实用新型名称
基于 ZigBee 的婴儿培养箱温度监测与报警系统

摘要
本实用新型涉及一种基于 Zigbee 的婴儿培养箱温度监测与报警系统，包括监控主机、协调器节点、路由器节点和传感器终端节点构成的无线传感网，其特征在于：一个新生儿病房作为一个无线网络，病区值班护理中心安放协调器节点，在楼层走廊布设路由器节点，各婴儿培养箱放置无线传感器终端节点，协调器节点连接到监控主机。本实用新型采用基于 TI/CHICHICONCC2430 为核心设计的传感器节点，结合 Zigbee 技术构建无线传感器网络，实现对婴儿培养箱温度监测和报警的系统集成，可以更好的、及时的了解婴儿培养箱的温度情况，并通过及时的报警来防止因婴儿培养箱故障而对婴儿造成伤害的不良事件的发生。
1. 一种基于 Zigbee 的婴儿培养箱温度监测与报警系统，包括监控主机、协调器节点、路由器节点和传感器终端节点构成的无线传感网，其特征在于：一个新生儿病房作为一个无线网络，病区值班护理中心安放协调器节点，在楼层走廊布设路由器节点，各婴儿培养箱放置无线传感器终端节点，协调器节点连接到监控主机。

2. 如权利要求 1 所述的一种基于 Zigbee 的婴儿培养箱温度监测与报警系统，其特征在于：所述的传感器终端节点采用 DS18B20 数字温度传感器，由 RP-2430 ZigBee 模块和 DS18B20 数字温度传感器通过 cc2430 I/O 口相连。
基于 ZigBee 的婴儿培养箱温度监测与报警系统

技术领域
[0001] 本实用新型属于医学信息处理与分析技术领域，具体涉及婴儿培养箱温度监测与报警系统。
[0002] 背景技术
[0003] 婴儿培养箱是国家和浙江省重点监控的医疗器械产品之一，由于箱体内环境失控而引起医疗不良事件的报道较为常见，如烫伤、冻伤、群体感染等，对培养箱内环境特别是温度的监测显得尤为重要。
[0004] 最近几年，无线通信技术在国内外医疗市场得到了广泛的应用，无线医疗设备应用迅猛增长。有报告指出，欧洲的无线医疗设备销售额从 2003 年的 9800 万美元增加到 2008 年的 4.458 亿美元。美国 2003 年的医疗 WiFi 市场达到 4.95 亿美元。2010 年美国医疗 WiFi 市场高达 20 亿美元。目前基于 ZigBee 的无线技术在医疗领域的应用主要是用于无线监护呼救，有的产品适用于家庭内老年人的监护和定位，有的用于医院病房的无线呼叫系统，国内已有相应的产品。但国内外基于 ZigBee 技术的医疗设备系统集成产品在医院的应用还是空白，特别是利用无线传感器网络对国家重点监控的治疗抢救等生命支持设备的系统集成，目前还没有此类的研究。
[0005] ZigBee 是一种新兴的短距离、低复杂度、低功耗、低数据率、低成本的无线传感器网络技术。它依据 IEEE802.15.4 标准能在微小的传感器之间相互协调实现通信，可实现数据的采集、处理、融合及传输。ZigBee 是无线通信领域中的一个全新的研究热点，它在军事和民用方面均有广阔的应用前景，如工业监控、环境监测、医疗监护、空间探索、交通和仓储管理、边防控制、智能地雷等。ZigBee 技术具有统一技术标准的短距离无线通信技术，它是一种融合了无线通信技术和蓝牙之间的技术方案。2003 年 11 月，IEEE 正式发布了该项技术物理层和 MAC 层所采用的标准协议，即 IEEE802.15.4 协议标准，而应用层的开发应用根据用户自己的应用需求，对其进行开发。
[0006] ZigBee 的优势主要有：(1) 低功耗：在通信状态下，ZigBee 终端耗电在几十 mW 左右，其低电模式下，耗电仅仅几十 μW，一节干电池可以工作几个月到 1 年。在低电待机模式下，2 号节电池可支持 1 个节点工作 6~24 个月，甚至更长。相比较，蓝牙能量效数周，WiFi 可工作数小时；(2) 高容量：ZigBee 可采用星状、树状和网状网络结构，由一个主节点管理若干子节点，最多一个主节点可管理 254 个子节点；同时主节点还可由上一网络节点管理，最多可组成 65000 个节点的大网。

发明内容
[0007] 本实用新型所要解决的技术问题是，提供一种基于 ZigBee 的婴儿培养箱温度监测与报警系统，通过及时对婴儿培养箱的温度监测和异常报警信号的产生，更好地让临床医护人员掌握新生儿的生存环境，减少医护人员的工作量和不良事件的发生。
[0008] 为了解决上述技术问题，本实用新型具体采用以下技术方案：
[0009] 一种基于 ZigBee 的婴儿培养箱温度监测与报警系统，包括监控主机、协调器节
点，路由器节点和传感器终端节点构成的无线传感网，其特征在于：一个新生儿病房作为一个无线网络，将监测护理中心安全报警系统与各婴儿病床，各婴儿培养箱放置无线传感器终端节点，协调器节点连接到监控主机。

[0010] 所述的传感器终端节点采用DS18B20数字温度传感器，由RF-2430 ZigBee模块和DS18B20数字温度传感器通过cc2430 I/O 口相连。

[0011] 本实用新型与现有技术相比具有以下有益效果：

[0012] 本实用新型采用基于TI/CHIPCON CC2430为核心设计的传感器节点，结合ZigBee技术构建无线传感器网络，实现对婴儿培养箱温度监测和报警的系统集成，可以更好的、更及时的了解婴儿培养箱的温度情况，并通过及时的报警来防止因婴儿培养箱故障而对婴儿造成伤害的不良事件的发生。

附图说明

[0013] 图1 Zigbee系统架构原理图
[0014] 图2 协调器 Zigbee 节点流程图
[0015] 图3 终端传感器 Zigbee 节点流程
[0016] 图4 监控主 Zigbee 节点流程图。

具体实施方式

[0017] 下面，根据说明书附图并结合具体实施例对本实用新型的技术方案作进一步的详细说明。

[0018] 本实用新型基于 ZigBee 的婴儿培养箱温度监测与报警系统具体包括以下步骤：

[0019] （1）确定 Zigbee 网络模型的输入输出变量；

[0020] 将婴儿培养箱的床号、设置温度值和传感器终端节点正常电池电压值作为输入变量；将监测到的婴儿培养箱箱内实际温度值和传感器终端节点电池电压的变化值以及相应床号的报警信号作为输出变量；

[0021] 根据需要，在监控主机输入婴儿培养箱的床位号、设置温度 T0、传感器终端节点正常电池电压值，输出为传感器终端节点监测到的其节点供电电池当前电压值 U、培养箱实际温度值 T(k) 和经数据分析处理后的声光报警信号。

[0022] （2）获得样本数据：采集婴儿培养箱箱内实际温度值和传感器终端节点当前电池电压值作为样本数据。

[0023] 为了获得建模所需的数据，系统主要采用成都无线龙通讯科技有限公司与 TEXAS INSTRUMENTS联合研发的RF-2430 ZigBee模块和DS18B20数字温度传感器采集婴儿培养箱箱内温度，由软件设置zigbee2430无线模块工作在协调器节点，路由器节点或终端传感器节点模式。该 ZigBee 无线模块采用无线龙标准双排 20 针功能引脚和 TI 的 ZigBee 组合应用系统 CC2430 作为微控制器，其中终端传感器节点由 RF-2430 ZigBee 模块和DS18B20数字温度传感器通过cc2430 I/O 口相连，并采用3V锂电池供电。

[0024] 系统每30s采集培养箱内温度和传感器终端节点电池电压，同时通过无线网络将各传感器终端节点的数据传送至监控主机，经管理软件分析并发出声光报警信号。

[0025] （3）建立 Zigbee 网络模型：要在医院病区建立 ZigBee 无线网络，实现无线监测和
报警系统集成，一般医院病区内距离不会很远，而病区护理中心需要采集所有婴儿培养箱的温度数据并产生报警信号。根据实际情况建立如图1所示的Zigbee系统框架原理图，包括由监控主机、协调器节点、路由器节点和传感器终端节点构成的无线传感网。

协调器节点、路由器节点和传感器终端节点均由全功能设备构成（出于成本考虑，传感器终端节点可采用精简功能设备），主要完成数据采集、组织及发送功能，节点在加入网络后，由它的父节点给他分配一个短地址。

传感器终端节点由CC2430 Zigbee节点、DS18B20数字温度传感器及少量外围器件构成，并采用3V锂电池供电。

路由器节点建立路由表格，中继数据帧，它主要完成数据接收、数据中转、网络维护等功能。

协调器节点起到与外部系统接口或协调与其他网络的路由作用，主要完成网络管理、网络数据整理、无线远程通信等功能。

协调器节点需要与监控主机RS232接口连接，将系统网络中各传感器终端节点的数据传送至管理中心主机，并由主机管理软件分析处理，显示分析并发出声光报警信息，在CC2430的串口和主机RS232接口之间增加一个MAX232芯片以完成电平转换。

（4）确定Zigbee网络模型，将一个新生儿病房作为一个无线网络，病区值班护理中心安放协调器节点，在楼层走廊布设路由器节点，各婴儿培养箱放置无线传感器终端节点，协调器节点连接到监控主机，由相应的管理软件对整个系统进行管理。协调器节点实时扫描网络信号区域内的用户终端，将用户终端的相关信息上报，路由器负责终端的数据转发任务，将终端的数据转发给协调器。

（5）对于连接监控主机的协调器节点上电开始工作后首先要进行Zigbee协议栈的初始化工作，然后进行信道扫描及空闲信道评估，从而选择合适的工作信道和网络标识符，启动Zigbee网络发送超帧，等待Zigbee传感器终端设备的连接请求，并经认证后，确认是合法的设备，便发出允许连接的命令，实现Zigbee传感器终端与协调器的连接，建立后网络形成，协调器节点在该传感器终端输出数据发送请求时，将该数据发送至主机，管理中心软件对数据进行分析显示并产生声光报警提示信息。协调器节点程序流程图如图2所示。

婴儿培养箱传感器终端上电后首先初始化Zigbee协议栈，然后开始进行信道扫描，寻找Zigbee协调器节点，当检测到Zigbee协调器的超帧信号时，便向其发送建立连接的请求，连接建立后，获得协调器的标识号，加入网络，当数据采集实时时间到时，传感器终端设备会发出数据发送请求，进行核实后，将该信息通过加入的Zigbee网络发送到协调器节点，由协调器节点将该数据送管理中心主机进行分析处理。婴儿培养箱传感器终端子节点的程序流程图如图3所示。
信号 S_2。

[0035] 传感器终端节点发送指令使数字温度传感器 DS18B20 定时采集温度信息（在接到中断信号情况下，需即时采集温度信号）。传感器终端节点对箱体温度不断进行采样，并将温度信号发送给协调器节点，协调器节点通过 RS232 接口将温度信号发送给监控主机并在显示屏上显示。如果婴儿培养箱箱体温度 $T(k)-T_0 \geq 3^\circ C$ 或箱体温度 $T(k) \geq 38^\circ C$，监控主机接收此温度信号后发出“超温”报警。当 $T(k)=T(k-1)=T(k-2)=\cdots=T(k-n)$ 时，监控主机判断培养箱进入恒温状态，此时如果 $|T(k)-T_0| \geq 3^\circ C$，监控主机发出“箱温偏差”报警。其中 $T(k)$ 表示第 k 个采样时刻的培养箱实际温度值，采样周期为 30s。

[0036] 监控主机主机组态软件负责对婴儿培养箱温度监测和报警系统中的全部节点进行可视化管理，包括系统网络的拓扑结构、传感器终端节点实时监控、状态异常报警、节点信息管理、系统用户管理、系统参数设置等功能。主机管理中心软件主要执行流程如图 4 所示。从而实现对婴儿培养箱温度的监测及即时发出报警信号。

[0037] 实验结果：

[0038] 温度监测：

<table>
<thead>
<tr>
<th>婴儿培养箱设置温度值 T_0 ($^\circ C$)</th>
<th>32</th>
<th>32.5</th>
<th>33</th>
<th>33.5</th>
<th>34</th>
<th>34.5</th>
<th>35</th>
<th>35.5</th>
<th>36</th>
<th>36.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLK1000TC 婴儿培养箱分析仪检测的实时温度值 ($^\circ C$)</td>
<td>32.7</td>
<td>32.8</td>
<td>33.4</td>
<td>33.8</td>
<td>34</td>
<td>34.4</td>
<td>34.8</td>
<td>35.2</td>
<td>35.8</td>
<td>36.3</td>
</tr>
<tr>
<td>本系统监测的婴儿培养箱的实时温度值 $T(k)$ ($^\circ C$)</td>
<td>32.4</td>
<td>32.9</td>
<td>33.3</td>
<td>33.6</td>
<td>34</td>
<td>34.4</td>
<td>34.9</td>
<td>35.5</td>
<td>35.8</td>
<td>36.3</td>
</tr>
</tbody>
</table>

[0040] 注：温度监测传感器均位于培养箱正中位置

[0041] 电压监测：

<table>
<thead>
<tr>
<th>FLK102B 万用表监测的当前电压值 (V)</th>
<th>3.296</th>
<th>3.254</th>
<th>3.213</th>
<th>3.152</th>
<th>3.095</th>
<th>3.048</th>
<th>3.019</th>
<th>2.973</th>
</tr>
</thead>
<tbody>
<tr>
<td>本系统监测的当前电压值 (V)</td>
<td>3.29</td>
<td>3.25</td>
<td>3.20</td>
<td>3.14</td>
<td>3.08</td>
<td>3.04</td>
<td>3.00</td>
<td>2.95</td>
</tr>
</tbody>
</table>
图 1
图 2
图 3