ABSTRACT OF THE DISCLOSURE

A wristwatch strap comprising an elongated upper layer formed of a single piece of material and including a sharpened marginal border along its periphery and an elongated inner lining including edges and an inner face and an upper face therebetween. The elongated inner lining is longitudinally secured along its upper face to the elongated layer, from one end of the strap to the other and the sharpened marginal borders are bent about the edges and extend to the inner face, the sharpened marginal border being secured to the edges. The elongated upper layer and the elongated inner lining are narrowed in thickness at one end and adapted thereat to be formed into a loop with spaced glue coating sections disposed thereat.

The present invention relates to a wristwatch strap, in general, and to a wristwatch strap of leather or like materials, having a lining joined to the visible upper layer of the strap by means of glue or welding, in particular.

With conventional wristwatch straps made of leather, the lining ends about 24 mm. before the end of the strap, which end is fastened to the lug of a watch, presenting an unsightly cut edge where the inner surface can still be seen. The end of the strap passed through the lug has a cut edge, and therefore it is inadequate to withstand the stresses occurring during wear. A further disadvantage is that the strap shrinks during long wear.

The same disadvantages occur in buckle parts manufactured the same way.

Similar disadvantages are observed with leather wristwatch straps designed for spring lugs and having a spring lug loop at the ends which are fastened to the watch. Up to the present time, the spring lug loop was made with a cut edge, and consequently was unsuited for satisfactorily withstanding the stresses of tension and pressure during wear. This is particularly so after long wear, since shrinkage of the leather occurs with the attendant disadvantage that straps of this type are no longer firmly fastened to the watch, and as a result, side-way displacements occur. Apart from the above-mentioned disadvantages, a wristwatch strap having a lateral clearance with respect to the spring lug will not look well, ad presents the possibility that the spring pin may be pressed out of the lug, resulting in the loss of the watch.

It is one object of the present invention to provide a wristwatch strap of leather or like materials eliminating the above-mentioned disadvantages.

It is another object of the present invention to provide a wristwatch strap comprising an elongated upper layer formed of a single piece of material and including a sharpened marginal border along its periphery, an elongated inner lining including edges and an inner face and an upper face therebetween, the elongated inner lining longitudinally secured along its upper face to the elongated upper layer, the sharpened marginal border bent about the edges and extending to the inner face, and the sharpened marginal border secured to the edges. The essential characteristic of the wristwatch strap is that the inner lining follows the whole length of the strap starting from the tip of the strap, and/or the buckle loop, respectively, exposing at the longitudinal edges and the edges, a marginal border of the upper layer which projects about the lining and which is folded parallel to the edges of the lining to form an edgewise link with the edges of the lining. Great differences of thickness will occur in the strap, and for this reason an edge of 0.6 mm. will be linked to 0.4 mm. and 0.2 mm. Accordingly, the wristwatch strap of the present invention does not have any unsightly cut edges. Also, since the lining covers the entire length of the strap including the loop portion, no unsightly back portions of the leather are visible. The loop portion is narrowed in combined thickness of the two layers and with the marginal border continuously extending thereat, a flexible as well as a strong and neat appearing loop portion is achieved.

It is still another object of the present invention to provide a wristwatch strap in accordance with the above-mentioned objective, wherein the elongated upper layer and the elongated inner lining comprise a single piece of material which is folded, forming a loop at one end thereof, and the sharpened marginal border terminates adjacent the loop by a marginal incision and continues within the loop in folded and secured position adjacent the upper layer, thereby providing separate strengthening of the loop. A particular advantage is the fact that no shrinkage will occur in the strap even after long wear, because the loop having leather portions of various thickness, is lined and linked. The continuous lining provides for an increased solidity at the loop which holds the watch lug, preventing the existence of a lateral clearance with respect to the lugs during wear, thereby preventing loosening, pressing out of the spring pin, and preventing the possibility of loss of the watch.

For wristwatch straps designed for spring lugs, the present invention provides for cutting the upper layer and the inner lining out of a single piece of leather or like material. In this case, the cutting, in the region of the spring lug loop, as well as the upper layer, has a marginal border limited by border incisions and folded inwardly, the border being secured by glue or welding, providing at this spot an additional strengthening. By folding the marginal border in the region of the spring lug loop, the wriststrap will obtain the aforementioned advantages, namely neat appearance, eliminating shrinkage even during long wear and preventing an otherwise shrunken leather strap from removing the spring causing the watch to become lost.

It is yet another object of the present invention to provide a wristwatch strap in accordance with the above-mentioned objective, wherein the upper layer and lining leather are sharpened for contours in the regions of the loop which may be used for the lug and also for the buckle. Therefore it becomes possible to form the loop with a reduced diameter and without any effort, whether for the watch lug or the buckle.

A further objective of the present invention is to pro-
vide in the above-mentioned wristwatch strap, in the region of the spring lug loop, a grain portion free of glue and of napping. Thus, a simple fold of the lug loop is secured, preventing the strap from sticking to the spring pin. With these and other objects in view, which will become apparent in the following detailed description, the present invention will be more clearly understood, in connection with the accompanying drawings, in which:

FIGURES 1 and 2 are inside plan views of the hole and buckle portions, respectively, of a wristwatch strap used for fastening to watches with spring lugs;

FIG. 3 is a section along the lines III—III of FIG. 1;

FIG. 4 is a section along lines IV—IV of FIG. 1;

FIG. 5 is a section along the lines V—V of FIG. 1;

FIG. 6 is a section along lines VI—VI of FIG. 2;

FIG. 7 is a section along the lines VII—VII of FIG. 2;

FIG. 8 is a section along the lines VIII—VIII of FIG. 2;

FIG. 9 is a section along the lines IX—IX of FIG. 2;

FIG. 10 is a section along lines X—X of FIG. 2;

FIGS. 11 and 12 are inside plan views of the hole and buckle portions, respectively, of a wristwatch strap, used for fastening to rigid lugs;

FIG. 13 is a section along the lines XIII—XIII of FIG. 12;

FIG. 14 is a section along the lines XIV—XIV of FIG. 12;

FIG. 15 is a section along the lines XV—XV of FIG. 12;

FIG. 16 is a section along the lines XVI—XVI of FIG. 12;

FIG. 17 is a section along the lines XVII—XVII of FIG. 13;

FIG. 18 is a section along the lines XVIII—XVIII of FIG. 13;

FIG. 19 is a section along the lines XIX—XIX of FIG. 15 and;

FIG. 20 is a section along the lines XX—XX of FIG. 13.

Referring now to the drawings, and in particular to FIGS. 1 to 10, the wristwatch strap for the hole (FIG. 1) as well as for the buckle portion (FIG. 2), is made from a one-piece cutting, preferably of leather or the like. This cutting is folded providing an elongated upper layer 1 contiguously opposite to an elongated layer of inner lining 2 disposed within projecting and sharpened marginal borders of the upper layer 1. The inner lining has edges 2a, and between the edges 2a it has an upper face 2b and an inner face 2c, the inner face being placed against the wrist when worn. As shown in FIGS. 3, 7 and 8, the upper face 2b of the elongated inner lining 2 is secured, for example, by glue or welding, to the upper layer 1 thereby joining the inner lining 2 to the upper layer 1 along its entire length. The sharpened (or roundedly pointed) marginal border 3 of the upper layer 1 is bent about the edges 2a of the inner lining 2 and extends downwardly to the inner face 2c and is secured to the edges 2a providing a neat and secure strap.

At one end of the cutting is a spring lug loop 4 having the upper layer 1 bent into a sharpened marginal border 5, on both sides, limited by corresponding marginal inclinations 3a. The marginal border 5 is folded prior to linkage of upper layer 1 to the layer of inner lining 2 and it is glued or welded. Accordingly, the spring lug loop 4 stays free of glue and is not being napped. An easy folding of the lug turn-up is thereby obtained, preventing the strap from becoming glued to the spring pin. By means of the folded marginal border 5, the spring lug loop 4 achieves the required solidity for withstanding stresses of pressure and tension. Additionally, shrinkage and clearance between the strap and lug of the watch is prevented. The folded marginal borders 3 and 5 give the wristwatch strap an exceptionally neat appearance since no cutting edges are visible when the watch is worn.

Referring now to the drawings, and in particular to FIGS. 2, 9 and 10, in the region of the buckle loop 6, the upper layer 1 and inner lining 2 are narrowed so as to reduce the material thickness of the strap. By folding the marginal border 5 of the upper layer 1 no cutting edges are visible at the buckle loop 6. The inwardly folded marginal border 5 improves the solidity of buckle loop 6 which is subject to severe stresses.

Referring now again to the drawings, and in particular to FIGS. 11 to 20, for watches with rigid lugs, lining 12 extends the entire length of the upper layer 11. The wristwatch strap therefore is lined continuously from the tip, and buckle loop (FIGS. 12 and 20), respectively, up to the lug loop. The hole portion, as well as the buckle portion, are narrowed in the region of lug loops 14 and in the region of the buckle loop 16, respectively. The outer leather thickness of lining 12 and upper layer 11 together can thus be fixed in the lug loop and buckle loop, respectively, with 0.8 mm. The upper layer 11 has a sharpened marginal border 13 projecting downwards about the edges 12a of the lining leather 12 to the inner face 12c thereof, and is joined to the edges 12a of the lining leather 12 after the upper face 12b of the lining leather 12 is fastened to the upper layer 11. By joining the upper layer 11 to the lining leather 12, it becomes possible to eliminate cutting edges on the entire strap from tip to lug loop, and from buckle to buckle loop, respectively. This linkage eliminates shrinkage of the wristwatch strap when mounted on the watch. The lining of the wristwatch strap increases this effect. Lining the wristwatch strap over its entire length also improves the appearance of the wristwatch strap.

Referring now again to the drawings, and in particular to FIGS. 11, 15, 12 and 17, in the region of the lug loop 14 both hole and buckle portions of the wristwatch strap FIGS. 15 and 17, the lining 12 is formed into three are provided with two lateral strip-like glue coating sections 15 spaced apart in the lengthwise direction. By applying a solvent to the glue strip 15, the adhesive matter becomes activated and the wristwatch strap may be fastened to the watch. The upper layer 11 and the lining layer 12 are narrowed at this loop portion and the marginal border 13 correspondingly decreases in extent so as to terminate at the inner face 12e of the lining 12. As illustrated in FIGS. 15 and 17, the lining 12 is formed into three lateral portions formed into substantially step-like portions, each narrowing in thickness approaching the end of the strap, the two glue coating sections 15 being disposed on the inner face 12e of the lining 12 at the widest and narrowest lateral portions, respectively.

While I have disclosed several embodiments of the present invention, it is to be understood that these embodiments are given by example only and not in a limiting sense, the scope of the present invention being determined by the objects and the claims.

I claim:

1. A wristwatch strap comprising

an elongated upper layer formed of a single piece of material and including a sharpened marginal border along its periphery,

an elongated inner lining including edges and an inner face and an upper face therebetween,

said elongated inner lining longitudinally secured along its upper face to said elongated upper layer from one end to the other end of the strap,

said sharpened marginal border bent about said edges continuously along their entire length, and extending to said inner face,

said sharpened marginal border secured to said edges, two lateral strips, spaced lengthwise apart, of solvent activated glue sections disposed adjacent said one end on said inner face of said elongated inner lining,

said coating sections adapted to be secured together forming a loop therebetween, and

said elongated upper layer and said elongated inner lining narrowing in combined thickness adjacent said
one end whereby the said one end and the loop are of reduced thickness.

2. The wristwatch strap, as set forth in claim 1, wherein said inner lining defines lateral portions of narrowing thickness approaching said one end, and said two spaced coating sections disposed at the widest and narrowest of said lateral portions, respectively.

3. The wristwatch strap, as set forth in claim 2, wherein said lateral portions being formed into three step-like portions, and the centermost step-like portion being free of said coating sections and adapted to form said loop.

References Cited

UNITED STATES PATENTS

1,799,868 5/1930 Sauer.
2,400,594 5/1946 Nienaber
2,657,161 10/1953 Lulitieler

FOREIGN PATENTS

923,229 4/1963 Great Britain.

GERALD M. FORLENZA, Primary Examiner.
R. J. SPAR, Assistant Examiner.