发明名称
改进型废轮胎油脱色、去味再生技术及其调配柴油的方法

摘要
本发明公开了一种改进型废轮胎油脱色、去味再生技术及其调配柴油的方法，其包括以下步骤：
a. 混合：废轮胎油 100 份、双氧水 1~8 份、催化剂 1~5 份；混合后反应 2~5 小时；其中催化剂为 Fe2O3、Al2O3、SiO2、MnO2 至少两种的混合物；
b. 将 a 中反应后的上层无水物质加入反应釜，再加入的核心催化剂，加热，收取常压 365℃或 0.09MPA 负压下 280℃~300℃以下的蒸馏物；
c. 向 b 蒸馏物加入浓硫酸，搅拌，加入白土、沉淀后，用过滤机或者过滤砂过滤，得浅黄色初级柴油；
d. 将步骤 c 的初级柴油调配成所需型号。本发明和现有技术相比具有反应原理更加先进，其成品油具有颜色为浅黄、质量稳定、具有良好蒸发性、动力性、低温流动性，无腐蚀性等优点，且能与传统化石柴
1. 一种改进型废轮胎油脱色、去味再生技术，其特征在于包括以下步骤：
 a. 将下列原料按照重量比混合
 废轮胎油 100 份；
 催化液 3-8 份；
 核心催化剂 1-4 份；
 混合后反应 3-5 小时；
 所述的催化液为双氧水；
 所述的核心催化剂为 Fe₃O₄、Al₂O₃、SiO₂、MnO₂ 中至少两种的混合物；
 b. 将步骤 a 中混合反应后的上层无水物质加入反应釜，再加入 1-3 重量份的核心催化剂，加热，收取蒸馏物；
 c. 向 b 步骤中的蒸馏物加入 2-4 重量份浓硫酸，搅拌 20-30 分钟，加入 2-4 重量份活性炭，沉淀 20-30 分钟后，用小于 100 目筛滤机或者过滤袋过滤，得浅黄色初级柴油。

2. 根据权利要求 1 所述的改进型废轮胎油脱色、去味再生技术，其特征在于：
 a. 将下列原料按照重量比混合
 废轮胎油 100 份；
 催化液 3-8 份；
 核心催化剂 1-4 份；
 混合后反应 3-5 小时；
 所述的催化液为双氧水；
 所述的核心催化剂为 Fe₃O₄、Al₂O₃、SiO₂、MnO₂ 中至少两种的混合物；
 b. 将步骤 a 中反应后的物质加入反应釜，再加入 1-3 重量份的核心催化剂，加热，收取蒸馏物；
 c. 向 b 步骤中的蒸馏物加入 2-4 重量份浓硫酸，搅拌 20-30 分钟，加入 2-4 重量份活性炭，沉淀 20-30 分钟后，用小于 100 目筛滤机或者过滤袋过滤，得浅黄色初级柴油。

3. 根据权利要求 1 或 2 所述的改进型废轮胎油脱色、去味再生技术，其特征在于：
所述双氧水浓度为20%-30%；
所述浓硫酸浓度大于90%。

4. 根据权利要求1或2所述的改进型废轮胎油脱色、去味再生技术，其特征在于：
所述核心催化剂为Fe₂O₃、Al₂O₃、SiO₂、MnO₂的四种组合物。

5. 根据权利要求1或2所述的改进型废轮胎油脱色、去味再生技术，其特征在于：
所述核心催化剂为Fe₂O₃、Al₂O₃、SiO₂、MnO₂的四种组合物，且其质量比为7:1:1:1。

6. 根据权利要求1或2所述的改进型废轮胎油脱色、去味再生技术，其特征在于：所述的b步骤中收取蒸馏物是在常压365℃以下或0.09MPA负压280℃-300℃的以下馏出物。

7. 一种调配权利要求1或2初级柴油的方法，其特征在于：
所述的调配方法为向100重量份废轮胎油经处理后的浅黄色初级柴油中加入抗氧剂0.05-0.1重量份与动力改良剂0.3-0.4重量份。
改进型废轮胎油脱色、去味再生技术及其调配柴油的方法

一、技术领域

本发明涉及一种利用废轮胎油脱色、去味制备及调配柴油的方法。

二、背景技术

随着我国原油对外依赖程度的不断加大，我国柴油的供应缺口也随之增大，多渠道开发现有能源，再生现有资源，增加能源的利用率已成影响国民经济发展的重要因素之一。

长期以来，废旧轮胎似乎是“黑色污染”的代名词。如何让废旧轮胎有效利用，防止污染，已被世界各国所重视。我国同美国、欧盟一起处于世界废胎产生量前列。统计数据显示，我国每年报废的轮胎数量已由2000年的0.32亿条增加到2007年的1.5亿条，重量也从1.2万吨增加到310万吨。预计到2010年，废旧轮胎的产生量将达到2亿条。随着轮胎再生等技术的日益成熟，我国废旧轮胎回收再利用近年来取得很大发展，尤其将废轮胎用于生产柴油方面。

现有的废轮胎油再生技术一般分为物理方法和化学方法或者两者的结合。传统方法无论是物理过滤法还是化学加热法普遍存在以下缺点：

催化剂方面：一是不使用催化剂，只纯粹进行过滤或热裂解反应，尽可能原料单纯加热，是非常有限的热裂化，许多长链和大分子完全仍以原状蒸发出去，反应仅是一个质化过程而已；二是加入一些粉末催化剂，因接触面非常窄（固液相接触），不能使物料全面受到催化反应，其催化效果不佳；三是选择的催化剂不对路，催化剂对本反应催化性差，导致效果不理想。以上原因造成了现有方法出油率低、油质有效期短、变色快、粘度大、比重大。

在废轮胎油再生过程中，一般来讲油品中的烃分子越大，其碳链就越长，部分分子性质就越不安定，在常温下易氧化成高分子粘稠物，即胶质，使正常油品颜色逐渐加深。而油品中所含非烃类化合物如硫化合物、氮化合物、沥青质杂质等或遇热不稳定，极易分解或本身含有特殊强烈的臭味且氧化安定性差，贮存稍久，就会发生氧化作用而使油的颜色加深。当长链大分子变短后，分子量相对变轻，易于蒸出，性质又相对稳定，不易变化。再对杂质强氧化后，就使二者的分离变得容易，有利于提高产品的质量。
催化效果差导致碳碳长链断裂不彻底，产品颜色只能达到枣红色或者浅红色，长链结构稳定性差，存放1-2天即氧化成深红色，与现有的化石柴油混合效果差；产品存在刺鼻的味道、有腐蚀性、动力差。其次碳链断裂不彻底，大分子的蒸馏需要更高的温度，同一温度下蒸馏不彻底，造成出油效率较低。

三、发明内容

本发明针对以上不足之处，提供一种以废弃轮胎油为原料进行脱色、去味的再生技术及其调配柴油的方法，利用此方法得到的成品油颜色为浅黄，具有质量稳定、良好蒸发性、动力性、低温流动性、无腐蚀性等优点，且能与传统化石柴油或其他燃料柴油任意比例混合使用。

为达到上述目的，本发明采用的技术方案是：

一种改进型废弃轮胎油脱色、去味再生技术及其调配柴油的方法，包括以下步骤：

a、将下列原料按重量份比混合
废弃轮胎油 100 份；
催化剂 1-8 份；
核心催化剂 1-5 份；
混合后反应 2-5 小时；
所述的催化剂为双氧水（H₂O₂）；
所述的核心催化剂为 Fe₂O₃、Al₂O₃、SiO₂、MnO₂ 中至少两种的混合物；

b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 1-5 重量份的核心催化剂，加热，收常压 365℃或者 0.09MPA 负压 280℃-300℃以下蒸馏物；

c、向 b 步骤中的蒸馏物加入 1-6 重量份浓硫酸，搅拌 20-30 分钟，加入 2-6 重量份活性白土沉淀 20-30 分钟后，用小于 200 目压滤机或者过滤砂过滤，得浅黄色初级柴油；

d、调配：向步骤 c 的浅黄色初级柴油中加入抗氧化剂 0.05-0.1 份，动力改进剂 0.3-0.4 份，根据需要调成所需型号的柴油。

采用核心催化剂与催化剂实现双重催化，催化裂化破坏长链结构，反应彻底，打断分子间的碳碳长链，使其变为较小的短链分子；
此时再加热，将剩余的双氧水消耗，高温条件下再次加入核心催化剂，残留的碳碳长链被彻底打断，长链分子变为短链分子，分子量相对变轻，分子处在较“轻”的小分子状态，有利于其在反应釜中的气化蒸出，同时性质相对稳定，不易变化，在增大废轮胎油的出油率的同时得到小分子的馏出物，再用浓硫酸对馏出物中沸出的杂质再次进行强氧化反应，使杂质彻底碳化、聚集，形成“大分子块”，便于过滤，从而得到浅色、无异味的初级柴油。此后加入抗氧剂，使柴油形成稳定状态，长期存放颜色无变化（现存放70天以上），气味更加接近化石柴油。

本发明与现有技术相比具有以下优点：

本方法中因为加入了液体催化剂和核心催化剂，不仅接触反应面积增大（液液相接触），而且还实现了二重催化；

1、实验数据显示，双氧水在金属氧化的催化作用下，双氧水加速分解其活化能由75KJ/mole降为35KJ/mole左右，证明金属氧化物的催化效果大大增强，打断碳链能力加强，反应速度加快，数小时内即可完成反应，提高了出油效率，此为一重催化。

2、双氧水在快速分解过程中产生的氧粒子，在结合形成氧气前，其强氧化性使油品的带色质、异味易氧化物以及胶质、芳烃、不饱和烃等化合物生成聚合物，易与油品分离。

3、水分解时溶液中含有氢离子，而过氧根在氢离子的作用下生成氢氧根离子，其中氢离子浓度远大于氢氧根离子的浓度，从而能实现氢催化，此为二重催化。

4、金属氧化物和氢组成双功能催化剂，一方面能够使油品通过催化反应生成轻质油品，另一方面促使烷烃C-C键断裂，给生成的不饱和分子碎片的加氢还原，此外还可以发生异构化反应和烯烃变成饱和烃，将原料中的硫、氢、氧等杂质脱除。

5、碳链打断彻底，链烃由长变短，将大分子降到类似柴油220左右分子量并使碳链结构尽可能控制在14～14之间，使之符合柴油要求，出油的产品质量高、原来的刺激性气味消失、初级柴油的颜色由原来的红色或者浅红色变为现在的浅黄色；同时因碳链打断彻底，使得出油率更高。
四、具体实施方式

具体实施方式一：

a、将下列原料按照重量份比混合

废轮胎油 100 份；
催化液 1 份；
核心催化剂 1 份；
混合后反应 2 小时；
所述的催化液为双氧水（H₂O₂），浓度为 20%；
所述的核心催化剂为 Fe₃O₄、Al₂O₃ 两种的混合物；

b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 1 重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 94.0 重量份；

c、向 b 步骤中的蒸馏物加入 1 重量份浓硫酸（浓度 90%），搅拌 20 分钟，加入 2 重量份白土沉淀 20 分钟后，用小于 200 目压滤机或者过滤砂过滤，得浅黄色初级柴油 91.6 重量份；

d、向步骤 c 中浅黄色初级柴油中加入 0.05 重量份的抗氧剂、0.3 重量份的动力改进剂根据需要调配成所需型号的柴油。

具体实施方式二：

a、将下列原料按照重量份比混合

废轮胎油 100 份；
催化液 8 份；
核心催化剂 5 份；
混合后反应 5 小时；
所描述的催化液为双氧水（H₂O₂），浓度 30%；
所描述的核心催化剂为 SiO₂、MnO₂ 两种的混合物；

b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 5 重量份的核心催化剂，加热，收取 0.09MPa 负压 280℃-300℃蒸馏物以下 94.5 重量份；

c、向 b 步骤中的蒸馏物加入 6 重量份浓硫酸（浓度 95%），搅拌 30 分钟，加入 6 重量份白土沉淀 30 分钟后，用小于 100 目压滤机或者过滤砂过滤，得浅黄色初级柴油 92.4 重量份；
d、向步骤 c 中浅黄色初级柴油中加入 0.1 重量份的抗氧剂、0.4 重量份的动力改进剂根据需要调配成所需型号的柴油。
具体实施方式三：
a、将以下原料按照重量份比混合
废轮胎油 100 份；
催化液 5 份；
核心催化剂 3.5 份；
混合后反应 3.5 小时；
所述的催化液为双氧水 (H₂O₂)，浓度 28%；
所述的核心催化剂为 Fe₂O₃、SiO₂ 两种的混合物；
b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 2.6 重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 94.7 重量份；
c、向 b 步骤中的蒸馏物加入 2 重量份浓硫酸（浓度 97%），搅拌 25 分钟，加入 4 重量份白土沉淀 25 分钟后，用小于 100 目压滤机或者过滤砂过滤，得浅黄色初级柴油 92.8 重量份；
d、向步骤 c 中浅黄色初级柴油中加入 0.08 重量份的抗氧剂、0.36 重量份的动力改进剂根据需要调配成所需型号的柴油。
具体实施方式四：
a、将以下原料按照重量份比混合
废轮胎油 100 份；
催化液 3 份；
核心催化剂 4 份；
混合后反应 3 小时；
所述的催化液为双氧水 (H₂O₂)，浓度 25%；
所述的核心催化剂为 Fe₂O₃、Al₂O₃、SiO₂ 三种的混合物；
b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 3 重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 95.0 重量份；
c、向 b 步骤中的蒸馏物加入 3 重量份浓硫酸（浓度 97%），搅拌 25 分钟，加入 2.8 重量份白土沉淀 25 分钟后，用小于 100 目压滤机或者过滤砂过滤，得浅黄色初级柴油 93.8 重量份；
d、向步骤c中浅黄色初级柴油中加入0.07重量份的抗氧剂、0.38重量份的动力改进剂根据需要调配成所需型号的柴油。

具体实施方式五：

a、将下列原料按照重量份比混合
废轮胎油 100 份；
催化液 6 份；
核心催化剂 2.8 份；
混合后反应 4.5 小时；

所述的催化液为双氧水（H₂O₂），浓度 24%；
所述的核心催化剂为 Fe₃O₄、MnO₂、SiO₂三种的混合物；

b、将步骤a中的混合反应后的上层无水物质加入反应釜，再加入2重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 95.3 重量份；

c、向b步骤中的蒸馏物加入3.8重量份浓硫酸（浓度 94%），搅拌 25 分钟，加入3重量份白土沉淀 25 分钟后，用小于 100 目压滤机或者过滤砂过滤，得浅黄色初级柴油 93.3 重量份；

d、向步骤c中浅黄色初级柴油中加入0.07重量份的抗氧剂、0.33重量份的动力改进剂根据需要调配成所需型号的柴油。

具体实施方式六：

a、将下列原料按照重量份比混合
废轮胎油 100 份；
催化液 7 份；
核心催化剂 3.8 份；
混合后反应 4 小时；

所述的催化液为双氧水（H₂O₂），浓度 28%；
所述的核心催化剂为 Fe₃O₄、Al₂O₃、MnO₂三种的混合物；

b、将步骤a中的混合反应后的上层无水物质加入反应釜，再加入1.5重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 95.7 重量份；

c、向b步骤中的蒸馏物加入2.5重量份浓硫酸（浓度 94%），搅拌 25 分钟，加入 3.8 重量份白土沉淀 25 分钟后，用小于 100 目压滤机或者过滤砂过滤，得浅黄色初级柴油 94.6 重量份；
d、向步骤 c 中浅黄色初级柴油中加入 0.06 重量份的抗氧剂、0.39 重量份的动力改进剂根据需要调配成所需型号的柴油。

具体实施方式七:

a、将下列原料按照重量份比混合
废轮胎油 100 份；
催化液 4 份；
核心催化剂 3 份；
混合后反应 4 小时；
所述的催化液为双氧水 (H₂O₂)，浓度 28%；
所述的核心催化剂为 Fe₂O₃、Al₂O₃、SiO₂、MnO₂ 四种的混合物；
b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 2.8 重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 95.6 重量份；
c、向 b 步骤中的蒸馏物加入 3.5 重量份浓硫酸 (浓度 98%)，搅拌 22 分钟，加入 2.5 重量份白土沉淀 28 分钟后，用小于 100 目压滤机或者过滤砂过滤，得浅黄色初级柴油 93.5 重量份；

d、向步骤 c 中浅黄色初级柴油中加入 0.07 重量份的抗氧剂、0.35 重量份的动力改进剂根据需要调配成所需型号的柴油。

具体实施方式八:

a、将下列原料按照重量份比混合
废轮胎油 100 份；
催化液 8 份；
核心催化剂 4 份；
混合后反应 3.5 小时；
所述的催化液为双氧水 (H₂O₂)，浓度 30%；
所述的核心催化剂为 Fe₂O₃、Al₂O₃、SiO₂、MnO₂ 四种的混合物；四种混合物的比例为 7:1:1:1；
b、将步骤 a 中的混合反应后的上层无水物质加入反应釜，再加入 2.5 重量份的核心催化剂，加热，收取常压 365℃以下蒸馏物 96.0 重量份；
c、向 b 步骤中的蒸馏物加入 4 重量份浓硫酸 (浓度 98%)，搅拌 25 分钟，加入 3.5 重量份白土沉淀 25 分钟后，用小于 100 目压滤机或者过滤砂过滤；
得浅黄色初级柴油 94.0 重量份；

d、向步骤 c 中浅黄色初级柴油中加入 0.09 重量份的抗氧剂、0.37 重量份的动力改进剂根据需要调配成所需型号的柴油。