being sent during the following fields: All Zero, both Guard Times,
and the Measurement Period. This causes MDDI_Stb to toggle at half the data rate so it can
be used as periodic clock in the display during the Measurement Period.

[00264] The format of a of Round Trip Delay Measurement Packet is shown in FIG. 34. As
shown in FIG. 34, this type of packet is structured to have Packet Length, Packet Type,
Parameter CRC, All Zero, Guard Time 1, Measurement Period, Guard Time 2, and Driver
Re-enable fields. This type of packet is generally identified as a Type 82 packet, and uses a
pre-selected fixed length of 533 bits.

[00265] The timing of events that take place during the Round Trip Delay Measurement
Packet are illustrated in FIG. 35. In FIG. 35, the host transmits the Round Trip Delay
Measurement Packet, shown by the presence of the Parameter CRC and Strobe Alignment
fields followed by the All Zero and Guard Time 1 fields. A delay 3502 occurs before the
packet reaches the client display device or processing circuitry. As the display receives the
packet, it transmits the Oxff, Ox{f, Ox0 pattern as precisely as practical at the beginning of
the Measurement Period as determined by the display. The actual time the display begins to
transmit this sequence is delayed from the beginning of the Measurement Period from the
point of view of the host. The amount of this delay is substantially the time it takes for the

packet to propagate through the line drivers and receivers and the interconnect subsystem.

WO 2005/018191 PCT/US2004/026264

52

A similar amount of delay 3504 is incurred for the pattern to propagate from the display
back to the host.

[00266] In order to accurately determine the round trip delay time for signals traversing to
and from the client, the host counts the number of bit time periods occurring after the start
of the Measurement Period until the beginning of the 0xff, 0xff, 0x0 sequence is detected
upon arrival. This information is used to determine the amount of time for a round trip
signal to pass from the host to the client and back again. Then, about one half of this
amount is attributed to a delay created for the one way passage of a signal to the client.

[00267] The display disables its line drivers substantially immediately after sending the last
bit of the Oxff, Oxff, 0x0 pattern. Guard Time 2 allows time for the display’s line drivers to
go completely to the high-impedance state before the host transmits the Packet Length of
the next packet. The hibernation pull-up and pull-down resistors (see FIG. 42) ensure that
the MDDI_Data signals are held at a valid low level in the intervals where the line drivers

are disabled in both the host and display.

26. Forward Link Skew Calibration Packet

[00268] The Forward Link Skew Calibration Packet allows a client or Display to calibrate
itself for differences in the propagation delay of the MDDI_Data signals with respect to the
MDDI_Stb signal. Without delay skew compensation, the maximum data rate is generally
limited to account for potential worst-case variation in these delays. Generally, this packet
is only sent when the forward link data rate is configured to a rate of around 50 Mbps or
lower. After sending this packet to calibrate the display, the data rate may be stepped up
above 50 Mbps. If the data rate is set too high during the skew calibration process, the
display might synchronize to an alias of the bit period which could cause the delay skew
compensation setting to be off by more than one bit time, resulting in erroneous data
clocking. The highest data rate type of interface or greatest possible Interface Type is
selected prior to sending the Forward Link Skew Calibration Packet so that all existing data
bits are calibrated.

[00269] The format of a Forward Link Skew Calibration Packet is shown in FIG. 56. As
shown in FIG. 56, this type of packet is structured to have Packet Length (2 bytes), Packet
Type, Parameter CRC, Calibration Data Sequence, and CRC fields. This type of packet is
generally identified as a Type 83 packet in the type field, and has a pre-selected length of
515.

WO 2005/018191 PCT/US2004/026264

53

Virtual Control Panel

[00270] The use of a Virtual Control Panel (VCP) allows a host to set certain user controls in
aclient. By allowing these parameters to be adjusted by the host, the user interface in the
client can be simplified because screens that allow a user to adjust parameters such as audio
volume or display brightness can be generated by host software rather than by one or more
microprocessors in the client. The host has the ability to read the parameter settings in the
client and to determine the range of valid values for each control. The client has the
capability to report back to the host which control parameters can be adjusted.

[00271] The control codes (VCP Codes) and associated data values generally specified, are
utilized to specify controls and settings in the client. The VCP Codes in the MDDI
specification are expanded to 16 bits to preserve proper data field alignment in the packet
definitions, and in the future to support supplementary values that are unique to this

interface or future enhancements.

27. Request VCP Feature Packet

[00272] The Request VCP Feature Packet provides a means, mechanism, or method for the
host to request the current setting of a specific control parameter or all valid control
parameters. Generally, a client responds to a VCP Packet with the appropriate information
in a VCP Feature Reply Packet. In one embodiment, the client indicates an ability to
support the Request VCP Feature Packet using bit 20 of the Display Feature Capability
Indicators field of the Display Capability Packet.

[00273] The format of the Request VCP Feature Packet in one embodiment is shown in
FIG. 69. As seen in FIG. 69, this type of packet is structured to have Packet Length, Packet
Type, hClient ID, MCCS VCP code, and CRC fields. This type of packet is generally
identified in one embodiment as a Type 128, which is indicated in the 2 byte type field.
The packet length, which specifies the total number of bytes in the packet not including the
packet length field, is typically fixed for this type of packet at a length of 8 bytes.

[00274] The hClient ID field contains a 16-bit unsigned integer reserved for the Client ID.
This field is reserved for future use and is typically set to zero. The MCCS VCP Code field
comprises 2 bytes of information that specifies the MCCS VCP Control Code Parameter. A
value in the range of 0 to 255 causes a VCP Feature Reply Packet to be returned with a
single item in the VCP Feature Reply List corresponding to the specified MCCS code. An

WO 2005/018191 PCT/US2004/026264

54

MCCS VCP Code of 65535 (0xffff) requests a VCP Feature Reply Packet with a VCP
Feature Reply List containing a Feature Reply List Item for each control supported by the
client. The values of 256 through 65534, for this field are reserved for future use and

presently not in use.

28. VCP Feature Reply Packet

[00275] The VCP Feature Reply Packey provides a means, mechanism, or method for a
client to respond to a host request with the current setting of a specific control parameter or
all valid control parameters. Generally, the client sends the VCP Feature Reply Packet in
response to the Request VCP Feature Packet. This packet is useful to determine the current
setting of a specific parameter, to determine the valid range for a specific control, to
determine if a specific control is supported by the client, or to determine the set of controls
that are supported by the client. If a Request VCP Feature is sent that references a specific
control that is not implemented in the client then a VCP Feature Reply Packet is returned
with a single VCP Feature Reply List item corresponding to the unimplemented control that
contains the approbriate error code. In one embodiment, the client indicates an abﬂity to
support the VCP Feature Reply Packet using bit 20 of the Display Feature Capability
Indicators field of the Display Capability Packet.

[00276] The format of the VCP Feature Reply Packet in one embodiment is shown in
FIG. 70. As seen in FIG. 70, this type of packet is structured to have Packet Length, Packet
Type, cClient ID, MCCS Version, Reply Seqeunce Number, VCP Feature Reply List, and
CRC fields. This type of packet is generally identified in one embodiment as a Type 129,
as indicated in the 2 byte type field.

[00277] The cClient ID field contains information reserved for a Client ID. This field is
reserved for future use and is generally set to zero. MCCS Version field contains 2 bytes of
information that specifies the Version of the VESA MCCS Specification implemented by
the client.

[00278] The 2 byte Reply Sequence Number field contains information or data that specifies
the sequence number of the VCP Feature Reply Packets returned by the client. The client
returns one or more VCP Feature Reply Packets in response to a Request VCP Feature
Packet with an MCCS Control Code value of 65535. The client may spread the feature
reply list over multiple VCP Feature Reply Packets. In this case, the client assigns a

sequence number to each successive packet, and the sequence numbers of the VCP Feature

WO 2005/018191 PCT/US2004/026264

55

Reply Packets sent in response to a single Request VCP Feature Packet starts at zero and
increments by one. The last VCP Feature List Item in the last VCP Feature Reply Packet
should contain an MCCS VCP Control Code value equal to Oxffff to identify that the packet
is the last one and contains the highest sequence number of the group of packets returned.
If only one VCP Feature Reply Packet is sent in response to a Request VCP Feature Packet
then the Reply Sequence Number in that single packet is zero and the VCP Feature Reply
List contains a record having an MCCS VCP Control Code equal to Oxffff.

[00279] The Number of Features in List field contains 2 bytes that specifies the number of
VCP Feature List Items that are in the VCP Feature Reply List in this packet, while the
VCP Feature Reply List field is a a group of bytes that contain one or more VCP Feature
Reply List Items. The format of a single VCP Feature Reply List Item in one embodiment
is shown in FIG. 71.

[00280] As shown in FIG. 71, each VCP Feature Reply List Item is exactly 12 bytes in
length, and comprises the MCCS VCP Code, Result Code, Maximum Value, and Present
Value fields. The 2-byte MCCS VCP Code field contains data or infomraitn that specifies
the MCCS VCP Control Code Parameter associated with this list item. Only the Control
Code values defined in the VESA MCCS Specification version 2 and later are considered as
valid. The 2-byte Result Code field contains information that specifies an error code related
to the request for information regarding the specified MCCS VCP Control. A value of ‘0’
in this field means there is no error, while a value of ‘1’ means the specified control is not
implemented in the client. Further values for this field of 2 through 65535 are currently
reserved for future use and implementation of other application contemplated by the art, but
are not to be used for now.

[00281] The 4-byte Maximum Value field contains a 32-bit unsigned integer that specifies
the largest possible value to which the specified MCCS Control can be set. If the requested
control is not implemented in the client this value is set to zero. If the value returned is less
than 32 bits (4 bytes) in length, then the value is cast into a 32-bit integer leaving the most
significant (unused) bytes set to zero. The 4-byte Present Value field contains information
that specifies the present value of the specified MCCS VCP Continuous (C) or non-
continuous (NC) control. If the requested control is not implemented in the client or if the
control is implemented but is a table (T) data type, then this value is set to zero. If the value
returned is less than 32 bits (4 bytes) in length per the VESA MCCS specification then the

value is cast into a 32-bit integer leaving the most significant (unused) bytes set to zero.

WO 2005/018191 PCT/US2004/026264

56

29. Set VCP Feature Packet

[00282] The Set VCP Feature Packet provides a means, mechanism, or method for a host to
set VCP control values for both continuous and non-continuous controls in a client. In one
embodiment, the client indicates the ability to support the Set VCP Feature Packet using bit
20 of the Display Feature Capability Indicators field of the Display Capability Packet.

[00283] The format of the Set VCP Feature Packet in one embodiment is shown in FIG. 72.
As seen in FIG. 72, this type of packet is structured to have Packet Length, Packet Type,
hClient ID, MCCS VCP Code, Number of Vlaues in List, Control Value List, and CRC
fields. This type of packet is generally identified as a Type 130, as indicated in the 2 byte
type field, is 20 bytes long exclusive of the Packet Length field.

[00284] The hClient ID field again uses a 2-byte value to specify or act as a Client ID. This
field is reserved for future use and is currently set to zero. The MCCS VCP Code field uses
2 bytes of information or values to specify the MCCS VCP Control Code Parameter to be
adjusted. The 2-byte Number of Values in List Field contains information or values that
specifies the number of 16-bit values that exist in the Control Value List. The Control
Value List will usually contain one item unless the MCCS Control Code relates to a table in
the client. In the case of non-table-related controls, The Control Value List will contain a
value that specifies the new value to be written to the control parameter specified by the
MCCS VCP Code field. For table-related controls the format of the data in the Control
Value List is specified by the parameter description of the specified MCCS VCP Code. If
the list contains values that are larger than one byte, then the least-significant byte is
transmitted first, consistent with the method defined elsewhere. Finally, the 2-byte CRC
field contains a 16-bit CRC of all bytes in the packet including the Packet Length.

30. Request Valid Parameter Packet
00285] The Request Valid Parameter Packet is used as a means or mechanism to request
that a client return a Valid Parameter Reply Packet containing a list of parameters supported
by the specified non-continuous (NC) or table (T) control. This packet should only specify
non-continuous controls or controls that relate to a table in the client, and not specify a
MCCS VCP Code value of 65535 (Oxffff) to specify all controls. If a non-supported or
invalid MCCS VCP Code is specified then an appropriate error value is returned in the

Valid Parameter Reply Packet. In one embodiment, the client indicates an ability to support

WO 2005/018191 PCT/US2004/026264

57

the Request Valid Parameter Packet using bit 20 of the Display Feature Capability
Indicators field of the Display Capability Packet.

[00286] The format of the Request Valid Parameter Packet in one embodiment is shown in
FIG. 73. As seen in FIG. 73, this type of packet is structured to have Packet Length, Packet
Type, hClient ID, MCCS VCP Code, and CRC fields. This type of packet is generally
identified in one embodiment as a Type 131, as indiéated in the 2 byte type field.

[00287] The packet length, as indicated in the 2-bytes Packet Length Field is generally set to
have a total number of bytes in the packet, not including the packet length field of 8. The
hClient ID again specifies the Client ID, but is currently reserved for future use, as would
be apparent to one skilled in the art, and is set to zero. The 2-byte MCCS VCP Code Filed
contains a value that specifies the non-continuous MCCS VCP Control Code Parameter to
be.queried. The value in this field should correspond to a non-continuous control that is
implemented in the client. The values 256 through 65535 (0xffff) are typically reserved or
considered as invalid, and are considered as an unimplemented control in the error

response.

31. Valid Parameter Reply Packet

[00288] A Valid Parameter Repfy Packet is sent in response to a Request Valid Parameter
Packet. It is used as a means, method, or mechanism to identify the valid settings for a non-
continuous MCCS VCP control ‘or a control that returns the contents of a table. If the
control relates to a table in the client, then the VCP Parameter Reply List simply contains
the specific list of sequential table values that were requested. If the contents of the table
cannot fit into a single Valid Parameter Reply Packet then multiple packets with sequential
Reply Sequence Numbers can be sent by the client. In one embodiment, a client indicates
an ability to support a Valid Parameter Reply Packet using bit 20 of the Display Feature
Capability Indicators field of the Display Capability Packet.

[00289] A host may request the contents of a table in the following manner: the host sends a
Set VCP Feature Packet containing the necessary or desired parameters such as read/write
parameter, LUT offset, and RGB selection; then a Request Valid Parameter Packet that
specifies the desired control is sent by the host; then the client returns one or more Valid
Parameter Reply Packets containing the table data. This sequence of operations performs a

similar function as the table reading functions described in the MCCS operation mode].

WO 2005/018191 PCT/US2004/026264

58

[00290] If a specific client parameter is not supported by the client then in one embodiment
the corresponding field of this packet will contain a value of 255. For parameters that are
used in the client, the corresponding field should contain a value of the parameter in the
client.

[00291] The format of the Valid Parameter Reply Packet for one embodiment is shown in
FIG. 74. As seen in FIG. 74, this type of packet is structured to have Packet Length, Packet
Type, cClient ID, MCCS VCP Code, Response Code, Reply Sequence Number, Number
Values in List, VCP Parameter Reply List, and CRC fields. This type of packet is generally
identified for one embodiment as a Type 132, as indicated in the 2 byte type field.

[00292] The cClient ID field is reserved for the future Client ID, as is known from the above
discussions, while the 3-byte MCCS VCP Code Packet contains a value that specifies a
non-continuous MCCS VCP Control Code Parameter that is described by this packet. If an
invalid MCCS VCP Control Code is specified by a Request Valid Parameter Packet, then
the same invalid parameter value will be specified in this field with the appropriate value in
the Response Code field. If the MCCS Control Code is invalid then the VCP Parameter
Reply List will have zero length.

[00293] The Response Code field contains 2 bytes of information or values that specify the
nature of the response related to the request for information regarding the specified MCCS
VCP Control. If the value in this field is equal to 0, then no error is considered as being
present for this data type, and the last Valid Parameter Reply Packet in the sequence is sent,
it having the highest Reply Sequence Number. If the value in this field is equal to 1, then
no error is considered as being present, but other Valid Parameter Reply Packets will be
sent that have higher sequence numbers. If the value in this field is equal to 2, then the
specified control is not considered as being implemented in the client. If the value in this
field id equal to 3, then the specified control is not a non-continuous control (it is a
continuous control that always has a valid set of all values from zero to its maximum
value). Values for this field equal to 4 through 65535 are reserved for future use and
generally not to be used.

[00294] The 2-byte Reply Sequence Number field specifies the sequence number of the
Valid Parameter Reply Packets returned by the client. The client returns one or more Valid
Parameter Reply Packets in response to a Request Valid Parameter Packet. The client may
spread the VCP Parameter Reply List over multiple Valid Parameter Reply Packets. In this

latter case, the client will assign a sequence number to each successive packet, and set the

WO 2005/018191 PCT/US2004/026264

59

Response Code to 1 in all but the last packet in the sequence. The last Valid Parameter
Reply Packet in the sequence will have the highest Reply Sequence Number and the
Response Code contains a value of 0.

[00295] The 2-byte Number of Values in List field specifies the number of 16-bit values that
exist in the VCP Parameter Reply List. If the Response Code is not equal to zero then the
Number of Values in List paxanieter is zero. The VCP Parameter Reply List field contains
a list of 0 to 32760 2-byte values that indicate the set of valid values for the non-continuous
control specified by the MCCS Control Code field. The definitions of the non-continuous
control codes are specified in the VESA MCCS Specification. Finally, in this embodiment,
the CRC field contains a 16-bit CRC of all bytes in the packet including the Packet Length.

Alpha-Cursor Images

[00296] The MDD interface and associate inventive protocol and mechanisms for
communicating data over a communications link provides support for multiple image
planes that overlap each other and can have varying degrees of transparency. A hardware
cursor can be implemented using an overlapping image that has a variable X-Y offset. An
overview of the Alpha-Cursor functionality and associated protocol support is provided
below. The ability to support Alpha-Cursor image packets is defined in the Alpha-Cursor
Image Capability Packet, which is sent in response to a Request Specific Status Packet.

32. Alpha-Cursor Image Capability Packet

[00297] The Alpha-Cursor Image Capability Packet is used to define the characteristics of
the alpha-cursor image and associated transparency maps in a client. In one embodiment, a
client indicates an ability to support an Alpha-Cursor Image Capability Packet using a
parameter value of 133 in the Valid Parameter Reply List of the Valid Status Reply List
Packet. The packet length specified in the packet length field is set to a fixed value of 20
for one embodiment, not including the packet length field.

[00298] The format of the Alpha-Cursor Image Capability Packet for one embodiment is
shown in FIG. 75. As seen in FIG. 75, this type of packet is structured to have Packet
Length, Packet Type, cClient ID, Alpha-Cursor Identifier, Alpha-Cursor Bitmap Width,
Alpha-Cursor Bitmap Height, RGB Capability, Monochrome Capability, Reserved 1, Y Cr
Cb Capability, Transparency Map Res., Capability Bits, and CRC fields. The cClient ID

field is typically reserved for future Client ID use and currently set to zero.

WO 2005/018191 PCT/US2004/026264

60

[00299] The Alpha Cursor Identifier field (2 bytes) contains a value that identifies a specific
alpha-cursor plane. If the client supports n alpha-cursor image planes then the Alpha-
Cursor Identifier has a valid range of 0 ton - 1. In one embodiment, the value n is specified
by the Alpha-Cursor Image Planes field of the Display Capability Packet. The client
returns a unique Alpha-Cursor Image Capability Packet for each alpha-cursor image plane.

[00300] The 2-byte Alpha-Cursor Bitmap Width field value specifies the width of the alpha-
cursor bitmap image expressed as a number of pixels, while the 2-byte Alpha-Cursor
Bitmap Height field value specifies the height of the alpha-cursor bitmap image expressed
as a number of pixels.

[00301] The RGB Capability field — 2 bytes that contain a 16-bit unsigned integer that
specifies the number of bits of resolution that can be displayed in RGB format. If the client
cannot use the RGB format then this value is zero. The RGB Capability word is composed
of three separate values, which in one embodiment are implemented such that: Bits 3
through 0 define the maximum number of bits of blue (the blue intensity) in each pixel; Bits
7 through 4 define the maximum number of bits of green (the green intensity) in each
pixel; Bits 11 through 8 define the maximum number of bits of red (the red intensity) in
each pixel; with Bits 15 through 12 being reserved for future use in presenting RGB
capability information and are set to zero for now.

[00302] The 1-byte Monochrome Capability field is used to specify the number of bits of
resolution that can be displayed in monochrome format. If a client cannot use the
monochrome format then this value is zero. Bits 7 through 4 are reserved for future use and
are, therefore, generally set to zero. Bits 3 through 0 define the maximum number of bits of
grayscale that can exist in each pixel. These four bits make it possible to specify that each
pixel consists of 1 to 15 bits. If the value is zero then the monochrome format is not
supported by the client.

[00303] The 1-byte Reserved 1 field contains a value generally reserved for future use, and
as such all bits in this field are set to zero. This will cause subsequent 2-byte fields to align
to a 16-bit word addresé and cause 4-byte fields to align to a 32-bit word address.

[00304] The 2-byte Y Cb Cr Capability field contains values or information that specifies the
number of bits of resolution that can be displayed in Y Cb Cr format. If the client cannot
use the Y Cr Cb format then this value is zero. Generally, in one embodiment, the Y Cb Cr
Capability word is composed of three separate values with: Bits 3 through O defining a

maximum number of bits that specify the Cr sample; Bits 7 through 4 defining the

WO 2005/018191 PCT/US2004/026264

61

maximum number of bits that specify the Cb sample; Bits 11 through 8 defining the
maximum number of bits that specify the Y sample; and with Bits 15 through 12 being
reserved for future use in presenting Y Cb Cr Capability information or values, but
currently being set to zero.

[00305] The 1-byte Transparency Map Resolution field contains values or information that
specifies the number of bits (depth) in each pixel location of the alpha-cursor image
transparency map. This value may range from 1 to 8, If the value is zero then the
transparency map is not supported for this alpha-cursor image buffer (the buffer specified
by the Alpha-Cursor Identifier Field).

[00306] The 1-byte Capability Bits field provides values or information that contains a set of
flags that specify capabilities associated with the alpha-cursor image buffer. In one
embodiment, the flags are defined such that: Bit O acts to select Pixel data in the alpha-
Cursor Video Stream Packet to be in a packed format. Bit 1 acts to show that transparency
map data in the Alpha-Cursor Transparency Packet is in a packet format. An example of
byte-aligned and packed transparency map data is shown in FIG. 76. Bit 2 acts to show that
the alpha-cursor image plane supports image offset capability using the Alpha-Cursor
Image Offset Packet. Bit 3 acts to show that the alpha-cursor image plane can support a
color map data format. The same color map table is used for the alpha-cursor image planes
as is used for the main image buffer and scaled video streams. The color map is configured
using the Color Map Packet described elsewhere.

[00307] Bits 7 through 4 are reserved for future use and are generally, therefore, set to a zero

value or logic level..

33. Alpha-Cursor Transparency Map Packet
[00308] The Alpha-Cursor Transparency Map Packet defines the contents of the image
transparency map for the specified alpha-cursor image plane. Some applications may
require a transparency map that is larger than the amount of data that can be transmitted in a
single packet. In these cases, multiple Alpha-Cursor Transparency Map Packets may be
sent, each with a different subset of the transparency map by using the Transparency Map X
and Y Start fields described below. These fields operate in a similar manner as the X Start
and Y Start fields of the Video Stream Packet. A client indicates an ability to support the
Alpha-Cursor Transparency Map Packet in one embodiment using the Transparency Map

Resolution field of the Alpha-Cursor Image Capability Packet for each specific Alpha-

WO 2005/018191 PCT/US2004/026264

62

Cursor Plane specified by the Alpha-Cursor Identifier field of the Alpha-Cursor Image
Capability Packet. The packet length and Client ID fields operate as before for other
packets discussed above. In one embodiment, a value of 134 in the Packet Type field is
used to identify a packet as a Alpha-Cursor Transparency Map Packet.

[00309] The format of the Alpha-Cursor Transparency Map Packet for one embodiment is
shown in FIG.76. As seen in FIG. 76, this type of packet is structured to have Packet
Length, Packet Type, hClient ID, Alpha-Cursor Identifier, Transparency Map X Start,
Transparency Map Y Start, Transparency Map Resolution, Reserved 1, Parameter CRC,
Transparency Map Media, and Transparency Map Data CRC fields.

[00310] The 2-byte Alpha Cursor Identifier field has a value that identifies a specific alpha-
cursor plane. - If the client supports n alpha-cursor image planes then the Alpha-Cursor
Identifier has a valid range of O ton - 1.

[00311] The 2-byte Transparency Map X and Y Start fields each specify the absolute X and
Y coordinates, where the point (Transparency Map X Start, Transparency Map Y Start) is
the first pixel in the Transparency Map Data field below.

[00312] The transparency Map Resolution field (1 byte) contains a value that specifies the
resolution of the transparency map and whether or not the data is packed. In one
embodiment of this field, Bits 3 through 0 define the number of bits of resolution that exist
in all transparency map table items. Valid values specify the width to be from 1 to 8 bits.
Values 0 and 9 through 15 are considered invalid. This value should match the value
returned by a client in the Transparency Map Resolution field in the Alpha-Cursor Image
Capability Packet. Bits 6 through 4 are reserved for future use and are, therefore, generally
shall be set to logic-zero at this time. Bit 7 of this byte specifies whether or not the
Transparency Map Data is in packedA or byte-aligned form. If bit 7 is equal to ‘1’ then the
Transparency Map Data is in packed form, and if ‘0’ the data is byte-aligned. An example
of packed and byte-aligned Transparency Map data is shown in Error! Reference source
not found.. The value of this bit must match the value of bit 1 of the Capability Bits field
of the Alpha-Cursor Image Capability Packet.

[00313] The 1 bute Reserved 1 field is reserved for future use, therefore, all bits in this field
are generally set equal to a logic-zero level. One purpose of this field is to cause all
subsequent 2 byte fields to align to a 16-bit word address and cause 4-byte fields to align to
a 32-bit word address.

WO 2005/018191 PCT/US2004/026264

63

[00314] The Parameter CRC field contain a 16-bit CRC of all bytes from the Packet Length
to the Reserved 1 field. If this CRC fails to check then the entire packet is to be discarded.

[00315] For the Transparency Map Data field, each transparency map location is 1 to 8 bits
in width. If a single transparency map cannot fit into one Alpha and Cursor Transparency
Map Packet, then the entire transparency map may be specified by sending multiple packets
with different Transparency Map Data and Transparency Map X and Y Start values in each
packet.

[00316] The 2-byte Transparency Map Data CRC field contains a 16-bit CRC of only the
Transparency Map Data. If this CRC fails to check then the Transparency Map Data can

still be used but the CRC error count shall be incremented

34. Alpha-Cursor Image Offset Packet

003171 . The Alpha-Cursor Image Offset Packet specifies the X and Y offset of the cursor
from the upper left corner of the main display image. The format of the Alpha-Cursor
Image Offset Packet is illustrated in FIG. 77. As shown in FIG. 77, in one embodiment, the
Alpha-Cursor Image Offset Packet is structured with Packet Length, Packet Type, hClient
ID, Alpha-Cursor X Offset, Alpha-Cursor Y Offset, and CRC fields. In one embodiment, a
client indicates the ability to support the Alpha-Cursor Image Offset Packet using bit 2 of
the Capability Bits field of the Alpha-Cursor Image Capability Packet for each specific
Alpha-Cursor Plane specified by the Alpha-Cursor Identifier field of the Alpha-Cursor
Image Capability Packet. In one embodiment, the packet length is fixed at 10, as shown in
the 2-byte Packet Length field. In one embodiment, a Packet Type of 135 identifies the
packet as an Alpha-Cursor Image Offset Packet.

[00318] The 2-byte Alpha-Cursor X and Y Offset fields contain values that specify the
horizontal and vertical, respectively, offset of the left-most column and top row,
respectively of pixels of the cursor image from the left side and top of the main image. The
hClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client ID. This

field is reserved for future use and shall be set to zero.

35. Alpha-Cursor Video Stream Packet
[00319] The Alpha-Cursor Video Stream Packet carries video data to update a rectangular

region of an alpha-cursor image plane. The size of this region may be as small as a single

WO 2005/018191 PCT/US2004/026264

64

pixel or as large as the entire display. The format of the Alpha-Cursor Video Stream Packet
is illustrated in FIG. 78, As shown in FIG 78, in one embodiment the Alpha-Cursor Video
Stream Packet is structured with Packet Length, Packet Type, bClient ID, Video Data
Format Attributes, X Left Edge, Y Top Edge, X Rigth Edge, Y Bottom Edge, X Start, Y
Start, Pixel Count, Parameter Crc Pixel Data, and Pixel Data CRC fields. In one
embodiment, a client indicates an ability to support the Alpha-Cursor Video Stream Packet
and its associated parameters by using the Alpha-Cursor Image Capability Packet for each
specific Alpha-Cursor Plane specified by the Alpha-Cursor Identifier field of the Alpha-
Cursor Image Capability Packet, and a value of 17 in the packet type field indicates or
identifies a packet as being an Alpha-Cursor Video Stream Packet. The hClient ID field (2
bytes) is reserved for future use as a Client ID, and is generally set to zero in the meantime,
as would be well understood in the art.

[00320] The 2-byte Video Data Format Descriptor field contains information or a value that
specifies the format of each pixel in the Pixel Data in the present stream in the present
packet. The pixel data format must comply with at least one of the valid formats for the
alpha-cursor image plane as defined in the Alpha-Cursor Image Capability Packet. The
Video Data Format Descriptor field contains a value that defines the pixel format for the
current packet only and does not imply that a constant format will continue to be used for
the lifetime of a particular video stream. Error! Reference source not found. illustrates
how the Video Data Format Descriptor is coded. The format is as follows:

[00321] In one embodiment, when bits [15:13] are ‘000’ then the video data consists of an
array of monochrome pixels where the number of bits per pixel is defined by bits 3 through
0 of the Video Data Format Descriptor word. Bits 11 through 4 are then set to zero. When
bits [15:13] are ‘001’ then the video data consists of an array of color pixels that each
specify a color through a color map (palette). Bits 5 through 0 of the Video Data Format
Descriptor word define the number of bits per pixel, and Bits 11 through 6 are set to zero.
When bits [15:13] are ‘010’ then the video data consists of an array of color pixels in raw
RGB format where the number of bits per pixel of red is defined by bits 11 through 8, the
number of bits per pixel of green is defined by bits 7 through 4, and the number of bits per
pixel of blue is defined by bits 3 through 0. The total number of bits in each pixel is the
sum of the number of bits used for red, green, and blue.

[00322] When bits [15:13] are ‘011’ then the video data consists of an array of video data in

4:2:2 Y Cb Cr format with luminance and chrominance information. The number of bits

WO 2005/018191 PCT/US2004/026264

65

per pixel of luminance (Y) is defined by bits 11 through 8, the number of bits of the Cb
component is defined by bits 7 through 4, and the number of bits of the Cr component is
defined by bits 3 through 0. The Cb and Cr components are sent at half the rate as Y. The
video samples in the Pixel Data portion of this packet will be organized as follows: Cbn,
Yn, Crn, Yn+1, Cbn+2, Yn+2, Crn+2, Yn+3, ... where Cbn and Crn are associated with Yn
and Yn+1, and Cbn+2 and Crn+2 are associated with Yn+2 and Yn+3, and so on. Yn,
Yn+1, Yn+2 and Yn+3 are luminance values of four consecutive pixels in a single row
from left to right. The ordering of the color components is the same as the Microsoft
UYVY FOURCC format. If there are an odd number of pixels in a row (X Right Edge — X
Left Edge + 1) in the window referenced by the Video Stream Packet then the Cb value
corresponding to the last pixel in each row will be followed by the Y value of the first pixel
of the next row. It is recommended that windows using Y Cb Cr format have a width that is
an even number of pixels. The Pixel Data in a packet shall contain an even number of
pixels. It may contain an odd or even number of pixels in the case where the last pixel of
the Pixel Data corresponds to the last pixel of a row in the window specified in the Video
Stream Packet header, i.e. when the X location of the last pixel in the Pixel Data is equal to
X Right Edge. For all four formats, bit 12 (designated as “P” in the figures) specifies
whether or not the Pixel Data samples are packed. When the value of bit 12 is ‘0’ then each
pixel and each color within each pixel in the Pixel Data field is byte-aligned with an MDDI
interface byte boundary. When the value of bit 12 is ‘1’ then each pixel and each color
within each pixel in the Pixel Data is packed up against the previous pixel or color within a
pixel leaving no unused bits.

[00323] In one embodiment, the Pixel Data Attributes field (2 byte) has a series of bit values
that are interpreted as follows. Bits 1 and O select how the display pixel data is routed. For
bit values of '11' data is displayed to or for both eyes, for bit values '10', data is routed only
to the left eye, and for bit values '01, data is routed only to the right eye.

[00324] Bit 2 indicates whether or not the Pixel Data is presented in an interlace format, with
a value of '0' meaning the pixel data is in the standard progressive format, and that the row
number (pixel Y coordinate) is incremented by 1 when advancing from one row to the next.
When this bit has a value of '1', the pixel data is in interlace format, and the row number is
incremented by 2 when advancing from one row to the next. Bit 3 indicates that the Pixel
Data is in alternate pixel format. This is similar to the standard interlace mode enabled by

bit 2, but the interlacing is vertical instead of horizontal. When Bit 3 is ‘0’ the Pixel Data is

WO 2005/018191 PCT/US2004/026264

66

in the standard progressive format, and the column number (pixel X coordinate) is
incremented by 1 as each successive pixel is received. When Bit 3 is ‘1’ the Pixel Data is
in alternate pixel format, and the column number is incremented by 2 as each pixel is
received.

[00325] Bit 4 indicates whether or not the Pixel data is related to a display or a camera, as
where data is being transferred to or from an internal display for a wireless phone or similar
device or even a portable computer, or such other devices as discussed above, or the data is
being transferred to or from a camera built into or directly coupled to the device. When Bit
4 is ‘0’ the Pixel data is being transferred to or from a display frame buffer. When Bit 4 is
‘I’ Pixel data is being transferred to or from a camera or video device of some type, such
devices being well known in the art.

[00326] Bit 5 is reserved for future use or applications of the MDD interface and is,
therefore, generally set as zero value or ‘0’.

[00327] Bits 7 and 6 are Display Update Bits that specify a frame buffer where the pixel data
is to be written. The more specific effects are discussed elsewhere. For bit values of ‘01’
Pixel data is written to the offline image buffer. For bit values of ‘00’ Pixel data is written
to the image buffer used to refresh the display. For bit values of ‘11’ Pixel data is written to
all image buffers. The bit values or combination of ‘10’ is treated as an invalid value or
designation and Pixel data is ignored and not written to any of the image buffers. This
value may have use for future applications of the interface.

[00328] Bits 8 through 15 are reserved for future use and are, therefore, generally set as zero.

[00329] In one embodiment, the 2-byte X Start and Y Start fields specify the absolute X and
Y coordinates of the point (X Start, Y Start) for the first pixel in the Pixel Data field. The
2-byte X Left Edge and Y Top Edge fields specify the X coordinate of the left edge and Y
coordinate of the top edge of the alpha-cursor image window filled by the Pixel Data field,
while the X Right Edge and Y Bottom Edge fields specify the X coordinate of the right
edge, and the Y coordinate of the bottom edge of the alpha-cursor image window being
updated.

[00330] The Pixel Count field (2 bytes) specifies the number of pixels in the Pixel Data field
below.

[00331] The 2-byte Parameter CRC field contains a CRC of all bytes from the Packet Length
to the Pixel Count. If this CRC fails to check then the entire packet is discarded.

WO 2005/018191 PCT/US2004/026264

67

[00332] The Pixel Data field contains the raw video information that is to be displayed, and
which is formatted in the manner described by the Video Data Format Descriptor field. The
data is transmitted one "row" at a time as discussed elsewhere.

[00333] The Pixel Data CRC field (2 bytes) contains a 16-bit CRC of only the Pixel Data. If
a CRC verification of this value fails then the Pixel Data can still be used, but the CRC

error count is incremented.

Scaled Video Stream Images

[00334] The MDD Interface or protocol mechanism or method provides support for scaled
video stream images that allow the host to send an image to the clienf that is scaled larger or
smaller than the original image, and the scaled image is copied to a main image buffer. An
overview of the Scaled Video Stream functionality and associated protocol support is
provided elsewhere, An ability to support scaled video streams is defined by or within the
Scaled Video Stream Capability Packet, which is sent in response to a Request Specific

Status Packet.

36. Scaled Video Stream Capability Packet

[00335] The Scaled Video Stream Capability Packet defines the characteristics of the scaled
video stream source image in or used by a client. The format of the Scaled Video Stream
Capability Packet is shown generally in FIG. 79. As seen in FIG. 79, in one embodiment, a
Scaled Video Stream Capability Packet is structured to have Packet Length, Packet Type,
cClient ID, Max Number of Streams, Source Max X Size, Source Max Y size, RGB
Capability, Monochrome Capability, Reserved 1, Y Cr Cb Capability, Reserved 2, and CRC
fields. Thr packet length, in one embodiment, is selected to be a fixed 20 bytes, as shown in
the length field, including the 2-byte cClient ID field, reserved for use for a Client ID,
otherwise set to zero, and the .CRC field. In one embodiment, the client indicates an ability
to support the Scaled Video Stream Capability Packet using a parameter value of 143 in the
Valid Parameter Reply List of the Valid Status Reply List Packet.

[00336] The 2-byte Maximum Number of Streams field contains a value to identify the
maximum number of simultaneous scaled video streams that may be allocated at one time.
In one embodiment, a client should deny a request to allocate a scaled video stream if the

maximum number of scaled video streams are already allocated. If less than the maximum

WO 2005/018191 PCT/US2004/026264

68

number of scaled video streams are allocated the client may also deny an allocation request
based on other resource limitations in the client.

[00337] The Source Maximum X Size and Y size fields (2 bytes) specify values for the
maximum width and height, respectively, of the scaled video stream source image
expressed as a number of pixels.

[00338] The RGB Capability field uses values to specify the number of bits of resolution that
can be displayed in RGB format. If the scaled video stream cannot use the RGB format
then this value is set equal to zero. The RGB Capability word is composed of three separate
unsigned values with: Bits 3 through 0 defining a maximum number of bits of blue (the
blue intensity) in each pixel, Bits 7 through 4 defining the maximum number of bits of
green (the green intensity) in each pixel, and Bits 11 through 8 defining the maximum
number of bits of red (the red intensity) in each pixel, while Bits 15 through 12 are reserved
for future use in future capability definitions, and are generally set to zero.

[00339] The 1-byte Monochrome Capability field contains a value that specifies the number
of bits of resolution that can be displayed in monochrome format. If the scaled video
stream cannot use the monochrome format then this value is zero. Bits 7 through 4 are
reserved for future use and should, therefore, be set to zero (‘0°) for current applications,
although this may change over time, as will be appreciated by those skilled in the art. Bits 3
through O define the maximum number of bits of grayscale that can exist in each pixel.
These four bits make it possible to specify that each pixel consists of 1 to 15 bits. If the
value is zero, then the monochrome format is not supported by the scaled video stream.

[00340] The Reserved 1 field (here 1 byte) is reserved for future use in providing values
related to the Scaled Video Stream Packet information or data. Therefore, currently, all bits
in this field are set to a logic ‘0’. One purpose of this field is to cause all subsequent 2-byte
fields to align to a 16-bit word address and cause 4-byte fields to align to a 32-bit word
address.

[00341] The 2-byte Y Cb Cr Capability field contain values that specify the number of bits
of resolution that can be displayed in Y Cb Cr format. If the scaled video stream cannot use
the Y Cb Cr format then this value is zero. The Y Cb Cr Capability word is composed of
three separate unsigned values with: Bits 3 through 0 defining the maximum number of bits
that specify the Cr sample; Bits 7 through 4 defining the maximum number of bits that
specify the Cb sample; Bits 11 through 8 defining the maximum number of bits specify the

[00342]

[00343]

[00344]

[00345]

WO 2005/018191 PCT/US2004/026264

69

Y sample; and with Bits 15 through 12 being reserved for future use and is generally set to
zZero.

The 1-byte Capability Bits field contains an 8-bit unsigned integer that contains a set
of flags that specify capabilities associated with the scaled video stream. The flags are
defined as follows: Bit O covers Pixel data in the Scaled Video Stream Packet can be in a
packed format. An example of packed and byte-aligned pixel data is shown in Error!
Reference source not found.Bit 1 is reserved for future use and shall be set to zero; Bit 2 is
reserved for future use and shall be set to zero; Bit 3 covers scaled video streams that can be
specified in the color map data format. The same color map table is used for the scaled
video streams as is used for the main image buffer and the alpha-cursor image planes. The
color map is configured using the Color Map Packet described in elsewhere; and Bits 7
through 4 are reserved for future use and are generélly set to be zero.

The Reserved 2 field (here 1 byte) is reserved for future use in providing values
related to the Scaled Video Stream Packet information or data. Therefore, currently, all bits
in this field are set to a logic ‘0’. One purpose of this field is to cause all subsequent 2-byte
fields to align to a 16-bit word address and cause 4-byte fields to align to a 32-bit word
address.

37. Scaled Video Stream Setup Packet

The Scaled Video Stream Setup Packet is used to define the parameters of the scaled
video stream and the client uses the information to allocate internal storage for buffering
and scaling of the image. A stream may be de-allocated by sending this packet with the X
Image Size and Y Image Size fields equal to zero. Scaled video streams that have been de-
allocated may be reallocated later with the same or different stream parameters. In one
embodiment a client indicates an ability to support the Scaled Video Stream Setup Packet
using a parameter value of 143 in the Valid Parameter Reply List of the Valid Status Reply
List Packet, and by using a non-zero value in the Maximum Number of Streams field of the

Scaled Video Stream Capability Packet.

Packet definition is illustrated in Error! Reference source not found..

WO 2005/018191 PCT/US2004/026264

70

Scaled Video Stream Setup Packet

Packet Packet Type hClient ID Stream ID |Video Data Format Pixel Data

Length =136 Descriptor Attributes
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
X Left Edge | Y Top Edge |X Right Edge| Y ggggm X Image Size|Y Image size] crC
2 bytes 2 bytes ‘2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Packet Contents:
[00346] Packet Length ~ 2 bytes that contain a 16-bit unsigned integer that specifies the total
number of bytes in the packet not including the packet length field. The packet length of
this packet is always 24.
[00347] - Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 136

identifies the packet as a Scaled Video Stream Setup Packet.

[00348] hClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero

[00349] Stream ID — 2 bytes that contain a 16-bit unsigned integer that specifies a unique
identifier for the Stream ID. This value is assigned by the host and shall be from zero to the
maximum Stream ID value specified in the Display Capability Packet. The host must
manage the use of Stream ID values carefully to ensure that each active stream is assigned a
unique value, and that streams that are no longer active are deallocated or reassigned.

[00350] Video Data Format Descriptor — 2 bytes that contain a 16-bit unsigned integer that
specifies the format of each pixel in the Pixel Data in the present stream in the present
packet. The pixel data format must comply with at least one of the valid formats for the
alpha-cursor image plane as defined in the Alpha-Cursor Image Capability Packet. The
Video Data Format Descriptor defines the pixel format for the current packet only and does
not imply that a constant format will continue to be used for the lifetime of a particular
video stream. Error! Reference source not found. illustrates how the Video Data Format
Descriptor is coded. The format is as follows:

[00351] If bits [15:13] = 000 then the video data consists of an array of monochrome pixels
where the number of bits per pixel is defined by bits 3 through 0 of the Video Data Format
Descriptor word. Bits 11 through 4 shall be set to zero.

WO 2005/018191 PCT/US2004/026264

71

[00352] If bits [15:13] = 001 then the video data consists of an array of color pixels that each
specify a color through a color map (palette). Bits 5 through O of the Video Data Format
Descriptor word define the number of bits per pixel. Bits 11 through 6 shall be set to zero.

[00353] If bits [15:13] = 010 then the video data consists of an array of -color pixels in raw
RGB format where the number of bits per pixel of red is defined by bits 11 through 8, the
number of bits per

[00354] pixel of green is defined by bits 7 through 4, and the number of bits per pixel of blue
is defined by bits 3 through 0. The total number of bits in each pixel is the sum of the

‘ number of bits used for red, green, and blue.

[00355] [15:13] = 011 then the video data consists of an array of video data in 4:2:2 Y Cb Cr
format with luminance and chrominance information. The number of bits per pixel of
luminance (Y) is defined by bits 11 through 8, the number of bits of the Cb component is
defined by bits 7 through 4, and the number of bits of the Cr component is defined by bits 3
through 0. The Cb and Cr components are sent at half the rate as Y. The video samples in
the Pixel Data portion of this packet will be organized as follows: Cbn, Yn, Crn, Yn+1,
Cbn+2, Yn+2, Cm+2, Yn+3, ... where Cbn and Crn are associated with Yn and Yn+1, and
Cbn+2 and Crn+2 are associated with Yn+2 and Yn+3, and so on. Yn, Yn+1, Yn+2 and
Yn+3 are luminance values of four consecutive pixels in a single row from left to right.
The ordering of the color components is the same as the Microsoft UYVY FOURCC
format. If there are an odd number of pixels in a row (X Right Edge — X Left Edge + 1) in
the window referenced by the Video Stream Packet then the Cb value corresponding to the
Jast pixel in each row will be followed by the Y value of the first pixel of the next row. Itis
recommended that windows using Y Cb Cr format have a width that is an even number of
pixels. The Pixel Data in a packet shall contain an even number of pixels. It may contain
an odd or even number of pixels in the case where the last pixel of the Pixel Data
corresponds to the last pixel of a row in the window specified in the Video Stream Packet
header, i.e. when the X location of the last pixel in the Pixel Data is equal to X Right Edge.

[00356] For all four formats bit 12 (designated as “P” in Error! Reference source not
found.) specifies whether or not the Pixel Data samples are packed. Error! Reference
source not found. illustrates the difference between packed and byte-aligned pixel data.

[00357] 0 — each pixel and each color within each pixel in the Pixel Data field is byte-
aligned with an MDDI interface byte boundary.

WO 2005/018191 PCT/US2004/026264

72

[00358] 1 — each pixel and each color within each pixel in the Pixel Data is packed up
against the previous pixel or color within a pixel leaving no unused bits. 4

[00359] Pixel Data Attributes — 2 bytes that contain a 16-bit unsigned integer interpreted as
follows:

[00360] ° Bits 1 and O select the display where the pixel data shall be routed.

[00361] Bits [1:0] = 11 or 00 — data is displayed to both eyes

[00362] Bits [1:0] = 10 — data is routed to the left eye only.

[00363] Bits [1:0] = 01 — data is routed to the right eye only.

[00364] Bit 2 indicates that the Pixel Data is in interlace format.

[00365] Bit 2 is 0 — Pixel Data is in the standard progressive format. The row number (pixel

Y coordinate) shall be incremented by 1 when advancing from one row to the next.
[00366] Bit 2 is 1 — Pixel Data is in interlace format. The row number (pixel Y coordinate) -
shall be incremented by 2 when advancing from one row to the next.
[00367] - Bit 3 indicates that the Pixel Data is in alternate pixel format. This is similar to the
standard interlace mode enabled by bit 2, but the interlacing is vertical instead of horizontal.
[00368] Bit 3 is 0 — Pixel Data is in the standard progressive format. The column number
(pixel X coordinate) shall be incremented by 1 as each successive pixel is received.
[00369] Bit 3 is 1 — Pixel Data is in alternate pixel format. The column number (pixel X

coordinate) shall be incremented by 2 as each pixel is received.

(003701 Bit 4 indicates whether the Pixel data is related to the display or the camera.

[00371] Bit 4 is 0 — Pixel Data is to or from the display frame buffer.

[00372] Bit 4 is 1 — Pixel Data is to or from the camera.

.[00373] Bit 5 is reserved for future use and shall be set to zero.

[00374] Bits 7 and 6 are the Display Update Bits that specify the frame buffer where the

pixel data shall be written. The effects of the Frame Update Bits are described in more

detail in sections Error! Reference source not found. and Error! Reference source not

found..
[00375] Bits [7:6] = 01 — Pixel data is written to the offline image buffer.
[00376] Bits [7:6] = 00 — Pixel data is written to the image buffer used to refresh the display.
[00377] Bits [7:6] = 11 — Pixel data is written to all image buffers.
[00378] Bits [7:6] = 10 — Invalid. Reserved for future use. Pixel data is ignored and.not

written to any of the image buffers.

[00379] Bits 8 through 15 are reserved for future use and shall be set to zero.

WO 2005/018191 PCT/US2004/026264

73

[00380] X Left Edge — 2 bytes that contain a 16-bit unsigned integer that specifies the X
coordinate of the left edge of the destination image.

[00381] Y Top Edge — 2 bytes that contain a 16-bit unsigned integer that specifies the Y
coordinate of the top edge of the destination image.

[00382] X Right Edge — 2 bytes that contain a 16-bit unsigned integer that specifies the X
coordinate of the right edge of the destination image.

[00383] Y Bottom Edge — 2 bytes that contain a 16-bit unsigned integer that specifies the Y
coordinate of the bottom edge of the destination image.

[00384] X Image Size — 2 bytes that contain a 16-bit unsigned integer that specifies the
width of the source image.

[00385] Y Image Size — 2 bytes that contain a 16-bit unsigned integer that specifies the
height of the source image.

[00386] CRC - 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.

Scaled Video Stream Acknowledgement Packet
[00387] The Scaled Video Stream Acknowledgement Packet allows a client to acknowledge
the receipt of a Scaled Video Stream Setup Packet. The client shall indicate its ability to
support the Scaled Video Stream Acknowledgement Packet via a parameter value of 143 in
the Valid Parameter Reply List of the Valid Status Reply List Packet and via a non-zero
value in the Maximum Number of Streams field of the Scaled Video Stream Capability
Packet.

[00388] Packet definition is illustrated in.

Scaled Video Stream Acknowledgement Packet

Packet Packet Type

Length =137 cClient ID Stream 1D Ack Code CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Packet Contents:
[00389] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total

number of bytes in the packet not including the packet length field. The packet length of
this packet is always 10.

WO 2005/018191 PCT/US2004/026264

74
[00390] Packet Type —A Packet Type of 137 identifies the packet as a Scaled Video Stream
Acknowledgement Packet.
[00391] cClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client

ID. This field is reserved for future use and shall be set to zero.

[00392] Stream ID — 2 bytes that contain a 16-bit unsigned integer that specifies a unique
identifier for the Stream ID. This is the same value assigned by the host in the Scaled
Video Stream Setup Packet.

[00393] The 2- byte Ack Code field provides values containing a code that describes the
outcome of an attempt to update the specified scaled video stream. The codes are defined
as follows:

[00394] 0 — The stream allocation attempt was successful.

[00395] 1 — the stream de-allocation attempt was successful.

[00396] 2 —invalid attempt to allocate a stream ID that has already been allocated.

[00397] 3 —invalid attempt to de-allocate a stream ID that is already de-allocated.

[00398] 4 — the client does not support scaled video streams

[00399] 5 — the stream parameters are inconsistent with the capability of the client.

[00400] 6 — stream ID value larger than the maximum value allowed by the client.

[00401] 7 — insufficient resources available in the client to allocate the specified stream.

[00402] CRC - 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.

Scaled Video Stream Packet
[00403] The Scaled Video Stream Packet is used to transmit the pixel data associated with a

specific scaled video stream. The size of the region reference by this packet is defined by
the Scaled Video Stream Setup Packet. The client shall indicate its ability to support the
Scaled Video Stream Packet via a parameter value of 143 in the Valid Parameter Reply List
of the Valid Status Reply List Packet and via a successful scaled video stream allocation

response in the Ack Code field of the Scaled Video Stream Acknowledgement Packet.

[00404] The packet definition is illustrated in Figure -1.
Scaled Video Stream Packet
Packet Packet Type . Parameter Pixel . Pixe! Data
Length =18 hClientID | Stream ID CRC Count Pixel Data CRC

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 12 bytes 2 bytes

WO 2005/018191 PCT/US2004/026264

75

Figure -1, Scaled Video Stream Packet
Packet Contents:

[00405] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total
number of bytes in the packet not including the packet length field.

[00406] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 18
identifies the packet as a Scaled Video Stream Packet.

[00407] hClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero

[00408] Stream ID — 2 bytes that contain a 16-bit unsigned integer that specifies a unique
identifier for the Stream ID. This value is specified by the host in the Scaled Video Stream
Setup Packet and confirmed in the Scaled Video Stream Acknowledgement Packet.

[00409] Pixel Count — 2 bytes that contain a 16-bit unsigned integer that specifies the
number of pixels in the Pixel Data field below.

[00410] Parameter CRC — 2 bytes that contain a 16-bit CRC of all bytes from the Packet
Length to the Pixel Count. If this CRC fails to check then the entire packet shall be
discarded.

[00411] Pixel Data — The raw video information to be scaled and then displayed. Data is

. formatted in the manner described by the Video Data Format Descriptor field. The data is
transmitted a row at a time as defined in section Error! Reference source not found..

[00412] Pixel Data CRC — 2 bytes that contain a 16-bit CRC of only the Pixel Data. If this
CRC fails to check then the Pixel Data shall still be used but the CRC error count shall be

incremented.

Request Specific Status Packet

[00413] The Request Specific Status Packet provides a means for the host to request that the
client send a capability or status packet back to host as specified in this packet. The client
shall return the packet of the specified type in the next Reverse Link Encapsulation Packet.
The client will set bit 17 in the Display Feature Capability Indicators field of the Display
Capability Packet if the client has the capability to respond to the Request Specific Status
Packet. The client shall indicate its ability to support the Request Specific Status Packet via
bit 21 of Display Feature Capability Indicators field of the Display Capability Packet.

WO 2005/018191 PCT/US2004/026264

76

Request Specific Status Packet

Packet Packet Type . Status
Length =138 hClientID | b cket ID CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Figure, Request Specific Status Packet
Packet Contents:
[00414] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total

number of bytes in the packet not including the packet length field. The Packet Length of
this packet is always 10.

[00415] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 138
identifies the packet as a Request Specific Status Packet.

[00416] hClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero.

[00417] Status Packet ID — 2 bytes that contain a 16-bit unsigned integer that specifies the
type of capability or status packet that the client shall send to the host as follows:

[00418] 66 — Display Capability Packet shall be sent by the client.

[00419] 133 — Alpha-Cursor Image Capability Packet shall be sent by the client.

[00420] 139 — Valid Status Reply List Packet shall be sent that identifies the exact types of
capability and status packets that the client can send.

[00421] 140 — Packet Processing Delay Parameters Packet shall be sent by the client.

[00422] 141 — Personal Display Capability Packet shall be sent by the client.

[00423] 142 — Display Error Report Packet shall be sent by the client.

[00424] 143 — Scaled Video Stream Capability Packet shall be sent by the client.

[00425] 144 — Display Identification Packet shall be sent by the client.

[00426] 56 through 63 — can be used for manufacturer-specific capability and status
identifiers.

[00427] CRC - 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.

Valid Status Reply List Packet
[00428] The Valid Status Reply List Packet provides the host with a list of status and
capability packets to which the client has the capability to respond. The client shall indicate

WO 2005/018191 PCT/US2004/026264

77

its ability to support the Valid Status Reply List Packet via bit 21 of Display Feature
Capability Indicators field of the Display Capability Packet.

Valid Status Reply List Packet

Packet Packet Type . Number of . .
Length =139 cClient ID Values in List Valid Parameter Reply List CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes
Packet Contents:
[00429] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total

number of bytes in the packet not including the packet length field. The Packet Length of
this packet is always 10. |

[00430] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 139
identifies the packet as a Valid Status Reply Packet.

[00431] cClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero.

[00432] Number of Values in List — 2 bytes that contain a 16-bit unsigned integer that
specifies the number of items in the following Valid Parameter Reply List.

[00433] Valid Parameter Reply List — a list of 2 byte parameters that specify the types of
capability or status packets that the client can send to the host. If the client has indicated
that it can respond to the Request Specific Status Packet (via bit 21 of the Display Feature
Capability Indicators field the in the Display Capability Packet) then it shall always be
capable of sending at least the Display Capability Packet (Packet Type == 66) and the Valid
Status Reply List Packet (Packet Type == 139). The Packet Types that may be included in

this list and their meaning are:

[00434] 66 — Display Capability Packet can be sent by the client.

[00435] 133 — Alpha-Cursor Image Capability Packet can be sent by the client.

[00436] 139 — Valid Status Reply List Packet can be sent that identifies the exact types of
capability and status packets that the client can send.

[00437] 140 — Packet Processing Delay Parameters Packet can be sent by the client.

[00438] 141 — Personal Display Capability Packet can be sent by the client.

[00439] 142 - Display Error Report Packet can be sent by the client.

[00440] 143 — Scaled Video Stream Capability Packet can be sent by the client.

[00441] 144 — Display Identification Packet can be sent by the client.

WO 2005/018191 PCT/US2004/026264

78
[00442] 56 through 63 — can be used for manufacturer-specific capability and status
identifiers.
[00443] CRC - 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.
[00444] Packet Processing Delay Parameters Packet
[00445] The Packet Processing Delay Parameters Packet provides a set of parameters to

allow the host to compute the time required to complete the processing associated with the
reception of a specific packet type. Some commands sent by the host cannot be completed
by the client in zero time. The host may poll the status bits in the Display Request and
Status Packet to determine if certain functions have been completed by the client, or the
host may compute the completion time using the parameters returned by the client in the
Packet Processing Delay Parameters Packet. The client shall indicate its ability to support
the Packet Processing Delay Parameters Packet via a parameter value of 140 in the Valid
Parameter Reply List of the Valid Status Reply List Packet.

Packet Processing Delay Parameters Packet

Packet Packet Type . Number of .
Length = 140 cClient ID List ltems Delay Parameters List CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes
Packet Contents:
[00446] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total

number of bytes in the packet not including the packet length field. The Packet Length of
this packet is always 10.

[00447] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 140
identifies the packet as a Packet Processing Delay Parameters Packet.

[00448] cClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero.

[00449] Number List Items — 2 bytes that contain a 16-bit unsigned integer that specifies the
number of items in the following Valid Parameter Reply List.

[00450] Valid Parameter Reply List — a list containing one or more Delay Parameter List
items. The format of a single Delay Parameters List item is shown in Error! Reference

source not found..

WO 2005/018191 PCT/US2004/026264

79
[00451] CRC — 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.
Delay Parameters List Item
Packet Type | . Horizontal Vertical .
for Delay Pixel Delay Pixel Delay | Pixel Delay Fixed Defay
2 bytes 1 byte 1 byte 1 byte 1 byte
[00452] Each Delay Parameters List Item is exactly 6 bytes in length, and is defined as
follows:
[00453] ~ Packet Type for Delay — 2 bytes that contain a 16-bit unsigned integer that specifies

the Packet Type for which the following delay parameters apply.

[00454] Pixel Delay —~ 1 byte that contains an 8-bit unsigned integer that is an index to a
delay value. The value read from the table is multiplied by the total number of pixels in the
destination field of the packet. The total number of pixels is the width times the height of
the destination area of the bitmap referenced by the packet. Equation 0-1 is used to compute
the total delay. /

[00455] Horizontal Pixel Delay — 1 byte that contains an 8-bit unsigned integer that is an
index to a delay value table (same table as DPVL). The value read from the table is
multiplied by the width (in pixels) of the destination field of the packet. Equation 0-1 is
used to compute the total delay.

[00456] Vertical Pixel Delay — 1 byte that contains an 8-bit unsigned integer that is an index
to a delay value table (same table as DPVL). The value read from the table is multiplied by
the height (in pixels) of the destination field of the packet. Equation 0-1 is used to compute
the total delay.

[00457] Fixed Delay — 1 byte that contains an 8-bit unsigned integer that is an index to a
delay value table (same table as DPVL). The value read from the table is a fixed delay
parameter that represents a time required to process the packet that is unrelated to any

parameter values specified in the packet. Equation 0-1 is used to compute the total delay.

Delay = (PacketProcessingDelay(PixelDelay)-TotalPixels) +
[00458] (PacketProcessingDelay(HorizontalPixelDelay)-Width) +
[00459] (PacketProcessingDelay(VerticalPixelDelay)-Height) +
[00460] PacketProcessingDelay(FixedDelay)

WO 2005/018191 PCT/US2004/026264

80
[00461] Equation 0-1, Packet Processing Completion Time Delay
[00462] For some packets the TotalPixels, Width, or Height do not apply because those

parameters are not referenced in the corresponding packet. In those cases the corresponding

Pixel Delay parameter shall be zero.

Personal Display Capability Packet
[00463] The Personal Display Capability Packet provides a set of parameters that describe
the capabilities of a personal display device, such as a head-mounted display or display
glasses. This enables the host to customize the display information according to the
specific capabilities of a client. A client, on the other hand, indicates an ability to send the
Personal Display Capability Packet by using a corresponding parameter in the Valid
Parameter Reply List of the Valid Status Reply List Packet.

Personal Display Capability Packet

Packet Packet Type . Sub-Pixel " Horizontal Vertical Visual Axis
Length = g4 | CClentID | T/ iout | Pe! Shape [kil of view | Field of View| Crossing
2 bytes 2 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 1 byte
Lit./Rt. Image Maximum Optical Minimum Maximum | Points of Field Curvature
overlap |2 T80 grightness | Capabiity | IPD IPD List (25 2-byte values) CRC
1 byte 1 byte 1 byte 2 bytes 1byte 1 byte 50 bytes 2 bytes
Packet Contents:
[00464] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total
number of bytes in the packet not including the packet length field. The Packet Length of
this packet is always 68.
[00465] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 141

identifies the packet as a Personal Display Capability Packet.

[00466] cClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero.

[00467] The Sub-Pixel Layout field contains an 8-bit unsigned integer that specifies the
physical layout of a sub-pixel from top to bottom and left to right, using value of: 0 to
indicate that a sub-pixel layout is not defined; 1 to indicate red, green, blue stripe; 2 to
indicate blue, green, red stripe; 3 to indicate a quad-pixel, having a 2-by-2 sub-pixel
arrangement of red at the top left, blue at the bottom right, and two green sub-pixels, one at
the bottom left and the other at the top right; 4 to indicate a quad-pixel, with a 2-by-2 sub-

pixel arrangement of red at the bottom left, blue at the top right, and two green sub-pixels,

WO 2005/018191 PCT/US2004/026264

81

one at the top left and the other at the bottom right; 5 to indicate a Delta (Triad); 6 to
indicate a mosaic with red, green, and blue overlayed (e.g. LCOS display with field-
sequential color); and with values 7 through 255 being generally reserved for future use.

[00468] The Pixel Shape field contains an 8-bit unsigned integer that specifies the shape of
each pixel that is composed of a specific configuration sub-pixels, using a value of: 0 to
indicate that a sub-pixel shape is not defined; 1 to indicate round; 2 to indicate square; 3 to
indicate rectangular; 4 to indicate oval; 5 to indicate elliptical; and with the values 6
through 255 being reserved for future use in indicating desired chapes, as can be
appreciated by one skilled in the art.

[00469] Horizontal Field of View (HFOV) field — 1 byte that contains an 8-bit unsigned
integer that specifies the horizontal field of view in 0.5 degree increments (e.g. if the HFOV
is 30 degrees, this value is 60). If this value is zero then the HFOV is not specified.

[00470] Vertical Field of View (VFOV) field — 1 byte that contains an 8-bit unsigned integer
that specifies the vertical field of view in 0.5 degree increments (e.g. if the VFOV is 30
degrees, this value is 60). If this value is zero then the VFOV is not specified.

[00471] Visual Axis Crossing field — 1 byte that contains an 8-bit unsigned integer that
specifies the visual axis crossing in 0.01 diopter (1/m) increments (e.g. if the visual axis
crossing is 2.22 meters, this value is 45). If this value is zero then the Visual Axis Crossing
is not specified. {Note: is the specification of this parameter appropriate for the desired
range in most applications?} ‘

[00472] Left/Right Image Overlap field — 1 byte that contains an 8-bit unsigned integer that
specifies the percentage of overlap of the left and right image. The allowable range of the
image overlap in percent is 1 to 100. Values of 101 to 255 are invalid and shall not be used.
If this value is zero then the image overlap is not specified.

[00473] See Through field — 1 byte that contains an 8-bit unsigned integer that specifies the
see-through percentage of image. The allowable range of see-through in percent is O to
100. Values of 101 to 254 are invalid and shall not be used. If this value is 255 then the
see-through percentage is not specified.

[00474] Maximum Brightness field — 1 byte that contains an 8-bit unsigned integer that
specifies the maximum brightness in increments of 20 nits (e.g. if the maximum brightness
is 100 nits, this value is 5). If this value is zero then the maximum brightness is not

specified.

WO 2005/018191 PCT/US2004/026264

82
[00475] Optical Capability Flags field — 2 bytes that contain a 16-bit unsigned integer that
contains various fields that specify optical capabilities of the display.
[00476] Bits 15 through 5 — reserved for future use, shall be set to zero.
[00477] Bit 4 — Eye Glass Focus Adjustment
[00478] 0 — the display has no eye glass focus adjustment.
. [00479] 1 —the display has an eye glass focus adjustment.
[00480] Bits 3 through 2 — Binocular Function
[00481] 0 — the display is binocular and can display 2-dimensional (2D) images only.
[00482] 1 —the display is binocular and can display 3-dimensional (3D) images.
[00483] 2 — the display is monocular.
[00484] 3 —reserved for future use.
[00485] Bits 1 through 0 — Left-Right Field Curvature Symmetry
[00486] 0 — Field curvature not defined. If this field is zero then all field curvature values

from Al through ES5 shall be set to zero except for point C3, which shall specify the focal

distance of the display or be set to zero to indicate the focal distance is not specified.

[00487] 1 — Left and Right displays have the same symmetry.

[00488] 2 - Left and right displays are mirrored on the vertical axis (column C).

[00489] 3 —reserved for future use.

[00490] Inter-Pupillary Distance (IPD) Minimum — 1 byte that contains an 8-bit unsigned

integer that specifies the minimum inter-pupillary distance in millimeters (mm). If this
value is zero then the minimum inter-pupillary distance is not specified.

[00491] Inter-Pupillary Distance (JPD) Maximum — 1 byte that contains an 8-bit unsigned
integer that specifies the maximum inter-pupillary distance in millimeters (mm). If this
value is zero then the maximum inter-pupillary distance is not specified.

[00492] Points of Field Curvature List — a list of 25 2-byte parameters that specify the focal
distance in thousandths of a diopter (1/m) with a range of 1 to 65535 (e.g. 1 is 0.001
diopters and 65535 is 65.535 diopters). The 25 elements in the Points of Field Curvature
List are labeled Al through E5 as shown in Error! Reference source not found. below.
The points shall be evenly distributed over the active area of the display. Column C
corresponds to the vertical axis of the display and row 3 corresponds to the horizontal axis
of the display. Columns A and E correspond to the left and right edges of the display,
respectively. And rows 1 and 5 correspond to the top and bottom edges of the display,

WO 2005/018191 PCT/US2004/026264

83

respectively. The order of the 25 points in the list is: A1, B1, C1, D1, E1, A2, B2, C2, D2,
E2, A3, B3, C3,D3, E3, A4, B4, C4, D4, E4, A5, B5, C5, D5, ES.

[00493] CRC — 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.

i : I | I
5 o)
Display Error Report Packet

[00494] The Display Error Report Packet acts as a mechanism or means for allowing a client
to provide a list of operating errors to the host. The client may detect a wide range of errors
in the course of its normal operation as a result of receiving certain commands from the
host. Examples of these errors include: the client may have been commanded to operate in
a mode that it does not support, the client may have received a packet containing certain
parameters that are out of range or are beyond the capability of the client, the client may
have been commanded to enter a mode in an improper sequence. The Display Error Report
Packet may be used to detect errors during normal operation, but is most useful to the
system designer and integrator to diagnose problems in development and integration of host
and client systems. The client shall indicate its ability to send the Display Error Report
Packet via a parameter value of 142 in the Valid Parameter Reply List of the Valid Status
Reply List Packet.

Display Error Report Packet

Packet Packet Type . Number of
Length =142 | °CHentID |5t items

2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes

Error Code List CRC

WO 2005/018191 PCT/US2004/026264

84

Packet Contents:

[00495] Packet Length — 2 bytes that contain a 16-bit unsigned integer that specifies the total
number of bytes in the packet not including the packet length field.

[00496] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 142
identifies the packet as a Display Error Report Packet.

[00497] cClient ID — 2 bytes that contain is reserved for the Client ID. This field is reserved
for future use and shall be set to zero.

[00498]} Number of List Itemns — 2 bytes that contain a 16-bit unsigned integer that specifies
the number of items in the following Error Code List.

[00499] Error Code List — a list containing one or more Error Report List items. The format

of a single Error Report List item is shown in Error! Reference source not found..

Error Report List Item

Display Error
Error Code Sub-code

2 bytes 2 bytes

[00500] In one embodiment, each Error Report List Item is exactly 4 bytes in length, and has
a structure in one embodiment comprising: a 2-byte Display Error Code field that specifies
the type of error being reported, a 2-byte Error Sub-code field specifies a greater level of
detail regarding the error defined by the Display Error Code packet. The specific definition
of each Display Error Code is defined by the manufacturer of the client. An Error Sub-code
does not have to be defined for every Display Error Code, and in those cases where the
Error Sub-code is not defined the value is set to zero. The specific definition of each Error

Sub-code is defined by the manufacturer of the client. -

Display Identification Packet

[00501] The Display Identification Packet allows a client to return identifying data in
response to a Request Specific Status Packet. In one embodiment, a client indicates an
ability to send the Display Identification Packet using a parameter value of 144 in the Valid
Parameter Reply List of the Valid Status Reply.List Packet. It is useful for the host to be
able to determine the client device manufacturer name and model number by reading this
data from the client. The information may be used to determine if the client has special
capabilities that cannot described in the Display Capability Packet. There are potentially

two methods, means, or mechanisms for reading identification information from the client.

WO 2005/018191 PCT/US2004/026264

85

One is through use of the Display Capability Packet, which contains fields similar to those
in the base EDID structure. The other method is through use of the Display Identification
Packet that contains a richer set of information compared to the similar fields in the Display
Capability Packet. This allows a host to identify manufacturers that have not been assigned
a 3-character EISA code, and allows serial numbers to contain alphanumeric characters.

Display Identification Packet

Packet Packet cClient ID Week of Year of Length of Length of Length of
Length Type = 144 Mfr Mfr Mfr Name Product Name | Serial Number
2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Manufacturer Name String Product Name String Serial Number String CRC
Length of Mfr Name bytes Length of Mfr Name bytes Length of Mfr Name pytes 2 bytes
[00502] The 2- byte Packet Type field contains a value that identifies the packet as a Display

Identification Packet. This value is selected to be 144 in one embodiment. The cClient ID
field (2 bytes) again is reserved for future use for the Client ID, and is generally set to zero.
The CRC field (2 bytes) contains a 16-bit CRC of all bytes in the packet including the
Packet Length.

[00503] A 1-byte Week of Manufacture field contains a value that defines the week of
manufacture of the display. In at least one embodiment, this value is in the range of 1 to 53
if it is supported by the client. If this field is not supported by the client, then it is generally
set to zero. A 1-byte Year of Manufacture field contains a value that defines the year of
manufacture of the display. This value is an offset from the year 1990 as a starting point,
although other base years could be used. Years in the range of 1991 to 2245 can be
expressed by this field. Example: the year 2003 corresponds to a Year of Manufacture
value of 13. If this field is not supported by the client it is to be set to a value of zero.

[00504] The Length of Mfr Name, Length of Product Name, and Length of Serial Number
fields each contain 2-byte values that specify the length of the Manufacturer Name String
field including any null termination or null pad characters, the length of the Product Name
String field including any null termination or null pad characters, and the length of the
Serial Number String field including any null termination or null pad characters,
respectively.

[00505] The Manufacturer Name String, Product Name String, and Serial Number String
fields each contain a variable number of bytes specified by the Length Mfr Name, Product

Name, and Serial Number fields, respectively, that contain an ASCII string that specifies

WO 2005/018191 PCT/US2004/026264

86

the manufacturer, product name , and alphanumeric serial number of the display,

respectively. Each of these strings are terminated by at least one null character.

Alternate Display Capability Packet

[00506] The Alternate Display Capability Packet indicates the capability of the alternate
displays attached to the MDDI client controller. It is sent in response to a Request Specific
Status Packet. When prompted a client device sends an Alternate Display Capability Packet
for each alternate display that is supported. The client shall indicate its ability to send the
Alternate Display Capability Packet via a parameter value of 145 in the Valid Parameter
Reply List of the Valid Status Reply List Packet.

[00507] For MDDI systems operated in internal mode it may be common to have more than
one display connected to an MDDI client controller. An example application is a mobile
phone with a large display on the inside of the flip and a smaller display on the outside.
The Number of Alt Displays field of the Display Capability Packet is used to report that
more than one display is attached and the Alternate Display Capability Packet reports the
capability of each alternate display. The video stream packet contains 4 bits in the Pixel
Data Attributes field to address each alternate display in the client device.

Alternate Display Capability Packet

Packet Packet . Alt Display . " . Display Window]Display Window|
Length Type = 145 cClient ID Number Reserved 1 | Bitmap Width | Bitmap Height Width Height
2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes
Color Map ... | Monochrome YCbCr |Display Feature
RGBWidh |RCB Capabilty| "o papiity | Reserved2 | coochity | Capabiity | Reserved3 CRC
2 bytes 2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes
Packet Contents:
[00508] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 145

identifies the packet as an Alternate Display Capability Packet.

[00509] cClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID. This field is reserved for future use and shall be set to zero.

[00510] Alt Display Number — 1 byte that contains an 8-bit unsigned integer that indicates
the identity of the alternate display with an integer in the range of 0 to 15. The first
alternate display shall be number 0 and the other alternate displays shall be identified with
unique Alt Display Number values with the largest value used being the total number of

alternate displays minus 1. Values larger than the total number of alternate displays minus

WO 2005/018191 PCT/US2004/026264

87

1 shall not be used. Example: a mobile phone having a primary display and a caller-ID
display connected to an MDDI client has one alternate display, so the Alt Display Number
of the caller-ID display is zero and the Number of Alt Displays field of the Display
Capability Packet has a value of 1.

[00511] Reserved 1 — 1 byte that contains an 8-bit unsigned integer that is reserved for future
use. All bits in this field shall be set to zero. The purpose of this field is to cause all
subsequent 2 byte fields to align to a 16-bit word address and cause 4-byte fields to align to
a 32-bit word address.

[00512] Bitmap Width — 2 bytes that contain a 16-bit unsigned integer that specifies the
width of the bitmap expressed as a number of pixels.

[00513] Bitmap Height — 2 bytes that contain a 16-bit unsigned integer that specifies the
height of the bitmap expressed as a number of pixels. -

[00514] Display Window Width — 2 bytes that contain a 16-bit unsigned integer that
specifies the width of the display window expressed as a number of pixels.

[00515] Display Window Height — 2 bytes that contain a 16-bit unsigned integer that
specifies the height of the display window expressed as a number of pixels.

[00516] Color Map RGB Width — 2 bytes that contain a 16-bit unsigned integer that specifies
the number of bits of the red, green, and blue color components that can be displayed in the
color map (palette) display mode. A maximum of 8 bits for each color component (red,
green, and blue) can be used. Even though 8 bits of each color component are sent in the
Color Map Packet, only the number of least significant bits of each color component
defined in this field are used. If the display client cannot use the color map (palette) format
then this value is zero. The color map RGB Width word is composed of three separate
unsigned values:

[00517] Bits 3 through 0 define the maximum number of bits of blue in each pixel. 0 to 8 is
valid.

[00518] Bits 7 through 4 define the maximum number of bits of green in each pixel. 0to 8 is
valid.

[00519] Bits 11 through 8 define the maximum number of bits of red in each pixel. 0 to 8 is
valid.

[00520] Bits 15 through 12 are reserved for future use and shall be set to zero.

[00521] RGB Capability — 2 bytes that contain a 16-bit unsigned integer that specifies the

number of bits of resolution that can be displayed in RGB format. If the client cannot use

WO 2005/018191 PCT/US2004/026264

88

the RGB format then this value is zero. The RGB Capability word is composed of three

separate unsigned values:

[00522] Bits 3 through 0 define the maximum number of bits of blue (the blue intensity) in
each pixel.

[00523] Bits 7 through 4 define the maximum number of bits of green (the green intensity)
in each pixel.

[00524] Bits 11 through 8 define the maximum number of bits of red (the red intensity) in
each pixel.

[00525] Bits 15 through 12 are reserved for future use and shall be set to zlero.

[00526] Monochrome Capability — 1 byte that contains an 8-bit unsigned integer that

specifies the number of bits of resolution that can be displayed in monochrome format. If
the client cannot use the monochrome format then this value is zero. Bits 7 through 4 are
reserved for future use and shall be set to zero. Bits 3 through 0 define the maximum
number of bits of grayscale that can exist in each pixel. These four bits make it possible to
specify that each pixel consists of 1 to 15 bits. It the value is zero then the monochrome
format is not supported by the client.

[00527] Reserved 2 — 1 byte that contains an 8-bit unsigned integer that is reserved for future
use. All bits in this field shall be set to zero. The purpose of this field is to cause all
subsequent 2 byte fields to align to a 16-bit word address and cause 4-byte fields to align to
a 32-bit word address.

[00528] Y Cb Cr Capability — 2 bytes that contain a 16-bit unsigned integer that specifies the
number of bits of resolution that can be displayed in Y Cb Cr format. If the client cannot
use the Y Cb Cr format then this value is zero. The Y Cb Cr Capability word is composed

of three separate unsigned values:

[00529] Bits 3 through 0 define the maximum number of bits that specify the Cb sample.
[00530] Bits 7 through 4 define the maximum number of bits that specify the Cr sample.
[00531] Bits 11 through 8 define the maximum number of bits specify the Y sample.

[00532] Bits 15 through 12 are reserved for future use and shall be set to zero.

[00533] Display Feature Capability Indicators — 1 byte that contains an 8-bit unsigned

integer that contains a set of flags that indicate the whether specific features in the client are
supported. A bit set to one indicates the capability is supported, and a bit set to zero
indicates the capability is not supported.

[00534] Bit 0 — the client can accept video data in packed format.

WO 2005/018191 PCT/US2004/026264

89
[00535] Bits 1 through 7 — reserved for future use, shall be set to zero.
[00536] Reserved 3 — 1 byte that contains an 8-bit unsigned integer that is reserved for future

use. All bits in this field shall be set to zero. The purpose of this field is to cause all
subsequent 2 byte fields to align to a 16-bit word address and cause 4-byte fields to align to
a 32-bit word address.

[00537] CRC — 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.
Register Access Packet
[00538] The Register Access Packet provides either a host or a client with a means,

mechanism, or method to access configuration and status registers in the opposite end of the
MDDI link. These registers are likely to be unique for each display or device controller.
These registers already exist in many displays that require setting configurations, modes of
operation, and have other useful and necessary settings. The Register Access Packet allows
the MDDI host or client to both write to a register and request to read a register using the
MDDI link. When the host or client requests to read a register the opposite end should
respond by sending the register data in the same packet type, but also by indicating that this
is the data read from a particular register with the use of the Read/Write Info field. The
Register Access Packet may be used to read or write multiple registers by specifying a
register count greater than 1. A client indicates an ability to support the Register Access
Packet using bit 22 of Display Feature Capability Indicators field of the Display Capability
Packet.

Register Access Packet

Packet Packet " Read/Write Register . N
Length Type = 146 bClient ID Info Address Register Data List CRC
2 bytes 2 bytes 2 bytes 2 bytes 4 bytes Packet Length - 12 bytes 2 bytes
Register Access Packet
[00539] The 2-byte Packet Length field contain a 16-bit unsigned integer that specifies the

total number of bytes in the packet not including the packet length field.

[00540] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of 146
identifies the packet as a Register Access Packet.

[00541] bClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client

ID. This field is reserved for future use and shall be set to zero.

WO 2005/018191 PCT/US2004/026264

90

[00542] Read/Write Info — 2 bytes that contain a 16-bit unsigned integer that specifies the
specific packet as either a write, or a read, or a response to a read, and provides a count of
the data values

[00543] BitBits 15 through 14 — Read/Write Flags

[00544] BitBits[15:14] = 10 — Host this is a request for data from a one or more registers
addressed by the Register Address field

[00545] BitBits[15:14] = 00 — writethis packet contains data to be written to a register

addressed by the Register Address field. The data to be written to the specified registers is
contained in the Register Data field

[00546] BitBits[15:14] = 11 — that containhis packet contains data that was requested in
response to a Register Access Packet having Read/Write Flags set to 10. The Register
Address field shall contain the address of the register corresponding to the first Register

Data item, and the Register Data field shall contain the data that was read from the address

or addresses.
[00547] Bit Bits[15:14] = 10 — this value is reserved for future use and shall not be used.
[00548] Bits 13:0 — a 14-bit unsigned integer that specifies the number of 32-bit Register

Data items o be transferred in the Register Data List field.

[00549] If bit 15 is 0 in a packet sent by the host then bits 13:0 specify the number of register
data items that are contained in the Register Data List field to be written to client registers
starting at the register specified by the Register Address field.

[00550] If bit 15 is a 1 in a packet sent by the host bits 13:0 specify the number of register
data items that the client shall send to the host. The Register Data field in the packet sent

by the host shall contain no items and is of zero length.

[00551] If bit 15 is a 1 in a packet sent by the client then bits 13:0 specify the number of
register data items that are contained in the Register Data List field.

[00552] Bit 15 shall not be set to 0 in packets sent by the Client. This is not a valid value.

[00553] Register Address — 4 bytes that contain a 32-bit unsigned integer that contains the

register address that is to be written to or read from. For addressing registers whose
addressing is less than 32 bits, the upper bits shall be set to zero.

[00554] Register Data List — a list of 4-byte register data values to be written to client
registers or values that were read from client device registers. '

[00555] CRC - 2 bytes that contain a 16-bit CRC of all bytes in the packet including the
Packet Length.

WO 2005/018191 PCT/US2004/026264

91

Frame Sync Packet

[00556] The Frame Sync Packet provides a host an ability to indicate the start of a raster
image and allows a client to avoid using the pixel and window addressability features in the
Video Stream Packet. This is accomlished by sending a Frame Sync Packet at the start of
each frame of the image, and then one Video Stream Packet (with bit 5 set in the Pixel Data
Attributes field) is sent for each row of image data. In one embodiment, a client indicates
an ability to support the Frame Sync Packet using bit 23 of the Display Feature Capability
Indicators field of the Display Capability Packet.

The format

Frame Sync Packet

Packet Packet .
Length Type = 147 bClient ID CRC
2 bytes 2 bytes 2 bytes 2 bytes
[00557] Packet Type — 2 bytes that contain a 16-bit unsigned integer. A Packet Type of
147 identifies the packet as a Frame Sync Packet.
[00558] bClient ID — 2 bytes that contain a 16-bit unsigned integer reserved for the Client
ID.

D. Packet CRC

[00559] The CRC fields appear at the end of the packets and sometimes after certain more
critical parameters in a packet that may have a significantly large data field, and thus, an
increased likelihood of errors during transfer. In packets that have two CRC fields, the
CRC generator, when only one is used, is re-initialized after the first CRC so that the CRC
computations following a long data field are not affected by the parameters at the beginning
of the packet.

[00560] In an exemplary embodiment, the polynomial used for the CRC calculation is
known as the CRC-16, or X16 + X15 + X2 + X0. A sample implementation of a CRC
generator and checker 3600 useful for implementing the invention is shown in FIG. 36. In
FIG. 36, a CRC register 3602 is initialized to a value of 0x0001 just prior to transfer of the
first bit of a packet which is input on the Tx_MDDI_Data_Before_CRC line, then the bytes
of the packet are shifted into the register starting with the LSB first. Note that the register

bit numbers in this figure correspond to the order of the polynomial being used, and not the

WO 2005/018191 PCT/US2004/026264

92

bit positions used by the MDDI. It is more efficient to shift the CRC register in a single
direction, and this results in having CRC bit 15 appear in bit position 0 of the MDDI CRC
field, and CRC register bit 14 in MDDI CRC field bit position 1, and so forth until MDDI
bit position 14 is reached.

[00561] As an example, if the packet contents for the Display Request and Status Packets
are: 0x07, 0x46, 0x000400, 0x00 (or represented as a sequence of bytes as: 0x07, 0x00,
0x46, 0x00, 0x04, 0x00, 0x00), and are submitted using the inputs of the multiplexors 3604
and 3606, and NAND gate 3608, the resulting CRC output on the
Tx_MDDI_Data_With_CRC line is 0x0Oeal (or represented as a sequence as 0xal, 0x0e).

[00562] - When CRC generator and checker 3600 is configured as a CRC checker, the CRC
that is received on the Rx_MDDI_Data line is input to multiplexor 3604 and NAND gate
3608, and is compared bit by bit with the value found in the CRC register using NOR gate
3610, exclusive-OR (XOR) gate 3612, and AND gate 3614. If there are any errors, as
output by AND gate 3614, the CRC is incremented once for every packet that contains a
CRC error by connecting the output of gate 3614 to the input of register 3602. Note that the
example circuit shown in the diagram of FIG. 36 can output more than one CRC error
signal within a given CHECK_CRC_NOW window (see FIG. 37B). Therefore, the CRC
error counter generally only counts the first CRC error instance within each interval where
CHECK_CRC_NOW is active. If configured as a CRC generator the CRC is clocked out
of the CRC register at the time coinciding with the end of the packet.

[00563] The timing for the input and output signals, and the enabling signals, is illustrated
graphically in FIGS. 37A and 37B. The generation of a CRC and transmission of a packet
of data are shown in FIG. 37A with the state (0 or 1) of the Gen_Reset, Check_CRC_Now,
Generate CRC_Now, and Sending MDDI_Data signals, along with the
Tx_MDDI_Data_Before_CRC and Tx_MDDI_Data_With_CRC signals. The reception of
a packet of data and checking of the CRC value are shown in FIG. 37B, with the state of the
Gen_Reset, Check_CRC_Now, Generate_CRC_Now, and Sending MDDI_Data signals,
along with the Rx_MDDI_Data and CRC error signals.

Error Code Overload for Packet CRC
[00564] Whenever only data packets and CRC are being transferred between the host and
client, there are no error codes being accommodated. The only error is a loss of

synchronization. Otherwise, one has to wait for the link to timeout from a lack of a good

WO 2005/018191 PCT/US2004/026264

93

data transfer path or pipeline and then reset the link and proceed. Unfortunately, this is time
consuming and somewhat inefficient.

[00565] For use in one embodiment, a new technique has been developed in which the CRC
portion of packets is used to transfer error code information. This is generally shown in
FIG. 65. That is, one or more error codes are generated by the processors or devices
handling the data transfer which indicate specific predefined errors or flaws that might
occur within the communication processing or link. When an error is encountered, that the
appropriate error code is generated and transferred using the bits for the CRC of a packet.
That is, the CRC value is overloaded, or overwritten, with the desired error code, which can
be detected on the receiving end by an error monitor or checker that monitors the values of
the CRC field. For those cases in which the error code matches the CRC value for some
reason, the compliment of the etror is transferred to prevent confusion.

[00566] In one embodiment, to provide a robust error warning and detection system, the
error code may be transferred seyeral times, using a series of packets, generally all, that are
transferred or sent after the error has been detected. This occurs until the point at which the
condition creating the error is cleared from the system, at which point the regular CRC bits
are transferred without overloading by another value.

[00567] This technique of overloading the CRC value provides a much quicker response to
system errors while using a minimal amount of extra bits or fields.

[00568] As shown in FIG. 66, a CRC overwriting mechanism or apparatus 6600 is shown
using an error detector or detections means 6602, which can form part of other circuitry
previously described or known, detects the presence or existence of errors within the
communication link or process. An error code generator or means 6604, which can be
formed as part of other circuitry or use techniques such as look up tables to store pre-
selected error messages, generates one or more error codes to indicate specific predefined
errors or flaws that have been detected as occurring. It is readily understood that devices
6602 and 6604 can be formed as a single circuit or device as desired, or as part of a
programmed sequence of steps for other known processors and elements.

[00569] A CRC value comparator or comparison means 6606 is shown for checking to see if
the selected error code or codes are the same as the CRC value being transferred. If that is
the case then a code compliment generator or generation means or device is used to provide
the compliment of the error codes as to not be mistaken as the original CRC pattern or value

and confuse or complicate the detection scheme. An error code selector or selection means

WO 2005/018191 PCT/US2004/026264

94

element or device 6610 then selects the error code or value it is desired to insert or
overwrite, or their respective compliments as appropriate. An error code CRC over-writer
or over writing mechanism or means 6612 is a device that receives the data stream, packets,
and the desired codes to be inserted and overwrites the corresponding or appropriate CRC
values, in order to transfer the desired error codes to a receiving device.

[00570] As mentioned, the error code may be transferred several times, using a series of
packets, so the over-writer 6612 may utilize memory storage elements in order to maintain
copies of the codes during processing or recall these codes from previous elements or other
known storage locations which can be used to store or hold their values as needed, or as
desired.

[00571] The general processing the overwriting mechanism of FIG. 66 is implementing is
shown in additional detail in FIGS. 67A and 67B. In 67A an error, one or more, is detected
in step 6702 in the communication data or process and an error code is selected in step 6704
to indicate this condition. At the same time, or at an appropriate point, the CRC value to be
replaced is checked in a step 6706, and compared to the desired error code in step 6708.
The result of this comparison, as discussed earlier, is a determination as to whether or not
the desired code, or other representative values, will be the same as the CRC value present.
If this is the case, then processing proceeds to a step 6712 where the compliment, or in
some cases another representative value, as desired, is selected as the code to insert. One it
has been determined what error codes or values are to be inserted in steps 6710 and 6714,
that appropriate code is selected for insertion. These steps are illustrated as separate for
purposes of clarity but generally represent a single choice based on the output of the step
6708 decision. « Finally, in step 6716 the appropriate values are overwritten in the CRC
location for transfer with the packets being targeted by the process.

[00572] On the packet reception side, as shown in FIG. 67B, the packet CRC values are
being monitored in a step 6722. Generally, the CRC values are being monitored by one or
more processes within the system to determine if an error in data transfer has occurred and
whether or not to request a retransmission of the packet or packets, or to inhibit further
operations and so forth, some of which is discussed above. As part of such monitoring the
information can also be used to compare values to known or preselected error codes, or
representative values and detect the presence of errors. Alternatively, a separate error
detection process and monitor can be implemented. If a code appears to be present it is

extracted or otherwise noted in step 6724 for further processing. A determination can be

WO 2005/018191 PCT/US2004/026264

95

made in step 6726 as to whether or not this is the actual code or a compliment, in which
case an additional step 6728 is used to translate the value to the desired code value. In
either case the resulting extracted code, compliment, or other recovered values are then

used to detect what error has occurred form the transmitted code in step 6730.

V. Link Restart from Hibernation

[00573] When the host restarts the forward link from a hibernation state it drives
MDDI Data to a logic one state for about 150 psec and then activates MDDI_Stb and
simuitaneously drives MDDI_Data to a logic zero state for 50 usec, and then starts forward
link traffic by sending a sub-frame header packet. This generally allows bus contentions to
be resolved before the sub-frame header packet is sent by providing enough settling time
between signals. '

[00574] When the client, here a display, needs data or communication from the host it drives
the MDDI_Data0 line to a logic one state for around 70 psec, although other periods can be
used as desired, and then disables the driver by placing it in a high-impedance state. This
action causes the host to start or restart data traffic on the forward link (208) and to poll the
client for its status. The host must detect the presence of the request pulse within 50 usec
and then begin the startup sequence of driving MDDI_Data0 to logic one for 150 usec and
to logic zero for 50 psec. The display should not send a service request pulse if it detects
MDDI_Data0 in the logic one state for more than 50 psec. The nature of selection of the
times and tolerances of time intervals related to the hibernation processing and start up
sequence are discussed further below. ‘

[00575] An example of the processing steps for a typical service request event 3800 with no
contention is illustrated in FIG. 38, where the events are labeled for convenience in
illustration using the letters A, B, C, D, E, F, and G. The process commences at point A
when the host sends a Link Shutdown Packet to the client device to inform it that the link
will transition to a low-power hibernation state. In a next step, the host enters the low-
power hibernation state by disabling the MDDI_Data0 driver and setting the MDDI_Stb
driver to a logic zero, as shown at point B. MDDI_Data0 is driven to a logic-zero level by a
high-impedance bias network. After some period of time, the client sends a service request
pulse to the host by driving MDDI_Data0 to a logic one level as seen at point C. The host

still asserts the logic-zero level using the high-impedance bias network, but the driver in the

WO 2005/018191 PCT/US2004/026264

96

client forces the line to a logic one level. Within 50 usec, the host recognizes the service
request pulse, and asserts a logic one level on MDDI_Data0 by enabling its driver, as seen
at point D. The client then ceases from attempting to assert the service request pulse, and
the client places its driver into a high-impedance state, as seen at point E. The host drives
MDDI_Data0 to a logic-zero level for 50 psec, as shown at point F, and also begins to
generate MDDI_Stb in a manner consistent with the logic-zero level on MDDI_Data0.
After asserting MDDI_Data0 to a logic-zero level and driving MDDI_Stb for 50 usec, the
host begins to transmit data on the forward link by sending a Sub-frame Header Packet, as
shown at point G.

[00576] A similar example is illustrated in FIG. 39 where a service request is asserted after
the link restart sequence has begun, and the events are again labeled using the letters A, B,
C,D, E, F, and G. This represents a worst case scenario where a request pulse or signal
from the client comes closest to corrupting the Sub-frame Header Packet. The process
commences at point A when the host again sends a Link Shutdown Packet to the client
device to inform it that the link will transition to aiow-power hibernation state. In a next
step, the host enters the low-power hibernation state by disabling the MDDI_Data0 driver
and setting the MDDI_Stb driver to a logic zero, as shown at point B. As before,
MDDI_Data0 is driven to a logic-zero level by a high-impedance bias network. After a
period of time, the host begins the link restart sequence by driving MDDI_Data0 to a logic
one level for 150 psec as seen at point C. Prior to 50 usec passing after the link restart
sequence begins the display also asserts MDDI_Data0 for a duration of 70 usec, as seen at
point D. This happens because the display has a need to request service from the host and
does not recognize that the host has already begun the link restart sequence. The client then
ceases attempting to assert the service request pulse, and the client places its driver into a
high-impedance state, as seen at point E. The host continues to drive MDDI_Data0 to a
logic one level. The host drives MDDI_Data0 to a logic zero level for 50 usec, as shown at
point F, and also begins to generate MDDI_Stb in a manner consistent with the logic zero
level on MDDI_Data0. After asserting MDDI_Data0 to a logic-zero level, and driving
MDDI_Stb for 50 psec, the host begins to transmit data on the forward link by sending a
Sub-frame Header Packet, as shown at point G.

[00577] From the above discussion, one sees that the prior solution involved having the host

go through two states as part of a wakeup sequence. For the first state, the host drives the

WO 2005/018191 PCT/US2004/026264

97

MDDI_Data0 signal high for 150 ps, and then drives the MDDI_Data0 signal low for 50us
while activating the MDDI_Stb line, and then begins to transmit MDDI packets. This
process works well to advance the state of the art in terms of data rates achievable using the
MDDI apparatus and methods. However, as stated earlier, more speed in terms of reduced
response time to conditions or being able to more quickly select the next step or process, are
the ability to simplify processing or elements, are always in demand.

[00578] Applicants have discovered a new inventive approach to wake-up processing and
timing in which the host uses a clock cycle based timing for the signal toggling. In this
configuration, the host starts toggling MDDI_Stb from 0 to 10 psec after the host drives the
MDDI_Data0 signal high at the beginning of the wake-up sequence, and does not wait until
the signal is driven low. During a wake-up sequence, the host toggles MDDI_Stb as though
the MDDI_Data0 signal were always at a logic-zero level. This effectively removes the
concept of time from the client side, and the host changes from the prior 150 ps and 50 ps
periods for the first two states, to 150 clock cycles and 50 clock cycles, for these periods.

- [00579] The host now becomes responsible for driving that data line high, and within 10
clock cycles starting to transmit a strobe signal as if the data line was zero. After the host
has driven the data line high for 150 clock cycles, the host drives the data line low for 50
clock cycles while continuing to transmit the strobe signal. After it has completed both of
these processes, the host can begin to transmit the first sub-frame header packet.

[00580] On the client side, the client implementation can now use the generated clock to
calculate the number of clock cycles that the data line is first high, and then low. The
number of clock cycles that need to occur in both the data line driven high state is 150 and
data line driven low state is 50. This means that for a proper wakeup sequence, the client
should be able to count at least 150 continuous clock cycles of the data line being high,
followed by at least 50 continuous clock cycles of the data line being low. Once these two
conditions are met, the client can begin to search for the unique word of the first sub-frame.
A break in this pattern is used as a basis to return the counters to an initial state in which the
client again looks for the first 150 continuous clock cycles of the data line being high.

[00581] A client implementation of the invention for host based wakeup from hibernation is
very similar to the initial start-up case except that the clock rate is not forced to start at
1IMbps., as discussed earlier. Instead the clock rate can be set to resume at whatever
previous rate was active when the communication link went into hibernation. If the host

begins transmission of a strobe signal as described above, the client should be able to again

WO 2005/018191 PCT/US2004/026264

98

count at least 150 continuous clock cycles of the data line being high, followed by at least
50 continuous clock cycles of the data line being low. Once these two conditions have been
met, the client can begin the search for the unique word.

[00582] A client implementation of the invention for client based wakeup from hibernation
is similar to the host based wakeup except that it starts by having the client driving the data
line. The client can asynchronously drive the data line without a clock to wake up the host
device. Once the host recognizes that the data line is being driven high by the client, it can
begin its wakeup sequence. The client can count the number of clock cycles generated by
the host starting or during its wakeup process. Once the client counts 70 continuous clock
cycles of the data being high, it can stop driving the data line high. At this point, the host
should already be driving the data line high as well. The client can then count another 80
continuous clock cycles of the data line being high to reach the 150 clock cycles of the data
line being high, and can then look for 50 clock cycles of the data line being low. Once
these three conditions have been met the client can begin to look.for the unique word.

[00583] An advantage of this new implementation of wake-up processing is that it removes
the need for a time measuring device. Whether this is an oscillator, or capacitor discharge
circuit, or other such known devices, the client no longer needs such external devices to
determine the start up conditions. This saves money and circuit area when implementing
controllers, counters, and so forth on a client device board. While this may not be as
advantageous to the client, for the host, this technique should also potentially simplify the
host in terms of very high density logic (VHDL) being used for core circuitry. The power
consumption of using the data and strobe lines as the wakeup notification and measurement
source will also be lower since no external circuitry will need to be running for the core
elements to be waiting for a host based wakeup.

[00584] The number of cycles or clock periods used are exemplary and other periods can be
used as will be apparent to one skilled in the art.

[00585] An advantage of this new implementation of wake-up processing is that it removes
the need for a time measuring device. Whether this is an oscillator, or capacitor discharge
circuit, or other such known devices, the client no longer needs such external devices to
determine the start up conditions. This saves money and circuit area when implementing
controllers, counters, and so forth on a client device board. While this may not be as
advantageous to the client, for the host, this technique should also potentially simplify the
host in terms of very high density logic (VHDL) being used for core circuitry. The power

WO 2005/018191 PCT/US2004/026264

99

consumption of using the data and strobe lines as the wakeup notification and measurement
source will also be lower since no external circuitry will need to be running for the core
elements to be waiting for a host based wakeup.

[00586] To clarify and illustrate the operation of this new technique, the timing of
MDDI_Data0, MDDI_Stb, and various operations relative to the clock cycles are shown in
FIGS. 68A, 68B, and 63C.

[00587] An example of the processing steps for a typical Host-initiated Wake-up with no
contention is illustrated in FIG. 68A, where the events are again labeled for convenience in
illustration using the letters A, B, C, D, E, F, and G. The process commences at point A
when the host sends a Link Shutdown Packet to the client device to inform it that the link
will transition to a low-power hibernation state. In a next step, point B, the host toggles
MDDI_Stb for about 64 cycles (or as desired for system design) to allow processing by the
client to be completed prior to stopping MDDI_Stb from toggling, which stops the
recovered clock in the client device. The host also initially sets MDDI_Data0 to logic-zero
level and then disables the MDDI_Data0 output in the range of 16 to 48 cyclés (generally
including output disable propagation delays) after the CRC. It may be desirable to place
high-speed receivers for MDDI_Data0 and MDDI_Stb in the client in a low power state
some time after the 48 cycles after the CRC and prior to the next stage (C).

[00588] The host enters the low-power hibernation state at point or step C, by disabling the
MDDI_Data0 and MDDI_Stb drivers and placing a host controller in a low power
hibernation state. One can also set the MDDI_Stb driver to a logic-zero level (using a high-
impedance bias network) or to continue toggling during hibernation, as desired. The client
is also in a low power level hibernation state.

[00589] After some period of time, the host commences the link restart sequence at point D,
by enabling the MDDI_Data0 and MDDI_Stb driver output. The host drives MDDI_Data0
to a logic-one level and MDDI_Stb to a logic-zero level for as long as it should take for the
drivers to fully enable their respective outputs. The host typically waits around 200
nanoseconds after these outputs reach desired logic levels before driving pulses on
MMDI_Stb. This allows the client time to prepare to receive.

[00590] With the host drivers enabled and MDDI_Data0 being driven to a logic-one level,
the host begins to toggle MDDI_Stb for a duration of 150 MDDI_Stb cycles, as seen at
point E. The host drives MDDI_Data0 to a logic zero level for 50 cycles, as shown at point
F, and the client begins to look for the Sub-frame Header Packet after MDDI_Data0 is at a

WO 2005/018191 PCT/US2004/026264

100

logic-zero level for 40 MDDI_Stb cycles. The host begins to transmit data on the forward
link by sending a Sub-frame Header Packet, as shown at point G.

[00591] An example of the processing steps for a typical Client-initiated Wake-up with no
contention is illustrated in FIG. 68B, where the events are again labeled for convenience in
illustration using the letters A, B, C, D, E, F, G, H, and I. As before, the process
commences at point A when the host sends a Link Shutdown Packet to inform the client
that the link will transition to the low power state.

[00592] At point B, the host toggles MDDI_Stb for about 64 cycles (or as desired for system
design) to allow processing by the client to be completed prior to stopping MDDI_Stb from
toggling, which stops the recovered clock in the client device. The host also initially sets
MDDI_Data0 to a logic-zero level and then disables the MDDI_Data0 output in the range
of 16 to 48 cycles (generally including output disable propagation delays) after the CRC. It
may be desirable to place high-speed receivers for MDDI_Data0 and MDDI_Stb in the
client in a low power state some time after the 48 cycles after the CRC and prior to the next
stage (C). t

[00593] The host enters the low-power hibernation state at point or step C, by disabling the
MDDI_Data0 and MDDI_Stb drivers and placing a host controller in a low power
hibernation state. One can also set the MDDI_Stb driver to a logic-zero level (using a high-
impedance bias network) or to continue toggling during hibernation, as desired. The client
is also in a low power level hibernation state. '

[00594] - After some period of time, the client commences the link restart sequence at point
D, by enabling the MDDI_Stb receiver, and also enabling an offset in the MDDI_Stb
receiver to guarantee the state of the received version of MDDI_Stb is a logic-zero level in
the client before the host enables its MDDI_Stb driver. It may be desirable for the client to
enable the offset slightly ahead of enabling the receiver to ensure the reception of a valid
differential signal and inhibit erroneous signals, as desired. The Client enables the
MDDI_Data0 driver while driving the MDDI_Data0 line to a logic one level

[00595] Within about 1 msec., point E, the host recognizes the service request pulse from the
client, and the host begins the link restart sequence by enabling the MDDI_Data0 and
MDDI_Stb driver outputs. The host drives MDDI_Data0 to a logic-one level and
MDDIL_Stb to a logic-zero level for as long as it should take for the drivers to enable their

respective outputs. The host typically waits around 200 nanoseconds after these outputs

WO 2005/018191 PCT/US2004/026264

101

reach desired logic levels before driving pulses on MDDI_Stb. This allows the client time
to prepare to receive.

[00596] With the host drivers enabled and MDDI_Data0 being driven to a logic-one level,
the host begins outputting pulses on MDDI_Stb for a duration of 150 MDDI_Stb cycles, as
seen at point F. When the client recognizes the first pulse on MDDI_Stb it disables the
offset in its MDDI_Stb receiver. The client continues to drive MDDI_Data0 to a logic-one
level for 70 MDDI_Stb cycles, and disables its MDDI_Data0 driver at point G.

'T00597] As seen at points G and H, the host drives MDDI_Data0 to a logic-zero level for 50
cycles, and the client begins to look for the Sub-frame Header Packet after MDDI_Data0 is
at a logic-zero level for 40 MDDI_Stb cycles. The host begins to transmit data on the
forward link by sending a Sub-frame Header Packet, as shown at point I.

[00598] An example of the processing steps for a typical Host-initiated Wake-up with
contention from the client, that is the client also wants to wake up the link, is illustrated in
FIG. 68C. The events are again labeled for convenience in illustration using the letters A,
B,C,D,E, F, G, H, and I. As before, the process commences at point A when the host
sends a Link Shutdown Packet to inform the client that the link will transition to the low
power state, proceeds to point B where MDDI_Stb is toggled for about 64 cycles (or as
desired for system design) to allow processing by the client to be completed, and then to
point C, where the host enters the low-power hibernation state, by disabling the
MDDI_Data0 and MDDI_Stb drivers and placing a host controller in a low power
hibernation state. After some period of time, the host commences the link restart sequence
at point D, by enabling the MDDI_Data0 and MDDI_Stb driver output, and begins to toggle
MDDI_Stb for a duration of 150 MDDI_Stb cycles, as seen at point E.

[00599] At up to 70 MDDI_Stb cycles after point E, here point F, the client has not yet
recognized that the host is driving MDDI_Data0 to a logic-one level so the client also
drives MDDI_Data0 to a logic-one level. This occurs here because the client has a desire to
request service but does not recognize that the host it is trying to communicate with has
already begun the link restart sequence. At point G, the client ceases to drive
MDDI_Data0, and places its driver into a high impedance state by disabling its output. The
host continues to drive MDDI_Data0 to a logic-one level for 80 additional cycles.

[00600] The host drives MDDI_Data0 to a logic zero level for 50 cycles, as shown at point
H, and the client begins to look for the Sub-frame Header Packet after MDDI_Data0 is at a

WO 2005/018191 PCT/US2004/026264

102

logic-zero level for 40 MDDI_Stb cycles. The host begins to transmit data on the forward
link by sending a Sub-frame Header Packet, as shown at point L.

VI. Interface Electrical Specifications

[00601] In the example embodiments, Data in a Non-Return-to-Zero (NRZ) format is
encoded using a data-strobe signal or DATA-STB format, which allows clock information
to be embedded in the data and strobe signals. The clock can be recovered without complex
phase lock loop circuitry. Data is carried over a bi-directional differential link, generally
implemented using a wire-line cable, although other conductors, printed wires, or transfer
elements can be used, as stated earlier. The strobe signal (STB) is carried over a uni-
directional link which is driven only by the host. The strobe signal toggles value (0 or 1)
whenever there is a back-to-back state, O or 1, that remains the same on the Data line or
signal.

[00602] An example of how a data sequence such as bits "1110001011" can be transmitted
using DATA-STB encoding is shown in graphical form in FIG. 40. In FIG. 40, a DATA
signal 4002 is shown on the top line of a signal timing chart and a STB signal 4004 is
shown on a second line, each time aligned as appropriate (common starting point). As time
passes, when there is a change of state occurring on the DATA line 4002 (signal), then the
STB line 4004 (signal) maintains a previous state, thus, the first '1' state of the DATA signal
correlates with the first '0' state for the STB signal, its starting value. However, if or when
the state, level, of the DATA signal does not change then the STB signal toggles to the
opposite state or '1' in the present example, as is the case in FIG. 40 where the DATA is
providing another 1' value. That is, there is one and only one transition per bit cycle
between DATA and STB. Therefore, the STB signal transitions again, this time to '0" as the
DATA signal stays at '1' and holds this level or value as the DATA signal changes level to
'0". When the DATA signal stays at '1', the STB signal toggles to the opposite state or '1' in
the present example, and so forth, as the DATA signal changes or holds levels or values.

[00603] Upon receiving these signals, an exclusive-OR (XOR) operation is performed on the
DATA and STB signals to produce a clock signal 4006, which is shown on the bottom of
the timing chart for relative comparison with the desired data and strobe signals. An
example of circuitry useful for generating the DATA and STB outputs or signals from input
data at the host, and then recovering or recapturing the data from the DATA and STB
signals at the client, is shown in FIG. 41.

WO 2005/018191 PCT/US2004/026264

103

[00604] In FIG. 41, a transmission portion 4100 is used to generate and transmit the original
DATA and STB signals over an intermediary signal path 4102, while a reception portion
4120 is used to receive the signals and recover the data. As shown in FIG 41, in order to
transfer data.from a host to a client, the DATA signal is input to two D-type flip-flop circuit
elements 4104 and 4106 along with a clock signal for triggering the circuits. The two flip-
flop circuit outputs (Q) are then split into a differential pair of signals MDDI_Data0+,
MDDI_Data0- and MDDI_Stb+, MDDI_Stb-, respectively, using two differential line
drivers 4108 and 4110 (voltage mode). A three-input exclusive-NOR (XNOR) gate, circuit,
or logic element 4112 is connected to receive the DATA and outputs of both flip-flops, and
generates an output that provides the data input for the second flip-flop, which in turn
generates the MDDI_Stb+, MDDI_Stb- signals. For convenience, the XNOR gate has the
inversion bubble placed to indicate that it is effectively inverting the Q output of the flip-
flop that generates the Strobe.

-[00605] In reception portion 4120 of FIG 41, the MDDI_Data0+, MDDI Data0- and
MDDI_Stb+, MDDI_Stb- signals are received by each of two differential line receivers
4122 and 4124, which generate single outputs from the differential signals. The outputs of
the amplifiers are then input to each of the inputs of a two-input exclusive-OR (XOR) gate,
circuit, or logic element 4126 which produces the clock signal. The clock signal is used to
trigger each of two D-type flip-flop circuits 4128 and 4130 which receive a delayed version
of the DATA signal, through delay element 4132, one of which (4128) generates data '0'
values and the other (4130) data '1' values. The clock has an independent output from the
XOR logic as well. Since the clock information is distributed between the DATA and STB
lines, neither signal transitions between states faster than half of the clock rate. Since the
clock is reproduced using the exclusive-OR processing of the DATA and STB signals, the
system effectively tolerates twice the amount of skew between the input data and clock
compared to the situation when a clock signal is sent directly over a single dedicated data
line.

[00606] The MDDI Data pairs, MDDI_Stb+, and MDDI_Stb- signals are operated in a
differential mode to maximize immunity from the negative affects of noise. Each portion of
the differential signal path is source terminated with one-half of the characteristic
impedance of the cable or conductor being used to transfer signals. MDDI Data pairs are

source terminated at both the host and client ends. Since only one of these two drivers is

WO 2005/018191 PCT/US2004/026264

104

active at a given time, a termination continuously exists at the source for the transfer link.
The MDDI_Stb+ and MDDI_Stb- signals are only driven by the host.
[00607] An exemplary configuration of elements useful for achieving the drivers, receivers,
and terminations for transferring signals as part of the inventive MDD interface are shown
in FIG. 42, while comresponding DC electrical specifications of MDDI_Data and
MDDI_Stb are shown in Table VII. This exemplary interface uses low voltage sensing,

here 200 mV, with less than 1 volt power swings and low power drain.

TABLE VII
Parameter Description Min. | Typ. | Max. Units

Rierm Series Termination 413 | 42.2 | 43.0 | Ohms

Ruibernate Hibernate State bias termination 8 10 12 | K-Ohms

Vhibernate Hibernate State open-circuit 0.5 28 |V
voltage

Voutput-Range | Allowable driver output voltage 0 28 |V
range with respect to GND

Vob+ Driver differential output high 0.5 \%
voltage

Vob- Driver differential output low 05|V
voltage

Virs Receiver differential input high 10 | mV
threshold voltage

Vi Receiver differential input low -10 mV
threshold voltage

Vput-Range Allowable receiver input voltage 0 30 |V
range with respect to GND

Lin Input leakage current (excluding -25 25 | uA
hibernate bias)

[00608] The electrical parameters and characteristics of the differential line drivers and line
receivers are described in Table VIIL - Functionally, the driver transfers the logic level on
the input directly to a positive output, and the inverse of the input to a negative output. The
delay from input to outputs is well-matched to the differential line which is driven
differentially. In most implementations, the voltage swing on the outputs is less than the
swing on the input to minimize power consumption and electromagnetic emissions. Table
VIII presents a minimum voltage swing to be around 0.5V. However, other values can be
used, as would be known by those skilled in the art, and the inventors contemplate a smaller

value in some embodiments, depending on design constraints.

WO 2005/018191 PCT/US2004/026264

105

[00609] The differential line receivers have the same characteristic as a high-speed voltage
comparator. In FIG. 41, the input without the bubble is the positive input and the input with
the bubble is the negative input. The output is a logic one if: (Vinput+) - (Vinput-) is
greater than zero. Another way to describe this is a differential amplifier with very large
(virtually infinite) gain with the output clipped at logic 0 and 1 voltage levels.

[00610] The delay skew between different pairs should be minimized to operate the
differential transmission system at the highest potential speed.

[00611] In FIG. 42, a host controller 4202 and a client or display controller 4204 are shown
transferring packets over the communication link 4206. The host controller employs a
series of three drivers 4210, 4212, and 4214 to receive the host DATA and STB signals to
be transferred, as well as to receive the client Data signals to be transferred. The driver
responsible for passage éf the host DATA employs an enable signal input to allow
activation of the communication link generally only when transfer from the host to the
client is desired. Since the STB signal is formed as part of the transfer of data, no
additional enable signal is employed for that driver (4212). The outputs of each of the
DATA and STB drivers are connected to termination impedances or resistors 4216a, 4216b,
4216¢, and 4216d, respectively.

[00612] - Termination resistors 4216a and 4216b will also act as impedances on the input of
the client side receiver 4220 for the STB signal processing while additional termination
resistors 4216e and 4216f are placed in series with resistors 4216¢ and 4216d, respectively
on the input of the client data processing receiver 4222. A sixth driver 4226 in the client
controller is used to prepare the data signals being transferred from the client to the host,
where driver 4214, through termination resistors 4216c and 4216d, on the input side,
processes the data for transfer to the host for processing. -

[00613] Two additional resistors 4218a and 4218b are placed between the termination
resistors and ground and a voltage source 4220, respectively, as part of the hibernation
control discussed elsewhere. The voltage source is used to drive the transfer lines to the
high or low levels previously discussed to manage the flow of data.

[00614] The above drivers and impedances can be formed as discrete components or as part
of a circuit module, or an application specific integrated circuit (ASIC) which acts as a
more cost effective encoder or decoder solution.

[00615] It can be easily seen that power is transferred to the client device, or display, from

the host device using the signals labeled MDDI_Pwr and MDDI_Gnd over a pair of

WO 2005/018191 PCT/US2004/026264

106

conductors. The MDDI_Gnd portion of the signal acts as the reference ground and the
power supply return path or signal for the display device. The MDDI_Pwr signal acts as
the display device power supply which is driven by the host device In an exemplary
configuration, for low power applications, the display device is allowed to draw up to 500
mA. The MDDI_Pwr signal can be provided from portable power sources, such as but not
limited to, a lithium-ion type battery or battery pack residing at the host device, and may

range from 3.2 to 4.3 volts with respect to MDDI_Gnd.

VII. Timing Characteristics
A. Overview

[00616] The steps and signal levels employed by a client to secure service from the host and
by the host to provide such service, are illustrated in FIG. 43. In FIG. 43, the first part of
signals being illustrated shows a Link Shutdown Packet being transferred from the host and
the data line is then driven to a logic zero state using the high-impedance bias circuit. No
data is being transmitted by the client display, or host, which has its driver disabled. A
series of strobe pulses for the MDDI_Stb signal line can be seen at the bottom, since
MDDI_Stb is active during the Link Shutdown Packet. Once this packet ends and the logic
level changes to zero as the host drives the bias circuit and logic to zero, the MDDI_Stb
signal line changes to a logic-zero level as well. This represents the termination of the last
signal transfer or service from the host, and could have occurred at any time in the past, and
is included to show the prior cessation of service, and the state of the signals prior to service
commencement. If desired, such as signal can be sent just to reset the communication link
to the proper state without a 'known' prior communication having been undertaken by this
host device.

[00617] As shown in FIG. 43, the signal output from the client is initially set at a logic level
of zero. In other words, the client output is at a high impedance, and the driver is disabled.
When service is being requested, the client enables its driver and sends a service request to
the host, which is a period of time, designated tservice, during which the line is driven to a
logic one level. A certain amount of time then passes or may be needed before the hosf
detects the request, termed thost-detect, after which the host responds with a link startup
sequence by driving the signal to a logic one level. At this point, the client de-asserts the
request, and disables the service request driver so that the output line from the client goes to

a zero logic level again. During this time, the MDDI_Stb signal is at a logic zero level.

WO 2005/018191 PCT/US2004/026264

107

[00618] The host drives the host data output at the '1' level for a period termed trestart-high,
after which the host drives the logic level to zero and activates MDDI_Stb for a period
termed trestart-low, after which the first forward traffic begins with a Sub-Frame Header
Packet, and the forward traffic packets are then transferred. The MDDI_Stb signal is active
during the trestart-low period and the subsequent Sub-Frame Header Packet.

[00619] Table VIII shows representative times for the length of the various periods discussed
above, and the relationship to exemplary minimum and maximum data rates, where:

1
Lo =
Link_Data_Rate

Table VIII

Parameter | Description Min. Typ. | Max. | Units

tservice Duration of display service 60 70 80 usec
request pulse

trestart-high Duration of host link restart 140 150 160 | usec
high pulse

{restart-low Duration of host link restart 40 50 60 usec
low pulse

tisplay-detect Time for display to detect 1 50 usec
link restart sequence

thost-detect Time for host to detect 1 50 usec
service request pulse

1/thi-minperr | Link data rate for a minimum 0.001 1 Mbps
performance device

1/tpie.max-pert | Maximum link data rate 0.001 450 | Mbps
range for a device
Reverse Link data rate 0.0005 50 | Mbps

thic Period of one forward link 2.2 10° | nsec
data bit

[00620] Those skilled in the art will readily understand that the functions of the individual
elements illustrated in FIGS. 41 and 42, are well known, and the function of the elements in
FIG. 42 is confirmed by the timing diagram in FIG. 43. Details about the series
terminations and hibernation resistors that are shown in FIG. 42 were omitted from FIG. 41
because that information is unnecessary for a description of how to perform the Data-Strobe

encoding and recover the clock from it.

WO 2005/018191 PCT/US2004/026264

108

B. Data-Strobe Timing Forward Link

[00621] The switching characteristics for the transfer of data on the forward link from the
host driver output is shown in Table IX. Table IX presents a tabular form of the minimum
and maximum desired, versus typical times fOli' certain signal transitions to occur. For
example, the typical length of time for a transition to occur from the start to the end of a
data value (output of a '0' or '1"), a Data0 to Data0 transition, termed ttdd-(host-output), is
ttbit while the minimum time is about ttbit-0.5 nsec., and the maximum is about ttbit+0.5
nsec. The relative spacing between transitions on the Data0, other data lines (DataX), and
the strobe lines (Stb), is illustrated in FIG. 44 where the Data0 to Strobe, Strobe to Strobe,
Strobe to Data0, Data0 to non-Data0, non-Data0 to non-Data0, non-Data0 to Strobe, and
Strobe to non-Data0 transitions are shown, which are referred to as ttds-(host-output), ttss-
(host-output), ttsd-(host-output), ttddx-(host-output), ttdxdx-(host-output), ttdxs-(host-
output), and ttsdx-(host-output), respectively.

Table IX

Parameter Description Min. Typ. Max. Units

tiad-(host-oupuy | Data0 to Data0 transition | twie— 0.5 |t twie + 0.5 | nsec

tids-(host-output) | 1Data0 to Strobe transition |ty — 0.8 tibit twit + 0.8 | nsec

ttss»(host—output) Strobe to Strobe tiit — 0.5 it tiwie + 0.5 nsec
transition

tisa-(host-ouputy | Strobe to Datal transition |ty — 0.8 tibit twit + 0.8 | nsec

ttddx-(host-output) Data0 to non-Data0 tbit nsec
transition

tidxdx-(host-outputy | NON-Data0 to non-Data0 | twie—0.5 | twie | twie +0.5 | nsec
transition

tidxs-(host-ouputy | MON-Datal to Strobe tibit nsec
transition

tisdx-(host-outputy | Strobe to non-Data0 tibit nsec
transition

[00622] The typical MDDI timing requirements for the client receiver input for the same

signals transferring data on the forward link is shown in Table X. Since the same signals
are being discussed but time delayed, no new figure is needed to illustrate the signal
characteristics or meaning of the respective labels, as would be understood by those skilled

in the art.

WO 2005/018191 PCT/US2004/026264

109
Table X
Parameter Description Min. Typ. Max. Units
ttdd-(display-input) Data0 to Data0 transition tipit — 1.0 Tivit toie + 1.0 nsec
tds-(display-inputy | Data0 to Strobe transition tipie — 1.5 tibit tit + 1.5 nsec
tiss-(display-input) | Strobe to Strobe transition twie— 1.0 | twi | twe+ 1.0 | nsec
tsd-(display-input) | Strobe to Data0 transition tiwie — 1.5 Lebit twic + 1.5 | nsec
teadx-(host-outpu) | Data0 to non-Data0 transition ibit nsec
tidxdx-(host-outputy | NON-Data0 to non-Data0 tibit nsec
transition
tidxs-(host-outputy | NON-Data0 to Strobe tivit nsec
transition
tisdx-(host-output) | Strobe to non-Data0 tibit nsec
transition -
[00623] FIGS. 45 and 46 illustrate the presence of a delay in response that can occur when

the host disables or enables the host driver, respectively. In the case of a host forwarding
certain packets, such as the Reverse Link Encapsulation Packet or the Round Trip Delay
Measurement Packet, the host disables the line driver after the desired packets are
forwarded, such as the Parameter CRC, Strobe Alignment, and All Zero packets illustrated
in FIG. 45 as having been transferred. However, as shown in FIG. 45, the state of the line
does not necessarily switch from '0' to a desired higher value instantaneousiy, although this
is potentially achievable with certain control or circuit elements present, but takes a period
of time termed the host Driver Disable Delay period to respond. While it could occur
virtually instantly such that this time period is 0 nanoseconds (nsec.) in length, it could
more readily extend over some longer period with 10 nsec. being a desired maximum
period length, which occurs during the Guard Time 1 or Turn Around 1 packet periods.

[00624] Looking in FIG. 46, one sees the signal level change undergone when the host
Driver is enabled for transferring a packet such as the Reverse Link Encapsulation Packet or
the Round Trip Delay Measurement Packet. Here, after the Guard Time 2 or Turn Around
2 packet periods, the host driver is enabled and begins to drive a level, here '0', which value
is approached or reached over a period of time termed the Host Driver Enable Delay period,
which occurs during the Driver Re-enable period, prior to the first packet being sent.

[00625] A similar process occurs for the drivers and signal transfers for the client device,
here a display. The general guidelines for the length of these periods, and their respective

relationships are shown in Table XI, below.

WO 2005/018191 PCT/US2004/026264

110
Table XI
Description Min. | Max. | Units
Host Driver Disable Delay 0 10 nsec
Host Driver Enable Delay 0 2.0 nsec
Display Driver Disable Delay 0 10 nsec
Display Driver Enable Delay 0 2.0 nsec
C. Data-Strobe Timing Reverse Link
[00626] The switching characteristics and timing relationships for the data and strobe signals

used to transfer data on the reverse link from the client driver output are shown in FIGS. 47,
and 48. The typical times for certain signal transitions are discussed below. FIG. 47
illustrates the relationship at the host receiver input between the timing of the data being
transferred and the leading and trailing edges of the strobe pulses. That is, what is referred
to as the set-up time for the rising or leading edge of the strobe signals, tsu-sr and the set-up
time for the trailing or falling edge of the strobe signals, tsu-sf. A typical length of time for
these set-up periods is on the order of a minimum of 8 nanoseconds.

[00627] FIG. 48 illustrates the switching characteristics and corresponding client output
delay developed by the reverse data timing. In FIG. 48, one can see the relationship
between thé timing of the data being transferred and the leading and trailing edges of the
strobe pulses accounting for induced delay. That is, what is referred to as the propagation
delay between the rising or leading edge of the strobe signals and the data (valid), tpd-sr,
and the propagation delay between the data and the trailing or falling edge of the strobe
signals, tpd-sf. A typical maximum length of time for these propagation delay periods is on

the order of 8 nanoseconds.

VIII. Implementation of Link Control (Link Controller Operation)
A. State Machine Packet Processor

[00628] Packets being transferred over a MDDI link are dispatched very rapidly, typically at
a rate on the order of 300 Mbps or more, such as 400 Mbps, although lower rates are
certainly accommodated, as desired. This type of bus or transfer link speed is too great for
currently commercially available (economical) general-purpose microprocessors or the like
to control. Therefore, a practical implementation to accomplish this type of signal transfer
is to utilize a programmable state machine to parse the input packet stream to produce

packets that are transferred or redirected to the appropriate audio-visual subsystem for

WO 2005/018191 PCT/US2004/026264

111

which they are intended. Such devices are well known and use circuits generally dedicated
to a limited number of operations, functions, or states to achieve a desired high speed or
very high speed operation.

[00629] General purpose controllers, processors, or processing elements, can be used to
more appropriately act upon or manipulate some information such as control or status
packets, which have lower speed demands. When those packets (control, status, or other
pre-defined packets) are received, the state machine should pass them through a data buffer
or similar processing element to the general-purpose processor so the packets can be acted
upon to provide a desired result (effect) while the audio and visual packets are transferred to
their appropriate destination for action. If future, microprocessors or other general purpose
controllers, processors, or processing elements are manufactured to achieve higher data rate
processing capabilities, then the states or state machine discussed below might also be
implemented using software control of such devices, typically as programs stored on a
storage element or media.

[00630] The general purpose processor function can be realized in some embodiments by
taking advantage of the processing power, or excess cycles available for, mMicroprocessors
(CPUs) in computer applications, or controllers, processors, digital signal processors
(DSPs), specialized circuits, or ASICs found in wireless devices, in much the same manner
as some modems or graphics processors utilize the processing power of CPUs found in
computers to perform some functions and reduce hardware complexity and costs. However,
this cycle sharing or usage can negatively impact the processing speed, timing, or overall
operation of such elements, so in many applications, dedicated circuits or elements are
preferred for this general processing.

[00631] In order for image data to be viewed on a display (micro-display), or to reliably
receive all packets sent by the host device, the display signal processing is synchronized
with the forward link channel timing. That is, signals arriving at the display and the display
circuits need to be substantially time synchronized for proper signal processing to occur. A
high level diagram of states achieved by signal processing steps or a method by which such
a synchronization can be'implemented is presented in the illustration of FIG.49. In
FIG. 49, the possible forward link synchronization "states" for a state machine 4900 are
shown being catégorized as one ASYNC FRAMES STATE 4904, two ACQUIRING
SYNC STATES 4902 and 4906, and three IN-SYNC STATES 4908, 4910, and 4912.

WO 2005/018191 PCT/US2004/026264

112

[00632] As shown by starting step or state 4902, the display or client, such as a presentation
device, starts in a pre-selected "no sync" state, and searches for a unique word in the first
sub-frame header packet that is detected. It is to be noted that this no sync state represents
the minimum communication setting or "fall-back" setting in which a Type I interface is
selected. When the unique word is found during the search, the display saves the sub-frame
length field. There is no checking of the CRC bits for processing on this first frame, or until
synchronization is obtained. If this sub-frame length is zero, then sync state processing
proceeds accordingly to a state 4904 labeled here as the "async frames" state, which
indicates that synchronization has not yet been achieved. This step in the processing is
labeled as having encountered cond 3, or condition 3, in FIG. 49. Otherwise, if the frame
length is greater than zero, then the sync state processing proceeds to a state 4906 where the
interface state is set as "found one sync frame." This step in the processing is labeled as
encountering cond 5, or condition 5, in FIG. 49. In addition, if the state machine sees a
frame header packet and good CRC determination for a frame length greater than zero,
processing proceeds to the "found one sync frame" state. This is labeled as meeting cond 6,
or condition 6, in FIG. 49.

[00633] In each situaﬁon in which the system is in a state other than "no sync", when the
unique word is detected and a good CRC result is determined for the sub-frame header
packet, and the sub-frame length is greater than zero, then the interface state is changed to
the "in-sync" state 4908. This step in the processing is labeled as having encountered cond
1, or condition 1, in FIG. 49. On the other hand, if either the unique word or the CRC in the
sub-frame Header Packet are not correct, then the sync state processing proceeds or returns
to the interface state 4902 of "NO SYNC FRAME" state. This portion of the processing is

labeled as encountering cond 2, or condition 2, in the state diagram of FIG. 49.

B. Acquisition Time for Syne
[00634] The interface can be configured to accommodate a certain number of "sync errors"
prior to deciding that synchronization is lost and returning to the "NO SYNC FRAME"
state. In FIG. 49, once the state machine has reached the "IN-SYNC STATE" and no errors
are found, it is continuously encountering a cond 1 result, and remains in the "IN-SYNC"
state. However once one cond 2 result is detected, processing changes the state to a "one-
sync-error” state 4910. At this point, if processing results in detecting another cond 1

result, then the state machine returns to the "in-sync" state, otherwise it encounters another

1

WO 2005/018191 PCT/US2004/026264

113

cond 2 result, and moves to a "TWO-SYNC-ERRORS" state 4912, Again, if a cond 1
occurs, processing returns the state machine to the "IN-SYNC" state. Otherwise, another
cond 2 is encountered and the state machine returns to the "no-sync" state. It is also
understandable that should the interface encounter a "link shutdown packet", then this will
cause the link to terminate data transfers and return to the "no-sync frame" state as there is
nothing to synchronize with, which is referred to as meeting cond 4, or condition 4, in the
state diagram of FIG. 49.

[00635] It is understood that it is possible for there to be a repeating “false copy” of the
unique word which may appear at some fixed location within the sub-frame. In that
situation, it is highly unlikely that the state machine will synchronize to the sub-frame
because the CRC on the sub-frame Header Packet must also be valid when processed in
order for the MDD interface processing to proceed to the “IN SYNC” state. ‘

[00636] The sub-frame length in the sub-frame Header Packet may be set to zero to indicate
that the host will transmit only one sub-frame before the link is shut down, and the MDD
interface is placed in or configured into an idle hibernation state. In this case, the display
must immediately receive packets over the forward link after detecting the sub-frame
Header Packet because only a single sub-frame is sent before the link transitions to thé idle
state. In normal or typical operations, the sub-frame length is non-zero and the display only
processes forward link packets while the interface is in those states collectively shown as
“IN-SYNC” states in FIG. 49.

[00637] The time required for a display to synchronize to the forward link signal is variable
depending on the sub-frame size and the forward link data rate. The likelihood of detecting
a “false copy” of the unique word as part of the random, or more random, data in the
forward link is greater when the sub-frame size is larger. At the same time, the ability to
recover from a false detection is lower, and the time taken to do so is longer, when a

forward link data rate is slower.

C. Initialization

[00638] As stated earlier, at the time of "start-up", the host configures the forward link to
operate at or below a minimum required, or desired, data rate of 1 Mbps, and configures the
sub-frame length and media-frame rate appropriately for a given application. That is, both
the forward and reverse links begin operation using the Type-I interface. These parameters

are generally only going to be used temporarily while the host determines the capability or

WO 2005/018191 PCT/US2004/026264

114

desired configuration for the client display (or other type of client device). The host sends
or transfers a sub-frame Header Packet over the forward link followed by a Reverse Link
Encapsulation Packet which has bit '0' of the Request Flags set to a value of one (1), in
order to request that the display or client responds with a Display Capability Packet. Once
the display acquires synchronization on (or with) the forward link, it sends a Display
Capability Packet and a Display Request and Status Packet over the reverse link or channel.
[00639] The host examines the contents of the Display Capability Packet in order to
determine how to reconfigure the link for optimal or a desired level of perfoﬁnaﬁce. The
host examines the Protocol Version and Minimum Protocol Version fields to confirm that
the host and display use versions of the protocol that are compatible with each other. The
-protocol versions generally remain as the first two parameters of the display capability
Packet so that compatibility can be determined even when other elements of the protocol

might not be compatible or completely understood as being compatible.

D. CRC Processing ‘

[00640] For all packet types, the packet processor state machine ensures that the CRC
checker is controlled appropriately or properly. It also increments a CRC error counter
when a CRC comparison results in one or more errors being detected, and it resets the CRC

counter at the beginning of each sub-frame being processed.

E. Alternative Loss Of Synchronization Check

[00641] While the above series of steps or states work to produce higher data rates or
throughput speed, Applicants have discovered that an alternative arrangement or change in
the conditions the client uses to declare that there is a loss of synchronization with the host,
can be used effectively to achieve even higher data rates or throughput. The new inventive
embodiment has the same basic structure, but with the conditions for changing states
changed. Additionally a new counter is implemented to aid in making checks for sub-frame
synchronization. These steps and conditions are presented relative to FIG. 63, which
illustrates a series of states and conditions useful in establishing the operations of the
method or state machine. Only the "ACQUIRING-SYNC STATES" and "IN-SYNC
STATES" portions are shown for clarity. In addition, since the resulting states are
substantially the same, as is the state machine itself, they use the same numbering,.

However, the conditions for changing states (and the state machine operation) vary

WO 2005/018191 PCT/US2004/026264

115

somewhat, so that all are renumbered for clarity between the two figures (1, 2, 3, 4, 5, and
6, versus 61, 62, 63, 64, and 65), as a convenience in identifying differences. Since the
ASYNC FRAME state is not considered in this discussion, one state (4904) and condition
(6) are no longer used in the figure.

[00642] In FIG. 63, the system or client (for display or presentation) starts with state
machine 5000 in the pre-selected "no sync" state 4902, as in FIG. 49. The first state change
for changing states from the no-sync condition 4902 is in condition 64 which is the
discovery of the sync pattern. Assuming that the CRC of the sub-frame header also passes
on this packet (meets condition 61), the state of the packet processor state machine can be
changed to the in-sync state 4908. A sync error, condition 62, will cause the state machine
to shift to state 4910, and a second occurrence to state 4912. However, it has been
discovered that any CRC failure of an MDDI packet will cause the state machine to move
out of in-sync state 4908, to the one sync error state 4910. Another CRC failure of any
MDDI packet will cause a move to the two sync failure state 4912. A packet decoded with
a correct CRC value will cause the state machine to return to the in-sync state 4908.

[00643] What has been changed is to utilize the CRC value or determination for 'every'
packet. That is, to have the state machine look at the CRC value for every packet to
determine a loss of synchronization instead of just observing sub-frame header packets. In
this configuration or process, a loss of synchronization is not determined using the unique
word and just sub-frame header CRC values.

[00644] This new interface implementation allows the MDD interface link to recognize
synchronization failures much more quickly, and, therefore, to recover from them more
quickly, as well.

[00645] To make this system more robust, the client should also add or utilize a sub-frame
counter. The client then checks for the presence of the unique word at the time it is
expected to arrive or occur in a signal. If the unique word does not occur at the correct
time, the client can recognize that a synchronization failure has occurred much more
quickly than if it had to wait several (here three) packet times or periods that were greater
than a sub-frame length. If the test for the unique word indicates it is not present, in other
words that the timing is incorrect, then the client can immediately declare a link loss of
synchronization and move to the no-sync state. The process of checking for the proper
unique word presence, adds a condition 65 (cond 65) to the state machine saying that the

unique word is incorrect. If a sub-frame packet is expected to be received on the client and

WO 2005/018191 PCT/US2004/026264

116

doesn’t match up, the client can immediately go to the no-sync state 4902, saving additional
time waiting for multiple sync errors (condition 62) normally encountered traversing
through states 4910 and 4912.

[00646] This change uses an additional counter or counting function in the client core to
count sub-frame length. In one embodiment, a count down function is used and the transfer
of any packet that was currently being processed is interrupted to check for the sub-frame
unique word if the counter has expired. Alternatively, the counter can count up, with the
count being compared to a desired maximum or particular desired value, at which point the
current packet is checked. This process protects the client from decoding packets that are
incorrectly received on the client with extraordinarily long packet lengths. If the sub-frame
length counter needed to interrupt some other packet that was being decoded, a loss of

synchronization can be determined since no packet should cross a sub-frame boundary.

IX. Packet Processing

[00647] For each type of packet discussed above that the state machine receives, it
undertakes a particular processing step or series of steps to implement operation of the
interface. Forward link packets are generally processed according to the exemplary

processing listed in Table XII below.

- . Table XII
Packet type Packet processor state machine response
Sub-Frame Header (SH) Confirms good packet, captures sub-frame

length field, and sends packet parameters
to a general purpose processor.

Filler (F) Ignores data.

Video Stream (VS) Interprets the Video Data Format
Descriptor and other parameters, unpacks
packed pixel data when necessary,
translates pixels through the color map if
necessary, and writes pixel data to
appropriate locations in the bitmap.
Audio Stream (AS) Sends audio sample rate setting to audio
sample clock generator, separates audio
samples of specified size, unpacks audio
sample data when necessary, and routes
audio samples to appropriate audio sample
FIFO

Color Map (CM) Reads color map size and offset

WO 2005/018191

PCT/US2004/026264

117

Packet type

Packet processor state machine response

parameters, and writes the color map data
to a color map memory or storage location.

Reverse Link Encapsulation (REL)

Facilitates sending packets in reverse
direction at the appropriate time. Reverse
link flags are examined, and Display
Capability packets are sent as necessary.
Display Request and Status packets are
also sent as appropriate.

Display Capability (DC)

Sends this type of packet when requested
by a host using the reverse link flags field
of the Reverse Link Encapsulation Packet.

Keyboard (K)

Passes these packets to and from a general
purpose processor that communicates with
a keyboard type device, if one is present,
and use is desired.

Pointing Device (PD)

Passes these packets to and from a general
purpose processor that communicates with
a pointing type device, if one is present,
and use is desired.

Link Shutdown (L.S)

Records fact link is shut down and informs
a general-purpose processor.

Display Service Request and Status

(DSRS)

Sends this packet as the first packet in the
Reverse Link Encapsulation packet.

Bit Block Transfer (BPT)

Interprets packet parameters, such as Video
Data Format Descriptor, determines which
pixels to move first, and moves pixels in
bitmap as required.

Bitmap Area Fill (BAF)

Interprets packet parameters, translates
pixels through color map if necessary, and
writes pixel data to appropriate locations in
bitmap,

Bitmap Pattern Fill (BPF)

Interprets packet parameters, unpacks
packed pixel data if necessary, translates
pixels through color map if necessary, and
writes pixel data to appropriate locations in
bitmap.

Communication Link Channel (CLC)

Sends this data directly to a general-
pUIpose processor.

Display Service Request (DSR) during
hibernation

General-purpose processor controls the
low-level functions of sending request and
detects contention with link restarting on
its own.

Interface Type Handoff Request
(ITHR) and Interface Type
Acknowledge (ITA)

May pass these packets to and from the
general-purpose processor. The logic to
receive this type of packet and formulate a
response with an acknowledgment is

substantially minimal. Therefore, this

WO 2005/018191 PCT/US2004/026264

118

Packet type Packet processor state machine response
operation could also be implemented
within the packet processor state machine.
The resulting handoff occurs as a low-level
physical layer action and is not likely to
affect the functionality or functioning of
the general-purpose processor.

Perform Type Handoff (PTH) May act on such packets either directly or
by transferring them to the general-purpose
processor, also commanding hardware to
undergo a mode change.

X. Reducing the Reverse Link Data Rate

[00648] It has been observed by the inventors that certain parameters used for the host link
controller can be adjusted or configured in a certain manner in order to achieve a maximum
or more optimized (scale) reverse link data rate, which is very desirable. For example,
during the time used to transfer the Reverse Data Packets field of the Reverse Link
Encapsulation Packet, the MDDI_Stb signal pair toggles to create a periodic data clock at
half the forward link data rate. This occurs because the host link controller generates the
MDDI_Stb signal that corresponds to the MDDI_Data0 signal as if it were sending all
zeroes. The MDDI_Stb signal is transferred from the host to a client where it is used to
generate a clock signal for transferring reverse link data from the display, with which
reverse data is sent back to the host. An illustration of typical amounts of delay
encountered for the signal transfer and processing on the forward and reverse paths in a
system employing the MDDI, is shown in FIG. 50. In FIG. 50, a series of delay values 1.5
nsec., 8.0 nsec., 2.5 nsec., 2.0 nsec., 1.0 nsec., 1.5 nsec., 8.0 nsec., and 2.5 nsec., are shown
near processing portions for the Stb+/- generation, cable transfer-to-display, display
receiver, clock generation, signal clocking, Data0+/- generation, cable transfer-to-host, and
host receiver stages, respectively. |

[00649] Depending on the forward link data rate and signal processing delays encountered, it
may require more time than one cycle on the MDDI_Stb signal for this "round trip" effect
or set of events to be completed, which results in the consumption undesirable amounts of
time or cycles. To circumvent this problem, the Reverse Rate Divisor makes it possible for
one bit time on the reverse link to span multiple cycles of the MDDI_Stb signal. This

means that the reverse link data rate is less than the forward link rate.

WO 2005/018191 PCT/US2004/026264

119

[00650] It should be noted that the actual length of signal delays through the interface may
differ depending on each specific host-client system or hardware being used. Although not
required, each system can generally be made to perform better by using the Round Trip
Delay Measurement Packet to measure the actual delay in a system so that the Reverse Rate
Divisor can be set to an optimum value.

[00651] A round-trip delay is measured by having the host send a Round Trip Delay
Measurement Packet to the display. The display responds to this packet by sending a
sequence of ones back to the host inside of, or during, a pre-selected measurement window
in that packet called the Measurement Period field. The detailed timing of this
measurement was descriEed previously. The round-trip delay is used to determine the rate
at which the reverse link data can be safely sampled.

{00652] | The round-trip delay measurement consists of determining, detecting, or counting
the number of forward link data clock intérvals oécurring between the beginning of the
Measurement Period field and the beginning of the time period when the Oxff, Oxff, 0x00
response sequence is received back at the host from the client. Note that it is possible that
the response from the client could be received a small fraction of a forward link clock
period before the measurement count was about to increment. If this unmodified value is
used to calculate the Reverse Rate Divisor it could cause bit errors on the reverse link due
to unreliable data sampling. An example of this situation is illustrated in FIG. 51, where
signals representing MDDI_Data at host, MDDI_Stb at host, forward link data clock inside
the host, and a Delay Count are illustrated in graphical form. In FIG. 51, the response
sequence was received from the display a fraction of a forward link clock period before the
Delay Count was about to increment from 6 to 7. If the delay is assumed to be 6, then the
host will sample the reverse data just after a bit transition or possibly in the middle of a bit
transition. This could result in erroneous sampling at the host. For this reason, the
measured delay should typically be incremented by one before it is-used to calculate the
Reverse Rate Divisor.

[00653] The Reverse Rate Divisor is the number of MDDI_Stb cycles the host should wait
before sampling the reverse link data. Since MDDI_Stb is cycled at a rate that is one half
of the forward link rate, the corrected round-trip delay measurement needs to be divided by

2 and then rounded up to the next integer. Expressed as a formula, this relationship is:

WO 2005/018191 PCT/US2004/026264

120

round _trip _ delay + 1)

reverse _ rate _ divisor = Round UpToNextIm‘eger(5

For the example given, this becomes:

reverse _rate _ divisor = Round UpToNextInteger(%) =4

If the round trip delay measurement used in this example were 7 as opposed to 6,
then the Reverse Rate Divisor would also be equal to 4.

The reverse link data is sampled by the host on the rising edge of the Reverse Link
Clock. There is a counter or similar known circuit or device present in both the host and
client (display) to generate the Reverse Link Clock. The counters are initialized so that the
first rising edge of the Reverse Link Clock occurs at the beginning of the first bit in the
Reverse Link Packets field of the Reverse Link Encapsulation packet. This is illustrated,
for the example given below, in FIG. 52. The counters increment at each rising edge of the
MDDI_Stb signal, and the number of counts occurring until they wrap around is set by the
Reverse Rate Divisor parameter in the Reverse Link Encapsulation Packet. Since the
MDDI_Stb signal toggles at one half of the forward link rate, then the reverse link rate is
one half of the forward link rate divided by the Reverse Rate Divisor. For example, if the
forward link rate is 200 Mbps and the Reverse Rate Divisor is 4 then the reverse link data

rate is expressed as:

1 200Mbps — 25Mbps
2

An example showing the timing of the MDDI_Data0 and MDDI_Stb signal lines in
a Reverse Link Encapsulation Packet is shown in FIG. 52, where the packet parameters

used for illustration have the values:

Packet Length = 1024 (0x0400) Turn Around 1 Length = 1
Packet Type = 65 (0x41) Turn Around 2 Length = 1

Reverse Link Flags =0 Reverse Rate Divisor =2

WO 2005/018191 PCT/US2004/026264

121

Parameter CRC = 0xdb43 All Zero is 0x00
Packet data between the Packet Length and Parameter CRC fields is:

0x00, 0x04, 0x41, 0x00, 0x02, 0x01, 0x01, 0x43, Oxdb, 0x00, ...

[00657] The first reverse link packet returned from the display is the Display Request and
Status Packet having a Packet Length of 7 and a packet type of 70. This packet begins with
the byte values 0x07, 0x00, 0x46, ... and so forth. However, only the first byte (0x07) is
visible in FIG. 52. This first reverse link packet is time-shifted by nearly one reverse link
clock period in the figure to illustrate an actual reverse link delay. An ideal waveform with
zero host to display round-trip delay is shown as a dotted-line trace.

[00658] The MS byte of the Parameter CRC field is transferred, preceded by packet type,
then the all zero field. The strobe from the host is switching from one to zero and back to
one as the data from the host changes level, forming wider pulses. As the data goes to zero,
the strobe switches at the higher rate, only the change in data on the data line causes a
change near the end of the alignment field. The strobe switches at the higher rate for the
remainder of the figure due to the fixed 0 or 1 levels of the data signal for extended periods
of time, and the transitions falling on the pulse pattern (edge).

[00659] The reverse link clock for the host is at zero until the end of the Turn Around 1
period, when the clock is started to accommodate the reverse link packets. The arrows in
the lower portion of the figure indicate when the data is sampled, as would be apparent
from the remainder of the disclosure. The first byte of the packet field being transferred
(here 11000000) is shown commencing after Turn Around 1, and the line level has
stabilized from the host driver being disabled. The delay in the passage of the first bit, and
as seen for bit three, can bee seen in the dotted lines for the Data signal.

[00660] In FIG. 53, one can observe typical values of the Reverse Rate Divisor based on the
forward link data rate. The actual Reverse Rate Divisor is determined as a result of a
round-trip link measurement to guarantee proper reverse link operation. A first region 5302
corresponds to an area of safe operation, a second region 5304 corresponds to an area of
marginal performance, while a third region 5306 indicates settings that are unlikely to
function properly.

[00661] The round-trip delay measurement and Reverse Rate Divisor sefting are the same

while operating with any of the Interface Type settings on either the forward or reverse link

WO 2005/018191 PCT/US2004/026264

122

because they are expressed and operated on in terms of units of actual clock periods rather

than numbers of bits transmitted or received.

XI. Turn-Around and Guard Times

[00662] As discussed earlier, the Turn Around 1 field in the Reverse Link Encapsulation
Packet and the Guard Time 1 field in the Round Trip Delay Measurement Packet designate
values for lengths of time that allow for the host interface drivers to be disabled before the
display interface drivers are enabled. Turn Around 2 and Guard Time 2 fields provide time
values which allow the display drivers to be disabled before the host drivefs are enabled.
The Guard Time 1 and Guard Time 2 fields are generally filled with pre-set or pre-selected
values for lengths that are not meant to be adjusted. Depending on the interface hardware
being used, these values may be developed using empirical data and adjusted in some
instances.to improve operation.

[00663] " Several factors contribute to a determination of the length of Turmn Around 1 and
these are the forward link data rate, and the maximum disable time of the MDDI_Data
drivers in the host. The maximum host driver disable time is specified in Table XI, where it
shows that the drivers take about 10 nsec. maximum to disable and about 2 nsec. to enable.
The minimum number of forward link clocks required for the host driver to be disabled is

expressed according to the relationship:

F LinkDataR
Clocks _to _disabley,, = orwardLinkDataRate - HostDriverDisableDelay ,,
InterfaceTypeFactor gy,
[00664] The allowed value range of Turn Around 1 is expressed according to the

relationship:

1 t jsabl
Turn_ Around _12> Round UpToNextInteger(C ocks - Oé' disabley, InterfaceTypeFactor sy,)

where the Tnterface Type Factor is 1 for Type-I, 2 for Type-II, 4 for Type-II, and 8 for
Type-IV.

WO 2005/018191 PCT/US2004/026264

123

[00665] Combining the two equations from above, one can see that the Interface Type Factor

term cancels out, and Turn Around 1 is defined as:

F dLikDataRat, tDriveDi
Turn_ Around._1=Roun dUpToNxtIntegeE orwardLittDataRate Hos rzveDzsableDaﬁymax)

8
[00666] For example, a 1500 Mbps Type-III forward link would use a Turn Around 1 delay
of:
Turn_ Around _1= RoundUpToNextInteger[ISOOMbpss -10n sec) = 2Bytes
[00667] - As the round trip delay increases, the timing margin improves from the point in time .
when the host is disabled to the time the display is enabled.
[00668] The factors that determine the length of time generally used for Turn Around 2 are

the forward link data rate, the maximum disable time of the MDDI_Data drivers in the
display, and the round-trip delay of the communication link. The calculation of the time
required to disable the display driver is essentially the same as that for the host driver

discussed above, and is defined according to the relationship:

Clocks _to _disable,,, = ForwardLinkDataRate DisplayDriverDisableDelay_,

InterfaceTypeFactory,,

and the allowed value range for Turn Around 2 is expressed as:

Clocks_to_disable,, +round_trip_delay+1

Turn_ Around_2 2> RoundUpTolxtIntege

8
(Inte;faceﬂpeF acto;:WDJ

[00669] For example, a 1500 Mbps Type-III forward link with a round-trip delay of 10

forward link clocks typically uses a Turn Around 2 delay on the order of:

WO 2005/018191 PCT/US2004/026264

124
Clocks _to _disable,,, = E_OO;VI& -10nsec =3.75
Turn _ Around _2 = RoundUpToNextInteger EL—’;O—il =8
g
XII. Alternative Reverse Link Timing
[00670] While the use of timing and guard bands discussed above work to achieve a high

data transfer rate interface, the inventors have discovered a technique to allow for reverse
bit lengths that are shorter than the round trip time, by changing the reverse timing
discovery.

[00671] As presented above, the previous approach to the timing of the reverse link is
configured such that the number of clock cycles is counted from the last bit of the Guard
Time 1 of a reverse timing packet until the first bit is sampled on the rising edge of an IO
clock. That is the clock signal(s) used to time the inputs and outputs for the MDD interface.

The calculation for the reverse rate divisor is then given by:

round _trip _ delay + 1)

reverse _rate _ divisor = RoundUpToNextInteger(5

[00672] This provides a bit width equal to the round trip delay which results in a very
reliable reverse link. However, the reverse link has been shown to be capable of running
faster, or at a higher data transfer rate, which the inventors want to take advantage of. A
new inventive technique allows utilizing additional capabilities of the interface to reach
higher speeds.

[00673] This is accomplished by having the host count the number of clock cycles until a
one is sampled, but with the host sampling the data line on both the rising and falling edges
during the reverse timing packet. This allows the host to pick the most useful or even
optimal sampling point within the reverse bit to ensure that the bit is stable. That is, to find
the most useful or optimal rising edge to sample data on for reverse traffic reverse

encapsulation packets. The optimal sampling point depends on both the reverse link divisor

WO 2005/018191 PCT/US2004/026264

125

and whether the first one was detected on a rising edge or a falling edge. The new timing
method allows the host to just look for the first edge of the OXFF OxFF 0x00 pattern sent by
the client for reverse link timing to determine where to sample in a reverse encapsulation
packet.

[00674] Examples of the arriving reverse bit and how that bit would look for various reverse
rate divisors, is illustrated in FIG. 64, along with a number of clock cycles that have
occurred since the last bit of Guard Time 1. In Fig. 64, one can see that if the first edge
occurs between a rising and falling edge (labeled as rise/fall), the optimal sampling point
for a reverse rate divisor of one, the optimal sample point is a clock cycle edge labeled b,
as that is the only rising edge occurring within the period of the reverse bit. For a reverse
rate divisor of two, the optimal sampling point is probably still clock cycle leading edge 'b'
as cycle edgé 'c' is closer to a bit edge than 'b'. For a reverse rate divisor of four, the
optimal sampling point is probably clock cycle edge 'd’, as it is closer to the back edge of
the reverse bit where the value has probably stabilized.

[00675] Returning to FIG. 64, if, however, the first edge occurs between a falling and rising
edge (labeled as fali/rise), the optimal sampling point for a reverse rate divisor of one is
sampling point clock cycle edge 'a', as that is the only rising edge within the reverse bit time
period. For a reverse rate divisor of two. the optimal sampling point is edge 'b', and for a
reverse rate divisor of four the optimal sampling point is edge 'c'.

[00676] One can see that as the reverse rate divisors get larger and larger, the optimal
sampling point becomes easier to ascertain or select, as it should be the rising edge that is
closest to the middle.

[00677] The host can use this technique to find the number of rising clock edges before the
rising data edge of the timing packet data is observed on the data line. It can then decide,
based on whether the edge occurs between a rising and falling edge or between a falling and
rising edge, and what the reverse rate divisor is, how many additional clock cycles to add to
a number counter, to reasonably ensure that the bit is always sampled as close to the middle
as possible.

[00678] Once the host has selected or determined the number of clock cycles, it can
“explore” various reverse rate divisors with the client to determine if a particular reverse
rate divisor will work. The host (and client) can start with a divisor of one and check the
CRC of the reverse status packet received from the client to determine if this reverse rate

functions appropriately to transfer data. If the CRC is corrupt, there is probably a sampling

WO 2005/018191 PCT/US2004/026264

126

error, and the host can increase the reverse rate divisor and try to request a status packet
again. If the second requested packet is corrupt, the divisor can be increased again and the
request made again. If this packet is decoded correctly, this reverse rate divisor can be used
for all future reverse packets.

[00679] This method is effective and useful because the reverse timing should not change
from the initial round trip timing estimate. If the forward link is stable, the client should
continue to decode forward link packets even if there are reverse link failures. Of course, it
is still the responsibility of the host to set a reverse link divisor for the link, since this
method does not guarantee a perfect reverse link. In addition, the divisor will depend
primarily on the quality of the clock that is used to generate an IO clock. If that clock has a
significant amount of jitter, there is a greater possibility of a sampling error. This error
probability increases with the amount of clock cycles in the round trip delay.

[00680] This implementation appears to work best for Type-I reverse data, but may present
problems for Type-II through Type-IV reverse data due to the skew between data lines
potentially being too great to run the link at the rate that works best for just one data pair.
However, the data rate probably does not need to be reduced to the previous method even
with Type-II through Type-IV for operation. This method may also work best if duplicated
on each data line to select the ideal or an optimal clock sample location. If they are at the
same sample time for each data pair, this method would continue to work. If they are at
different sample periods, two different approaches may be used. The first is to select an
desired or more optimized sample location for each data point, even if it is not the same for
each data pair. The host can then reconstruct the data stream after sampling all of the bits
from the set of data pairs: two bits for Type-II, four bits for Type-III, and eight bits for
Type-IV. The other option is for the host to increase the reverse rate divisor such that the

data bits for every data pair can be sampled at the same clock edge.

XIII. Effects of Link Delay and Skew

[00681] Delay skew on the forward link between the MDDI_Data pairs and MDDI_Stb can
limit the maximum possible data rate unless delay skew compensation is used. The
differences in delay that cause timing skew are due to the controller logic, the line drivers

and receivers, and the cable and connectors as outlined below.

WO 2005/018191 PCT/US2004/026264

127

A. Link Timing Analysis Limited by Skew (MDDI Type-I)
1 Delay and Skew Example of a Type-I Link
[00682] A typical interface circuit similar to that shown in FIG. 41, is shown in FIG. 57 for
accommodating a Type-I interface link. In FIG. 57, exemplary or typical values for
propagation delay and skew are shown for each of several processing or interface stages of
an MDDI Type-I forward link. Skew in the delay between MDDI_Stb and MDDI_Data0
causes the duty-cycle of the output clock to be distorted. Data at the D input of the receiver
flip-flop (RXFF) stage using flip-flops 5728, 5732, must change slightly after the clock
edge so that it can be sampled reliably. The figure shows two cascaded delay lines 5732a
and 5732b being used to solve two different problems with creating this timing relationship.
In the actual implementation these may be combined into a single delay element.
[00683] - Data, Stb, and Clock Recovery Timing on a Type-I Link for exemplary signal
processing through the interface are illustrated in FIG. 58.
- [00684] - The total delay skew that is significant generally arises or comes from the sum of
the skew in the following stages: transmitter flip-flop (TXFF) with flip-flops 5704, 5706;
transmitter driver (TXDRVR) with drivers 5708, 5710; the CABLE 5702; receiver line
receiver (RXRCVR) with receivers 5722, 5724; and receiver XOR logic (RXXOR).
Delayl 5732a should match or exceed the delay of the XOR gate 5736 in the RXXOR stage

which is determined by the relationship:

tPD—min(Delay 1) 2 tPD —max(XOR)

[00685] It is desirable to meet this requirement so that the D input of receiver flip-flop 5728,
5732 does not change before its clock input. This is valid if the hold-time of RXFF is zero.

[00686] The purpose or function of Delay2 is to compensate for the hold-time of the RXFF
flip-flop according to the relationship:

! pp-min(Delay2) = Lu (RxFF)

[00687] In many systems this will be zero because the hold time is zero, and of course in that

case the maximum delay of Delay2 can also be zero.

WO 2005/018191 PCT/US2004/026264

128

[00688] The worst-case contribution to skew in the receiver XOR stage is in the data-
late/strobe-early case where Delayl is at a maximum value and the clock output from the

XOR gate comes as early as possible according to the relationship:

! SKEW —max(RXXOR) = LPD-max(Delayt) — L PD-min(x0R)

[00689] In this situation, the data may change between two bit periods, n and n+1, very close
to the time where bit n+1 is clocked into the receiver flip-flop.

[00690] The maximum data rate (minimum bit period) of an MDDI Type-I link is a function
of the maximum skew encountered through all the cirivers, cable, and receivers in the
MDDI link plus the total data setup into the RXFF stage. The totél delay skew in the link
up to the output of the RXRCVR stage can be expressed as:

tSKEW-—max(LINK) = tSKEW—max(TXFF) +t SKEW-max(TXDRVR) + tSKEW—max(CABLE) + tSKEW—-max(RXRCVR)

and the minimum bit period is given by:

L prr-min = LskEw-maxcuvky T EskEw-max(rxxory T tPD—max(DelayZ) + L5y (rxrry

In the example shown in FIG. 57, tskgw-maxamk) = 1.4 nsec and the minimum bit

period can be expressed as:

tprromn =1.4+0.34+0.24+0.5=2.4nsec, or stated as approximately 416 Mbps.

B. Link Timing Analysis for MDDI Type-11, I11, and IV
[00691] A typical interface circuit similar to that shown in FIGS. 41 and 57, is shown in
FIG. 59 for accommodating Type-II, III, and IV interface links. Additional elements are
used in the TXFF (5904), TXDRVR (5908), RXRCVCR (5922), and RXFF (5932, 5928,
5930) stages to accommodate the additional signal processing. In FIG. 59, exemplary or
typical values for propagation delay and skew are shown for each of several processing or

interface stages of an MDDI Type-II forward link. In addition to skew in the delay between

WO 2005/018191 PCT/US2004/026264

129

MDDI_Stb and MDDI_Data0 affecting the duty-cycle of the output clock, there is also
skew between both of these two signals and the other MDDI_Data signals. Data at the D
input of the receiver flip-flop B (RXFFB) stage consisting of flip-flops 5928 and 5930, is
changed slightly after the clock edge so it can be sampled reliably. If MDDI_Datal arrives
earlier than MDDI_Stb or MDDI_Data0 then MDDI_Datal should be delayed to be
sampled by at least the amount of the delay skew. To accomplish this, data is delayed using
the Delay3 delay line. If MDDI_Datal arrives later than MDDI_Stb and MDDI_Data0 and
it is also delayed by Delay3 then the point where MDDI_Datal changes is moved closer to
the next clock edge. This process determines an upper limit of the data rate of an MDDI
Type-II, I, or IV link. Some exemplary different possibilities for the timing or skew
relationship of two data signals and MDDI_Stb with respect to each other is illustrated in
FIGS. 60A, 60B, and 60C.

[00692] In order to sample data reliably in RXFFB when MDDI_DataX arrives as early as

possible, Delay3 is set according to the relationship:

ZLPD--min(Delay3) 2 tSKEW—maX(LINK) + tH (RXFFB) + tPD—-max(XOR)

[00693] The maximum link speed is determined by the minimum allowable bit period. This
is most affected when MDDI_DataX arrives as late as possible. In that case, the minimum

allowable cycle time is given by:

LT —min = tSKEW—max(LINK) + tPD—max(Dalays) + ZSU(RXFFB) - tPD—min(XOR)

The upper bound of link speed is then:

! pp-max(Delay3) = ¢ PD-min(Delay3)
and given that assumption:

tBIT—min(lower—-bmmd) =2 'tSKEW—max(LINK) +tPD—max(XOR) + tSU(RXFFB) +tH(RXFFB)

WO 2005/018191 PCT/US2004/026264

130

[00694] In the example given above, the lower bound of the minimum bit period is given by

the relationship:

! B17 - mingiower—tevery = 2+ 1.4 +1.5+0.5+0.1=4.8nsec, which is approximately 208 Mbps.

[00695] This is much slower than the maximum data rate that can be used with a Type-I link.
The automatic delay skew compensation capability of MDDI significantly reduces the

affect that delay skew has on the maximum link rate

X1IV. Physical Layer Interconnection Description
[00696] Physical connections useful for implementing an interface according to the present
invention can be realized using commercially available parts such as part number 3260-
852(01) as manufactured by Hirose Electric Company Ltd. on the host side, and part
number 3240-8P-C as manufactured by Hirose Electric Company Ltd. on the display device
side. An exemplary interface pin assignment or "pinout" for such connectors used with a

Type-I/Type-II interfaces is listed in Table X111, and illustrated in FIG. 61.

Table XTII
Signal Name Pin | Color | Signal Name Pin Color
Number Number
MDDI_ Pwr 1 White | MDDI_ Gnd 2 Black paired wWhite
MDDI_Stb+ 3 Green | MDDI_Stb- 4 Black paired w/Green
MDDI_Data0+ 7 Blue MDDI_Data0- 8 Black paired w/Blue
MDDI_Datal+ 11 Brown MDDI Datal- 12 Black paired w/Brmn
MDDI_Data2+ 15 Red [MDDI Data2- 16 Black paired w/Red
MDDI Data3+ 19 Orange MDDI_ Data3- 20 Black paired w/Org
MDDI _Datad+ | 17 TBD1 MDDI Data4- | 18 Black paired w/TBD1
MDDI_Data5+ 13 TBD2 MDDI_Data5- 14 Black paired w/TBD2
MDDI_Data6+ 9 TBD3 |MDDI Data6- | 10 Black paired w/TBD3
MDDI_Data7+ 5 TBD4 MDDI_Data7- 6 Black paired w/TBD4
Shield

[00697] The shield is connected to the MDDI_Gnd in the host interface, and a shield drain
wire in the cable is connected to the shield of the display connector. However, the shield

and drain wire are not connected to the circuit ground inside of a display.

WO 2005/018191 PCT/US2004/026264

131

[00698] Interconnection elements or devices are chosen or designed in order to be small
enough for use with mobile communication and computing devices, such as PDAs and
wireless telephones, or portable game devices, without being obtrusive or unaesthetic in
comparison to relative device size. Any connectors and cabling should be durable enough
for use in the typical consumer environment and allow for small size, especially for the
cabling, and relatively low cost. The transfer elements should accommodate data and
strobe signals that are differential NRZ data having a transfer rate up to around 450 Mbps
for Type I and Type II and up to 3.6 Gbps for the 8-bit parallel Type IV version.

[00699] For internal mode applications there are either no connectors in the same sense for
the conductors being used or such connection elements tend to be very miniaturized. One
example is zero insertion force “sockets” for receiving integrated circuits or elements
housing either the host or client device. Another example‘ is where the host and client
reside on printed circuit boards with various interconnecting conductors, and have “pins” or
contacts extending from housings which are soldered to contacts on the conductors for

interconnection of integrated circuits.

XV. Operation

[00700] A summary of the general steps undertaken in processing data and packets during
operation of an interface using embodiments of the invention is shown in FIGS. 54A and
54B, along with an overview of the interface apparatus processing the packets in FIG. 55.
In these figures, the process starts in a step 5402 with a determination as to whether or not
the client and host are connected using a communication path, here a cable. This can occur
through the use of periodic polling by the host, using software or hardware that detects the
presence of connectors or cables or signals at the inputs to the host (such as is seen for USB
interfaces), or other known techniques. If there is no client connected to the host, then it
can simply enter a wait state of some predetermined length, depending upon the application,
go into a hibernation mode, or be inactivated to await future use which might require a user
to take action to reactivate the host. For example, when a host resides on a computer type
device, a user might have to click on a screen icon or request a program that activates the
host processing to look for the client. Again, simple plug in of a USB type connection, such
as used for the Type-U interface, could activate host processing, depending on the

capabilities and configuration of the host or resident host software.

[00701]

[00702]

[00703]

[00704]

WO 2005/018191 PCT/US2004/026264

132

Once a client is connected to the host, or visa versa, or detected as being present,
either the client or the host sends appropriate packets requesting service in steps 5404 and
5406. The client could send either Display Service Request or Status packets in step 5404.
It is noted that the link, as discussed above, could have been previously shut down or be in
hibernation mode so this may not be a complete initialization of the communication link
that follows. Once the communication link is synchronized and the host is trying to
communicate with the client, the client also provides a Display Capabilities packet to the
host, as in step 5408. The host can now begin to determine the type of support, including
transfer rates, the client can accommodate.

Generally, the host and client also negotiate the type (rate/speed) of service mode to
be used, for example Type I, Type U, Type II, and so forth, in a step 5410. Once the
service type is established the host can begin to transfer information. In addition, the host
may .use Round Trip Delay Measurement Packets to optimize the timing of the
communication links in parallel with other signal processing, as shown in step 5411.

As stated earlier, all transfers begin with a Sub-Frame Header Packet, shown being
transferred in step 5412, followed by the type of data, here video and audio stream packets,
and filler packets, shown being transferred in step 5414. The audio and video data will
have been previously prepared or mapped into packets, and filler packets are inserted as
needed or desired to fill out a required number of bits for the media frames. The host can
send packets such as the Forward Audio Channel Enable Packets to activate sound devices.
In addition, the host can transfer commands and information using other packet types
discussed above, here shown as the transfer of Color Map, Bit Block Transfer or other
packets in step 5416. Furthermore, the host and client can exchange data relating to a
keyboard or pointing devices using the appropriate packets.

During operation, one of several different events can occur which lead to the host or
client desiring a different data rate or type of interface mode. For example, a computer or
other device communicating data could encounter loading conditions in processing data that
causes a slow down in the preparation or presentation of packets. A display receiving the
data could change from a dedicated AC power source to a more limited battery power
source, and either not be able to transfer in data as quickly, process commands as readily, or
not be able to use the same degree of resolution or color depth under the more limited

power settings. Alternatively, a restrictive condition could be abated or disappear allowing

WO 2005/018191 PCT/US2004/026264

133

either device to transfer data at higher rates. This being more desirable, a request can be
made to change to a higher transfer rate mode.

[00705] If these or other types of known conditions occur or change, either the host or client
may detect them and try to renegotiate the interface mode. This is shown in step 5420,
where the host sends Interface Type Handoff Request Packets to the client requesting a
handoff to another mode, the client sends Interface Type Acknowledge Packets confirming
a change is sought, and the host sends Perform Type Handoff Packets to make the change to
the specified mode.

[00706] Althougﬁ, not requiring a particular order of processing, the client and host can also
exchange packets relating to data intended for or received from pointing devices,
keyboards, or other user type input devices associated primarily with the client, although
such elements may also be present on the host side. These packets are typically processed
using a general processor type element and not the state machine (5502). In addition, some
of the commands discussed above will also be processed by the general processor. (5504,
5508)

[00707] After data and commands have been exchanged between the host and client, at some
point a decision is made as to whether or not additional data is to be transferred or the host
or client is going to cease servicing the transfer. This is shown in step 5422. If the link is
to enter either a hibernation state or be shut down completely, the host sends a Link
Shutdown packet to the client, and both sides terminate the transfer of data.

[00708] . . The packets being transferred in the above operations processing will be transferred
using the drivers and receivers previously discussed in relation to the host and client
controllers. These line drivers and other logic elements are connected to the state machine
and general processors discussed above, as illustrated in the overview of FIG. 55. In Fig.
55, a state machine 5502 and general processors 5504 and 5508 may further be connected to
other elements not shown such as a dedicated USB interface, memory elements, or other
components residing outside of the link controller with which they interact, including, but
not limited to, the data source, and video control chips for view display devices.

[00709] The processors, and state machine provide control over the enabling and disabling
of the drivers as discussed above in relation to guard times, and so forth, to assure efficient

establishment or termination of communication link, and transfer of packets.

WO 2005/018191 PCT/US2004/026264

134

XVI Display Frame Buffers
[00710] Video data buffering requirements are different for moving video images compared

to computer graphics. Pixel data is most often stored in a local frame buffer in the client so
the image on the display can be refreshed locally.

[00711] When full-motion video is being displayed (nearly every pixel in the display
changes each Media Frame) it is usually preferred to store the incoming pixel data in one
frame buffer while the image on the display is being refreshed from a second frame buffer.
More than two display buffers may be used to eliminate visible artifacts as described below.
When an entire image has been received in one frame buffer then the roles of the buffers
can be swapped, and the newly received image is then used to refresh the display and the
other buffer is filled with the next frame of the image. This concept is illustrated in FIG.
91A, where pixel data is written to the offline image buffer by setting the Display Update
bits to “01”. }

[00712] In other applications the host needs to updéte only a small portion of the image
without having to repaint the entire image. In this situation it is desired to write the new
pixels directly to the buffer being used to refresh the display, as illustrated in detail FIG.
91B.

[00713] In applications that have a fixed image with a small video window it is easiest to
write the fixed image to both buffers (display update bits equal to “11”) as shown in FIG.
91C, and subsequently write the pixels of the moving image to the offline buffer by setting
the display update bits to “01”.

[00714] The following rules describe the useful manipulation of buffer pointers while
simultaneously writing new information to the client and refreshing the display. Three
buffer pointers exist: current_fill points to the buffer currently being filled from data over
the MDDI link. just_filled points to the buffer that was most recently filled.
being_displayed points to the buffer currently being used to refresh the display. All three
buffer pointers may contain values from O to N-1 where N is the number of display buffers,
and N = 2. Arithmetic on buffer pointers is mod N, e.g. when N=3 and current_fill=2,
incrementing current_fill causes current_fill to be set to 0. In the simple case where N=2,
just_filled is always the complement of current fill. On every MDDI Media Frame
boundary (Sub-frame Header Packet with the Sub-frame Count field equal so zero) perform
the following operations in the order specified: set just_filled equal to current_fill, and set

current_fill equal to current_fill + 1.

WO 2005/018191 PCT/US2004/026264

135

[00715] MDDI Video Stream Packets update the buffers according to the structure or
methodology of: when Display Update Bits equal to ‘01°, pixel data is written to the buffer
specified by current_fill; when Display Update Bits equal to ‘00’, pixel data is written to
the buffer specified by just_filled; and when Display Update Bits equal to “11”, pixel data
is written to all buffers. The display is refreshed from the buffer specified by the
being_displayed pointer. After the display refreshes the last pixel in one frame refresh
epoch and before it begins to refresh the first pixel in the next frame refresh epoch the
display update process performs the operation of seting being refreshed equal to
just_filled; |

[00716] The The Video Stream Packet contains a pair of Display Update Bits that specify the
frame buffer where the pixel data shall be written. The Display Capability Packet has three
additional bits that indicate which combinations of the Display Update Bits are supported in
the client In many cases, computer-generated images need to be incrementally updated
based on user input or derived from information received from a computer network.
Displa}; Update Bit combinations “00” and “11” support this mode of operation by causing
the pixel data to be written to the frame buffer being displayed or to both frame buffers.

[00717] When accommodating video images, FIG. 92 illustrates how video images are
displayed using a pair of frame buffers when video data is transmitted over the MDDI link
with the Display Update Bits equal to “01”. After a media-frame boundary is detected on
the MDDI link, the display refresh process will begin refreshing from the next frame buffer

when the refresh process for the frame currently being refreshed is completed.

Two Buffers, display refresh faster than image fransfer

Iege] “frame 1, butfer A | frame?, bufer B [rame3, buffer A | frame 4, bufer B | frames5, buifer A | frame, buffer B
W% A KR WG o) O AR &k M A% & W ﬁ 2% A% &N X% 2% W% l’_& %

D‘SP'aVlfra-mo,bufBIfrarmo,bufBIm1,MA|mzmalmzmslm3,btﬁAlm4 bufBlfraTe4,bufB|fram5,bquI
2% A% BN B % AL BN B X% AN, WX MY ATA A% BTN % AT A% 60% B A A% W% MO, 20% A% SO% K% B% o% K% W% % &% 8% %
Two Buffers, display refresh much faster than Image transfer

'""gel fra:m1 bqfferA I frame 2, buffer B | frame 3, buffer A l frame 4, buffer B I frame 5, buifer A I frame 6, buffer B |
Transfer PN N AN arh % % Arh 6% w0% o A% e P

Display| frmo, b=8 | fm 0, be8 [im0, beB [frm 1, beA fm1, bsA] fm2, beB | 2, beB | fm2, beB | frm S, bxA | frm3, beA | fmd4, b=B } fm4, b=B | frm 4, b=B | frm 5, b=A { frm 5, b=A
Refresh| 22e® | vouw | soox|noan [asws muw Pruw|vo00|noen |pone|voon | 2epn [soow oo | seee
i il Bt PR PRl R Al % w w

PRl RN R

[00718] An important assumption related to FIG 92 is that the image is received from the
host as a continuous stream of pixels that are transmitted in the same order that the client
uses to read the pixels from the frame buffer to refresh the display (usually upper-left,

reading row by row, to the bottom-right corner of the screen. This is an important detail in

WO 2005/018191 PCT/US2004/026264

136

the cases where the Display Refresh and Image Transfer operations reference the same

frame buffer.

[00719] It is necessary for the display refresh frame rate to be greater than the image transfer
frame rate to avoid displaying partial images. FIG. 93 shows how image fragmentation can
occur with a slow display refresh rate, that is the display refresh is slower than the image

transfer.

Two Buffers, display refresh slower than image transfer

eriA’,l frame2, buffer B | frame’3, buffer A | frame 4, buffer B |. frame 5, buffer A |;s,ffanes;‘*bufferga,
L 20, ATL W% T 25 e e | am o e e A S S K3 K. W

A%

ok

[00720] In an image that contains a combination of computer graphic images and moving
video pictures the video pixel data might occupy a small portion of a media-frame. This
could be significant in situations where the aisplay refresh operation and the image transfer
reference the same frame buffer. These situations are shown by a cross-hatched shading in
FIG. 94, where the pixels read from the buffer to refresh the display might be the pixels
written to the buffer two frames ago, or they may correspond to the frame immediately

being written to the same frame buffer.

Two Buffers, display refresh much faster than image transfer, small video window

frame 5, buffer’A | frame 6, buffer B |
20% 0% % 8% % A% SR W0%

Display| frmo; beB l frm0,b=B

'{ﬁmsml frm4,b£| ma,wlﬁmﬁ frmS,b:AI frm, e
Refresh | i : s m

o aenon. | | sesarssonien

» aa i,

[00721] The use of three frame buffers in the client will resolve the problem of the small

window of contention for access to a frame buffer as shown in FIG. 95.

Three Buffers, display refresh much faster than image transfer, any-size video window

Imagel seame 1, buffer A I frame 2, buffer B l frame 3, bufier C | frame 4, buffer A I frame 5, buffer B I frame 6, buffergc*l
Transfer] @ sw 4o . an a0 A% ewh 4% % A% % % % o sk B 0 AR 8% 8% 2% A e ot

Display| hno,bcclfrmn,bcclfrrno,baclfrm‘l.b:Alfrm‘l,b:A|lrmZ.b:BIfrm?.b:BIfnn!,b:BIfrmS,baclfrms,h:clftm4,b=A|fnn4,b=A|frm4,bd rm's, b=B th,b=B|

Refresh| sxouonss arswnion | sworeneon | oo

[00722] However, there is still a problem if the display refresh rate is less than the media-
frame rate over the MDDI link as shown in FIG.96.

WO 2005/018191 PCT/US2004/026264

137

Three Buffers, display refresh slower than image transfer

[00723] The use of a single buffer for moving video images is somewhat problematic as
shown FIG. 97. With the display refresh faster than the image transfer into the buffer, the
image being refreshed sometimes will show the upper portion of the frame being written
and the lower portion of the image will be the frame previously transferred. With the
display refresh faster than the image transfer (the preferred mode of operation) there will be

more frequent instances of frames showing a similar split image.

One Buffer, display refresh faster than image transfer

;«Ifmaasl frame 4 | s 524 fma 584 frame 51 | a6 &5 frames, | frme6:

% enkarnary s | oo | s | e |arisamion

XVIIL. Delay Value Table o

[00724] The Packet Processing Delay Parameters Packet uses a table-lookup function to
calculate the predicted delay to process certain commands in the client. Values in the table
increase in a logarithmic fashion to provide a very wide dynamic range of delay values. An
exemplary table of delay values useful for implementing embodiments of the invention is

found in Table XX below, with corresponding index values versus delay values.

WO 2005/018191 PCT/US2004/026264
138
Tabel XX (add whole new table)
O—no_delay | 37-1.5ns | 74 - 51ns 111 - 1.8us 148 - 62us 185 -2.2ms 222 -75ms
1 - 46ps 38-1.6ns [75 -56ns 112 - 2.0us 149 - 68us 186 - 2.4ms 223 - 83ms
2-51ps 39-1.8ns | 76-62ns 113 -2.2us 150 - 75us 187 - 2.6ms 224 - 91ms
3 - 56ps 40-2.0ns | 77 - 68ns 114 - 2.4us 151 - 83us 188 - 2.9ms 225 - 100ms
4 - 62ps 41 -22ns | 78 - 75ns 115 - 2.6us 152 - 91us 189 - 3.2ms 226 - 110ms
5 - 68ps 42 -2.4ns | 79 - 83ns 116 - 2.9us 153 - 100us 190 - 3.5ms 227 - 120ms
6 - 75ps 43 -2.6ns | 80-91ns 117 - 3.2us 154 - 110us 191 - 3.8ms 228 - 130ms
7 - 83ps 44 -29ns | 81 - 100ns 118 - 3.5us 155 - 120us 192 - 4.2ms 229 - 150ms
8- 9lps 45-3.2ns | 82-110ns 119 - 3.8us 156 - 130us 193 - 4.6ms 230 - 160ms
9 - 100ps 46 -3.5ns | 83 - 120ns 120 - 4.2us 157 - 150us 194 - 5.1ms 23] - 180ms
10-110ps | 47-3.8ns | 84 - 130ns 121 - 4.6us 158 - 160us 195 - 5.6ms 232 - 200ms
11-120ps | 48 -4.2ns | 85-150ns 122 - 5.1us 159 - 180us 196 - 6.2ms 233 - 220ms
12-130ps | 49-4.6ns | 86 - 160ns 123 - 5.6us 160 - 200us 197 - 6.8ms 234 - 240ms
13 -150ps | 50-5.1ns | 87 - 180ns 124 - 6.2us 161 - 220us 198 - 7.5ms 235 - 260ms
14 -160ps | 51-5.6ns | 88 -200ns 125 - 6.8us 162 - 240us 199 - 8.3ms 236 - 290ms
15-180ps | 52-6.2ns | 89 - 220ns 126 - 7.5us 163 - 260us 200 - 9.1ms 237 - 320ms
16-200ps | 53-6.8ns | 90 - 240ns 127 - 8.3us 164 - 290us 201 - 10ms 238 - 350ms
17-220ps | 54-7.5ns | 91 - 260ns 128 - 9.1us 165 - 320us 202 - 11ms 239 - 380ms
18 -240ps | 55-8.3ns | 92 - 290ns 129 - 10us 166 - 350us 203 - 12ms 240 - 420ms
19-260ps | 56 -9.1ns [93 - 320ns 130 - 11us 167 - 380us 204 - 13ms 241 - 460ms
20-29ps | 57-10ns | 94 - 350ns 131 - 12us 168 - 420us 205 - 15ms 242 - 510ms
21-320ps | 58-1Ins | 95-380ns 132 - 13us 169 - 460us 206 - 16ms 243 - 560ms
22-350ps | 59-12ns | 96 - 420ns 133 - 15us 170 - 510us 207 - 18ms 244 - 620ms
23-380ps | 60-13ns | 97 - 460ns 134 - 16us 171 - 560us 208 - 20ms 245 - 680ms
24-420ps | 61-15ns | 98 - 510ns 135 - 18us 172 - 620us 209 - 22ms 246 - 750ms
25-460ps | 62-16ns | 99 - 560ns 136 - 20us 173 - 680us 210 - 24ms 247 - 830ms
26-510ps | 63-18ns | 100-620ns | 137 - 22us 174 - 750us 211 - 26ms 248 - 910ms
27 -560ps | 64-20ns | 101 -680ns [138 - 24us 175 - 830us 212 - 29ms 249 - 1.0sec
28-620ps | 65-22ns | 102-750ns | 139 - 26us 176 - 910us 213 - 32ms 250 - 1.1sec
29 -680ps | 66-24ns | 103 - 830ns | 140 - 29us 177 - 1.0ms 214 - 35ms 251 - 1.2sec
30-750ps | 67-26ns | 104-910ns | 141 - 32us 178 -1.1ms | 215 - 38ms 252 - 1.3sec
31-830ps | 68-29ns | 105 -1.0us 142 - 35us 179 - 1.2ms 216 - 42ms 253 - 1.5sec
32-910ps | 69-32ns | 106 -1.1us 143 - 38us 180 - 1.3ms 217 - 46ms 254 - 1.6s
33 -1.0ns 70-35ps | 107 - 1.2us 144 - 42us 181 - 1.5ms 218 - 51ms 255 - indefinite
34-1.1ns | 71-38ns | 108-1.3us | 145 - 46us 182 - 1.6ms 219 - 56ms
35-12nps | 72-42ns | 109-1.5us | 146-51lus 183 - 1.8ms 220 - 62ms
36 - 1.3ns 73-46ns | 110 - 1.6us 147 - 56us 184 - 2.0ms 221 - 68ms
[00725] The delay is computed by performing a table lookup using the specified parameter

as an index into the table. This means a delay is equal to PacketProcessingTable(index).
For example: if one of the parameters from the Delay Parameters List Item is an 8-bit value
equal to 134, then the delay is equal to PacketProcessingTable(134) which is 16 usec. The
value 255 indicates that the command completion time cannot be determined by calculation,
and that the host must check the Graphics Busy Flags in the Display Request and Status
Packet or MCCS VCP Control Parameter B7h. |

[00726]

[00727]

[00728]

[00729]

[00730]

WO 2005/018191 PCT/US2004/026264

139

In some cases this delay is multiplied by the height, width, or number of pixels in
the destination image and added to other delays to compute the overall packet processing

delay.

XVIII Multiple Client Support

The current protocol version does not appear to directly support multiple client
devices. However, most packets contain a reserved Client ID field that can be used to
address specific client devices in a system with muitiple clients. Currently, for many
applications this client ID or these client IDs are set to be zero. The sub-frame header
packet also contains a field to indicate whether or not the host supports a multiple client
system. Therefore, there is a manner in which multiple client devices would likely be
connected and addressed in future applications of the MDD interface or protocol to aid
system designers to plan for future compatibility with multiple client hosts and clients.

In systems having multiple clients it is useful for clients to be connected to the host

via a daisy-chain of clients, or using hubs.

XVIII. Addendum
In addition to the formats, structures, and contents discussed above for the various

packets used to implement the architecture and protocol for embodiments of the invention,
more detailed field contents or operations are presented here for some of the packet types.
These are presented here to further clarify their respective use or operations to enable those
skilled in the art to more readily understand and make use of the invention for a variety of
applications. Only a few of the fields not already discussed are discussed further here. In
addition, these fields are presented with exemplary definitions and values in relation to the
embodiments presented above. However, such values are not to be taken as limitations of
the invention, but represent one or more embodiments useful for implementing the interface
and protocol, and not all embodiments need be practiced together or at the same time.
Other values can be used in other embodiments to achieve the desired presentation of data

or data rate transfer results, as will be understood by those skilled in the art.

A. For Video Stream Packets
In one embodiment, the Pixel Data Attributes field (2 byte) has a series of bit values

that are interpreted as follows. Bits 1 and 0 select how the display pixel data is routed. For

WO 2005/018191 PCT/US2004/026264

140

bit values of '11' data is displayed to or for both eyes, for bit values '10', data is routed only
to the left eye, and for bit values '01', data is routed only to the right eye, and for bit values
of '00' the data is routed to an alternate display as may be specified by bits 8 through 11
discussed below.

[00731] Bit 2 indicates whether or not the Pixel Data is presented in an interlace format, with

' a value of '0' meaning the pixel data is in the standard progressive format, and that the row
number (pixel Y coordinate) is incremented by 1 when advancing from one row to the next.
When this bit has a value of '1', the pixel data is in interlace format, and the row number is
incremented by 2 when advancing from one row to the next. Bit 3 indicates that the Pixel
Data is in alternate pixel format. This is similar to the standard interlace mode enabled by
bit 2, but the interlacing is vertical instead of horizontal. When Bit 3 is ‘0’ the Pixel Data is
in the standard progressive format, and the column number (pixel X coordinate) is
incremented by 1 as each successive pixel is received. When Bit 3 is ‘1’ the Pixel Data is
in alternate pixel format, and the column number is incremented by 2 as each pixel is
received.

[00732] Bit 4 indicates whether or not the Pixel data is related to a display or a camera, as
where data is being transferred to or from an internal display for a wireless phone or similar
device or even a portable computer, or such other devices as discussed above, or the data is
being transferred to or from a camera built into or directly coupled to the device. When Bit
4 is ‘0’ the Pixel data is being transferred to or from a display frame buffer. When Bit 4 is
‘1’ Pixel data is being transferred to or from a camera or video device of some type, such
devices being well known in the art.

[00733] Bit 5 is used to indicate when the pixel data contains the next consecutive row of
pixels in the display. This is considered the case when Bit 5 is set equal to ‘1’. When bit 5
is set to ‘1’ then the X Left Edge, Y Top Edge, X Right Edge, Y Bottom Edge, X Start, and
Y Start parameters are not defined and are ignored by the client. The Frame Sync Packet
defines the next row to be the top row of the image.

[00734] Bits 7 and 6 are Display Update Bits that specify a frame buffer where the pixel data
is to be written. There more specific effects are discussed elsewhere. For bit values of ‘01
Pixel data is written to the offline image buffer. For bit values of ‘00’ Pixel data is written
to the image buffer used to refresh the display. For bit values of ‘11’ Pixel data is written to

all image buffers. The bit values or combination of ‘10’ is treated as an invalid value or

WO 2005/018191 PCT/US2004/026264

141

designation and Pixel data is ignored and not written to any of the image buffers. This
value may have use for future applications of the interface.

[00735] Bits 8 through 11 form a 4-bit unsigned integer that specifies an alternate display or
display location where pixel data is to be routed. Bits 0 and 1 are equal to 00 in order for
the display client to interpret bits 8 through 11 as an alternate display number. If bits 0 and
1 are not equal to 00 then bits 8 through 11 are set to zero.

[00736] - Bits 12 through 15 are reserved for future use and are generally set as zero

[00737] The 2-byte X Start and Y Start fields specify the absolute X and Y coordinates of
the point (X Start, Y Start) for the first pixel in the Pixel Data field. The 2-byte X Left
Edge and Y Top Edge fields specify the X coordinate of the left edge and Y coordinate of
the top edge of the screen window filled by the Pixel Data field, while the X Right Edge
and Y Bottom Edge fields specify the X coordinate of the right edge, and the Y coordinate
of the bottom edge of the window being updated.

[00738] The Pixel Count field (2 bytes) specifies the number of pixels in the Pixel Data field
below.

[00739] The Parameter CRC field (2 bytes) contains a CRC of all bytes from the Packet
Length to the Pixel Count. If this CRC fails to check then the entire packet is discarded.

[00740] The Pixel Data field contains the raw video information that is to be displayed, and
which is formatted in the manner described by the Video Data Format Descriptor field. The
data is transmitted one "row" at a time as discussed elsewhere.

[00741] The Pixel Data CRC field (2 bytes) contains a 16-bit CRC of only the Pixel Data. If
a CRC verification of this value fails then the Pixel Data can still be used, but the CRC

error count is incremented.

B. For Audio Stream Packets
[00742] In one embodiment, the Audio Channel ID field (1 byte) uses an 8 bit unsigned
integer value to identify a particular audio channel to which audio data is sent by the client
device. The physical audio channels are specified in or mapped to physical channels byuthis
field as values of 0, 1, 2, 3, 4, 5, 6, or 7 which indicate the left front, right front, left rear,
right rear, front center, sub-woofer, surround left, and surround right channels, respectively.
An audio channel ID value of 254 indicates that the single stream of digital audio samples is
sent to both the left front and right front channels. This simplifies communications for

applications such as where a stereo headset is used for voice communication, productivity

WO 2005/018191 PCT/US2004/026264

142

enhancement apps are used on a PDA, or other applications where a simple User Interface
generates warning tones. Values for the ID field ranging from 8 through 253, and 255 are
currently reserved for use where new designs desire additional designations, as anticipated
by those skilled in the art. ‘.
[00743] The Reserved 1 field (1 byte) is generally reserved for future use, and has all bits in
this field set to zero. One function of this field is to cause all subsequent 2 byte fields to

align to a 16-bit word address and cause 4-byte fields to align to a 32-bit word address.

[00744] The Audio Sample Count field (2 bytes) specifies the number of audio samples in
this packet.
; [00745] The Bits Per Sample and Packing field contains 1 byte that specifies the packing

format of audio data. In one embodiment, the format generally employed is for Bits 4
through O to define the number of bits per PCM audio sample. Bit 5 then specifies whether
or not the Digital Audio Data samples are packed. As mentioned above, FIG. 12 illustrates
the difference between packed and byte-aligned audio samples. A value of '0' for Bit 5
indicates that each PCM audio samg;le in the Digital Audio Data field is byte-aligned with
the interface byte boundary, and a value of '1' indicates that each successive PCM audio
sample is packed up against the previous audio sample. This bit is effective only when the
value defined in bits 4 through 0 (the number of bits per PCM audio sample) is not a
multiple of eight. Bits 7 through 6 are reserved for use where system designs desire
additional designations and are generally set at a value of zero. |

[00746] The Audio Sample Rate field (1 byte) specifies the audio PCM sample rate. The
format employed is for a value of O to indicate a rate of 8,000 samples per second (sps), a
value of 1 indicates 16,000 sps., value of 2 for 24,000 sps, value of 3 for 32,000 sps, value
of 4 for 40,000 sps, value of 5 for 48,000 sps, value of 6 for 11,025 sps, value of 7 for
22,050 sps, and value of 8 for 44,100 sps, respectively, with values of 9 through 255 being
reserved for future use, so they are currently set to zero.

- [00747] The Parameter CRC field (2 bytes) contains a 16-bit CRC of all bytes from the
Packet Length to the Audio Sample Rate. If this CRC fails to check appropriately, then the
entire packet is discarded. The Digital Audio Data field contains the raw audio samples to
be played, and is usually in the form of a linear format as unsigned integers. The Audio
Data CRC field (2 bytes) contain a 16-bit CRC of only the Audio Data. If this CRC fails to

check then the Audio Data can still be used, but the CRC error count is incremented.

WO 2005/018191 PCT/US2004/026264

143

C. For User-Defined Stream Packets
[00748] In one embodiment, the 2-byte Stream ID Number field is used to identify a
particular user defined stream. The contents of the Stream Parameters and Stream Data
fields, are typically defined by the MDDI equipment manufacturer. The 2-byte Stream
Parameter CRC field contains a 16-bit CRC of all bytes of the stream parameters starting
from the Packet Length to the Audio Coding byte. If this CRC fails to check then the entire
packet is discarded. Both the Stream Parameters and Stream Parameter CRC fields may be
discarded if not needed by an end application of the MDD interface, that is, they are
considered optional. The 2-byte Stream Data CRC field contains a CRC of only the Stream
Data. If this CRC fails to check appropriately, then use of the Stream Data is optional,
depending on the requirements of the application. Use of the stream data contingent on the
CRC being good, generally requires that the stream data be buffered until the CRC is

confirmed as being good. The CRC error count is incremented if the CRC does not check.

D. For Color Map Packets

[00749] The 2-byte hClient ID field contains information or values that are reserved for a
Client ID, as used previously. Since this field is generally reserved for future use, the
current value is set to zero, by setting the bits to ‘0’. |

[00750] The 2-byte Color Map Item Count field uses values to specify the total number of 3-
byte color map items that are contained in the Color Map Data field, or the color map table
entries that exist in the Color Map Data in this packet. In this embodiment, the number of
bytes in the Color Map Data is 3 times the Color Map Item Count. The Color Map Item
Count is set equal to zero to send no color map data. If the Color Map Size is zero then a
Color Map Offset value is generally still sent but it is ignored by the display. The Color
Map Offset field (4 bytes) specifies the offset of the Color Map Data in this packet from the
beginning of the color map table in the client device.

[00751] A 2-byte Parameter CRC field contains a CRC of all bytes from the Packet Length

| to the Audio Coding byte. If this CRC fails to check then the entire packet is discarded.

[00752] For the Color Map Data field, the width of each color map location is a specified by
the Color Map Item Size field, where in one embodiment the first bart specifies the
magnitude of blue, the second part specifies the magnitude of green, and the third part
specifies the magnitude of red. The Color Map Size field specifies the number of 3-byte

color map table items that exist in the Color Map Data field. If a single color map cannot fit

WO 2005/018191 PCT/US2004/026264

144

into one Video Data Format and Color Map Packet, then the entire color map may be
specified by sending multiple packets with different Color Map Data and Color Map
Offsets in each packet. The number of bits of blue, green, and red in each color map data
item shall be the same as specified in the Color Map RGB Width field of the Display
Capability Packet.

[00753] A 2-byte Color Map Data CRC field contains a CRC of only the Color Map Data. It
this CRC fails to check then the Color Map Data can still be used but the CRC error count
is incremented.

[00754] Each color map data item is to be transmitted in the order: blue, green, red, with the
least significant bit of each component transmitted first. The individual red, green, and bloe
components .of each color map item shall be packed, but each color map item (the least
significant bit of the blue component) should be byte-aligned. Error! Reference source
not found. (New Z??) shows an example of color map data items with 6 bits of blue, 8 bits
of green, and 7 bits of red. For this example the Color Map Item Size in the Color Map
Packet is equal to 21, and the Color Map RGB Width field of the Display Capability Packet

is equal to 0x0786.

Color Map Data Formatting Example: 6 bits of blue, 8 bits of green, 7 bits of red

[€——MDDI byte m—3€—MDDI byte M —d—MDD! byte T+2—i4—MDD! byte m+3 ——P14—NDDI byle 4 —Pid— MDD byle m+5—3,
gsis j7[oi112]3}4}s e;7 oj1i2i3i4ls si7lof1}2}3] 4 51 a 7 oi1i2i3lalsi{e}7|0l1]2]3i4}5]6} 7 o 11} z a 4 s‘s i7]0!
it |

,Lo T, 2 3 4 5 -
itemnMRed
LI s

'012\3,’45670123456
item n'Green jitem 1 Red -
_.,_r_,__,_,_1_1___,__r_1_,_,._,_

Parameler 0123

CRC 1tem ! B!ue”

unused [y unused

ot

E. For Reverse Link Encapsulation Packets

[00755] The Parameter CRC field (2 bytes) contains a 16-bit CRC of all bytes from the
Packet Length to the Turn-Around Length. If this CRC fails to check then the entire packet
is discarded.

[00756] In one embodiment, the Reverse Link Flags field (1 byte) contains a set of flags to
request information from the display. If a bit (for example, Bit 0) is set to one then the host
requests the specified information from the display using the Display Capability Packet. If
the bit is zero then the host does not need the information from the display. The remaining
bits (here Bits 1 through 7) are reserved for future use and are set to zero. However, more
bits can be used as desired to set flags for the reverse link.

[00757] The Reverse Rate Divisor field (1 byte) specifies the number of MDDI_Stb cycles

that occur in relation to the reverse link data clock. The reverse link data clock is equal to

WO 2005/018191 PCT/US2004/026264

145

the forward link data clock divided by two times the Reverse Rate Divisor. The reverse
link data rate is related to the reverse link data clock and the Interface Type on the reverse
link. For a Type I interface the reverse data rate equals the reverse link data clock, for Type
II, Type I, and Type IV interfaces the reverse data rates equal two times, four times, and
eight times the reverse link data clock, respectively.

[00758] The All Zerol field contains a group of bytes that is set equal to zero in value by
setting the bits at a logic-zero level, and is used to ensure that all MDDI_Data signals are in
the zero state prior to disabling the line drivers during the first Guard Time period, to allow
reflected logic-one levels to dissipate prior to disabling the Host’s line drivers during the
Turn-Around 1 field. In one embodiment, the length of the All Zero 1 field is greater than
or equal to the number of forward link byte transmission times in the round-trip delay of the
cable.

[00759] The Turn-Around 1 Length field (1 byte) specifies the total number of bytes that are
allocated for Turn-Around 1, establishing the first turn-around period. The number of bytes
speéified by the Turn-Around Length parameter are allocated to allow the MDDI_Data line
drivers in the Host to disable before the line drivers in the client are enabled. The host
disable its MDDI_Data line drivers during bit O of Turn-Around 1 and the client enables its
outputs and drives MDDI_Data0 to a logic 0 during the last bit of Turn-Around 1. The
MDDI_Stb signal behaves as though the Turn Around 1 period were all zeros. The
recommended léngth of Turn-Around 1 is the number of bytes required for the MDDI_Data
drivers in a host to have the outputs disabled. This is based on the output disable time
discussed above, the forward link data rate, and the forward link Interface Type selection
being used. A more complete description of the setting of Turn-Around 1 is given above.

[00760] The All Zero 2 field contains a group of bytes that is set equal to zero in value by
setting the bits at a logic-zero level, and is used to ensure that all MDDI_Data signals are in
the zero state to allow reflected logic-one levels to dissipate prior to disabling the host’s line
drivers during the Turn-Around 1 field. In one embodiment, the length of the All Zero 2
field is greater than or equal to the number of forward link byte transmission times in the
round-trip delay of the cable.

[00761] The Turn-Around 2 Length field (1 byte) specifies the total number of bytes that are
allocated for Turn-Around 2, for establishing a second turn-around period. The number of
bytes is specified by the Tum-Around Length parameter are allocated to allow the

MDDI_Data line drivers in the client to disable before the line drivers in the host are

WO 2005/018191 PCT/US2004/026264

146

enabled. The client disables its MDDI_Data line drivers during bit 0 of Turn-Around 2 and
the host enables its outputs and drives MDDI_Data0 to a logic 0 during the last bit of Turn-
Around 2. The MDDI_Stb signal behaves as though the MDDI_Data0 were at a logic-zero
level during the entire Turn Around 2 period. The recommended length of Turn-Around 2
is the number of bytes required for the MDDI_Data drivers in the Display to disable their
outputs plus the round-trip delay. A description of the setting of Turn-Around 2 is given
above.

[00762] The Reverse Data Packets field contains a series of data packets being transferred
from the client to a host. As stated earlier, Filler packets are sent to fill the remaining space
that is not used by other packet types.

[00763] The Driver Re-enable field uses 1 byte that is equal to logic-zero to ensure that all
MDDI_Data signals are re-enabled prior to the Packet Length Field of the next packet.

F. For Display Capability Packets

[00764] In one embodiment, the Protocol Version field uses 2 bytes to specify a protocol
version used by the client. The initial version is set equal to zero, while the Minimum
Protocol Version field uses 2 bytes to specify the minimum protocol version that the client
can employ or interpret. The Display Data Rate Capability field (2 bytes) specifies the
maximum data rate the display can receive on the forward link of the interface, and is
specified in the form of megabits per second (Mbps). The Interface Type Capability field
(1 byte) specifies the interface types that are supported on the forward and reverse links.
This is currently indicated by selecting Bit 0, Bit 1, or Bit 2 to select either a Type-II, Type-
I or Type-IV mode on the forward link, respectively, and Bit 3, Bit 4, or Bit 5 to select
either a Type-II, Type-II, or Type-IV mode on the reverse link, respectively; with Bits 6
and 7 being reserved and set to zero. The Bitmap Width and Height fields (2 bytes) specify
the width and height of the bitmap in pixels.

[00765] The Monochrome Capability field (1 byte) is used to specify the number of bits of
resolution that can be displayed in a monochrome format. If a display cannot use a
monochrome format then this value is set at zero. Bits 7 through 4 are reserved for future
use and are, thus, set as zero. Bits 3 through 0 define the maximum number of bits of
grayscale that can exist for each pixel. These four bits make it possible to specify values of
1 to 15 for each pixel. If the value is zero then monochrome format is not supported by the

display.

WO 2005/018191 PCT/US2004/026264

147

[00766] The Color Map Capability field (3 bytes) specifies the maximum number of table
items that exist in the color map table in the display. If the display cannot use the color map
format then this value is zero.

[00767] The RGB Capability field (2 bytes) specifies the number of bits of resolution that
can be displayed in RGB format. If the display cannot use the RGB format then this value
is equal to zero. The RGB Capability word is composed of three separate unsigned values
where: Bits 3 through 0 define the maximum number of bits of blue, Bits 7 through 4 define
the maximum number of bits of green, and Bits 11 through 8 define the maximum number
of bits of red in each pixel. Currently, Bits 15 through 12 are reserved for future use and
are generally set to zero.

[00768] The Y Cr Cb Capability field (2 bytes) specifies the number of bits of resolution that
can be displayed in Y Cr Cb format. If the display cannot use the Y Cr Cb format then this
value is set equal to zero. The Y Cr Cb Capability word is composed of three separate
unsigned values where: Bits 3 through O define the maximum number of bits in the Cb
sample, Bits 7 through 4 define the maximum number of bits in the Cr sample, Bits 11
through 8 define the maximum number of bits in the Y sample, and Bits 15 through 12 are
currently reserved for future use and are set to zero.

[00769] The Display Feature Capability Indicators field uses 4 bytes that contain a set of
flags that indicate specific features in the display that are supported. A bit set to one
indicates the capability is supported, and a bit set to zero indicates the capability is not
supported. The value for Bit O indicates whether or not Bitmap Block Transfer Packet
(packet type 71) is supported. The value for Bits 1, 2, and 3 indicate whether or not Bitmap
Area Fill Packet (packet type 72), Bitmap Pattern Fill Packet (packet type 73), or
Communication Link Data Channel Packet (packet type 74), respectively, are supported.
The value for Bit 4 indicates whether or not the display has the capability to make one color
transparent, while values for bits Bit 5 and 6 indicate if the display can accept video data or
audio data in packed format, respectively, and the value for Bit 7 indicates if the display can
send a reverse-link video stream from a camera. The value for Bits 11 and 12 indicate
when the client is communicating either with a pointing device and can send and receive
Pointing Device Data Packets, or with a keyboard and can send and receive Keyboard Data
Packf;ts, respectively. Bits 13 through 31 are currently reserved for future use or alternative

designations useful for system designers and are generally set equal to zero.

WO 2005/018191 PCT/US2004/026264

148

[00770] The Display Video Frame Rate Capability field (1 byte) specifies the maximum
video frame update capability of the display in frames per second. A host may choose to
update the image at a slower rate than the value specified in this field.

[00771] The Audio Buffer Depth field (2 bytes) specifies the depth of the elastic buffer in a
Display which is dedicated to each audio stream. |

[00772] The Audio Channel Capability field (2 bytes) contains a group of flags that indicate
which audio channels are supported by the display (client). A bit set to one indicates the
channel is supported, and a bit set to zero indicates that channel is not supported. The Bit
positions are assigned to the different channels, for example Bit positions 0, 1, 2, 3, 4, 5, 6,
and 7 indicate the left front, right front, left rear, right rear, front center, sub-woofer,
surround left, and surround right channels, respectively. Bits 8 through 15 are currently
reserved for future use, and are generally set to zero.

[00773] A 2-byte Audio Sample Rate Capability field, for the forward link, contains a set of
flags to indicate the audio sample rate capability of the client device. Bit positions are
assigned to the different rates accordingly, such as Bits 0, 1, 2, 3, 4, 5, 6, 7, and 8 being
assigned to 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050, and 44,100
samples per second (SPS), respectively, with Bits 9 through 15 being reserved for future or
alternative rate uses, as desired, so they are currently set to '0'. Setting a bit value for one of
these bits to '1' indicates that that particular sample rate is supported, and setting the bit to
'0' indicates that that sample rate is not supported.

[00774] The Minimum Sub-frame Rate field (2 bytes) specifies the minimum sub-frame rate
in frames per second. The minimum sub-frame rate keeps the display status update rate
sufficient to read certain sensors or pointing devices in the display.

[00775] A 2-byte Mic Sample Rate Capability field, for the reverse link, that contains a set
of flags that indicate the audio sample rate capability of a microphone in the client device.
For purposes of the MDD, a client device microphone is configured to minimally support
at least an 8,000 sample per second rate. Bit positions for this field are assigned to the
different rates with bit positions 0, 1, 2, 3, 4, 5, 6, 7, and 8, for example, being used to
represent 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050, and 44,100
samples per second (SPS), respectively, with Bits 9 through 15 being reserved for future or
alternative rate uses, as desired, so they are currently set to '0'. Setting a bit value for one of

these bits to '1' indicates that that particular sample rate is supported, and setting the bit to

WO 2005/018191 PCT/US2004/026264

149

'0" indicates that that sample rate is not supported. If no microphone is connected then each
of the Mic Sample Rate Capability bits are set equal to zero.

[00776] The Content Protection Type field (2 bytes) contains a set of flags that indicate the
type of digital content protection that is supported by the Display. Currently, bit position 0
is used to indicate when DTCP is supported and bit position 1 is used to indicate when
HDCP is supported, with bit positions 2 through 15 being reserved for use with other

protection schemes as desired or available, so they are currently set to zero.

G. For Display Request and Status Packets

[00777] The Reverse Link Request field (3 byte) specifies the number of bytes the display
needs in the reverse link in the next sub-frame to send information to the host.

[00778] The CRC Error Count field (1 byte) indicates how many CRC errors have occurred
since the beginning of the media-frame. The CRC count is reset when a sub-frame header
packet with a Sub-frame Count of zero is sent. If the actual number of CRC errors exceeds
255 then this value generally saturates at 255.

[00779] - The Capability Change field uses 1 byte to indicate a change in the capability of the
display. This could occur if a user connects a peripheral device such as a microphone,
keyboard, or display, or for some other reason. When Bits[7:0] are equal to 0, then the
capability has not changed since the last Display Capability Packet was sent. However,
when Bits[7:0] are equal to 1 to 255, the capability has changed. The Display Capability

Packet is examined to determine the new display characteristics.

H. For Bit Block Transfer Packets
[00780] The Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to
specify the X and Y value of the coordinates of the upper left corner of the window to be
moved. The Window Width and Height fields use 2 bytes each to specify the width and
height of the window to be moved. The Window X Movement and Y Movement fields use
2 bytes each to specify the number of pixels that the window is to be moved horizontally
and vertically, respectively. Typically, these coordinates are configured such that positive
values for X cause the window to be moved to the right, and negative values cause
movement to the left, while positive values for Y cause the window to be moved down, and

negative values cause upward movement.

WO 2005/018191 PCT/US2004/026264

150

L For Bitmap Area Fill Packets

[00781] Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to
specify the X and Y value of the coordinates of the upper left corner of the window to be
filled. The Window Width and Height fields (2 bytes each) specify the width and height of
the window to be filled. The Video Data Format Descriptor field (2 bytes) specifies the
format of the Pixel Area Fill Value. The format is the same as the same field in the Video
Stream Packet. The Pixel Area Fill Value field (4 bytes) contains the pixel value to be
filled into the window specified by the fields discussed above. The format of this pixel is
specified in the Video Data Format Descriptor field.

J. For Bitmap Pattern Fill Packets

[00782] . Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to
specify the X and Y value of the coordinates of the upper left corer of the window to be
filled. The Window Width and Height fields (2 bytes each) specify the width and height of
the window to be filled. The Pattern Width and Pattern Height fields (2 bytes each) specify
the width and height, respectively, of the fill pattern. The 2-byte Video Data Format
Descriptor field specifies the format of the Pixel Area Fill Value. FIG. 11 illustrates how
the Video Data Format Descriptor is coded. The format is the same as the same field in the
Video Stream Packet.

[00783] The Parameter CRC field (2 bytes) contains a CRC of all bytes from the Packet
Length to the Video Format Descriptor. If this CRC fails to check then the entire packet is
discarded. The Pattern Pixel Data field contains raw video information that specifies the fill
pattern in the format specified by the Video Data Format Descriptor. Data is packed into
bytes, and the first pixel of each row must be byte-aligned. The fill pattern data is
transmitted a row at a time. The Pattern Pixel Data CRC field (2 bytes) contains a CRC of
only the Pattern Pixel Data. If this CRC fails to check then the Pattern Pixel Data can still

be used but the CRC error count is incremented.

K. Communication Link Data Channel Packets
[00784] The Parameter CRC field (2 bytes) contain a 16-bit CRC of all bytes from the
Packet Length to the Packet Type. If this CRC fails to check then the entire packet is

discarded.

WO 2005/018191 PCT/US2004/026264

151

[00785] The Communication Link Data field contains the raw data from the communication
channel. This data is simply passed on to the computing device in the display.

[00786] The Communication Link Data CRC field (2 bytes) contains a 16-bit CRC of only
the Communication Link Data. If this CRC fails to check then the Communication Link

Data is still used or useful, but the CRC error count is incremented.

L. For Interface Type Handoff Request Packets
[00787] The Interface Type field (1 byte) specifies the new interface type to use. The value
in this field specifies the interface type in the following manner. If the value in Bit 7 is
equal to '0' the Type handoff request is for the forward link, if it is equal to '1', then the
Type handoff request is for the reverse link. Bits 6 through 3 are reserved for future use,
and are generally set to zero. Bits 2 through 0 are used to define the interface Type to be
used, with a value of 1 meaning a handoff to Type-I mode, value of 2 a handoff to Type-IL
mode, a value of 3 a handoff to Type-IIl mode, and a value of 4 a handoff to Type-IV
mode. The values of '0' and 5 through 7 are reserved for future designation of alternative

modes or combinations of modes.

M. For Interface Type Acknowledgé Packets
[00788] The Interface Type field (1 byte) has a value that confirms the new interface type to
use. The value in this field specifies the interface type in the following manner. If Bit 7 is
equal to '0' the Type handoff request is for the forward link, alternatively, if it is equal to "1’
the Type handoff request is for the reverse link. Bit positions 6 through 3 are currently
reserved for use in designating other handoff types, as desired, and are generally set to zero.
However, bit positions 2 through 0 are used define the interface Type to be used with a
value of '0' indicating a negative acknowledge, or that the requested handoff cannot be
performed, values of '1', 2", '3', and '4' indicating handoff to Type-I, Type-II, Type-III, and
Type-IV modes, respectively. Values of 5 through 7 are reserved for use with alternative

designations of modes, as desired.

N. For Perform Type Handoff Packets
[00789] The 1-byte Interface Type field indicates the new interface type to use. The value

present in this field specifies the interface type by first using the value of Bit 7 to determine

WO 2005/018191 PCT/US2004/026264

152

whether or not the Type handoff is for the forward or reverse links. A value of '0' indicates
the Type handoff request is for the forward link, and a value of '1' the reverse link. Bits 6
through 3 are reserved for future use, and as such are generally set to a value of zero.
However, Bits 2 through 0 are used to define the interface Type to be used, with the values
1, 2, 3, and 4 specifying the use of handoff to Type-I, Type-II, Type-III, and Type-IV
modes, respectively. The use of values 0 and 5 through 7 for these bits is reserved for

future use.

0. For Forward Audio Channel Enable Packets
[00790] The Audio Channel Enable Mask field (1 byte) contains a group of flags that
indicate which audio channels are to be enabled in a client. A bit set to one enables the
corresponding channel, and a bit set to zero disables the corresponding channe] Bits 0
through 5 designate channels 0 through 5 which address left front, right front, left rear, right
rear, front center, and sub-woofer channels, respectively. Bits 6 and 7 are reserved for

future use, and in the mean time are generally set equal to zero.

P. For Reverse Audio Sample Rate Packets

[00791] The Audio Sample Rate field(1 byte) specifies the digital audio sample rate. The
values for this field are assigned to the different rates with values of 0, 1, 2, 3, 4, 5, 6, 7, and
8 being used to designate 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050,
and 44,100 samples per second (SPS), respectively, with values of 9 through 254 being
reserved for use with alternative rates, as desired, so they are currently set to '0". A value of
255 is used to disable the reverse-link audio stream.

[00792] The Sample Format field (1 byte) specifies the format of the digital audio samples.
When Bits[1:0] are equal to '0', the digital audio samples are in linear format, when they are
equal to 1, the digital audio samples are in p-Law format, and when they are equal to 2, the
digital audio samp'les are in A-Law format. Bits[7:2] are reserved for alternate use in

designating audio formats, as desired, and are generally set equal to zero.

Q. For The Digital Content Protection Overhead Packets
[00793] The Content Protection Type field (1 byte) specifies the digital content protection
method that is used. A value of '0' indicates Digital Transmission Content Protection

(DTCP) while a value of 1 indicates High-bandwidth Digital Content Protection System

WO 2005/018191 PCT/US2004/026264

153

(HDCP). The value range of 2 through 255 is not currently specified but is reserved for use
with alternative protection schemes as desired. The Content Protection Overhead Messages
field is a variable length field containing content protection messages sent between the host

and client.

R. For The Transparent Color Enable Packets

[00794] The Transparent Color Enable field (1 byte) specifies when transparent color mode
is enabled or disabled. If Bit 0 is equal to O then transparent color mode is disabled, if it is
equal to 1 then transparent color mode is enabled and the transparent color is specified by
the following two parameters. Bits 1 through 7 of this byte are reserved for future use and
are typically set equal to zero.

[00795]1 The Video Data Format Descriptor field (2 bytes) specifies the format of the Pixel
Area Fill Value. FIG. 11 illustrates how the Video Data Format Descriptor is coded.: The
format is generally the same as the same field in the Video Stream Packet.

[00796] The Pixel Area Fill Value field uses 4 bytes allocated for the pixel value to be filled
into the window specified above. The format of this pixel is specified in the Video Data

Format Descriptor field.

S. ‘For The Round Trip Delay Measurement Packets

[00797] In one embodiment, the Parameter CRC field (2 bytes) contains a 16-bit CRC of all
bytes from the Packet Length to the Packet Type. If this CRC fails to check then the entire
packet is discarded.

[00798] The All Zero field (1 byte) contains zeroes to ensure that all MDDI_Data signals are
in the zero state prior to disabling the line drivers during the first Guard Time period.
[00799] The Guard Time 1 field (8 bytes) is used to allow the MDDI_Data line drivers in the
host to disable before the line drivers in the client (display) are enabled. The host disables
its MDDI_Data line drivers during bit 0 of Guard Time 1 and the Display enables its line

drivers immediately after the last bit of Guard Time 1.

[00800] The Measurement Period field is a 512 byte window used to allow the Display to
respond with a Oxff, Oxff, 0x0 at half the data rate used on the forward link. This rate
corresponds to a Reverse Link Rate Divisor of 1. The Display returns this response
immediately at the beginning of the Measurement Period. This response will be received at

a host at precisely the round trip delay of the link after the beginning of the first bit of the

WO 2005/018191 PCT/US2004/026264

154

Measurement Period at the host. The MDDI _Data line drivers in the Display are disabled
immediately before and immediately after the 0xff, Oxff, 0x00 response from the Display.

[00801] The value in the Guard Time 2 field (8 bytes) allows Client MDDI_Data line drivers
to disable before line drivers in the Host are enabled. Guard Time 2 is always present but is
only required when the round trip delay is at the maximum amount that can be measured in
the Measurement Period. The Client disables its line drivers during bit 0 of Guard Time 2
and the Host enables its line drivers immediately after the last bit of Guard Time 2.

[00802] The Driver Re-enable field (1 byte) is set equal to zero, to ensure that all
MDDI_Data signals are re-enabled prior to the Packet Length Field of the next packet.

T. For The Forward Link Skew Calibration Packets

[00803] In one embodiment, the Parameter CRC field (2 bytes) contains a 16-bit CRC of all
bytes from the Packet Length to the Packet Type. If this CRC fails to check then the entire
packet is discarded.

[00804] The Calibration Data Sequence field contains a 512 byte data sequence that causes
the MDDI_Data signals to toggle at every data period. During the processing of the
Calibration Data Sequence, the MDDI host controller sets all MDDI_Data signals equal to
the strobe signal. The display clock recovery circuit should use only MDDI_Stb rather than
MDDI_Stb Xor MDDI_Data0 to recover the data clock while the Calibration Data
Sequence field is being received by the client Display. Depending on the exact phase of the
MDDI_Stb signal at the beginning of the Calibration Data Sequence field, the Calibration
Data Sequence will generally be one of the following based on the interface Type being

used when this packet is sent:

Type I - 0Oxaa, Oxaa ... or 0x55, 0x55...

Type Il — Oxcc, Oxcc ... or 0x33, 0x33...

Type I — 0xf0, 0xf0 ... or 0x0f, 0xOf ...

Type IV — 0xff, 0x00, 0xff, 0x00 ... or 0x00, Oxff, 0x00, Oxff ...

[00805] An example of the possible MDDI_Data and MDDI_Stb waveforms for both the
Type-I and Type-II Interfaces are shown in FIGS. 62A and 62B, respectively.

WO 2005/018191 PCT/US2004/026264

155

XVIIL. Conclusion

[00806] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example only, and not
limitation. Thus, the breadth and scope of the present invention should not be limited by
any of the above-described ¢xemp1ary embodiments, but should be defined only in

accordance with the following claims and their equivalents.

WO 2005/018191 PCT/US2004/026264

156
CLAIMS
What is claimed is:
1. A digital data interface for transferring digital presentation data at a high rate

between a host device and a client device over a communication path comprising:

a plurality of packet structures linked together to form a communication protocol for
communicating a pre-selected set of digital control and presentation data between a host
and a client over said communication path; and

at least one link controller residing in said host device coupled to said client through
said communications path, being configured to generate, transmit, and receive packets
forming said communications protocol, and to form digital presentation data into one or

more types of data packets.

2. The interface of Claim 1 further comprising said packets grouped together within
media frames that are communicated between said host and client having a pre-defined
fixed length with a pre-determined number of said packets have differing and variable

lengths.

3. The interface of Claim 1 further comprising a Sub-frame Header Packet positioned

at the beginning of transfers of packets from said host.

4. The interface of Claim 1 wherein said link controller is a host link controller and
further comprising at least one client link controller residing in said client device coupled to
said host through said communications path, being configured to generate, transmit, and
receive packets forming said communications protocol, and to form digital presentation data

into one or more types of data packets.

5. The interface of Claim 1 further comprising one or more Video Stream Packets for
video type data, and Audio Stream Packets for audio type data for transferring data from

said host to said client over a forward link for presentation to a client user.

WO 2005/018191 PCT/US2004/026264

157

6. The interface of Claim 2 further comprising:

a plurality of transfer modes, each allowing the transfer of different maximum
numbers of bits of data in parallel over a given time period, with each mode selectable by
negotiation between said host and client link drivers; and

wherein said transfer modes are dynamically adjustable between said modes during

transfer of data.

7. The interface of Claim 1 further comprising a plurality of packets usable to transfer
video information chosen from the group of Color Map, Bit Block Transfer, Bitmap Area

Fill, Bitmap Pattern Fill, and Transparent Color Enable type packets.

8. The interface of Claim 1 further comprising Filler type packets generated by said

host to occupy periods of forward link transmission that do not have data.

0. The interface of Claim 1 further comprising User-Defined Stream type packets for

transferring interface-user defined data.

10. The interface of Claim 1 further comprising a Link Shutdown type packet for
transmission by said host to said client to terminate the transfer of data in either direction

over said communication path.

11. The interface of Claim 1 further comprising means for said client to wake up said

host from a hibernation state.

12. A method of transferring digital data at a high rate between a host device and a
client device over a communication path for presentation to a user, comprising:

generating one or more of a plurality of pre-defined packet structures and linking
them together to form a pre-defined communication protocol;

communicating a pre-selected set of digital control and presentation data between
said host and said client devices over said communication path using said communication

protocol;

WO 2005/018191 PCT/US2004/026264

158

coupling at least one host link controller residing in said host device to said client
device through said communications path, the host link controller being configured to
generate, transmit, and receive packets forming said communications protocol, and to form
digital presentation data into one or more types of data packets; and

transferring data in the form of packets over said communications path using said

link controllers.

13. The method of Claim 12 further comprising grouping said packets together within
media frames for communication between said host and client, the media frames having a
pre-defined fixed length with a pre-determined number of said packets have differing and

variable lengths.

14. The method of Claim 12 further comprising commencing transfer of paékets from

said host with a Sub-frame Header type packet.

15. The method of Claim 12 further comprising transferring information between said

host and client bi-directionally over said communications link.

16. The method of Claim 12 further comprising at least one client link controller
residing in said client device coupled to said host device through said communications path,
being configured to generate, transmit, and receive packets forming said communications

protocol, and to form digital presentation data into one or more types of data packets.

17. The method of Claim 16 wherein said host link controller comprises one or more
differential line drivers; and said client link controller comprises one or more differential

line receivers coupled to said communication path.

18. The method of Claim 12 further comprising requesting display capabilities
information from the client by a host link controller so as to determine what type of data

and data rates said client is capable of accommodating through said interface.

19. The method of Claim 12 further comprising operating a USB data interface by each

of said link controllers as a part of said communication path.

WO 2005/018191 PCT/US2004/026264

159

20. The method of Claim 12 wherein said packets each comprise a packet length field,

one or more packet data fields, and a cyclic redundancy check field.

21. The method of Claim 13 further comprising:

negotiating between said host and client link drivers the use of one of a plurality of
transfer modes in each direction, each allowing the transfer of different maximum numbers
of bits of data in parallel over a given time period; and

dynamically adjusting between said transfer modes during transfer of data.

22. The method of Claim 12 further comprising using one or more of a plurality of
packets to transfer video information chosen from the group of Color Map, Bit Block

Transfer, Bitmap Area Fill, Bitmap Pattern Fill, and Transparent Color Enable type packets.

23. The method of Claim 12 further comprising generating Filler type packets by said

host to occupy periods of forward link transmission that do not have data.

24. The method of Claim 12 further comprising terminating the transfer of data in either
direction over said communication path using a Link Shutdown type packet for

transmission by said host to said client.

25. The method of Claim 12 further comprising waking up said host from a hibernation

state by communication with said client.

26. Apparatus for transferring digital data at a high rate between a host device and a
client device over a communication path for presentation to a user, comprising:

at least one host link controller disposed in said host device for generating one or
more of a plurality of pre-defined packet structures and linking them together to form a pre-
defined communication protocol, and for communicating a pre-selected set of digital
control and presentation data between said host and said client devices over said
communication path using said communication protocol;

at least one client controller disposed in said client device and coupled to said host

link controller through said communications path; and

WO 2005/018191 PCT/US2004/026264

160

each link controller being configured to generate, transmit, and receive packets
forming said communications protocol, and to form digital presentation data into one or

more types of data packets.
27. The apparatus of Claim 26 wherein said host controller comprises a state machine.

28. The apparatus of Claim 26 wherein said host controller comprises a general purpose

signal processor.

29. The apparatus of Claim 26 further comprising a Sub-frame Header type packet at

the commencing of transfer of packets from said host.

30. - The apparatus of Claim 26 wherein said link controllers are configured to transfer
information between said host and client devices bi-directionally over said communications

Jink. '

31. The apparatus of Claim 30 wherein said host controller comprises one or more
differential line drivers; and said client receiver comprises one or more differential line

receivers coupled to said communication path.

32. The apparatus of Claim 26 further comprising Video Stream type packets for video
type data, and Audio Stream type packets for audio type when transferring data from said

host to said client for presentation to a client user.

33. The apparatus of Claim 26 further comprising one or more Reverse Link

Encapsulation type packets for transferring data from said client to said host.

34. The apparatus of Claim 33 further comprising at least one Display Capability type
packet for communicating display or presentation capabilities from a client link controller

to said host link controller.

35. The apparatus of Claim 26 wherein said packets each comprise a packet length field,

one or more packet data fields, and a cyclic redundancy check field.

WO 2005/018191 PCT/US2004/026264

161

36. The apparatus of Claim 26 wherein said host and client link controllers are
configured to use of one of a plurality of transfer modes in each direction, each allowing the
transfer of different maximum numbers of bits of data in paralle] over a given time period;
and being capable of being dynamically adjusting between said transfer modes during

transfer of data.

37. The apparatus of Claim 26 further comprising one or more of a plurality of packets
for transferring video information chosen from the group of Color Map, Bit Block Transfer,

Bitmap Area Fill, Bitmap Pattern Fill, and Transparent Color Enable type packets.

38. The apparatus of Claim 26 further comprising Filler type packets for transfer by said

host to occupy periods of forward link transmission that do not have data.

39. The apparatus of Claim 26 wherein said host controller is configured to transmit a
Link Shutdown type packet to said client means for terminating the transfer of data in either

direction over said communication path.

40. For use in an electronic system for transferring digital data at a high rate between a
host device and a client device over a communication path for presentation to a user, a
computer program product comprising:

a computer usable medium having computer readable program code means
embodied in said medium for causing an application program to execute on the computer
system, said computer readable program code means comprising:

a computer readable first program code means for causing the computer system to
generate one or more of a plurality of pre-defined packet structures and link them together
to form a pre-defined communication protocol;

a computer readable second program code means for causing the computer system
to communicate a pre-selected set of digital control and presentation data between said host
and said client devices over said communication path using said communication protocol;

a computer readable third program code means for causing the computer system to
couple at least one host link controller disposed in said host device to at least one client

controller disposed in said client device through said communications path, the link

WO 2005/018191 PCT/US2004/026264

162

controllers being configured to generate, transmit, and receive packets forming said
communications protocol, and to form digital presentation data into one or more types of
data packets; and

a computer readable fourth program code means for causing the computer system to
transfer data in the form of packets over said communications path using said link

controllers.

41. . Apparatus for transferring digital data at a high rate between a host device and a
client device over a communication path for presentation to a user, comprising:

means for generating one or more of a plurality of pre-defined packet structures and
linking them together to form a pre-defined communication protocol,

means for communicating a pre-selected set of digital control and presentation data
between said host and said client devices over said communication path using said
communication protocol; |

means for coupling at least two link controllers together through said
communications path, one in each of said host and client and each being configured to
‘ generate, transmit, and receive packets forming said communications protocol, and to form
digital presentation data into one or more types of data packets; and

means for transferring data in the form of packets over said communications path

using said link controllers.

42. The apparatus of Claim 41 further comprising means for commencing transfer of

packets from said host with a Sub-frame Header type packet.

43. The apparatus of Claim 41 further comprising means for transferring information

between said host and client bi-directionally over said communications link.

44. The apparatus of Claim 41 further comprising means for requesting display
capabilities information from the client by a host link controller so as to determine what

type of data and data rates said client is capable of accommodating through said interface.

WO 2005/018191 PCT/US2004/026264

163

45. The apparatus of Claim 44 further comprising means for communicating display or
presentation capabilities from a client link controller to said host link controller using at

least one Display Capability type packet.

46. The apparatus of Claim 42 further comprising:

means for negotiating between said host and client link drivers the use of one of a
plurality of transfer modes in each direction, each allowing the transfer of different
maximum numbers of bits of data in parallel over a given time period; and ‘

means for dynamically adjusting between said transfer modes during transfer of

data.

47. The apparatus of Claim 41 further comprising means for using one or more of a
plurality of packets to transfer video information chosen from the group of Color Map, Bit
Block Transfer, Bitmap Area Fill, Bitmap Pattern Fill, and Transparent Color Enable type
packets.

48. A processor for use in an electronic system for transferring digital data at a high rate
between a host device and a client device over a communication path, the processor
configured to generate one or more of a plurality of pre-defined packet structures and link
them together to form a pre-defined communication protocol; to form digital presentation
data into one or more types of data packets; communicate a pre-selected set of digital
control and presentation data between said host and said client devices over said
communication path using said communication protocol; and transfer data in the form of

packets over said communications path.

49. A state machine for use in obtaining synchronization in an electronic system
transferring digital data at a high rate between a host device and a client device over a
communication path, the state machine configured to have at least one Async Frames State
synchronization state, at least two Acquiring Sync States synchronization states, and at least

three In-Sync States synchronization states.

50. A state machine for use in obtaining synchronization in an electronic system

transferring digital data at a high rate between a host device and a client device over a

WO 2005/018191 PCT/US2004/026264

164

communication path, the state machine configured to have at least one Acquiring Sync

States synchronization states, and at least two In-Sync States synchronization states.

51. The state machine of Claim 50, wherein one condition for shifting between an
Acquiring Sync State and a first In-Sync State is detecting the presence of a synchronization

pattern in the communication link.

52. The state machine of Claim 51, wherein a second condition for shifting between an
Acquiring Sync State and a first In-Sync State is detecting the presence of a sub-frame
header packet and good CRC value at a frame boundary.

53. The state machine of Claim 50, wherein one condition for shifting between a first
In-Sync State and an Acquiring Sync State is detecting the presence of no synchronization

pattern or a bad CRC value at a sub-frame boundary.

54. The state machine of Claim 50, wherein one condition for shifting between a first
In-Sync State and a second In-Sync State is detecting the presence of no synchronization

pattern or a bad CRC value at a sub-frame boundary.

55. The state machine of Claim 50, wherein one condition for shifting between an
Acquiring Sync State and a first In-Sync State is detecting the presence of a synchronization

paitern in the communication link is detecting the presence of a good packet CRC value.

56. The state machine of Claim 50, wherein a condition for shifting between a first In-
Sync State and an Acquiring Sync State is detecting the presence of a bad CRC value in a
packet.

57. A state machine for use in obtaining synchronization in an electronic system
transferring digital data at a high rate between a host device and a client device over a
communication path, the state machine configured to have at least one Acquiring Sync
States synchronization states, and at least two In-Sync States synchronization states,
wherein a condition for shifting directly between a first In-Sync State and an Acquiring

Sync State is detecting the presence of a bad CRC value in any of a series of packets.

WO 2005/018191 PCT/US2004/026264

165

58. The state machine of Claim 57, wherein a condition for shifting directly between a
first In-Sync State and an Acquiring Sync State is detecting when the unique word does not

'

occur at a time it is expected to arrive.

59. The method of Claim 26 further comprising waking up a communication link by
driving a data line to a high state for at least 10 clock cycles and starting to transmit a strobe

signal as if the data line was zero, by said host.

60. The method of Claim 59 further comprising driving the data line low for 50 clock
cycles by said host while continuing to transmit a strobe signal after the host has driven the

data line high for 150 clock cycles.

61. The method of Claim 59 further comprising beginning fo transmit the first sub-

frame header packet by said host.

62. The method of Claim 60 further comprising counting at least 150 continuous clock
cycles of the data line being high, followed by at least 50 continuous clock cycles of the

data line being low, by said client.

63. The method of Claim 62 further comprising searching for the unique word of the

first sub-frame by said client.

64. The method of Claim 60 further comprising stopping driving the data line high by

said client after the client counts 70 continuous clock cycles of the data being high

65. The method of Claim 64 further comprising counting another 80 continuous clock
cycles of the data line being high to reach the 150 clock cycles of the data line being high
by said client, and looking for 50 clock cycles of the data line being low, and looking for

the unique word.

WO 2005/018191 PCT/US2004/026264

166

66. The method of Claim 26 further comprising counting the number of clock cycles
occurring until a one is sampled by said host, by sampling the data line on both the rising

and falling edges during the reverse timing packet.

67. A method of transferring error codes in a communication system in which digital
data is transferred in the form of packets having CRC values between a host device and a
client device over a communication path comprising detecting the presence of an error,
selecting a pre-determined etror code corresponding to said error, and over-writing the CRC

value with said code.

68. The method of Claim 67 further comprising overwriting said CRC value in

successive ones of packets being transferred until said error is corrected.

69. A method of transferring digital data at a high rate between a host device and a
client device over a communication path for presentation to a user, comprising;:

generating one or more of a plurality of pre-defined packet structures each including
at least one CRCi field, and linking them together to form a pre-defined communication
protocol;

communicating a pre-selected set of digital control and presentation data between
said host and said client devices over said communication path using said communication
protocol;

coupling at least one host link controller residing in said host device to said client
device through said communications path, the host link controller being configured to
generate, transmit, and receive packets forming said communications protocol, and to form
digital presentation data into one or more types of data packets;

transferring data in the form of packets over said communications path using said
link controllers;

detecting the presence of an error for the communication link;

selecting a pre-determined error code corresponding to said error; and over-writing

the CRC value with said code.

70. The method of Claim 69 further comprising overwriting said CRC value in

successive ones of packets being transferred until said error is corrected.

WO 2005/018191 PCT/US2004/026264

2
\ QS

=
S
14~

/
[R
{ /
‘ ,
I r
¢ /
., <
, i
/ O,
—t
fry
e,
4]
=
)
[a W
>
O
O
A
O
=
[aW)
<
3

1/84

and 1B

-0

WO 2005/018191 PCT/US2004/026264

130

F G C

WO 2005/018191 PCT/US2004/026264

4o

Fie 1D

3/84

PCT/US2004/026264

WO 2005/018191

€ Old

13%0vd 13XM0vd
QHYMHOS | aBVYMYO4

13598vd NOILLYINSdVONT

aNnos
aNnoydns

AV1dSI
NOILO3rOdd

AY1dSId

L3INOVd 13MOvd
QHYMHO4d | advMHuO4d

13xovd | 13xovd
3S43A3Y | 3SHU3AIY
¢ ‘old

NOILO3YI0 3SH3A3Y)

W3IAOW
SSITIIEIM

INOH4313L
SSA3HIM

"3LNdWOO
318v1idOd

QHN\\

1SOH

—=27
y0¢ .\

e

NOILO3HIa AHVYMEOS

90¢ V\

\

20¢

4/84

PCT/US2004/026264

WO 2005/018191

oy
(Aluo ri*qdAL)
el

|-asn 1aan

~

N +4SN 1aan
J
pPuo IAAn
AN D
- :
md 1aan
7017 -qI1S” 1AanW
Jajjonuoed +)S 1aan
Muim
|adiN .
-owied 1A
T roweq 1aan

N

“gsn”1aaw

1SN 1Aan

Ly -

0%
(Ajuo N-odA1)
YSOH

\

“Pun 1Adn

1SOH
g 1Aan
-qS” IAan 0¥
+Q1S” IAanW 18}jo5u0D
MUl 1IAan
- >
-oeleg QAW
— >
+0Bled QAN

c0¢

5/84

PCT/US2004/026264

WO 2005/018191

18}j04u0D
MUl [ddin

pun 1aan
wd 1aan

| e
puo 1dan

md JAan

WSTAAN__—> <[S 1IN

+qiS” 1A

+qisTIdan

-Leeq 1AW [00 A[-edAL < | -L®d 1AaW

+L21e@ 1AAN

+LeRd 1AAn

-gered 1AAN U0 Al-0dAL <[-9%ed 1QaNW

+omed [AAN

-geied” 1AW uo AJ-2dAL

+seied 1AW

3

+peied IAAN

-geied IAAN 179 111 sod

+gered 1AW

><_|
-peied QAN 100 AJ-0dAL t< | -b®ed 1aN

Aeldsig

_¢ONK

+0ered QAN

<
><]
>
v{\ +0e1ed 1AANW

+9zied 1AANW

-geied IAAN

+gered [AAW

Y

+pered JAan

Y

[-€eied 1AW

+gered IAAW

“zeied 1AAW

+zeied IAAN

“1eied 1AW

+1eed 1AAW

\.ﬂﬁ@;ﬁoi

Ja]joJjuoD
Ul Iddin

}SOH

‘ _NON\

6/84

PCT/US2004/026264

WO 2005/018191

ARSIE

o"0 selAg eieg adA L 18%oed | yibua iexoed
_ 9 Dl
(swel) OBPIA BUO 0S|e)
< awlelj-eIpaiN >
L-U BWeld-gr— | sWel-en< 0 sweld~gn,

o<u

A

swe)}-qng

Y

s}exoBd PUBWIWOY PUB ‘snielS ‘08pIA ‘© any/

-

o4

slojowelied
19pESH BWel-qnsg

PIOM adAL
anbiun 19xoed

yibuen
19308d

1908 Jopes swel-qns

Y

7/84

PCT/US2004/026264

WO 2005/018191

6 ©Old
saikq 7 $934q (g - pBueT 19xoed) 914q | s914q ¢
AnoncoEEooo,_ 0= q18ua]
LS 0I3Z [[B) S91AQ I2[[[adA 1 19308 19398
8 "Bld
339£e500%0
T I I B A IR I R I I R
______hj:___ Pl b
| o I l | 111 L1]
_________'______'___________
.0 0 S A4 £ a , 4 d
)T el = \\\\ 2 S
$914q 7 motﬁ,%, $914q 7 $914q 7 $914q v, soihqY, 24q™ [seKkq g
uno) uno)d UOISID A p8ua] QgesoX0 = | SSATXO = mauey -
OdO owey-BIPajA | swrey-qns [0001014 swrey-qng | piom snbrup) | 2dA [, 19%0ed 19308d

- 8/84

WO 2005/018191 PCT/US2004/026264
Video Stream Packet
Packet Packet Type . Video Data Format| Pixel Data . Y Bottom
Length =16 bCllelnt D Descrptor Attributes | ¢ Left Edge | Y Top Edge [X Right Edge Edge
2 bytes 2 bytes 2 bytes 2 bytes 2 byte 2 bytes - 2 bytes 2 bytes 2 bytes
. Parameter . Pixel Data
X Start Y Start Pixel Count CRC Pixel Data CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 26 bytes 2 bytes
FIG. 10

Video Data Format Desciptor - Monochrome

0]1]0}0

P

notused =0

number of bits
per pixel

15 14 13

12

11

Video Data Format Desciptor - Color Using Color Map

001

P

not used =0

number of bits per pixel

15 14 13

12

11

6 5

Video Data Format Desciptor - Color, Raw RGB

ol 1 olp number of bits of | number of bits of | number of bits of
red per pixel green per pixel blue per pixel:
15 14 13 12 M 8 7 4 3 0

Video Data Format Desciptor - Color Component Video, Y Cb Cr

number of bits of | number of bits of | number of bits of

011 11P . . .
Y per pixel Cb per pixel Cr per pixe!
15 14 13 12 11 8 7 4 3 0
Video Data Format Desciptor - Bayer
1 0] 0] P |notused=0] Pixel Order Pixel number .Of bits
Pattern per pixel
15 14 13 12 N 9 8 6 5 4 3 0
FIG. 11

9/84

WO 2005/018191
PCT/US2004/026264

Byte-Aligned RGB Pixel {not packed), P =0

MDD! byte 1 ——3}¢—=MDD! byte n+1 | &—MDD! byte n+2 —pré— MDD! byte n+3 ~—pi€— MDDI byte n+4 —pie—MDDI byle n+5——ﬂ
o;ﬂa;s;a;s‘:s'g oh‘:z!a 4151617 01 2.3.4.5.6.7 o‘:152:3§4‘;5§e§7 0!1'.2':3':4!5‘:6':7 011 2.3.4.5.5.7
| i P | I | P RSN ! R |

H H i
i i

11

unused unused

lg———MDDI byte n MDDI byte n+1 4——MDDI byte n+2 ~—3}—MDD! byte n+3 —pi€— MDD byte n+4 |g—— MDD} byla n+s——)-
0 1;2.3|4.5‘s.7 0.112.3.4.5.«;.7 ol1 z.a.a‘sle. 031‘.2.3.4.5.6.7 i 031‘2.3.4.5.5.7
} H !

)

|)
1]
) 1

Byte-Aligned Y Cr Cb Pixel (not packed), P =0
|g-~—MDD! byte n—-—)\d—MDDI byte n+1 ——pr—— MDD byte n+2 l¢~—MDDI byte n+3 MDDI hyle n+4 MDD! byte n+5—)I
i8 12} \

Ha |
P i

o§1‘=2‘=3:.4‘=5" 7 02152333435 617 o=1:2=3.4 5.3.7 oi11213 4,5.3.7 o.1.z,a.4.5.a 7loi1 2}3}4L5 s.
) I3 1 1 I3 4 13 1) 1 1 1]] 1 1 |'>\1'v

101 2 3 4 5.6}
Pixel 3 Y*' |
I s R R A L M ™ 3 T

0723456
Pixel 1 Y
T

IR

Packed Y Cr Cb Pixel Data, P =1

€——MDDI byle n—pl&—MOD! byte n+1 -—-H{-—MDDI byte n+2 (—-MDDI byte n+3: MDDI byle n+4 MDDI byte n+5

o‘51§2,3.4.5.s 7 o;t;z':apzis 617 121314 5.6.7 011213 4.5!6.7 oitiz 3.4.5.6.7 0.1 }
| [AR i P [

o 1 TS 1%
Pixel 2 Y

T Lo

e

7

TO0 1 2 3 4 5 6
Pixel 1 Y
T T

i

0123456
‘Pixel3 Y
T T

Byte-Aligned Color Mapped (Palette) or Monochrome Pixel (not packed), P = 0

l——MDD! byte n——p1€—MDDI byte n+1 —><—— MDD byte n+2-——)-<——MDDl byte 43 —id— MDDI byte n+4~—p€—MDDI byte n+5
ogﬂiz,‘a 4.5‘:627 oinzm 4.5.6.7 o':1.|z=3 4.5.6.7 ol1i2}s 4’:535':7 o:1:2=3 4.5.6.7 op:z.'s 4.5.6.7
1 1 i 1l]] 1] 1 1 1 1 1l 1 1 1] 1 1 1] l \ 1] 1]

i
1za smlo1aa sEdo1zs m°123 sc*‘10123 swq1za
un . - unu . unu: . unu: . unu: o unusad
Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6
-

|||n.--|.|;||;-||||v- ¢y - - T L L

Packed Color Mapped (Palette) or Monochrome Pixel Data, P =1

MDD} byte n—)(——MDDI byle n+t——pl€—~MDD! byte n+2-——><——MDDI byte n-)3—->'<-—M
. {oliiz2i8 4.5-6.7 ol1izslalsislzioliizis 4isisl7i0i11213 4.5.6.7 o}1}
[!:!t:::ll.‘.‘.!l: [
012301230,1230123912301230123012301 3012301230123
pixel 1.| Pixel 2 | Pixel 3 | Pixel 4 pixel 5-| Pixel 6 | Pixel 7 pixel 8 | Pixel 9 | Pixel 10 Pixel 11 | Pixel 12
T i EuaE. T T T

R |k||||1|ll|||llv ™% + F & & 0 1 0ot

DI byte n+4—pr€—MDDI byte n+s-—)l
E” 4.5|6:7 o=1=2:a 4.5.6.7
1 1] 1

TG, (2

10/84

PCT/US2004/026264

WO 2005/018191

9L 'Old
salkqz salq (1 - wibueT jevoed) wu\m.@,_w - sohay msEN sakqz saka z seikaz
T T P e e I e el
ja)0ed dep 10j0D
SL'©ld
$8JAq 2 s9lAg 2 salAq g 91Ag | s9)AQ 2
odO €9 0}
OHD siajaweled Jequinp 7 yibuan
eyeqd Bl Weslis G = 8dA -
weens lajoweled wesalls | Qjweans Jos(08d 19M08d
el 'oOld
selAq g wmtﬁ_,r_ - yibua 1exoed selkq g 81hq |
o4O odo ojey ojdwes |,
eleQ olpny EIEQ OIPNY [BYPIC lojawrled opny)
21Aq | $914q 2 o1Aq | SoUha . s9¥4q 2
Bupoed pue unoy sjdwes alt jeuueyn |° NN. = adA] yibuen
"M aidweg l1ad sug opny oipny 19)40Bd 19M0Bd
a \ ar FIW.I.U&.

11/84

PCT/US2004/026264

WO 2005/018191

olpny

m m_aEmw 063<

y1 Dl

N m_aemm o_§<

L m_aEmm o_n:< 0

a|dweg olpny

eizitio Ommmwﬁ olcipigizi,! oo:wwwﬁ @ sivieiz|iio ormmwwwhomm leiziyl oorm 8lL. Be vieiziio

1 '
3

Ligigipigizitio

Nomvmmro

2 m_aEmw o:u3<

[l
H |

Ligigivy mamn_."o

L

Ligigivigizitio

+—G+U 8JAQ |gQIN—+—P+U 81AQ |QQIN——E+U 93 [QQIN——2+U 81AQ |QaN—

m_QEmw o_ns<

Numwmuv gizgiti o

sloigivigizitio

< [+U 8JAQ |aQIN——1U 8IAQ |daIN—>

se|dwes olpny WOd paxord

0

m_aEmm o_n:<

. v
’ 1

1 i
i i
1 1
i 1
'
)

o_amm

.
.
. . . _
_ t ! H

.

'

Il
)

1

H .
H

mmmvmmro

.
t]]
'
!

ormw

H

. 1 .
! ['

N©m¢mmvo

t
[}
'
1
1
.
H
!

mnmm r.

.

ﬁo.m.v eizitio

m@fwmm L0
sigigip "m_m;mo

G+ 814G |QQN—H—+U 81Aq |aQIN—

pesnbin;

olLiig

N@ sipigizitio

\Lmnm_ pigiziti o

«—g+U 93 |QQN—+—2+U 814q |aaN—

“Umwzcs

Nwm m"N"_LO

Nmmvmmro

— | +U 93 |QQN—«—U 8)Aq |gaiN—>

sejdwes oipny INDd (pexoed jou) paublly-a1Ag

12/84

WO 2005/018191 PCT/US2004/026264

Reverse Link Encapsulation Packet

Lpa cket Lenglhl Pac!;eé;’ype I hClient 1D , Revcfe]rse Link] Reverse Rate ITum—ArouruH Tum-Around 2] Parameter

lags Divisor Length Length CRC
2bytes 2 bytes 2bytes 1 byte 1byte 1byte 1 byte 2 bytes
reverse data Driver
l All Zero 1 | Tum-Around 1 I packels I All Zero 2 I Tum-Around 2 I Re-enable]
16 bytes X byles (Packet_Length - x - y - 43) bytes 16 bytes y bytes 1byte

Display Capability Packet

Packet Packet cClient ID Protocol Min Protocol Data Rate Interface Type Number of
Length Type =66 Version Version Capability Capability Alt Displays
2 byles 2 byles 2 bytes 2 bytes 2 bytes 2byles 1 byte 1 byte
N " " N Color Map Color Map . | Monochrome
Reserved 1 | Bitmap Width | Bitmap Height Size RGB Width RGB Capability Capability Reserved 2
2 bytes 2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 1 byte 1 byte
YCrCb Alpha-Cursor Reserved 3 Display Feature| Max Video Min Video | Min Sub-frame | Audio Buffer
Capability Image Planes Capability Frame Rate Frame Rate rate Depth

2 bytes 2 bytes 2 bytes 4 bytes 1 byte 1byte 2 bytes 2 bytes

Audio Channel | Audio Sample | Audio Sample | Mic Sample Mic Sample | Keyboard Data |Pointing Device Content

Capability |Rate Capability] Resolution Resolution |Rate Capability Format Data Format [Protection Type
2bytes 2 bytes 1 byte 1 byte © 2byles 1 byte 1 byte 2 bytes
Mfr Product Serial Week of Year of
Name Code Reserved 4 Number Mfr Mfr CRC
2 bytes 2 bytes 2 bytes 4 bytes 1 byte 1 byte 2 bytes

e (1)

13/84

PCT/US2004/026264

WO 2005/018191

8L Ol
selkq g SolAq 2 S91AQ 2 se1Aq ¢ $81AQ 2 alhg | selAq 2 .
adA | uoposiold Aungede) - ajel Anjigede sy Auigeded uideq .
oH9 usjuo) ajey oidweg ol | swel-gng uiy | aidwes olpny | |suuByd oIpny | I8ing oipny
)
M 014q | seMhq saihq 2 selhq g salAq € alAq | seihq g
Aviiqeded Aunqeded Aungeded Ayngeded Angeded | g0 deung e
Rl ajey awel4 |einmesd Aeidsig anio A Aunqeded g9y dewojoD 9WOIYIOUON
]
se1kq g 8iiq | seihq g selihq 2 sa1ka g 81iq | selAq 2
1
—- _
Aupqeded Aljgeded UOISIBA UOISIBA 99 = adA) ubua
Sy UIPIM dewlig adA] eoepalU| o1eY Bleq |000104d UIN |000}0id 19x0ed 19%0Ed N

14/84

PCT/US2004/026264

WO 2005/018191

0c Dlid.
seihg g salhq (€ - yibusTia0Rd) oMq | seihq g
OHD ereq 9o1Aaq Bunuiog - sdf m%mxom , | weuetexoed
ol '©ld
so14q 2 saMiq (¢ - yibua1exoed) aq | salkg g
OHO Bleq pieogAe] oA Jeppey | WBUSTISHOR

15/84

PCT/US2004/026264

WO 2005/018191

gc 'Dld
seliq 2 seiig g seiiq g seiiq g se1Aq 2 sa1hq g Se1Aq 2 8lAg | se1Aq 2
JUSWBAOW | JUSWBAON 1biaH UIPIM SNjBA A 8NjeA X 12 =adA)L yibua
€0 A MOPUIA | X MOPUIAA MOPUIA MOPUIAA yo Jaddn | ye seddn 19M0ed 19M08d
¢d ‘Old
selAq g 9}4Aq | 9lAq | s9lAq 2 alAq | so14q 2
abueyn unoy 1senbey 0L = yibuan
o0 Ajpgeden 1013 OO | yur] esiensy | edA 19oed 19%08d
L 'Old
sejAq g 81Aq | selAd g
ol-1e) 69 = adAL 19%0Bd | UibuaT 18X0ed

16/84

PCT/US2004/026264

WO 2005/018191

¢ 'Ol

seihq g selAq 61 - yibus seihq g sa1hq g seihq 2 selhq 2
"o "o Joyduosaq UIPIM)
218Q [9Xid ejeq |oxid ulened sepwerey | 1ewiod eeq Wbl uisled weney [
selAg 2 solAq 2. soliq 2 selig g 914 | 891Aq 2
UISIEET UIPIM anjeA A anjeA X €2=20dAL | .57 18508
e MOPUIAA MOPUIM yeseddn | ueseddn 193084 HIbUeTT 19
vc 'Old
SO1AQ 2 salAq v SolAQ 2 selkq g S9JAQ 2 selig g $91AQ 2 Mg | selig 2
‘ aneA i l0yduosaq wbleH UIPIM anfen A anjeA X gL = uibusr
"0 ealy |aXid 1BWoH Bleqg MOPUIA MOPUIA Yo Jaddn Yo Jeddn [edA) 1eMoed| 18MOoed

17/84

PCT/US2004/026264

WO 2005/018191

8¢ ‘Did
Se)Aq g alAq | 31Aq | sekq 2
_ yibuaT
040 adA| soepsjul . | 9/ = adAL 18¥4oed Jo3iEg
LS '©l4
seiiq g 81AQ | 8lAg L S81Aq 2
_ . yibuaT
OHO a8dA | soepoU| G/ = adA] 19voed S
9¢ '©ld
saiq N so1Aq G - yibus) selhg g olAq | seiq g
040 eleQ odo vL= ybua

BlE@ ‘WWOD | YU UoReoIuNWIWO)

lsjawelied adA] 19%o8d

19M08d

18/84

PCT/US2004/026264

WO 2005/018191

LE "Old
seihq g olAg L 9lAq | seiq g
ayey sjdweg ~ 6/ = odAL “yibuan
OH0 olpny 19508 1808
0c 9l
seihq g 8l4q | 91Aq | selAg 2
%Sew ejqeus 8. = adA) ybuen
oHo JBULBYD OIpNY 1308 1308 d
6¢ 9I4
selkq g 8lAq | o1Aq | selAq 2
OHD adA) eoepsy| /2 = adA] 1ox0ed yibue 10¥oed

19/84

PCT/US2004/026264

WO 2005/018191

e "'Old
 oMq | sk 8 sahq zls seifq 8
slqeus-oy Z auwlll pieng pousd juslleinses|y S| L ewil pieng) (&
SEYNIg| i m
/
(gL SeMq 2 oua | seihq
AN o4O c8 BueT 19308
> oIz v leypweled = adA] 19%08ed LpbueT 193408d
ge 'old
UselAq g selAq ¢ solkq 2 alAq | 8lAq | S91AQ 2
d lo0yduoseg 8|qeus 10j0D 18 = yjbuer
odo Sn[eA [9Xid jusledsuell yewod eyed Jussedsuel] adA1 19%0ed 19Moed
¢t Old
SOIAQ T selhq v - Yibua 1exoed 81kg 1 91Aq | seiiq 2
sabessa odAL 08 = adAL y1busn
OHO peelISA() UON0Sl0Id UBIUOD Uo1108101d usuo)d 19M08ed 19%08d

20/84

PCT/US2004/026264

WO 2005/018191

ST =
$0SE
selAq 8 saihq glLs mm&m 8 alAq | selAq 2
! bp) D) \) }
H 4 i T(1..019 adA
(10xj08d 1x8U) | 7 su] piEND | Emﬂ | L owi] pieno ! =<N E%&%ma Exom_.a
yibueT 1ex0ed ! “ 1501 o _ _
Aeidsig m
)P bP) ! bn w
< CC gousnbas AejeQ "
0X0 ‘Bx0 ‘Wxo eAeidsia»
selAq 8 selkqzig OVISOH | saikgg @kal sakaz
(19310ed 1x8U) i) m 5 T,y o "0 adA}
i “ . _ e oyoe

¢
polad JuswaInsesiy

20se

0 soH 16 pemeln

_r eleq o1ebHaibby

|IO
Aejdsiq wouj ey

—i

21/84

lno
1SOH Wol} ejeq

-

PCT/US2004/026264

WO 2005/018191

9¢ Ol
‘ s |
DHO UMM Bled 1AW XL—A MONTDOHD 81eIausn)
0
e : eleqT|QQINBUIPUSS
Lolm%.u? S ~YD " elojeg EIRATIAAN XL
o A . 3 B X
" Z086—l_ 809 909E [xnui ° @2 I0aNd
~AL MON~OHO 084D
1013 TOHO —) ,.
- $09¢ ﬁ' %OAHT\.\I 20%¢
iy vistalaay == S = |
| _
[
3 7 7 7 T ! |
| Y] o] Y Y H
_ rwlml@im_J — zi Pl el [v PO s “
| |
_ _
B Tt laaie ks ala I
_[ymlm{mlmlmlmlmlorl:l |
| € zose |
| A

e e et e e —m ——— ——— — e mmma e e e o= T

22/84

PCT/US2004/026264

WO 2005/018191

dLe Ol

siejaweled geesooxo = HX0 = yibuan

oo lapesaH swel}-gng piom anbiun | adA] 18)oed 19)0ed [

L

_II 0

J r
:.l 0

: 3

V.€ 'Old
0
slejsWeled ggesooxo = HXxQ = yibuan
) lapesH awel-gns plom anbjun ma\.cr 19%%8d 10M0ed .
0
L
0
_ siajsweled qcesooxo = YX0 = yibua

lopesH swel-ans plom enbiun | adAL 1ex0ed 19398d A

| L
0

L
0

I |

10137OHD
BleQ”|QQW Buipueg

BleQ IQAN xd

MONOHD o1Bidudn

MONTOHO 9840

Hmwomlcm.dmu

OHO UM BIeQ T IQaW XL
eleq” |gQiN Buipues
QYO elojeg el IQAW X1
MON DY 8lelausn

MON"OHO *284d

18594 UBK)

23/84

PCT/US2004/026264

WO 2005/018191

A0 S8jeAljoe

_— pue |aAg|
BEA 018z 2160]

PIEMIO} }Sil}
SOALIP IS0y

19X40ed

Jopean swely ¢ 098N 05—

< | 0°'0g »«—088N)/ ———>»<—005N 66 61—

6¢ Old
: 0lez 0160)
aouepadu
yeisal Ueisal yuj| -ybiy Jijel]
il suibeq ysoy suibaq 1soy mm>:u.~mos plemio) jse|
19)08d

& ©G

AID S8ieAljoe

@O ©

PUE |9A8)|
Oijel] 0laz 0160]
plemio] sy SOALIP }SOY
1ox08g sesn __ |
sepeey owesd € oo T

8€ 'Ol
1senbai suasse-ap Agidsip ﬁm:omh
‘lens] suo BiBo} e BulAlp Mwn_m
Aq 8dusnbas dnue)s o a.mn
3Null Upm spuodsal 1soy |asip
s8sn > <oz 08sh
oet €0 .

UMOPINUS 3Ur]

00

|

&
&

018z 0160|

aouepoduwl

-ybiy aijjeny
SOALIP 1SOY piemio} ise|
19Xoed
’ UMOPINUS YUIT |

OO

O © OO

WO 2005/018191 PCT/US2004/026264

S
o 3
< o)
/ <
% /
-
o
o
o
<
© @)
L
o
b mad
N b ad
Q
O
‘*\
P [
~— O v O (@]

DATA
STB
CLK

25/84

PCT/US2004/026264

WO 2005/018191

0zl 00t
A
\ 5 ~ \ -~
LY
2 /%2010 IndinO AR _ 34) —CLlYy
0E LY O— -q1IsTIaan q
4
110 9| geiy O d
, +q1sTIaan
q NtamlelalN q 5001 1ndU]
10 d o a el 1ndy|
: d [ceLy +oereq” |aan //
(0:1)ereq indinQ gzl ol oereq”|d YOLY

801Y
c0 Nv

26/84

WO 2005/018191

PCT/US2004/026264
4206
——————————————— - r—"“’"’_“"—"“———‘——"—]
: HOST 4 | DISPLAY 4204 |
I inside Flost " 42168 | |
¥ 42&)_\00ntroller chip 1 MDDI Stb+| 4230 :
|
:ii—‘b R .|
| : temn ' MDDI Stb—' 1
I : ' ' O !
l 1
h Enable 1 4216Db
; a212 1 R y—d2i6c g 4502 ‘
I' H-D i Ay lMDDl Data+, W 4232 :
:: Data : l I H-D_Data |
l: ' Rigm IMDDI_Data- | Riem |
I —TW i C !
1 : [~ 4216d | l
i : | :4236b l
I D-H_Data ! , , :
t
:: : | | l
| 4214 ; | | |
|h o oo mmemae | : l |
| Rhibernate | : :
4 l
| 4218 |
I < Phiberate a : : : II
l
| 4218b ' ‘ l
I + I ! |
’| 4220 - Vhibernate : : :
| | | |
I] I

27/84

PCT/US2004/026264

WO 2005/018191

gy ‘ld
: m—0
e T _gsors we
~+ aqisTiaar

1senbal 8oi1Ales —o Aejdsia

soAlp Aeldsip wouy

(souepaduwi-ybiy) (souepaduwi-ybiy) -1 e Wu

pajgesip 18Alp ——— B0IAIDS}— pajgesip JoAlp &

. Jle . »1109}9p-1S0U}
«MO|-}B]Sal) ybiy-peisal) 109)18P-150]} > o 10K
108d |_5asn og— 1NoNI0 SBelq _ wouy
lepeo} sweld duwi-ybiy wol - eiled
gis sojeAljoe }senbal spesse-op Aejdsip Momwmmwoﬂ_mmz__cv Hmow,_ 19M08d
oyjes pue [9A3] ‘|oA8] BUO 0160} € BulALp Ag 8ousnbes . . uMopINYsS
piemio}isily oiez 2160 dnyels yul| yim spuodal 1soy qul
SOALP }SOY

PCT/US2004/026264

WO 2005/018191

. Kepa Sy "BDlid
« o|qesig ¥
| 19ALIQ 1SOH |
] ; —0
' i olez 4D 1SOH WOy}
| L gy | USHURIV eA0NS g seey erea Idan
| punoly unj __ —
10 ’
L ewl] piens
vy Old
Y / (271=X)
\ Xered 1adw
< xvﬂu > Almxgu N xDxEH s onu
X oere@”|Qan
‘ UUJ
\ QIS 1Qan
pshy , ssh_ L soh___,|

29/84

PCT/US2004/026264

WO 2005/018191

- YAANIIE
- \ /
\
A
‘_w.DwH < hw.DmH . R pw-DwH
oY ‘Oid
! Aela '
- o|qeumy -
_ ' JOALIQ 1SOH !
(19xj01d X8U) _/_T
i noJy uin
yibue 1exoed o1qEUS-6Y] “ g pu Lo< L
1enia } zewl piend

qQiIs-1adan

ejeq |AAN

—0 1SOH WoJ}
eleq” |QAN
—1

30/84

WO 2005/018191 PCT/US2004/026264

tpd-sf

/L
w 4
A q—
3 L
A S~
T
8
© 2
Dl ml
&) a
a) a
= =

31/84

WO 2005/018191 PCT/US2004/026264

, 4900
ASYNC FRAMES '
cond 3 (from -
any state) -
7~ - g
P 4906 AQUIRING-
—>_cond 6 SYNC STATES
cond 3~
cond 4 - - found -
~
cond 5 o?e sync cond 1 - _
rame -~ IN-SYNC
-7 STATES
cond
o cond 1
no sync
(fall back -
to Type-l) -
4902 _ -~
P ~
cond 4 - d 4908
(from any
state) -~ - one sync cond 2
e cond 2 error

'/ ~

4912 4910

cond 2

cond 1 = Sub-frame header packet & good CRC at frame boundary,
Frame Length > 0
cond 2 = no sync pattern or bad CRC at frame boundary
cond 3 = found sync pattern, Frame Length =0
cond 4 = received link shutdown packet
cond 5 = found sync pattern, Frame Length > 0
cond 6 = frame header packet & good CRC, Frame Length >0

FIG. 49

32/84

PCT/US2004/026264

WO 2005/018191

T T T e M e e e e e e e T T T A e e e e e

}soH ™oy eleg

ce ol
L— spinig - ¢
s|qewwelbold

oosu -
02 \q ezl

J0SING oosu
sy g'c

9sioAay

AV1dSid

o8su

oasu
08

{ J0SINIG 1

] sjey AQDMQWV [

! es1anaY SR “

| o8su azi/eul bv 0 ,

| . ! v %0010 |

I :] 2e ol =~ U |

_ %3 Jepna N0 hv 0 asienay |

! P ajqewweibold |

!

ao eleq~Aeldsig “

!

_

%0010 !

I

“sT1aan D 9 induj

xll eleqd |

| - O DA HDQC_]

| +AQiS 1AW “
!

_ oasu “

[.

| gl I

! !

[|

| |

| 1SOH |
\

33/84

PCT/US2004/026264

WO 2005/018191

LG "Old

9 ¢ v ¢ ¢ |

4

I
1
§
1
1

| -
)

AV13d didL ANNOH

1
1
I
!
]

aold3ad LINIW3dNsSVYan

LINNOD AVI2A

—0
1SOH 3AISNI X000
V1ivad MNIT QEVYMAHO4

—1

—0
LSOH LV

F g.1sS 1aan

—0
1SOH 1V

v.iva 1aan
—1

34/84

PCT/US2004/026264

WO 2005/018191

|

P

0

188084

0

snelg

0

0 1

g 'ld

seuwl} aseuy} je
pojdwes ejeq 8sianey

\ An

>

LT

/ pelqesia
1Al 1SOH

by

puw jsenbay yui ese

Aoy JO

‘plel} UiBue 19%08d O BIAG J8ddn ‘L0X0

sjexoed

yUul 8sIensy

ceeed . PIRY

i | PUNOIY i

uing

= %E
IOl i pley o"0
olez IIv <« Jsjoweied »

jo elq S

1SOH opisul.

pleleito)
}uiT eslonsy

1SOH Wo4)
eqoiS™ IdAN

1SOH WO}
eled 1aan

35/84

WO 2005/018191

PCT/US2004/026264

Reverse Rate Divisol

10

200 300 400
Forward Link Bit Rate per Data Pair (Mbps)

—A—2m

FIG. 53

36/84

WO 2005/018191 PCT/US2004/026264

START

Wait/Hibernate/
Off

Connected
?

Client
Requests Service by:
Display Service Request And
Status Packet OR
Display Service Request Packet
(Hibernation) through
Reverse Link
Encapsulation

Packet
?

5406

Host
Requests
Client

5408 \ YES

Client Sends
Host receives]
Display Capability Packet

5410~ /\ 511

Host/Client Round Trip
Negotiate Service Delay
Mode/Type Measurement

FIG. 544

37/84

WO 2005/018191 PCT/US2004/026264

/‘5411

Host Sends:
Sub-Frame Header Packet

; 5414

Host Sends:
Video Stream and/or Prepare
Audio Stream Packets «—— Data For

e — — — — — Packets
Filler Packets As Needed

+ 5416

Send Color Map; Bit Block Transfer;
Bit Area Fill; and Bit Pattern Fill
Packets As Desired

Y

Transfer Keyboard 5418
and 4 '
Pointing Device Packets

{, /5420

Interface Type Handoff Request and
Interface Type Acknowledge; And
Perform Type Handoff
Packets

5422

NO Host or

Client Done
?

Send Link
Shutdown
Packet

FIG. 548

STOP
38/84

PCT/US2004/026264

WO 2005/018191

Gg 'oOld

e o mae e A e g M A e T v G

—

|
! |
h “ c0cvy |
| sreussqy - Ocev "
! + !
! obeio)S |
IIIIIIIIIII - - ! |
nnnnnnnnnnnn ! “ %ch_/m, A J0558001gf |, |
A% : | \ [elousn !
yESy _ " S $05S |
m I ereusaqly |
| _ d _
| _) |
> ! ! pL2y |
eleq H-d “ ” !
_ [
- | _ eled H- !

ebelols . | “ ed Hd 20GS Lo,

s|qeus | ! I

! l _ 0
AKKJ_.\%QI_DD_\,_ “&K,K, . m

- mHmDIQ-IM/_ ,\/\/\/” | ‘ eleq a-H I.I.WY_
ﬂ - sulyoeN
ele ! : i
o, cecy oy [PHEQ AN e m&v% olelS |a—l—

[eleusn) ! _ _
_ ety EEDE] _
| _
i ! I
5055 | \T | -aisTI0aW T\/,\/»\,» A\V\f = i
Qs p “ [
M/_ | +AISTIAAN | s _M !
oezy | | oLey “
| _ |
o] | e e e e e e o o

PCT/US2004/026264

WO 2005/018191

9G "©OId -

se1hq Z1g seuia g oMd | sevae
YD £8 = ybuen
gouenbeg eyeq uoyeiqied lo1oWweled adA] 19xoed 190ed

40/84

PCT/US2004/026264

WO 2005/018191

2048
P 908 —
Z /30010 Indino v24S 0126 A _A—2ks
ocis—1| 7 -qiSTIaan < .
TS
98.5 +qISTIAanW
82.5 q -0elRQTIAAW 30010 ndu|
o alGrea (L reea O d 0erEeq ndu|
. qeeLs— ©eELS ~ 7745 +oeleq 1aan .MWWB N— 0.5
(0:1)oeie@ INdINO
44X4 HOXXH HADYXY IJNgvo HAHAXL 44X1L
suLg=Hi Xew sugo Xew sugi XBew su £'¢ Xew suU Q0L Xew su 0’2 Xxew sug'i IR ><|_mo
SU G0 = NS} uwsu {0 dlsuol dhy su 2 dhysu /. dhysu ol dAysu o't
su $'g = TV.LOL sd 00¢€ sd 00¥ sd 009 sd 00¢ sd ool ———-— MIS

WO 2005/018191 PCT/US2004/026264

| -
MDDI_Data0
0—
MDDl Stb '~
(ideal) o
cLocKk
(ideal) o
MDDI_Stb '~
(early) o
cLock '~ u
(early) — A
MDDI Stb '~ —
(late)
cLock T
(late) . |

FIG. 58

42/84

PCT/US2004/026264

69 Old

43/84

WO 2005/018191

0£65 — N)
O a4
8265) B 80685 p
-iejeg QAW
o d o d EEIEY
AO” : _‘muMD uDQHDO mu&xm Nmmm o+ _.mngl_OO._Z //VOmm
20/S 9048 ~
2 /30010 indin
JEELTe) 0 0Ls A -
084S ~ |_-oisTiaan < \
O O a IQW\
+QISTIQAW
82.S _ 4
-0eleg |QanW 3¥00}9) Induj
O ° da oereq 1ndu|
(0:1)oB1EQ INAINO +0R1eQT1AaN Ngosg ~— P0LS
VXY HOXXH HAOHXY 378V0 "AHAXL d4X1
su i*0=Hi Xew su 20 Xew sug'| XeWw su g'g XBeW suU Q'0t Xew su Q'¢g XBeWw su ¢'1 e — ’
sugo=Ns! uiw su 10 dhysu ot dhysupe dArsu 2L dAysu o'l dAysu gy AV13d
su bz ="vLI0L sd pog sd oov sd 009 sd 0og sd 001 — e — = MIMS

WO 2005/018191 PCT/US2004/026264

n n+l n+2 n+3 n+d n+5 Tomb

MDDI_Data0

MDDl Stb
(ideal) o

CLOCK -

(ideal) o

Delayed ‘ o »h a2 3 N n{s nis
MDDI_DataX

MDDI_DataX '~
(early)

h+1 N+2 n+3 4 N+5 n+6

0—

1
x::gl_DataX n " n+d ma 4 g 6

0—

FIG. 60A

t—
o— \
1

L | |

MDDI_Stb
(early)

CLOCK
(early)

Delayed . - 2 3 s ey g
MDDI_DataX _

MDDI_DataX '~
(early)

h+1 n+2 h+3 n+4 h+5 n+6

O

—
l(\?(?e?illYDatax n n+1 2 3 n+4 5 n+6

0—

FIG. 606

MDD}_Stb
(late)

O

=
o L L L

Delayed . . et 2 ~3 et s
MDDI_DataX _

1—
I\{ID Di_DataX n el 2 n+3 n+4 n+5 n+6
(ideal) o

MDDI_DataX '~ i] d
(late) ’ ™ s - ™ = "
o

FIG. 60C

44/84

PCT/US2004/026264

WO 2005/018191

VAN

19 "Old

Aeidsig m | eseo _ — ﬁ —_—
upou ! 8lIM UeiQ pue plelys _ o | | mrmmo | _

- u o > S wmoe|lg 8 i g 8 |-1eled IQaw
-1ereq |Gan _ NUM UHM ¥ _ > | | > _.\. o
+1ered |gan eNUM L] g _ a _
+0eied |AAW enig S 4 | | © S [oeead iaay

N i 7yl -asTiaay
-GiS 1AW TS o< o< > e imioRg) A
+QIST 1QaN useln ¢ > | | €] *HsIaan
pay Uim¥oelg g 4 " _ vr __m _

Mg JAanW ped 1| ” 1 a8 L: md 1aan
a|qe)d —— —_—
- M

>N_Qm_ﬁ_ HBdTPAISIL 10j08UU0D Aeldsi(i0308UU0) 1SOH HWOT_

=+
*
S~
W,
-+

WO 2005/018191

Type-l Data Example

f:s:;;: : Packet Type = 0x83 : Parameter CRC = 0x3dd0 :
i 1
MDDI_Data0 H | I I U :
=]
2bytes 1 byte 2 bytes :
—_ | .
MDDI_Stb ' : : H ﬂ :
(one phase) _ : , !
[] 1 '

Packet '

Length 1 Packet Type = 0x83 Parameter CRC = 0x8dd0

[

PCT/US2004/026264

Packet Length
{next packet)

'
512 bytes i 2bytes

UYL

'
1
- cket Length
MDDI_Data0 H ‘ I l l l l I I l l l I | I | I l r<| Pa
o]] {next packet)

2 bytes 1 byte 2 bytes
MDDI_Stb ™] ' [
(opposite phase) :

MODI_Stb behaves as it would with all zero
data during Calibration Data, no MDD!_Stb
transition because CRC MSB is one

FIG. 62A

Type-ll Data Example

Packet ,Packet Type, \
Length =515, =083 |Pz\rameuarCRC Mddo

oo | [T TUL LU
woo” [[UL

2 bytes) 1 byte 2 bytes 512 bytes {2048 data bit pairs
e, L | RWIHIHllll
(one phase) R

1
Packet ,Packel Type, s
Lengih = 5151 = 0x83 Parametar CRC = 0x9dd0

MDDI_Datat :-—I _l P [—U_‘_

{next packet)

!
2 bytes

]__l

] ' '
t ! '
"~ l : Packet Length
] acket Len
MDDI_Data0 —| [| | | | l o o)
Ooam
. \ 1 —
2 bytes ibyte 2 bytes 1 512 bytes {2048 data bit pairs) 1 2byles
1 I
MDDI_Stb' !
(opposite phase) !
' —
0
MODI_Stb behaves as it would with all zero 1 the LSB of the next
data during Calibration Data, MDDI_Stb Packet Lgnmh on
changes state because CRC next most MODI_Data0 is a one then
signiticant bit on MODI_Data0 is zero MDDI_Stb toggles

F1Ges 628

1
'
Packet Length
(next packet)
1

]
512 bytes | 2bytes

ML

1\
if the LS8 of the next

Packet Length is a one
then MDDI_Stb toggles

Packet Length

It the LSB ol the next
Packet Length on

MDD!_Data0 is a one then

MDDI_Stb toggles

Packet Length
(next packet)

WO 2005/018191

PCT/US2004/026264
6300
4906 AQUIRING-
SYNC STATES
found -
cond 64 one sync cond 61 e -
frame IN-SYNC

STATES

cond 62

no sync cond 61

(fall back
to Type-l)

cond 63
(from any
state) .
.-~ cond 62
~

cond 61 4908

one sync
error

4912 4910

cond 62

cond 61 = sub-frame header packet & good CRC at sub-frame boundary
cond 62 = no sync pattern or bad CRC at sub-frame boundary

cond 63 = received link shutdown packet

cond 64 = found sync pattern

cond 65 = Unique word incorrect

FIG. 63

47/84

WO 2005/018191

Rise/Fall Reverse Rate
Divisor=4

PCT/US2004/026264

FallRise Reverse Rate
Divisor =4

Rise/Fall Reverse Rate
Divisor=2

Divisor=2

Fall/Rise Reverse Rate l

Rise/Fal] Reverse Rate
Divisor=1

FallRise cverse Rate
Divisor=1

Some Number of Clock :
Cycles Since Last Bit of l ‘ ‘ i lv
Guard Time 1

48/84

]

PCT/US2004/026264

WO 2005/018191

od0

odo

piey o4O ul
epoY Jo4ig 18ieg

epoo Jolie 0} puodsay

o"O

odo

2poo/M BnfeA
OHQ PeoldAD

Joli3 10818

49/84

WO 2005/018191

/6602

ERROR DETECTOR

l 6604

ERROR CODE
GENERATOR

l r6606

CRC VALUE
COMPARATOR

———

PCT/US2004/026264

6600

/6608

CODE COMPLIMENT
GENERATOR

/6610

ERROR CODE
SELECTOR

g

i /6612

DATA/FRAMES <€——

ERROR CODE
CRC
OVERWRITER

<—— DATA/FRAMES

FIG. 66

50/84

WO 2005/018191 PCT/US2004/026264

/6702

DETECT ERROR

l 6704
SELECT ERROR CODE

l 6706

CHECK CURRENT
CRC VALUE

6708 /671 2

GENERATE
ERROR CODE COMPLIVEENT
VALUE OF ERROR CODE
?
NO
/671 0 f671 4
SELECT SELECT
ERROR CODE COMPLIMENT
AS DESIRED CODE AS DESIRED CODE
f6716
OVER-WRITE CRC
———p1 WITH SELECTED |e——
ERROR CODE

FIG. 67A

51/84

WO 2005/018191 PCT/US2004/026264

6722
MONITOR CRC FOR
ERROR CODES
6724
EXTRACT
ERROR CODE
6726 6728
EXTRACTED VES GENERATE ERROR
CODE A CODE FROM
COMPLIMENT COMPLIMENT
NO
6730
,.| DETECT ERROR
FROM CODE

FIG. 67B

52/84

PCT/US2004/026264

WO 2005/018191

[9A9] 0182-0160]

- SOAUDISOY sesnd qis ¥9 o 089 'Ol

T T TN, sz i é__________________________ il s 1aaw

oljen BUIALP i pue ejep oljel)
pJemio} isiy sdojs eno ¥ / se|qesip pIemio) isel
1Ped | Sl Mg o Isoy i) 1908d
19peaH B S— . (e > umopinys | oere@ 1aaw
awel-qng mo%wzq o mmwm_w:a uojjewaqiy Ul
© ® 0 \00@ @O
[oAS] 0162 ybly oBle@ 1AQN SeAUp .

) 5160] SeAUP 1S0Y Hesal xc__ suibeq IS0y gesu 00t X sesind Qi 9 d89 Old
R 5 ﬂVIv Il [l #s1aan
Emw_%%n WmE > A QIS pue eep

I) / i / e ommvE , »/ Selgqesipisoy | ; 1508] B
1epesH | sesind og ,] S < > umopinys | oeled 1aay
awel-qng wm%m_wza wm%._\.:a Y uolijeusaqiH Mui @
© ® ® @@ \ @ @ @
oeleq” |[dgN Buiaup sdols 1useljo usy) ybiy oered 1AQIN SeAlp
‘loAs] 8uo-0160] ® BulAup Ag spuodsal Jsoy ‘Uelsal jul suibaq usio
[oA9] 018z
o \w_mo_ SOALIP 1SOY soesind Q1S $9 . ‘ - V89 ‘HI4
L =g ey
el > @Smo |QdIN SAUP JOU S80p jusld QIS pus erep” dljjeny
piemio] 1silj sasind qiS 0G| o} oBled 1aan SejqBsIp 150y piemio] 1se|
19)oed P A UHM uelsal julj suibeq jsoy J 18)oed _
JopesH [‘Soend oo Lo ¥ <> > umopinys | gered 1aaiN
swel-qng sosjnd L/ uoneuieqgiH AU
0s!t

® @

®@ OO

WO 2005/018191 PCT/US2004/026264
Request VCP Feature Packet
Packet Packet Type . MCCS
Length =128 hClientID 1 yop Code CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
/‘
Fi~ (5 C‘

54/84

WO 2005/018191

VCP Feature Reply Packet

PCT/US2004/026264

Packet Packet Type N MCCS Reply Sequence] Number of .
Length =129 cClient [D Version Number Features in List VCP Feature Reply List CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 12) bytes 2 bytes

—|&. 0

55/84

WO 2005/018191

VCP Feature Reply List ltem

PCT/US2004/026264

MCCS Maximum Present
VCP Code Result Code Value Value
2 bytes 2 bytes 4 bytes 4 bytes
—
Flos-, 71

WO 2005/018191

PCT/US2004/026264

Set VCP Feature Packet
Packet Packet Type . MCCS Number of .
Length =130 hClient ID VCP Code Values in List Control Value List CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 10) bytes 2 bytes
F 17 T

WO 2005/018191 PCT/US2004/026264
Request Valid Parameter Packet
Packet Packet Type . MCCS
Length = 131 hClientlD 1 yop Code CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
—
6. 1y

58/84

WO 2005/018191 PCT/US2004/026264

Valid Parameter Reply Packet

Packet Packet Type . MCCS Response |Reply Sequence] Number of .
| Length =132 cClient ID VCP Code Code Number Values in List VCP Parameler Reply List CRC

2 bytes 2bytes 2byles 2byles 2 byles 2bytes 2 bytes {Packet_Length - 14) byles 2bytes

Fire. 14

59/84

WO 2005/018191

Alpha-Cursor Image Capability Packet

PCT/US2004/026264

Packet Packet Type Client ID Alpha-Cursor | Alpha-Cursor | Alpha-Cursor
Length =133 Identifier | Bitmap Width [Bitmap Heigh{
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
RGB Monochrome Y CrCb [Transparency N
Capabilty | Capabiity | RV 1 | capabiity | Map Res. [caPability B'tsl CRC
2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes

wsd . 15

WO 2005/018191 PCT/US2004/026264
Alpha-Cursor Transparency Map Packet
Packet Packet Type hClient ID Alpha-Cursor | Transparency | Transparency
Length =134 Identifier Map X Start Map Y Start

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Transparency Parameter Transparency
Map Resolution Reserved 1 CRC Transparency Map Data Map Data CRC

1 byte 1 byte 2 bytes Packet Length - 16 bytes 2 bytes

WO 2005/018191 PCT/US2004/026264
Alpha-Cursor Image Offset Packet
Packet Packet Type . Alpha-Cursor|Alpha-Cursor
Length =135 | NCHentD 1" oset | Y Offset CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

=16, 17

62/84

WO 2005/018191 PCT/US2004/026264
Alpha-Cursor Video Stream Packet
Packet Packet Type " Video Data Format] Pixel Data : Y Bottom
Length =17 bClient ID Descriptor Attributes X Left Edge | Y Top Edge |X Right Edge Edge
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
. Parameter . Pixel Data
X Start Y Start Pixel Count CRC Pixel Data CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 26 bytes 2 bytes
— (®)
—1G. 18

63/84

WO 2005/018191 PCT/US2004/026264
Scaled Video Stream Capability Packet

Packet Packet Type Client ID Max Number| Source Max | Source Max

Length =143 of Streams X Size Y Size

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
RGB Monochrome Y CrCb R

Capability | Capability Reserved 1 Capability Capability Bits] Reserved 2 CRC

2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes

WO 2005/018191 PCT/US2004/026264

Scaled Video Stream Setup Packet

Packet Packet Type - Video Data Format] Pixel Data
Length =135 | nClentiD | Stream D ["¥5, 2™ nttributes

2 bytes 2 bytes 2 bytes 2bytes 2 bytes 2 bytes

X Left Edge | Y Top Edge [X Right Edge| Y 2% Iy jmage SizelY Image size] cRC

Edge
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Z o
FiG. 80

65/84

WO 2005/018191 PCT/US2004/026264
Scaled Video Stream Acknowledgement Packet
Packet .] Packet Type .
Length =137 cClientID | StreamID | Ack Code CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
~ Q
F1G&. a0

WO 2005/018191 PCT/US2004/026264
Scaled Video Stream Packet
Packet Packet Type . Parameter Pixel . Pixel Data
Length =18 hClientID | StreamID CRC Count Pixel Data CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 12 bytes 2 bytes

~IG. 8K

67/84

WO 2005/018191 PCT/US2004/026264
Request Specific Status Packet
Packet Packet Type . Status
Length =138 hClient [D Packet ID CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

&, B

68/84

WO 2005/018191 PCT/US2004/026264

Valid Status Reply List Packet

Packet Packet Type . Number of . .
Length =139 cClient ID Values in List Valid Parameter Reply List CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes

WO 2005/018191

Packet Processing Delay Parameters Packet

PCT/US2004/026264

Packet Packet Type . Number of .
Length = 140 cClient 1D List ltems Delay Parameters List CRC
2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes

2 bytes

FlG. 85

70/84

WO 2005/018191 PCT/US2004/026264
Personal Display Capability Packet
Packet | Packet Type . Sub-Pixel . Horizontal Vertical Visual Axis
Length =141 cClient ID Layout Pixel Shape Field of View | Field of View| Crossing
2 bytes 2 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 1 byte
Lft/Rt. Image Maximum Optical Minimum Maximum | Points of Field Curvature
Overlap See Through Brightness | Capability IPD IPD List (25 2-byte values) CRC.
1 byte 1 byte 1 byte 2 bytes 1 byte 1 byte 50 bytes 2 bytes

Fie. S

71/84

WO 2005/018191 PCT/US2004/026264

Display Error Report Packet

Packet Packet Type . Number of .
Length = 142 cClient ID List ltems Error Code List CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes

=16, 87

72/84

WO 2005/018191 PCT/US2004/026264
Display Identification Packet
Packet Packet cClient ID Week of Year of Length of Length of Length of
Length Type = 144 Mfr Mfr Mir Name | Product Name | Serial Number
2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Manufacturer Name String Product Name String Serial Number String CRC
Length of Mfr Name bytes Length of Mfr Name bytes Length of Mfr Name bytes 2 bytes

. 88

WO 2005/018191 PCT/US2004/026264
Alternate Display Capability Packet
Packet Packet . Alt Display " . . Display Window|Display Window|
Length Type = 145 cClient ID Number Reserved 1 Bltr?ap Width | Bitmap Height Width Height
2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes
Color Map ... | Monochrome YCbCr |Display Feature
RGB Width |RCB Capabiity | “eoponiyy | Reserved2 | cochiity | Capabiity | Reserved3 CRC
2 bytes 2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes

Fls. 89

74/84

WO 2005/018191

Register Access Packet

PCT/US2004/026264

Packet Packet . Read/Write Register . .
Length Type =146 bGlient D Info Address Register Data List CRC
2 bytes 2 bytes 2 bytes 2 bytes 4 bytes Packet Length - 12 bytes 2 bytes
(‘-\
il 90

75/84

WO 2005/018191

Display Update Bits equal to "01"
Pixel Data . ’
from MDDI Frame BufferA
FIG. 9 | A
swap when a complete Frame Buffer B
frame s received .-
Display Update Bits equal to "00"
Frame Buffer A
FIG. & | P> :
Pixel Data
from MDDI Frame Buffer B
Display Update Bits equal to "11"
Pixel Data [z
from MDDI L& Frame Buffer A
FI. 1 C
Frame Buffer B
Pixel Data
is written
to both buifers

76/84

PCT/US2004/026264

swap alter beginning of anew
media-frame and display
refresh begins at upper left

image being
displayed

image updates and display refresh
from the same frame buffer

image being
displayed

swap after beginning of a new
media-frame and display
refresh begins at upper left

image being

displayed

WO 2005/018191 PCT/US2004/026264

Two Buffers, display refresh faster than image transfer

Refresh |:32:% @ @ 4.6 8-, 20 40 0030

ftm 0, fim 0, =B 1 tom 2,b=8 [frmy2, (| frm 4, b=B | frm 4, b=B | trm 4, b=B | Im 5, b=A [f's, b=A
ool Bt Ml lbeet] (5 © 2 4 50 0 | 3040' %0 80

2040 60 80 | 20 40 6030 |
g P

8
3

3
33

77/84

WO 2005/018191
PCT/US2004/026264

Two Buffers, display refresh siower than image transfer

78/84

WO 2005/018191 PCT/US2004/026264

Two Buffers, display refresh much faster than image transfer, small video window

79/84

WO 2005/018191 PCT/US2004/026264

Three Buffers, display refresh much faster than Image transfer, any-size video window

’""5'5‘3‘0' frmid, b2 | frm 4, b=A [frm 4, b=A | frm 4,b=A
S wewiii] e .

80/84

WO 2005/018191 PCT/US2004/026264

Three Buffers, display refresh slower than image transfer

81/84

WO 2005/018191 PCT/US2004/026264

One Buffer, display refresh faster than image transfer

frame 4 [tma5&4|fims 584 treme 5 |Ims6& 5
§ nes. |Ims el

2enimuion, | srnoesws | aimecon | v | e

Refresh | i

82/84

WO 2005/018191 PCT/US2004/026264

Daisy-Chained Configuration

each client repeats data after it
has been assigned an address

Clients connected via a Hub

Hub

Figm ag

WO 2005/018191 PCT/US2004/026264

Combinations of Hub and Daisy-Chain “MDDI

AN “MDDI. J ‘MDDI’
| Client’ = cient K1 clint

“Client |\~ ¥| Client_

‘MDDI -

Hub “Clisht

Hub

“Client -

File. QA9

84/84

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

